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Abstract. For a hyperbolic once-punctured-torus bundle over a circle, a choice of nor-

malization determines a family of arcs in the Riemann sphere. We show that, in each

arc in the family, the set of cusps is dense and forms a single orbit of a finitely gener-

ated semigroup of Möbius transformations. This was previously known for the case of the

complement of the figure-eight knot.

0. General summary.

Let H3 denote hyperbolic three-space, ∂H3 the boundary of H3, and C the Riemann
sphere, C ∪ {∞}. Let Iso(H3) denote the group of orientation-preserving isometries of
H3, acting on H3∪∂H3. Let PSL2(C) act on C as the group of Möbius transformations.
We identify ∂H3 = C and Iso(H3) = PSL2(C) in a compatible way.

Let M be a complete, finite-volume, hyperbolic, once-punctured-torus bundle over a
circle. The fibration of M over the circle lifts to the universal covers, giving rise to a
fibration of H3 over R. Each fiber in H3 has a spine which is a tree, and McMullen [16]
has shown that the ends of this tree reach every point of ∂H3 = C. Deleting a single
edge from this tree leaves two complementary subtrees lying in H3. We prove that the
set of points in C which are reached by the ends of one of these subtrees forms a closed
disk embedded in C, so bounded by a Jordan curve; moreover, the two complementary
subtrees determine two complementary disks, so determine the same Jordan curve. On
such a curve, two of the points will be found to be distinguished in a natural way, so the
curve can be viewed as the union of two arcs with common endpoints. Our main result
is that the set of cusps in any such arc is dense and forms a single orbit of a finitely
generated semigroup of Möbius transformations. For the case of the complement of the
figure-eight knot, this was seen in [1].

The hyperbolic structure on M is unique, by Mostow rigidity, and corresponds to
a discrete faithful representation of π1(M) in PSL2(C) which is unique up to group
conjugation and complex conjugation, so we have an action of π1(M) on the Riemann
sphere C. A construction given in [7] in a more general context, and described in
our context algebraically in Section 3 below, produces a topological two-sphere with
an action by π1(M) called “the model”. Throughout, we work with the model from
a highly algebraic viewpoint. Bowditch [3, Theorem 9.1] has recently shown that the
model and C are homeomorphic as π1(M)-spaces. See also [6].
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In Section 1, we describe the algebraic and topological results we obtain. Section 2
recalls some group theory, and Section 3 some topology. Sections 4, 5, and 7 contain the
arguments, while Section 6 gives a detailed statement of the technical results obtained,
and this may be useful for possible applications, such as programming. In Section 8, we
observe that work of Nielsen, Jørgensen, Thurston, Bowditch, and others, can be used
to translate our results into the geometric results stated above.

1. Summary of the algebraic and topological results.

“A journey of a thousand miles began with a single step.”

- Lao -Tsze

Let 〈A, B, C〉 denote the group with presentation 〈A, B, C | A2 = B2 = C2 = 1〉. Let
E denote the set of ends of 〈A, B, C〉, that is, the set of right infinite, reduced words
in A, B, C. For any G ∈ 〈A, B, C〉, we let [G]E denote the set of elements of E which
have G as an initial segment, and let [G∗]E denote the complement of [G]E in E . For
example, [A]E is the set of right infinite, reduced words which start with A (or infinite
journeys which begin with the single step A). Then {[G]E | G ∈ 〈A, B, C〉} is the basis
of clopen sets of a topology on E , so E is a compact, Hausdorff, totally disconnected
topological space. In a natural way, E is an 〈A, B, C〉-space, that is, 〈A, B, C〉 acts by
homeomorphisms on E , namely by multiplication; here, and throughout, actions are on
the left. It is easy to see that every 〈A, B, C〉-orbit is dense in E .

Let us briefly recall “how to make ABC parabolic”, where parabolic is taken to mean
having a unique fixed point; details can be found in [1, Section 4], for example. Let
EABC denote the set of points of E fixed by ABC, so EABC = {(ABC)∞, (CBA)∞}.
Let ∼ denote the (closed) equivalence relation on E generated by

GE1 ∼ GE2 for all G ∈ 〈A, B, C〉, E1, E2 ∈ EABC .

Here “closed” has the obvious sense, that is, if an ∼ bn, and an → a, and bn → b, then
a ∼ b. The quotient space E/∼ is homeomorphic to a circle, and we shall denote it by
S1; see Section 3 and Fig. 3, below.

Clearly S1 is an 〈A, B, C〉-space, and ABC is parabolic on S1. Each element of S1 is
a subset of E consisting of either one or two elements; an element of S1 which consists
of two elements is called a cusp of S1. The set of cusps is denoted cusps(S1); it is dense,
and forms a single 〈A, B, C〉-orbit. In S1, set

0S1 : = {(ACB)∞, (BCA)∞},
1S1 : = {(BAC)∞, (CAB)∞},
∞S1 : = {(CBA)∞, (ABC)∞},

so 0S1 , 1S1 and ∞S1 are three distinguished cusps in S1. For any G ∈ 〈A, B, C〉, we let
[G]S1 denote the image of [G]E in S1, and similarly for [G∗]S1 . If G �= 1 then [G]S1 is
homeomorphic to a compact interval, and, if we write G = HZ where Z is the last letter
of G, then [G]S1 = H([Z]S1). We orient S1 so that [A]S1 starts at ∞S1 and finishes
at 0S1 , and hence [B]S1 starts at 0S1 and finishes at 1S1 , while [C]S1 starts at 1S1 and
finishes at ∞S1 . Moreover, the starting point of [G]S1 is obtained by applying H to the
starting point of [Z]S1 , and similarly for the finishing point.
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Let Aut〈A, B, C〉 denote the group of automorphisms of 〈A, B, C〉. In a natural way,
E and S1 and cusps(S1) are Aut〈A, B, C〉-spaces.

For any T ∈ Aut〈A, B, C〉, we shall use the triple (T (A), T (B), T (C)) to denote T .
Let

R = (A, BCB, B), L = (B, BAB, C),

and let 〈R, L〉 denote the subgroup of Aut〈A, B, C〉 generated by R and L.
We are interested in the more sophisticated construction, implicit in [7], of “making

a hyperbolic element of Aut〈A, B, C〉 parabolic”. Let p, a1, b1, . . . , ap, bp be positive

integers and let F : =
p∏

i=1

(RaiLbi), that is, F = Ra1Lb1 · · ·RapLbp ∈ 〈〈R, L〉〉, where

〈〈R, L〉〉 denotes the subsemigroup of 〈R, L〉 generated by R and L. The subgroup
〈A, B, C, F 〉 of Aut〈A, B, C〉 is a semidirect product, 〈A, B, C〉 � 〈F 〉.

In Section 2, we shall recall the definition of a hyperbolic automorphism of 〈A, B, C〉,
and see that F is hyperbolic, and that, moreover, up to squaring, conjugation in
Aut〈A, B, C〉, and composition with an inner automorphism, every hyperbolic auto-
morphism can be written in this form.

Let EF denote the set of points of E fixed by F . The normalization of F was chosen to
ensure that EF is large enough for our purposes. In Section 3, we define an equivalence
relation ≈ on E , and in Section 4 we see that ≈ is the closed equivalence relation
generated by

GE1 ≈ GE2 for all G ∈ 〈A, B, C〉, E1, E2 ∈ EF .

In [7], as is recalled in Section 3 below, it is shown that the quotient space E/≈ is
homeomorphic to a two-sphere; we shall denote it by S2, or S2

F if there is a need to avoid
ambiguity. Moreover, S2 is an 〈A, B, C, F 〉-space, and F is parabolic on S2. Also ABC
is parabolic on S2, and there is an induced quotient map S1 → S2 of 〈A, B, C, F 〉-spaces;
we will sometimes refer to this map as the Peano curve associated to F . The image of
a cusp of S1 will be called a cusp of S2, and the set of cusps of S2 will be denoted
cusps(S2); it is a dense 〈A, B, C, F 〉-subspace of S2, and forms a single 〈A, B, C〉-orbit.
The map cusps(S1) → cusps(S2) is bijective. The images of ∞S1 , 0S1 and 1S1 in S2

will be denoted ∞S2 , 0S2 and 1S2 , respectively. We shall see that ∞S2 = EF .
For any G ∈ 〈A, B, C〉, we let [G]S2 denote the image of [G]E (or, equivalently, of

[G]S1) in S2, and similarly for [G∗]S2 . In Section 7, we shall see that if G �= 1 then [G]S2

is homeomorphic to a closed disk, and the boundary is a Jordan curve. We denote this
boundary by ∂[G]S2 .

Thus the Jordan disk [G]S2 is the image of the interval [G]S1 under the quotient map
S1 → S2. In general, intervals in S1 have images which are unions of “consecutive”
Jordan disks joined together at various points, and these need not be simply connected.
For example, in the upper part of the fourth picture in [1, Fig. 17] there are three
consecutive disks pairwise joined together at one point.

We shall see that [A]S2 ∩ [B]S2 , [B]S2 ∩ [C]S2 , [C]S2 ∩ [A]S2 are arcs with endpoints
1S2 and ∞S2 , forming an embedded graph with three edges and two vertices of valence
three. See Fig. 5. The complement of this graph has three components, and these are
the interiors of [A]S2 , [B]S2 , and [C]S2 . The three regions [A]S2 , [B]S2 , and [C]S2 are
successively broken up by the 〈A, B, C〉-images of the three arcs; thus, for example, if
G ends in A, then GA applied to [B]S2 ∩ [C]S2 gives an arc dividing [G]S2 into [GB]S2

and [GC]S2 , and so on.
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It transpires that 0S2 , ∞S2 , and 1S2 all lie in ∂[B]S2 . We orient S2 so that when
travelling along ∂[B]S2 with [B]S2 on the right, starting at 0S2 one reaches ∞S2 before
1S2 .

The image in [G]S2 of the starting (resp. finishing) point of [G]S1 is called the starting
(resp. finishing) point of [G]S2 . It is easy to see that the starting and finishing points
lie on the boundary, so they divide ∂[G]S2 into two oriented arcs joining the starting
point to the finishing point, and the oriented arc that has [G]S2 to its right (resp. left)
will be denoted ∂+[G]S2 (resp. ∂ –[G]S2). For each such oriented arc, we find a finitely
generated subsemigroup M of 〈A, B, C, F 〉 acting on the arc, such that the cusps in
the arc are dense and consist of the M-orbit of each endpoint of the arc. Moreover we
show that the action of M on the arc is modeled by an affine action of M on a closed
bounded interval in the real line, obtained by restricting an affine action of 〈A, B, C, F 〉
on the real line.

It suffices to do this for each of the six oriented arcs ∂+[A]S2 , ∂+[B]S2 , ∂+[C]S2 ,
∂ –[A]S2 , ∂ –[B]S2 , ∂ –[C]S2 , and then apply 〈A, B, C〉. We will find that ∂+[B]S2 is
obtained by concatenating ∂+[C]S2 and ∂+[A]S2 , and reversing the orientation. Similarly,
∂ –[A]S2 is obtained by concatenating ∂ –[B]S2 and ∂ –[C]S2 and reversing the orientation.
Also, [B]S2∩[C]S2 = ∂+[C]S2 , and [C]S2∩[A]S2 = ∂ –[C]S2 , while [A]S2∩[B]S2 is obtained
by concatenating ∂+[A]S2 and ∂ –[B]S2 . See Fig. 5.

A detailed description of the six arcs and their associated semigroups can be found
in Section 6.

2. Group theory.

For the next two subsections, we temporarily forget all the notation of Section 1.

2.1 Definitions. Let F2 denote the free group of rank two, with specified free genera-
tors denoted X, Y . We will refer to the element XY X̄Ȳ as “the commutator”. Here,
and throughout, an overline denotes the inverse.

Let Aut(F2) denote the automorphism group of F2. We identify F2 with the subgroup
of Aut(F2) consisting of the inner automorphisms.

Any T ∈ Aut(F2) is said to be positive with respect to X and Y if T carries the
semigroup 〈〈X, Y 〉〉 into itself; similar terminology applies with any free generating set
of F2.

The three elements

R: (X, Y ) �→ (X, Y X), L: (X, Y ) �→ (XY, Y ), M : (X, Y ) �→ (Y, X)

of Aut(F2) are positive with respect to X and Y . Both R and L fix the commutator,
while M inverts it. Also M has order two, and conjugates R to L.

Let F′
2 denote the derived subgroup of F2. We identify the abelianization F2/F′

2 with
Z2, with X and Y mapping to (1, 0) and (0, 1) respectively. Since Aut(Z2) = GL2(Z),
we have a natural map

matrix: Aut(F2) → GL2(Z). (2.1.1)

Here

matrix(R) =
(

1 1
0 1

)
, matrix(L) =

(
1 0
1 1

)
, matrix(M) =

(
0 1
1 0

)
.
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By the Euclidean algorithm, matrix(〈R, L〉) = SL2(Z), and hence matrix(〈R, M〉) =
GL2(Z).

Let
Q: = LR̄, P : = LR̄L,

so 〈R, L〉 = 〈P, Q〉. One can check that LR̄L = R̄LR̄, P 2 = Q3, and P 4 = Q6 =
XY X̄Ȳ . Here P 2 = Q3 is central, and the map (2.1.1) kills its square. It is well-known
that this now gives a complete set of defining relations for SL2(Z). It follows that both
the kernel of (2.1.1) and F2 meet 〈R, L〉 in the infinite cyclic, central subgroup 〈XY X̄Ȳ 〉.
It follows also that 〈R, L〉 has presentations 〈P, Q | P 2 = Q3〉 and 〈R, L | LR̄L = R̄LR̄〉
(so is isomorphic to the braid group on three strings). Notice that the semidirect product
F2 � 〈R, M〉 maps to Aut(F2) with infinite cyclic kernel.

