The abelian case of a combinatorial conjecture of Dicks and Ivanov

Barcelona Group Theory Seminar, March 27, 2008

1 The result

1.1 Notation. Throughout, $G=(G, \cdot, 1,-)$ will be a multiplicative group, and A and B will be finite subsets of G, thought of as row vectors.

We shall consider the matrix $A^{\operatorname{tr}} \cdot B$, where $(-)^{\operatorname{tr}}$ denotes the transpose; we usually imagine $A^{\text {tr }} \cdot B$ as the content of a 'multiplication table'

\cdot	B
A^{tr}	$A^{\operatorname{tr}} \cdot B$

For each $i \in \mathbb{N}$, we define $A_{i} B$ to be the set of those elements of G which appear (at least) i times in the matrix $A^{\text {tr }} \cdot B$. We abbreviate $A \cdot{ }_{1} B$ as $A B$.

We set $\Omega(A, B):=|A|+|B|-\frac{1}{2}|A B|-\frac{1}{2}\left|A \cdot{ }_{2} B\right|$.
1.2 Theorem. [2, Theorem 1.2] If A and B are finite subsets of an abelian group G such that $|A| \geq 2$ and $|B| \geq 2$, then $\Omega(A, B) \leq \max \left\{2,|g H|: H \leq G, g \in G, g H \subseteq A \cdot{ }_{2} B\right\}$.

We present a proof taken from [3, Theorem 1.7]. In fact, [2, Theorem 1.2] provides the stronger inequality $\Omega(A, B) \leq \max \left\{2,\left|\operatorname{Stab}\left(A \cdot{ }_{2} B\right)\right|\right\}$; of course, if $A \cdot{ }_{2} B$ is empty, then $|A B|=|A||B| \geq|A||B|-(|A|-2)(|B|-2)=2 \Omega(A, B)+|A B|-4$ and $\Omega(A, B) \leq 2$.

Proof by induction on $(|B|,|A|)$. Consider the case where $|B|=2$. Say $B=\left\{b_{1}, b_{2}\right\}$. Then $|A B|+\left|A \cdot{ }_{2} B\right|=\left|A b_{1} \cup A b_{2}\right|+\left|A b_{1} \cap A b_{2}\right|=\left|A b_{1}\right|+\left|A b_{2}\right|=2|A|$. It then follows that $\Omega(A, B)=|B|=2$, as desired. Thus, we may assume that $|B| \geq 3$.

Similarly, we may assume that $|A| \geq 3$.
We may assume that the implication holds for smaller pairs $(|B|,|A|)$.
By replacing B with $B \bar{b}$, for any $b \in B$, we may assume that $1 \in B$.
Consider the case where $A B=A$. Let $H=\langle B\rangle$, the subgroup generated by B. Then $A B=A \cdot{ }_{2} B=A=A H$ and $\Omega(A, B)=|B| \leq|H|$, as desired. Thus, we may assume that $A B \neq A$.

Hence, $A B \nsubseteq A$; hence, there exists $a \in A$ such that $a B \nsubseteq A$. By replacing A with $\bar{a} A$ we may assume that $a=1$.

Let $C=A \cap B, A^{\prime}=A-B=A-C, B^{\prime}=B-A=B-C$. Then $\{1\} \subseteq C \subset B$, $1 \leq|C| \leq|B|-1$, and $A=C \vee A^{\prime}, B=C \vee B^{\prime}$, where \vee denotes the disjoint union. Now $A^{\operatorname{tr}} \cdot B$ is partitioned, \begin{tabular}{c||c||c|c}
\cdot \& B

\hlineA^{tr} \& $A^{\operatorname{tr}} \cdot B$

$=$

\cdot

\hline \hlineC^{tr}

\hline$A^{\operatorname{tr}} \cdot C$

$A^{\text {tr }}$

$A^{\prime \operatorname{tr}} \cdot C$

$A^{\prime \operatorname{tr} \cdot B^{\prime}}$

\hline
\end{tabular}

Case 1. $|C|=1$; thus, | \cdot | B |
| :---: | :---: | :---: | :---: |
| A^{tr} | $A^{\operatorname{tr}} \cdot B$ |\(=\begin{gathered}\cdot

1\end{gathered}\left|B^{\prime} / $$
\begin{array}{c}1 \\
\hline A^{\prime \operatorname{tr}} \\
\hline\end{array}
$$ A^{\prime \operatorname{tr}}\right| A^{\prime \operatorname{tr} \cdot B^{\prime}}\)
If $\left|A B-A B^{\prime}\right| \geq 2$, we perform the B-truncation, $(A, B) \mapsto\left(A, B^{\prime}\right)$.

