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Abstract. Let g, p ∈ [0↑∞ [, the set of non-negative integers. Let Ag,p de-
note the group consisting of all those automorphisms of the free group on
t[1↑p]∪x[1↑g]∪y[1↑g] which fix the element Π

j∈[p↓1]
tj Π

i∈[1↑g]
[xi, yi] and permute

the set of conjugacy classes { [tj ] : j ∈ [1↑p]}.
Labruère and Paris, building on work of Artin, Magnus, Dehn, Nielsen,

Lickorish, Zieschang, Birman, Humphries, and others, showed that Ag,p is
generated by what is called the ADLH set. We use methods of Zieschang and
McCool to give a self-contained, algebraic proof of this result.

Labruère and Paris also gave defining relations for the ADLH set in Ag,p;
we do not know an algebraic proof of this for g > 2.

Consider an orientable surface Sg,p of genus g with p punctures, with
(g, p) 6= (0, 0), (0, 1). The algebraic mapping-class group of Sg,p, denoted

Malg
g,p, is defined as the group of all those outer automorphisms of

〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | Π
j∈[p↓1]

tj Π
i∈[1↑g]

[xi, yi] 〉
which permute the set of conjugacy classes { [tj ], [tj ] : j ∈ [1↑p]}. It now follows

from a result of Nielsen that Malg
g,p is generated by the image of the ADLH set

together with a reflection. This gives a new way of seeing that Malg
g,p equals the

(topological) mapping-class group of Sg,p, along lines suggested by Magnus,
Karrass, and Solitar in 1966.
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1. Introduction

Notation will be explained more fully in Section 2.

1.1. Definitions. Let g, p ∈ [0↑∞[ . Let Ag,p denote the group of automorphisms
of 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉 that fix Π

j∈[p↓1]
tj Π

i∈[1↑g]
[xi, yi] and permute the set of

conjugacy classes { [tj ] : j ∈ [1↑p]}.
We shall usually codify an element ϕ ∈ Ag,p as a two-row matrix where the first

row gives all the elements of t[1↑p] ∪ x[1↑g] ∪ y[1↑g] that are moved by ϕ, and the
second row equals the ϕ-image of the first row. We define the following elements
of Ag,p:

for each j ∈ [2↑p], σj :=
( tj tj−1

tj−1 tj−1tjtj−1

)
;

for each i ∈ [1↑g], αi :=
( xi

yixi

)
and βi := ( yi

xiyi );
for each i ∈ [2↑g], γi :=

( xi−1 yi−1 xi

wixi−1 wiyi−1wi xiwi

)
with wi := yi−1xiyixi;

if min(1, g, p) = 1, γ1 :=
(

t1 x1
w1t1w1 x1w1

)
with w1 := t1x1y1x1.

We say that σ[2↑p]∪α[1↑g]∪β[1↑g]∪γ[max(2−p,1)↑g] is the ADL set, and that removing
α[3↑g] leaves the ADLH set, σ[2↑p]∪α[1↑min(2,g)]∪β[1↑g]∪γ[max(2−p,1)↑g], named after
Artin, Dehn, Lickorish and Humphries. ¤
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2 LLUÍS BACARDIT AND WARREN DICKS

In [13, Proposition 2.10(ii) with r = 0], Labruère and Paris showed that Ag,p is
generated by the ADLH set. As we shall recall in Section 5, the proof is built on
work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries,
and others, and some of this work uses topological arguments.

The main purpose of this article is to give a self-contained, algebraic proof that
Ag,p is generated by the ADL set. Such proofs were given in the case (g, p) = (1, 0)
by Nielsen [17], and in the case g = 0 by Artin [1], and in the case p = 0 by
McCool [20]. In the case where (g, p) = (1, 0) or g = 0, our proof follows Nielsen’s
and Artin’s. In the case where p = 0, McCool proceeds by adding in the free
generators two at a time, while, for the general case, we benefit from being able to
add in the free generators one at a time.

For completeness, we give a self-contained, algebraic translation of Humphries’
proof [12] that the ADLH set, a subset of the ADL set, generates Ag,p. We also
mention an alternative, recent proof by Labruère and Paris.

1.2. Remark. In [13, Theorem 3.1 with r = 0], Labruère and Paris use topological
and algebraic results of various authors to present the group Ag,p as the quotient
of the Artin group on the ADLH graph

α1

σp · · · σ2 γ1 β1

α2

γ2 β2 γ3 β3 · · · γg βg

modulo four-or-less relations, each of which is expressed in terms of centres of Artin
groups on subgraphs which agree up to deleting α1:

‘ZB4 = Z2B3’: if g > 1 and p > 2, then (α1β1γ1σ2)4 = (β1γ1σ2)6;
‘ZA5 = Z2A4’: if g > 2, then (α1β1γ2β2α2)6 = (β1γ2β2α2)10;
‘ZD6 = ZA5’: if g > 2 and p > 1, then (α1γ1β1γ2β2α2)5 = (γ1β1γ2β2α2)6;
‘ZE7 = ZE6’: if g > 3, then (α1β1γ2β2α2γ3β3)9 = (β1γ2β2α2γ3β3)12.

It would be eminently satisfying to have a direct, algebraic proof of this beautiful,
mysterious presentation. Now that we have the ADLH generating set, it would
suffice to consider the group with the desired presentation and verify that its action
on 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉 is faithful. This is precisely the approach carried out
by Magnus [15] for both the case g = 0, see [3, Section 5], and the case g = 1,
see [2, Section 6.3]. The algebraic project remains open for g > 2. ¤

In outline, the article has the following structure.
In Section 2, we fix notation and define the Zieschang groupoid, essentially

as in [28, Section 5.2] (developed from [22], [24], [26]), but with modifications
taken from work of McCool [8, Lemma 3.2]. We give a simplified proof of a
strengthened form of (the orientable, torsion-free case of) Zieschang’s result that
the Nielsen-automorphism edges and the Artin-automorphism edges together gen-
erate the groupoid. Zieschang used group-theoretical techniques of Nielsen [18] and
Artin [1], while McCool used group-theoretical techniques of Whitehead [21]. We
use all of these.

In Section 3, which is inspired by the proof by McCool [20] of the case p = 0, we
define the canonical edges in the Zieschang groupoid and use them to find a special
generating set for Ag,p.

In Section 4, we observe that the results of the previous two sections immediately
imply that the ADL set generates Ag,p. We then present an algebraic translation
of Humphries’ proof that the ADLH set also generates Ag,p. We also mention an
alternative, recent proof by Labruère and Paris.

At this stage, we will have completed our objective. For completeness, we con-
clude the article with an elementary review of algebraic descriptions of certain
mapping-class groups.
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In Section 5, we review definitions of some mapping-class groups and mention
some of the history of the original proof that the ADLH set generates Ag,p.

In Section 6, we recall the definitions of Dehn twists and braid twists, and see
that the group Ag,p can be viewed as the mapping-class group of the orientable
surface of genus g with p punctures and one boundary component.

In Section 7, we consider an orientable surface Sg,0,p of genus g with p punctures,
with (g, p) 6= (0, 0), (0, 1). The algebraic mapping-class group of Sg,0,p, denoted
Malg

g,0,p, is defined as the group of all those outer automorphisms of

π1(Sg,0,p) = 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | Π
j∈[p↓1]

tj Π
i∈[1↑g]

[xi, yi] 〉
which permute the set of conjugacy classes { [tj ], [tj ] : j ∈ [1↑p]}. We review Zie-
schang’s algebraic proof [28, Theorem 5.6.1] of Nielsen’s result [19] that Malg

g,0,p is

generated by the natural image of Ag,p together with an outer automorphism ζ̆.
Hence, Malg

g,0,p is generated by the natural image of the ADLH set together with ζ̆.
In 1966, Magnus, Karrass and Solitar [16, p.175] remarked that if one could find a
generating set of Malg

g,0,p and self-homeomorphisms of Sg,0,p that induce those gen-
erators, then one would be able to prove that Malg

g,0,p was equal to the (topological)

mapping-class group Mtop
g,0,p, even in the then-unknown case where g > 2 and p > 2.

Also in 1966, Zieschang [26, Satz 4] used groupoids to prove equality, and their
remark does not seem to have been followed up. The generating set given above
fulfills their requirement, since the image of each ADL generator is induced by a
braid twist or a Dehn twist of Sg,0,p, and ζ̆ is induced by a reflection of Sg,0,p. This
gives a new way of seeing that Mtop

g,0,p = Malg
g,0,p.

2. The Zieschang groupoid and the Nielsen subgraph

In this section, which is based on [28, Section 5.2], we define the Zieschang
groupoid Zg,p and the Nielsen subgraph Ng,p, and prove that Ng,p generates Zg,p.

2.1. Notation. We will find it useful to have notation for intervals in Z that is
different from the notation for intervals in R. Let i, j ∈ Z. We define the sequence

[[i↑j]] :=

{
(i, i + 1, . . . , j − 1, j) ∈ Zj−i+1 if i 6 j,
() ∈ Z0 if i > j.

The subset of Z underlying [[i↑j]] is denoted [i↑j] := {i, i + 1, . . . , j − 1, j}.
Also, [i↑∞[ := {i, i + 1, i + 2, . . .} .
We define [[j↓i]] to be the reverse of the sequence [[i↑j]], that is, (j, j−1, . . . , i+1, i).
Suppose that we have a set X and a map [i↑j] → X, ` 7→ x`. We define the

corresponding sequence in X as

x[[i↑j]] :=

{
(xi, xi+1, · · · , xj−1, xj) ∈ Xi−j+1 if i 6 j,
() if i > j.

