The abelian case of a combinatorial conjecture of Dicks and Ivanov

Barcelona Group Theory Seminar, March 27, 2008

1 The result

1.1 Notation. Throughout, $G = (G, \cdot, 1, -)$ will be a multiplicative group, and A and B will be finite subsets of G, thought of as row vectors.

We shall consider the matrix $A^{tr} \cdot B$, where $(-)^{tr}$ denotes the transpose; we usually imagine $A^{tr} \cdot B$ as the content of a 'multiplication table'

$$\begin{array}{c|c} \cdot & B \\ \hline A^{\mathrm{tr}} & A^{\mathrm{tr}} \cdot B \end{array}$$

For each $i \in \mathbb{N}$, we define $A_i B$ to be the set of those elements of G which appear (at least) i times in the matrix $A^{\text{tr}} \cdot B$. We abbreviate $A_1 B$ as AB.

We set $\Omega(A, B) := |A| + |B| - \frac{1}{2}|AB| - \frac{1}{2}|A \cdot 2B|.$

1.2 Theorem. [2, Theorem 1.2] If A and B are finite subsets of an abelian group G such that $|A| \ge 2$ and $|B| \ge 2$, then $\Omega(A, B) \le \max\{2, |gH| : H \le G, g \in G, gH \subseteq A \cdot_2 B\}$.

We present a proof taken from [3, Theorem 1.7]. In fact, [2, Theorem 1.2] provides the stronger inequality $\Omega(A, B) \leq \max\{2, |\operatorname{Stab}(A \cdot_2 B)|\}$; of course, if $A \cdot_2 B$ is empty, then $|AB| = |A||B| \geq |A||B| - (|A| - 2)(|B| - 2) = 2\Omega(A, B) + |AB| - 4$ and $\Omega(A, B) \leq 2$.

Proof by induction on (|B|, |A|). Consider the case where |B| = 2. Say $B = \{b_1, b_2\}$. Then $|AB| + |A \cdot _2B| = |Ab_1 \cup Ab_2| + |Ab_1 \cap Ab_2| = |Ab_1| + |Ab_2| = 2|A|$. It then follows that $\Omega(A, B) = |B| = 2$, as desired. Thus, we may assume that $|B| \ge 3$.

Similarly, we may assume that $|A| \ge 3$.

We may assume that the implication holds for smaller pairs (|B|, |A|).

By replacing B with Bb, for any $b \in B$, we may assume that $1 \in B$.

Consider the case where AB = A. Let $H = \langle B \rangle$, the subgroup generated by B. Then $AB = A \cdot_2 B = A = AH$ and $\Omega(A, B) = |B| \leq |H|$, as desired. Thus, we may assume that $AB \neq A$.

Hence, $AB \not\subseteq A$; hence, there exists $a \in A$ such that $aB \not\subseteq A$. By replacing A with $\overline{a}A$ we may assume that a = 1.

Let $C = A \cap B$, A' = A - B = A - C, B' = B - A = B - C. Then $\{1\} \subseteq C \subset B$, $1 \leq |C| \leq |B| - 1$, and $A = C \lor A'$, $B = C \lor B'$, where \lor denotes the disjoint union. Now

$$A^{\mathrm{tr}} \cdot B \text{ is partitioned}, \quad \frac{\cdot}{A^{\mathrm{tr}}} \quad B = \frac{\cdot}{A^{\mathrm{tr}}} \quad \frac{\cdot}{C} \quad \frac{C}{B} = \frac{\cdot}{C^{\mathrm{tr}}} \quad \frac{\cdot}{C^{\mathrm{tr}} \cdot C} \quad \frac{C}{C^{\mathrm{tr}} \cdot B'} = \frac{\cdot}{A'^{\mathrm{tr}} \cdot C} \quad \frac{C}{A'^{\mathrm{tr}} \cdot B'} = \frac{\cdot}{A'^{\mathrm{tr}} \cdot C} \quad \frac{C}{B'} = \frac{\cdot}{B'} \quad \frac{\cdot}{B'} = \frac{\cdot}{B'} \quad \frac{C}{B'} = \frac{\cdot}{B'} \quad \frac{C}{B'} = \frac{\cdot}{B'} \quad \frac{C}{B'} = \frac{C}{B'} \quad \frac{C}{B'} \quad \frac{C}{B'} = \frac{C}{B'} \quad \frac{C}{B'} = \frac{C}{B'} \quad \frac{C}{B'} = \frac{C}{B'} \quad \frac{C}{B'} = \frac{C}{B'} \quad \frac{C}{B'} \quad \frac{C}{B'} \quad \frac{C}{B'} = \frac{C}{B'} \quad \frac{C}{B'} \quad$$

