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Smoothness of sets in Euclidean spaces

Artur Nicolau and Daniel Seco

Abstract

We study some properties of smooth sets in the sense defined by Hungerford. We prove a sharp
form of Hungerford’s theorem on the Hausdorff dimension of their boundaries on Euclidean
spaces and show the invariance of the definition under a class of automorphisms of the ambient
space.

1. Introduction

The Lebesgue density theorem tells us that the density of a measurable set approximates the
characteristic function of the set at almost every point. We are going to study sets whose
densities at small scales vary uniformly.

In this paper, a cube will mean a cube in the Euclidean space R
n with sides parallel to the

axis. Two cubes Q,Q′ ⊂ R
n with the same sidelength l(Q) = l(Q′) are called consecutive if the

intersection of their closures is one of their faces. Given a measurable set A ⊂ R
n, let |A| denote

its Lebesgue measure and D(Q) its density in a cube Q ⊂ R
n, that is, D(Q) = |A ∩ Q|/|Q|. A

measurable set A ⊂ R
n is called smooth (in R

n) if

lim
δ→0

sup |D(Q) − D(Q′)| = 0,

where the supremum is taken over all pairs of consecutive cubes Q,Q′ with l(Q) = l(Q′) � δ.
In dimension n = 1, this notion was introduced by Hungerford [3] in relation to the small
Zygmund class. Actually, a set A ⊂ R is smooth if and only if its distribution function is in
the small Zygmund class, or equivalently, the restriction of the Lebesgue measure to the set A
is a smooth measure in the sense of Kahane [4].

Sets A ⊂ R
n with |A| = 0 or |Rn \ A| = 0 are trivially smooth but Hungerford provided non-

trivial examples, using a nice previous recursive construction by Kahane; see [3]. Other sharper
examples are given in [1].

In dimension n = 1, Hungerford proved that the boundary of a non-trivial smooth set has
full Hausdorff dimension [3, 5]. His argument shows that if A is a smooth set in R with |A| > 0
and |R \ A| > 0, then the set of points x ∈ R for which there exists a sequence of intervals {Ij}
containing x such that

lim
j→∞

D(Ij) = 1/2

still has Hausdorff dimension 1. The main goal of this paper is to sharpen this result and
to extend it to Euclidean spaces. It is worth mentioning that Hungerford arguments cannot
be extended to several dimensions since it is used that the image under a non-trivial linear
mapping of an interval is still an interval, or more generally, that an open connected set is an
interval and this obviously does not hold for cubes in R

n, for n > 1. Given a point x ∈ R
n and
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h > 0, let Q(x, h) denote the cube centred at x of sidelength h. With this notation, our main
result is the following theorem.

Theorem 1. Let A be a smooth set in R
n with |A| > 0 and |Rn \ A| > 0. Fix 0 < α < 1.

Then the set

E(A,α) = {x ∈ R
n : lim

h→0
D(Q(x, h)) = α}

has Hausdorff dimension n.

Our result is local, meaning, given a cube Q ⊂ R
n with 0 < |A ∩ Q| < |Q|, we have

that E(A,α) ∩ Q has full Hausdorff dimension. As a consequence the Hausdorff dimension of
∂A ∩ Q is n.

Section 2 contains a proof of Theorem 1. A Cantor-type subset of E(A,α) will be constructed
and its dimension will be computed using a standard result. The generations of the Cantor
set will be defined recursively by means of a stopping time argument. The good averaging
properties of the density are used to estimate the dimension of the Cantor set.

The definition of smooth set concerns the behaviour of the density of the set on the grid of
cubes in R

n with sides parallel to the axis. We consider two natural questions arising from this
definition. First, we study how the definition depends on the grid of cubes, that is, if other
natural grids, such as dyadic cubes or general parallelepipeds would lead to the same notion.
Second, we consider whether the class of smooth sets is preserved by regular mappings. It
turns out that these questions are related and in Section 3 we provide a positive answer to
both of them. A mapping φ : R

n → R
n is bilipschitz if there exists a constant C � 1 such that

C−1‖x − y‖ � ‖φ(x) − φ(y)‖ � C‖x − y‖ for any x, y ∈ R
n.

