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Abstract. Let m, m′, r, r′, t, t′ be positive integers with r, r′ > 2. Let Lr denote the ring
that is universal with an invertible 1×r matrix. Let Mm(L⊗t

r ) denote the ring of m × m
matrices over the tensor product of t copies of Lr. In a natural way, Mm(L⊗t

r ) is a partially
ordered ring with involution. Let PUm(L⊗t

r ) denote the group of positive unitary elements.
We show that PUm(L⊗t

r ) is isomorphic to the Brin-Higman-Thompson group tVr,m; the
case t = 1 was found by Pardo, that is, PUm(Lr) is isomorphic to the Higman-Thompson
group Vr,m.

We survey arguments of Abrams, Ánh, Bleak, Brin, Higman, Lanoue, Pardo, and
Thompson that prove that t′Vr′,m′ ∼= tVr,m if and only if r′ = r, t′ = t and gcd(m′, r′−1) =
gcd(m, r−1) (if and only if Mm′(L⊗t′

r′ ) and Mm(L⊗t
r ) are isomorphic as partially ordered

rings with involution).
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1 Introduction

The notation we use will be explained in the next section.
Throughout, fix r, r′ ∈ [2↑∞[ , m, m′, t, t′ ∈ [1↑∞[ , and fix symbols x and y, and let

Lr := Z〈x[1↑r], y[1↑r] | xtransp
[[1↑r]] · y[[1↑r]] = Ir and y[[1↑r]] · xtransp

[[1↑r]] = 1 〉.

Thus, for example, L2 = Z〈x1, x2, y1, y2 |

x1y1 x1y2

x2y1 x2y2


=


1 0
0 1


, y1x1 + y2x2 = 1 〉. We use

the symbol L in recognition of Leavitt’s pioneer work on these rings in [14], [15]. We let
L⊗t

r := Lr ⊗Z Lr ⊗Z · · · ⊗Z Lr, the ring obtained by forming the tensor product over Z of
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2 Isomorphisms of Brin-Higman-Thompson groups

t copies of Lr. We shall be interested in the m×m matrix ring Mm(L⊗t
r ). The mnemonic

is that r is for ‘ring’, t is for ‘tensor’, and m is for ‘matrix’. In a natural way, Mm(L⊗t
r )

is a partially ordered ring with involution. We then let PUm(L⊗t
r ) denote the subgroup of

positive unitary elements in the group of units of Mm(L⊗t
r ).

Abrams, Ánh and Pardo [1], [17] found that if gcd(m′, r−1) = gcd(m, r−1), then Mm′(Lr)
and Mm(Lr) are isomorphic as partially ordered rings with involution; we shall observe that
it then follows easily that Mm′(L⊗t

r ) and Mm(L⊗t
r ) are isomorphic as partially ordered rings

with involution, and that the groups PUm′(L⊗t
r ) and PUm(L⊗t

r ) are isomorphic. We shall
give self-contained proofs of all these isomorphisms.

Pardo [17] discovered a connection between these rings and certain famous groups. In [11],
Higman constructed a group Vr,m with the properties that the abelianization of Vr,m has order
gcd(2, r−1) and the derived group of Vr,m is a finitely presentable, infinite, simple group;
see also [20]. The group V2,1 is Thompson’s group V. In [8], Brown showed that Vr,m is of
type FP∞. Pardo [17] found that Vr,m

∼= PUm(Lr); hence, if gcd(m′, r−1) = gcd(m, r−1),
then the above isomorphism PUm′(Lr) ∼= PUm(Lr) gives the converse of Higman’s result
that Vr′,m′ ∼= Vr,m only if r′ = r and gcd(m′, r′−1) = gcd(m, r−1); see [11, Theorem 6.4].

In [6, Section 4.2], Brin constructed a group tVr,m which can be considered as a
t-dimensional analogue of the Higman-Thompson group Vr,m (= 1Vr,m). In [6], he proved
that 2V2,1 is simple and that 2V2,1 6∼= Vr,m and other results. In [7], he proved that tV2,1 is
simple. In [10], Hennig and Matucci gave a finite presentation of tV2,1. In [4], Bleak and
Lanoue showed that t′V2,1

∼= tV2,1 if and only if t′ = t. In [13], a description of tVr,m along
the lines of Higman’s construction [11], [20], was given, and it was used to show that 2V2,1

and 3V2,1 are of type FP∞.
The main purpose of this article is to show that tVr,m

∼= PUm(L⊗t
r ). Straightforward

adaptations of known arguments then show that the following are equivalent.

(a) r′ = r, t′ = t and gcd(m′, r′−1) = gcd(m, r−1).

(b) Mm′(L⊗t′
r′ ) and Mm(L⊗t

r ) are isomorphic as partially ordered rings with involution.

(c) t′Vr′,m′ ∼= tVr,m.

Thus, with r and t fixed and m varying, the set of isomorphism classes of the groups tVr,m

is in bijective correspondence with the set of positive divisors of r−1.
The structure of the article is as follows. In the first part, we work exclusively with

Mm(L⊗t
r ).

In Section 2, we summarize the notation that we shall be using, and endow Mm(L⊗t
r )

with the structure of a partially ordered ring with involution.
In Section 3, we give a streamlined proof of the crucial Abrams-Ánh-Pardo result [1] that

if m > r > 3 and gcd(m, r−1) = 1, then Mm(Lr) and Lr are isomorphic as partially ordered
rings with involution.

In Section 4, following Pardo [17], we show that if gcd(m′, r−1) = gcd(m, r−1) then
Mm′(L⊗t

r ) and Mm(L⊗t
r ) are isomorphic as partially ordered rings with involution, and,
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hence, PUm′(L⊗t
r ) ∼= PUm(L⊗t

r ).
In the second part of the article, we concentrate on tVr,m.
In Section 5, we prove our main result that the Brin-Higman-Thompson group tVr,m is iso-

morphic to PUm(L⊗t
r ); the case t = 1 was found by Pardo [17], that is, the Higman-Thompson

group Vr,m is isomorphic to PUm(Lr). It then follows that if gcd(m′, r−1) = gcd(m, r−1),
then tVr,m′ ∼= tVr,m.

In Section 6, we find that arguments of Higman show that if t′Vr′,m′ ∼= tVr,m, then r′ = r
and gcd(m′, r′−1) = gcd(m, r−1).

In Section 7, we find that arguments of Bleak, Brin, Lanoue and Rubin show that if
t′Vr′,m′ ∼= tVr,m, then t′ = t.

In Section 8, we summarize much of the foregoing by recording the above equivalence
(a) ⇔ (b) ⇔ (c). We conclude with a sketch of unpublished results of Ara, Bell and Bergman
that show that t, r and gcd(m, r−1) are invariants of the isomorphism class of Mm(L⊗t

r ) as
ring, and thus the foregoing equivalent conditions are further equivalent to
(b′) Mm′(L⊗t′

r′ ) and Mm(L⊗t
r ) are isomorphic as rings.

2 Notation

We will find it useful to have a vocabulary for intervals in Z.

2.1 Notation. Let i, j ∈ Z. We define the vector

[[i↑j]] :=

{
(i, i + 1, . . . , j − 1, j) ∈ Zj−i+1 if i 6 j,

() ∈ Z0 if i > j.

The underlying subset of Z will be denoted [i↑j]. Similar notation applies for [i↑∞[ .
Let vk be an integer-indexed symbol. We define the vector

v[[i↑j]] :=

{
(vi, vi+1, · · · , vj−1, vj) if i 6 j,

() if i > j.

The underlying set will be denoted v[i↑j].
When vk,k′ is a doubly indexed symbol, we write

v[i↑j]×[i′↑j′] := {vk,k′ | k ∈ [i↑j], k′ ∈ [i′↑j′]}.

Let R be a ring with a unit.
For any subset Z of R, we let 〈〈Z〉〉 denote the multiplicative submonoid of R generated

by Z.
Suppose that m, n ∈ [1↑∞[ .
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We let mRn denote the set of m×n matrices over R and we write Mm(R) := mRm.
For i ∈ [1↑m] and j ∈ [1↑n], we let ei,j ∈ mZn denote the m×n matrix whose (i, j)

coordinate is 1, and all other coordinates are zero. This notation applies only where the
ranges of i and j are clearly specified. We think of mRn as mZn ⊗Z R and use the same
symbol ei,j to denote the image in mRn.

We define an additive transpose map mZn → nZm, U 7→ U∗, such that e∗i,j := ej,i. We
endow mZn with the structure of a partially ordered abelian group in which the positive cone
P( mZn) (the set of elements > 0) is the additive monoid generated by e[1↑m]×[1↑n].

In particular, Mm(Z) has the structure of a ring with involution p 7→ p∗, and the structure
of a partially ordered abelian group. We note that the positive cone Pm(Z) := P( mZm)
contains 1 and is closed under multiplication and the involution. Thus Mm(Z) has the
structure of a partially ordered ring with involution.

