
ORDERS ON TREES AND FREE PRODUCTS OF LEFT-ORDERED
GROUPS

WARREN DICKS AND ZORAN ŠUNIĆ

Abstract. We construct total orders on the vertex set of an oriented tree. The orders
are based only on up-down counts at the interior vertices and the edges along the unique
geodesic from a given vertex to another.

As an application, we provide a short proof (modulo Bass-Serre theory) of Vinogradov’s
result that the free product of left-orderable groups is left-orderable.

1. Introduction

In 1949, A. A. Vinogradov [Vin49] used groups of positive units of ordered rings to prove

(*) free products of orderable groups are orderable.

In 1977, D. S. Passman [Pas77, Theorem 13.2.7] made it explicit that Vinogradov’s argument
also shows

(†) free products of left-orderable groups are left-orderable.

In 1967, R. E. Johnson [Joh68] simplified Vinogradov’s proof of (*) by using different
ordered rings. In 1972, C. Holland and E. Scrimger [HS72, Theorem 3.1] made it explicit
that Johnson’s argument shows (†), while R. G. Burns and V. W. D. Hale [BuHa72, first
paragraph] proved (†) by using the freeness of the kernel of the natural map from a free
product to a direct product. In 1990, G. M. Bergman [Ber90, Theorem 16] further simplified
Vinogradov’s proof of (*) by using different ordered rings.

The main purpose of this article is to present yet another proof of (†). More generally,
given a group G acting on an oriented tree T with trivial edge stabilizers and left-ordered
vertex stabilizers, we construct a G-invariant order on the vertex set of T . Applying this
construction to the barycentric subdivision of T yields a G-invariant order on T , that is, on
the disjoint union of the vertex set and the edge set. Hence, by Bass-Serre theory, for any
graph of groups in which each edge group is trivial and each vertex group is left-orderable,
the fundamental group of this graph of groups is left-orderable; this is another formulation
of (†). This proof has the advantages that it is quite simple, granted the existence of Bass-
Serre trees, and also gives rise to explicit descriptions of positive cones for the fundamental
groups in question.

In Section 2, we deal with the case where G is trivial. Explicitly, given any oriented tree
T together with a total order on the link of each vertex (that is, the set of all edges adjacent
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to said vertex), we define a total order on the vertex set of T using only up-down counting
at the interior vertices and the edges along the geodesic from a given vertex to another.

In Section 3, we combine our order with group actions, using naturality. For concreteness,
we prove (†) by considering a Bass-Serre tree. This gives an explicit order for free products
that is easy to state, and we then give the description of the positive cone in Subsection 4.1.

In Subsection 4.2, we consider the Bass-Serre trees that are Cayley graphs of finitely
generated free groups, and find that the resulting total orders on the free groups coincide
with those defined in [Šun13a] and [Šun13b].

In Subsection 4.3, we discuss a connection to depth-first searches on rooted trees.

Remark 1. Our approach gives constructive information about groups acting on trees with
trivial edge stabilizers. For the much more complicated case of arbitrary edge stabilizers,
I. M. Chiswell [Chi11] applied important work of V. V. Bludov and A. M. W. Glass [BlGl09]
to give a non-constructive proof that a group G acting on a tree T = (V,E) is left-orderable
if (and only if) there exists a family (Rv : v ∈ V ) such that, for each v ∈ V , the following
hold: (1) Rv is a nonempty set of left-invariant orders on the G-stabilizer Gv; (2) for each
g ∈ G, g(Rv) = Rgv; (3) for each r ∈ Rv and each edge e adjacent to v, if w is the other
vertex of e, then the restriction of r to Ge extends to some element of Rw.

2. Ordering trees

In this section, we describe a total order on the vertex set of a tree in terms of an orientation
together with a total order on the set of edges adjacent to each vertex, by up-down counting
along the geodesic from a given vertex to another.

An oriented tree T = (V,E) is a tree (a nonempty connected graph with no cycles) in
which every edge has an assigned orientation. Thus, one of the endpoints of every edge e
is declared the origin, denoted by o(e), and the other the terminus, denoted by t(e). To
each edge e we associate an edge e−1 (this is not an edge in E), for which o(e−1) = t(e)
and t(e−1) = o(e), and we call it the edge inverse to e. For e ∈ E, we set (e−1)−1 = e and
declare e inverse to e−1. The edges in E are called positively oriented, and their inverse
edges negatively oriented.