Theorem 2. Let φ : R
n → R

n be a bilipschitz C1 mapping with uniformly continuous
Jacobian. Let A ⊂ R

n be a measurable set. Then the following are equivalent:

(a) A is a smooth set;
(b) φ−1(A) is a smooth set;
(c) A verifies the smoothness condition taking, instead of the grid of cubes, their images

through φ, that is,

lim
|Q|→0

|A ∩ φ(Q)|
|φ(Q)| − |A ∩ φ(Q′)|

|φ(Q′)| = 0.

As part (c) states, one could replace in the definition of smooth set, the grid of cubes by
other grids such as the grid of dyadic cubes or the grid of general parallelepipeds with bounded
eccentricity whose sides are not necessarily parallel to the axis or even the pullback by φ of
the grid of cubes. One can combine Theorems 1 and 2 to conclude the following corollary.

Corollary 1. Let A be a smooth set in R
n with |A| > 0 and |Rn \ A| > 0. Let φ : R

n →
R

n be a bilipschitz C1 mapping with uniformly continuous jacobian. Fix 0 < α < 1. Then the
set {

x ∈ R
n : lim

h→0

|A ∩ φ(Q(x, h))|
|φ(Q(x, h))| = α

}

has Hausdorff dimension n.
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2. Proof of Theorem 1

2.1. Preliminary results

We begin with a preliminary result on the Hausdorff dimension of certain Cantor-type sets
which will be used in the proof of Theorem 1. In dimension n = 1, the result was given by
Hungerford in [3]; see also [6, Theorem 10.5]. The proof in the higher dimensional case only
requires minor adjustments and it will be omitted.

Lemma 1. For s = 0, 1, 2, . . . let G(s) be a collection of closed dyadic cubes in R
n with

pairwise disjoint interiors. Assume that the families are nested, that is,⋃
Q∈G(s+1)

Q ⊆
⋃

Q∈G(s)

Q.

Suppose that there exist two positive constants 0 < P < C < 1 such that the following two
conditions hold.

(a) For any cube Q ∈ G(s + 1) with Q ⊂ Q̃ ∈ G(s) one has |Q| � P |Q̃|.
(b) For any Q̃ ∈ G(s) one has ∑

|Q| � C|Q̃|,

where the sum is taken over all cubes Q ∈ G(s + 1) contained in Q̃.

Let E(s) =
⋃

Q, where the union is taken over all cubes in G(s) and E ≡ ⋂∞
s=0 E(s).

Then dim E � n(1 − logP C).

The next auxiliary result is the building block of the Cantor set on which the set has a
fixed density. Recall that, given a measurable set A ⊂ R

n, its density on a cube Q is D(Q) =
|A ∩ Q|/|Q|. Given a continuous increasing function ω : [0, 1] → [0,∞) with ω(0) = 0, a set
A ⊂ R

n is called ω-smooth (in R
n) if

|D(Q) − D(Q′)| � ω(l(Q)),

for any pair of consecutive cubes Q,Q′ ⊂ R
n of sidelength l(Q) = l(Q′).

Lemma 2. Let A be an ω-smooth set of R
n with 0 < |A ∩ [0, 1]n| < 1. Let Q be a dyadic

cube. Fix a constant ε > 0 such that nω(l(Q)) < ε < min{D(Q), 1 − D(Q)}. Let A(Q) be the
family of maximal dyadic cubes Qk contained in Q such that

|D(Qk) − D(Q)| � ε. (2.1)

Then:
(a) for any Qk ∈ A(Q) one has

|Qk| � 2−ε/ω(l(Q))|Q|;
(b) let A+(Q) (respectively A−(Q)) be the subfamily of A(Q) formed by those cubes

Qk ∈ A(Q) for which D(Qk) − D(Q) � ε (respectively D(Q) − D(Qk) � ε); then∑
|Qk| � |Q|/4,

where the sum is taken over all the cubes Qk ∈ A+(Q) (respectively Qk ∈ A−(Q)).
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Proof. If Q1 ⊂ Q2 ⊂ Q are two dyadic cubes with l(Q1) = l(Q2)/2, then |D(Q1) −
D(Q2)| � nω(l(Q)). So if (2.1) holds, one deduces that log2 l(Qk)−1 � log2 l(Q)−1 +
ε/nω(l(Q)). Therefore, (a) is proved.

