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Abstract

Let G be a locally indicable group, K a division ring, and KG
a crossed-product group ring. In 1961, Ian Hughes proved that,
up to KG-isomorphism, at most one division ring of fractions of
KG satisfies a certain independence condition, now called Hughes
freeness. This result was applied by others in work on division
rings of fractions of group rings of free groups. In this article, we
introduce concepts that illuminate Hughes’ arguments, and we
simplify the proof of the theorem.
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1 Statement of Hughes’ Theorem

In this section, we recall some terminology and state Hughes’ theorem.
Let K be a division ring and G a multiplicative group.
Let KG be a crossed-product group ring (formed from K and G).

Thus KG is a ring R having K as a subring (or, more precisely, there is
a specified embedding of K in R), together with a specified left K-basis
B of R, such that K×B is a subgroup of the group of units of R, K×
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is normal in K×B, and the resulting quotient group is G (or, more
precisely, is isomorphic to G via a specified isomorphism).

Here, and in similar situations throughout, K× denotes the group of
units of K, and K×B denotes the set of those elements of R which can
be expressed as the product of an element of K× followed by an element
of B.

Notice that there is a bijection B → (K×B)/K× = G. Although the
inverse of this bijection determines an embedding G ↪→ KG, we do not
usually view G as a subset of KG (except in the case where B is closed
under multiplication, that is, KG is a skew group ring). Nonetheless, we
shall write K×G to denote the group K×B.

It is not difficult to show that each subgroup H of G gives rise to a
subring KH of KG which is a crossed-product group ring.

By a division ring of fractions of KG we mean a division ring D
containing KG as a subring which rationally generates D. In other
words, each element of D can be built up from the elements of KG
in stages, using addition, subtraction, multiplication, and division by
nonzero elements.

Two division rings of fractions of KG are said to be KG-isomorphic
if there exists a (unique) isomorphism over KG between them.

We say that G is indicable if either G is trivial or G has an infinite
cyclic quotient group. Thus free groups and free abelian groups are
indicable.

If G is nontrivial and indicable, then there exists a normal subgroup
H of G such that G/H is infinite cyclic. Here there exists an element t
of G such that tH generates G/H. Let C denote the (cyclic) subgroup
of G generated by t. Then G/H is a quotient of C, and therefore C is
infinite and C ∩H = 1. Thus we have an expression of G as an internal
semidirect product G = H o C with C infinite cyclic. Groups with
expressions of this form are precisely the nontrivial indicable groups.

We say that G is locally indicable if every finitely generated subgroup
of G is indicable. Thus free groups, locally free groups, and torsion-free
abelian groups are locally indicable.

Let G be locally indicable, for the remainder of this section.
Notice that G is torsion free. Graham Higman[1] showed that KG

has no nonzero zerodivisors and that K×G is the group of units of KG,
since the grading arguments of his Section 4 apply to crossed-product
group rings.

Suppose that D is a division ring of fractions of KG. For each sub-
group H of G, let D(H) be the (division) subring of D rationally gener-
ated by KH. We say that D is a Hughes-free division ring of fractions of
KG if, for each nontrivial finitely generated subgroup H of G, and each
expression of H as an internal semidirect product N oC with C infinite
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cyclic, the (faithful) image of C in KC ⊆ D is left D(N)-independent
in D(N o C) = D(H). This latter condition means the following: If
t ∈ KC ⊆ D is the image of a generator of C, and d0, . . . , dn is a fi-
nite family in D(N) ⊆ D for which d0 + d1t + · · · + dntn = 0D, then
d0 = · · · = dn = 0.

It is not known when KG has a Hughes-free division ring of fractions,
or any division ring of fractions at all. In his 1961, Oxford DPhil thesis,
written under the supervision of Graham Higman, Ian Hughes[2] proved
that KG has at most one Hughes-free division ring of fractions, up to
KG-isomorphism.

In 1970, Hughes[3] published the proof in a compressed form that
is about one-sixth as long as the original proof. In this article, we in-
troduce concepts that illuminate Hughes’ arguments, and overall give a
simplified, complete proof that is about two-thirds as long as the original
proof.

Hughes’ result has played an important rôle in the study of division
rings of fractions of group rings of free groups, in that Jacques Lewin[4]

and Peter Linnell[5],[6] have used it to link such diverse concepts as uni-
versal division rings of fractions of firs, Mal’cev-Neumann power-series
group rings, and group von Neumann algebras.

2 Monoids and semirings

The purpose of this brief section is to introduce conventions and notation
which will be used throughout.

2.1 Conventions. Additive semigroups (and, hence, additive monoids
and groups) will be commutative; where there is a neutral element, it is
called the zero element and denoted 0.

By an additive map we mean a morphism of additive semigroups.
Multiplicative monoids (and, hence, multiplicative groups) need not

be commutative; the neutral element is called the identity element and
denoted 1.

By a multiplicative map we mean a morphism of multiplicative mon-
oids, so that the identity elements are respected.

2.2 Notation. Let N be an additive monoid, and let X be a set.
We write NX for the set of all functions from X to N , with the

coordinate-wise additive-monoid structure. Here the zero element is the
zero constant function.

For each f ∈ NX , we define the support of f as

supp(f):= {x ∈ X | f(x) 6= 0}.
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Thus supp(f) = ∅ if and only if f = 0.
We write N (X) for the submonoid of NX consisting of all elements

of NX with finite support.
We define N [X] to be the monoid N (X), but with each f ∈ N (X)

expressed as
∑

x∈X

f(x)x ∈ N [X], the formal sum of the elements of the

graph of f .

We shall be interested in the case where N = N.

2.3 Remarks. Let X be a set.
The free additive monoid on X is N[X], and the free additive semi-

group on X is N[X] \ {0}.
For x ∈ X, we identify x with the characteristic function of {x},

which sends x to 1, and sends all other elements of X to 0. Thus

X ⊆ N[X] \ {0} ⊂ N[X].

2.4 Definitions. By a semiring R we mean a set R endowed with an
addition and a multiplication which give R the structure of an additive
semigroup and a multiplicative monoid, respectively, and such that the
multiplication is left and right distributive over the addition. In partic-
ular, R has an identity element but need not have a zero element.

If S is a semiring, then we define S∪{∞} to be the semiring R which
is the set consisting of S together with a new element, ∞, such that S
is a subsemiring of R, and {∞}+ R = {∞} ·R = R · {∞} = {∞}.

By a rational semiring R we mean simply a semiring R endowed with
a self-map, called the ∗-map, denoted R → R, r 7→ r∗.