Nielsen [21] showed that Aut(F2) is generated by what are now called the Nielsen
transformations. Moreover, the three Nielsen transformations M , X̄P̄M and R suffice,
and thus X, Y , R, L and M also form a generating set.

Notice that the kernel of (2.1.1) must be precisely F2, since no unexplained relations
get imposed on R and L. We have seen that (2.1.1) is surjective.

Other consequences are that every element of Aut(F2) sends the commutator to a
conjugate of itself or its inverse, and that 〈R, L〉 is the subgroup of Aut(F2) which fixes
the commutator. Hence, 〈R, M〉 is the subgroup of Aut(F2) which stabilizes 〈XY X̄Ȳ 〉.

In 〈R, L〉, since P 2 = Q3 is central, conjugating by P is the same as conjugating by
P̄ , and, since LPR = P , so PRP̄ = L̄ and PLP̄ = R̄. For T ∈ 〈R, L〉, we define the
transpose of T to be T tr: = PT̄ P̄ = P̄ T̄P .

Let J be an element of GL2(Z). Recall that J is said to be hyperbolic if the eigenvalues
of J are not roots of unity. And J is parabolic if the eigenvalues of J are ±1 but J2

is not the identity matrix, I. And J is elliptic if some proper power of J equals I. If
J ∈ SL2(Z)−{±I}, then J is hyperbolic, parabolic or elliptic, depending as the absolute
value of the trace of J is greater than 2, equal to 2, or less than 2, respectively.

For any T ∈ Aut(F2), we apply all conjugate-invariant attributes of matrix(T ) to T
itself, and speak of the eigenvalues, trace, determinant, hyperbolicity, etc. of T . Also,
we let T act on the real projective line R: = R ∪ {∞} as the Möbius transformation
associated to matrix(T ). Thus R acts by R(x) = x+1, and L acts by L(x) = x

x+1 = 1
1+ 1

x

.
Hence L and R map [0,∞] to its left and right ‘halves’, [0, 1] and [1,∞], respectively,
thus motivating the RL-notation. (Many authors take the view from the upper half of
the complex plane and interchange ‘left’ and ‘right’.)

In Aut(F2), define

B: (X, Y ) �→ (X̄, Ȳ ), A: (X, Y ) �→ (Y X̄Ȳ , Ȳ ), C: (X, Y ) �→ (X̄, XȲ X̄).

Then CB = X, AB = Y , and the subgroup 〈A, B, C〉 of Aut(F2) has the presentation

F2 � {1, B} = 〈A, B, C | A2 = B2 = C2 = 1〉.

Since matrix(〈A, B, C〉) is the center of GL2(Z), 〈A, B, C〉 is normal in Aut(F2).
Thus Aut(F2) can be viewed as a subgroup of Aut〈A, B, C〉. But F2 is a characteristic
subgroup of 〈A, B, C〉, so Aut(F2) = Aut〈A, B, C〉.

One can check that P 2 = CBA so Q3 = P 2 = CBA and (CBA)2 = XY X̄Ȳ . �
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2.2 Proposition. Let T be a hyperbolic element of Aut(F2).
Then T 2 has positive trace and determinant.
If T has positive trace and determinant, then there exist G ∈ F2, Φ ∈ 〈R, L〉, and

positive integers p, a1, b1, . . . ap, bp such that GΦT Φ̄ = Ra1Lb1 · · ·RapLbp .

Proof. Clearly det(T 2) = (det(T ))2 = (±1)2 = 1. By the Cayley-Hamilton theorem,

trace(T 2) = (trace(T ))2 − 2(det(T )),

and, since T is hyperbolic, we see that T 2 has positive trace.
We now assume that T has positive trace and determinant.
By the above-mentioned results of Nielsen’s, by replacing T with T composed with

a suitable element of F2, we may assume that T fixes the commutator, and work in
〈R, L〉 = 〈P, Q〉 for the remainder of the proof. Since P 2 = Q3 = CBA is central, T is
the product of an integral power of CBA and an alternating product which alternates
Q̄’s and Q̄2’s with P ’s.

Since T is not elliptic, it does not lie in the group generated by CBA and P , nor
in the group generated by CBA and Q. Hence, by conjugating T by an element of
〈P, Q〉 = 〈R, L〉, we may assume that the alternating product starts with Q̄ or Q̄2 and
ends with P . Thus T is the product of an integral power of CBA and an element of the
semigroup generated by R = Q̄2P and L = Q̄P .

Since the trace of T is positive, T is the product of a power of (CBA)2 = XY X̄Ȳ
and an element of 〈〈R, L〉〉. By composing with a power of XY X̄Ȳ , we may assume
that T lies in 〈〈R, L〉〉. Since T is not parabolic, it is not a power of R nor of L. By
conjugating T by a power of R or L, we may assume T = Ra1Lb1 · · ·RapLbp , where p
and the ai, bi are positive integers. �

We now restore the notation of Section 1, which we have seen is compatible with the
notation of Definitions 2.1.

2.3 Notation. Henceforth F2 will be viewed as the unique torsion-free subgroup of
index two in 〈A, B, C〉, consisting of words of even length. The preferred basis is
X = CB, Y = AB.

We identify Aut(F2) with Aut〈A, B, C〉, and, hence, all of the terminology for ele-
ments of the former apply to elements of the latter.

We can view E , the set of ends of 〈A, B, C〉, as the set of ends of F2, that is, right
infinite words in X±1, Y ±1, which are reduced in the sense that no symbol is followed
by its inverse. By bounded cancellation, Aut(F2) = Aut〈A, B, C〉 acts continuously on
E ; see [8].

We have

R = (A, BCB, B), L = (B, BAB, C), M = (C, B, A).

It follows from the results of Nielsen recalled in Definition 2.1 that the stabilizer of
ABC in Aut〈A, B, C〉 is 〈R, L〉. (Steve Humphries has pointed out that this can be
proved directly by a standard argument used for braid groups; see, for example, the
proof of Proposition 10.7 in [4].) Hence the stabilizer of 〈ABC〉 is 〈R, M〉.

Let p, a1, b1, . . . , ap, bp be positive integers and let F : =
p∏

i=1

(RaiLbi), that is, F =

Ra1Lb1 · · ·RapLbp .
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Let
(

a b
c d

)
denote matrix(F ), so

(
a b
c d

)
=

p∏
i=1

(
(

1 ai

0 1

) (
1 0
bi 1

)
).

In R, let

λ: =
a + d +

√
(a + d)2 − 4
2

, µ+: =
λ − d

c
, µ –: =

a − λ

c
,

so µ+ and µ – are fixed by F acting as a Möbius transformation on R. In Proposition 2.5,
we shall show that µ+ > 1 and −1 < µ – < 0.

For x ∈ R and n ∈ Z, let [x] denote the greatest integer in the interval (−∞, x], and
let [x]n: = [nx] − [(n − 1)x], so we have a sequence N − {0} → {[x], [x] + 1}, n �→ [x]n.

In E , let

E+: =
∞∏

n=1

((BC)[µ+]nBA), E –: =
∞∏

n=1

(CA(BA)[
1+µ –
−µ – ]

n). �

In Theorem 4.1, we shall see that E+ = F∞(B) and E – = F̄∞(C) are fixed by F ,
and in Theorem 4.2, we shall show that

EF = {(ABC)∞, (CBA)∞} ∪ 〈A, B, C〉E+ ∪ 〈A, B, C〉E –.

2.4 Example. Here, and intermittently throughout, for concreteness, we consider the
case

F = RL3 = (BCBABCBABCB, BCBABCBABCBABCB, B).

It is straightforward to calculate matrix(F ) =
(

4 1
3 1

)
, λ = 5+

√
21

2 , µ+ = 3+
√

21
6 ,

F : (BC, BA) �→ (BCBABCBABCBABC, BCBA),

([ 3+
√

21
6 ]

n
| n ≥ 1) = (1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, . . . ), and

E+ = F∞(B) = BCBABCBABCBABCBCBABCBABCBABCBABCBCBA · · ·

Also F̄ = (ABABABA, C, CABABAC), µ – = 3−
√

21
6 , 1+µ –

−µ –
= 1+

√
21

2 ,

F̄ : (CA, BA) �→ (CABABACABABABA, CABABABA),

([ 1+
√

21
2 ]

n
| n ≥ 1) = (2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, . . . ), and

E – = F̄∞(C) = CABABACABABABACABABABACABABABACABABAC · · ·

We will use this information when we refer to the case F = RL3 in the sequel. �
We record the following.

2.5 Proposition. With Notation 2.3,

µ+ = F (µ+) ∈ F [0,∞] ⊆ R[0,∞] = [1,∞],

µ – = F̄ (µ –) ∈ F̄ [−∞, 0] ⊆ L̄[−∞, 0] = [−1, 0]. �
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2.6 Digression. Let IrrEnds〈〈R, L〉〉 denote the set of right infinite “irrational” words

in R and L, that is, right infinite words of the form
∞∏

i=1

(RciLdi) where the ci, di are

positive integers, except for c1 which is a non-negative integer. Consider the map

IrrEnds〈〈R, L〉〉 → [0,∞],
∞∏

i=1

RciLdi �→ [c1, d1, c2, d2, . . . ]: = c1 +
1

d1 + 1
c2+...

.

It is straightforward to show that the above map respects the action of 〈〈R, L〉〉 on
[0,∞] by Möbius transformations. Hence F fixes F∞ ∈ IrrEnds〈〈R, L〉〉. Applying the
map, we get an element [a1, b1, . . . , ap, bp, a1, b1, . . . , ap, bp, . . . ] of [0,∞] which is fixed
by F , so must be µ+ since this is the only element of [0,∞] fixed by F . This implies
that the sequence a1, . . . , bp which codifies F in the RL-notation, also codifies µ+ in the
continued fraction notation. Hence µ+ contains sufficient information to recover F∞,
and hence, up to a power, to recover F . We will not make use of this fact, but it explains
why F will occasionally be less important than µ+ in the calculations. �

For F = RL3, we have µ+ = 3+
√

21
6 = [1, 3, 1, 3, . . . ].

3. S1 and S2.

In this section we review some topology. We emphasize that the main ideas used
here come from hyperbolic geometry, but we restrict the exposition to a topological
viewpoint.

We retain Notation 2.3.

3.1 Definitions. The semidirect product Z2 � GL2(Z) = Z2 � Aut(Z2) is called the
integral affine plane group, denoted Af2(Z). This group acts in a natural way on the set
Z2, and this action extends to an action on R2 as the group of affine transformations of
R2 which carry Z2 to itself.

There is a natural map F2 �〈R, M〉 → Af2(Z), and it vanishes on the (infinite cyclic)
kernel of the surjective map F2 � 〈R, M〉 → Aut(F2). Thus there is an induced map
Aut(F2) → Af2(Z). Moreover, it is surjective, with kernel F′

2.
It follows that there is a specified action of Aut(F2) = Aut〈A, B, C〉 on R2 with

X(x, y) = (x + 1, y), Y (x, y) = (x, y + 1). We find

A(x, y) = (−1 − x,−y), B(x, y) = (−1 − x,−1 − y), C(x, y) = (−x,−1 − y),

R(x, y) = (x + y, y), M(x, y) = (y, x), L(x, y) = (x, x + y). �

Notice that, in R2, Aut〈A, B, C〉 sends parallel straight lines to parallel straight lines,
and the induced action on the inverses of their slopes gives the previously defined action
of Aut〈A, B, C〉 on R by Möbius transformations.
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3.2 Digression. Recall that the lower central series (γnF2 | n ≥ 1) is defined recur-
sively by γ1F2: = F2, and γn+1F2: = [γnF2,F2], that is, the subgroup of F2 generated
by {gfḡf̄ | g ∈ γnF2, f ∈ F2}. Thus, for n = 1, 2, 3, F2/γnF2 is, respectively, 1, Z2, and
the integral Heisenberg group H, which is obtained by making the commutator central.

For any characteristic subgroup N of F2, there is a natural homomorphism
Aut(F2) → Aut(F2/N), and the kernel, N̂ , is called the “congruence subgroup” of
Aut(F2) arising from N .

Now let G be a characteristic subgroup of F2, and let N = [G, F2]. Then N̂ contains
G, and we have a natural map αG: Aut(F2)/G → Aut(F2/[G, F2]).

For example, for G = F2, we saw in Definitions 2.1 that Nielsen showed that αF2 is
an isomorphism.

For G = F′
2, Andreadakis found that αF′

2
is an isomorphism; see [22, Proof of Theo-

rem 2]. One sees this by checking that the kernel of the natural map

Aut(H) → Aut(H/H ′) = GL2(Z)

consists of the inner automorphisms, and applying the five-lemma.
The above results show that there are natural identifications

Aut(F2)/γ1F2 = Aut(F2/γ2F2) = Aut(Z2) = GL2(Z),

Af2(Z) = Aut(F2)/γ2F2 = Aut(F2/γ3F2) = Aut(H).

In particular, both F2 = γ1F2 and F′
2 = γ2F2 are congruence subgroups of Aut(F2),

arising from the subgroups γ2F2 and γ3F2, respectively. �
We now consider the action of 〈A, B, C〉 on R2 − Z2.

3.3 Definitions. In Definitions 3.1, the action of Z2 on R2 is that of a subgroup, and
the quotient space R2/Z2 = R2/F2 is a torus, while (R2 − Z2)/F2 is a once-punctured
torus.

The quotient space R2/〈A, B, C〉 is a sphere with four double points, and A, B and
C all act in the same way on the double branched cover R2/F2, as “180◦ rotation of a
donut on a skewer”. Also, (R2 − Z2)/〈A, B, C〉 is a once-punctured sphere with three
double points.