To prove (b), we observe first that, by the Lebesgue density theorem, one has
∑

A(Q) |Qk| =
|Q|. Also ∑

A(Q)

(D(Qk) − D(Q))|Qk| = 0. (2.2)

We argue by contradiction. Assume that
∑

Qk∈A+(Q) |Qk| < |Q|/4 and hence
∑

Qk∈A−(Q)

|Qk| � 3|Q|/4, which gives us∑
Qk∈A−(Q)

(D(Qk) − D(Q))|Qk| � −3ε|Q|/4.

The maximality of Qk tells us that |D(Qk) − D(Q)| � ε + nω(l(Q)) < 2ε. Therefore,∑
Qk∈A+(Q)

(D(Qk) − D(Q))|Qk| � ε|Q|/2,

which contradicts (2.2). The same argument works for A−(Q).

2.2. The dyadic case

Our next goal is to prove a dyadic version of Theorem 1, which already contains its core. Let
Qk(x) be the dyadic cube of generation k which contains the point x ∈ R

n.

Proposition 1. Let A be a smooth set in R
n with 0 < |A ∩ [0, 1]n| < 1. For 0 < α < 1

consider the set E1(A,α) = {x ∈ [0, 1]n : limk→∞ D(Qk(x)) = α}. Then dim E1(A,α) = n.

Proof. Fix 0 < α < 1. A Cantor-type set contained in E1(A,α) will be constructed and
Lemma 1 will be used to calculate its Hausdorff dimension. The Cantor-type set will be
constructed using generations G(s) which will be defined using Lemma 2, yielding the estimates
appearing in Lemma 1.

Given the smooth set A ⊂ R
n, consider the function

ω(t) = sup |D(Q) − D(Q′)|, 0 < t � 1,

where the supremum is taken over all pairs of consecutive cubes Q and Q′ of the same
sidelength l(Q) = l(Q′) � t. Observe that lim ω(t) = 0 as t → 0. Pick a positive integer k0

such that ω(2−k0) < min{α, 1 − α}/20. Define an increasing sequence {ck} with ck → ∞ as
k → ∞ and ck � 2n for any k, satisfying εk = ckω(2−k−k0) → 0 as k → ∞. We can also assume
εk < min{α, 1 − α}/10 for any k = 1, 2, . . .. Since 0 < |A ∩ [0, 1]n| < 1, there are some small
dyadic cubes in [0, 1]n with density close to 0 and others with density close to 1. Since A is
smooth, we can choose a dyadic cube Q1 with l(Q1) � 2−k0−1 and |D(Q1) − α| < ε1/2. Then
define the first generation G(1) = {Q1}. The next generations are constructed inductively as
follows. Assume that the kth generation G(k) has been defined so that the following two
conditions are satisfied: l(Q) � 2−k−k0 and |D(Q) − α| < εk/2 for any cube Q ∈ G(k). The
generation G(k + 1) is constructed in two steps. Roughly speaking, we first find cubes whose
density is far away from α and later we find subcubes with density close to α. For Q ∈ G(k)
consider the family R(Q) of maximal dyadic cubes R ⊂ Q such that |D(R) − D(Q)| � εk.
Observe that, by the Lebesgue density theorem,

∑ |R| = |Q|, where the sum is taken over
all cubes R ∈ R(Q). Fix R ∈ R(Q). Since the set A is ω-smooth, the difference of densities
between two dyadic cubes Q1 ⊂ Q2 ⊂ Q, with l(Q2) = 2l(Q1), is smaller than nω(l(Q)). Hence,
to achieve such a cube R, we need to go through at least εk/nω(2−k−k0) = ck/n dyadic steps.
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Hence,

|R| � 2−ck |Q|. (2.3)