$$
\left.\begin{array}{c||c||c|c}
\cdot & B \\
\hline \hline A^{\operatorname{tr}} & A^{\operatorname{tr}} \cdot B
\end{array}=\begin{gathered}
\cdot \\
\hline A^{\operatorname{tr}} \\
A^{\operatorname{tr}} \\
A^{\operatorname{tr}} \cdot B^{\prime}
\end{gathered} \mapsto \quad \frac{B^{\prime}}{} \quad \mapsto \quad A^{\operatorname{tr}} \right\rvert\, A^{\operatorname{tr} \cdot B^{\prime}}
$$

Clearly, $A \cdot{ }_{2} B^{\prime} \subseteq A \cdot 2 B$. Moreover, $\Omega\left(A, B^{\prime}\right) \geq \Omega(A, B)$ because $\left|B^{\prime}\right|=|B|-1$ and $\left|A B^{\prime}\right| \leq|A B|-2$. Here, the desired conclusion follows by the induction hypothesis. Thus, we may assume that
$1 \geq\left|A B-A B^{\prime}\right|=\left|\left(\left(A \vee B^{\prime}\right) \cup A^{\prime} B^{\prime}\right)-\left(B^{\prime} \cup A^{\prime} B^{\prime}\right)\right|=\left|A-A^{\prime} B^{\prime}\right|=|A|-\left|A \cap A^{\prime} B^{\prime}\right|$.
Similarly, we may assume that $1 \geq\left|B-A^{\prime} B^{\prime}\right| \geq\left|B^{\prime}-A^{\prime} B^{\prime}\right|=\left|B^{\prime}\right|-\left|B^{\prime} \cap A^{\prime} B^{\prime}\right|$.
Now $A \cdot{ }_{2} B \supseteq\left(\{1\} \vee A^{\prime} \vee B^{\prime}\right) \cap A^{\prime} B^{\prime}$. Hence
$\left|A \cdot{ }_{2} B\right| \geq\left|\left(A \vee B^{\prime}\right) \cap A^{\prime} B^{\prime}\right|=\left|A \cap A^{\prime} B^{\prime}\right|+\left|B^{\prime} \cap A^{\prime} B^{\prime}\right| \geq|A|-1+\left|B^{\prime}\right|-1=|A|+|B|-3$.
Since $A B \supseteq\{1\} \vee A^{\prime} \vee B^{\prime}$, we see that $|A B| \geq|A|+|B|-1$.
Hence $2 \Omega(A, B) \leq 4$, as desired.
Case 2. $|C| \neq 1$; thus, $2 \leq|C| \leq|B|-1$.
Here, we perform the Dyson transform, $(A, B) \mapsto(A \cup B, A \cap B)=\left(C \vee A^{\prime} \vee B^{\prime}, C\right)$.

$$
\begin{array}{c||c||c|c||c}
\cdot & B \\
\hline A^{\operatorname{tr}} & A^{\operatorname{tr}} \cdot B
\end{array}=\begin{gathered}
\cdot \\
\hline \hline C^{\operatorname{tr}} \\
\hline C^{\operatorname{tr}} \cdot C \\
\hline A^{\operatorname{tr}} \\
A^{\prime \operatorname{tr}} \cdot C
\end{gathered} C^{\prime \operatorname{tr}} \cdot B^{\prime} \cdot B^{\prime} \quad \mapsto \begin{array}{c||c}
\end{array} \quad \mapsto \begin{gathered}
C^{\operatorname{tr}} \\
\hline \hline A^{\prime \operatorname{tr}} \\
\hline B^{\prime \operatorname{tr}} \cdot C \\
A^{\prime \operatorname{tr}} \cdot C \\
B^{\prime \operatorname{tr}} \cdot C
\end{gathered}
$$

Clearly, $\left|C \vee A^{\prime} \vee B^{\prime}\right|+|C|=|A|+|B|$. Since G is abelian, $B^{\prime \operatorname{tr}} \cdot C=\left(C^{\operatorname{tr}} \cdot B^{\prime}\right)^{\operatorname{tr}}$. Hence, $\left(C \vee A^{\prime} \vee B^{\prime}\right) \cdot{ }_{i} C \subseteq A \cdot{ }_{i} B$, for all $i \in \mathbb{N}$. In particular, $\left(C \vee A^{\prime} \vee B^{\prime}\right) \cdot{ }_{2} C \subseteq A \cdot{ }_{2} B$ and $\Omega\left(C \vee A^{\prime} \vee B^{\prime}, C\right) \geq \Omega(A, B)$. Here, the desired conclusion follows by the induction hypothesis.