Eventually, we shall construct four rational semirings. The following
is the first, and is fundamental.

2.5 Example. If D is a division ring, then D and D ∪ {∞} are semi-
rings, as in Definitions 2.4. We extend the map D× → D×, x 7→ x−1,
to a ∗-map on D ∪ {∞} in which 0∗:= ∞∗:= ∞. Thus D ∪ {∞} is a
rational semiring.

3 The rational semiring of finite rooted trees

In this section, we collect together standard material on finite rooted
trees, and construct the rational semiring which will be used to measure
the complexity of elements of another rational semiring.
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3.1 Definitions. Let T denote the set of all (isomorphism classes of)
finite rooted trees.

We think of a rooted tree as an oriented tree in which each vertex is
the terminal vertex of at most one edge, and the root is not the terminal
vertex of any edge; this distinguishes the root.

We give T the structure of a rational semiring as follows.
Let X,Y ∈ T .
The sum X + Y is obtained from the disjoint union X ∪ Y by iden-

tifying the root of X with the root of Y , so the resulting vertex is the
new root. (This is the wedge of X and Y , also denoted X ∨ Y .) Then T
is an additive monoid, and the zero element 0T is the tree with exactly
one vertex.

We define the family of X, denoted fam(X), as the set of components
of the graph obtained by deleting the root of X and all incident edges.
We view fam(X) as a finite family of finite rooted trees, with multiplic-
ities; here the root of each component is the vertex that was incident to
the deleted edge. Notice that fam(0T ) is empty.

Since each element of fam(X) has fewer edges than X itself, we can
recursively define height(X) as follows: height(0T ) = 0; if X 6= 0T , then
height(X) is one more than the maximum of the heights of the elements
of fam(X).

We define width(X) to be the number of elements in fam(X). In a
tree of width one, the root is incident to a unique edge, called the stem.

We define expanded X, denoted exp(X), as the tree obtained from
X by adding a stem, that is, we add a new vertex, and a new oriented
edge which joins the new vertex to the root of X; here the new vertex
is the root of exp(X). Notice that height(exp(X)) = height(X) + 1.

We have
X =

∑

X′∈fam(X)

exp(X ′),

a (possibly empty) sum of trees with stems. We define the product

X · Y :=
∑

X′∈fam(X)

∑

Y ′∈fam(Y )

exp(X ′ + Y ′).

Thus, the product of two trees with stems identifies the stems, and the
multiplication is then extended distributively. Clearly, the multiplication
is commutative. The identity element 1T = exp(0T ) is the tree with
exactly one edge.

We remark that fam(X +Y ) can be thought of as fam(X) ∪ fam(Y ),
and that fam(X · Y ) can be thought of as fam(X) + fam(Y ), provided
that multiplicities are taken into account.
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It is readily verified that T is a semiring. We make T into a rational
semiring with the ∗-map given by X∗:= exp2(X), which is X with a
double-length stem adjoined.

3.2 Definitions. We now define a total order ≥ on T .
We let 0T be the least element of T .
For n ∈ N, let Tn denote the set consisting of all the elements of T

which have at most n edges.
We have ordered T0 = {0T }.
Suppose that n ≥ 1, and that we have ordered Tn−1.
Consider any X, Y ∈ Tn \ {0T }.
Notice that fam(X) is a nonempty, finite family in the totally ordered

set Tn−1. We define log X to be the largest element of Tn−1 belonging to
fam(X). Then exp(log X) is a summand of X; we denote the complement
by X−exp log X. Thus, X can be recovered from log X and X−exp log X
by adding an oriented edge joining the root of X − exp log X to the root
of log X.

Now log X, log Y , X−exp log X and Y −exp log Y all lie in the totally
ordered set Tn−1. If log X = log Y and X − exp log X = Y − exp log Y ,
then X = Y . We define X > Y to mean

(log X > log Y ) or (log X = log Y and X − exp log X > Y − exp log Y ).

This completes the recursive definition of the total ordering on T .
One can show, by induction on n, that the ordering on T refines the

partial ordering by height and height(log X) = height(X)− 1.
Clearly width(X − exp log X) = width(X)− 1.

The following is well known.

3.3 Lemma. T is well ordered.

Proof. Suppose not, so that there exists a strictly descending sequence

T0 > T1 > T2 > · · · (1)

in T , and hence in T \ {0T }. We shall obtain a contradiction.
We may assume that (1) has been chosen to minimize height(T0). It

follows that the set consisting of those elements of T whose height is
at most height(T0) − 1, is well ordered. Thus, we may make the much
stronger assumption that (1) has been chosen to minimize log T0.

With log T0 fixed, we may further assume that (1) has been chosen
to minimize width(T0).

By the definition of the ordering,

log T0 ≥ log T1 ≥ log T2 ≥ · · · .
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If, for some n ∈ N, log T0 > log Tn, then we could omit the first n terms
from (1) and obtain a contradiction to the minimality of log T0. Thus

log T0 = log T1 = log T2 = · · · .

By the definition of the ordering,

T0 − exp log T0 > T1 − exp log T1 > T2 − exp log T2 > · · · .

It follows from the minimality of log T0 that

log(T0 − exp log T0) ≥ log(T0);

clearly, equality must hold. It follows from the minimality of width(T0)
with log T0 fixed that width(T0−exp log T0) ≥ width(T0); this is absurd.

We have not defined log(0T ), and it is convenient to have an inter-
pretation for this expression.

3.4 Notation. Let T ∪ {−∞} be a semiring as in Definitions 2.4.
Extend the order on T to an order on T ∪ {−∞} so that −∞ is the

new smallest element.
Define log(0T ):= −∞ and log(−∞):= −∞.

We leave the proof of the following to the reader.

3.5 Lemma. If X, Y, X ′, Y ′ ∈ T , then the following hold.

(i) If X ′ ≤ X and Y ′ ≤ Y , then X ′ + Y ′ ≤ X + Y , and equality holds
if and only if X ′ = X and Y ′ = Y .

(ii) X ≤ X + Y , and equality holds if and only if Y = 0T .

(iii) If X and Y are nonzero, then X ≤ X ·Y , and equality holds if and
only if Y = 1T .

(iv) log(X + Y ) = max{log X, log Y }.
(v) log(X · Y ) = log X + log Y .

(vi) log2(X + Y ) = max{log2X, log2Y }.
(vii) log2(X · Y ) ≤ max{log2X, log2Y }, and equality holds if X and Y

are nonzero.
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4 Universal rational semirings

Throughout this section and the next, let U be a multiplicative group.