A geodesic of length n ≥ 0 in the tree T is a sequence

(1) p = v0 e
ε1
1 v1 e

ε2
2 v2 . . . vn−1 e

εn
n vn

such that v0, . . . , vn are distinct vertices, e1, . . . , en are distinct edges in E, εi = ±1, for
i = 1, . . . , n, and

o(eεii ) = vi−1

t(eεii ) = vi,

for i = 1, . . . , n. We say that the geodesic p given in (1) is a geodesic from the vertex v0 to
the vertex vn. For any vertices x and y of T , there exists a unique geodesic in T , denoted
by pxy, from x to y.

We say that a rise occurs at the edge ei, i = 1, . . . , n, along the geodesic p given in (1) if
εi = 1 and that a fall occurs at that edge if εi = −1. We define the edge-rise index rE(p)
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along the geodesic p given in (1) by

rE(p) = #(rises at edges along p)−#(falls at edges along p) =
n∑

i=1

εi.

Assume that, for each vertex v ∈ V , a total order �v, called the local order at v, is given
on the set Ev = {e ∈ E | o(e) = v or t(e) = v} of edges adjacent to v. We say that a rise
occurs at the vertex vi, i = 1, . . . , n− 1, along the geodesic p given in (1) if ei ≺vi ei+1 and
that a fall occurs at that vertex if ei �vi ei+1. We define the vertex-rise index rV(p) along
the geodesic p as the difference

rV(p) = #(rises at vertices along p)−#(falls at vertices along p)

between the number of rises and the number of falls encountered at the vertices along the
geodesic p (note that the extremal vertices v0 and vn play no role in the vertex-rise index,
only the interior vertices along the geodesic matter).

Definition 2. Let T = (V,E) be an oriented tree with a local order at every vertex. For
vertices x, y ∈ V , define the rise index r(x, y) as the sum of the edge-rise index and the
vertex-rise index along the geodesic pxy from x to y, i.e.,

r(x, y) = rE(pxy) + rV(pxy).

Theorem 3. Let T = (V,E) be an oriented tree with a local order at every vertex. The
binary relation ≤ defined on the set V by

x ≤ y ⇐⇒ r(x, y) ≥ 0

is a total order on V .

The proof is based on the following result.

Lemma 4. Let V be a set and m : V × V → Z a function such that, for all x, y ∈ V ,

x 6= y =⇒ m(x, y) 6= 0,(i)

m(x, y) = −m(y, x),(ii)

and for all x, y, z ∈ V ,

(iii) m(x, y) +m(y, z) +m(z, x) ≤ 1.

Then the relation ≤ defined on V by

x ≤ y ⇐⇒ m(x, y) ≥ 0

is a total order on V .

Proof. Reflexivity follows from (ii), while anti-symmetry follows from (i) and (ii). If x, y, z ∈

V are such that x < y and y < z, then m(x, y)
(i)

≥ 1, m(y, z)
(i)

≥ 1, and therefore

m(x, z)
(iii)

≥ m(x, z) + (m(x, y) +m(y, z) +m(z, x)− 1)
(ii)
= m(x, y) +m(y, z)− 1 ≥ 1,

which means that x < z. Thus ≤ is an order on V . The order is total by (ii), which ensures
that at least one of the integers m(x, y) and m(y, x) must be nonnegative. �
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Proof of Theorem 3. We just need to verify that the rise index function r : V × V → Z from
Definition 2 satisfies the conditions of Lemma 4.

For x, y ∈ V , suppose that x 6= y, and let p = pxy, as given in (1), be the geodesic from x
to y. Then n ≥ 1. Since each of the n edges and each of the n−1 interior vertices contribute
±1 to the rise index, and n+(n−1) is odd, the rise index r(x, y) is odd, and, hence, nonzero.

For x, y ∈ V , the geodesic pxy from x to y has the same edges and vertices as the geodesic
pyx from y to x, but in reversed order and with opposite edge orientations. Therefore the
sign of the contribution of each edge to the rise index is switched, as is the sign of each
vertex contribution. Therefore, r(x, y) = −r(y, x).

For x, y, z ∈ V , it remains to show that the sum

s = r(x, y) + r(y, z) + r(z, x)

is at most 1. If two of x, y, z are equal, then it follows from the previous paragraph that
s = 0. Thus, we may assume that x, y and z are three distinct elements of V , and it suffices
to show that s = ±1.