Consider the action of 〈A, B, C〉 on R2. Its kernel is F′
2. We take the triangle with

vertices (−1, 0), (0, 0) and (0,−1) as a fundamental domain. The edge joining (−1, 0)
and (0, 0) is rotated 180◦ by A, and we label this edge with the letter A. We label the
other two edges B and C correspondingly. Notice that ABC acts as multiplication by
−1, so is parabolic with unique fixed point (0, 0), while BAC fixes (0,−1), and ACB
fixes (−1, 0). We now tessellate R2 with the images under 〈A, B, C〉 of this labelled
triangle. Thus the horizontal lines are labelled with As, the diagonal lines with Bs, and
the vertical lines with Cs. See Fig. 1. Our real interest is in the action of 〈A, B, C〉 on
R2−Z2, so we delete Z2, the set of all the vertices, throughout the foregoing description.
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AA

CB B C

AA

CB B C

A

B C

AA

CB B C

Fig. 1. R2 − Z2 tessellated with ideal triangles.

Now R2 − Z2 is a branched cover of the once-punctured sphere with three double
points (R2−Z2)/〈A, B, C〉. The universal cover of R2−Z2 is a topological open disk, D,
tessellated with ideal triangles; see Fig. 2. One can also think of D as an infinite-sheeted
cover of R2 − Z2, with infinite spirals around the missing points of Z2; see Fig. 1.

The dual of the tessellation of D is an 〈A, B, C〉-tree; see Fig. 3. The ends (ABC)∞

and (CBA)∞ determine a doubly infinite path through triangles which can be thought
of as being incident to a single cusp, or ideal vertex. We can compactify the path with
this cusp. More generally, we can attach the circle S1 = E/∼ described in Section 1,
to compactify the 〈A, B, C〉-tree and D so that cusps(S1) becomes the set of cusps, or
vertices at infinity, of the ideal triangles. See, for example, [1, Section 4] and Fig. 3.
(For R2−Z2, (0, 0) corresponds to the F′

2-orbit of ∞S1 , (−1, 0) corresponds to 0S1 , and
(0,−1) corresponds to 1S1 .) The compactification D: = D ∪ S1 is an 〈A, B, C〉-space
which is a topological closed disk; see Fig. 2.

1

∞

A

B

0

C

C

A

C

B

A

B

A

B

B
C

A

C

B C

AC

B
A

A(1)

BA(1)

CA(1)

B(∞)

AB(∞)

CB(∞)

C(0)

AC(0)

BC(0)

Fig. 2. Disc tessellated with ideal triangles.
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1

∞

A

AC

AB

B

ABC

CBA

CAB

BAC

ACB

BCA

0 [A]

[B]

[C]

C

BC

BA

CA

CB

Fig. 3. S1: = E/∼, oriented counter-clockwise.

Let S2 be the 〈A, B, C〉-space obtained by taking two copies of D and identifying
the two copies of S1. We then orient S2. Thus S2 is an oriented topological two-sphere
consisting of two copies of D and one copy of S1, which we call the northern and southern
hemispheres, and the equator. �

3.4 Definitions. By Notation 2.3, F acts on R2 (and R2 − Z2) by

F (x, y) = (ax + by, cx + dy).

Since F is hyperbolic, it has an attracting and a repelling real eigenspace, with irrational
slopes 1

µ+
and 1

µ –
, respectively.

It is not difficult to show that reading off the labels of the edges in the third quadrant
crossed by the attracting eigenspace gives E+. Reading the labels in the first quadrant
(starting from the interior of our chosen fundamental domain) gives ABCE+ (resp.
CBAE+) if we read the labels of those edges which touch the attracting eigenspace
from above (resp. below). The part of the repelling eigenspace for F in the fourth
(resp. second) quadrant, read from below, gives E – (resp. CBAE –). See Fig. 4.

A

B

B

B

B

B

C

C

C

A

A

A

B

A

C
B

C

C

C

B

B

B

B

A
B

C

Fig. 4. Eigenspaces.



12 JAMES W. CANNON AND WARREN DICKS

In Example 2.4, we saw that for F = RL3 we have µ+ = 3+
√

21
6 and E+ =

BCBABCBABC · · · , which can be read in the third quadrant in Fig. 4. Similarly,
µ – = 3−

√
21

6 and E – = CABABA · · · can be read from below in the fourth quadrant in
Fig. 4.

The lines of slope 1
µ+

in R2 are of two types. Each line of slope 1
µ+

in R2 which
contains an element of Z2 breaks into two lines on deleting Z2, and so gives rise to two
lines, informally called “half lines”, of slope 1

µ+
in R2 − Z2. Each line of slope 1

µ+
in

R2 which does not meet Z2 is unaffected by deleting Z2, and so gives rise to one line,
informally called a “whole line”, of slope 1

µ+
in R2 − Z2. These (whole and half) lines

partition, or foliate, R2 − Z2. Each line lifts to an F′
2-orbit of disjoint topological lines

in D. The union of the lifted lines is all of D; we denote this partition, or foliation, of
D by F+. The closure of each lifted line in D consists of the lifted line in D together
with two points in S1, the ends of the lifted line. When the line that is to be lifted is
a whole line, neither of the ends of the lifted line are cusps and we call the lifted line
an “irrational” foliation line. When the line that is to be lifted is a half line, one of
the ends of the lifted line is a cusp, and the other is not, and we call the lifted line a
“rational” foliation line.

Similarly, the lines of slope 1
µ –

in R2 determine a foliation F – of D.
We endow the northern hemisphere of S2 with the foliation F+, and the southern

hemisphere of S2 with the foliation F –. As we will see shortly, each non-cusp on the
equator, S1, is the end of at most one foliation line.

Now consider a cusp e in S1. There are a countable set of (rational) foliation lines
incident to e, and, in each hemisphere, they are cyclically permuted by the (infinite
cyclic) 〈A, B, C〉-stabilizer of e. Informally, this collection of foliation lines and their
ends is called a “spider”.

Let ≈ be the smallest equivalence relation on S1 which relates two elements of S1

if they are joined by a foliation line in S2. Each ≈-equivalence class in S1 consists of
one of the following: a single element not incident to any foliation lines; two elements
joined by an irrational foliation line; the countable set of extremities of a spider. This
equivalence relation on S1 = E/∼ induces an equivalence relation on E again denoted
≈. There is a natural homeomorphism of quotient spaces E/≈ � S1/≈.

In S2, collapsing each foliation line and its two ends to a point gives a quotient space
of S2, and, by a theorem of R. L. Moore, this quotient is a topological two-sphere;
see Theorem A.13 in the Appendix. Since every element of S2 off the equator lies in
a foliation line, we see that the quotient two-sphere can be naturally identified with
S1/≈.

Thus E/≈ is a two-sphere. We denote it by S2. �
3.5 Notation. Consider the triangularly tessellated plane described in Definitions 3.3;
see Fig. 1. For any x ∈ [−1, µ+], consider the line through (x, 0) of slope 1

µ+
. Thus we are

considering a line that is parallel to the attracting eigenspace and passes through the
fundamental domain; see Fig. 4. The portion of the line that lies in the third quadrant,
read from below, gives E(x, µ+), where we define

E(x, y) = (BC)[−x+y]BA

∞∏
n=1

((BC)[−x+y(n+1)]−[−x+yn]BA).
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Notice that E(0, µ+) = E+. The remaining (upper) portion, read from above, gives

(CB)[x+1]AB

∞∏
n=1

((CB)[x+1+µ+n]−[x+1+µ+(n−1)]AB). (3.5.1)

It can be checked that this is B ·E(µ+ − 1− x, µ+). For x = −1 and x = µ+, this is AE+

and CE+, respectively. Hence, for all G ∈ 〈A, B, C〉, and all x ∈ [−1, µ+],

GB · E(µ+ − 1 − x, µ+) ≈ G · E(x, µ+). (3.5.2)

Also, for all G ∈ 〈A, B, C〉, G(ABC)∞ ≈ G(CBA)∞ ≈ GE+.
Notice that each end involved in one of these expressions has a tail of the form

(ABC)∞, or (CBA)∞, or in which every other letter is B and there are infinitely many
A’s and C’s.

We have described the relations given by F+, and there are similar relations arising
from F –. Here each end involved has a tail of the form (ABC)∞, or (CBA)∞, or in
which every other letter is A and there are infinitely many B’s and C’s.

Together, these relations determine ≈.
We now see that, in S1, the set of elements ≈-related to other elements consists

of the cusps together with a complementary set; moreover, the complementary sets
contributed by F+ and F – are disjoint. We will consider these sets in more detail in
Section 9.

We note also that ∞S2 = {(ABC)∞, (CBA)∞} ∪ 〈ABC〉E+ ∪ 〈ABC〉E –. �

4. Fixed ends.

We next want to verify the claim that F fixes E+ and E –. These ends come from
labellings on fixed half-eigenspaces in the third and fourth quadrants, respectively. It
is not difficult to show that F respects the labellings, but there are some details to
check, and we find it more convenient, or at least more algebraic, to proceed indirectly,
by considering a map assigning ends to irrational real numbers. This contrasts with
Digression 2.6 where we described a classical map assigning real numbers to irrational
ends.

4.1 Theorem. With Notation 2.3, F fixes E+ and E –.

Proof. Define a map

Φ: R − Q → E , x �→
∞∏

n=1

((BC)[x]nBA).

In terms of Notation 3.5, Φ(x) = E(0, x). We will examine how Φ behaves with respect
to the actions of 〈R, M〉, which acts on R − Q by Möbius transformations, as well as
acting on E .

Let x ∈ R − Q.
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We see

R(Φ(x)) = R(
∞∏

n=1

((BC)[x]nBA)) =
∞∏

n=1

((BC)[x]nBCBA)

=
∞∏

n=1

((BC)[x+1]nBA) = Φ(x + 1) = Φ(R(x)).

Thus Φ and R commute (even on rational x).
We next examine what happens for M . Consider first the case where x > 1. Here

M(Φ(x)) = M(
∞∏

m=1

((BC)[x]mBA))

=
∞∏

m=1

((BA)[x]mBC) (4.1.1)

=
∞∏

n=1

((BC)[
1
x ]

nBA) (4.1.2)

= Φ(
1
x

) = Φ(M(x)),

where the claim that (4.1.1) = (4.1.2) is justified as follows. Let m ≥ 1. Consider the
mth occurrence of BC in (4.1.1), and let n denote the number of BA’s which precede it.
Since x > 1, the n + 1st BA in (4.1.1) is immediately preceded by the mth BC. Also,
[mx] = n, so n < mx < n+1. Hence n

x < m < n+1
x , and, since 1

x < 1, we see [ 1
x ]n+1 = 1

and [n
x ] = m−1. Hence the n+1st occurrence of BA in (4.1.2) has m BC’s preceding it,

and one immediately preceding it, which is the mth occurrence of BC in (4.1.2). Thus
the mth BC is immediately followed by the n+1st BA in both (4.1.1) and (4.1.2). Since
this happens for all m, we see (4.1.1) = (4.1.2). Hence M(Φ(x)) = Φ(M(x)). Since M2

is the identity, we see Φ(M( 1
x )) = Φ(x) = M(M(Φ(x))) = M(Φ(M(x))) = M(Φ( 1

x )).
Now suppose that x > 0. The previous paragraph shows that M(Φ(x)) = Φ(M(x)).

Also [−x] = −[x] − 1, so we see [−x]1 = −[x]1 − 1, and [−x]n = −[x]n for n ≥ 2. Thus

MΦ(−x) =
∞∏

n=1

((BA)[−x]nBC) = AB

∞∏
n=1

((AB)[x]nBC)

= AB

∞∏
n=1

((BC)[
1
x ]

nAB) = ABCB
∞∏

n=1

((CB)[−
1
x ]

nAB)

= ABC

∞∏
n=1

((BC)[
1

−x ]
nBA) = ABCΦ(M(−x)).

Thus, if x > 0, then M(Φ(x)) = Φ(M(x)), while if x < 0, then M(Φ(x)) =
ABCΦ(M(x)). So the actions commute modulo a power of ABC.
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Now 〈〈R, L〉〉 acts on the set of positive irrational numbers by Möbius transformations
and, since L = MRM , it follows that, if T ∈ 〈〈R, L〉〉, then T (Φ(x)) = Φ(T (x)). Hence,
if T fixes x, then T fixes Φ(x) in E . It follows that F fixes

Φ(µ+) =
∞∏

n=1

((BC)[µ+]nBA) = E+.

Similarly, on the negative irrational real numbers, Φ commutes with the action of
〈〈R̄, L̄〉〉, so F̄ , and hence F , fixes

Φ(µ –) =
∞∏

n=1

((BC)[µ–]nBA) = CB
∞∏

n=1

((CB)[−µ–]nBA)

= CB

∞∏
n=1

((BA)[
1

−µ–
]
nCB) = C

∞∏
n=1

((AB)[
1

−µ–
]
nBC)

= C

∞∏
n=1

((AB)[
1

−µ–
−1]

nAC) = C
∞∏

n=1

((AB)[
1+µ–
−µ–

]
nAC) = E –. �

We now describe EF .

4.2 Theorem. With Notation 2.3,

EF = {(ABC)∞, (CBA)∞} ∪ 〈ABC〉E+ ∪ 〈ABC〉E – = ∞S2 .

Hence ≈ is the smallest closed equivalence relation on E such that GE1 ≈ GE2 for all
G ∈ 〈A, B, C〉 and all E1, E2 ∈ EF .

Proof. We have seen that each of the four orbits lies in the set of fixed ends. See [13]
or [15] for proofs that there can be no other fixed points. The second part is implied by
the fact that E/≈ is a topological two-sphere, and hence Hausdorff; see Lemma A.12 in
the Appendix. �

5. arc(F ).