4.1 Definitions. By a U -semiring R we mean a semiring R given with a
multiplicative map φ : U → R. Thus the identity elements are respected,
and R has a U -biset structure.

By a rational U -semiring R we mean a rational semiring R which is
a U -semiring such that the ∗-map on R is an anti-map of U -bisets, that
is,

(urv)∗ = v−1r∗u−1 for all r ∈ R, u, v ∈ U.

By a morphism of rational U -semirings Φ: R1 → R2 we mean a map be-
tween two rational U -semirings which commutes with all the operations,
that is, the sum, the product, the identity element, the ∗-map, and the
map from U .

4.2 Examples. (i) If D is a division ring, then the rational semiring
D ∪ {∞} of Example 2.5 is a rational D×-semiring.

Hence, if U is a subgroup of D×, then D∪{∞} is a rational U -semi-
ring.

(ii) By Definitions 3.1, T is a rational semiring. We make T into a
rational U -semiring via the trivial multiplicative map U → T which
sends every element of U to 1T . Here the U -biset structure is trivial.

We now explain how to construct formal rational expressions starting
from U . First, we describe an aspect of the multiplication we shall be
using.

4.3 Definitions. (i) Let X1 and X2 be U -bisets.
We define X1 ×U X2 to be (X1 × X2)/∼ where (x1, x2) ∼ (x′1, x

′
2)

if and only if there exists u ∈ U such that x1u = x′1 and u−1x2 = x′2.
This is easily seen to be an equivalence relation. The equivalence class
of (x1, x2) will be denoted x1 ×U x2 or x1x2.

There is a natural U -biset structure on X1 ×U X2.
If X3 is a U -biset then there is a natural identification

(X1 ×U X2)×U X3 = X1 ×U (X2 ×U X3),

and we denote this U -biset as X1 ×U X2 ×U X3. Similar conventions
apply for any finite number of U -bisets.

(ii) Suppose that U is a subgroup of some group W .
If Y is a W -biset, then a subset X of Y is said to be an admissible

U -sub-biset of the W -biset Y if X is closed under left and right multi-
plication by the elements of U , and, moreover, for all w ∈ W \ U both
X ∩ wX and X ∩Xw are empty.
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If Y1 and Y2 are W -bisets and X1 (resp. X2) is an admissible
U -sub-biset of the W -biset Y1 (resp. Y2), it is not difficult to show
that the natural map X1 ×U X2 → Y1 ×W Y2 is injective. In this situ-
ation, we usually identify X1 ×U X2 with its image in Y1 ×W Y2. It is
not difficult to show that X1 ×U X2 is (identified with) an admissible
U -sub-biset of the W -biset Y1 ×W Y2.

Next, we describe the addition and multiplication we shall be using.

4.4 Definition. Let X be a U -biset.
The free multiplicative monoid on X over U is the multiplicative

monoid
U\X:= U ∪X ∪ (X ×U X) ∪ · · · = ∪

n∈N
X×n

U ,

presented with generating set U∪X, and with those relations which come
from the multiplication in U , together with those which come from the
left and right actions of U on X. (We suggest that here U\X could be
pronounced as ‘U adjoin X’ as well as ‘U natural X’.) Clearly U is a
submonoid of U\X.

The free additive semigroup on U\X, N[U\X]\{0}, then has a natural
U -semiring structure.

Let us digress to remark that N[U\X] \ {0} is a subsemiring of the
monoid ring Z[U\X], and the latter can be viewed as the tensor ring

R〈B〉:= R⊕B ⊕ (B ⊗R B)⊕ · · · = ⊕
n∈N

B⊗n
R ,

where R is the group ring Z[U ], and B is the R-bimodule Z[X].

We next introduce the ∗-maps we shall be using.

4.5 Notation. If B is a U -biset, then B† denotes a disjoint copy of B,
with bijective map B → B†, b 7→ b∗, and we endow B† with a U -biset
structure by defining ub∗v:= (v−1bu−1)∗, for all u, v ∈ U, b ∈ B.

We can now construct the rational U -semiring of interest.

4.6 Definition. Since N[U ] \ {0} is a U -semiring, it is a U -biset; we set
X1:= (N[U ] \ {0})†, and X0:= ∅, a U -sub-biset of X1.

Now suppose that n ≥ 1, and that we are given a U -biset Xn and a
U -sub-biset Xn−1.

Then N[U\Xn] is a U -semiring, and N[U\Xn]\N[U\Xn−1] is a U -sub-
biset. We set Xn+1:= (N[U\Xn] \ N[U\Xn−1])† ∪Xn.

Thus we have recursively defined an ascending chain (Xn) of U -bisets.
We denote the union of this chain by X, a U -biset, and define

the universal rational U -semiring as Rat(U):= N[U\X] \ {0}, a ra-
tional U -semiring with a ∗-map which carries N[U ] \ {0} to X1, and
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N[U\Xn] \ N[U\Xn−1] to Xn+1 \Xn, for each n ≥ 1. By induction, the
∗-map carries N[U\Xn] \ {0} to Xn+1, for each n ≥ 0. On taking unions
we see that the ∗-map (bijectively) carries Rat(U) to X.

We define Rat(U) ∪ {0} to be the U -semiring N[U\X].

We now present the universal property of Rat(U) which we shall
apply in four quite different situations.

4.7 Lemma. If U is a multiplicative group, and R a rational U -semi-
ring, then there exists a unique morphism Φ: Rat(U) → R of rational
U -semirings.

We remark that, if R has a zero element, then Φ extends to an addi-
tive map Φ′ : Rat(U)∪ {0} → R, and this is a morphism of U -semirings
if we have

{0R} ·R = R · {0R} = {0R}.
Proof of Lemma 4.7. We use the notation of Definition 4.6.

Let ψ0 : X0 (= ∅) → R be the inclusion map, a morphism of U -bisets.
Suppose that n ≥ 0, and that ψn : Xn → R is a morphism of U -bisets.
Then ψn induces a morphism of U -semirings φn : N[U\Xn]\{0} → R.

Now we define ψn+1 : Xn+1 → R, by

ψn+1(f∗):= (φn(f))∗ for all f ∈ N[U\Xn] \ {0}.
This is a morphism of U -bisets.

Thus we have recursively defined a sequence (ψn) of morphisms of
U -bisets.

It is easy to prove, by induction, that ψn+1 agrees with ψn on Xn,
for all n ≥ 0. Taking unions, or limits, we get a morphism of U -bisets,
Ψ: X → R, and this induces a morphism of rational U -semirings

Φ: N[U\X] \ {0} → R,

as desired.
It is straightforward to check that there is only one such morphism.