The three geodesics pxy, pyz, and pzx either form a tripod, as in Figure 1, or two of these
three geodesics are subgeodesics of the inverse of the third, say pxy and pyz are subgeodesics
of p−1zx = pxz, with overlap y, as in Figure 2.

y
•

pyz
//

pxy
99

•
•
x

• • •
v

• • • • •
z

pzx
oo

Figure 1. Tripod case: pxy, pyz, and pzx form a tripod

•
x

• • •
y

• • • • •
z

pxy
//

pyz //

pzx
oo

Figure 2. Line-segment case with overlap y: pxy and pyz are subgeodesics of p−1zx

In the tripod case (Figure 1) the edge-rise contributions to the sum s cancel (each edge
in the tripod is traversed once in each direction), as do all vertex-rise contributions except
for the three at the vertex v. However, two of the contributions at v cancel. Indeed, there
are three edges in the tripod that are adjacent to v and one is the largest among them in
the local order at v. The two vertex-rise contributions at v obtained by entering and exiting
this largest edge cancel. Therefore s = ±1.

In the line-segment case (Figure 2) the edge-rise contributions to the sum s cancel, as
do all vertex-rise contributions except for the one at the vertex y along the geodesic pzx.
Therefore s = ±1. �
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Remark 5. We do not require that trees are locally finite (this is important for our appli-
cation to free products).

Remark 6. All edges in the geodesic p given in (1) are positively oriented if and only if

v0 < v1 < v2 < · · · < vn−1 < vn.

Note that this does not depend on the local orders at the vertices.

Remark 7. Let T = (V,E) be an oriented tree with a local order at every vertex. Let
T ′ = (V ′, E ′) be the barycentric subdivision of T , in which the midpoint of each edge of T
is viewed as a vertex in T ′. Formally, we introduce new sets E0, E−, and E+, given with
bijections E → E0, e 7→ e0, E → E−, e 7→ e−, and E → E+, e 7→ e+. We then take disjoint
unions V ′ = V t E0 and E ′ = E− t E+. For each e ∈ E, we set o(e−) = o(e), t(e−) = e0,
t(e+) = e0, and o(e+) = t(e). It is not difficult to check that T ′ is an oriented tree. The
local order at a vertex v in T induces a local order at the same vertex v viewed in T ′. For
the vertex e0 in T ′, we take the local order given by e− ≺e0 e+. Now Theorem 3 applied to
T ′ gives a total order on V ′, and this restricts to the total order on V given by Theorem 3
applied to T . Notice that V ′ is in bijective correspondence with the set that underlies T ,
V t E. In summary, Theorem 3 gives a total order on T .

3. Ordering free products

In this section, we incorporate group actions into the results of the previous section. We
then consider a special Bass-Serre tree to obtain an easy-to-state order for free products. We
shall describe the positive cone in Subsection 4.1.

Proposition 8. Let G be a group, T = (V,E) an oriented tree with a local order at every
vertex, and Gy T a left action by orientation preserving tree automorphisms.

(a) If the action G y T preserves the local orders (for all g ∈ G, v ∈ V and edges e and
f adjacent to v, if e �v f then ge �gv gf), then it preserves the order induced on the set V ,
i.e., for all g ∈ G and x, y ∈ V ,

x ≤ y =⇒ gx ≤ gy.

(b) If the stabilizer of some vertex x is trivial, then

g ≤G h ⇐⇒ gx ≤ hx

defines a left-invariant order ≤G on G.

Proof. (a) For every geodesic p in T , the geodesic gp has the same edge-rise index and vertex-
rise index as the geodesic p, since the action preserves the edge orientations and the local
orders. Therefore, the action preserves the rise index and, consequently, the induced order
on the vertex set.

(b) Clear, since Gx is a totally ordered set on which G acts freely and by order-preserving
transformations. �

Remark 9. If a group G acts on a tree T such that each edge stabilizer is trivial and each
vertex stabilizer is left-orderable, it is not difficult to show that orientations and local orders
can be defined satisfying the conditions in (a). It follows by Bass-Serre theory that if a group
G is the fundamental group of a graph of groups with trivial edge groups and left-orderable
vertex groups, then G is left-orderable. Notice that we may ensure the existence of a vertex
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with trivial stabilizer by adding a vertex with trivial vertex group joined to any existing
vertex by an added edge with trivial edge group; this does not change the fundamental
group of any graph of groups.

We now expand on the foregoing remark to obtain an explicit ordering in the case of free
products.