In this section we prove the existence of an arc in S2 which is then seen to be ∂+[B]S2 .

5.1 Notation. Throughout this section we use a modified version of Notation 2.3, in
which we abbreviate

µ = µ+ =
λ − d

c
, E = E+ =

∞∏
n=1

((BC)[µ]nBA).

For n ∈ N, we let En = E+

n, the initial segment of E of length n (as a word in A, B
and C), and Ēn denotes its inverse. Similar notation applies for any element of E .

Set
M = M+

B = 〈〈B, Ē2nF | 0 ≤ n ≤ a + b + c + d − 2〉〉.
where we understand this to mean that M+

B is the semigroup generated in the group
〈A, B, C, F 〉 by the indicated set.
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From Definitions 3.1, we have an action of Aut〈A, B, C〉 on R2, and 〈A, B, C, F 〉 acts
on the lines of slope 1

µ , that is, parallel to the attracting eigenspace. By collapsing these
lines to the x-axis, we can give R the structure of an 〈A, B, C, F 〉-space with

A(x): = −x − 1, B(x): = −x + µ − 1, C(x): = −x + µ, F (x): = λ−1x.

Here X = CB acts by X(x) = x + 1, and Y = AB acts by Y (x) = x − µ.
We set cusps(R) = Z + Zµ, the image of Z2 under the collapsing map, and an

〈A, B, C, F 〉-subspace of R. �
5.2 Notation. Let φ: [−1, µ] → E be given by x �→ B · E(µ − 1 − x, µ).

An explicit expression for φ(x) is given in (3.5.1), and we can see from this expression
that φ is one-sided continuous, from the right.

It is straightforward to show that BφB: [−1, µ] → E is given by x �→ E(x, µ), so BφB
is one-sided continuous, from the left.

Let ψ denote the induced map from [−1, µ] to S2, which assigns to each x the
≈-equivalence class of φ(x).

By (3.5.2), φ(x) ≈ BφB(x), so ψ = BψB, and this is continuous from the right and
from the left, so is continuous.

It is not difficult to show that two different elements of E cannot be ≈-related if they
both start with B and have B in every other position. It then follows easily that ψ is
injective.

The image of ψ is thus an arc in S2
F , and we denote it by arc(F ).

By considering F̄ rather than F , we get an arc in S2
F̄

denoted arc(F̄ ). But there is a
natural identification S2

F̄
= S2

F , and, in S2
F , arc(F̄ ) arises from the set of lines of slope

1
µ –

which pass through the fundamental domain; see Fig. 4. �

Next we analyse the set of cusps which lie in arc(F ).

5.3 Lemma. With Notation 5.1, if n ∈ N, and i = [ (n+1)µ
µ+1 ] and j = [n+1

µ+1 ], then the
following hold.

(i). In 〈A, B, C〉, Ē2n is a product of i X’s and j Y ’s in some order, and Ē2n+1 =
BĒ2n.

(ii). In R, Ē2n(0) is n− (µ + 1)[n+1
µ+1 ], the unique element of n + (µ + 1)Z which lies

in the interval (−1, µ).
(iii). In R, Ē2n+1(0) is −n−1+µ+(µ+1)[n+1

µ+1 ], the unique element of −n−2+(µ+1)Z
which lies in the interval (−1, µ).

Proof. Let m denote the number of occurrences of BA in E2n. From the definition of E
we find that [mµ] +m ≤ n ≤ [(m+1)µ] +m, from which it follows that m = [n+1

µ+1 ] = j,
and n − m = i. Hence (i) holds.

Since Ē2n(0) = i − jµ, we see that (ii) holds.
Applying B to (ii) we get (iii). �

5.4 Remark. If we identify R/((µ + 1)Z) with [−1, µ), then the foregoing shows that,
for all n ∈ N, n+(µ+1)Z becomes Ē2n(0), −(n+2)+(µ+1)Z becomes Ē2n+1(0), and
−1 + (µ + 1)Z becomes the endpoint −1. �
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5.5 Theorem. With Notation 5.1 and 5.2, the following hold.
(i). cusps([−1, µ]) = {−1, µ, Ēn(0) | n ∈ N}.
(ii). cusps([−1, µ]) is dense in [−1, µ].
(iii). The sequence (Ē2n(0) | n ∈ N) starts at E0(0) = 0, and each successive term

is given by adding 1 or subtracting µ so as to stay in the interval (−1, µ). The
sequence (Ē2n+1(0) | n ∈ N) starts at E1(0) = B(0) = µ−1, and each successive
term is given by subtracting 1 or adding µ so as to stay in the interval (−1, µ).

(iv). cusps(arc(F )) = {0S2 , 12
S , Ēn(∞S2) | n ∈ N}.

(v). cusps(arc(F )) is dense in arc(F ).
(vi). Under the homeomorphism ψ: [−1, µ] → arc(F ), ψ(−1) = 0S2 , ψ(µ) = 1S2 , and,

for all n ∈ N, ψ(Ēn(0)) = Ēn(∞S2).

Proof. Notice that cusps([−1, µ]) = (Z+µZ)∩ [−1, µ] contains exactly one element from
each coset n+(1+µ)Z, except for n = −1 which contributes two elements. Lemma 5.3
now shows that (i) holds. Here (ii) and (iii) are clear.

The sets cusps(arc(F )) and cusps([−1, µ]) both arise from the lines of slope 1
µ in

R2 which meet both Z2 and the fundamental domain for 〈A, B, C〉. If a line of slope 1
µ

contains (i, j) ∈ Z2, then it contains (i−jµ, 0); moreover, the line meets the fundamental
domain for 〈A, B, C〉 if and only if i − jµ ∈ [−1, µ]. We now see that cusps(arc(F )) =
ψ(cusps([−1, µ])), so (v) holds. The endpoints of arc(F ) are given by the two ends
φ(−1) = AE and φ(µ) = CE, so are A(∞S2) = 0S2 and C(∞S2) = 1S2 , respectively.
Moreover, it is straightforward to calculate that, for all n ∈ N, in E , φ(Ē2n(0)) =
Ē2nCBAE, so, in S2, ψ(Ē2n(0)) = Ē2n(∞S2). Similarly, φ(Ē2n+1(0)) = Ē2n+1E and
ψ(Ē2n+1(0)) = Ē2n+1(∞S2). Thus (iv) and (vi) hold. �
5.6 Theorem. With Notation 5.1 and 5.2, the following hold.

(i). arc(F ) ∪ arc(F̄ ) = ([A]S2 ∩ [B]S2) ∪ ([B]S2 ∩ [C]S2) ∪ ([C]S2 ∩ [A]S2).
(ii). arc(F ) ∩ arc(F̄ ) = {0S2 , 1S2 ,∞S2}.
(iii). arc(F )∪arc(F̄ ) forms an embedded graph in S2 with three edges and two branch

points 1S2 and ∞S2 . The complement of the graph consists of three regions in
S2 which are the interiors of [A]S2 , [B]S2 and [C]S2 .

(iv). arc(F ) is ∂+[B]S2 , and, with reversed orientation, is the concatenation of ∂+[C]S2

and ∂+[A]S2 .
(v). arc(F̄ ) is ∂ –[A]S2 , and, with reversed orientation, is the concatenation of

∂ –[B]S2 and ∂ –[C]S2 .

Proof. (i). Notice that arc(F ) lies in [B]S2 ∩ [B∗]S2 , since BφB(x) ∈ [B]E , for all
x ∈ [−1, µ], and φ(x) ∈ [A]E for all x ∈ [−1, 0), and φ(x) ∈ [C]E for all x ∈ [0, µ].

Similarly, arc(F̄ ) lies in [A]S2 ∩ [A∗]S2 .
The elements of ([A]S2∩[B]S2)∪([B]S2∩[C]S2)∪([C]S2∩[A]S2) are given by relations

E1 ≈ E2 where E1 and E2 are elements of E which begin with different letters.
Consider first the relations Gφ(x) ≈ GBφB(x), as in (3.5.2), where x ∈ [−1, µ], and

G ∈ 〈A, B, C〉. Taking G = B gives the same relation as taking G = 1 and replacing
x with B(x). If 0 ≤ x ≤ µ, then taking G = C gives the same relation as taking
G = 1 and replacing x with C(x). Similarly, if −1 ≤ x < 0, then taking G = A gives
the same relation as taking G = 1 and replacing x with A(x). This means that each
relation Gφ(x) ≈ GBφB(x), where G is the inverse of an initial segment of φ(x) or of
BφB(x), is already of the form φ(x′) ≈ BφB(x′) for some x′ ∈ [−1, µ]. Thus all points
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of ([A]S2 ∩ [B]S2) ∪ ([B]S2 ∩ [C]S2) ∪ ([C]S2 ∩ [A]S2) arising in this way already lie in
arc(F ).

A similar result holds for arc(F̄ ).
It remains to consider the points G(∞S2) where G is the inverse of an initial segment

of some element of ∞S2 = EF . If G = Ēn for some n, we have seen that G(∞S2) lies
in arc(F ). Similarly, if G = Ē –

n then G(∞S2) lies in arc(F̄ ). If G is the inverse of an
initial segment of (ABC)∞ or (CBA)∞, then G(∞S2) ∈ {0S2 , 1S2 ,∞S2}.

(ii). It follows from the foregoing, and the fact that the tails involve alternating B’s
or alternating A’s, that 0S2 , 1S2 , and ∞S2 are the only points in common for arc(F )
and arc(F̄ ), and 0S2 is an endpoint of both.

(iii) is now clear.
(iv) and (v). Thus ∂[B]S2 is given by concatenating two of the edges joining ∞S2

to 1S2 in the embedded graph, and it is clear we must take all of arc(F ) and part of
arc(F̄ ). In Section 1, we specified that S2 was to be oriented so that, in travelling along
∂[B]S2 from 0S2 to 1S2 via ∞S2 , we have [B]S2 on the right. Hence in travelling along
arc(F ) we have [B]S2 on the right, so arc(F ) is ∂+[B]S2 . The remaining claims are
straightforward to check. �

We now examine the action of M, and we begin by studying the action of F .

5.7 Lemma. With Notation 5.1, for any n ∈ N, the following hold.
(i). There exists mn ∈ N such that F (En) = Emn .
(ii). m2n < m2n+2 < m2n+1 < m2n+4.
(iii). F (E2n+1) = F (E2n)F (B) with no cancellation.
(iv). F (A) = E2(a+c)−3, F (A)A = E2(a+c)−2.
(v). F (B)B = E2(a+b+c+d)−4, F (B) = E2(a+b+c+d)−3,
(vi). F (C) = E2(b+d)−3, F (C)C = E2(b+d)−2.
(vii). AFA, FA, BFB, FB, CFC and FC all lie in M.

Proof. Recall that R = (A, BCB, B) and L = (B, BAB, C) are positive with respect
to BC = X̄ and BA = Ȳ . In fact, R(BC) = BC, R(BA) = BCBA, L(BC) = BABC,
L(BA) = BA. Thus F is positive with respect to BC and BA, so F (BC) is a product
of a BC’s and c BA’s in some order, and F (BA) is a product of b BC’s and d BA’s in
some order.

Since E is a right-infinite word in BC and BA, F (E2n) is an initial segment of
F (E) = E, so (i) holds for even n. Also, m2n < m2n+2 < m2n+4.

Taking n = 1, we see that F (BC) = E2(a+c). Since L(BA) is an initial segment of
L(BC), it follows that F (BA) is an initial segment of F (BC). Hence F (BA) = E2(b+d).

For all i ∈ N, RiL(BC) terminates in BABC, and it follows that F (BC) terminates
in BABC. Hence F (A) = F (BC)CBA terminates in B, and F (A) = E2(a+c)−3,
F (A)A = E2(a+c)−2. Also, F (A)B = E2(a+c)−4, so two of the given generators of
M are Ē2(a+c)−2F = AF (A)F = AFA and Ē2(a+c)−4F = BF (A)F = BFA. Since
B ∈ M, we see FA ∈ M.

For all i ∈ N, RLi(BA) terminates in BCBA, and it follows that F (BA) terminates
in BCBA. Hence F (C) = F (BA)ABC terminates in B, and F (C) = E2(b+d)−3,
F (C)C = E2(b+d)−2. As in the preceding paragraph, CFC and FC lie in M.

Now F (B) = F (BABC)CBA = F (BCBA)ABC is an initial segment of F (BABC),
of F (BCBA), and (hence) of F (BCBC). It follows that F (B) = E2(a+b+c+d)−3, and
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that F (B) terminates in B, and has F (BC) and (hence) F (BA) as initial segments.
Thus F (E2n+1) = F (E2n)F (B) has F (E2n+2) as an initial segment.

Since E2n+4 is E2n followed by BCBA or BABC or BCBC, we see that F (E2n+4)
is F (E2n) followed by F (BCBA) or F (BABC) or F (BCBC), all three of which begin
with F (B). Thus F (E2n+4) begins with F (E2n)F (B) = F (E2n+1).

This completes the proof of all the statements. �
For instance, in Example 2.4, a + c = 7 and F (A) has length 11.

5.8 Lemma. With Notation 5.1, let K = 〈F, ABC〉, and let 〈A, B, C, F 〉, and hence
M, act on the set of cosets 〈A, B, C, F 〉/K by multiplication. Then the M-orbit of the
coset K is MK = {ĒnK | n ∈ N}, and the M-orbit of the cosets AK and CK is

MAK = MCK = {AK, CK, ĒnK | n ∈ N}.

Proof. Let Q = {ĒnK | n ∈ N}.
We show first that Q is closed under the action of M.
Consider any r, n ∈ N, with 0 ≤ r ≤ a + b + c + d − 2.
Since E2n+1 = E2nB, on taking inverses we see that B interchanges the elements of

Q in pairs.
Notice that E2r is an initial segment of F (B), and F (B) its own inverse, so F (B) ter-

minates in Ē2r, so F (B) = E2s+1Ē2r where s = a + b + c + d − 2 − r, so
0 ≤ s ≤ a + b + c + d − 2.