2.2 Notation. Throughout, fix r ∈ [2↑∞[ , and fix symbols x and y, and let

Lr := Z〈x[1↑r], y[1↑r] | xtransp
[[1↑r]] · y[[1↑r]] = Ir and y[[1↑r]] · xtransp

[[1↑r]] = 1 〉.

Here x[[1↑r]] and y[[1↑r]] are 1× r row vectors, xtransp
[[1↑r]] denotes the r× 1 transpose of x[[1↑r]], and

Ir denotes the r× r identity matrix.
Leavitt [14] showed that each element of Lr has a unique normal form, which is an

expression as a Z-linear combination of elements of 〈〈x[1↑r]∪y[1↑r]〉〉 which do not contain any
contiguous subword of the form xsys′ (= δs,s′), s, s′ ∈ [1↑r], or yrxr (= 1−∑

s∈[1↑(r−1)] ysxs).

By Leavitt’s normal-form result, the multiplicative monoid 〈〈x[1↑r]〉〉 is freely generated by
x[1↑r], and similarly for 〈〈y[1↑r]〉〉.

We endow Lr with the involution p 7→ p∗ which is the unique anti-automorphism which
interchanges x[[1↑r]] and y[[1↑r]].

We endow Lr with the structure of a partially ordered abelian group in which the positive
cone P(Lr) is the additive monoid generated by the set of monomials 〈〈x[1↑r] ∪ y[1↑r]〉〉. This
is a partial order since a nonempty sum of monomials is not zero. To see this notice that for
any row vector of zeros and monomials, some of which have positive x-degree, multiplying
on the right by a suitable yi leaves a nonzero vector of smaller largest x-degree, and the
result follows by induction. We note that the positive cone contains 1 and is closed under
multiplication and the involution. Thus Lr has been endowed with the structure of a partially
ordered ring with involution.

Let m, n, t ∈ [1↑∞[ .
We extend the involutions on each of the t+1 factors to the conjugate-transpose map

mZn ⊗Z L⊗t
r → nZm ⊗Z L⊗t

r , U 7→ U∗. Recall that we identify mZn ⊗Z L⊗t
r = m(L⊗t

r )n.
Let U( m(L⊗t

r )n) denote the set of Y ∈ m(L⊗t
r )n such that Y · Y ∗ = Im and Y ∗ · Y = In.

The elements of U( m(L⊗t
r )n) are called the unitary m × n matrices over L⊗t

r . We write
Um(L⊗t

r ) := U( m(L⊗t
r )m), a subgroup of the group of units of Mm(L⊗t

r ).
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We extend the partial order on each of the t+1 factors to all of mZn ⊗Z L⊗t
r by taking

as the positive cone P(mZn ⊗Z L⊗t
r ) the additive submonoid generated by the product of

the positive cones of the factors; as before, a nonempty sum of monomials is not zero. We
write Pm(L⊗t

r ) := P( m(L⊗t
r )m), a multiplicative submonoid with involution in the ring with

involution Mm(L⊗t
r ). Thus Mm(L⊗t

r ) has been endowed with the structure of a partially
ordered ring with involution.

Let PU( m(L⊗t
r )n) := P( m(L⊗t

r )n) ∩ U( m(L⊗t
r )n) and PUm(L⊗t

r ) := PU( m(L⊗t
r )m). Then

PUm(L⊗t
r ) = Pm(L⊗t

r )∩Um(L⊗t
r ), an intersection of multiplicative monoids with involution,

and hence itself a multiplicative monoid with involution. Since PUm(L⊗t
r ) lies in Um(L⊗t

r )
the involution acts as inversion and PUm(L⊗t

r ) is a multiplicative group. We call PUm(L⊗t
r )

the group of positive unitary m×m matrices over L⊗t
r .

3 The crucial ring isomorphism

This following beautiful result of Abrams, Ánh and Pardo has the unusual property that it
shows that two naturally defined rings are isomorphic without giving a natural reason, and
there may not be one. We shall be giving their proof but shall incorporate a permutation of Z
that will automate much of their book-keeping. Although the proof we shall give uses r 6= 2
and r < m, we shall see in the next section that the result holds without these restrictions.

3.1 Theorem [1, Theorem 4.14]. Let r ∈ [3↑∞[ and m ∈ [(r+1)↑∞[ with gcd(m, r−1) = 1.
Then Lr and Mm(Lr) are isomorphic as partially ordered rings with involution.

Proof. Let L := Lr. Define π : Z→ Z by

i 7→ iπ :=





i+r if i ≡ 0 (mod m),

i+r−2 if i ≡ 1 (mod m),

i+r−1 if i 6≡ 0, 1 (mod m).

Thus π shifts every element of Z up by r−1, except that certain adjacent pairs (`m, `m+1)
are carried to (`m+r, `m+r−1), that is, they are shifted by r−1 and then interchanged.
Notice that π is bijective.

We claim that [2↑r] is a set of 〈 π 〉-orbit representatives in Z. Because π shifts every
element of Z up by at most r and by at least r−2 ( >1), it follows that each 〈 π 〉-orbit
meets [1↑r]. Now 1π = r−1 ( >2) which lies in [2↑r]. Hence, each 〈 π 〉-orbit meets [2↑r].
Since 2π = r+1 and π shifts every element of Z up by at least r−2, we see that no 〈 π 〉-orbit
meets [2↑r] twice. This proves the claim.

Now any sequence of r−1 consecutive integers is a set of 〈 π 〉-orbit representatives unless
two elements are in the same 〈 π 〉-orbit, and the only pairs in the same 〈 π 〉-orbit that
are at distance less than r−1 are of the form `m+1 7→ `m+ r−1. If our sequence of r−1
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consecutive integers does not start at an `m+1, then it cannot contain two elements in the
same 〈 π 〉-orbit. Hence, for each k ∈ Z, [(k+1)↑(k+r−1)] is a set of 〈 π 〉-orbit representatives
in Z if and only if k 6≡ 0 mod m.

Let s ∈ [2↑r] and j ∈ [1↑(m−1)]. Since gcd(m, r−1) = 1, we have (r−1)j 6≡ 0 mod m.
Hence, [(1+(r−1)j)↑((r−1)(j+1))] is a set of 〈 π 〉-orbit representatives in Z and therefore
contains a unique element in the 〈 π 〉-orbit of s. We denote that element by s#j. Thus
s#j ∈ [(1+(r−1)j)↑((r−1)(j+1))] and (s#j)〈π 〉 = s〈π 〉. In L, define y(s#j)+m := yj−1

1 ys.
Define yr+m−1 := ym−1

1 . For each k ∈ [(r+m−1)↑(mr)], define xk := y∗k. We claim that

we have defined y[[(r+m−1)↑(mr)]] with underlying set y
[0↑(m−2)]
1 y[2↑r] ∪ {ym−1

1 }. For each
j ∈ [1↑(m−1)], varying s ∈ [2↑r], we see that

[2↑r]#j = [(1+(r−1)j)↑(r−1)(j+1)],

and then
[2↑r]#j + m = [(1+(r−1)j+m)↑((r−1)(j+1)+m)],

and we have defined y[[(1+(r−1)j+m)↑((r−1)(j+1)+m)]] with underlying set yj−1
1 y[2↑r]. By then

varying j ∈ [1↑(m−1)], we obtain y[[(r+m)↑(mr)]] with underlying set y
[0↑(m−2]
1 y[2↑r]. Thus we

have defined y[[(r+m−1)↑(mr)]] with underlying set y
[0↑(m−2)]
1 y[2↑r]∪{ym−1

1 }. It is easy to see that
y[[(r+m−1)↑(mr)]] ∈ PU( 1L(m−1)(r−1)+1).

Let

Y := y[[1↑r]] ⊕ Im−2 ⊕ y[[(m+r−1)↑(mr)]] =




y[[1↑r]] 0 0
0 Im−2 0
0 0 y[[(m+r−1)↑(mr)]]


 ∈ PU( mLmr).

We identify mLmr = (Mm(L))r, and let Y[[1↑r]] denote the resulting partition of Y , that is,
Y = Y[[1↑r]] ∈ (Mm(L))r.

We then have a well-defined homomorphism L → Mm(L) that sends y[[1↑r]] to Y[[1↑r]] and
sends xtransp

[[1↑r]] (= (y[[1↑r]])−1) to Xtransp
[[1↑r]] := Y −1 = Y ∗.

This homomorphism is nonzero with torsion-free image, and hence is injective on Z,
and hence is injective, by the following argument of Leavitt [15, Theorem 2]. Consider any
nonzero element of the kernel. By multiplying on the left by a suitable x-monomial, we
get a nonzero element in the free x-subalgebra. By multiplying on the right by a suitable
y-monomial, we get a nonzero element of Z, which is the desired contradiction.

Let S denote the image of P1(L), that is, the additive monoid that is generated by the
multiplicative monoid that is generated by Y[1↑r]∪Y ∗

[1↑r] in Mm(L). Clearly S∗ = S ⊆ Pm(L).

It remains to show that Pm(L) ⊆ S, for then the injective map L → Mm(L) is surjective
and the resulting inverse map carries Pm(L) into P1(L).