Let I be an indexing set and G = ((Gi,≤i) | i ∈ I) a family of left-ordered groups. Assume
that I does not contain 0, let I0 = I ∪ {0} and G0 be the trivial group. In order to avoid
technical and notational difficulties, it is assumed that the groups in the family G are disjoint.

The free product G = ∗i∈IGi can be realized as the fundamental group of the tree of
groups

G0
i

zz
i′ ��

$$Gi Gi′ . . .

in which the vertex groups are those already indexed by I0, the edge groups are trivial and
indexed by I, and the edge indexed by i ∈ I connects the vertex indexed by 0 to the vertex
indexed by i. The Bass-Serre tree T = (V,E) corresponding to this tree of groups can be
described as follows. The set of vertices

V =
⊔
i∈I0

{gGi | g ∈ G}

is the disjoint union of the sets of left cosets of the vertex groups, the set of edges is

E = G× I,

and each edge (g, i) ∈ E connects g = gG0 to gGi. For i ∈ I0, the vertices gGi are called
i-vertices.

A left action G y T of the free product G on the Bass-Serre tree is given by left mul-
tiplication (h(gGi) = hgGi and h(g, i) = (hg, i)). The action of G on T is free on the
0-vertices.

Let ≤I be a total order on I. We define a local order at every vertex of the Bass-Serre
tree T as follows. If g is one of the 0-vertices then the set of edges adjacent to g is

Eg = {(g, i) | i ∈ I},

all of these edges are oriented away from g, and we set

(g, i) �g (g, i′) ⇐⇒ i ≤I i
′.

The local order at the i-vertices, for i ∈ I, is defined as follows. For g ∈ G, the set of edges
adjacent to gGi is

EgGi
= {(gh, i) | h ∈ Gi},

all of these edges are oriented toward gGi, and we set

(gh, i) �gGi
(gh′, i) ⇐⇒ h ≤i h

′;

this definition does not depend on the choice of representative g of gGi, since ≤i is left
Gi-invariant. Thus, the local order at the 0-vertices is induced by the total order ≤I on I,
and at the i-vertices, for i ∈ I, by the total order ≤i on Gi.
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Proposition 10. The left action G y T of the free product G on the Bass-Serre tree
preserves the edge orientations and the local order at every vertex.

Proof. We only need to prove that the action preserves the local orders.
Let i ∈ I and g ∈ G. Consider two edges adjacent to the vertex gGi; these are then of the

form (gh1, i) and (gh2, i) with h1, h2 ∈ Gi. For any g′ ∈ G,

(gh1, i) �gGi
(gh2, i) =⇒ h1 ≤i h2 =⇒ (g′gh1, i) �g′gGi

(g′gh2, i).

Therefore, the action of G preserves the local orders at all i-vertices.
Let g be a 0-vertex and consider the action of any g′ ∈ G. The action moves the vertex g

to g′g and an edge (g, i) ∈ Eg to the edge (g′g, i) ∈ Eg′g. For i1, i2 ∈ I,

(g, i1) �g (g, i2) =⇒ i1 ≤I i2 =⇒ (g′g, i1) �g′g (g′g, i2).

Therefore, the action of G preserves the local orders at all vertices. �

Theorem 11 (Vinogradov). The free product G = ∗i∈IGi of a family (Gi | i ∈ I) of left-
orderable groups is left-orderable.

Proof. Follows directly from Proposition 10, Proposition 8, and the fact that the stabilizer
of the vertex 1 (vertex 1G0) in the Bass-Serre tree is trivial. �

4. Examples

4.1. An explicit order on the free product G = ∗i∈IGi. We continue the discussion of
the free product G = ∗i∈IGi of the family of left-ordered groups G = ((Gi,≤i) | i ∈ I) and
we provide a concrete description of the left-invariant order ≤ on G that extends the given
orders on the factors and is implicit in the proof of Theorem 11. A total order ≤I on I is
assumed.

Definition 12. Define a weight function τ : G→ Z as follows. Recall that every element g
of the free product G = ∗i∈IGi can be written uniquely in the normal form

g = g1g2g3 . . . gn,

where gj is a nontrivial element of Gij , for j = 1, . . . , n, and ij 6= ij+1, for j = 1, . . . , n− 1.
The factors in the normal form are called the syllables of g, and n is called the syllable length
of g. The syllable length of the trivial element is 0 and its normal form is the empty word
(denoted by 1). Let

τ(g) =#(positive syllables in g)−#(negative syllables in g)+

#(index jumps in g)−#(index drops in g),

where an index jump occurs at j in g, for j = 1, . . . , n − 1, if ij <I ij+1 and an index drop
occurs at j in g if ij >I ij+1.