This completes the proof.

2 Kemperman's Theorem

John Olson [6] extracted the following statement from [4] by combining Theorem 5, the proof of Theorem 5, and Theorem 3, thereof.
2.1 Kemperman's Theorem. Let A and B be finite (nonempty) subsets of a group G, and let $(a, b) \in A \times B$. Then $|A|+|B|-|A B| \leq \max \{|H|: H \leq G, a H b \subseteq A B\}$. Moreover, if $A B \neq A \cdot{ }_{2} B$ then $|A|+|B|-|A B| \leq 1$.

Proof by induction on $(2|A B|-|A|-|B|,|A B|-|A|)$. We prove both parts in parallel putting in boxes the additional steps corresponding to the proof of the second part.

$$
\text { Suppose that } a b \in A_{[=1]} B
$$

By replacing (A, B) with $(\bar{a} A, B \bar{b})$, we may assume that $(a, b)=(1,1)$. Thus, $1 \in A \cap B$ and $A B \supseteq A \cup B$.

We have $1 \in A \cdot{ }_{[=1]} B$.

Case 1. $A(A \cap B)=A$.
Let $H=\langle A \cap B\rangle$.
For each $x \in B-\{1\}, 1 \in A 1$ but $1 \notin A x$, and, hence, $A x \neq A$. Thus, H is trivial.
Now

$$
A B \supseteq A \cup B \supseteq A=A H \supseteq \quad \supseteq \quad \text { 〇 } \supseteq A \cap B\rangle \supseteq A \cap B
$$

Hence $A B \supseteq H$, and $|H| \geq|A \cap B|=|A|+|B|-|A \cup B| \geq|A|+|B|-|A B|$, as desired.
Case 2. There exists some $x \in A \cap B$ such that $A x \neq A$.
Let

$$
A^{+}=A \cup A x, \quad B^{-}=B \cap \bar{x} B, \quad A^{-}=A \cap A \bar{x}, \quad B^{+}=B \cup x B
$$

Notice that 1 lies in all four of these sets, since $x \in A \cap B$. Also, $A^{+} B^{-} \subseteq A B$ and $A^{-} B^{+} \subseteq A B$.

We claim that $1 \in A^{+}{ }_{[=1]} B^{-}$.
Suppose that $(c, d) \in A^{+} \times B^{-}$such that $c d=1$. Notice $c=\bar{d}$ and

$$
(\bar{d}, d) \in A^{+} \times B^{-} \quad=\quad\left(A \times B^{-}\right) \cup\left(A x \times B^{-}\right) \subseteq(A \times B) \cup(A x \times \bar{x} B)
$$

Now, $1 \notin x B \supseteq\{x d\}, x d \neq 1,(\bar{d} \bar{x}, x d) \neq(1,1),(\bar{d} \bar{x}, x d) \notin A \times B$, and $(\bar{d}, d) \notin A x \times \bar{x} B$.
Thus $(\bar{d}, d) \in A \times B$, and, hence $d=1$.
Thus, $1 \in A^{+}{ }_{[=1]} B^{-}$, as claimed.
Similarly, $1 \in A^{-} \cdot{ }_{[=1]} B^{+}$.
Notice that $\left|A^{+}\right|+\left|A^{-}\right|=\left|A^{+}\right|+\left|A^{-} x\right|=|A|+|A x|=2|A|$, and similarly, $\left|B^{+}\right|+\left|B^{-}\right|=$ $2|B|$. Thus,

$$
\text { either } \quad\left|A^{+}\right|+\left|B^{-}\right| \leq|A|+|B| \quad \text { or } \quad\left|A^{-}\right|+\left|B^{+}\right|<|A|+|B|
$$

We can apply the induction hypothesis to $\left(A^{+}, B^{-}\right)$in the former case, and to $\left(A^{-}, B^{+}\right)$in the latter case. The result then follows by induction.

References

[1] Warren Dicks and S. V. Ivanov, On the intersection of free subgroups in free products of groups, Math. Proc. Cambridge Phil. Soc., to appear. http://arxiv.org/abs/math/0702363
[2] David J. Grynkiewicz, Extending Pollard's Theorem for t-representable sums, preprint, 22 pages. http://arxiv.org/abs/0803.2601
[3] Y. O. Hamidoune and O. Serra, A note on Pollard's Theorem, preprint, 10 pages, 2008.
[4] J. H. B. Kemperman, On complexes in a semigroup, Indag. Math. 18(1956), 247-254.
[5] Henry B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. Math. (2) 43(1942), 523-527.
[6] John E. Olson, On the sum of two sets in a group, J. Number Theory 18(1984), 110-120.