By abuse of notation, we shall also express this sequence as (x` | ` ∈ [[i↑j]]), although
“` ∈ [[i↑j]]” on its own will not be assigned a meaning. The set of terms of x[[i↑j]] is
denoted x[i↑j]. We define x[[j↓i]] to be the reverse of the sequence x[[i↑j]]. ¤
2.2. Notation. Let G be a multiplicative group.

For each u ∈ G, we denote the inverse of u by both u−1 and u. For u, v ∈ G, we
let uv := vuv and [u, v] := u vuv. For u ∈ G, we let [u] := {uv | v ∈ G}, called the
G-conjugacy class of u. We let G/∼ := {[u] : u ∈ G}, the set of all G-conjugacy
classes.
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Where G is a free group given with a distinguished basis B, we think of each
u ∈ G as a reduced word in B ∪B−1, and let |u| denote the length of the word.
We think of [u] as a cyclically-reduced cyclic word in B ∪B−1.

Suppose that we have i, j ∈ Z and a map [i↑j] → G, ` 7→ u`. We write

Π
`∈[[i↑j]]

u` := Πu[[i↑j]] :=

{
uiui+1 · · ·uj−1uj ∈ G if i 6 j,
1 ∈ G if i > j.

Π
`∈[[j↓i]]

u` := Πu[[j↓i]] :=

{
ujuj−1 · · ·ui+1ui ∈ G if j > i,
1 ∈ G if j < i.

When we have G acting on a set X, then, for each x ∈ X, we let Stab(x; G)
denote the set of elements of G which stabilize, or fix, x.

We let AutG denote the group of all automorphisms of G, acting on the right,
as exponents, u 7→ uϕ. In a natural way, Aut G acts on G/∼ and on the set of
subsets of G ∪ (G/∼).

We let Out G denote the quotient of Aut G modulo the group of inner automor-
phisms, we call the elements of Out G outer automorphisms, and we denote the
quotient map Aut G → OutG by ϕ 7→ ϕ̆. In a natural way, OutG acts on G/∼
and on the set of subsets of G/∼. ¤
2.3. Notation. The following will be fixed throughout.

Let g, p ∈ [0↑∞[ . Let Fg,p := 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉, a free group of rank
2g+p with a distinguished basis. We shall find it convenient to use abbreviations
such as

[t][1↑p] := {[tj ] : j ∈ [1↑p]}, t±1
[1↑p]

:= {tj , tj : j ∈ [1↑p]}, Π[x, y][[1↑g]] := Π
i∈[[1↑g]]

[xi, yi].

The elements of t±1
[1↑p] ∪x±1

[1↑g] ∪ y±1
[1↑g] will be called letters. The elements of t[1↑p]

will be called t-letters. The elements of t[1↑p] will be called inverse t-letters. The
elements of x±1

[1↑g] ∪ y±1
[1↑g] will be called x-letters.

We shall usually codify an element ϕ ∈ Aut Fg,p as a two-row matrix where the
first row gives, for some basis consisting of letters, all those elements which are
moved by ϕ, and the second row equals the ϕ-image of the first row.

We shall be working throughout with the group Stab([t][1↑p]; Aut Fg,p) (which
permutes the set of cyclic words [t][1↑p]) and its subgroup

Ag,p := Stab([t][1↑p] ∪ {Π t[[p↓1]] Π[x, y][[1↑g]]}; Aut Fg,p). ¤

2.4. Definitions. Let g, p ∈ [0↑∞[ and let Fg,p := 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉.
Let [1↑(4g+p)] → t[1↑p] ∪ x±1

[1↑g] ∪ y±1
[1↑g], k 7→ vk, be a bijective map, let

V := Π v[[1↑(4g+p)]], and let Γ denote the graph with

vertex set t±1
[1↑p] ∪ x±1

[1↑g] ∪ y±1
[1↑g], and

edge set {(tjÃtj) | j ∈ [1↑p]} ∪ {(vkÃvk+1) | k ∈ [1↑(4g+p−1)]}.
If Γ has no cycles (that is, Γ is a forest), then we say that V is a Zieschang element
of Fg,p and that Γ is the extended Whitehead graph of V ; we note that the condition
that Γ has no cycles implies that Π v[[1↑(4g+p)]] is the reduced expression for V , and,
hence, Γ is the usual Whitehead graph of [t][1↑p] ∪ {V }, as in [21]. If (g, p) 6= (0, 0)
and V is a Zieschang element of Fg,p, then Γ has the form of an oriented line
segment with 4g+2p vertices and 4g+2p−1 edges; here, we define v0 := v4g+p+1 := 1,
and book-end Γ with the ghost edges (v0Ãv1) and (v4g+pÃv4g+p+1).

For example, V0 := Πt[[p↓1]]Π[x, y][[1↑g]] is a Zieschang element of Fg,p, and its
extended Whitehead graph is

tpÃtpÃtp−1Ãtp−1Ã · · ·Ãt1Ãt1Ãx1Ãy1Ãx1Ãy1Ãx2Ã · · ·ÃxgÃygÃxgÃyg.
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The Zieschang groupoid for Fg,p, denoted Zg,p, is defined as follows.
• The set VZg,p of vertices/objects of Zg,p equals the set of Zieschang ele-
ments of Fg,p.
• The edges/elements/morphisms of Zg,p are the triples (V,W,ϕ) such that
V , W ∈ VZg,p, and ϕ ∈ Stab([t][1↑p]; Aut Fg,p), and V ϕ = W . Here, we say
that (V

ϕ−→W ), or V
ϕ−→W , is an edge of Zg,p from V to W , and denote the

set of such edges by Zg,p(V, W ).
• The partial multiplication in Zg,p is defined using the multiplication in
Stab([t][1↑p]; Aut Fg,p) in the natural way. (This is an instance of a type of
groupoid that arises whenever a group acts on a set.)

If V ∈ VZg,p, then, as a group, Zg,p(V, V ) = Stab([t][1↑p] ∪ {V }; Aut Fg,p). Thus
Zg,p(V0, V0) = Ag,p. Throughout, we shall view the elements of Ag,p as edges of
Zg,p from V0 to V0. We shall be using V0 as a basepoint of Zg,p in Definitions 3.1,
where we will verify that Zg,p is connected. ¤
2.5. Definitions. Let g, p ∈ [0↑∞[ , let Fg,p := 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉, let
V, W ∈ Fg,p, and let ϕ ∈ AutFg,p. Suppose that V ∈ VZg,p, and that V ϕ = W .

If ϕ permutes the t-letters and permutes the x-letters, then we say that
V

ϕ−→W is a Nielsen1 edge in Zg,p. To see that (V
ϕ−→W ) ∈ Zg,p, notice that

ϕ ∈ Stab([t][1↑p]; Aut Fg,p) and W ∈ VZg,p.
If there exists some k ∈ [1↑(4g+p−1)] such that the letter vk is an x-letter and

ϕ =
( vk

vkvk+1

)
, then we say that V

ϕ−→W is a right Nielsen2 edge in Zg,p. To see that
(V

ϕ−→W ) ∈ Zg,p, we note the following. In passing from V to W , we remove the
boxed part in vk vk+1 vk+2 and add the boxed part in vj−1 vk+1 vj , where vj = vk.
In passing from the extended Whitehead graph of V to the extended Whitehead
graph of W , we remove the boxed part in vj−1Ã vj=vkÃ vk+1 and add the boxed

part in vk+1Ã vj=vkÃ vk+2, where we have indicated a ghost edge if j = 1 or

k = 4g+p−1. Hence, (V
ϕ−→W ) ∈ Zg,p.

If there exists some k ∈ [2↑(4g+p)] such that vk is an x-letter and ϕ =
( vk

vk−1vk

)
,

then we say that V
ϕ−→W is a left Nielsen2 edge in Zg,p. This is an inverse of an

edge of the previous type.
By a Nielsen2 edge in Zg,p, we mean a left or right Nielsen2 edge in Zg,p.
If there exists some k ∈ [1↑(4g+p−1)] such that the letter vk is a t-letter and

ϕ =
( vk

vk+1vkvk+1

)
, then we say that V

ϕ−→W is a right Nielsen3 edge in Zg,p. To see
that (V

ϕ−→W ) ∈ Zg,p, we note the following. In passing from V to W , we change
vk−1vk vk+1vk+2 to vk−1 vk+1 vkvk+2. In passing from the extended Whitehead
graph of V to the extended Whitehead graph of W , we remove the boxed part in
vk−1Ã vkÃvkÃ vk+1 and add the boxed part in vk+1Ã vkÃvkÃ vk+2, where we

have indicated a ghost edge if k = 1 or k = 4g+p−1. Hence, (V
ϕ−→W ) ∈ Zg,p.

If there exists some k ∈ [2↑(4g+p)] such that the letter vk is a t-letter and
ϕ =

( vk

vk−1vkvk−1

)
, we say that V

ϕ−→W is a left Nielsen3 edge in Zg,p. This is an
inverse of an edge of the previous type.

By a Nielsen3 edge in Zg,p, we mean a left or right Nielsen3 edge in Zg,p.
By a Nielsen edge in Zg,p, we mean a Nielseni edge in Zg,p, for some i ∈ {1, 2, 3}.
We define the Nielsen subgraph of Zg,p, denoted Ng,p, to be the graph with

vertex set VZg,p and edges, or elements, the Nielsen edges in Zg,p. ¤
We now give a simplified proof of a result due to Zieschang and McCool.
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2.6. Theorem. Let g, p ∈ [0↑∞[ , let Fg,p := 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉, let
V, W ∈ Fg,p, let H be a free group, let ϕ be an endomorphism of H∗Fg,p, and
suppose that the following hold.
(a). V ∈ VZg,p.
(b). |W | 6 4g + p.
(c). V ϕ = W .
(d). There exists some permutation π of [1↑p] such that, for each j ∈ [1↑p], tϕj is

(H∗Fg,p)-conjugate to tjπ .
(e). Fϕ

g,p ' Fg,p.
Then W ∈ VZg,p and there exists an edge V

ϕ′−→W in the subgroupoid of Zg,p gen-
erated by the Nielsen subgraph Ng,p such that ϕ acts as ϕ′ on the free factor Fg,p.