By Lemma 5.7, F (E2n)E2r = E2m+2r for some m, and, on taking inverses, we see
that all the generators of M carry Ē2nK into Q. Also

F (E2n+1)E2r = F (E2nB)E2r = E2mF (B)E2r = E2mE2s+1 = E2m+2s+1.

On taking inverses, we see that the generators of M carry Ē2n+1K into Q.
Hence Q is closed under the action of M. We next show that each element of Q lies

in the M-orbit of K.
Suppose that, for some n ∈ N, Ē2nK does not lie in MK. We may assume that n

is smallest possible, and we shall obtain a contradiction. There exists a unique q ∈ N

such that F (E2q) is an initial segment of E2n, and E2n is an initial segment of F (E2q+2)
and (hence) of F (E2q+1). In particular q < n, so, by minimality, Ē2qK ∈ MK. Also,
E2n = F (E2q)E2r for some r such that 0 ≤ r ≤ a+b+c+d−2. On taking inverses, we see
that Ē2rF carries Ē2qK to Ē2nK, which shows that Ē2n does lie in MK, a contradiction.
Thus all the Ē2nK lie in MK. Since B ∈ M, we see that Ē2n+1K = BĒ2nK also lies
in MK, as desired. We have actually shown that a smaller semigroup than M has the
same orbit.

Since M = MB, and BAK = CK, we see that MAK contains CK, and MAK =
MCK.

Since FA lies in M, and FAAK = K, we see that MAK contains MK, so, by the
first part, MK ⊇ Q.

Suppose that 0 ≤ n ≤ a + b + c + d − 2. To prove the result, it suffices to show that
Ē2nFAK and Ē2nFCK lie in Q ∪ {AK, CK}. We consider only the former, since the
argument is similar for the latter.



20 JAMES W. CANNON AND WARREN DICKS

Consider first the case where n ≤ a + c − 2. Let r = a + c − 2 − n. Since F (A) =
E2(a+c)−3, it begins with E2n and with E2r+1, and since it is of order two, it terminates
in Ē2r+1. Thus F (A) = E2nĒ2r+1, so Ē2nFAK = Ē2nF (A)K = Ē2r+1K ∈ Q.

Consider next the case where n = a + c − 1, so E2n = F (A)A, so Ē2nFAK =
Ē2nF (A)K = AK.

Finally, consider the case were a + c ≤ n ≤ a + b + c + d − 2, and let r = n − a − c.
Then F (BC) = E2(a+c) is an initial segment of E2n, and E2n is an initial segment of
F (B) = F (BC)F (C) = F (BC)E2(b+d)−3. Thus E2n = F (BC)E2r. Hence Ē2nFAK =
Ē2nF (A)K = Ē2rF (CB)F (A)K = Ē2rCBAK = Ē2rK ∈ Q. �
5.9 Theorem. With Notation 5.1 and 5.2, the following hold.

(i). In R, M(0) = cusps((−1, µ)) and M(−1) = M(µ) = cusps([−1, µ]).
(ii). cusps([−1, µ]) and [−1, µ] are M-subspaces of R.
(iii). In S2, M(∞S2) = cusps(arc(F )) − {0S2 , 1S2} and

M(0S2) = M(1S2) = cusps(arc(F )).
(iv). cusps(arc(F )) and arc(F ) are M-subspaces of S2.
(v). ψ: [−1, µ] → arc(F ) is a homeomorphism of M-spaces.

Proof. In R, F and ABC fix 0, so, by Lemma 5.8,

M(0) = {Ēn(0) | n ∈ N} = cusps((−1, µ)).

By continuity, M acts on the closure [−1, µ]. Thus (i) and (ii) hold.
In S2, F and ABC fix ∞S2 , so (iii) and (iv) hold.
Since ψ(Ēn(0)) = Ēn(∞S2), we see that ψ commutes with M on cusps((−1, µ)), so,

by continuity, ψ commutes with M on [−1, µ]. Hence (v) holds. �
5.10 Remarks. (i). All the foregoing results have straightforward analogues for any
hyperbolic T in 〈〈R, L〉〉. For example, if T ends in R, then µ – < −1 and every other
letter of E – is a C.

(ii). It is natural to ask for which F ∈ 〈〈R, L〉〉 there exists a finite set of elements
F1, . . . , Fq in the normalizer of 〈A, B, C, F 〉 in Aut〈A, B, C〉 such that each Fi carries
arc(F ) to a proper subset of itself, and such that the resulting q subsets cover all of
arc(F ) and overlap pairwise in at most a single point.

It was seen in [1] that this holds with q = 2 if F = RL; it is not difficult to show it
holds with q = 3 if F = R2L2.

Notice that {F1, . . . , Fq} is not a subset of 〈A, B, C, F 〉, because each element of
〈A, B, C, F 〉 acts on R as an isometry followed by scaling by a power of λ−1, but a
proper sum of powers of λ−1 cannot equal 1.

(iii). Apart from 1 and B, each element of M acts on [−1, µ] as an isometry on R

followed by scaling by a positive power of λ−1, so has a unique fixed point, and has
infinite order. Clearly B has a unique fixed point in [−1, µ]. Thus each element of
M−{1} has a unique fixed point in arc(F ).

We consider an example. By Lemma 5.7(vii), FC ∈ M. We shall see in Section 6.3
that the inverse CF̄ = (CF̄C)C lies in M –

A so has a fixed point x in ∂ –[A]S2 = arc(F̄ ).
Thus FC fixes x. Because µ is irrational, FC does not fix −1, 0 or µ in [−1, µ], so x
is not 0S2 , 1S2 or ∞S2 . By Theorem 5.6(ii), x does not lie in arc(F ). Since FC has
infinite order, we see that M does not act discontinuously on the complement of arc(F )
in S2.
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(iv). Consider any cusp x in arc(F ). There exist three parabolic elements AFA,
CFC, and F , of M fixing 0S2 , 1S2 , and ∞S2 , respectively. Also, we have proved there
exist three elements of M carrying 0S2 , 1S2 , and ∞S2 to x, and these three elements
carry arc(F ) to one- or two-sided neighbourhoods of x in arc(F ). Hence there exist
three parabolic elements of 〈A, B, C, F 〉 fixing x which respectively map these three
neighbourhoods in arc(F ) to themselves. �

6. Profiles of the six arcs.

Let us summarize some of the results of Section 5.

6.1 Profile of ∂+[B]S2 . Let G = F , µ = µ+, and E = E+ =
∞∏

n=1
((BC)[µ]nBA). Let

M+

B : = 〈〈B, Ē2nG | 0 ≤ n ≤ a + b + c + d − 2〉〉.

Then

cusps(∂+[B]S2) = {0S2 , 1S2 , Ēn(∞S2) | n ∈ N} = M+

B(0S2) = M+

B(1S2).

In words, the M+

B-orbit of each endpoint is the dense set of cusps in ∂+[B]S2 . In
particular, ∂+[B]S2 is an M+

B-subspace of S2.
Let R have the structure of an 〈A, B, C, F 〉-space with

A(x): = −x − 1, B(x): = −x + µ − 1, C(x): = −x + µ, G(x): = λ−1x.

We set cusps(R) = Z+Zµ, an 〈A, B, C, F 〉-subspace of R. The interval [−1, µ] forms an
M+

B-subspace of R. Also, ∂+[B]S2 and [−1, µ] are homeomorphic as M+

B-spaces, with
a bijective correspondence between the cusps, and 0S2 , ∞S2 and 1S2 correspond to −1,
0, and µ, respectively. �

We remark that the value a+ b+ c+d−2 can be replaced with max{a+ c, b+d}−1,
if one wishes to have a smaller semigroup.

The other five arcs are formally similar. We record the descriptions to facilitate
possible applications.

6.2 Profile of ∂+[C]S2 . Let A′ = BAB, B′ = C, C ′ = B. It is clear that E+ can be
partitioned into an infinite reduced word in A′, B′, C ′. Also C ′A′B′ = ABC, so, if
we identify C ′ with the element of Aut〈A, B, C〉 which acts as conjugation by C ′, and
define H = C ′(A′, B′, C ′), then H fixes ABC, so H lies in 〈R, L〉. In fact H = R. Let

(
a′ b′

c′ d′

)
= matrix(H̄FH) =

(
a − c b − d

c d

)
,

µ = H̄(µ+) = µ+ − 1 =
λ − c − d

c
=

λ − d′

c′
.

We shall see that ∞∏
n=1

((B′C ′)[µ]nB′A′) = C ′E+.
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We denote this end by E, and, for n ∈ N, we define En to be the initial segment of E
of length n with respect to A′, B′ and C ′. Here a′ + b′ + c′ + d′ = a + b, and we let
G = C ′FC ′ and

M+

C : = 〈〈B′, Ē2nG | 0 ≤ n ≤ a + b − 2〉〉.
Then H̄FH = R̄FR ∈ 〈〈R, L〉〉, H[B]E = C ′[C]E , and

cusps(∂+[C]S2) = {1S2 ,∞S2 , ĒnC ′(∞S2) | n ∈ N} = M+

C(1S2) = M+

C(∞S2).

Now let R have the structure of an 〈A, B, C, F 〉-space with

A′(x): = −x − 1, B′(x): = −x + µ − 1, C ′(x): = −x + µ, G(x): = λ−1x.

The interval [−1, µ] forms an M+

C-subspace of R, and ∂+[C]S2 and [−1, µ] are homeo-
morphic as M+

C-spaces, with 1S2 , C ′(∞S2) and ∞S2 corresponding to −1, 0, and µ,
respectively. �

The information in the last paragraph is similar for the remaining four arcs and we
shall omit it, and condense the remaining information.

6.3 Profile of ∂+[A]S2 . Let

A′ = (BC)a1B, B′ = A, C ′ = (BC)a1+1B,

H = A′(A′, B′, C ′) = Ra1L, µ = H̄(µ+) =
µ+ − a1

a1 + 1 − µ+

,

G = A′FA′, E =
∞∏

n=1

((B′C ′)[µ]nB′A′) = A′E+,

M+

A: = 〈〈B′, Ē2nG | 0 ≤ n ≤ c + 2a1c + 2d − 2〉〉.

Then H̄FH = L̄R̄a1FRa1L ∈ 〈〈R, L〉〉, H[B]E = A′[A]E , and

cusps(∂+[A]S2) = {0S2 ,∞S2 , ĒnA′(∞S2) | n ∈ N} = M+

A(∞S2) = M+

A(0S2). �

We now consider F̄ .

By Definitions 2.1, the transpose of F =
p∏

i=1

(RaiLbi) is F tr: =
p−1∏
i=0

(Rbp−iLap−i) ∈

〈〈R, L〉〉. Also, conjugation by P = R̄LR̄, and by P̄ = RL̄R, interchanges F̄ and F tr.

6.4 Profile of ∂ –[A]S2 . Let

A′ = C, B′ = A, C ′ = B,

H = A′(A′, B′, C ′) = R̄L, µ = H̄(µ –) =
1 + µ –

−µ –
,

G = A′F̄A′, E =
∞∏

n=1

((B′C ′)[µ]nB′A′) = A′E –,

M –
A: = 〈〈B′, Ē2nG | 0 ≤ n ≤ 2a + c − 1〉〉.

Then H̄F̄H = R̄F trR ∈ 〈〈R, L〉〉, H[B]E = A′[A]E , and

cusps(∂ –[A]S2) = {0S2 ,∞S2 , ĒnA′(∞S2) | n ∈ N} = M –
A(∞S2) = M –

A(0S2). �
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6.5 Profile of ∂ –[C]S2 . Let

A′ = (AB)bp−1A, B′ = C, C ′ = (AB)bpA,

H = C ′(A′, B′, C ′) = RL̄Rbp+1L, µ = H̄(µ –) =
bp(−µ –) − 1

1 + (bp + 1)µ –

G = C ′FC, E =
∞∏

n=1

((B′C ′)[µ]nB′A′) = C ′(ABC)E –,

M –
C : = 〈〈B′, Ē2nG | 0 ≤ n ≤ (2bp + 1)b + 2d − 2〉〉.

Then H̄F̄H = (L̄R̄bp)F trRbpL ∈ 〈〈R, L〉〉, H[B]E = C ′[C]E , and

cusps(∂ –[C]S2) = {1S2 ,∞S2 , ĒnC ′(∞S2) | n ∈ N} = M –
C(1S2) = M –

C(∞S2). �

6.6 Profile of ∂ –[B]S2 . Let

m =
{

ap if bp = 1
0 if bp ≥ 2

, A′ = (AC)m+1A, B′ = B, C ′ = (AC)mA,

H = A′A(A′, B′, C ′) = R̄Lm+1R, µ = H̄(µ –) =
m + 1 + (m + 2)µ –

(m + 1)(−µ –) − m
,

G = A′AF̄AA′, E =
∞∏

n=1

((B′C ′)[µ]nB′A′ = A′AE –,

M –
B : = 〈〈B′, Ē2nG | 0 ≤ n ≤ (2m + 3)(a − b) + (m + 2)(c − d) − 2〉〉.

Then H̄F̄H = R̄L̄mR̄F trRLmR ∈ 〈〈R, L〉〉, H[B]E = A′A[B]E , and

cusps(∂ –[B]S2) = {0S2 , 1S2 , ĒnA′A(∞S2) | n ∈ N} = M –
B(0S2) = M –

B(1S2). �

7. Proofs for the six arcs.

In this section, we return to Notation 2.3 and verify the claims of Section 6.
We need a preliminary result.