The maximality and the estimate l(Q) � 2−k−k0 give that |D(R) − D(Q)| � εk +
nω(2−k−k0−1). Since

|D(R) − α| > εk/2 > nω(2−k−k0) � nω(l(R)),

one can apply Lemma 2 with the parameter ε = |D(R) − α|. In this way, one obtains two
families A−(R) and A+(R) of dyadic cubes contained in R, according to whether their densities
are smaller or bigger than D(R), but we shall only be interested in one of them which will be
called Gk+1(R). If D(R) > α, then we choose Gk+1(R) = A−(R). Otherwise, take Gk+1(R) =
A+(R). Fix, now, Q∗ ∈ Gk+1(R). The maximality gives that |D(Q∗) − α| � nω(l(R)). Since
l(R) � 2−k−k0−1, we deduce that |D(Q∗) − α| < εk+1/2. Also, l(Q∗) < l(R)/2 � 2−k−k0−1.
Note that any dyadic cube Q̃ with Q∗ ⊂ Q̃ ⊂ Q satisfies

|D(Q̃) − α| � 6εk. (2.4)

The generation G(k + 1) is defined as

G(k + 1) =
⋃

Q∈G(k)

⋃
R∈R(Q)

Gk+1(R).

Next we compute the constants appearing in Lemma 1. Let Q ∈ G(k) and R ∈ R(Q). Part
(b) of Lemma 2 says that

∑ |Qj | � |R|/4 where the sum is taken over all cubes Qj ∈ Gk+1(R).
Since

∑
R(Q) |R| = |Q|, one deduces that∑

|Qj | � |Q|/4, (2.5)

where the sum is taken over all cubes Qj ∈ G(k + 1), Qj ⊂ Q. Also, if Qj ∈ G(k + 1) and
Qj ⊂ Q ∈ G(k), then estimate (2.3) guarantees that

|Qj | � 2−ck |Q|. (2.6)

For k = 1, 2, . . . let E(k) be the union of the cubes of the family G(k) and let E =
⋂

E(k) be
the corresponding Cantor-type set.

Next we show that E is contained in E1(A,α). To do this, fix x ∈ E and, for any k = 1, 2, . . .
pick the cube Qk ∈ G(k) containing x. Let Q be a dyadic cube that contains x, and k be the
integer for which Qk+1 ⊂ Q ⊂ Qk. Observe that k → ∞ as l(Q) → 0. By (2.4) one deduces
that |D(Q) − α| � 6εk and therefore x ∈ E1(A,α).

Finally, we apply Lemma 1 to show that the dimension of E is n. Actually (2.5) and (2.6)
give that one can take C = 1/4 and P = 2−ck in Lemma 1. Hence, the dimension of E is bigger
than n(1 − (2/ck)). Since ck → ∞ as k → ∞, we deduce that dimE = n.

2.3. Affine control and proof of Theorem 1

We want to study the density of a smooth set in non-dyadic cubes. The proof of Theorem 1
will be based on Proposition 1 and on the following auxiliary result on the behaviour of the
densities with respect to affine perturbations.

Lemma 3. Let A be a smooth set in R
n. Consider the function

ω(t) = sup |D(Q) − D(Q′)|,
where the supremum is taken over all pairs of consecutive cubes Q,Q′ ⊂ R

n, of sidelength
l(Q) = l(Q′) � t.
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(a) Let Q, Q̃ be two cubes in R
n with non-empty intersection such that l(Q) = l(Q̃). Then

|D(Q) − D(Q̃)| � 3n2ω(l(Q)).
(b) Let Q be a cube in R

n and let tQ denote the cube with the same centre as Q and
sidelength tl(Q). Then, for any 1 � t � 2, one has

|D(Q) − D(tQ)| � c(n)ω(l(Q)).

Here c(n) is a constant that only depends on the dimension.

Proof. To prove (a), suppose, without loss of generality, that Q = [0, 1]n. Let Q′ = [x, 1 +
x] × [0, 1]n−1, where −1 < x < 1. We will show that

|D(Q) − D(Q′)| � 3nω(1). (2.7)

Since any Q′ intersecting Q is of the form Q′ = [x1, 1 + x1] × . . . × [xn, 1 + xn], part (a) follows
using (2.7) n times.