Proof. We may assume that (g, p) 6= (0, 0). Extend t[1↑p] ∪ x[1↑g] ∪ y[1↑g] to a basis
B of the free group Fg,p∗H. For each A ∈ Fg,p∗H, |A| denotes the length of A as
a reduced product in B∪B−1. Choose a total order, denoted 6, on B∪B−1, and
extend 6 to a length-lexicographic total order, also denoted 6, on Fg,p∗H.

Consider the reduced expression V = Πv[[1↑(4g+p)]]. Let v0 := v4g+p+1 := 1.
For each k ∈ [0↑(4g+p)], let Ak denote the largest common initial subword

of vϕ
k and vϕ

k+1 with respect to B∪B−1. Since v0 = v4g+p+1 = 1, we have
A0 = A4g+p = 1. For each k ∈ [1↑(4g+p)], let wk := Ak−1v

ϕ
k Ak ∈ Fg,p∗H. Then

vϕ
k = Ak−1wkAk, where this expression need not be reduced.

We shall show in Claim 1 that we may assume that Ak < Ak−1wk and that
Ak < Ak+1wk+1, and then show in Claim 2 that this ensures that ϕ permutes the
t-letters and permutes the x-letters.

We let
(
Fg,p∗H
4g+p

)
denote the set of (4g+p)-element subsets of Fg,p∗H, and define

a pre-order 4 on
(
Fg,p∗H
4g+p

)
as follows. For each A ∈ Fg,p∗H, there is a unique re-

duced expression A = A(L)A(R) with the property that |A(L)| − |A(R)| ∈ {0, 1}. For
A,B ∈ Fg,p∗H, we write A 4 B if either |A| < |B| or (|A| = |B| and A(L) 6 B(L)).
We can arrange each element of

(
Fg,p∗H
4g+p

)
as a (not necessarily unique) ascending se-

quence with respect to 4, and assign
(
Fg,p∗H
4g+p

)
the (unique) lexicographic pre-order,

again denoted 4. Here, A ≺ B will mean A 4 B and B 64 A.
Without assigning any meaning to V

ϕ−→W , let us write

µ(V
ϕ−→W ) := tϕ[1↑p] ∪ (x±1

[1↑g])
ϕ ∪ (y±1

[1↑g])
ϕ ∈ (

(
Fg,p∗H
4g+p

)
, 4).

It follows from (e) that there are 4g+p distinct elements in the set µ(V
ϕ−→W ).

Claim 1. Let k ∈ [1↑(4g+p−1)]. If Ak > Ak−1wk or Ak > Ak+1wk+1, then there
exists some (V α−→U) ∈ Ng,p such that µ(U

αϕ−−→W ) ≺ µ(V
ϕ−→W ).

Proof of Claim 1. We have specified reduced expressions vϕ
k = BA and vϕ

k+1 = AC

and vϕ
k vϕ

k+1 = BC, where A := Ak, B := Ak−1wk, C := Ak+1wk+1. It follows
from (e) that A, B, and C are all different.

By hypothesis, A 6= min({A,B,C}, 6). We shall consider only the case where
B = min({A, B,C}, 6); the argument where C = min({A,B, C},6) is similar.
Thus we have A > B < C.

The letter vk+1 is either a t-letter or an x-letter.

Case 1. vk+1 is an x-letter.
On taking α :=

( vk+1
vkvk+1

)
, we have a Nielsen2 edge (V α−→U) ∈ Ng,p. Here

α :=
( vk+1

vkvk+1

)
and vαϕ

k+1 = vϕ
k vϕ

k+1 = BC. In this case, the change from µ(V
ϕ−→W )

to µ(U
αϕ−−→W ) consists of replacing {vϕ

k+1, v
ϕ
k+1} = {AC,CA} with {vαϕ

k+1, v
αϕ
k+1} =
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{BC, CB}. To show that µ(U
αϕ−−→W ) ≺ µ(V

ϕ−→W ), it now suffices to show that
BC ≺ AC and CB 4 CA.

If |A| > |B|, then |BC| = |CB| = |B|+ |C| < |A|+ |C| = |AC| = |CA|, and,
hence, BC ≺ AC and CB ≺ CA.

If |A| = |B|, then, since A > B < C, we have |A| = |B| 6 |C| and B < A. Hence
BC ≺ AC and CB 4 CA.
Case 2. vk+1 is a t-letter.

On taking α :=
( vk+1

vkvk+1wk

)
, we have a Nielsen3 edge (V α−→U) ∈ Ng,p. Here

α :=
( vk+1

vkvk+1vk

)
. In this case, the change from µ(V

ϕ−→W ) to µ(U
αϕ−−→W ), consists

of replacing vϕ
k+1 = AC with vαϕ

k+1 = vϕ
k vϕ

k+1v
ϕ
k = (BA)(AC)(AB) = BCAB. To

show that µ(U
αϕ−−→W ) ≺ µ(V

ϕ−→W ), it suffices to show that BCAB ≺ AC.
Let D := min({A,C}, 6). Since vk+1 is a t-letter, there exists some j ∈ [1↑p]

such that vϕ
k+1 is a conjugate of tj , that is, AC is a conjugate of tj . Thus, both

AC and CA begin with D, and we can write AC = DEtjE D with no cancellation.
Now EtjE = DACD = CA. Hence BCAB = BEtjE B where this expression
may have cancellation. Recall that B < D. Thus BEtjE B ≺ DEtjE D, that is,
BCAB ≺ AC.

This completes the proof of Claim 1. ¤

Claim 1 gives a procedure for reducing µ(V
ϕ−→W ). Once ϕ is specified, only a

finite subset of B∪B−1 is ever involved, and, moreover, there is an upper bound
for the lengths of the elements of Fg,p∗H which will appear. It follows that we can
repeat the procedure only a finite number of times. Hence, we may now assume
that, for each k ∈ [1↑(4g+p−1)], Ak < Ak−1wk and Ak < Ak+1wk+1.

Claim 2. Under the latter assumption, ϕ permutes the t-letters and permutes the
x-letters, and the desired conclusion holds.

Proof of Claim 2. For each k ∈ [1↑(4g+p)], Ak < Ak−1wk and Ak−1 < Akwk

(even for k = 1 and k = 4g+p). It follows that wk 6= 1 and also that the expres-
sion vϕ

k = Ak−1wkAk is reduced. It then follows that, for each k ∈ [1↑(4g+p−1)],
Ak−1wkwk+1Ak+1 is a reduced expression for vϕ

k vϕ
k+1. Now

W = V ϕ = (Πv[[1↑(4g+p)]])ϕ = Π
k∈[[1↑(4g+p)]]

(Ak−1wkAk) = Πw[[1↑(4g+p)]],

and we have just seen that the expression Πw[[1↑(4g+p)]] is reduced. By (b),

4g+p > |W | = |Π w[[1↑(4g+p)]]| =
4g+p∑
k=1

|wk| > 4g+p.

Hence, equality holds throughout, and, for each k ∈ [1↑(4g+p)], |wk| = 1 and wk is
a letter.

Let s[[1↑(4g+2p)]] be the vertex sequence in the extended Whitehead graph of V ,
that is, s[1↑(4g+2p)] = t±1

[1↑p] ∪ x±1
[1↑g] ∪ y±1

[1↑g] and {(s`Ãs`+1) | ` ∈ [1↑(4g+2p−1)]}
equals {(tjÃtj) | j ∈ [1↑p]} ∪ {(vkÃvk+1) | k ∈ [1↑(4g+p−1)]}.

We assume that there exists some ` ∈ [1↑(4g+2p)] such that |sϕ
` | > 1, and we

shall obtain a contradiction. Let sϕ
` end in b ∈ B∪B−1. Assume further that ` has

been chosen to minimize b in (B∪B−1, 6). Assume further that ` has been chosen
maximal. In particular, if |sϕ

`+1| > 1, then sϕ
`+1 does not end in b.

Recall that (s`Ãs`+1) can be expressed either as (tjÃtj) or as (vkÃvk+1),
possibly a ghost edge. If (s`Ãs`+1) = (tjÃtj), then |sϕ

`+1| = |sϕ
` | > 1, and,

also, sϕ
`+1 ends in b. This is a contradiction. Thus, we may assume that
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(s`Ãs`+1) = (vkÃvk+1), possibly with k = 4g+p. Then sϕ
` = vϕ

k = Ak−1wkAk

and Ak−1 < Akwk.
We claim that Ak = 1. Suppose not. Then k < 4g+p and, also, Ak ends in b.

Now sϕ
`+1 = vϕ

k+1 = Akwk+1Ak+1. Thus |sϕ
`+1| > 1 and sϕ

`+1 ends in b. This is a
contradiction. Hence Ak = 1.

Now, sϕ
` = Ak−1wkAk = Ak−1wk. Here, wk = b and, also, Ak−1 6= 1. Now,

Ak−1 < Akwk = wk = b. Thus, Ak−1 ∈ B∪B−1. Write a := Ak−1 ∈ B∪B−1.
Then sϕ

` = ab and a < b. There exists some `′ ∈ [1↑(4g+2p)] such that s`′ = s`.
Then sϕ

`′ = ba and a < b. This contradicts the minimality of b.
We have now shown that ϕ permutes the t-letters and maps the x-letters to

letters. It follows from (e) that ϕ permutes the x-letters. Hence, ϕ gives a Nielsen1

edge in Ng,p.
This completes the proof of Claim 2 and the proof of the theorem. ¤ ¤
Theorem 2.6 combines Zieschang’s approach [28, Section 5.2] and McCool’s ap-

proach [8, Lemma 3.2]. Zieschang does not use Whitehead graphs explicitly and
McCool does not use Nielsen3 edges explicitly. For Claim 1, the ingenious pre-order
and the proof of Case 1 go back to Nielsen [18], and the proof of Case 2 goes back
to Artin [1]. The proof of Claim 2 goes back to Whitehead [21]. Zieschang refers
to Nielsen [18] for the proof of his version of Claim 1 and gives a long proof of
his version of Claim 2. McCool uses results of Whitehead [21] for the proof of his
version of Theorem 2.6.