7.1 Lemma. With Notation 2.3, the following hold.
(i). R[A]E = [A]E , R[B]E = [BC]E , and R[C]E = [BA]E ∪ [C]E .
(ii). R̄[A]E = [A]E , R̄[B]E = [B]E ∪ [CA]E , and R̄[C]E = [CB]E .
(iii). L[A]E = [A]E ∪ [BC]E , L[B]E = [BA]E , and L[C]E = [C]E .
(iv). L̄[A]E = [AB]E , L̄[B]E = [AC]E ∪ [B]E , and L̄[C]E = [C]E .

Proof. (i). Since R = (A, BCB, B), we see that

R((CBA)∞) = (CBA)∞, R((ACB)∞) = (ACB)∞, and R((BAC)∞) = B(CBA)∞,

so R(∞S1) = ∞S1 , R(0S1) = 0S1 = B(1S1), and R(1S1) = B(∞S1).
Thus R fixes the endpoints of [A]S1 , so R[A]S1 = [A]S1 , and hence R[A]E = [A]E .



24 JAMES W. CANNON AND WARREN DICKS

Similarly, R carries the endpoints of [B]S1 to the endpoints of B[C]S1 so R[B]S1 =
B[C]S1 , and hence R[B]E = B[C]E .

Similarly, or by considering complements, we see R[C]E = [BA]E ∪ [C]E .
(ii). Since R̄ = (A, C, CBC), we see that R̄((CBA)∞) = (CBA)∞, R̄((ACB)∞) =

(ACB)∞, and R̄((BAC)∞) = C(ACB)∞. Thus R̄(∞S1) = ∞S1 = C(0S1), R̄(0S1) =
0S1 , and R̄(1S1) = C(0S1). Now the result follows as before.

(iii). Since L = (B, BAB, C), we see that L(∞S1) = ∞S1 , L(0S1) = B(∞S1), and
L(1S1) = 1S1 = B(0S1), and the result follows.

(iv). Since L̄ = (ABA, A, C), we see that L̄(∞S1) = ∞S1 = A(0S1), L̄(0S1) =
A(1S1), and L̄(1S1) = 1S1 , and the result follows. �
7.2 Theorem. With Notation 2.3, the descriptions given in Sections 6.1–6.6 hold.

Proof. By Section 5, for any hyperbolic F ′ ∈ 〈〈R, L〉〉, we have an arc in S2
F ′ denoted

arc(F ′).
If H is 1, R or Ra1L, and we take F ′ = H̄FH, then it is clear that F ′ ∈ 〈〈R, L〉〉 and

F ′ is hyperbolic. Notice that H carries EF ′
to EF , and determines a homeomorphism

S2
F ′ � S2

F which carries arc(F ′) to an arc in S2
F which we denote H(arc(H̄FH)).

Now arc(F ′) ⊆ [B]S2
F ′ ∩ [B∗]S2

F ′ . Hence H(arc(H̄FH)) ⊆ (H[B])S2
F
∩ (H[B∗])S2

F
.

This is an arc joining (H(0))S2
F

to (H(1))S2
F
, that is, an arc joining the image in S2

F of
H(0S1) to the image in S2

F of H(1S1).
For H = 1, as we know, we have arc(F ) ⊆ [B]S2

F
∩ [B∗]S2

F
, an arc joining 0S2

F
to 1S2

F
.

For H = R, we have, by Lemma 7.1(i), R[B]E = B[C]E , so

R(arc(R̄FR)) ⊆ [BC]S2
F
∩ [(BC)∗]S2

F
.

On applying B, we get BR(arc(R̄FR)) ⊆ [C]S2
F
∩ [C∗]S2

F
, an arc joining 1S2

F
to ∞S2

F
.

For H = Ra1L, we have, by Lemma 7.1(i) and (ii), Ra1L[B]E = Ra1B[A]E = A′[A]E ,
where A′ = Ra1(B) = (BC)a1B, so Ra1L(arc(L̄R̄a1FRa1L)) ⊆ [A′A]S2

F
∩ [(A′A)∗]S2

F
.

On applying A′ we get A′Ra1L(arc(L̄R̄a1FRa1L)) ⊆ [A]S2
F
∩ [A∗]S2

F
, an arc joining ∞S2

F

to 0S2
F
.

By Definitions 2.1, F tr = PF̄ P̄ = P̄ F̄P lies in 〈〈R, L〉〉 and is hyperbolic. Let

m =
{

ap if bp = 1
0 if bp ≥ 2

, so F trRLmR starts with RLmR. If H is PR, P̄RbpL or PRLmR,

and we take F ′ = H̄F̄H, then F ′ ∈ 〈〈R, L〉〉 and F ′ is hyperbolic. As before, H carries
EF ′

to E F̄ = EF , and H determines a homeomorphism S2
F ′ � S2

F which carries arc(F ′)
to an arc in S2

F which we denote H(arc(H̄F̄H)), and which is an arc joining (H(0))S2
F

to (H(1))S2
F

which lies in (H[B])S2
F
∩ (H[B∗])S2

F
.

For H = PR = R̄L, we have

H[B]E = R̄L[B]E = R̄[BA]E = [CA]E ,

so H(arc(H̄F̄H)) ⊆ [CA]S2
F
∩ [(CA)∗]S2

F
, an arc joining 1S2

F
to C(0S2

F
). On applying

C, we get CH(arc(H̄F̄H)) ⊆ [A]S2
F
∩ [A∗]S2

F
, an arc joining ∞S2

F
to 0S2

F
.

For H = P̄RbpL = RL̄Rbp+1L, we have

H[B]E = RL̄Rbp+1L[B]E = RL̄Rbp+1[BA]E = RL̄(BC)bp+1B[A]E

= R(AC)bp+1A[AB]E = (AB)bp+1[BC]E = C ′[C]E ,
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where C ′ = (AB)bpA. Thus C ′H(arc(H̄F̄H)) ⊆ [C]S2
F
∩ [C∗]S2

F
, an arc joining 1S2

F
to

∞S2
F
.

For H = PRLmR = R̄Lm+1R, we have

H[B]E = R̄Lm+1R[B]E = R̄Lm+1[BC]E
= R̄(BA)m+1B[C]E = (CA)m+1C[CB]E = A′A[B]E ,

where A′ = (CA)mC. Thus AA′H(arc(H̄F̄H)) ⊆ [B]S2
F
∩ [B∗]S2

F
, an arc joining 0S2

F
to

1S2
F
.

It remains to check that the semigroups behave as claimed in Sections 6.2-6.6, and
this follows from the fact that, in each case, we chose H so as to respect initial segments
of fixed ends. �

8. The relationship with hyperbolic geometry.

We continue using Notation 2.3.

8.1 Background. The action of F on R2 −Z2 of Definitions 3.1 determines a pseudo-
Anosov automorphism of the once-punctured torus (R2 − Z2)/Z2, and every pseudo-
Anosov automorphism of the once-punctured torus is of this form, or at least its square
is.

Jørgensen showed that the mapping torus of this automorphism has a complete
finite-volume hyperbolic structure as the union of finitely many ideal tetrahedra; see [14],
[12, Appendix], or [2, Section 1]. Hence the fundamental group of the mapping torus,
F2 � 〈F 〉 = 〈X, Y, F 〉 has a discrete faithful representation in PSL2(C) with F and the
commutator being parabolic (with the same fixed point).

Multiplication by −1 induces an involution on (R2−Z2)/Z2, and dividing out by the
action of this involution gives a once-punctured sphere with three double points. The
pseudo-Anosov automorphism commutes with the involution, so the pseudo-Anosov au-
tomorphism induces a pseudo-Anosov automorphism on the once-punctured sphere with
three double points, and, at the same time, the involution extends to the hyperbolic
mapping torus. By the Mostow Rigidity Theorem, the extended involution is an isom-
etry, so we get a hyperbolic quotient space which is clearly the mapping torus for the
pseudo-Anosov automorphism of the once-punctured sphere with three double points.
This latter space has 〈A, B, C, F 〉 as orbifold group. Hence the boundary of hyperbolic
three-space ∂H3, identified with the Riemann sphere C, is an 〈A, B, C, F 〉-space, and
we have a discrete faithful representation of 〈A, B, C, F 〉 in PSL2(C) with F and ABC
parabolic (with the same fixed point). The universal cover of the hyperbolic mapping
torus has cusps in C which are the cusps of the ideal tetrahedra.

We normalize so that the fixed points of the parabolic elements ABC, BCA and
CAB are ∞

C
, 0

C
and 1

C
, respectively. Thus the cusps form the 〈A, B, C〉-orbit of ∞

C
.

The Mostow Rigidity Theorem implies that, with this normalization, the representa-
tion of 〈A, B, C, F 〉 in PSL2(C) is unique up to complex conjugation.

Thus we have two 〈A, B, C, F 〉-spaces, S2 and C, which are two-spheres.
Bowditch [3, Theorem 9.1] has recently shown there exists a (unique) homeomorphism

of 〈A, B, C, F 〉-spaces S2 � C. See also [6].
(We remark that the case F = RL of this result can be proved by using results

of [1]. The details are somewhat tedious and we will not go into them, but the idea is
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elementary and we will sketch it. Here it is important that the square of RM is RL.
The normalization used in [1] can be transformed into the normalization used here.
Then [1, Section 8] shows that there is a two-generator semigroup acting on an arc in C

and on ∂+[B]S2 in such a way that both these arcs can be identified with the set of ends
of the semigroup modulo a certain equivalence relation. It follows that the natural map
from ∂+[B]S2 to C is an embedding. Moreover, it can be shown that the identifications
which take place under E → C and E → S2 are determined by these arcs, together with
the 〈A, B, C〉-action. It then follows that S2 and C are quotient spaces of E with the
same identifications, as desired.)

The homeomorphism S2 � C carries ∞S2 , to ∞
C

since these are the (unique) points
fixed by ABC. Similar statements hold for 0 and for 1.

We may assume that S2 and C are homeomorphic as oriented 〈A, B, C, F 〉-spaces,
since we can replace the representation of 〈A, B, C, F 〉 with its complex conjugate, if
necessary.

We remark that both ABC and F fix ∞
C
, so F (z) = z + s for some s ∈ C, and it

can be shown that the imaginary part of s is non-negative.
The composite map E → S2 → C will be denoted E �→ E

C
. For any G ∈ 〈A, B, C〉,

we define [G]
C

similarly. �
8.2 Consequences. By the foregoing, we have a graph with two vertices, 1 and ∞,
and three edges, embedded in C, determining three topological closed disks [A]

C
, [B]

C
,

[C]
C

whose boundaries are Jordan curves.
The interpretation of these disks in the boundary of hyperbolic three-space is the

following. We have a fibration H3 → R. Each fiber is a topological disk on which
〈A, B, C〉 acts with quotient a once-punctured sphere with three double points. And F
acts on R with quotient a circle. For any v ∈ H3, the 〈A, B, C〉-orbit of v is the vertex
set of a copy of the usual 〈A, B, C〉-tree forming the spine of a fiber, and the ends of
the tree reach every point of the boundary C. Then [A]

C
is the set of points reached by

infinite reduced paths in the tree which start with the step from v to Av.
As in S2, the two distinguished points 0 and ∞ divide ∂[A]

C
into two arcs ∂+[A]

C
,

∂ –[A]
C
.

There are four other arcs obtained similarly. Each arc has a dense set of cusps,
and these cusps form a single orbit of a semigroup of Möbius transformations lying in
〈A, B, C, F 〉.

To depict an approximation of ∂+[B]
C
, we choose a large even number N , and generate

(xn, zn): = (Ē+

n(0R), Ē+

n(∞
C
)), for 0 ≤ n ≤ N , using Theorem 5.5(iii), as follows. We

have (x0, z0) = (0,∞), and, given (x2m, z2m) with 0 ≤ 2m < N , we have

(x2m+1, z2m+1) = (−x2m + µ+ − 1, B(z2m)),

(x2m+2, z2m+2) =
{

(x2m + 1, CB(z2m)) if x2m < µ+ − 1,

(x2m − µ+, AB(z2m)) if x2m > µ+ − 1.

We can now order the (xn, zn) by the first coordinate, list the second coordinates, add
0C at the beginning and 1C at the end, and join the dots.

To depict an approximation of ∂ –[A]
C
, we proceed as above, but replace 0∞, ∞C,

1∞, µ+, B, CB and AB with ∞C, 1C, 0C, 1+µ –
−µ –

, A, BA and CA, respectively. �
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8.3 Example. In Example 2.4, we noted that for

F = RL3 = (BCBABCBABCB, BCBABCBABCBABCB, B),

µ+ = 3+
√

21
6 , µ – = 3−

√
21

6 . It is straightforward to calculate that the normalized repre-
sentation is

A(z) = −s2 + 2s + 1
z

, B(z) =
z − 1
z

s+1 − 1
, C(z) =

z + s2 + s − 1
z − 1

, F (z) = z + s,

where s4 + 4s3 + 9s2 + 9s + 4 = 0 and s is approximately −0.8 + 0.6i. (Recall that we
want a non-negative imaginary part.)

We view the real projective line R as the equator of the Riemann sphere C, and we
make the convention that i is in the northern hemisphere, and −i in the southern hemi-
sphere. Thus the northern hemisphere is the upper half of the complex plane, and the
southern hemisphere is the lower half of the complex plane. We can represent the north-
ern hemisphere conformally as a disk, and the southern hemisphere anti-conformally as
a disk with the same boundary as the northern hemisphere. Consider Fig. 5. On the left
is the northern hemisphere and the join-the-dots for the first 30,000 cusps in ∂+

RL3 [B]C;
on the right is the southern hemisphere and ∂ –

RL3 [A]C.

∞

0

1

∞

0

1

[A]C

[B]C

[C]C

[A]C

[B]C

[C]C

Fig. 5. The northern and southern hemispheres with the arcs for RL3.