Proposition 13. Let G = ∗i∈IGi be the free product of a family G = ((Gi,≤i) | i ∈ I) of
left-ordered groups.

The relation ≤ defined on G by

g ≤ h ⇐⇒ τ(g−1h) ≥ 0,

is a left-invariant order on G, which extends the given orders on the factors.
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Proof. It is sufficient to show that τ(g) = r(1, g), where r : G × G → Z is the rise index
function for the Bass-Serre tree T = (V,E) of G, as defined in Section 3, restricted to the
set of 0-vertices.

Let the normal form of g be g = g1g2 . . . gn, where gj is a nontrivial element of Gij , for
j = 1, . . . , n. The geodesic p1,g from the vertex 1 to the vertex g in the Bass-Serre tree has
length 2n and has the form

1
(1,i1)−−−→ Gi1

(g1,i1)←−−− g1
(g1,i2)−−−→ g1Gi2

(g1g2,i2)←−−−−− g1g2 −→ . . .

. . .←− g1 . . . gn−1
(g1...gn−1,in)−−−−−−−→ g1 . . . gn−1Gin

(g1...gn,in)←−−−−−− g

The edge-rise index of this geodesic is 0. Thus r(1, g) = rV(p1,g). The vertex-rise contribu-
tions of the 0-vertices along the geodesic are positive when the index goes up (with respect
to ≤I), and negative when the index goes down. The vertex-rise contribution at Gi1 is
positive if and only if g1 is a positive element of Gi1 . Similarly, the vertex-rise contribu-
tion at g1Gi2 is positive if and only if g2 is a positive element in Gi2 , and so on. Therefore
r(1, g) = rV(p1,g) = τ(g) and this shows that ≤ is a total order on G.

If g, g′ ∈ Gi, for some i ∈ I, and g <i g
′, then g−1g′ is a positive syllable in Gi, τ(g−1g′) = 1

and g < g′. Therefore ≤ extends the order relation on Gi. �

4.2. Orders on free groups. Let Fk be the free group of rank k, k ≥ 2, with base Ak =
{a1, a2, . . . , ak}. We indicate how the orders on Fk defined in [Šun13a] (one for each k) and
in [Šun13b] ((2k)! orders for each k) can be obtained from our construction.

Consider the alphabet A±k = {a1, . . . , ak, a−11 , . . . , a−1k }. The (2k)! orders on Fk given
in [Šun13b] are parameterized by the (2k)! words over the alphabet A±k that use each letter
exactly once (in particular, the order on Fk from [Šun13a] corresponds to the defining word
u = a1 . . . aka

−1
k . . . a−11 ). Such a word u induces a total order �u on A±k by setting x ≺u y

if and only if x appears to the left of y in u; thus, �u is just an arbitrary total order on
A±k . For a reduced group word w, let #w(g) denote the number of occurrences of w in the
reduced expression for g. Given a defining word u, define a weight function τu : Fk → Z by
setting

τu(g) = τ ′u(g) + ω(g),

where, for a reduced group word g ∈ Fk,

τ ′u(g) = 2

 ∑
a,b∈Ak

a−1≺ub−1

#ab−1(g)−
∑

a,b∈Ak
b≺ua

#a−1b(g) +
∑

a,b∈Ak

a−1≺ub

#ab(g)−
∑

a,b∈Ak

b−1≺ua

#a−1b−1(g)


and

ω(g) =


1, if the last letter of g is positive (i.e., it is in Ak)

−1, if the last letter of g is negative (i.e., it is in A−1k )

0, if g is trivial.

The weight function τu defines a left-invariant order ≤u on Fk with positive cone

Pu = {g ∈ Fk | τu(g) > 0}.
We now realize the same order by using an appropriate order on the right Cayley graph

Γk = (V,E) of Fk with respect to Ak. The Cayley graph Γk is an oriented tree in which every
8



vertex g (element of Fk) has 2k adjacent edges, k outgoing edges with labels a1, . . . , ak and k
incoming edges labeled by a1, . . . , ak (the outgoing edge labeled by a ∈ Ak connects g to ga).
The order �u on A±k induces an order �g on the 2k edges adjacent to the vertex g in Γk by
identifying the outgoing edges with labels a1, . . . , ak with the letters a1, . . . , ak, respectively,
and the incoming edges with labels a1, . . . , ak with the letters a−11 , . . . , a−1k , respectively.