Since m > r > 2,

Y1 =
∑

j∈[1↑r]
yje1,j +

∑
j∈[(r+1)↑m]

ej−r+1,j,(1)
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Y2 =
∑

j∈[1↑(r−2)]

ej+m−r+1,j +
∑

j∈[(r−1)↑m]

yj+mem,j,(2)

Ys =
∑

j∈[1↑m]

yj+(s−1)mem,j for each s ∈ [3↑r],(3)

Y ∗
1

(1)
=

∑
j∈[1↑r]

xjej,1 +
∑

j∈[(r+1)↑m]

ej,j−r+1,(4)

Y1Y
∗
1

(1),(4)
=

∑
j∈[1↑(m−r+1)]

ej,j,(5)

Y1ej,jY
∗
1

(1),(4)
= ej−r+1,j−r+1 for each j ∈ [(r+1)↑m],(6)

e1,1Y1ej,j
(1)
= yje1,j for each j ∈ [1↑r],(7)

ej−r+1,j−r+1Y1ej,j
(1)
= ej−r+1,j for each j ∈ [(r+1)↑m],(8)

Y ∗
2

(2)
=

∑
j∈[1↑(r−2)]

ej,j+m−r+1 +
∑

j∈[(r−1)↑m]

xj+mej,m,(9)

Y2ej,jY
∗
2

(2),(9)
= ej+m−r+1,j+m−r+1 for each j ∈ [1↑(r−2)],(10)

ej+m−r+1,j+m−r+1Y2ej,j
(2)
= ej+m−r+1,j for each j ∈ [1↑(r−2)],(11)

em,mY2ej,j
(2)
= yj+mem,j for each j ∈ [(r−1)↑m],(12)

em,mYsej,j
(3)
= yj+(s−1)mem,j for each j ∈ [1↑m], s ∈ [3↑r].(13)

3.1.1 Definition. The m-cycle j 7→ (j−r+1)[mod m].
For each j ∈ Z, let j[mod m] denote the representative of j+mZ in [1↑m].
Since it is a unit in Zm, (r−1)+mZ additively generates a subgroup of order m in Zm,

and hence shifting down by r−1 determines an m-cycle on Zm. Hence j 7→ (j−r+1)[mod m]
determines an m-cycle on [1↑m]. We think of this m-cycle as an m-gon with two distinguished
sides, r−1 7→ m and r 7→ 1.

(14)

m 7→ · · · 7→ r7→
7→

r−1 7→· · · 7→1

3.1.2 Claim. Both e1,1 and em,m lie in S.
For each i ∈ [1↑m], let Ei :=

∑
j∈[1↑i]

ej,j and E ′
i :=

∑
j∈[(i+1)↑m]

ej,j = Im−Ei. We shall show

that Ei ∈ S and E ′
i ∈ S by letting i travel around (14) from m to r−1. This claim is clear

for i = m.
Now suppose that i ∈ [1↑(r−2)] ∪ [r↑m] such that Ei, E ′

i ∈ S.
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If i ∈ [1↑(r−2)], then

Ei =
∑

j∈[1↑i]⊆[1↑(r−2)]

ej,j, and (i−r+1)[mod m] = i+m−r+1,

Ei+m−r+1
(10)
= Y2EiY

∗
2 + Em−r+1

(5)
= Y1Y

∗
1 + Y2EiY

∗
2 ∈ S,

E ′
i+m−r+1 = Im−Ei+m−r+1 =

∑
s∈[1↑r]

YsY
∗
s − Y1Y

∗
1 − Y2EiY

∗
2 = Y2E

′
iY

∗
2 +

∑
s∈[3↑r]

YsY
∗
s ∈ S.

If i ∈ [r↑m], then

E ′
i =

∑
j∈[i+1,m]⊆[(r+1)↑m]

ej,j, and (i−r+1)[mod m] = i−r+1,

E ′
i−r+1

(6)
= Y1E

′
iY

∗
1 + E ′

m−r+1

(5)
= Y1E

′
iY

∗
1 +

∑
s∈[2↑r]

YsY
∗
s ∈ S,

Ei−r+1 = Im−E ′
i−r+1 =

∑
s∈[1↑r]

YsY
∗
s − Y1E

′
iY

∗
1 −

∑
s∈[2↑r]

YsY
∗
s = Y1EiY

∗
1 ∈ S.

It now follows by induction on path-length in (14) that, for each i ∈ [1↑m], Ei ∈ S and
E ′

i ∈ S. Hence, e1,1 = E1 ∈ S and em,m = E ′
m−1 ∈ S. We could have stopped when we had

reached whichever came later of 1 and m−1.

3.1.3 Claim. Each ej,j lies in S.
Let j ∈ [1↑m]. We shall show that ej,j ∈ S by letting j travel along the top of (14) from

m to r and along the bottom of (14) from 1 to r−1. We have proved the claim for j = m
and j = 1. Now suppose that j ∈ [1↑(r−2)] ∪ [(r+1)↑m] such that ej,j ∈ S.

If j ∈ [1↑(r−2)], then

(j−r+1)[mod m] = j+m−r+1 and ej+m−r+1,j+m−r+1
(10)
= Y2ej,jY

∗
2 ∈ S.

If j ∈ [(r+1)↑m], then

(j−r+1)[mod m] = j−r+1 and ej−r+1,j−r+1
(6)
= Y1ej,jY

∗
1 ∈ S.

It now follows by induction on path-length in (14) that ej,j ∈ S for all j ∈ [1↑m].

3.1.4 Review. The ei,iYsej,j lie in S.
We have now shown that for all i, j ∈ [1↑m], and all s ∈ [1↑r], ei,iYsej,j ∈ S. This has

the following consequences.

For each j ∈ [1↑r], yje1,j

(7)∈ S.(15)

For each j ∈ [(r+1)↑m], ej−r+1,j

(8)∈ S.(16)

For each j ∈ [1↑(r−2)], ej+m−r+1,j

(11)∈ S.(17)
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For each j ∈ [(r−1)↑m], yj+mem,(j+m)[mod m] = yj+mem,j

(12)∈ S.(18)

For each j ∈ [1↑m] and s ∈ [3↑r], yj+(s−1)mem,(j+(s−1)m)[mod m] = yj+(s−1)mem,j

(13)∈ S.(19)

For each k ∈ [(r−1+m)↑(mr)], ykem,k[mod m]

(18),(19)∈ S.(20)

ym−1
1 em,r−1 = yr−1+mem,(r−1+m)[mod m]

(20)∈ S.(21)

For j ∈ [1↑(m−1)], s ∈ [2↑r], yj−1
1 ysem,(s#j)[mod m](22)

= y(s#j)+mem,((s#j)+m)[mod m]

(20)∈ S.

3.1.5 Claim. All the ei,j lie in S.
It follows from (16) and (17) that for each edge j 7→ j′ in the top of diagram (14), we

have ej′,j ∈ S. Since ej1,j2ej2,j3 = ej1,j3 , we see that for any subpath j 7→ · · · 7→ j′ of the
top of diagram (14), we have ej′,j ∈ S, and ej,j′ = e∗j′,j ∈ S. Thus if j, j′ are two points on
the top of the diagram (14), then ej′,j ∈ S. The same result holds for the bottom of the
diagram (14). To obtain e[1↑m]×[1↑m] ⊆ S, it now suffices to show that e1,m ∈ S.

Recall that for s ∈ [2↑r] and j ∈ [1↑(m−1)], s and s#j lie in the same 〈 π 〉-or-
bit. It is clear that π induces an action modulo m, and hence induces a permutation πm

of [1↑m]. Hence s and (s#j)[mod m] lie in the same 〈 πm 〉-orbit. On [2↑(m−1)], πm acts as
i 7→ (i+r−1)[mod m], while 1 7→ r−1 and m 7→ r. It follows that there are two 〈 πm 〉-orbits
and they are given by the top and the bottom of the diagram (14). Hence es,(s#j)[mod m] ∈ S.

In L, 1 = ym−1
1 xm−1

1 +
∑

j∈[1↑(m−1)]

∑
s∈[2↑r]

(yj−1
1 ysxsx

j−1
1 ). Hence, in Mm(L),

e1,m = ym−1
1 xm−1

1 e1,m +
∑

j∈[1↑(m−1)]

∑
s∈[2↑r]

(yj−1
1 ysxsx

j−1
1 e1,m)

= (y1e1,1)
m−1(e1,r−1)(x

m−1
1 er−1,m)

+
∑

j∈[1↑(m−1)]

∑
s∈[2↑r]

(y1e1,1)
j−1(yse1,s)(es,(s#j)[mod m])(xsx

j−1
1 e(s#j)[mod m],m).

Using (15), (21), and (22), and the fact that S = S∗, we see that e1,m ∈ S.
Now e[1↑m]×[1↑m] ⊆ S. By (15), y[1↑r]e[1↑m]×[1↑m] ⊆ S. Hence Pm(L) ⊆ S. This completes

the proof.