Let us digress to remark that, for this example, there exists a (faithful) non-discrete
representation which is the same as the discrete representation algebraically, but now
with s near −1.2 + 1.7i. Fig. 6 shows the result of applying the join-the-dots procedure
with a mere ten cusps. This is a rather bizarre way of testing for discreteness. �

Fig. 6. Consequences of non-discreteness.
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8.4 Questions. Does ∂+

F [B]
C

lie in the northern hemisphere except for finitely many
points on the equator? (Added in proof: For F = RLRL2 the answer is ’no’.)

Does ∂ –
F [A]

C
lie in the southern hemisphere except for finitely many points on the

equator?

The referee has observed the following.

8.5 Remarks. For any two distinct irrational numbers µ+ and µ –, one can define E+

and E – by reading off half-lines of slopes 1
µ+

, 1
µ –

starting at the origin, as in Fig. 4, and
construct a two-sphere S2 = S2

µ+,µ – with an 〈A, B, C〉-action as in Definitions 3.4 and
the Appendix. Results analogous to Lemma 5.3, Theorem 5.5 and Theorem 5.6 can be
obtained for this construction. Thus we find a distinguished graph on S2. If µ+µ – < 0
it has three edges and two vertices (each of valence three).

By results of Bonahon, Minsky, McMullen and Thurston, there exists a discrete
faithful representation ρ: 〈A, B, C〉 → PSL2(C) with ρ(ABC) parabolic such that, in a
natural sense, ρ(E+) and ρ(E –) converge to the fixed point of ρ(ABC); if ρ is normalized
so that the fixed points of ABC, BCA and CAB are ∞

C
, 0

C
and 1

C
, respectively, then

ρ is unique up to complex conjugation.
In detail, by results of Thurston and Bonahon, there exists a discrete faithful rep-

resentation ρ: 〈A, B, C〉 → PSL2(C) with ρ(ABC) parabolic such that the “ending
laminations” are the ordered pair (µ+, µ –). Minsky [17] showed that ρ, when normal-
ized, is unique. McMullen [16] showed that there exists a surjective continuous map of
〈A, B, C〉-spaces S2 → C.

One can conjecture that S2 → C is a homeomorphism, and Bowditch [3, Theorem 9.1]
has proved this in certain cases. Where it is true, one can depict subdivisions of C into
smaller and smaller Jordan domains, provided one has a sufficiently precise description
of ρ. �

9. The exceptional sets.

9.1 Definitions. From Definitions 3.4, we have quotient maps of 〈A, B, C, F 〉-spaces
E → S1 → S2, the latter being a Peano curve.

Let XS2 denote the set of points of S2 which are the images of two or more points
of S1. Let XS1 denote the preimage in S1 of XS2 . Let XE denote the preimage in E of
XS1 , or equivalently XS2 . We call XE , XS1 and XS2 the exceptional sets. �

In this section we shall make some deductions about these exceptional sets.

9.2 Observations. The exceptional sets are closed under the actions of 〈A, B, C, F 〉.
Notice that the quotient maps E → S1 → S2 then decompose into maps of

〈A, B, C, F 〉-spaces

XE → XS1 → XS2 , E − XE → S1 − XS1 → S2 − XS2 .

The latter two maps are both homeomorphisms. The map XS1 → XS2 is many-to-one.
We have seen that each cusp of S2 is the image of countably many elements of S1,

so all the cusps lie in the exceptional sets for both S1 and S2.
The Peano curve S1 → S2 fills in [A]S2 and then fills in the closure of the complement,

so every point of ∂[A]S2 lies in XS2 , since both the starting and finishing points are
cusps. Thus we see that each of the six arcs described in Section 6 lies in XS2 . It follows
that XS2 contains the union of the 〈A, B, C〉-orbits of the points of the six arcs.
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To see that this union is all of XS2 , consider any point x of S2 which does not lie
in this union. As S2 successively decomposes into subsets of the form [G]S2 for longer
and longer G ∈ 〈A, B, C〉, we see that x never lies on a boundary, so determines an
increasing sequence of terms in 〈A, B, C〉, which means that x is the image of a unique
element of E , as claimed.

From Notation 3.5, we know that each element of XE has a tail which is (ABC)±∞,
or has B as every alternate letter, or has A as every alternate latter; this allows us to
construct a corresponding partition

XE = X0
E ∪ X+

E ∪ X –
E .

Explicitly,
X0

E = {G · (ABC)∞, G · (CBA)∞ | G ∈ 〈A, B, C〉},

and
X+

E = {G · E(x, µ+) | G ∈ 〈A, B, C〉, x ∈ [−1, µ+]}.

The structure of X –
E is formally similar to that of X+

E ; from Section 6.4, we see that
we have to consider CF̄C in place of F , and let A, B, C take the roles of B, C, A,
respectively.

For any elements W1, W2 of 〈A, B, C〉 which generate the free subgroup of index two,
let E〈〈W1, W2〉〉 denote the set of right infinite words in W1 and W2, viewed as a subset
of E . We emphasize that we are considering positive words only, and that W−1

1 and
W−1

2 do not occur. �
We want to show that XE is small in some sense. It suffices to consider only X+

E ,
since X0

E is countable, and any results about X+

E give analogous results about X –
E .

9.3 Lemma. With Notations 2.3 and 9.1, for each n ≥ 0,

X+

E ⊆ 〈A, B, C〉 · E〈〈Fn(BA), Fn(BC)〉〉.

Proof. It is not difficult to see that the elements of XE , X0
E , and X+

E are permuted by F .
Since every element of X+

E has a tail in which every alternate letter is B, we see that
X+

E ⊆ 〈A, B, C〉 · E〈〈BA, BC〉〉.
Hence

X+

E = Fn(X+

E) ⊆ Fn(〈A, B, C〉 · E〈〈BA, BC〉〉) = 〈A, B, C〉 · E〈〈Fn(BA), Fn(BC)〉〉. �

Section 8.1 describes the relationship between the 〈A, B, C, F 〉-spaces S2 and
C. In contrast, S1 has the structure of an Aut〈A, B, C〉-space, but there is no
natural Aut〈A, B, C〉-space structure on R. However, there is a natural family of
Aut〈A, B, C〉-space structures on R, which we now describe.
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9.4 Definitions. Let S1 = {(x, y) ∈ R2 | x2+y2 = 1}, with the (great circle) arc-length
metric induced from R2, so S1 is geodesically connected.

Let us identify R with S1 by identifying t ∈ R with ( 2t
t2+1 , t2−1

t2+1 ) ∈ S1. Let dist denote
the metric induced on R by the arc-length metric on S1, so R is geodesically connected.

Any h ∈ PSL2(R) acts on R, and we define the local dilatation of h by

h′(x) = lim sup
t→x

dist(h(x), h(t))
dist(x, t)

.

If h = ±
(

a b
c d

)
, with ad − bc = 1, then it is not difficult to show that

h′(x) = lim
t→x

dist(h(x), h(t))
dist(x, t)

=
1 + x2

(ax + b)2 + (cx + d)2
.

Throughout the remainder of this section, we fix a discrete faithful representation
ρ: 〈A, B, C〉 → PSL2(R) such that ρ(ABC) is parabolic. Moreover, we assume that ρ
has been normalized so that the fixed points in R of ρ(ABC), ρ(BCA), and ρ(CAB)
are ∞

R
, 0

R
, and 1

R
respectively.

This gives R the structure of an 〈A, B, C〉-space. It is not difficult to show that there
is then a natural map E → R which induces a homeomorphism of 〈A, B, C〉-spaces
S1 � R; see Fig. 3. Moreover, ∞S1 , 0S1 and 1S1 map to ∞

R
, 0

R
and 1

R
, respectively.

Clearly, we can use this homeomorphism to make R into an Aut〈A, B, C〉-space and
S1 into a metric space. We identify S1 = R = S1. Thus [A]S1 , [B]S1 and [C]S1 can be
thought of as the intervals [−∞, 0], [0, 1] and [1,∞], respectively. Henceforth, we view
S1 as a metric space. �
9.5 Theorem. The Hausdorff dimension of XS1 is zero, and hence the one-dimensional
Lebesgue measure of XS1 is zero.

Proof. Let m and n denote integers greater than 3.
Recall that E+

n denotes the initial segment of E+ = F∞(B) of length n, and Ē+

n

denotes its inverse. Thus E+

2n ∈ 〈〈BA, BC〉〉, and lim
n→∞

E+

2n = F∞(B).

We can decompose S1 into the sequence

[ABCA]S1 , [ABCB]S1 , [ABA]S1 , [AC]S1 ,

[B]S1 , [CA]S1 , [CBC]S1 , [CBAB]S1 , [CBAC]S1 ,

of nine intervals of positive length, each one overlapping in one endpoint with the next,
cyclically; see Fig. 3.

Every second letter of Ē+

2n is a B, so there is no cancellation in forming the product
of Ē+

2n with (ABC)∞ and (ACB)∞, so

Ē+

2n · (ABC)∞, Ē+

2n · (ACB)∞ ∈ [ABCB]E ∪ [ABAB]E ∪ [CBCB]E ∪ [CBAB]E .

Hence, in E , both Ē+

2n(ABC)∞ and Ē+

2n(ACB)∞ are bounded away from both [B]E
and (ABC)±∞ (independently of n).

Hence, in S1, both Ē+

2n(∞) and Ē+

2n(0) are bounded away from both [0, 1] and ∞.
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Let ±
(

an bn

cn dn

)
∈ PSL2(R) denote ρ(E+

2n). Hence, both Ē+

2n(∞) = −dn

cn
and

Ē+

2n(0) = − bn

an
are bounded away from both [0, 1] and ∞. Thus there exist positive

constants k, K such that, for all x ∈ [0, 1], and all n ≥ 1,

(x +
dn

cn
)2, (x +

bn

an
)2 ∈ (k,∞) and (

dn

cn
)2, (

bn

an
)2 ∈ [0, K).

The ρ(E+

2n) are all distinct elements of PSL2(R), and form a discrete subset, so
lim

n→∞
a2

n + b2
n + c2

n + d2
n = ∞. Now

a2
n + b2

n + c2
n + d2

n = a2
n(1 +

b2
n

a2
n

) + c2
n(1 +

d2
n

c2
n

) ≤ (a2
n + c2

n)(1 + K),

so lim
n→∞

a2
n + c2

n = ∞.

Now consider any x ∈ [0, 1]. For the action of E+

2n on S1,

(E+

2n)′(x) =
1 + x2

(anx + bn)2 + (cnx + dn)2
=

1 + x2

a2
n(x + bn

an
)2 + c2

n(x + dn

cn
)2

<
2

k(a2
n + c2

n)
.

So, for any ε ∈ (0, 1), there exists n such that, for all m ≥ n and all x ∈ [0, 1],
(E+

2m)′(x) < ε. By Lemma 5.7, it follows that, for all x ∈ [0, 1], (Fn(BA))′(x) < ε
and (Fn(BC))′(x) < ε. Since [0, 1] is geodesically connected, Fn(BA) and Fn(BC)
are Lipschitz contractions on [0, 1] with constant ε. It follows, by a standard argument,
that the limit set of Fn(BA) and Fn(BC) acting on [0, 1] has Hausdorff dimension at
most − log 2

log ε ; see, for example [11, Proposition 9.6].
Hence the image of

E〈〈Fn(BA), Fn(BC)〉〉
in S1 has Hausdorff dimension at most − log 2

log ε .
By Lemma 9.3, the image of X+

E in S1 has Hausdorff dimension at most − log 2
log ε , for

all ε > 0, so has Hausdorff dimension zero.
For purely formal reasons, the image of X –

E in S1 must also have Hausdorff dimension
zero.

Hence the image, XS1 , of XE in S1 has Hausdorff dimension zero, as desired. �
9.6 Remarks. Let S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, with the arc-length metric
induced from R3.

Let us identify C with S2 by identifying x + iy ∈ C with

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1
x2 + y2 + 1

) ∈ S2.

Let dist denote the metric induced on C by the arc-length metric on S2.
By [3, Theorem 9.1], there is a unique identification S2 = C of 〈A, B, C, F 〉-spaces,

and we identify S2 = C = S2. Henceforth, S2 is a metric space.
One can ask if the Hausdorff dimension of XS2 lies strictly between 1 and 2. One can

also ask if each of the six arcs of Sections 6.1–6.6 have the same Hausdorff dimension
as each other, and hence, as XS2 .

In [10], for the case where F = RL, the answers were seen to be affirmative, and evi-
dence was adduced that the Hausdorff dimension involved is approximately 1.2971. �
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Appendix. The Moore Decomposition Theorem.

In 1919, R. L. Moore [18] characterized the Euclidean plane topologically. Then, in
1925, Moore [19] noted that his axioms were also satisfied by a large class of quotient
spaces of the plane, so that those identification spaces were also planes.

Since Moore’s articles are somewhat inaccessible to today’s readers because of evolv-
ing terminology and background, we will give a fairly straightforward statement of his
theorem, and outline a proof. We will then show how to apply the theorem in a slightly
more general situation than that considered in Section 3.

A.1 The Moore Decomposition Theorem. Suppose that f : S2 → X is a continuous
map from the two-sphere S2 onto a Hausdorff space X such that, for each x ∈ X, the
subspace S2 − f−1(x) is homeomorphic with the plane R2. Then X is a two-sphere.

A.2 Remarks. (i). The requirement that S2 − f−1(x) be homeomorphic with R2 is
equivalent to the requirement that both f−1(x) and S2 − f−1(x) be nonempty and
connected.

(ii). We shall be interested in the case where X is a quotient space of S2 obtained
by partitioning S2 into subspaces all of which are closed trees, and then collapsing the
trees to points. The theorem implies that here X is a two-sphere if and only if X is
Hausdorff.