Seminar

Case 1.
$$|C| = 1$$
; thus, $\frac{\cdot}{A^{\operatorname{tr}}} = \frac{B}{A^{\operatorname{tr}} \cdot B} = \frac{\cdot}{A^{\operatorname{tr}}} = \frac{1}{A^{\operatorname{tr}}} = \frac{B'}{A^{\operatorname{tr}} \cdot B'}$

If $|AB - AB'| \ge 2$, we perform the *B*-truncation, $(A, B) \mapsto (A, B')$.

$$\frac{\cdot}{A^{\mathrm{tr}}} \begin{vmatrix} B \\ A^{\mathrm{tr}} \cdot B \end{vmatrix} = \frac{\cdot}{A^{\mathrm{tr}}} \begin{vmatrix} B' \\ A^{\mathrm{tr}} \cdot B' \end{vmatrix} \mapsto \frac{\cdot}{A^{\mathrm{tr}}} \begin{vmatrix} B' \\ A^{\mathrm{tr}} \cdot B' \end{vmatrix}$$

Clearly, $A \cdot_2 B' \subseteq A \cdot_2 B$. Moreover, $\Omega(A, B') \ge \Omega(A, B)$ because |B'| = |B| - 1 and $|AB'| \le |AB| - 2$. Here, the desired conclusion follows by the induction hypothesis. Thus, we may assume that

$$1 \ge |AB - AB'| = |((A \lor B') \cup A'B') - (B' \cup A'B')| = |A - A'B'| = |A| - |A \cap A'B'|.$$

Similarly, we may assume that $1 \ge |B - A'B'| \ge |B' - A'B'| = |B'| - |B' \cap A'B'|$. Now $A \cdot_2 B \supseteq (\{1\} \lor A' \lor B') \cap A'B'$. Hence

 $|A \cdot {}_2B| \ge |(A \lor B') \cap A'B'| = |A \cap A'B'| + |B' \cap A'B'| \ge |A| - 1 + |B'| - 1 = |A| + |B| - 3.$

Since $AB \supseteq \{1\} \lor A' \lor B'$, we see that $|AB| \ge |A| + |B| - 1$. Hence 2 $\Omega(A, B) \le 4$, as desired.

Case 2. $|C| \neq 1$; thus, $2 \le |C| \le |B| - 1$.

Here, we perform the Dyson transform, $(A, B) \mapsto (A \cup B, A \cap B) = (C \lor A' \lor B', C).$

Clearly, $|C \vee A' \vee B'| + |C| = |A| + |B|$. Since G is abelian, $B'^{\text{tr}} \cdot C = (C^{\text{tr}} \cdot B')^{\text{tr}}$. Hence, $(C \vee A' \vee B') \cdot iC \subseteq A \cdot iB$, for all $i \in \mathbb{N}$. In particular, $(C \vee A' \vee B') \cdot 2C \subseteq A \cdot 2B$ and $\Omega(C \vee A' \vee B', C) \geq \Omega(A, B)$. Here, the desired conclusion follows by the induction hypothesis.

This completes the proof.

2 Kemperman's Theorem

John Olson [6] extracted the following statement from [4] by combining Theorem 5, the proof of Theorem 5, and Theorem 3, thereof.

