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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 106, Number 1, May 1989 

THE COEFFICIENTS OF NEVANLINNA'S 
PARAMETRIZATION ARE NOT IN HP 

A. NICOLAU 

(Communicated by Irwin Kra) 

ABSTRACT. We construct an example of a Pick-Nevanlinna interpolation prob- 
lem such that the coefficients of its Nevanlinna's parametrization are not in 
HP, for p > 0. 

1. INTRODUCTION 

Let D be the unit disc in the complex plane and let HP (D), 0 < p < 00, be 
the usual Hardy spaces on D. 

We consider the following classical Pick-Nevanlinna interpolation problem: 
Given two sequences of numbers {Z} , {w, } in D, find all analytic functions 

f E H' (D) satisfying 

(*) lfiloo = sup{If(z)I: ZED} E 1 and f(zn) = w,n, n = 1 ,2. 

Pick and Nevanlinna found necessary and sufficient conditions in order that 
such an analytic function exists. If E denotes the set of all analytic functions 
on D satisfying (*), Nevanlinna showed that in the case where E consists of 
more than one element, there is a parametrization of the form: 

~~~~~~~( pe+q E = f E H?? (D): f = P 5q (p E H?? (D) , 1(l l llo < I rep + s 00 

where p , q , r , s are certain analytic functions on D depending on { Zn } and 

{wn }. It is known that p , q , r , s are in the Smirnov class N+ (D). Further- 
more, p,q,r,s belong to HP(D) if and only if s is in HP(D). 

For details and proofs of results above, see [1, pp. 50, 165] and [3, p. 491]. 
In [2, p. 205] it is claimed that s belongs to H2(D). Recently, Stray [3] asked 

for a complex analytic proof of this result. In this note we show that this result 
is false. Indeed, we will give an example of a Pick-Nevanlinna interpolation 
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116 A. NICOLAU 

problem such that the function s appearing in its Nevanlinna's parametrization 
belongs to no HP (D) for p > 0 . 

In a private communication, D. Sarason told us that he already knew the fact 
that s belongs to H 2(D) was false. 

2. CONSTRUCTION OF THE EXAMPLE 

Let us choose {nc, } a sequence of positive numbers such that 

Z0 I cnlog(l/cn) < +o0 and Zn=l cq = +00 for each q < 1 (for instance, 
Cn = n- 1(log(n))-3 satisfies these conditions). 

Take a sequence of points e converging to 1, so that the arcs In 

{e't: On - Cn/2 < t < on + cn/2} will be pairwise disjoint and consecutive. Put 
i6ri 

zn=(l-cn)e 

Claim. There exists h c H??(D), JJhJJo < 1 so that f log(l - Ih(e'0) ) dO > 

-oo and l-Ih(zn)I < C(a)(lI-zIn)D foreach a < 1 , where C(a) isaconstant 
depending on a. 

Proof of the claim. Put A = {e'o, l} and g(eit) = dist(e't,A). Write u(z)= 

P (g), the Poisson integral of g, and let v (z) be the harmonic conjugate of 
u(z) . 

Take h(z) = exp(-u(z) - iv(z)). Then h is analytic on D and, since g is 
positive, one has jjhj K 1<. 

Also, 

f log(l - lh(e0)j) dO 

=|log(l - e g ))dO > C2+ C E cn (1og(cn) -1 > `, 
n=1 

Cl and C2 some constants, because En=?Icn log( /cn) <+00. 

Furthermore: 

1- h(zn)I = 1-exp(-P_ (g)) < Pzn(g) 

= [P (g) - g(e )] < C(0)zn - e j = C(a)(1 -ZnD)c 

for each a < 1, because the Poisson integral of a Lipa function on the unit 
circle is in Lip, of the closed unit disc, for 0 < a < 1 . So we have proved the 
claim. 

Let h be a function satisfying the conditions of the claim. Put wn = 

h (zn), n = 1, 2, ... and consider the following Pick-Nevanlinna interpolation 
problem: 

(*) Find all analytic functions f c H??(D) satisfying ilIfiL0 < 1 and 

f(zn)=wn, n= 1,2,.... 
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THE COEFFICIENTS OF NEVANLINNA'S PARAMETRIZATION ARE NOT IN HP 117 

Since h solves (*) and fflog(l - h(e)J) dO > -oo, the function 

h(z) + B(z) exp (- e +Z - h(el)J) dO) 

where B is the Blaschke product with zeros {Z }, also solves (*). Therefore, 
(*) has more than one solution. Then, the set E of all solutions of ($) can be 
parametrized as: 

E= {fcH (D):f P + ,QeH (D)andlloo?<l}I 

Suppose now that s E HP (D) for some p > 0, and let us arrive at a contradic- 
tion. 

Choosing p 0 in the parametrization, one has q/s c H??(D) and q/s(zn) 

Xn, n , 2 .... It is well known that l/s(z)J ? 1 - lq/s(z)12 for z e D 
(see Lemma 3 in [3]). So 

_ _ _ ~~q 2 2 

12 <1 -(Z) nWn 
(1) !s(z )I -n s ljWlJ 

= 1-jh(zn)12 < 2C(a)(l - 1ZnD' for each a < 1. 

Since the arcs {In} are pairwise disjoint, the sequence { Zn} is an inter- 
polating sequence of H??(D) (see [4, p. 77]). Applying Carleson's theorem 
(see [1, p. 63]), one gets 

00 

Z(l - Izni)Ds(zn)IP < +00. 

n=1 
But using (1) for any fixed a < 1, 

00 00 

E(l - lznl)ls(zn)l > 2!p 2C(a) p!2 (l _ lzn) I-pa/2 

n=1 n=1 
00 

-2-p/2 C (a]) 
-p/2 

CI1 
-po/2 

+00 

n=1 

because c211 C' = +oo for each q < 1 . This gives us the contradiction. 
Therefore, s 0 HP(D) for each p > 0. 
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