The following are important.

4.8 Examples. (i) If U is a subgroup of some group W , then, applying
Lemma 4.7 with R = Rat(W ), we get a morphism of rational U -semirings

Rat(U) → Rat(W ).

We leave it as an exercise to show that Rat(U) is (identified with) an
admissible U -sub-biset of the W -biset Rat(W ); in particular, Rat(U)
can be treated as a rational subsemiring of Rat(W ).
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(ii) Let D be a division ring, and let D ∪ {∞} have the structure of a
rational D×-semiring, as in Example 4.2(i).

Applying Lemma 4.7 with U = D× and R = D ∪ {∞}, we get a
morphism of rational D×-semirings, Φ: Rat(D×) → D ∪ {∞}.

Similarly, if U is a subgroup of D×, then we get a morphism of
rational U -semirings, Ψ: Rat(U) → D ∪ {∞}, and Ψ can be thought of
as the restriction of Φ.

(iii) By Example 4.2(ii), T is a rational U -semiring. Applying Lemma 4.7
with R = T , we get a morphism of U -semirings,

Tree : Rat(U) ∪ {0} → T ;

for f ∈ Rat(U) ∪ {0}, we call Tree(f) the complexity of f .

We now record the basic properties of the complexity, most of which
follow from Lemma 3.5.

4.9 Lemma. If f, g ∈ Rat(U) ∪ {0}, then the following hold.

(i) Tree(f) = 0T if and only if f = 0.

(ii) Tree(f) = 1T if and only if f ∈ U .

(iii) Tree(f + g) = Tree(f) + Tree(g).

(iv) Tree(f) ≤ Tree(f + g), and equality holds if and only if g = 0.

(v) Tree(fg) = Tree(f) · Tree(g).

(vi) If f and g are nonzero, then Tree(f) ≤ Tree(fg), and equality
holds if and only if g ∈ U .

(vii) log(Tree(f + g)) = max{log(Tree(f)), log(Tree(g))}.
(viii) log(Tree(fg)) = log(Tree(f)) + log(Tree(g)).

(ix) log2(Tree(f + g)) = max{log2(Tree(f)), log2(Tree(g))}.
(x) log2(Tree(fg)) ≤ max{log2(Tree(f)), log2(Tree(g))}, and equality

holds if f and g are nonzero.

(xi) If f is nonzero, then Tree(f∗) > log2(Tree(f∗)) = Tree(f).

5 Source subgroups

Again, throughout this section, U is a multiplicative group.
In this section, we study Rat(U) in some detail. The sole objective

here is to prove that, for each f ∈ Rat(U), there exists a (unique) small-
est subgroup V of U such that f ∈ Rat(V ) ·U ; we will then observe that
V is finitely generated. The techniques used underlie Hughes’ original
argument.



12 On a theorem of Ian Hughes about division rings of fractions

5.1 Definitions. We use the notation of Definition 4.6.
We define a subset Q of X, and a subset P of N[U\X] \ {0}.
Let Q0 = X0 (= ∅).
Suppose that n ≥ 0, and that we have defined a subset Qn of Xn.
Let 〈Qn〉 denote the submonoid of U\Xn generated by Qn, and set

Pn:= 〈Qn〉+ N[U\Xn], Qn+1:= P ∗n . (2)

Notice Pn ⊆ N[U\Xn] \ {0}, and therefore

Qn+1 = P ∗n ⊆ (N[U\Xn] \ {0})∗ = Xn+1.

Thus we have recursively defined a sequence (Qn) of subsets of X,
and we also have a sequence (Pn) of subsets of N[U\X] \ {0}.

Clearly Q0 (= ∅) is contained in Q1.
Suppose that n ≥ 1, and that Qn−1 is contained in Qn.
Then 〈Qn−1〉 ⊆ 〈Qn〉, and, by (2), Pn−1 ⊆ Pn and Qn ⊆ Qn+1.
By induction, the sequence (Qn) is an ascending chain.
We define Q to be the union of this chain.
By (2), (Pn) is an ascending chain. We define P to be the union of

this chain, and call P the set of primitive elements of N[U\X] \ {0}.
5.2 Lemma. With notation as in Definitions 5.1, the following hold.

(i) P = 〈Q〉+ N[U\X] and Q = P ∗.

(ii) The sets Q, 〈Q〉 and P are closed under U -conjugation.

(iii) QU = UQ = X.

(iv) 〈Q〉U = U〈Q〉 = U\X.

(v) PU = UP = N[U\X] \ {0}.
Proof. (i) holds because, for each n, we have (2), and we then take the
ascending union over all n.

(ii)–(v) It is clear that Q0 (= ∅) is closed under U -conjugation, and
that Q0U = UQ0 = X0 (= ∅).

Now suppose that n ≥ 0, and that Qn is closed under U -conjugation,
and that QnU = UQn = Xn.

Then 〈Qn〉 is closed under U -conjugation, and it is clear from (2)
that Pn and Qn+1 are closed under U -conjugation.

Since 〈Qn〉 is closed under U -conjugation, it follows that

U〈Qn〉 = 〈Qn〉U.

Moreover, the latter is a submonoid of U\Xn which contains U and
UQn = Xn, and these generate U\Xn. Thus U〈Qn〉 = 〈Qn〉U = U\Xn.
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By (2),

UPn = U(〈Qn〉+ N[U\Xn]) = U\Xn + N[U\Xn] = N[U\Xn] \ {0}.

Thus Xn+1 = (N[U\Xn] \ {0})∗ = (UPn)∗ = P ∗nU−1 = Qn+1U.
Similarly, PnU = N[U\Xn] \ {0}, and Xn+1 = UQn+1.
Now by induction, and taking unions, (ii) and (iii) hold. Moreover,

the foregoing argument shows that (iv) and (v) follow.

5.3 Definition. We use the notation of Definitions 5.1.
Let p ∈ P and u ∈ U .
Recall that pu ∈ P by Lemma 5.2(ii).
We now recursively define the source subgroup for p, which is denoted

sourceU (p), or source(p). In the course of the definition, we (need to)
prove that

source(pu) = (source(p))u,

and, moreover, if pu ∈ P , then u ∈ source(p) and source(pu) = source(p).
Without loss of generality, we assume that, for each element of P

of lesser complexity, the source subgroup is defined and has the above
properties; we call this type of hypothesis a “transfinite induction hy-
pothesis”.

We have a partition of P = 〈Q〉+ N[U\X] into four sets:

{1}, Q, 〈Q〉 \ (Q ∪ {1}), 〈Q〉+ (N[U\X] \ {0}). (3)

We now consider these four sets in order of difficulty.