We shall be interested in five special cases.
In Theorem 2.6, we can take H = 1 and take (V

ϕ−→W ) ∈ Zg,p, and get a
decomposition of this latter edge as a path in Ng,p. Thus we have the following.

2.7. Consequence. Zg,p is generated by Ng,p. ¤
In Theorem 2.6, we can take H = 1 and take ϕ to be an automorphism to obtain

the following weak form of results of Whitehead.

2.8. Consequence. For V ∈ VZg,p and ϕ ∈ Stab([t][1↑p]; Aut Fg,p), if |V ϕ| 6 4g+p,
then V ϕ ∈ VZg,p. ¤

It is a classic result of Nielsen [18] that every surjective endomorphism of a
finite-rank free group is an automorphism, and his proof is the basis of the above
proof of Claim 1. A special case of this classic result will be used later in reviewing
a proof of another result of Nielsen, Theorem 7.2, and to make our exposition
self-contained, we now note that we have proved the desired special case. We have
also proved one of Zieschang’s results concerning injective endomorphisms being
automorphisms.

In Theorem 2.6, we can take H = 1 to obtain the following.

2.9. Consequence. Suppose that ϕ is an endomorphism of Fg,p such that ϕ is
surjective or injective, and such that ϕ fixes Πt[[p↓1]]Π[x, y][[1↑g]] and such that there
exists some permutation π of [1↑p] such that, for each j ∈ [1↑p], tϕj is Fg,p-conjugate
to tjπ . Then ϕ is an automorphism. ¤
2.10. Consequence. Suppose that p > 1.

Let us identify Fg,p = H∗Fg,p−1 where H := 〈 tp | 〉.
Let V := Πt[[(p−1)↓1]]Π[x, y][[1↑g]] ∈ Fg,p−1 and ϕ ∈ Stab(V ; Ag,p) = Stab(tp; Ag,p).

By Theorem 2.6, ϕ acts as an automorphism ϕ′ on Fg,p−1 and ϕ′ lies in Ag,p−1.
Thus, we have a natural isomorphism Stab(tp; Ag,p)

∼−→ Ag,p−1, ϕ 7→ ϕ′. ¤



THE ZIESCHANG-MCCOOL METHOD 9

2.11. Consequence. Suppose that p = 0 and g > 1.
Let us identify Fg,0 = H∗K where H := 〈x1 | 〉 and K := 〈 y[1↑g] ∪ x[2↑g] | 〉.

We have an isomorphism K ∼−→ Fg−1,1 with y1 7→ t1, and, for each i ∈ [2↑g],
xi 7→ xi−1, yi 7→ yi−1.

Let V := y1Π[x, y][[2↑g]] and ϕ ∈ Stab(V ; Ag,0) = Stab(x1y1x1; Ag,0). Then ϕ
stabilizes the Fg,0-conjugacy class [y1]. By Theorem 2.6, ϕ acts as an automorphism
on K such that the induced action on Fg−1,1 is an element ϕ′ of Ag−1,1.

Then we have a homomorphism Stab(x1y1x1; Ag,0) → Ag−1,1, ϕ 7→ ϕ′. It is
straightforward to see that this map is surjective and that the kernel is generated by
a central element, α1 :=

( x1
y1x1

)
. In particular, Stab(x1y1x1; Ag,0)/〈α1 〉 ' Ag−1,1 .

¤

3. The canonical edges in the Zieschang groupoid

In this section, we develop methods introduced by McCool in [20]. We define
the canonical edges in Zg,p and use them to find a special generating set for Ag,p.

Throughout this section, all products AB are understood to be without cancel-
lation; any product where cancellation might be possible will be written as A◦B.
Upper-case letters will be used to denote elements of Fg,p, and lower-case letters
will be used to denote t-letters and x-letters.

3.1. Definitions. Let g, p ∈ [0↑∞[ , let Fg,p := 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉, and
let V ∈ VZg,p. We shall now recursively construct a path in Zg,p from V to
Πt[[p↓1]]Π[x, y][[1↑g]]. In particular, Zg,p is connected. At each step, we specify an
automorphism and tacitly apply Consequence 2.8 to see that we have an edge
in Zg,p.

(i). If p > 1 and V = PtjQ where tj is the first t-letter which occurs in V and
P 6= 1, then we travel along the edge

PtjQ

�
tj

tP
j

�
−−−−→ tjPQ.

(ii). If p > 1 and V = tjP and j 6= p, then we travel along the edge

tjP

�
tj tp

tp tj

�
−−−−−−→ tpP

′.
(iii). If j ∈ [2↑p] and V begins with Πt[[p↓(j+1)]] but not with Πt[[p↓j]], then we

proceed analogously to steps (i) and (ii).
(iv). If g > 1 and V = Πt[[p↓1]]aPaQ where a is an x-letter and a 6= x1, then we

travel along the edge

Πt[[p↓1]]aPaQ

� a x1
x1 a

�
−−−−−−→ Πt[[p↓1]]x1P

′x1Q
′.

(v). Suppose that g > 1 and V = Πt[[p↓1]]x1Px1Q and |P | > 2. If the set of letters
which occur in P were closed under taking inverses, then the extended White-
head graph of V would have a cycle PfirstÃ · · ·ÃPlastÃx1ÃPfirst, which is a
contradiction. Let b denote the first letter that occurs in P such that b occurs
in Q. We write P = P1bP2 and Q = Q1bQ2, and we travel along the edge

Πt[[p↓1]]x1P1bP2x1Q1bQ2

�
b

P 1bP 2

�
−−−−−−→ Πt[[p↓1]]x1bx1Q1P2bP1Q2.

(vi). If g > 1 and V = Πt[[p↓1]]x1bx1PbQ where b is an x-letter and b 6= y1, then
we travel along the edge

Πt[[p↓1]]x1bx1PbQ

�
b y1

y1 b

�
−−−−−−→ Πt[[p↓1]]x1y1x1P

′y1Q
′.

(vii). Suppose that g > 1 and V = Πt[[p↓1]]x1y1x1Py1Q and P 6= 1. Here the
extended Whitehead graph of V has the form
tpÃtpÃ··Ãt1Ãt1Ãx1ÃPfirstÃ· · ·ÃP lastÃy1Ãx1Ãy1ÃQfirstÃ· · ·ÃQ last.
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Let ϕ denote the (Whitehead) automorphism of Fg,p such that, for each
letter u,
uϕ := y

Truth(u appears in P first ··· P last)
1 ◦ u ◦ y

Truth(u appears in P first ··· P last)
1

where Truth(−) assigns the value 1 to true statements and the value 0 to false
statements. Then ϕ stabilizes each t-letter and x1 and y1. For all but two
edges (vkÃvk+1), the right multiplier for vk equals the right multiplier for
vk+1, that is, the inverse of the left multiplier for vk+1. The two exceptional
edges are x1ÃPfirst and P lastÃy1. It follows that Qϕ = Q and Pϕ = y1Py1.
We travel along the edge
Πt[[p↓1]]x1y1x1Py1Q

ϕ−→ Πt[[p↓1]][x1, y1]PQ.

(viii). If i ∈ [2↑g] and V begins with Πt[[p↓1]]Π[x, y][[1↑(i−1)]] but V does not begin
with Πt[[p↓1]]Π[x, y][[1↑i]], then we proceed analogously to steps (iv)–(vii).

The foregoing procedure specifies a path in Zg,p from V to Πt[[p↓1]]Π[x, y][[1↑g]],
and, hence, a canonical edge in Zg,p, denoted

V
ΦV−−→ Πt[[p↓1]]Π[x, y][[1↑g]].

We understand that ΦΠt[[p↓1]]Π[x,y][[1↑g]]
is the identity map. The only information

about ΦV that we shall need is that the following hold; all of these assertions can
be seen from the construction.
(3.1.1) If p = 0 and g > 1 and V = aPaQ, then ΦV sends a to x1, and P to y1.
(3.1.2) If p = 1 and V = Pt1Q = (tP1 ) ◦ (PQ), then ΦV sends tP1 to t1.
(3.1.3) If p = 1 and g > 1 and V = t1aPaQ, then ΦV sends t1 to t1, a to x1, and

P to y1.
(3.1.4) If p > 2 and V = Ptj1Qtj2R = (tPj1)◦(tQ P

j2
)◦(PQR), and no t-letters occur

in P or Q, then ΦV sends tPj1 to tp, and tQ P
j2

to tp−1. ¤

3.2. Remark. We shall be given a special subset A′ of Ag,p that we wish to show
generates Ag,p. We view Ag,p as the set of edges of Zg,p from Πt[[p↓1]]Π[x, y][[1↑g]]

to itself, and we let Z ′g,p denote the subgroupoid of Zg,p generated by the edges
in A′ together with all the canonical edges of Zg,p. Using methods introduced by
McCool [20], we shall prove that Z ′g,p contains the Nielsen subgraph Ng,p of Zg,p.
By Consequence 2.7, Z ′g,p = Zg,p. Now when any edge in Ag,p is expressed as a
product of canonical edges and edges in A′ and their inverses, then the nontrivial
canonical edges and their inverses must pair off and cancel out, and we are left with
an expression that involves no nontrivial canonical edges. Here, Ag,p is generated
by A′. ¤
3.3. Theorem. Let g ∈ [1↑∞[ , p = 0. Then the group Ag,0 is generated by
Stab(x1y1x1; Ag,0) ∪ {β1}, where β1 :=

( y1
x1y1

)
.