(iii). Theorem A.1 has the following generalization to higher dimensions: Suppose
that f : Sn → X is a continuous map from the n-sphere Sn onto a Hausdorff space X such
that, for each x ∈ X, the subspace Sn − f−1(x) is homeomorphic with the Euclidean
space Rn. Then X is an n-sphere provided that, in addition, n ≥ 5, and X satisfies the
condition that every continuous map from the closed (two-dimensional) disk D into X
can be approximated by an embedding. This generalization was conjectured, and proved
in many special cases, by Cannon [5], and then proved in general by R. D. Edwards;
see Daverman’s book [9]. The situation in dimensions 3 and 4 has not been completely
resolved. �

The proof we shall give relies on a more intuitive theorem, called the Zippin Char-
acterization Theorem; see, for example, [23, p.88]. Recall that a Peano continuum is a
metrizable space which is a continuous image of [0, 1]; it is degenerate if it has only one
point.

A.3 The Zippin Characterization Theorem. A space X is a two-sphere if the
following four conditions are satisfied:

(a). X is a nondegenerate Peano continuum.
(b). No point in X separates X (so that, in particular, X contains at least one simple

closed curve).
(c). Each simple closed curve in X separates X.
(d). No arc in X separates X. �
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Proof of Theorem A.1 using Theorem A.3. We assume the hypotheses of the Moore
Decomposition Theorem and verify the four conditions of the Zippin Characterization
Theorem in turn. Note that conditions (c) and (d) are true in the two-sphere by standard
homological arguments; we shall use those same arguments here.

(a). Since X is Hausdorff, the map f is a closed surjection; hence it is easy to verify
the conditions of the Urysohn metrization theorem, so X is metrizable; see [20, Theo-
rem 34.1]. Since S2 is a Peano continuum, so also is X. For each x ∈ X, both f−1(x)
and S2 − f−1(x) are nonempty, so X has more than one point.

(b). By hypothesis, if x ∈ X then S2 − f−1(x) is connected. Hence X − {x} =
f(S2 − f−1(x)) is also connected.

(c). Let J be a simple closed curve in X. Let p1, p2 ∈ J cut J into two arcs A1

and A2. Then f−1(A1) and f−1(A2) are compact, connected, and have nonconnected
intersection f−1(p1) ∪ f−1(p2). Consider the segment

H1(U) ⊕ H1(V ) → H1(U ∪ V ) → H̃0(U ∩ V )

of the Mayer-Vietoris reduced-homology sequence in the case where U = S2 − f−1(A1)
and V = S2 − f−1(A2). These are simply connected since f−1(A1) and f−1(A2) are
connected, so H1(U)⊕H1(V ) = 0. Also, U ∪V = S2− (f−1(p1)∪f−1(p2)) is connected
but not simply connected, since f−1(p1)∪f−1(p2) is not connected. Thus H1(U∪V ) �= 0,
and hence H̃0(U ∩ V ) �= 0, so U ∩ V = S2 − f−1(J) is not connected. Thus f−1(J)
separates S2, so J separates X.

(d). We suppose that some arc A in X separates x and y in X, and we shall derive
a contradiction.

Choose x′ ∈ f−1(x) and y′ ∈ f−1(y). Notice that f−1(A) separates x′ and y′ in S2.
Consider any p ∈ A. Then p separates A into arcs A1 and A2. We claim that one of

A1 and A2 also separates x and y in X, and it suffices to show that one of f−1(A1) and
f−1(A2) separates x′ and y′ in S2. Now consider the segment

H1(U ∪ V ) → H̃0(U ∩ V ) → H̃0(U) ⊕ H̃0(V )

of the Mayer-Vietoris reduced-homology sequence for the pair U = S2 − f−1(A1)
and V = S2 − f−1(A2). Here U ∪ V = S2 − f−1(p) is simply connected since
f−1(p) is connected, so H1(U ∪ V ) = 0. But x′ − y′ represents a nonzero element of
H̃0(S2 − f−1(A)) = H̃0(U ∩V ), hence maps to a nonzero element of H̃0(U)⊕ H̃0(V ), so
x′ and y′ lie in different components of either U = S2 − f−1(A1) or V = S2 − f−1(A2),
as claimed.

By induction, one obtains arcs A = I0 ⊃ I1 ⊃ · · · which separate x and y in X such
that ∩∞

n=1In contains a single point q which does not separate x from y. But an arc
from x to y in the path-connected open set X − {q} misses some In, a contradiction.
We conclude that A cannot separate X.

The proof of the Moore Decomposition Theorem is complete. �
We now describe the Moore decomposition associated with two transverse “irrational”

foliations of the plane.
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A.4 Notation. Let T be a flat torus. Puncture T at a point x0 to obtain the punctured
torus T0 = T − {x0}, with the induced flat conformal structure. The torus T may be
cellulated by two “triangles” ∆1 and ∆2, each having its three vertices identified at the
single point x0. The torus T has fundamental group π1(T ) = Z2. The fundamental
group of the punctured torus T0 is a free group of rank two. The inclusion map T0 ⊂ T
induces a homomorphism π1(T0) → π1(T ) which is Abelianization.

The torus has universal cover p: R2 → T , with p conformal and covering translations
conformal. The punctured torus T0 has universal cover p0: D → T0, where D is the open
unit disk in R2, with p0 and the covering translations being conformal. The map p0

factors through p, so that we obtain a conformal covering map q0: D → P0, where P0 is
the plane R2 punctured at the points of the Z2-lattice p−1(x0).

D
q0−→ P0 ⊂ R2

p0 ↓ ↓ p|P0 ↓ p

T0 ≡ T0 ⊂ T

Since T0 is punctured at x0, T0 is a finite-area torus, and we may assume that the
triangles ∆1 and ∆2 lift to ideal geodesic triangles in D which tile D. Their images in
R2 are topological disks which we do not know to have straight sides. For our purposes,
however, we may straighten the sides equivariantly so that the images are Euclidean
triangles with the vertices removed.

Any ideal triangle which is a lift of ∆1 or ∆2 has three accumulation points in the
circle S1 = ∂D at infinity, and these are called the cusps of the triangle. They will be
treated as lifts of x0. The point x0, and its lifts in R2, and the punctures of P0 and T0

will all be called cusps also. �
A.5 Discussion. Each point x of S1 may be described as the intersection of a sequence
of small disks in S1 ∪ D each of which has a closed boundary arc in S1 and an open
boundary arc in D. We call such a family of open arcs cuts in D defining x.

Since the cusps in S1 are dense, we may define any point x of S1 by cuts Ci in D

which join cusps.
Unless x is itself a cusp, we may take the Ci to be edges of the lifts of the ideal

triangles ∆1 and ∆2. If x is a cusp, then we may assume that the Ci join cusps of ideal
triangles which have x as a cusp.

Thus the projections of the Ci to R2 have a simple form: they are either the (straight-
ened) edges of Euclidean triangles in our tessellation, or they are paths which start at
one cusp, circle a second cusp (which is adjacent to the first cusp) a finite number of
times, then end at a third cusp adjacent to the second. �
A.6 Notation. Let F1 and F2 denote distinct foliations of R2 by parallel lines of
(distinct) slopes chosen so that no foliation line, or leaf, meets two cusps, that is, points
of the given Z2-lattice. These foliations should behave like foliations with irrational
slope, in the sense that each leaf comes arbitrarily close to the Z2-lattice at each end.

These foliations, when restricted to P0, lift to foliations F̃1 and F̃2 of D. �
We mention as a matter of interest the fact that the foliations F̃1 and F̃2 cannot

possibly consist of hyperbolic geodesics. The reader will be able to construct a proof of
this fact once he or she understands the “spiders” constructed below.
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A.7 Lemma. With Notation A.6, if 
̃ is a leaf of F̃i, then the ends of 
̃ converge to
distinct points of S1.

Hence we may compactify 
̃ by adding two points at infinity. We denote this com-
pactification by cl(
̃), and again call it a leaf .

Proof of Lemma A.7. Let 
 be the projection of 
̃ to P0. Then 
 is either a ray with one
end at a cusp and the second end at infinity, or 
 is a line (infinite in both directions).
For an end which converges to a cusp, one can easily construct paths which start at one
cusp adjacent to the end cusp of 
, circle the end cusp of 
 a finite number of times,
then end at a third cusp adjacent to the end cusp of 
. These lift to cuts in D which
define the end as a point at infinity. For an end of 
 which converges to infinity, the
triangle edges which cross 
 near that end lift to cuts in D which define a single point
at infinity. �
A.8 Lemma. With Notation A.6, no leaf cl(
̃) has two cusps as endpoints.

Proof. The leaf 
 does not meet two cusps. �
A.9 Lemma. If two distinct leaves cl(
̃) and cl(m̃) have common endpoints, then the
intersection of cl(
̃) and cl(m̃) consists of a single cusp.

Proof. The common endpoint must project to a cusp, for all other ends can easily be
separated by cross cuts. But no leaf has two cusps as endpoints. Therefore cl(
̃)∩ cl(m̃)
can contain only that one cusp. �
A.10 Notation. We consider the upper open hemisphere D1 of S2 to be a copy of
the hyperbolic unit disk D. We consider the lower open hemisphere D2 of S2 to be
another copy of the hyperbolic unit disk D. These two copies have common boundary
S1 = ∂(D).

Applying Notation A.6, we put one copy of F̃1 in the upper hemisphere D1 of S2, one
copy of F̃2 in the lower hemisphere D2. We define two points of S2 to be equivalent if
they lie in the closure of the same leaf of F̃1 or F̃2. Taking the reflexive, transitive closure
of this relation we get an equivalence relation ≈. We shall see later that transitivity is
achieved after only two steps. Let S2/≈ denote the set of equivalences classes, let X
denote this set endowed with the quotient topology, and let π: S2 → X = S2/≈ be the
identification map. �

We shall show that π: S2 → X satisfies the conditions of the Moore Decomposition
Theorem.

A.11 Lemma. With Notation A.10, each equivalence class g ∈ S2/≈ is a compact, con-
nected, proper subset of S2 that does not separate S2, and consequently, its complement
is homeomorphic with R2.

Proof. By Lemmas A.8 and A.9, if g contains more than one point, it is of one of two
types. The first is the closure cl(
̃) of a leaf whose endpoints are not cusps; such an
element is an arc and does not separate S2. The second is the union of countably many
arcs meeting at a cusp, half of them from F̃1 and lying in the upper hemisphere cl(D1) of
S2, the other half lying in the lower hemisphere cl(D2) of S2 and coming from F̃2. These
arcs all project to rays, namely the two rays in F1 and the two rays in F2 emanating
from a single cusp, that is a point of the Z2-lattice in R2. To show that such a g is
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compact, it suffices to prove that the arcs exiting from a cusp v form a null sequence as
measured in the Euclidean metric.

There are exactly six triangles T1, T2, . . . , T6 in P0 containing a given cusp. The lifts
of these six triangles at a point v of S1 = ∂(D) above this cusp form an infinite cycle at
v which consists of lifts of the six triangles repeated cyclically, infinitely often.

If the four rays of F1 and F2 beginning at q0(v) ∈ R2 exit into, say Ti and Ti+3,
Tj and Tj+3, then the corresponding leaves of F̃1 and F̃2 are trapped in successively
smaller regions cut off by the lifts of those triangles. Hence these leaves have Euclidean
diameter going to 0. Hence g is compact.

Obviously g does not separate S2. It has the appearance of a spider with infinitely
many legs. �
A.12 Lemma. With Notation A.10, X = S2/≈ is Hausdorff.

Proof. Let g1, g2, . . . be a sequence of elements of S2/≈ containing points x1, x2, . . . →
x ∈ g ∈ S2/≈ and y1, y2, . . . → y ∈ h ∈ S2/≈. It suffices to prove that g = h.

Let cl(
̃1), cl(
̃2), . . . be leaves containing x1, x2, . . . and cl(m̃1), cl(m̃2), . . . be leaves
containing y1, y2, . . . . Then cl(
̃i) and cl(m̃i) share a common endpoint vi. If vi is not
a cusp, then 
̃i = m̃i. We may assume that vi → v. We shall show that the equivalence
class of v contains both x and y.

We may assume that the leaves cl(
̃i) converge to a continuum 
 containing v and x,
and that the leaves cl(m̃i) converge to a continuum m containing v and y; recall that a
continuum is a compact, connected, Hausdorff space.

We shall show that, if v �= x, then 
 lies in an element of S2/≈, and similarly for m.
This will show that x ≈ v ≈ y.

Suppose first that 
 ⊆ S1 and v �= x. Choose a cusp v′ between v and x in 
 such
that each triangle containing v′ is small. Pick a triangle ∆ at v′ whose other cusps a, b
say, are on either side of v′; by the smallness of ∆ they lie in 
, between v and x. Let ∆′

be the other triangle having a, v′ as cusps, and let ∆′′ be the other triangle having b,
v′ as cusps. Then, for i large, cl(
̃i) must intersect ∆′, ∆, and ∆′′. Hence cl(
̃i) cannot
be close to x and v, a contradiction.

Therefore we may assume 
 contains a point z ∈ D1 or D2, say D1. Then the 
i’s
must eventually be leaves of F̃1 that contain points converging to z. It follows that the

i’s converge to the lift of a single line in F̃1 which may be the lift of one line missing
Z2 or the lift of two collinear rays from a single element of Z2. Since those two lifted
rays lie in the same element of S2/≈, we see that 
 lies in an element of S2/≈, so v ≈ x.
Similarly, v ≈ y, and the desired result follows. �
A.13 Theorem. With Notation A2.7, the quotient map π: S2 → X = S2/≈ satisfies
the conditions of the Moore Decomposition Theorem A.1, so X is a two-sphere. �
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