3.2 Example. Let us illustrate the proof of Theorem 3.1 by considering the case r = 3 and
m = 5; here gcd(m, r−1) = gcd(5, 2) = 1 and M5(L3) ∼= L3.

We find that the cycle decomposition of π is (. . . , 0, 3, 5, 8, 10, . . .)(. . . , 1, 2, 4, 6, 7, 9, . . .).
Now ym+r−1 := ym−1

1 , that is, y7 := y4
1.

Now consider s ∈ [2↑r] = [2↑3] and j ∈ [1↑(m−1)] = [1↑4]. We defined

{s#j} := [(1 + (r−1)j)↑((r−1)(j+1))] ∩ sπ = [(1 + 2j)↑(2j+2)] ∩ sπ.
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Thus {s#1} = [3↑4]∩sπ, {s#2} = [5↑6]∩sπ, {s#3} = [7↑8]∩sπ and {s#4} = [9↑10]∩sπ. For
s = 2, we are in the set {. . . , 4, 6, 7, 9, . . .}, and for s = 3, we are in the set {. . . , 3, 5, 8, 10, . . .}.
Thus

2#1 = 4, 2#2 = 6, 2#3 = 7, 2#4 = 9,
3#1 = 3, 3#2 = 5, 3#3 = 8 3#4 = 10.

We define y(s#j)+m := yj−1
1 ys, that is, y(s#j)+5 := yj−1

1 ys. Thus
y9 = y2, y11 = y1y2, y12 = y2

1y2, y14 = y3
1y2,

y8 = y3, y10 = y1y3, y13 = y2
1y3 and y15 = y3

1y3. Hence
y7 = y4

1, y8 = y3, y9 = y2, y10 = y1y3, y11 = y1y2, y12 = y2
1y2, y13 = y2

1y3, y14=y3
1y2, y15=y3

1y3.
Thus y[[(r+m−1)↑(mr)]] = y[[7↑15]] = (y4

1, y3, y2, y1y3, y1y2, y
2
1y2, y

2
1y3, y

3
1y2, y

3
1y3). Now we take

Y := y[[1↑r]] ⊕ Im−2 ⊕ y[[(r+m−1)↑(mr)]] = y[[1↑3]] ⊕ I3 ⊕ y[[7↑15]]. Hence

Y =

( y1 y2 y3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 y4

1 y3 y2 y1y3 y1y2 y2
1y2 y2

1y3 y3
1y2 y3

1y3

)
.

Now we partition Y as

Y1 =

(
y1 y2 y3 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)
, Y2 =

(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 y4

1 y3 y2 y1y3

)
, Y3 =

(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

y1y2 y2
1y2 y2

1y3 y3
1y2 y3

1y3

)
.

We let Xi := Y ∗
i .

Now

Y1X1 =

(
y1 y2 y3 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)(
x1 0 0 0 0
x2 0 0 0 0
x3 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
=

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

)
= E3.

Thus, E3 = Y1X1. Hence, E ′
3 = Y2X2 + Y3X3.

Now Y1E
′
3X1 =(

y1 y2 y3 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)(
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

)(
x1 0 0 0 0
x2 0 0 0 0
x3 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
=

(
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)(
x1 0 0 0 0
x2 0 0 0 0
x3 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
=

(
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

)
= E ′

1−E ′
3.

Hence E ′
1 = Y1E

′
3X1 + E ′

3 = Y1Y2X2X1 + Y1Y3X3X1 + Y2X2 + Y3X3 which we abbreviate to
E ′

1 = Y1,2X2,1 + Y1,3X3,1 + Y2X2 + Y3X3. Hence E1 = Y1,1X1,1.

Similar straightforward calculations show that Y2E1X2 = E4−E3. Hence
E4 = E3 + Y2E1X2 = Y1X1 + Y2,1,1X1,1,2. Hence
E ′

4 = Y2,1,2X2,1,2 + Y2,1,3X3,1,2 + Y2,2X2,2 + Y2,3X3,2 + Y3X3.

Similarly, Y1E
′
4X1 = E ′

2 − E ′
3. Hence E ′

2 = Y1E
′
4X1 + E ′

3. Hence
E ′

2 = Y1,2,1,2X2,1,2,1 +Y1,2,1,3X3,1,2,1 +Y1,2,2X2,2,1 +Y1,2,3X3,2,1 +Y1,3X3,1 +Y2X2 +Y3X3. Hence
E2 = Y1,1X1,1 + Y1,2,1,1X1,1,2,1.

Now
e1,1 = E1 = Y1,1X1,1.
e4,4 = Y2e1,1X2 = Y2,1,1X1,1,2.
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e2,2 = Y1e4,4X1 = Y1,2,1,1X1,1,2,1.
e5,5 = E ′

4 = Y2,1,2X2,1,2 + Y2,1,3X3,1,2 + Y2,2X2,2 + Y2,3X3,2 + Y3X3.
e3,3 = Y1e5,5X1 = Y1,2,1,2X2,1,2,1 + Y1,2,1,3X3,1,2,1 + Y1,2,2X2,2,1 + Y1,2,3X3,2,1 + Y1,3X3,1.

The interested reader can calculate the expressions for the remaining ei,j.

4 The Abrams-Ánh-Pardo Theorem

The following is a straightforward consequence of the Chinese remainder theorem; the earliest
mention of it that we have found is [12, p. 466, line 9].

4.1 Lemma. Let m1, m2, s ∈ Z. If gcd(m1, s) = gcd(m2, s), then there exists u ∈ Z such
that um1 ≡ m2 mod s and gcd(u, s) = 1.

Proof. Note first that if s = 0 then m1 = ±m2 and we can take u = ±1. Thus we may
assume s 6= 0.

Let g := gcd(m1, s) = gcd(m2, s). There exist n1, n2 ∈ Z such that n1g = m1 and
n2g = m2. By Euclid’s lemma, there exist k1, k2 ∈ Z such that m1k1 ≡ g mod s and
m2k2 ≡ g mod s.

Let R := Zs, a := m1 + sZ, b := m2 + sZ, c := n1k2 + sZ, d := n2k1 + sZ.
We have a, b, c, d ∈ R such that ad = b and bc = a, and it suffices to find some unit

x = u + sZ ∈ R such that ax = b.
Eliminating b, we then have a, c, d ∈ R such that a(1−cd) = 0, and it suffices to find

some unit x ∈ R such that ax = ad.
If R = Zpm where p is a prime number and m > 1, then either a = 0 and here we can

take x = 1 as a solution, or a 6= 0 and then 1−cd is a zerodivisor, hence (1−cd)m = 0, hence
1− (1−cd) is a unit, hence cd is a unit, hence d is a unit, hence x = d is a solution.

By the Chinese remainder theorem, R is a direct product of a finite number of rings
of the form Zpm where p is a prime number and m > 1. By the preceding paragraph, we
can find a suitable unit in each of these factors, and then form a suitable unit in R. This
completes the proof.

The following is also well known.

4.2 Lemma. Let r ∈ [2↑∞[ and m, m′ ∈ [1↑∞[ . If m′ ≡ m mod (r−1), then Mm′(Lr) and
Mm(Lr) are isomorphic as partially ordered rings with involution.

Proof. Let L := Lr.
Consider first the case where there exists some Y ∈ PU( m′Lm). We then have a map

Mm′(L) → Mm(L), M
m′×m′

7→ Y ∗
m×m′

M
m′×m′

Y
m′×m

, and it is easily seen to be a homomorphism

of partially order rings with involution. Using Y ∗ in place of Y , we get a map in the reverse
direction, and the two maps are mutually inverse. Thus it suffices to prove that PU(mLm+r−1)
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is nonempty. Now y[[1↑r]] ∈ PU(1Lr) and Im−1 ∈ PUm−1(L) = PU(m−1Lm−1). Here, we have
the diagonal sum

y[[1↑r]]
1×r

⊕ Im−1
(m−1)×(m−1)

:=

(
y[[1↑r]] 0

0 Im−1

)
∈ PU( mLm+r−1).

This completes the proof.

4.3 The Abrams-Ánh-Pardo Theorem [17]. Let r ∈ [2↑∞] and m, m′, t ∈ [1↑∞[ .
If gcd(m′, r−1) = gcd(m, r−1), then Mm′(L⊗t

r ) and Mm(L⊗t
r ) are isomorphic as partially

ordered rings with involution, and, hence, PUm′(L⊗t
r ) ∼= PUm(L⊗t

r ).

Proof. For the purposes of this proof, let us write ∼=
porwi

to indicate “isomorphic as partially

ordered rings with involution”.
We claim that Mm′(Lr) ∼=

porwi
Mm(Lr). If r = 2, this holds by Lemma 4.2; thus we may

assume that r > 3. By Lemma 4.1, there exists u ∈ Z such that m′u ≡ m mod (r−1) and
gcd(u, r−1) = 1. By adding some multiple of r−1 to u, we may further assume that u > r.
By Theorem 3.1, Lr

∼=
porwi

Mu(Z)⊗ZLr. It is well known that Mm′(Z)⊗ZMu(Z) ∼=
porwi

Mm′u(Z).