Proof. Let Z ′g,0 denote the subgroupoid of Zg,0 generated by the given set together
with all the canonical edges. By Remark 3.2, it suffices to show that Ng,0 ⊆ Z ′g,0.

Recall that α1 :=
( x1

y1x1

) ∈ Stab(x1y1x1; Ag,0) ⊆ Z ′g,0. In Fg,0, (x1y1x1)β1α1 =
(x1y1)α1 = x1. Hence Stab(x1; Ag,0) ⊆ Z ′g,0. Thus Z ′g,0 contains all the edges of
the forms

(I.1) : V ∈ VZg,0
ΦV−−→ Π[x, y][[1↑g]],

(I.2) : Π[x, y][[1↑g]]
map in Ag,0 that stabilizes x1 or x1y1x1−−−−−−−−−−−−−−−−−−−−−−−−−−→ Π[x, y][[1↑g]].

We next describe two more families of edges in Z ′g,0, expressed as products of
edges of types (I.1) and (I.2) and their inverses.
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(I.3) : a1P1 ∈ VZg,0
-map in Aut Fg,0 with a1 7→a2, P1 7→P2

a2P2 ∈ VZg,0

?
(I.1)

(3.1.1)⇒ (a1 7→x1)

?
(I.1)

(3.1.1)⇒ (a2 7→x1)

Π[x, y][[1↑g]] Π[x, y][[1↑g]]
-

map making square commute ⇒(x1 7→x1)⇒ (I.2)

(I.4) : abPaQ ∈ VZg,0
-

( a
ab )⇒(abPa 7→ aPba)

aPbaQ ∈ VZg,0

?
(I.1)

(3.1.1)⇒ (abPa 7→ x1y1x1)

?
(I.1)

(3.1.1)⇒ (aPba 7→ x1y1x1)

Π[x, y][[1↑g]] Π[x, y][[1↑g]]
-

make square commute ⇒(x1y1x1 7→x1y1x1)⇒ (I.2)

We then have the family

(I.5) : abPbQ ∈ VZg,0

�
b
ab

�
−−−→ bPbaQ ∈ VZg,0,

since, here, we have the factorization

abPbQ
( a

ab )⇒(I.4)
−−−−−−−→ aP ′bQ′ makes triangle commute ⇒(a 7→b)⇒(I.3)−−−−−−−−−−−−−−−−−−−−−−−−−−→ bPbaQ.

It can be seen that the edges of type (I.3) include all the Nielsen1 edges in Zg,0,
and also all the Nielsen2 edges in Zg,0 that do not involve a1. The remaining
Nielsen2 edges in Zg,0 are of type (I.4) or (I.5) or their inverses. Since p = 0, there
are no Nielsen3 edges. We have now shown that Ng,0 ⊆ Z ′g,0, as desired. ¤

3.4. Theorem. Let g ∈ [1↑∞[ , p = 1. Then the group Ag,1 is generated by

Stab(t1; Ag,1) ∪ {γ1} where γ1 :=
( t1 x1

t
w1
1 x1w1

)
with w1 := t1y

x1
1 .

Proof. Let Z ′g,1 denote the subgroupoid of Zg,1 generated by the given set together
with all the canonical edges. By Remark 3.2, it suffices to show that Ng,1 ⊆ Z ′g,1.

Now Z ′g,1 contains Stab(t1; Ag,1)γ1, which consists of the maps in Ag,1 with
t1 7→ tγ1

1 = tw1
1 = t

x1y1x1
1 . Thus, Z ′g,1 contains all the edges of the forms

(II.1) : V ∈ VZg,1
ΦV−−→ t1Π[x, y][[1↑g]],

(II.2) : t1Π[x, y][[1↑g]]

map in Ag,1 with t1 7→t1 or t1 7→t
x1y1x1
1−−−−−−−−−−−−−−−−−−−−−−−−−→ t1Π[x, y][[1↑g]].

We next describe another family of edges in Z ′g,1.

(II.3) : P1t1Q1 ∈ VZg,1
-map in Aut Fg,1 with t

P1
1 7→t

P2
1 , P1Q1 7→P2Q2 P2t1Q2 ∈ VZg,1

?
(II.1)

(3.1.2)⇒ (t
P1
1 7→t1)

?
(II.1)

(3.1.2)⇒ (t
P2
1 7→t1)

t1Π[x, y][[1↑g]] t1Π[x, y][[1↑g]]
-

map makes the square commute ⇒(t1 7→t1)⇒ (II.2)

Edges of type (II.3) include all the Nielsen1 edges, and all the Nielsen2 edges
which do not involve t1, and all the Nielsen3 edges, since these have the form

Pat1Q

� t1
ta
1

�
⇒(ta P

1 7→tP
1 ,PaQ 7→PaQ)

−−−−−−−−−−−−−−−−−−−→ Pt1aQ, or its inverse.

It remains to consider the Nielsen2 edges which involve t1; these are of the forms
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Pt1aQaR

� a
t1a

�
−−−−→ PaQat1R, Pat1QaR

� a
at1

�
−−−−→ PaQt1aR, and their inverses. To

construct a commuting hexagon, we define the following edges.

(II.4) : PaQat1R ∈ VZg,1

�
t1

tP aQa
1

�
⇒(II.3),(tP

1 7→tP aQaP
1 )

−−−−−−−−−−−−−−−−−−−−−→ t1PaQaR ∈ VZg,1,

(II.5) : t1PaQaR ∈ VZg,1

( a
Pa )⇒(II.3),(tP aQaP

1 7→taQa
1 )

−−−−−−−−−−−−−−−−−−−→ t1aQaPR ∈ VZg,1,

(II.6) : t1aQaPR ∈ VZg,1
(II.1)

(3.1.3)⇒ (taQa
1 7→t

x1y1x1
1 )−−−−−−−−−−−−−−−−−→ t1Π[x, y][[1↑g]].

Then we have the factorization

(II.7) : Pt1aQaR ∈ VZg,1
-

� a
t1a

�
⇒(tP

1 7→tP
1 )

PaQat1R ∈ VZg,1

?
(II.1)

(3.1.2)⇒ (tP
1 7→t1)

?

(II.4)−(II.6)

⇒(tP
1 7→t

x1y1x1
1 )

t1Π[x, y][[1↑g]] t1Π[x, y][[1↑g]]
-

map makes square commute ⇒(t1 7→t
x1y1x1
1 )⇒(II.2)

We also have the factorization

(II.8) : Pat1QaR ∈ VZg,1
-

� a
at1

�
PaQt1aR ∈ VZg,1

?

� t1
ta
1

�
⇒(II.3)

?

� t1
ta
1

�
⇒(II.3)

Pt1aQaR ∈ VZg,1 PaQat1R ∈ VZg,1
-

map makes square commute ⇒
� a

t1a

�
⇒(II.7)

We have now shown that Ng,1 ⊆ Z ′g,1, as desired. ¤

3.5. Theorem. Let g ∈ [0↑∞[ , p ∈ [2↑∞[ . Then the group Ag,p is generated by

Stab(tp; Ag,p) ∪ {σp} where σp :=
( tp tp−1

tp−1 t
tp−1
p

)
.

Proof. Let Z ′g,p denote the subgroupoid of Zg,p generated by the given set together
with all the canonical edges. By Remark 3.2, it suffices to show that Ng,p ⊆ Z ′g,p.

Now Z ′g,p contains Stab(tp; Ag,p)σp, which consists of the maps in Ag,p with
tp 7→ t

σp
p = tp−1. Thus Z ′g,p contains all the edges of the forms

(III.1) : V ∈ VZg,p
ΦV−−→ Πt[[p↓1]]Π[x, y][[1↑g]],

(III.2) : Πt[[p↓1]]Π[x, y][[1↑g]]
map in Ag,p with tp 7→tp or tp 7→tp−1−−−−−−−−−−−−−−−−−−−−−−−→ Πt[[p↓1]]Π[x, y][[1↑g]].

We now describe some more families of edges in Z ′g,p.
In the following, we assume that no t-letters occur in P1 or P2.

(III.3) : P1tj1Q1 ∈ VZg,p
-in Stab([t][1↑p]; Fg,p), P1 7→P2,tj1 7→tj2 , Q1 7→Q2

P2tj2Q2 ∈ VZg,p

?
(III.1)

(3.1.4)⇒ (t
P1
j1
7→tp)

?
(III.1)

(3.1.4)⇒ (t
P2
j2
7→tp)

Πt[[p↓1]]Π[x, y][[1↑g]] Πt[[p↓1]]Π[x, y][[1↑g]]
-

makes square commute ⇒(tp 7→tp)⇒ (III.2)

The edges of type (III.3) include all the Nielsen1 edges.
In the following, we assume that no t-letters occur in P or Q.
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(III.4) : PQtj1tj2R ∈ VZg,p
-

 
tj2

t
Qtj1
j2

!
⇒(tQ P

j1
7→tQ P

j1
)

Ptj2Qtj1R ∈ VZg,p

?
(III.1)

(3.1.4)⇒ (tQ P
j1

7→tp)

?
(III.1)

(3.1.4)⇒ (tQ P
j1

7→tp−1)

Πt[[p↓1]]Π[x, y][[1↑g]] Πt[[p↓1]]Π[x, y][[1↑g]]
-

square commutes ⇒(tp 7→tp−1)⇒ (III.2)

In the following, we assume that no t-letters occur in P .