2.1 Kemperman's Theorem. Let A and B be finite (nonempty) subsets of a group G, and let $(a, b) \in A \times B$. Then $|A| + |B| - |AB| \le \max\{|H| : H \le G, aHb \subseteq AB\}$. Moreover, if $AB \ne A \cdot 2B$ then $|A| + |B| - |AB| \le 1$.

Proof by induction on (2|AB| - |A| - |B|, |AB| - |A|). We prove both parts in parallel putting in boxes the additional steps corresponding to the proof of the second part.

Suppose that $ab \in A \cdot [=1]B$.

Seminar

By replacing (A, B) with $(\overline{a}A, B\overline{b})$, we may assume that (a, b) = (1, 1). Thus, $1 \in A \cap B$ and $AB \supseteq A \cup B$.

We have $1 \in A \cdot_{[=1]} B$.

Case 1. $A(A \cap B) = A$.

Let $H = \langle A \cap B \rangle$.

For each $x \in B - \{1\}$, $1 \in A1$ but $1 \notin Ax$, and, hence, $Ax \neq A$. Thus, H is trivial. Now

 $AB \supseteq A \cup B \supseteq A = AH \supseteq H = \langle A \cap B \rangle \supseteq A \cap B.$

Hence $AB \supseteq H$, and $|H| \ge |A \cap B| = |A| + |B| - |A \cup B| \ge |A| + |B| - |AB|$, as desired.

Case 2. There exists some $x \in A \cap B$ such that $Ax \neq A$.

$$A^+ = A \cup Ax$$
, $B^- = B \cap \overline{x}B$, $A^- = A \cap A\overline{x}$, $B^+ = B \cup xB$.

Notice that 1 lies in all four of these sets, since $x \in A \cap B$. Also, $A^+B^- \subseteq AB$ and $A^-B^+ \subseteq AB$.

We claim that $1 \in A^+ \cdot_{[=1]} B^-$. Suppose that $(c,d) \in A^+ \times B^-$ such that cd = 1. Notice $c = \overline{d}$ and $(\overline{d},d) \in A^+ \times B^- = (A \times B^-) \cup (Ax \times B^-) \subseteq (A \times B) \cup (Ax \times \overline{x}B)$. Now, $1 \notin xB \supseteq \{xd\}, xd \neq 1, (\overline{d} \overline{x}, xd) \neq (1, 1), (\overline{d} \overline{x}, xd) \notin A \times B$, and $(\overline{d}, d) \notin Ax \times \overline{x}B$. Thus $(\overline{d}, d) \in A \times B$, and, hence d = 1. Thus, $1 \in A^+ \cdot_{[=1]} B^-$, as claimed. Similarly, $1 \in A^- \cdot_{[=1]} B^+$.

Notice that $|A^+| + |A^-| = |A^+| + |A^-x| = |A| + |Ax| = 2|A|$, and similarly, $|B^+| + |B^-| = 2|B|$. Thus,

either
$$|A^+| + |B^-| \le |A| + |B|$$
 or $|A^-| + |B^+| < |A| + |B|$.

We can apply the induction hypothesis to (A^+, B^-) in the former case, and to (A^-, B^+) in the latter case. The result then follows by induction.

References

- Warren Dicks and S. V. Ivanov, On the intersection of free subgroups in free products of groups, Math. Proc. Cambridge Phil. Soc., to appear. http://arxiv.org/abs/math/0702363
- [2] David J. Grynkiewicz, Extending Pollard's Theorem for t-representable sums, preprint, 22 pages. http://arxiv.org/abs/0803.2601
- [3] Y. O. Hamidoune and O. Serra, A note on Pollard's Theorem, preprint, 10 pages, 2008.
- [4] J. H. B. Kemperman, On complexes in a semigroup, Indag. Math. 18(1956), 247–254.
- [5] Henry B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. Math. (2) 43(1942), 523–527.
- [6] John E. Olson, On the sum of two sets in a group, J. Number Theory 18(1984), 110–120.