Case 1. We define source(1) to be the trivial subgroup of U , and it is
clear that the desired properties hold.

Case 2. Suppose that p ∈ 〈Q〉+ (N[U\X] \ {0}).
There is then an expression

p =
n∑

i=1

fi,

where n ≥ 2, fi ∈ U\X = 〈Q〉U for each i, and fi0 ∈ 〈Q〉 for some i0.
Thus fi = piui for some pi ∈ 〈Q〉 and ui ∈ U ; by Lemma 4.9(vi)
and (iv), Tree(pi) = Tree(fi) < Tree(p). Further, we may assume that
ui0 = 1. We then define source(p) to be the subgroup of U generated by
n∪

i=1
(source(pi) ∪ {ui}).
Consider the following argument. Suppose that pu ∈ P ; then

fi′0u ∈ 〈Q〉 for some i′0.
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For each i, choose an expression fiu = p′iu
′
i with p′i ∈ 〈Q〉 and u′i ∈ U ;

then p′i = piuiuu′−1
i and uiuu′−1

i ∈ source(p′i) = source(pi), by the
transfinite induction hypothesis. Further, we may assume u′i′0 = 1.

The special case of this argument where u = 1 shows that source(p)
is well defined.

The general case, together with the fact that ui0 = u′i′0 = 1, shows
that, if pu ∈ P , then u ∈ source(p) = source(pu).

Using the transfinite induction hypothesis, one can show that

source(pu) = (source(p))u.

Case 3. Suppose that p ∈ 〈Q〉 \ (Q ∪ {1}).
There is then an expression p = qr, where q ∈ Q, and r ∈ 〈Q〉 \ {1}.

By Lemma 4.9(vi), Tree(q) < Tree(p) and Tree(r) < Tree(p). We define
source(p) to be the subgroup of U generated by source(q) ∪ source(r).

Consider the following argument. Suppose that pu ∈ P . We can
write pu = q′r′ where q′ ∈ Q and r′ ∈ 〈Q〉 \ {1}. In a natural way,

U\X = U ∪ (X ×U (U\X)),

and thus q′×
U

r′ = q×
U

ru. This means that there exists v ∈ U such that
q′ = qv and r′ = v−1ru, that is, rvv−1u. By the transfinite induction
hypothesis,

v ∈ source(q′) = source(q),

v−1u ∈ source(r′) = source(rv) = v−1 source(r)v.

The special case of this argument where u = 1 shows that source(p)
is well defined.

The general case shows that, if pu ∈ P , then

u ∈ source(p) = source(pu).

Using the transfinite induction hypothesis, one can show that

source(pu) = (source(p))u.

Case 4. Suppose that p ∈ Q.
Then p = r∗ where r ∈ P . By Lemma 4.9(xi), Tree(r) < Tree(p). We

define source(p) = source(r). Since r is unique, source(p) is well defined.
Now pu = r∗u = ru∗, and hence

source(pu) = source(ru) = (source(r))u = (source(p))u.
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Suppose pu ∈ P . Since pu = r∗u = (u−1r)∗ = (ruu−1)∗, we see
ruu−1 ∈ P , and, by definition, source(pu) = source(ruu−1). Thus, ru

and ruu−1 lie in P , and, by the transfinite induction hypothesis,

u−1 ∈ source(ruu−1) = source(ru) = (source(r))u.

Hence u ∈ source(ruu−1) = source(r), that is,

u ∈ source(pu) = source(p).

This completes the recursive definition.

5.4 Lemma. If p is a primitive element of Rat(U), then the following
hold.

(i) source(p) is finitely generated.
(ii) p ∈ Rat(source(p)).
(iii) If U is a subgroup of some group W , then p is primitive in Rat(W )

and sourceW (p) = sourceU (p).

Proof. All these statements can be proved by transfinite induction, using
the recursive definition of source(p).

5.5 Definition. We use the notation of Definition 5.3.
Consider any f ∈ Rat(U) = N[U\X]\{0}. By Lemma 5.2(v), we can

write f = pu for some p ∈ P , u ∈ U . We define

source(f) = source(p).

If f = p′u′ for some p′ ∈ P , u′ ∈ U , then p′ = puu′−1, and then, by
Definition 5.3, source(p′) = source(p). Thus source(f) is well defined.

5.6 Remark. It is immediate from Definition 5.5, and Lemma 5.4(i)
and (ii), that, for each f ∈ Rat(U), the subgroup source(f) is finitely
generated, and f ∈ Rat(source(f)) · U .

5.7 Theorem. Let U be a multiplicative group, and let f ∈ Rat(U). The
set consisting of those subgroups V of U such that f ∈ Rat(V ) ·U , has a
(unique) smallest element, source(f), and source(f) is finitely generated.

Proof. Suppose that V is a subgroup of U such that f ∈ Rat(V ) · U .
We can write f = gu for some g ∈ Rat(V ), u ∈ U . We can then write
g = pv for some v ∈ V , and p a primitive element of Rat(V ), and hence
of Rat(U), by the first part of Lemma 5.4(iii). Then f = gu = pvu, and,
by the second part of Lemma 5.4(iii),

source(f) = sourceU (p) = sourceV (p) ≤ V.

Together with Remark 5.6, this completes the proof.
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6 Skew Laurent-series constructions

In this section, we let E be a division ring, and α be an automorphism
of E.

For certain U , we shall find that elements of Rat(U) are controlled
by elements of lesser complexity.

6.1 Definition. In the additive group EZ, let E[Z] denote the subgroup
consisting of all of those elements whose supports are well ordered, that
is, bounded below.

Let t be an indeterminate, and form the skew Laurent-series ring
E((t; α)), abbreviated E((t)). As an additive group, E((t)) is E[Z], but
an element f = (dn) ∈ E[Z] is represented by the expression

∑

n∈Z
dntn ∈ E((t)),

or sometimes
∑
n∈Z

fn, where we understand fn = dntn. Multiplication in

E((t)) is given by using the formulas tntm:= tn+m, tnd:= αn(d)tn, for
all d ∈ E, m,n ∈ Z, and extending distributively and continuously.

It can be shown that E((t)) is again a division ring. It is worth
mentioning inverses. Consider

f =
∑

n∈Z
fn ∈ E((t)) \ {0},

and let N denote the least element of the support of f . Set g = fN − f .
Then ff−1

N = 1 − gf−1
N . Thus

∑
m≥0

(gf−1
N )m converges to an element of

E((t)), and this is the inverse of ff−1
N , that is, fNf−1. Hence we can

write
f−1 =

∑

m≥0

f−1
N (gf−1

N )m.