(III.5′) : Ptj1Qtj2R ∈ VZg,p

 
tj2

t
P tj1

Q

j2

!
−−−−−−−→ tj2Ptj1QR ∈ VZg,p

has the factorization

Ptj1Qtj2R

 
tj2

tQ
j2

!
⇒(III.3)

−−−−−−−−−−→ Ptj1tj2QR

 
tj2

t
P tj1
j2

!
⇒(III.4)

−−−−−−−−−−−→ tj2Ptj1QR.

In the following, we do allow t-letters to occur in P , and rewrite (III.5′) as

(III.5) : PtjQ ∈ VZg,p

�
tj

tP
j

�
−−−−→ tjPQ ∈ VZg,p.

In the following, we do allow t-letters to occur in P1, P2.

(III.6) : P1tjQ1 ∈ VZg,p
-in Stab([t][1↑p]; Fg,p) with P1 7→P2,tj 7→tj ,Q1 7→Q2

P2tjQ2 ∈ VZg,p

?

� tj

t
P1
j

�
⇒(III.5)

?

� tj

t
P2
j

�
⇒(III.5)

tjP1Q1 ∈ VZg,p tjP2Q2 ∈ VZg,p-
map makes square commute ⇒(tj 7→tj)⇒ (III.3)

Since p > 2, any Nielsen2 edge of Zg,p will be of type (III.6) for some j, as
will any Nielsen3 edge except where p = 2 and we have an edge of the form

Ptj1tj2Q ∈ VZg,p

 
tj2

t
tj1
j2

!
−−−−−→ Ptj2tj1Q ∈ VZg,p, and or its inverse, and, since p = 2,

these are of type (III.4).
We have now shown that Ng,p ⊆ Z ′g,p, as desired. ¤

4. The ADLH generating set

The results of the preceding two sections combine to give an algebraic proof of
the algebraic form of [13, Proposition 2.10(ii) with r = 0]. We start with the ADL
set.

4.1. Theorem. Let g, p ∈ [0↑∞[ . Let Ag,p denote the group of automorphisms
of 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉 that fix Π t[[p↓1]] Π[x, y][[1↑g]] and permute the set of
conjugacy classes [t][1↑p]. Then Ag,p is generated by

σ[2↑p] ∪ α[1↑g] ∪ β[1↑g] ∪ γ[max(2−p,1)↑g],

where, for j ∈ [2↑p], σj :=
( tj tj−1

tj−1 t
tj−1
j

)
, for i ∈ [1↑g], αi :=

( xi
yixi

)
and βi :=

( yi

xiyi

)
,

for i ∈ [2↑g], γi :=
( xi−1 yi−1 xi

wixi−1 y
wi
i−1 xiwi

)
with wi := yi−1y

xi
i , and if min(1, g, p) = 1,

γ1 :=
( t1 x1

t
w1
1 x1w1

)
with w1 := t1y

x1
1 .

Proof. We use induction on 2g + p. If 2g + p 6 1, then Ag,p is trivial and the
proposed generating set is empty. Thus we may assume that 2g + p > 2, and that
the conclusion holds for smaller pairs (g, p).
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Case 1. p = 0.
Here g > 1.
By Consequence 2.11, we have a homomorphism Stab(x1y1x1; Ag,0) → Ag−1,1

such that the kernel is 〈α1 〉, and such that α[2↑g] ∪ β[2↑g] ∪ γ[2↑g] is mapped bijec-
tively to α[1↑(g−1)] ∪ β[1↑(g−1)] ∪ γ[1↑(g−1)]. The latter is a generating set of Ag−1,1

by the induction hypothesis. It follows that Stab(x1y1x1; Ag,0) is generated by
α[1↑g] ∪ β[2↑g] ∪ γ[2↑g].

By Theorem 3.3, Ag,0 is generated by Stab(x1y1x1; Ag,0) ∪ {β1}.
Hence Ag,0 is generated by α[1↑g] ∪ β[1↑g] ∪ γ[2↑g], as desired.

Case 2. p > 1.
It follows from Consequence 2.10 that we can identify Stab(tp; Ag,p) with Ag,p−1

in a natural way. By the induction hypothesis, Stab(tp; Ag,p) is generated by
σ[2↑(p−1)] ∪ α[1↑g] ∪ β[1↑g] ∪ γ[max(3−p,1)↑g]. We consider two cases.

Case 2.1. p = 1.
Here g > 1. By Theorem 3.4, Ag,1 is generated by Stab(t1; Ag,1) ∪ {γ1}.
Hence, Ag,1 is generated by α[1↑g] ∪ β[1↑g] ∪ γ[1↑g], as desired.

Case 2.2. p > 2.
By Theorem 3.5, Ag,p is generated by Stab(tp; Ag,p) ∪ {σp}.
Hence, Ag,p is generated by σ[2↑p] ∪ α[1↑g] ∪ β[1↑g] ∪ γ[1↑g], as desired. ¤
We next recall Humphries’ result [12] that the α[3↑g] part is not needed, and,

hence, the ADHL set suffices.

4.2. Corollary. Ag,p is generated by σ[2↑p] ∪ α[1↑min(2,g)] ∪ β[1↑g] ∪ γ[max(2−p,1)↑g].

Proof. It is not difficult to check that there exists an element of A3,0 given by

η :=
( x1 y1 x2 y2 x3 y3

y3x3y3 y
x3y3
3 x

[x3,y3]
2 y

[x3,y3]
2 x

[x2,y2][x3,y3]
1 y

[x2,y2][x3,y3]
1

)
,

and that (x1y1x1)η = y3, and that both α1η and ηα3 equal
( x1 y1 x2 y2 x3 y3

y3x3 y
x3y3
3 x

[x3,y3]
2 y

[x3,y3]
2 x

[x2,y2][x3,y3]
1 y

[x2,y2][x3,y3]
1

)
.

By Consequence 2.11, each element of Stab(x1y1x1; A3,0) centralizes α1, and,
hence, each element of Stab(x1y1x1; A3,0)η conjugates α1 into α3. Notice that
Stab(x1y1x1; A3,0)η is the set of elements of A3,0 with x1y1x1 7→ y3.

One can compute

x1y1x1

β17→ x1y1

γ27→ x1x2y2x2

β27→ x1x2y2

α27→ x1x2 =

x1x2

γ37→ x1x2y2x3y3x3

β37→ x1x2y2x3y3

β27→ x1y2x3y3

γ37→ x1x3 =

x1x3

γ27→ x1y1x2y2x2x3

β27→ x1y1x2y2x3

β17→ y1x2y2x3

γ27→ x2x3 =

x2x3

α27→ x2y2x3

β27→ y2x3

γ37→ x3y3

β37→ y3;

this is the algebraic translation of [12, Figure 2]. We then see that, as in [12],

α
β1γ2β2α2γ3β3β2γ3γ2β2β1γ2α2β2γ3β3
1 = α3. By shifting the indices upward, we

see that α[3↑g] can be removed from the ADL set and still leave a generating set.
Alternatively, it would also suffice to prove the relation (R5) of [13, Theorem 3.1]

which says that α3 = (α1β1γ2β2γ3α2)5(α1β1γ2β2γ3)−6; notice that this expression
is longer and does not involve β3. ¤

We have now completed our objective. For completeness, we conclude the article
with an elementary review of some classic results.
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5. Some background on mapping-class groups

5.1. Notation. Let us define Fg,p−1 := 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | Πt[[p↓1]]Π[x, y][[1↑g]] 〉.
Then Fg,p = 〈 t[1↑(p+1)] ∪ x[1↑g] ∪ y[1↑g] | Πt[[(p+1)↓1]]Π[x, y][[1↑g]] 〉, and we still

have Fg,p = 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | 〉 and here tp+1 = Πt[[p↓1]]Π[x, y][[1↑g]]. ¤
5.2. Definitions. We construct an orientable surface Sg,1,p, of genus g with
p punctures and one boundary component, as follows. We start with a ver-
tex which will be the basepoint. We attach a set of 2g+p+1 oriented edges
t[1↑(p+1)] ∪ x[1↑g] ∪ y[1↑g]. We attach a (4g+p+1)-gon with counter-clockwise
boundary label Πt[[(p+1)↓1]]Π[x, y][[1↑g]] ∈ 〈 t[1↑(p+1)] ∪ x[1↑g] ∪ y[1↑g] | 〉. For each
j ∈ [1↑p], we attach a punctured disk with counterclockwise boundary label tj .
This completes the definition of Sg,1,p. Notice that the boundary of Sg,1,p is the
edge labelled tp+1.

We may identify π1(Sg,1,p) = Fg,p. We call Stab([t][1↑p] ∪ {tp+1}; Aut Fg,p) the
algebraic mapping-class group of Sg,1,p. This is our group Ag,p. (In [9], Ag,p is de-
noted Aut+

g,0,p⊥1̂
, and, in [9, Proposition 7.1(v)], the latter group is shown to be iso-

morphic to what is there called the orientation-preserving algebraic mapping-class
group of Sg,1,p, denoted Out+g,1,p.)

Let AutSg,1,p denote the group of self-homeomorphisms of Sg,1,p which stabilize
each point on the boundary. The quotient of AutSg,1,p modulo the group of ele-
ments of AutSg,1,p which are isotopic to the identity map through a boundary-fixing
isotopy is called the (topological) mapping-class group of Sg,1,p, denoted Mtop

g,1,p.
Then AutSg,1,p acts on Fg,p stabilizing [t][1↑p] ∪ {tp+1}, and we have a homo-

morphism Mtop
g,1,p → Ag,p . ¤

5.3. Definitions. Let Sg,0,p denote the quotient space obtained from Sg,1,p by
collapsing the boundary to a point. Then Sg,0,p is an orientable surface of genus g
with p punctures.