To show (2.7), decompose [x, 1 + x] into dyadic intervals, that is, [x, 1 + x] =
⋃

Ik, where Ik is
a dyadic interval of length 2−k for k = 1, 2, . . .. Consider the parallelepiped Rk = Ik × [0, 1]n−1

and the density D(Rk) of the set A on Rk, meaning that D(Rk) = |Rk ∩ A|/|Rk|, k = 1, 2, . . ..
The set Rk can be split into a family Fk of 2k(n−1) pairwise disjoint cubes S of sidelength 2−k.
Since |D(S) − D(Q)| � nω(1)(k + 1) for any S ∈ Fk and D(Rk) is the mean of D(S), S ∈ Fk,
we deduce that |D(Rk) − D(Q)| � nω(1)(k + 1). Since

D(Q′) =
∞∑

k=1

2−kD(Rk),

we deduce that |D(Q′) − D(Q)| � 3nω(1), which is (2.7).
We turn now to (b). We can assume Q = [−1/2, 1/2]n. Consider the binary decomposition of

t, that is, t = 1 +
∑∞

k=1 tk2−k, with tk ∈ {0, 1}. For m = 1, 2, . . . let Qm be the cube with the
same centre as Q but with sidelength l(Qm) = 1 +

∑m
k=1 tk2−k. Then tQ =

⋃∞
m=0 Rm where

R0 ≡ Q0 ≡ Q and Rm = Qm \ Qm−1 for m � 1. So, for m � 1, Rm is empty whenever tm = 0
and otherwise we estimate |D(Rm) − D(Q)|. With this aim, assume that tm = 1 and split Rm

into a family Fm of pairwise disjoint cubes S of sidelength 2−m−1. Thus, |D(S) − D(Q)| �
(n(m + 1) + 1)ω(l(Q)) for any S ∈ Fm. Since D(Rm) is the mean of D(S), S ∈ Fm, this
implies that

|D(Rm) − D(Q)| � (n(m + 1) + 1)ω(l(Q)) m = 1, 2, . . . . (2.8)

As we also have

D(tQ) =
∞∑

m=0

|Rm|
|tQ| D(Rm),

using (2.8) we obtain

|D(tQ) − D(Q)| � ω(l(Q))
∞∑

m=0

|Rm|
|tQ| (n(m + 1) + 1).

Since |Rm| � C(n)2−m, the sum is convergent and the proof is complete.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Applying Proposition 1, we only need to check that

lim
h→0

D(Q(x, h)) = α,
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for any x ∈ E1(A,α). Given h > 0, let k be the unique integer such that 2−k � h < 2−k+1.
Consider the cube h2kQk(x) and apply Lemma 3 to deduce that

lim
h→0

|D(Q(x, h)) − D(Qk(x))| = 0.

3. Equivalent definitions and invariance

The definition of a smooth set involves the density of the set on the grid of all cubes in R
n

with sides parallel to the axis. The main purpose of this section is to study the situation for
perturbations of this grid of cubes. The first step consists in considering linear deformations of
the family of cubes, obtaining a certain grid of parallelepipeds in R

n. Afterwards, we consider
the more general case of the grid arising from a bilipschitz image of the family of cubes.

Proposition 2. Let φ : R
n → R

n be a linear mapping, and let A ⊂ R
n be a smooth set.

Then φ(A) is smooth.

Proof. We can assume that φ is a linear isomorphism. Given the smooth set A, consider

ω(t) = sup |D(Q) − D(Q′)|, 0 < t � 1,

where the supremum is taken over all pairs of consecutive cubes Q and Q′ of the same
sidelength l(Q) = l(Q′) � t. Since |φ(A) ∩ Q| = c(φ)|A ∩ φ−1(Q)|, where c(φ) is a constant that
only depends on φ, it is sufficient to show the smoothness condition, taking, instead of cubes,
their preimages through φ, that is,

lim
|Q|→0

|A ∩ φ−1(Q)| − |A ∩ φ−1(Q′)|
|Q| = 0. (3.1)