Let E[t; α] denote the subring of E((t)) consisting of those elements
whose support is a finite subset of N. We call E[t; α] a skew polynomial
ring. Then E[t; α] is a (not necessarily commutative) principal ideal
domain, and therefore, up to E[t;α]-isomorphism, it has a unique (Ore)
division ring of fractions, denoted E(t;α), which we can take to be the
subring of E((t; α)) rationally generated by E[t; α].

Let E×〈t〉 denote the subset of E((t)) consisting of elements whose
support contains exactly one element. This is an internal semidirect
product E×oα 〈t〉, and a subgroup of (E((t;α)))× and of (E(t; α))×.

We now consider a formal analogue of the foregoing; this is the most
important construction in Hughes’ argument.
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6.2 Definitions. (i) We write E((t)) for E((t; α)), and write E×〈t〉 for
E× oα 〈t〉.

As in Example 4.8(ii), there is a morphism of rational E×〈t〉-semi-
rings, Φ: Rat(E×〈t〉) → E((t)) ∪ {∞}, and, clearly, Φ extends to an
additive map Φ′ : Rat(E×〈t〉) ∪ {0} → E((t)) ∪ {∞}.

We shall construct a rational E×〈t〉-semiring Rat(E×)((t; α))∪{∞},
and factor Φ through it.

(ii) First, we construct an E×〈t〉-semiring Rat(E×)((t;α)), or, in abbre-
viated form, Rat(E×)((t)).

Notice that α induces a group automorphism of E×, and, by Lem-
ma 4.7, this induces a semiring automorphism of Rat(E×) ∪ {0}, again
denoted α. The semiring Rat(E×〈t〉) contains copies of Rat(E×) and
〈t〉, and we denote the product by Rat(E×)〈t〉; this is a multiplicative
submonoid of Rat(E×〈t〉) because t normalizes Rat(E×). Thus

E×〈t〉 ⊆ Rat(E×)〈t〉 ⊆ Rat(E×〈t〉).
In the additive monoid (Rat(E×) ∪ {0})Z, let (Rat(E×) ∪ {0})[Z]

denote the submonoid consisting of all of those elements whose supports
are bounded below. As an additive semigroup, Rat(E×)((t)) is defined
to be

(Rat(E×) ∪ {0})[Z] \ {0},
but with each f = (dn) ∈ (Rat(E×) ∪ {0})[Z] \ {0} represented as an
expression

f =
∑

n∈Z
dntn =

∑

n∈Z
fn ∈ Rat(E×)((t)), (4)

where we understand fn = dntn ∈ Rat(E×)〈t〉 ∪ {0}.
Multiplication in Rat(E×)((t)) is given by using the multiplication

of the fn defined in Rat(E×)〈t〉 ∪ {0}, and extending distributively and
continuously. Then Rat(E×)((t)) is a semiring. Moreover, we have mul-
tiplicative monoid inclusions E×〈t〉 ⊆ Rat(E×)〈t〉 ⊆ Rat(E×)((t)), and
therefore Rat(E×)((t)) is an E×〈t〉-semiring.

(iii) We now define a morphism Ω: Rat(E×)((t))∪{∞} → E((t))∪{∞}
of E×〈t〉-semirings. We define Ω(∞):= ∞. Now suppose that we are
given f as in (4). If, for some n ∈ Z, Φ′(fn) = ∞, then we define
Ω(f):= ∞. In the remaining case, where, for all n ∈ Z, Φ′(fn) 6= ∞, we
define

Ω(f):=
∑

n∈Z
Φ′(fn) =

∑

n∈Z
Φ′(dn)tn ∈ E((t)).

It can be shown that Ω is a morphism of E×〈t〉-semirings.

(iv) We now make the E×〈t〉-semiring Rat(E×)((t))∪{∞} into a rational
E×〈t〉-semiring by lifting back the ∗-map of E((t)) ∪ {∞}.
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We define ∞∗ = ∞.
Suppose that we are given f as in (4).
If Ω(f) ∈ {0,∞}, then we define f∗:= ∞.
Thus we may assume that, for all n ∈ Z, Φ′(fn) 6= ∞, and that there

is a least N ∈ Z such that Φ′(fN ) 6= 0, that is, fN = dN tN for some
dN ∈ Rat(E×). Now Rat(E×) contains the elements d∗N and α−N (d∗N );
we set

f∗N := t−Nd∗N = α−N (d∗N )t−N ∈ Rat(E×)〈t〉.
Also, E× contains the element −1; we set g =

∑
n≥N+1

(−1)fn. Then
∑

m≥0

f∗N (gf∗N )m converges to some h ∈ Rat(E×)((t)), and we take f∗ to

be h. The least element of the support of f∗ is −N , and, for each n ∈ Z,
hn is built up from {f∗N}∪{(−1)fi | N +1 ≤ i ≤ 2N +n} using addition
and multiplication.

Thus we have a ∗-map, and it can be shown that

Rat(E×)((t)) ∪ {∞}

is a rational E×〈t〉-semiring, and Ω is a morphism of rational E×〈t〉-semi-
rings.

(v) By Lemma 4.7, with U = E×〈t〉 and R = Rat(E×)((t)) ∪ {∞},
we get a morphism Ψ: Rat(E×〈t〉) → Rat(E×)((t)) ∪ {∞} of rational
E×〈t〉-semirings. For each f ∈ Rat(E×〈t〉) such that Ψ(f) 6= ∞, we
abuse notation and write Ψ(f) =

∑
n∈Z

fn, where we understand that

fn ∈ Rat(E×)tn ∪ {0}.
Notice that composing Ψ with Ω gives Φ, since the two routes both

act as inclusion on E×〈t〉.

Rat(E× oα 〈t〉) E((t; α)) ∪ {∞}

Rat(E×)((t; α)) ∪ {∞}

Φ

ΩΨ

-

¢
¢
¢¢̧@

@
@@R

We view Φ, Ψ and Ω as acting as the identity on E×〈t〉.
We write Ψ(f) = f if f ∈ Rat(E×〈t〉) and there exist n ∈ Z and

dn ∈ Rat(E×) such that f = dntn ∈ Rat(E×)〈t〉 and Ψ(f) is the Laurent
series having one nonzero summand fn = dntn.