We may identify π1(Sg,0,p) = Fg,p−1. We define the algebraic mapping-class
group of Sg,0,p as Malg

g,0,p := Stab([t][1↑p]∪[t][1↑p]; Out Fg,p−1). (In [9], if (g, p) 6= (0, 0),
(0, 1), then Malg

g,0,p is denoted Outg,0,p.)
Let AutSg,0,p denote the group of self-homeomorphisms of Sg,0,p. The quotient

of AutSg,0,p modulo the group of elements which are isotopic to the identity map
is called the (topological) mapping-class group of Sg,0,p, denoted Mtop

g,0,p.
Then AutSg,0,p acts on Fg,p−1/∼ stabilizing [t][1↑p] ∪ [t][1↑p]. This action fac-

tors through a natural homomorphism AutSg,0,p → OutFg,p−1, and we have a
homomorphism Mtop

g,0,p → Malg
g,0,p.

Consider the simply-connected case, that is, Fg,p−1 = 1. Then, (g, p) is either
(0, 0) or (0, 1), corresponding to the sphere S0,0,0 and the open disk S0,0,1. Here,
Malg

g,0,p is trivial, while Mtop
g,0,p has order two, with one mapping class consisting of

the reflections. ¤
It has been the work of many years to show that Mtop

g,1,p = Ag,p and to show
that both are generated by the ADLH set. Also, if (g, p) 6= (0, 0), (0, 1), then
Mtop

g,0,p = Malg
g,0,p, and their orientation-preserving subgroups are generated by the

ADLH set. The proofs developed in stages, roughly as follows, although we are
omitting many important results.

• In 1917, Nielsen [17] proved that if (g, p) = (1, 0) then the ADL set gener-
ates Ag,p.

• In 1925, Artin [1] introduced braid twists, and proved that if g = 0 then
the ADL set generates Ag,p and Mtop

g,1,p = Ag,p.
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• In 1927, Nielsen [19] presented unpublished results of Dehn and proved
that if p = 0 then Mtop

g,1,p maps onto Ag,p, and that if p 6 1 then Mtop
g,0,p

maps onto Malg
g,0,p.

• In 1928, Baer [4] proved that if p = 0 then Mtop
g,0,p embeds in Malg

g,0,p for all
g > 2.

• In 1934, Magnus [15] proved that if g = 1 then Mtop
g,1,p = Ag,p and

Mtop
g,0,p = Malg

g,0,p.
• In 1939, Dehn [6] introduced what are now called Dehn twists, and proved,

among other results, that a finite number of Dehn twists generate the
orientation-preserving subgroup of Mtop

g,0,p.; see [6, Section 10.3.c].
• In 1964, Lickorish [14] rediscovered and refined Dehn’s 1939 methods and

proved that if p = 0 then the ADL set generates the orientation-preserving
subgroup of Mtop

g,0,p.
• In 1966, Epstein [11] refined Baer’s 1928 methods and proved that Mtop

g,1,p

embeds in Ag,p and that, if (g, p) 6= (0, 0), (0, 1), then Mtop
g,0,p embeds in

Malg
g,0,p.

• In 1966, Zieschang [26, Satz 4], [28, Theorem 5.7.1] proved that Mtop
g,1,p=Ag,p

and that, for (g, p) 6= (0, 0), (0, 1), Mtop
g,0,p = Malg

g,0,p, and called these results
the Baer-Dehn-Nielsen Theorem.

• In 1979, Humphries[12] showed that the ADHL set generates the same
group as the ADL set.

• In 2001, Labruère and Paris [13, Proposition 2.10(ii) with r = 0] used
some of the foregoing results and a theorem of Birman [5] to prove that
the ADLH set generates Mtop

g,1,p.

6. The topological source of the ADL set

In this section, we shall recall the definitions of Dehn twists and braid twists
and see that the ADL set lies in Mtop

g,1,p. The diagram [13, Figure 12] illustrates the
elements of the ADLH set acting on Sg,1,p.

6.1. Definitions. Let A := [0, 1] × (R/Z), a closed annulus. Let z denote the
oriented boundary component {1}× (R/Z) with basepoint (1,Z). Let z′ denote the
oriented boundary component {0}× (R/Z) with basepoint (0,Z). Let e denote the
edge [0, 1]× {Z} oriented from (1,Z) to (0,Z).

The model Dehn twist is the self-homeomorphism τ of A = [0, 1]× (R/Z) given
by (x, y + Z) 7→ (x,−x + y + Z). Notice that τ fixes every point of z′∪z, and τ acts
on e as (x,Z) 7→ (x, 1− x + Z). Thus eτe z bounds a triangle; hence eτ is homotopic
to ze.

Suppose now that we have an embedding of A in a surface S. Then the image
of z is an oriented simple closed curve c, and τ induces a self-homeomorphism of S
which is the identity outside the copy of A. We call the resulting map of S a (left)
Dehn twist about c; see [6]. ¤

Recall the construction of Sg,1,p in Definitions 5.2.

6.2. Examples. Let i ∈ [1↑g].
Recall that xiyixi is a subword of the boundary label of the (4g+p+1)-gon used

in the construction of Sg,1,p. We place the annulus A on Sg,1,p with the image of z
along the boundary edge labelled yi. The image of z′ enters the (4g+p+1)-gon near
the end of the boundary edge labelled xi, travels near z = yi, and exits near the
beginning of xi, completing the cycle. The only oriented edge of the one-skeleton
of Sg,1,p that crosses A from right to left is xi, near its beginning. Incident to
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the basepoint of z are, in clockwise order, the end of z, the beginning of xi, and
the beginning of z. The Dehn twist about yi induces

( xi
yixi

)
on π1(Sg,1,p) = Fg,p.

Hence αi ∈ Mtop
g,1,p.

Recall that yixiyi is a subword of the boundary label of the (4g+p+1)-gon used
in the construction of Sg,1,p. We place the annulus A on Sg,1,p with the image of z
along the boundary edge labelled xi. The image of z′ enters the (4g+p+1)-gon near
the end of the boundary edge labelled yi, travels near z = xi, and exits near the
beginning of yi, completing the cycle. The only oriented edge of the one-skeleton
of Sg,1,p that crosses A from right to left is yi, near its beginning. Incident to the
basepoint of z are, in clockwise order, the end of z, the beginning of yi, and the
beginning of z. The Dehn twist about xi induces ( yi

xiyi ) on π1(Sg,1,p) = Fg,p. Hence
βi ∈ Mtop

g,1,p. ¤

6.3. Example. Let i ∈ [2↑g]. Recall that xi−1yi−1xi−1yi−1xiyixi is a subword of
the boundary label of the (4g+p+1)-gon used in the construction of Sg,1,p. We place
the annulus A on Sg,1,p with the image of z marking out, in the (4g+p+1)-gon, a
pentagon with boundary label yi−1xiyixiz. The image of z′

• enters (the (4g+p+1)-gon) near the end of (the boundary edge labelled)
yi−1, travels counter-clockwise near the basepoint, exits near the beginning
of xi−1,
• enters near the end of xi−1, travels counter-clockwise near the basepoint,
exits near the beginning of yi−1,
• enters near the end of yi−1, travels counter-clockwise near the basepoint,
exits near the beginning of xi,
• enters near the end of xi, travels near z, passing yi, xi, exits near the
beginning of yi−1,

completing the cycle. The entrances correspond to yi−1Ãxi−1Ãyi−1Ãxi in the
extended Whitehead graph. The oriented edges of the one-skeleton of Sg,1,p that
cross A from right to left are the exits: xi−1 near its beginning, yi−1 near its
beginning, xi near its beginning, and yi−1 near its beginning. Incident to the
basepoint of z are, in clockwise order, the end of z, and the beginnings of yi−1,
xi−1, yi−1, xi, and z. Let wi := yi−1xiyixi. The Dehn twist about wi induces( xi−1 yi−1 xi

wixi−1 y
wi
i−1 xiwi

)
on π1(Sg,1,p) = Fg,p. Hence γi ∈ Mtop

g,1,p. ¤

6.4. Example. Suppose that min(g, p, 1) = 1. Recall that t1x1y1x1 is a subword
of the boundary label of the (4g+p+1)-gon used in the construction of Sg,1,p and
that t1 is the boundary label of the t1-disk. We place the annulus A on Sg,1,p with
z marking out, in the (4g+p+1)-gon, a pentagon with boundary label t1x1y1x1z.
The image of z′

• enters the t1-disk near the end of t1, travels counter-clockwise near the
basepoint, exits near the beginning of t1,
• enters the (4g+p+1)-gon near the end of t1, travels counter-clockwise
near the basepoint, exits near the beginning of x1,
• enters the (4g+p+1)-gon near the end of x1, travels near z passing y1, x1,
exits near the beginning of t1,

completing the cycle. The entrances correspond to t1Ãt1Ãx1 in the extended
Whitehead graph. The oriented edges of the one-skeleton of Sg,1,p that cross A
from right to left are the exits: t1 near its beginning, x1 near its beginning, and t1
near its beginning. Incident to the basepoint of z are, in clockwise order, the end
of z, and the beginnings of t1, t1, x1, and z. Let w1 := t1x1y1x1. The Dehn twist
about w1 induces

( t1 x1
t
w1
1 x1w1

)
on π1(Sg,1,p) = Fg,p. Hence γ1 ∈ Mtop

g,1,p. ¤
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6.5. Definitions. Recall the annulus A = [0, 1]× (R/Z) of Definitions 6.1. Let D
denote the space that is obtained from A by deleting the two points p2 := ( 1

2 ,Z) and
p1 := ( 1

2 , 1
2 +Z) and collapsing to a point the boundary component z′ = {0}×(R/Z).

We take p0 := (1,Z) as the basepoint of D.
Thus D is a closed disk with two punctures, and the model Dehn twist τ has an

induced action on D, called the model braid twist. We now determine the induced
action on π1(D).