Apply the Singular Value Decomposition (see, for instance, [2, Theorem 7.3.5]) to φ, which
allows us to write φ = V ΣW where V,W are orthogonal mappings and Σ is a diagonal mapping,
that is, the matrix of Σ is diagonal. Moreover, the elements of the diagonal of Σ are the positive
square roots of the eigenvalues of φφ∗. It will prove useful later that the elements λ ∈ R of the
diagonal of Σ verify ‖φ−1‖ � |λ| � ‖φ‖ where ‖φ‖ denotes the norm of φ as a linear mapping
from R

n to R
n. So, we proceed to prove the proposition for these two cases: (a) φ is an

orthogonal mapping and (b) φ is a dilation.
We study first case (a). As any orthogonal application is either a rotation or the composition

of a rotation and a reflection by a subspace parallel to the axis (leaving invariant the grid of
cubes), we can reduce the orthogonal case to rotations. Furthermore, we can assume that φ is
the identity on a subspace of dimension n − 2 generated by elements of the canonical basis of
R

n and a rotation of angle α ∈ [π/6, π/4] on its orthogonal complement. Actually, any rotation
can be written as the composition of at most 3n(n − 1) rotations of this form (see, for instance,
[2]). Let Q̃ and Q̃′ be the cubes centred at the centres of φ−1(Q) and φ−1(Q′), respectively, of
sidelength l(Q) with sides parallel to the axis. Observe that Q̃′ is a translation of Q̃ by a vector
of norm less than nl(Q), so Lemma 3 implies that |D(Q̃) − D(Q̃′)| � 3n3ω(l(Q)). Hence, to
show (3.1), it is enough to prove that

lim
|Q|→0

|A ∩ φ−1(Q)| − |A ∩ Q̃|
|Q| = 0. (3.2)

We study first the case n = 2. We are going to decompose φ−1(Q) into squares as follows.
Let Q0 be the maximal square with sides parallel to the axis contained in φ−1(Q), and write
F0 = {Q0}. Observe that the ratio of the area of Q0 to that of φ−1(Q) is C = 1/(1 + sin(2α))
and that 0.5 � C � 4 − 2

√
3. Then φ−1(Q) \ Q0 is the union of eight right-angled triangles
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Figure 1. The shaded squares are the eight elements of F1 for α = π/6.

whose hypotenuse is contained in ∂φ−1(Q); see Figure 1. Take again the maximal square with
sides parallel to the axis contained in each triangle, obtaining a family F1 of eight squares of
total area (1 − C)2|Q|. Thus, φ−1(Q) \ (F0 ∪ F1) is the union of sixteen right-angled triangles
and we continue inductively, constructing, for k = 1, 2, . . ., a family Fk of 2k+2 squares of total
area Ck−1(1 − C)2|Q|. Observe that

D(φ−1(Q)) − D(Q̃) =
∑

k

∑
R∈Fk

|R|
|Q| (D(R) − D(Q̃)).

Let R be a square in Fk. Since A is smooth, there exists a constant C1 > 0 such that |D(R) −
D(Q̃)| � C1kω(l(Q)). We deduce that

|D(φ−1(Q)) − D(Q̃)| � C1ω(l(Q))
∑

k

k
|⋃Fk

R|
|φ−1(Q)|

� C1(1 − C)2C−1ω(l(Q))
∑

k

kCk = C1ω(l(Q)).

This implies (3.2) and completes the proof in dimension 2 when φ is a rotation.
We now study the higher dimensional case n > 2. Recall that φ−1 is a rotation on a two-

dimensional subspace E and φ−1 is the identity on its orthogonal complement. Without loss of
generality, we may assume that E is generated by the two first vectors of the canonical basis
of R

n. Consider the orthogonal projection Π of R
n onto E and decompose Π(φ−1(Q)) as in

the two-dimensional case, that is, Π(φ−1(Q)) =
⋃∞

k=0 Fk, where Fk is, as before, the union of
2k+2 (two-dimensional) squares with sides parallel to the axis of total area Ck−1(1 − C)2l(Q)2.
Since φ−1(Q) = Π(φ−1(Q)) × B, where B is a cube in R

n−2 with sides parallel to the axis, we
have φ−1(Q) =

⋃∞
k=0 Gk, where Gk =

⋃
R∈Fk

R × B. Using the smoothness condition, one can
show that there exists a constant C2 > 0 such that |D(R × B) − D(Q̃)| � C2kω(l(Q)) for any
square R ∈ Fk. Then

|D(φ−1(Q)) − D(Q̃)| � C2ω(l(Q))
∞∑

k=0

k
|Gk|
|Q| .
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Since |Gk| = (1 − C)2Ck−1|Q|, with 0.5 < C < 4 − 2
√