By Lemma 4.2, Mm′u(Z)⊗Z Lr
∼=

porwi
Mm(Z)⊗Z Lr. It then follows that

Mm′(Z)⊗Z Lr
∼=

porwi
Mm′(Z)⊗Z Mu(Z)⊗Z Lr

∼=
porwi

Mm′u(Z)⊗Z Lr
∼=

porwi
Mm(Z)⊗Z Lr,

and the claim is proved.
Now, for t > 2, applying (−)⊗Z L⊗(t−1)

r gives the desired result.

5 The Brin-Higman-Thompson group tVr,m is PUm(L⊗t
r )

We now consider the Brin-Higman-Thompson groups. To lead into the definition gradually,
we consider first the Higman-Thompson groups.

5.1 Definitions. Let r ∈ [2↑∞[ and m ∈ [1↑∞[ . We now recall one of the constructions of
the Higman-Thompson group Vr,m from [11]; see also [20].

Let L := Lr. By Leavitt’s normal-form result, the multiplicative submonoid 〈〈y[1↑r]〉〉 of
L is the free monoid on y[1↑r]. We view the Cartesian product e[1↑m]×{1} × 〈〈y[1↑r]〉〉 as the
product e[1↑m]×{1}〈〈y[1↑r]〉〉 ⊆ Mm(L).

Let A be any finite subset of e[1↑m]×{1}〈〈y[1↑r]〉〉. For any a ∈ A, the ath expansion of A is

∂a(A) := (A \ {a}) ∪ ay[1↑r] ⊆ e[1↑m]×{1}〈〈y[1↑r]〉〉.
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Let Bm denote the smallest set of (finite) subsets of e[1↑m]×{1}〈〈y[1↑r]〉〉 such that
e[1↑m]×{1} ∈ Bm and Bm is closed under taking expansions, that is, whenever A ∈ Bm

and a ∈ A, then ∂a(A) ∈ Bm. An element of Bm is called a basis.
For any A ∈ Bm, we can apply suitable expansions and arrive at an element B ∈ Bm

whose elements all have the same length, and then we have all of the elements of
e[1↑m]×{1}〈〈y[1↑r]〉〉 of this length. Any such B is called a homogeneous element of Bm.

We now consider the set of maps that are bijections between elements of Bm,

Φ := {ϕ : A → B, a 7→ aϕ | A,B ∈ Bm, ϕ bijective}.
We shall construct Vr,m using equivalence classes in Φ.

Suppose that A
ϕ−→ B is an element of Φ, and that a ∈ A, and let b := aϕ. We de-

fine ∂a(ϕ) : ∂a(A) → ∂b(B) in the natural way, that is, ∂a(ϕ) acts as ϕ for the bijection
A \ {a} → B \ {b}, and sends ays to bys for each s ∈ [1↑r]. We call ∂a(ϕ) the ath expansion
of ϕ.

We define the set Vr,m to consist of the equivalence classes in Φ obtained by identifying
each element of Φ with all of its expansions.

We define a binary operation on Vr,m as follows. For any ϕ, ψ ∈ Φ, we can take successive
expansions of ϕ−1 and ψ until they have homogeneous domains of the same length, in
particular until they have the same domain. We may then compose ϕ ψ. We then obtain a
well-defined binary operation on Vr,m. This concludes the definition of the Higman-Thompson
group Vr,m.

Let us mention some subgroups of Vr,m. We give e[1↑m]×{1}〈〈y[1↑r]〉〉 the lexicographic

ordering. If A, B ∈ Bm have the same size and A
ϕ−→ B is the unique bijective map that

respects the induced orderings, then all the expansions of A
ϕ−→ B will also respect the

induced orderings. The set of elements of Vr,m represented by order-preserving maps form

a subgroup of Vr,m, denoted Fr,m. Similarly, we can allow A
ϕ−→ B to be one of the maps

that respects the induced orderings cyclically. We then get the subgroup Tr,m of Vr,m that
contains Fr,m; see [11] or [8]. Here, F2,1 and T2,1 are Thompson’s group F and T , respectively.

5.2 Definitions. Let m, t ∈ [1↑∞[ and r ∈ [2↑∞[ . We now define the Brin-Higman-
Thompson group tVr,m along the same lines as in the above definition of the Higman-
Thompson groups.

Let L := Lr. For ` ∈ [1↑t], k ∈ [1↑ r], we define y`,k := 1⊗(`−1) ⊗ yk ⊗ 1⊗(t−`) ∈ L⊗t and
x`,k := y∗`,k = 1⊗(`−1) ⊗ xk ⊗ 1⊗(t−`) ∈ L⊗t. We view the Cartesian product

e[1↑m]×{1} × 〈〈y[1↑t]×[1↑r]〉〉
as the product e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉 ⊆ Mm(L⊗t).

We consider t different kinds of expansions on a finite subset A of e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉
as follows. For each ` ∈ [1↑t], a ∈ A, let

∂`,a(A) := A \ {a} ∪ ay{`}×[1↑r].
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Let B
(t)
m be the smallest set of subsets of e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉 such that e[1↑m]×{1} ∈ B

(t)
m

and B
(t)
m is closed under taking expansions of all kinds. The elements of B

(t)
m are called bases.

A subset A of e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉 is said to be unitary if it satisfies
∑
a∈A

(a · a∗) = Im,

and, for all a, b ∈ A, if a 6= b, then a∗ · b = 0 (and thus a is not a prefix of b). It is not
difficult to show that every expansion of a unitary set is unitary. Notice that the question
of multiplicity does not arise since, in a unitary set, no element is a prefix of another. Since
e[1↑m]×{1} is a unitary set, we see that every basis is unitary.

Each b ∈ e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉 can be expressed uniquely as a product b = ei1b1 · · · bt,
where each b` lies in 〈〈y{`}×[1↑r]〉〉, for each ` ∈ [1↑t]. The length of b` is called the `-length
of b.

A finite subset A of e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉 is multi-homogeneous if, for each ` ∈ [1↑t], all
the elements of A have the same `-length. Clearly, any finite subset of e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉
can be expanded to a multi-homogeneous subset. In particular, any basis can be expanded
to a multi-homogeneous basis, which will then have all the elements that have the specified
`-length, for each `. (See also [13] Lemma 3.2.)

If B is a multi-homogeneous unitary set, then B lies in a unique multi-homogeneous
basis C. If B 6= C, then, with respect to the partial order on Mm(L⊗t), we would have
Im =

∑
b∈B

(b · b∗) <
∑
c∈C

(c · c∗) = Im, which is a contradiction. Thus, B = C. Hence, each

multi-homogeneous unitary set is a basis. Hence, each unitary set can be expanded to a
multi-homogeneous basis.

We now consider the set of maps that are bijections between elements of B
(t)
m ,

Φ := {A ϕ−→ B | A,B ∈ B(t)
m , ϕ bijective}.

We construct the Brin-Higman-Thompson group tVr,m as the set of equivalence classes in Φ
in the same way that we defined the Higman-Thompson group Vr,m in Definitions 5.1.

For t > 2, the symbols tFr,m and tTr,m have not been assigned definitions; Brin [6,
Remark 4.9] discusses his unsuccessful efforts to define a 2F2,1 with desirable properties.

5.3 Remarks. If t = 2, then every unitary set is a basis. To see this, suppose that B is
unitary. It suffices to consider the case m = 1. Recall that each b ∈ B has a factorization
b = b1b2 = b2b1 with bi ∈ 〈〈y{i}×[1↑r]〉〉 for i = 1, 2. Consider first the case where, for some
b ∈ B, we have b1 = 1 and b2 6= 1. Here, for each c ∈ B, if c 6= b, then c2 · b∗ = 0 and c2 6= 1.
Then B is a disjoint union of y2,kBk for each k ∈ [1↑r]. Each Bk is unitary, and by induction
is a basis. Hence B is a basis. In the remaining case, for each b ∈ B, we have b1 6= 1, and
then B is a disjoint union of y1,kBk for each k ∈ [1↑r], and, by the same argument, B is a
basis.

Similarly, if t = 1, then each unitary set is a basis.
For t = 3, m = 1, and r = 2, {y2,1y3,1, y1,1y2,1y3,2, y1,1y2,2, y1,2y2,2y3,1, y1,2y3,2} is a unitary

set that is not a basis.
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We now come to our main result. In [17], Pardo found this result for Higman-Thompson
groups, i.e., in the case t = 1.

5.4 Theorem. Let r ∈ [2↑∞[ and m, t ∈ [1↑∞[ . Then PUm(L⊗t
r ) is isomorphic to the

Brin-Higman-Thompson group tVr,m.

Proof. We use the notation of Definitions 5.2.

For each (A
ϕ−→ B) ∈ Φ, we define (A

ϕ−→ B)α :=
∑
a∈A

(a · (aϕ)∗) ∈ Pm(L⊗t). It is readily

verified that α has the same value on all the expansions of (A
ϕ−→ B). Also,

(B
ϕ−1−−→ A)α =

∑
a∈A

(aϕ · a∗) = ((A
ϕ−→ B)α)∗.

