Lest the Karrass & Solitar proof be forgotten

Notation. For each group G, let $\mathfrak{N}(G)$ denote the set of all normal subgroups of G, and set $\hat{1} := \{1\}$.

Theorem. Let G be a free group, and H_1 be a finite-rank, infinite-index subgroup of G.

- (i) (M. Hall(1949)) H_1 is a free factor of some finite-index subgroup H of G.
- (ii) (Karrass & Solitar(1969)) $H_1 \cap N = \hat{1}$ for some $N \in \mathfrak{N}(G) \{\hat{1}\}$.
- *Proof.* (i) (Imrich(1977)). Choose a basis E of G, form the Cayley G-tree T with respect to E, take the (finite) base-pointed core of $H_1 \backslash T$, and adjoin all the missing e-edges for each $e \in E$; recall that one adjoins the missing e-edge to an e-component which is a line-segment-or-isolated-vertex to form an oriented e-cycle. The resulting base-pointed graph is $H \backslash T$ for a subgroup H with the desired properties.
- (ii) (Karrass & Solitar(1969)). By (i), we may write $H = H_1*H_2 \leq_{f.i.} G$ with $H_2 \neq \hat{1}$. Let H° denote the kernel of the homomorphism from G to the group of permutations of the finite set G/H given by $g \mapsto (xH \mapsto gxH)$. Then $H^{\circ} \trianglelefteq G$, G/H° is finite, and $H^{\circ} \leq H$. Let \widetilde{H}_2 denote the normal closure of H_2 in H. Since $H^{\circ}, \widetilde{H}_2 \trianglelefteq H$, $H^{\circ} \cap \widetilde{H}_2 \trianglelefteq H^{\circ}$. Since $H^{\circ} \trianglelefteq_{f.i} G$, $H^{\circ} \cap \widetilde{H}_2 \trianglelefteq_{f.i} \widetilde{H}_2$. Since $\widetilde{H}_2 \neq \hat{1}$, $H^{\circ} \cap \widetilde{H}_2 \neq \hat{1}$. Thus, $H^{\circ} \cap \widetilde{H}_2 \in \mathfrak{N}(H^{\circ}) \{\hat{1}\}$. The subset $\{g(H^{\circ} \cap \widetilde{H}_2) : g \in G\}$ of $\mathfrak{N}(H^{\circ}) \{\hat{1}\}$ is finite, since G/H° maps onto it by $gH^{\circ} \mapsto g(H^{\circ} \cap \widetilde{H}_2)$. As $\mathfrak{N}(H^{\circ}) \{\hat{1}\}$ is closed under finite intersections, $\bigcap_{g \in G} g(H^{\circ} \cap \widetilde{H}_2) \in \mathfrak{N}(H^{\circ}) \{\hat{1}\}$. Thus, $\bigcap_{g \in G} g\widetilde{H}_2 \neq \hat{1}$. As the natural map $H_1 \to H/\widetilde{H}_2$ is bijective, $H_1 \cap \widetilde{H}_2 = \hat{1}$. Thus, we may take $N := \bigcap_{g \in G} \widetilde{H}_2$.

Remarks. The above proof of (ii), including the now-standard material in the footnote, consists of part of Karrass & Solitar(1958), page 220, lines 5–16, together with part of Karrass & Solitar(1969), page 211, lines 14–20. Thus, their proof occupies 19 lines, and the relevant part of it occupies 11 lines.

Arzhantseva(2000) generalizes (ii) by showing that, in a well-defined sense, almost every $N \in \mathfrak{N}(G)$ satisfies $H_1 \cap N = \hat{1}$.

Lyndon & Schupp (1977), Proposition I.3.17, and Kahrobaei (2005) both offer proofs of (ii). The Lyndon & Schupp proof occupies 8 lines and is not valid; it attributes to subgroups certain properties that their normalizers enjoy, and concludes that $H^{\circ} \leq \tilde{H}_2$, which is false unless $H_1 = \hat{1}$. The (valid) Kahrobaei proof occupies 12 lines, is claimed to be 'particularly short and simple', and can be paraphrased as follows.

By (i), we may write $H = H_1 * H_2 \leq_{f.i.} G$ with $H_2 \neq \hat{1}$. Let H° denote the kernel of the homomorphism from G to the group of permutations of the finite set G/H given by $g \mapsto (xH \mapsto gxH)$. Then $H^\circ \subseteq G$, G/H° is finite, and $H^\circ \subseteq H$. Since H_1 is a free factor of H, it follows from the Kurosh subgroup theorem that $H_1 \cap H^\circ$ is a free factor of H° , say $H^\circ = (H_1 \cap H^\circ) *J$. Since $H^\circ \leq_{f.i.} G$, $J \neq \hat{1}$. Let \widetilde{J} denote the normal closure of J in $H^\circ = (H_1 \cap H^\circ) *J$. The subset $\{\widetilde{J}^g : g \in G\}$ of $\mathfrak{N}(H^\circ) - \{\hat{1}\}$ is finite, since G/H° maps onto it by $H^\circ g \mapsto \widetilde{J}^g$. As $\mathfrak{N}(H^\circ) - \{\hat{1}\}$ is closed under finite intersections, $\bigcap_{g \in G} \widetilde{J}^g \in \mathfrak{N}(H^\circ) - \{\hat{1}\}$. Thus, $\bigcap_{g \in G} \widetilde{J}^g \neq \hat{1}$. As the natural map $H_1 \cap H^\circ \to ((H_1 \cap H^\circ) *J)/\widetilde{J}$ is bijective, $(H_1 \cap H^\circ) \cap \widetilde{J} = \hat{1}$. Since $\widetilde{J} \leq H^\circ$, $H_1 \cap \widetilde{J} = \hat{1}$. Thus, we may take $N := \bigcap_{g \in G} \widetilde{J}^g$. \square

References

Arzhantseva, G. N.: A property of subgroups of infinite index in a free group. Proc. Amer. Math. Soc. 128, 3205–3210 (2000).

Hall, Marshall, Jr.: Coset representations in free groups. Trans. Amer. Math. Soc. 67, 421–432 (1949). Imrich, Wilfried: On finitely generated subgroups of free groups. Arch. Math. 28, 21–24 (1977).

Kahrobaei, Delaram: A simple proof of a theorem of Karrass and Solitar. Geometric methods in group theory (eds. José Burillo, Sean Cleary, Murray Elder, Jennifer Taback and Enric Ventura), Contemporary Mathematics **372**, 107–108 (2005).

Karrass, A. & Solitar, D.: On free products. Proc. Amer. Math. Soc. 9, 217–221 (1958).

Karrass, A. & Solitar, D.: On finitely generated subgroups of a free group. Proc. Amer. Math. Soc. 22, 209–213 (1969).

Lyndon, Roger C. & Schupp, Paul E.: Combinatorial Group Theory. Springer-Verlag, New York (1977).