3, we deduce that |D(φ−1(Q)) −
D(Q̃)| � C2ω(l(Q)) and thus (3.1) is satisfied, completing the proof in the case that φ is a
rotation.

Let us now assume that φ is a dilation, that is, φ has a diagonal matrix. Without loss of
generality, we can assume φ−1(x1, . . . , xn) = (λx1, x2, . . . , xn) for some λ ∈ R. Assume λ > 1.
To prove (3.1), it is sufficient to find a constant C(λ) > 0 such that, for any cube Q ⊂ R

n and
any cube Q̃ ⊂ φ−1(Q) with l(Q̃) = l(Q), we have

|D(φ−1(Q)) − D(Q̃)| � C(λ)ω(l(Q)). (3.3)

The proof of (3.3) resembles that of part (a) of Lemma 3. We can assume that Q̃ is the unit
cube. Let [λ] be the integer part of λ and write the interval [[λ], λ) as a union of maximal
dyadic intervals {Ik} with |Ik| = 2−k, that is, [[λ], λ) =

⋃
Ik. Consider Rk = Ik × [0, 1]n−1,

k = 1, 2, . . .. Observe that

|D(φ−1(Q)) − D(Q̃)| =
[λ]−1∑
j=0

1
λ

(D([j, j + 1) × [0, 1]n−1) − D(Q̃)) +
∞∑

k=1

2−k

λ
(D(Rk) − D(Q̃)).

For j = 0, 1, . . . , [λ] − 1, we have |D([j, j + 1) × [0, 1]n−1) − D(Q̃)| � λω(1). Since Rk can be
split into a family of dyadic cubes of generation k, we deduce that |D(Rk) − D(Q̃)| � (λ + 1 +
k)ω(1). Therefore,

|D(φ−1(Q)) − D(Q̃)| � (λ + 1 + 3/λ)ω(1),

which proves (3.3). An analogous argument can be used in the case λ < 1.

Remark 1. The first part of the proof shows that there exists a constant C = C(n) > 0
such that, for any rotation φ in R

n and any ω-smooth set A ⊂ R
n, its image φ(A) is Cω-smooth.

When φ is a dilation in a single direction with parameter λ ∈ R and A ⊂ R
n is an ω-smooth

set, the proof shows that φ(A) is C(λ)ω-smooth, with C(λ) � 4(λ + 1/λ).

Remark 2. Let {Ti} be a countable family of linear isomorphisms in R
n for which there

exists a constant M > 0 such that M−1‖x‖ � ‖Ti(x)‖ � M‖x‖ for any x ∈ R
n and i = 1, 2, . . ..

Then there exists a constant C = C(M,n) > 0 such that, for any ω-smooth set A and any i,
one has

‖Ti(Q) ∩ A| − |Ti(Q′) ∩ A‖
|Q| � Cω(l(Q)).

Remark 3. Proposition 2 and part (a) of Lemma 3 give that affine mappings preserve
smooth sets.

We could have defined smooth sets using the grid of dyadic cubes or, in the opposite direction,
using the grid of all cubes, even without taking them parallel to the axis. The previous results
imply that both grids would lead to equivalent definitions.

Corollary 2. Let A be a measurable set in R
n. The following are equivalent.

(a) For any ε > 0, there exists δ > 0 such that |D(Q) − D(Q′)| � ε for any pair of
consecutive dyadic cubes Q,Q′, of the same sidelength l(Q) = l(Q′) < δ.