Thus we have a well-defined map of sets α : tVr,m → Pm(L⊗t). It is a morphism of multiplica-

tive monoids, since the identity maps to the identity, and, for any (A
ϕ−→ B), (B

ψ−→ C) ∈ Φ,

(A
ϕ−→ B)α · (B ψ−→ C)α =

∑
a∈A

(a · (aϕ)∗) · ∑
b∈B

(b · (bψ)∗) =
∑
a∈A

(a · (aϕ)∗) · (aϕ · ((aϕ)ψ)∗)

=
∑
a∈A

(a · (aϕ ψ)∗) = (A
ϕ ψ−−→ C)α.

In particular, (B
ϕ−1−−→ A)α = ((A

ϕ−→ B)α)−1; as we have already seen that (B
ϕ−1−−→ A)α =

((A
ϕ−→ B)α)∗, we see that (A

ϕ−→ B)α ∈ PUm(L⊗t). In summary, we have a well-defined

homomorphism α : tVr,m → PUm(L⊗t) which sends the equivalence class of (A
ϕ−→ B) to∑

a∈A

(a · (aϕ)∗).

We next prove surjectivity of α : tVr,m → PUm(L⊗t).

Consider an arbitrary u ∈ PUm(L⊗t). Since u ∈ Pm(L⊗t), we have an expression
of u as a sum of elements of the form ei,j ·w · z∗ with w, z ∈ 〈〈y[1↑t]×[1↑r]〉〉; notice that
ei,j ·w · z∗ = (ei,1 ·w) · (ej,1 · z)∗. By repeatedly inserting

∑
k∈[1↑r]

(y`,k ·x`,k) (= 1) between suit-

able w and z∗, we can arrange for all the ws to have the same `-length, for each ` ∈ [1↑t],
and obtain an expression u =

∑
a∈A

a · p∗a, where A ∈ B
(t)
m , multi-homogeneous, and, for each

a ∈ A, pa is a sum of elements from e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉. It is not difficult to see that if pa

has at least two summands then e1,1 < (p∗a) · (pa). Since it is a basis, A is a unitary set. Let

B := {pa | a ∈ A}, and let A
ϕ−→ B be given by a 7→ pa. We shall show that B is a unitary set

and that ϕ is injective. Let a, a′ ∈ A. Since u is a unitary matrix, u · u∗ = Im, and, hence,

(p∗a) · (pa′) = (a∗ ·u) · (u∗ · a′) = a∗ · Im · a′ = a∗ · a′ = e1,1δa,a′ .
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In particular, (p∗a) · (pa) = e1,1, and we see that pa has exactly one summand, that is,
B ⊆ e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉. If a′ 6= a, we have (p∗a) · (pa′) = 0; in particular, ϕ is injective
and, hence, bijective. We also have

∑
b∈B

(b · b∗) =
∑
a∈A

(pa · p∗a) = (
∑
a∈A

pa · a∗) · (
∑

a′∈A

a′ · p∗a′) = u∗ ·u = Im.

Thus B is a unitary set. We may expand B to a multi-homogeneous set B′, and B′ is again
a unitary set, and is then a basis; see Definitions 5.2. By considering the corresponding
expansion of ϕ−1 we get an expansion A′ of A, which is again a basis, and an expansion

A′ ϕ′−→ B′ of ϕ. Then (A′ ϕ′−→ B′) ∈ Φ and
∑

a′∈A′
(a′ · (a′ϕ′)∗) =

∑
a∈A

(a · (aϕ)∗) = u. This proves
that α : tVr,m → PUm(L⊗t) is surjective.

It remains to show that α : tVr,m → PUm(L⊗t) is injective. Suppose that (A
ϕ−→ B) ∈ Φ

and
∑
a∈A

(a · (aϕ)∗) = Im. For each a ∈ A, right multiplying the latter equation by aϕ gives

a = aϕ. This proves that α : tVr,m → PUm(L⊗t) is injective.

6 Higman’s proof of invariance of r and gcd(m, r−1)

We use the notation of Definitions 5.2.

6.1 Background. Here we quickly review the main points of Higman’s analysis of conjugacy
classes of finite subgroups of tVr,m. The arguments are easily adapted from the articles [11],
[16], both of which are set in a broader framework where two bases need not have a common
ancestor.

For each n ∈ [1↑∞[ , there exists some B ∈ B
(t)
m with |B| = n if and only if

n ≡ m mod (r−1).
By working with minimal common expansions, one can show that each finite subgroup H

of tVr,m permutes the elements of some B ∈ B
(t)
m ; moreover, the conjugacy class of H in tVr,m

is then determined by the decomposition of B into H-orbits modulo identifying expansions
of entire H-orbits. Here we will be counting the number of isomorphic copies of an orbit
modulo r−1 except that we must distinguish between the number of isomorphic copies of
an orbit being zero and being a nonzero multiple of r−1.

Conversely, for any finite group H, any finite H-set of cardinal congruent to m mod (r−1)

can be identified with some B ∈ B
(t)
m and hence give a homomorphism from H to tVr,m.

6.2 Conclusions. Let us now recall Higman’s recovery of r and gcd(m, r−1) from the
isomorphism class of tVr,m.

Let p be a prime number, let a ∈ [1↑∞[ , and let cc(pa, tVr,m) denote the number of
conjugacy classes of cyclic subgroups of tVr,m whose order divides p a. Then cc(p a, tVr,m) is
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an invariant of the isomorphism class of tVr,m. It follows from Background 6.1 that

cc(p a, tVr,m) is equal to the number of sequences n[[0↑a]] ∈ [0↑(r−1)]a+1(23)

such that
a∑

j=0

(njp
j) ≡ m mod (r−1), and ni 6= 0 for some i ∈ [0↑a].

(i). Let p a be the highest power of p dividing r−1. Let p b denote the highest power of p

dividing gcd(m, r−1). We shall show that cc(p a, tVr,m) =
b∑

i=0

(pira−i).

By rewriting (23) ignoring leading zeros in n[[0↑a]], we see that

cc(p a, tVr,m) =
a∑

i=0

|{n[[i↑a]] ∈ ([0↑(r − 1)])a+1−i :
a∑

j=i

(njp
j) ≡ m mod (r−1), and ni 6= 0}|.

If b < a, then xp b+1 ≡ m mod (r−1) has no solutions, and now, since b 6 a, we see

cc(p a, tVr,m) =
b∑

i=0

|{n[[i↑a]] ∈ ([0↑(r−1)])a+1−i :
a∑

j=i

(njp
j) ≡ m mod (r−1) and ni 6= 0}|.

Here, the solutions of nip
i ≡ m −

a∑
j=i+1

(njp
j) mod (r−1), ni 6= 0, are given by all possible

ra−i choices for n[[(i+1)↑a]] ∈ ([0↑(r−1)])a−i, and then p i choices for ni in the set [1↑(r−1)] of

representatives of Zr−1. Hence cc(p a, tVr,m) =
b∑

i=0

(p ira−i), as claimed.

(ii). Now suppose that p does not divide r−1.

By arguing as in (i), we can show that cc(p a, tVr,m)
(23)
=

a∑
i=0

ra−i. The case a = 1 shows

that for all but finitely many primes p, there are exactly r conjugacy classes of subgroups
of order exactly p in tVr,m. It now follows that r is an invariant of the isomorphism class of
tVr,m.

It then follows from (i) that gcd(m, r−1) is also an invariant of the isomorphism class
of tVr,m.

7 The Bleak-Brin-Lanoue proof of invariance of t

We use the notation of Definitions 5.2.
In [4], Bleak-Lanoue developed arguments of Brin [6], [5] to prove that if t′V2,1

∼= tV2,1

then t′ = t. In this section we shall give a straightforward adaptation of their arguments
to our language and show that if t′Vr′,m′ ∼= tVr,m, then t′ = t. Here, tVr,m will be viewed

as a group of self-homeomorphisms of a Cantor set E
(t)
r,m; since the elements of E

(t)
r,m involve

one-sided infinite words, we follow the standard practice of using left actions on right-infinite
words.
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7.1 Definitions. Let X be a topological space and let G be a group of self-homeomorphisms
of X acting on the left, g : x 7→ g ·x.

Let x ∈ X. We let N(x) denote the set of all open neighbourhoods of x in X, a downward
directed system. We write Fix(x; G) := {g ∈ G | g ·x = x} 6 G. For each subset U of X,
we write Fix(U ; G) :=

⋂
u∈U

Fix(u; G) 6 G. We write

Fix◦(x; G) :=
⋃

U∈N(x)

Fix(U ; G) E Fix(x; G) and Germs(x; G) := Fix(x; G)/ Fix◦(x; G),

called the groups of germs of G which fix x.

We say that G is locally dense if, for each nonempty, open subset U of X and each u ∈ U ,
the closure of the orbit Fix(X\U ; G) ·u contains some nonempty, open subset of U .