We now show that if f ∈ Rat(E×〈t〉), then f is usually more complex
than each of the summands of the series Ψ(f).
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6.3 Theorem. With notation as in Definition 6.2(v), if f ∈ Rat(E×〈t〉)
and ∞ 6= Ψ(f) =

∑
n∈Z

fn ∈ Rat(E×)((t)), then either Ψ(f) = f or

Tree(fn) < Tree(f) for all n ∈ Z.

In other words, for each n ∈ Z, Tree(fn) ≤ Tree(f), and equality
holds if and only if Ψ(f) = fn = f .

Proof of Theorem 6.3. Without loss of generality, we suppose that the
implication holds for elements of lesser complexity.

To simplify notation, write U := E×〈t〉, so that

Rat(U) = N[U\X] \ {0},

in the notation of Definition 4.6.
We use the same sort of subdivision into cases as in (3); thus we

partition N[U\X] \ {0} into the four sets

U, X, (U\X) \ (X ∪ U), N[U\X] \ (U\X ∪ {0}).

Again, we consider these four sets in order of difficulty.

Case 1. If f ∈ U = E×〈t〉, then Ψ(f) = f , as desired.

Case 2. Suppose that f ∈ N[U\X] \ (U\X ∪ {0}).
Here, there exist g, h ∈ N[U\X] \ {0}, such that f = g + h; in fact,

we could even assume g ∈ U\X.
By Lemma 4.9(iv), Tree(g) < Tree(f) and Tree(h) < Tree(f); there-

fore, by the transfinite induction hypothesis, the implication holds for g
and h.

Consider any n ∈ Z.
We can write fn = gn + hn, and

Tree(fn) = Tree(gn) + Tree(hn) ≤ Tree(g) + Tree(h) = Tree(f).

Now suppose that Tree(fn) = Tree(f). Then Tree(gn) = Tree(g)
and Tree(hn) = Tree(h). Here Ψ(g) = g and Ψ(h) = h. It follows that
Ψ(f) = f , as desired.

Case 3. Suppose that f ∈ (U\X) \ (X ∪ U).
Here, there exist g, h ∈ U\X \U , such that f = gh; in fact, we could

even assume g ∈ X.
By Lemma 4.9(vi), Tree(g) < Tree(f) and Tree(h) < Tree(f); there-

fore, by the transfinite induction hypothesis, the implication holds for g
and h.

Consider any n ∈ Z.
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We can write fn =
∑

m∈Z
gmhn−m; only finitely many of the summands

are nonzero. By Lemma 4.9(vii) and (viii),

log(Tree(fn)) = max{log(Tree(gm)) + log(Tree(hn−m)) | m ∈ Z}
≤ log(Tree(g)) + log(Tree(h)) = log(Tree(f)).

If log(Tree(fn)) < log(Tree(f)), then Tree(fn) < Tree(f).
Now suppose that log(Tree(fn)) = log(Tree(f)). Then there is some

m ∈ Z such that

log(Tree(gm)) = log(Tree(g)) and log(Tree(hn−m)) = log(Tree(h)).

Since g, h ∈ U\X, we have width(Tree(g)) = width(Tree(h)) = 1; there-
fore,

Tree(gm) ≥ Tree(g) and Tree(hn−m) ≥ Tree(h).

Here g = Ψ(g) = gm and h = Ψ(h) = hn−m; it follows that

f = Ψ(f) = fn,

as desired.

Case 4. Suppose that f ∈ X.
Here, there exists g ∈ N[U\X] \ {0} such that f = g∗.
Now ∞ 6= Ψ(f) = (Ψ(g))∗ and, by Lemma 4.9(xi),

Tree(f) > Tree(g).

By the transfinite induction hypothesis, the implication holds for g.
There exists N ∈ Z such that −N is the least element of the support

of Ψ(f).
By Lemma 4.9(xi),

log2(Tree(g∗N )) = Tree(gN ) ≤ Tree(g) = log2(Tree(f)). (5)

Also, for each m ∈ Z, by Lemma 4.9(vi),

log2(Tree((−1)gm)) < Tree((−1)gm)

= Tree(gm) ≤ Tree(g) = log2(Tree(f)).

Consider any n ∈ Z.
Now fn is built up from {g∗N , (−1)gm | m = N +1, . . . , 2N +n} using

multiplication and addition; hence, by Lemma 4.9(ix) and (x),

log2(Tree(fn))

≤ max{log2(Tree(g∗N )), log2(Tree((−1)gm)) | m = N + 1, . . . , 2N + n}
≤ log2(Tree(f)).
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If log2(Tree(fn)) < log2(Tree(f)), then Tree(fn) < Tree(f).
Now suppose log2(Tree(fn)) = log2(Tree(f)). Since

max{log2(Tree((−1)gm)) | m = N + 1, . . . , 2N + n} < log2(Tree(f)),

it follows that log2(Tree(g∗N )) = log2(Tree(f)) and that equality holds
throughout (5). Here g = Ψ(g) = gN , and hence f = Ψ(f) = f−N , as
desired.

This completes the proof.

6.4 Remark. Let V be a subgroup of E× such that α(V ) = V and
−1 ∈ V .

We can form the group V oα 〈t〉, and, by restriction, we get a com-
mutative diagram:

Rat(V oα 〈t〉) E((t;α)) ∪ {∞}

Rat(V )((t; α)) ∪ {∞}

Φ

ΩΨ

-

¡
¡

¡¡µ@
@

@@R

It is this version that we shall apply.
In the construction of this Ψ, V can be treated as an arbitrary

multiplicative group given with an automorphism α, and a central el-
ement −1. However, Φ′ is involved in the definition of the ∗-map for
Rat(V )((t;α)) ∪ {∞}, because evaluation of the ∗-map requires the in-
put of a value from Z∪{∞}; that is, given f as in (4), Φ′ acts as a black
box that either declares f∗ to be ∞, or produces the value of N to be
used in defining f∗.

7 The main result

We can now start the proof.

7.1 Theorem (Hughes[2],[3]). Let G be a locally indicable group, K a
division ring, and KG a crossed-product group ring. Suppose that D1

and D2 are Hughes-free division rings of fractions of KG. Then there
is a (unique) ring isomorphism D1 → D2 such that the induced map on
KG is the identity.

Proof. Let i denote a variable which ranges over {1, 2}.
Let U = K×G, viewed as a subgroup of D×

i .
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Construct Rat(U) as in Definition 4.6, and construct a morphism of
rational U -semirings Φi : Rat(U) → Di ∪ {∞i}, as in Example 4.8(ii).
Since KG rationally generates Di, and −1 ∈ U , one can show that Φi is
surjective.