Let z2 denote an infinitesimal clockwise circle around p2, and let z1 := zτ
2 , an

infinitesimal clockwise circle around p1. Then τ interchanges z2 and z1. Let e2

denote the oriented subedge of e from z2 to p0 starting at a point p′2 on z2. Let
e1 := eτ

2 , an oriented subedge of eτ from z1 to p0 starting at p′1 := p′τ2 on z1. Then
τ interchanges p′1 and p′2, and acts on e1 as (x, 1− x + Z) 7→ (x, 2− 2x + Z). Here,
eτ
1 is an oriented edge from p′2 to p0 such that eτ

1ze2 bounds a triangle; hence, eτ
1 is

homotopic to e2z.
We view ze2

2 and ze1
1 as closed paths, and then ze2

2 ze1
1 z bounds a disk in D. Now

π1(D) = 〈 ze2
2 , ze1

1 , z | ze2
2 ze1

1 z 〉 = 〈 ze2
2 , ze1

1 | 〉, and the induced action of τ on

π1(D) is given by ze2
2 7→ ze1

1 and ze1
1 7→ ze2 z

2 = z
e2 z

e2
2 z

e1
1

2 = (ze2
2 )z

e1
1 .

Suppose that we have an embedding of D in a surface S which carries punctures
to punctures. Then τ induces a self-homeomorphism of S which is the identity
outside the copy of D. The resulting map of S is called a braid twist ; see [1]. ¤
6.6. Example. Let j ∈ [2↑p]. We place the twice-punctured disk D on Sg,1,p with
the image of z marking out, in the (4g+p+1)-gon, a triangle with boundary label
tjtj−1z. This is possible since z now bounds a twice-punctured disk in Sg,1,p. Here
tj is homotopic to ze2

2 and tj−1 is homotopic to ze1
1 . The resulting braid twist of

Sg,1,p induces
( tj tj−1

tj−1 t
tj−1
j

)
. Hence σj ∈ Mtop

g,1,p. ¤

We now see that the ADL set lies in Mtop
g,1,p. By Theorem 4.1, the homomorphism

Mtop
g,1,p → Ag,p is surjective; that is, by using Zieschang’s proof, we have recovered

Zieschang’s result [26, Satz 4], [28, Theorem 5.7.1]. Assuming Epstein’s result [11],
we now have Mtop

g,1,p = Ag,p, and both are generated by the ADLH set.

7. Collapsing the boundary

In this section we review Zieschang’s algebraic proof of a result of Nielsen. We
then describe a generating set for Malg

g,0,p which lies in the image of Mtop
g,0,p.

7.1. Definitions. Recall Fg,p−1 = 〈 t[1↑p] ∪ x[1↑g] ∪ y[1↑g] | Πt[[p↓1]]Π[x, y][[1↑g]] 〉.
Let ζ ∈ Aut Fg,p−1 be defined by

∀i ∈ [1↑g] xζ
i := yg+1−i, yζ

i := xg+1−i, ∀j ∈ [1↑p] tζj := tp+1−j .

We then have the outer automorphism ζ̆ ∈ Malg
g,0,p. ¤

7.2. Theorem. For g, p ∈ [0↑∞[ , Malg
g,0,p is generated by the natural image of Ag,p

together with ζ̆. Hence, Malg
g,0,p is generated by the image of the ADLH set together

with ζ̆.

Steve Humphries has pointed out to us that there are some cases where it is
known that an element can be omitted from the resulting generating set of Malg

g,0,p.
For g > 1, the relations (R9a), (R9b) in [13, Theorem 3.2] show that if p = 1, then
γ̆1 can be omitted, while if p > 2 and p = 2g−2±1, then ᾰ1 can be omitted.

Sketched proof of Theorem 7.2. For p > 1, this is a straightforward exercise which
we leave to the reader. Thus we may assume that p = 0. We may further assume



THE ZIESCHANG-MCCOOL METHOD 19

that g > 1. The remaining case is now a result of Nielsen [19] for which Zieschang
has given an algebraic proof [28, Theorem 5.6.1] developed from [23, 24, 25] along
the following lines.

Let ϕ ∈ Aut Fg,−1. We wish to show that the element ϕ̆ ∈ Out Fg,−1 = Malg
g,0,0

lies in the subgroup generated by the image of Ag,0 = Stab(t1, AutFg,0) together
with ζ̆. It is clear that ϕ lifts back to an endomorphism ϕ̃ of Fg,0 such that tϕ̃1 lies
in the normal closure of t1.

Now H2(Fg,−1,Z) ' Z; see, for example, [7, Theorem V.4.9]. The image of ϕ

under the natural map AutFg,−1 → Aut H2(Fg,−1,Z) ' {1,−1} is denoted deg(ϕ).
By a cohomology calculation, if we express tϕ̃1 as a product of n+ conjugates of t1
and n− conjugates of t1, then n+ − n− = deg(ϕ) = ±1. By using van Kampen
diagrams on a surface, one can alter ϕ̃ and arrange that n− = 0 or n+ = 0; this
was also done in [10, Theorem 4.9]. Thus tϕ̃1 is now a conjugate of t1 or t1. By
composing ϕ̃ with an inner automorphism of Fg,0, we may assume that tϕ̃1 is t1
or t1.

Notice that ζ lifts back to ζ̃ ∈ AutFg,0 where, for each i ∈ [1↑g], xζ̃
i := yg+1−i

and yζ̃
i := xg+1−i. Then t

ζ̃
1 = (Π[x, y][[1↑g]])ζ̃ = Π[y, x][[g↓1]] = t1. By replacing ϕ

with ϕζ if necessary, we may now assume that tϕ̃1 = t1.
We next prove a result, due to Nielsen [17] for g = 1, and Zieschang [22] for

g > 1, that tϕ̃1 = t1 implies that ϕ̃ is an automorphism of Fg,0.
We shall show first that ϕ̃ is surjective, by an argument of Formanek [7, Theo-

rem V.4.11]. Let w be an element of the basis x[1↑g] ∪ y[1↑g] of Fg,0. The map of
sets x[1↑g] ∪ y[1↑g] → GL2(ZFg,0), v 7→ (

v 0
δv,w 1

)
(where δv,w equals 1 if v = w and

equals 0 if v 6= w) extends uniquely to a group homomorphism

Fg,0 → GL2(ZFg,0), v 7→ (
v 0
v∂w 1

)
.

The map ∂w : Fg,0 → ZFg,0, called the Fox derivative with respect to w, satisfies,
for all u, v ∈ Fg,0, (uv)∂w = (u∂w)v + v∂w . On applying ∂w to uu = 1, we see
that u∂w = −u∂wu. For each i ∈ [1↑g], let Xi := xϕ̃

i and Yi := yϕ̃
i . Since ϕ̃ fixes

t1 = Π[x, y][[1↑g]], we have Π[X, Y ][[1↑g]] = Π[x, y][[1↑g]]. On applying ∂w, we obtain
g∑

i=1

((
X∂w

i · Yi · (1− Y
XiYi

i ) + Y ∂w
i · (1−XYi

i )
)
·Π[X, Y ][[(i+1)↑g]]

)

=
g∑

i=1

((
x∂w

i · yi · (1− yxiyi

i ) + y∂w
i · (1− xyi

i )
)
·Π[x, y][[(i+1)↑g]]

)
.

On applying the natural left ZFg,0-linear map ZFg,0 → Z[Fg,0/F ϕ̃
g,0], denoted

f 7→fF ϕ̃
g,0, we obtain

0 =
g∑

i=1

((
x∂w

i · yi · (1− yxiyi

i ) + y∂w
i · (1− xyi

i )
)
·Π[x, y][[(i+1)↑g]]

)
F ϕ̃

g,0.(1)

Consider any i ∈ [1↑g] such that x[(i+1)↑g] ∪ y[(i+1)↑g] ⊆ F ϕ̃
g,0. By taking w = yi

in (1), we obtain

0 = (1− xyi

i ) ·Π[x, y][[(i+1)↑g]]F
ϕ̃
g,0 = (1− xyi

i )F ϕ̃
g,0.

Hence xyi

i ∈ Fϕ
g,0, that is, xxiyi

i ∈ Fϕ
g,0. By taking w = xi in (1) and left multiplying

by yi, we obtain

0 = (1− yxiyi

i ) ·Π[x, y][[(i+1)↑g]]F
ϕ̃
g,0 = (1− yxiyi

i )F ϕ̃
g,0.

Hence, yxiyi

i ∈ Fϕ
g,p. It follows that xi, yi ∈ F ϕ̃

g,0.
By induction, x[1↑g] ∪ y[1↑g] ⊆ F ϕ̃

g,0. Thus ϕ̃ is surjective.
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By Consequence 2.9, ϕ̃ is an automorphism, as desired. ¤
Recall that Sg,0,p was constructed in Definitions 5.3 as the quotient space ob-

tained from Sg,1,p by collapsing the boundary component to a point. We then
have a natural embedding of AutSg,1,p in AutSg,0,p. Thus the Dehn twists and
braid twists of Sg,1,p constructed in Section 6 induce Dehn twists and braid twists
of Sg,0,p. It follows that the image of the ADL set in Malg

g,0,p lies in Mtop
g,0,p. Also,

ζ̆ lies in Mtop
g,0,p, since ζ̆ is easily seen to arise from a reflection of Sg,0,p. We now

see, in the manner proposed by Magnus, Karrass and Solitar [16, p.175], that the
homomorphism Mtop

g,0,p → Malg
g,0,p is surjective, by Theorem 7.2. Assuming Epstein’s

result [11], if (g, p) 6= (0, 0), (0, 1), then Mtop
g,0,p equals Malg

g,0,p, and both are generated
by the image of the ADLH set together with ζ̆; see [13, Corollary 2.11(ii)].
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