To recall Rubin’s theorem, we copy the following paragraph from [6] and add to Rubin’s
theorem a phrase from [4] about germs.

7.2 Background ([6], [4]). The following is essentially Theorem 3.1 of [19] where it is
described as a combination of parts (a), (b) and (c) of Theorem 3.5 of [18]. The hypothesis
that there be no isolated points was inadvertently omitted from [19] where it is needed.
The terminology locally dense is not used in either [19] or [18]. However, in the absence of
isolated points, it implies the notion of locally moving that is used in [19]. The absence of
isolated points seems to correspond to the assumption of “no atoms” in the Boolean algebras
of [18].

7.2.1 Rubin’s theorem [19]. Let G, resp. H, be a locally dense group of self-homeo-
morphisms of a locally compact, Hausdorff topological space without isolated points X,
resp. Y . For each isomorphism ϕ : G → H, there exists a unique homeomorphism τ : X → Y
with the property that, for each g ∈ G, ϕ(g) = τgτ−1, and then, for each x ∈ X,
Germs(x; G) ∼= Germs(τ(x); H).

7.3 Remarks. We shall recall below that tVr,m can be viewed as a locally dense group of

self-homeomorphisms of a Cantor set E
(t)
r,m which is a compact, Hausdorff topological space

without isolated points. We shall show that the set of isomorphism classes of groups given
by {Germs(ν; tVr,m) : ν ∈ E

(t)
r,m} equals the set of isomorphism classes of groups given by

{Zn : n ∈ [0↑t]}. It will then follow from Rubin’s theorem that if t′Vr′,m′ ∼= tVr,m, then t′ = t.

In [6], Brin showed that 2V2,1 6∼= Vr,m by using Rubin’s theorem and a delicate analysis
of dynamics and orbit sizes. In an earlier article [5], Brin had considered germs to study
Thompson’s groups F and T . Bleak-Lanoue [4] combined these two approaches. They found

the set of isomorphism classes of groups given by {Germs(ν; tV2,1) : ν ∈ E
(t)
2,1} and deduced

that if tV2,1
∼= t′V2,1, then t′ = t. Our proof closely follows theirs.
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7.4 Definitions. For each ` ∈ [1↑t], let E` denote the set of right-infinite words in y{`}×[1↑r].
We view E` as a metric space with d(β, γ) := (1 + | largest common prefix of β, γ | )−1. We
view e[1↑m]×{1} as a discrete space. Let

E(t)
r,m := e[1↑m]×{1} × E1 × · · · × Et,

and let E
(t)
r,m have the product topology. Then E

(t)
r,m is a compact, Hausdorff space without

isolated points.
We write each ν = (ei,1, β1, . . . , βt) ∈ E

(t)
r,m as a formal product ν = ei,1β1 · · · βt, thought of

as a limit of elements of ei,1〈〈y[1↑t]×[1↑r]〉〉 which have long factors in each 〈〈y{`}×[1↑r]〉〉. With
this formal-product viewpoint, we can define the set of elements of e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉
that are prefixes of ν. Let b ∈ e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉. We define the shadow of b, denoted

(bJ), to be the set of all elements of E
(t)
r,m that have b as a prefix. If B is any basis, then E

(t)
r,m

is the disjoint union of the shadows of the elements of B. Then (bJ) is a closed and open

subset of E
(t)
r,m, and the set of all shadows forms a basis for the open topology on E

(t)
r,m.

Let Z[E
(t)
r,m] denote the free abelian group on E

(t)
r,m, with the elements of Z[E

(t)
r,m] expressed

as formal sums
∑

ν∈E
(t)
r,m

nν · ν, with nν = 0 for all but finitely many ν ∈ E
(t)
r,m. We think of the

elements of Z[E
(t)
r,m] as matrices that can be approximated arbitrarily closely by elements of

Mm(L⊗t) e1,1. In this way, Z[E
(t)
r,m] has the structure of a topological left Mm(L⊗t)-module.

We shall see that PUm(L⊗t) acts on the Z-basis E
(t)
r,m.

Let ν ∈ E
(t)
r,m and let a, b ∈ e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉.

If b is not a prefix of ν, then b∗ · ν = 0.
If ν ∈ (bJ), we have b∗ · ν ∈ E

(t)
r,m, with first factor e1,1, and we have a · b∗ · ν ∈ E

(t)
r,m.

The element a · b∗ ∈ Mm(L⊗t) uniquely determines a, b ∈ e[1↑m]×{1}〈〈y[1↑t]×[1↑r]〉〉. We shall
be viewing a · b∗ as a homeomorphism (bJ) → (aJ), µ 7→ a · b∗ ·µ, that replaces the prefix
b with the prefix a. This homeomorphism is an identity map if and only if a = b. As
homeomorphisms, a · b∗ and b · a∗ are mutually inverse.

Let u ∈ PUm(L⊗t). Then there exist bases A, B ∈ B
(t)
m and a bijective map A

ϕ−→ B such

that u =
∑
b∈B

(bϕ−1· b∗). Recall that the set of all such (A
ϕ−→ B) forms a single equivalence

class for the smallest equivalence relation which identifies expansions. We view u as being
this equivalence class, and we write (A

ϕ−→ B) ∈ u. Let ν ∈ E
(t)
r,m. Then there is a unique

element b0 of B which is a prefix of ν, and u · ν = bϕ−1

0 · b∗0 · ν ∈ E
(t)
r,m. Left multiplication

by u then gives a self-homeomorphism of E
(t)
r,m which acts as bϕ−1· b∗ on (bJ), for each b ∈ B.

The action of u on E
(t)
r,m is trivial only if u = 1. Thus tVr,m, identified with PUm(L⊗t), is a

group of self-homeomorphisms of E
(t)
r,m.

7.5 Lemma (Brin [6]). The group tVr,m of self-homeomorphisms of E
(t)
r,m is locally dense.
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Proof. Consider an open subset of E
(t)
r,m and then choose a smaller open subset of the

form (bJ). Let H := Fix(E
(t)
r,m \ (bJ); tVr,m). Then H acts on (bJ). Consider any ν ∈ (bJ).

We shall show that the closure of the orbit H · ν is all of (bJ), which will show that tVr,m is
locally dense.

Choose any ν ′ ∈ (bJ). We want to approximate ν ′ arbitrarily closely by various u · ν
with u ∈ H. Choose an open neighbourhood of ν ′ in (bJ), and then choose a smaller open
neighbourhood of the form (b′J). It suffices to find u ∈ H such that u · ν ∈ (b ′J).

Now b is a prefix of b ′ which is a prefix of ν ′. Let B be a basis containing b, and expand
B to a basis B′ by expanding b towards b ′, that is, B \ {b} ⊆ B′ and b ′ ∈ B′. There exists a
unique a ∈ B′ such that a is a prefix of ν, and then b is a prefix of a. Choose a bijective map
B′ ϕ−→ B′ that fixes B \ {b} and sends b ′ to a. Then (B′ ϕ−→ B′) lies in a unique u ∈ tVm,r.
Now u ∈ H, and u carries (aJ) to (b ′J). In particular, u · ν ∈ (b ′J), as desired.

7.6 Conclusions. Let ν = (ei,1, β1, . . . , βt) ∈ E
(t)
r,m. We want to analyse Germs(ν, tVr,m).

Consider any u ∈ Fix(ν; tVr,m), and consider any (A
ϕ−→ B) ∈ u. There exist a unique

a ∈ A and a unique b ∈ B such that a and b are prefixes of ν. Since u ∈ Fix(ν; tVr,m),
we have bϕ−1· b∗ · ν = ν, or, equivalently, (bϕ−1

)∗· ν = b∗ · ν, or, equivalently, we have two
factorizations ν = bϕ−1· ν ′ = b · ν ′ with the same tail ν ′. Thus aϕ = b. Notice that u acts
as a · b∗ on (bJ). Moreover, any element of the coset u · Fix((bJ); tVr,m) will also act as

a · b∗ on (bJ). If in place of (A
ϕ−→ B) we choose an expansion of (A

ϕ−→ B) in u, then in
place of a·b∗ we get an element of the form a · c · c∗ · b∗, where c is a prefix of ν ′; we then
say that a · c · c∗ · b∗ is an expansion of a·b∗ towards ν. Here all the elements of the coset
u · Fix(((b · c)J); tVr,m) act as a · c · c∗ · b∗ on ((b · c)J). Thus longer and longer expansions of
a· b∗ towards ν determine larger and larger cosets within the germ of u.

This leads us to consider the set {a · b∗ | a, b ∈ ei,1〈〈y[1↑t]×[1↑r]〉〉, a · b∗ · ν = ν} modulo
the smallest equivalence relation that identifies expansions towards ν. This set of equiva-
lence classes is a group, denoted rep(ν), with the multiplication that is induced from the
multiplication of compatible representatives, (a · b∗) · (b · c∗) = a · c∗.

It follows from the foregoing that we have an injective homomorphism

Germs(ν; tVr,m) → rep(ν).