We shall construct a map β : D1 ∪{∞1} → D2 ∪{∞2} such that, for
every f ∈ Rat(U), β sends Φ1(f) to Φ2(f). We have to show that this
is well defined. The key step is the following.

7.2 Lemma. Let f ∈ Rat(U). Then Φ1(f) = 0D1 if and only if Φ2(f) =
0D2 . Also, Φ1(f) = ∞1 if and only if Φ2(f) = ∞2.

Proof of Lemma 7.2. We may suppose that the equivalences hold for
elements of complexity less than Tree(f).

Let U ′ = source(f) as in Definition 5.5, so we can write f = pu for
some p ∈ Rat(U ′), u ∈ U .

Without loss of generality, in the context of the proof of the lemma,
we can replace f with fu−1. Thus we may assume that u = 1, and that
f ∈ Rat(U ′).

Let G′ denote the image of U ′ under the composition

U ′ ≤ U = K×G → (K×G)/(K×) = G,

so G′ ≤ G

For each subgroup H of G, let Di(H) denote the (division) subring
of Di rationally generated by the crossed-product group subring KH of
KG.

Without loss of generality, in the context of the proof of the lemma,
we can replace G with G′, KG with KG′, Di with Di(G′), and U = K×G
with K×G′, and thus assume that the map U ′ → G is surjective.

In particular, G is finitely generated, and is therefore indicable.
If G = 1, then D1 = D2 = K, and the equivalences hold.
Thus we may assume that G is a nontrivial indicable group, and

therefore there exists an expression G = H o C, with C infinite cyclic.
Lift a generator of C back to an element t ∈ K×G.

Let Ei = Di(H). Left conjugation by t induces an automorphism
αi on Di, which acts on KH, and hence on Ei. Thus we have a ring
homomorphism Ei[t; αi] → Di; the Hughes-freeness of Di implies that
this map is injective. Thus Ei[t;αi] embeds in Di, and rationally gen-
erates Di. Hence, Di is the unique division ring of fractions Ei(t; αi) of
Ei[t; αi]. Thus Di is embedded in Ei((t; αi)).

Let V = K×H. Then α(V ) = V , and we can write U = V oα 〈t〉, and
−1 ∈ V ; by Definition 6.2(v) and Remark 6.4, we have a commutative
diagram:
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Rat(V oα 〈t〉) Ei((t; αi)) ∪ {∞}

Rat(V )((t; α)) ∪ {∞}

Φi

ΩiΨi

-

¡
¡

¡¡µ@
@

@@R

We now return to the last paragraph of Remark 6.4. Recall that f is
constructed in stages in Rat(U), using U , addition, multiplication and
the ∗-map, and at all non-final stages of the construction, the complexity
is less than Tree(f). All coefficients in Rat(V ) of the non-final stages of
the corresponding construction of Ψi(f) will then also have complexity
less than Tree(f), by Theorem 6.3. In the construction of Ψi(f), each
evaluation of the ∗-map requires the input of a value from Z∪{∞}, but
the value will be the same for i = 1 and for i = 2, by the transfinite
induction hypothesis. Hence, the constructions of Ψ1(f) and Ψ2(f) are
identical, and Ψ1(f) = Ψ2(f). We may assume

∞ 6= Ψ1(f) = Ψ2(f) =
∑

n∈Z
fn.

We claim that f 6∈ Rat(V )〈t〉. Suppose not, so that

f ∈ Rat(V )〈t〉 ⊆ Rat(V )U.

Then, by Theorem 5.7, source(f) ≤ V , that is, U ′ ≤ K×H. Passing to
K×G/K× (= G), we see that G ≤ H, a contradiction. This proves the
claim, and now, by Theorem 6.3, Tree(fn) < Tree(f) for all n ∈ Z.

Hence, by the transfinite induction hypothesis, for each n ∈ Z,
Φ′1(fn) = 0D1 if and only if Φ′2(fn) = 0D2 , and Φ′1(fn) = ∞1 if and
only if Φ′2(fn) = ∞2.

Now Φi(f) = Ωi(Ψi(f)) = Ωi(
∑
n∈Z

fn). It follows that Φi(f) = 0Di if

and only if Φ′i(fn) = 0Di for all n ∈ Z. Also, Φi(f) = ∞i if and only if
Φ′i(fn) = ∞i for some n ∈ Z.

Thus, Φ1(f) is 0D1 , resp. ∞1, if and only if Φ2(f) is 0D2 , resp. ∞2,
and we have proved Lemma 7.2.

We can now conclude the proof of Theorem 7.1.
Suppose f, f ′ ∈ Rat(U) are such that Φ1(f) = Φ1(f ′) 6= ∞1. Then

Φ1(f + (−1)f ′) = Φ1(f) + (−1)Φ1(f ′) = 0D1 . By Lemma 7.2, Φ2(f) 6=
∞2, Φ2(f ′) 6= ∞2, and Φ2(f + (−1)f ′) = 0D2 . Hence,

Φ2(f) + (−1)Φ2(f ′) = 0D2 ,
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and Φ2(f) = Φ2(f ′). Thus, β is well defined, as desired.
By symmetry, we have a bijective correspondence between D1∪{∞1}

and D2 ∪ {∞2} in which, for every f ∈ Rat(U), Φ1(f) corresponds to
Φ2(f). It follows that D1∪{∞1} and D2∪{∞2} are isomorphic rational
K×G-semirings, and hence that D1 and D2 are isomorphic division rings
of fractions of KG.

7.3 Corollary. Let G be a locally indicable group, K a division ring,
KG a crossed-product group ring, and D a Hughes-free division ring of
fractions of KG. Let Aut(KG, K) denote the group consisting of those
ring automorphisms of KG which induce automorphisms on K. Then
there is a natural injective group homomorphism

Aut(KG,K) ↪→ Aut(D).

Proof. Suppose that α ∈ Aut(KG,K).
The group of units of KG is precisely K×G, by a result of Higman’s

which we mentioned in Section 1. In fact, Higman’s elegant argument is
embedded in the proof of Lemma 7.2.

Since α permutes the units of KG, we have α(K×G) = K×G. By
hypothesis, α(K×) = K×, so α induces an automorphism on the quo-
tient (K×G)/K× = G.

The composition KG → KG ⊆ D gives a new division ring of frac-
tions of KG by pullback along α. Using the above information, it is
not difficult to show that the new division ring of fractions of KG is
again Hughes-free. By Theorem 7.1, there exists a unique isomorphism
α′ : D → D such that the induced map on KG is α.

Now the map Aut(KG, K) → Aut(D), α 7→ α′, is easily seen to be
an injective group homomorphism.
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