SMOOTHNESS OF SETS IN EUCLIDEAN SPACES 545

(b) For any ε > 0, there exists δ > 0 such that |D(Q) − D(Q′)| � ε for any pair of
consecutive cubes Q,Q′ with sides non-necessarily parallel to the axis, of the same sidelength
l(Q) = l(Q′) < δ.

(c) The measurable set A is a smooth set.

Proof. Since any cube in R
n is the affine image of a dyadic cube, Lemma 3 shows that (a)

implies (b). The other implications are obvious.

Observe that bilipschitz mappings do not preserve smoothness in general. Applying locally
Proposition 2, we can extend it to certain diffeomorphisms, but we need extra assumptions to
guarantee that the local bounds that we obtain are satisfied uniformly. We are now ready to
proceed with the proof of Theorem 2.

Proof of Theorem 2. Since φ is bilipschitz, |φ(Q)| is comparable to |Q|. Also, |Jφ| is
uniformly bounded from above and below. Therefore, Jφ−1 is uniformly continuous as well.
We also need that

lim
|Q|→0

|φ(Q)| − |φ(Q′)|
|Q| = 0. (3.4)

To show this, observe that this quantity is

1
|Q|

(∫
Q

Jφ −
∫
Q′

Jφ

)
,

which tends to 0 uniformly when l(Q) → 0 because of the uniform continuity of Jφ.
We first show that (b) is equivalent to (c). A change of variables gives that

|φ−1(A) ∩ Q| − |φ−1(A) ∩ Q′| =
∫

Jφ−1(x)(1A∩φ(Q)(x) − 1A∩φ(Q′)(x)) dx.

Let p(Q) be a point in φ(Q) ∩ φ(Q′). Given ε > 0, if l(Q) is sufficiently small, then one has
‖Jφ−1(x) − Jφ−1(p(Q))‖ < ε for any x ∈ φ(Q). Hence, the uniform continuity of Jφ−1 gives
us that

lim
|Q|→0

|φ−1(A) ∩ Q| − |φ−1(A) ∩ Q′|
|Q| = lim

|Q|→0

(|A ∩ φ(Q)| − |A ∩ φ(Q′)|)Jφ−1(p(Q))
|Q| .

Let D(φ(Q)) be the density of A in φ(Q), that is, D(φ(Q)) = |A ∩ φ(Q)|/|φ(Q)|. Applying
(3.4), we have

lim
|Q|→0

|φ−1(A) ∩ Q| − |φ−1(A) ∩ Q′|
|Q| = lim

|Q|→0
(D(φ(Q)) − D(φ(Q′)))Jφ−1(p(Q)).

Since Jφ−1 is uniformly bounded both from above and below, we deduce that (b) and (c) are
equivalent.

We now show that (a) implies (c). Observe that, applying (3.4), it is sufficient to show

lim
|Q|→0

|A ∩ φ(Q)| − |A ∩ φ(Q′)|
|Q| = 0. (3.5)

Let z(Q) be a point in Q with dyadic coordinates. Let T = T (Q) be the affine mapping defined
by T (x) = φ(z(Q)) + Dφ(z(Q))(x − z(Q)) for any x ∈ R

n, where Dφ denotes the differential
of φ. Given ε > 0, the uniform continuity of Jφ tells us that |φ(x) − T (x)| � εl(Q) for any
x ∈ Q ∪ Q′ if l(Q) is sufficiently small. Thus, there exists a constant C1(n) > 0 such that if
l(Q) is sufficiently small, then

|(φ(Q) \ T (Q)) ∪ (T (Q) \ φ(Q))| � C1(n)ε|Q|,
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and similarly for Q′. So we deduce that (3.5) is equivalent to

lim
|Q|→0

|A ∩ T (Q)| − |A ∩ T (Q′)|
|Q| = 0. (3.6)

Now (3.6) follows from Remark 2 because, since φ is bilipschitz, there exists a constant M > 0
such that M−1‖x‖ � ‖Dφ(z(Q))(x)‖ � M‖x‖ for any x ∈ R

n and any cube Q in R
n. This

completes the proof that (a) implies (c). The proof that (b) implies (a) follows applying the
previous part to φ−1.
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