To see that this homomorphism is also surjective, notice that it is a straightforward matter
to construct an element of tVr,m which carries one given prefix of ν to another as follows. We
choose one basis containing each, and if the bases are not the same size, the smaller basis
can be expanded without removing the specified prefix until the bases are the same size.
Then we choose any bijection between the bases that carries the first chosen prefix of ν to
the second chosen prefix of ν.

The next step is to compute rep(ν).
Let ` ∈ [1↑t]. We say that β` is rational if there exist w`, z` ∈ 〈〈y{`}×[1↑r]〉〉 with z` 6= 1

such that β` = w`·z∞` ; otherwise, β` is irrational.
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For the purpose of exposition, we may assume that there exists some n ∈ [0↑t] such that
β` is rational if ` ∈ [1↑n] and β` is irrational if ` ∈ [(n+1)↑t]. Thus we may write

ν = (ei,1, w1·z∞1 , . . . , wn·z∞n , βn+1 · · · βt),

and we may further assume that each z` is not a proper power.
With u, a and b as before, we can expand the prefixes a, b of ν to longer prefixes and

arrange that

a∗ · ν = b∗ · ν = (e1,1, z
∞
1 , . . . , z∞n , β′n+1, · · · , β′t ), and then

a = ei,1(w1·zq1

1 ) · · · (wn·zqn
n )wn+1 · · ·wt,

b = ei,1(w1·zq′1
1 ) · · · (wn·zq′n

n )wn+1 · · ·wt,

where q[[1↑n]], q′[[1↑n]] ∈ ([0↑∞[)n and β` = w` · β′`, ` ∈ [(n+1)↑t]; notice that irrationality

implies that tails match up with unique prefixes, while the fact that z` is not a proper power
implies that the tail z∞` matches up with a prefix that is unique up to right multiplication
by a power of z`. Then

(24) a · b∗ = ei,i(w1·zq1

1 ·z∗q
′
1

1 ·w∗
1) · · · (wn·zqn

n ·z∗q
′
n

n ·w∗
n).

Thus every element of rep(ν) contains an element of the form (24). Conversely, every element
of the form (24) lies in some element of rep(ν).

It is now straightforward to show that Germs(ν, tVr,m) ∼= Zn, with elements represented
by the expression (24) corresponding to (q1− q′1, . . . , qn− q′n) ∈ Zn.

Let us now show that, for each n ∈ [0↑t], there exists some ν ∈ E
(t)
r,m such that

Germs(ν, tVr,m) ∼= Zn. Since there are only countably many rational right-infinite words,

there exists some ν = (e1,1, y∞1,1, y∞2,1, . . . , y∞n,1, βn+1, · · · , βn) ∈ E
(t)
r,m, such that, for each

` ∈ [(n+1)↑t], β` is irrational. By the foregoing, Germs(ν, tVr,m) ∼= Zn.
We have now shown that the set of isomorphism classes of groups given by the set

{Germs(ν; tVr,m) : ν ∈ E
(t)
r,m} equals the set of isomorphism classes of groups given by the set

{Zn : n ∈ [0↑t]}. It now follows from Theorem 7.2.1 that if t′Vr′,m′ ∼= tVr,m, then t′ = t.
In fact, we can say more. The class of groups isomorphic to Zn is closed under taking

subgroups of finite index. Any (conjecturally rare) subgroup of finite index in tVr,m is a

locally dense group of self-homeomorphisms of E
(t)
r,m and has the same t+1 types of germs as

tVr,m. Thus, if t′Vr′,m′ and tVr,m are commensurable, then t′ = t.

8 Summary

The following builds on work of Abrams, Ánh, Bleak, Brin, Higman, Lanoue, Pardo, and
Thompson.
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8.1 Theorem. Let r1, r2 ∈ [2↑∞[ , m1, m2, t1, t2 ∈ [1↑∞[ . The following are equivalent.

(a). r1 = r2, gcd(m1, r1−1) = gcd(m2, r2−1), and t1 = t2.

(b). Mm1(L⊗t1
r1

) and Mm2(L⊗t2
r2

) are isomorphic as partially ordered rings with involution.

(c). t1Vr1,m1
∼= t2Vr2,m2.

Proof. (a) ⇒ (b) by Theorem 4.3.
(b) ⇒ (c). Suppose that Mm1(L⊗t1

r1
) and Mm2(L⊗t2

r2
) are isomorphic as partially or-

dered rings with involution. Then PUm1(L⊗t1
r1

) ∼= PUm2(L⊗t2
r2

). Now by Theorem 5.4,
t1Vr1,m1

∼= PUm1(L⊗t1
r1

) ∼= PUm2(L⊗t2
r2

) ∼= t2Vr2,m2 .
(c) ⇒ (a). Suppose that t1Vr1,m1

∼= t2Vr2,m2 . By Conclusions 7.6, t1 = t2. By Conclu-
sions 6.2, r1 = r2 and gcd(m1, r1−1) = gcd(m2, r2−1).

8.2 Remarks. Let r ∈ [2↑∞[ , m, t ∈ [1↑∞[ , and let R := Mm(L⊗t
r ).

(i). Pere Ara has shown that r and gcd(m, r−1) are invariants of the isomorphism class
of R within the class of rings; we sketch his argument in (ii) below.

Also it follows from work of Jason Bell and George Bergman that t is an invariant of the
isomorphism class of R within the class of rings; see (iii) below.

Hence the conditions in Theorem 8.1 are further equivalent to
(b′). Mm1(L⊗t1

r1
) and Mm2(L⊗t2

r2
) are isomorphic as rings.

Here, (b) ⇒ (b′) is clear, while (b′) ⇒ (a) is a consequence of the foregoing results of Ara,
Bell and Bergman. Consequently, with r and t fixed, and m varying, the set of isomorphism
classes of the rings Mm(L⊗t

r ) is in bijective correspondence with the set of positive divisors
of r−1.

(ii). Here we record the argument of Ara.
Let i ∈ Z and let A be any ring. We shall use the homotopy algebraic K-theory groups,

KHi(A), introduced by Weibel [21].
When we apply the Ara-Brustenga-Cortiñas result [2, Theorem 8.6] to the quiver E with

one vertex and r loops, where LA(E) := Lr ⊗Z A, we obtain an exact sequenece

KHi(A)
mult. by r−1−−−−−−−→ KHi(A)

natural−−−−→ KHi(Lr ⊗Z A) → KHi−1(A)
mult. by r−1−−−−−−−→ KHi−1(A).

If A = Z, then KHi(A) = 0 if i < 0, while KH0(A) ∼= Z, with the class of A in KH0(A)
corresponding to 1; see [21, Example 1.4]. It then follows by induction on t that if A = L⊗t

r ,
then KHi(A) = 0 if i < 0, while KH0(A) ∼= Zr−1 with the class of A in KH0(A) corresponding
to the class of 1 in Zr−1.

Recall that R denotes Mm(L⊗t
r ). It now follows that KH0(R) ∼= Zr−1 with the class of

R corresponding to the class of m in Zr−1. Thus KH0(R) is cyclic of order r−1 and the
class of R in KH0(R) has order r−1

gcd(m, r−1)
. Hence r and gcd(m, r−1) are invariants of the

isomorphism class of the ring R, as desired.
(iii). Here we build on unpublished work of Bell and Bergman.
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Let K be a commutative field, and let Γ := K ⊗Z Lr.
Let Γop denote the opposite ring of Γ. Let Γe := Γ⊗K Γop. Where K is understood, the

projective dimension of the left Γe-module Γ is denoted dim Γ. Bergman-Dicks [3, (17) and
(4)] showed that there exists an exact sequence of left Γe-modules 0 → (Γe)r → Γe → Γ → 0.
Thus dim Γ 6 1.

Straightforward normal-form arguments show that the element x1−1 of Γ does not have
a left inverse and is not a left zerodivisor; thus w. gl. dim Γ > 1.

Since dim Γ 6 1 and w. gl. dim Γ > 1, the Eilenberg-Rosenberg-Zelinsky result [9, Propo-
sition 10(2)] implies that, for each K-algebra Λ, l. gl. dim(Λ ⊗K Γ) = 1 + l. gl. dim(Λ), that
is, l. gl. dim(Λ⊗Z Lr) = 1 + l. gl. dim(Λ).

Now l. gl. dim(K ⊗Z R) = l. gl. dim(Mm(K)⊗Z L⊗t
r ) = t, by induction on t. Thus t is an

invariant of the isomorphism class of the ring R.
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[13] D. H. Kochloukova, C. Mart́ınez-Pérez, B. E. A. Nucinkis, Cohomological finiteness
properties of the Brin-Thompson-Higman groups 2V and 3V , preprint, 2010, 26 pages.
http://arxiv.org/abs/1009.4600

[14] W. G. Leavitt, Modules without invariant basis number, Proc. Amer. Math. Soc. 8
(1957), 322–328.

[15] W. G. Leavitt, The module type of homomorphic images, Duke Math. J. 32 (1965),
305–311.
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