The left action Fk y Γk preserves the edge orientations and the local orders at every
vertex, thus it preserves the induced order ≤ on the tree. Since the action is free on the set
of vertices, Fk inherits the left-invariant order from the set of vertices of the tree Γk. We
claim that r(1, g) = τu(g), for g ∈ G, which means that the order induced on Fk from the
tree Γk is the same as the order ≤u.

Indeed, let g be a reduced group word over Ak. Every pair of consecutive edges in the
geodesic p1,g from 1 to g in the tree Γk comes in one of the following four types (depending
on the edge orientations)

va−1

• −−→
a

v• ←−−
b

vb−1

• va• ←−−
a

v• −−→
b

vb• va−1

• −−→
a

v• −−→
b

vb• va• ←−−
a

v• ←−−
b

vb−1

•

for some a, b ∈ Ak and some v ∈ Fk (we are assuming that the edges drawn on the left
appear earlier in the geodesic p1,g).

Consider a pair of edges of the first type, corresponding to an occurrence of ab−1 in g. The
first edge (the one labeled by a) contributes 1 to the edge-rise index. This contribution can
be canceled or doubled by the vertex-rise contribution at v and the doubling occurs if and
only if there is a rise at v, which is equivalent to the condition that a−1 ≺u b

−1. Thus, the
pairs of edges of the first type (type ab−1) correspond to the first summation term in τ ′u(g).

Similarly, the pairs of edges of the second, third, and fourth type, regarding occurrences
of a−1b, ab and a−1b−1 in g, correspond to the second, third, and fourth summation term in
τ ′u(g).

Therefore, τ ′u(g) is equal to the sum of the edge-rise contributions of all but the last edge
and all vertex-rise contributions along p1,g. Since ω(g) is equal to the edge-rise contribution
of the last edge in the geodesic p1,g, we obtain that r(1, g) = τ ′u(g) + ω(g) = τu(g).

4.3. Some well-known orders on rooted trees. There are several well-known orders on
rooted trees that are used to traverse all the vertices of a rooted tree in an organized fashion.
Two common versions of the depth-first search on a rooted tree, often used in computer
science, are the top-left-right (also known as pre-order) search and the left-right-top (also
known as post-order) search.

Let us describe the total order on vertices of a rooted tree associated to the top-left-right
depth-first search. It is assumed that the children of every vertex are totally ordered. It
is common to draw/imagine a rooted tree with total orders on the children of every vertex
embedded in the plane, with the root on top, its children on a line below it, drawn from left
to right in increasing order, then the children of the children on a yet lower line, drawn from
left to right in order under their parents, respectively, and so on. The top-left-right order of
traversing the tree in Figure 3 is indicated by the numerical labels at the vertices.

The top-left-right order may be described as follows. Each vertex comes in the order
before all of its descendants (this is why this order is also called pre-order). If v1 is smaller
than (to the left of) its sibling v2, then v1 and all of its descendants are smaller than v2 and
all of its descendants.
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2•
yy %%
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10•
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3• 4•
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8• 9• 11•
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5• 6• 12• 13• 14•

Figure 3. Top-left-right order

In the left-right-top order each vertex comes in the order after all of its descendants (this
is why this order is also called post-order), while the relative order between the descendants
of the children of any vertex is the same as in the top-left-right order. The left-right-top
order of traversing the tree in Figure 4 is indicated by the numerical labels at the vertices.

•1422 OO jj

•599 ee •888 ff •13 ff

•1 •499 ee •6 •7 •1288 OO ff

•2 •3 •9 •10 •11

Figure 4. Left-right-top order

Here is a more formal description of the top-left-right, the left-right-top and a whole class
of other orders on rooted trees (including the left-top-right order, also known as in-order
on binary rooted trees). Let T = (V,E) be a rooted tree. For every vertex v ∈ V , let
�v be a total order on the set of vertices Vv consisting of v and all of its children (for the
top-left-right order, the parent v is always the smallest in Vv, and for the left-right-top the
parent is always the largest). A total order ≤ on V extending each of the orders �v may be
defined as follows. Let x, y ∈ V be two distinct vertices and let

pxy = x e1 v1 e2 v2 . . . vn−1 en y

be the unique geodesic from x to y. If x is a descendant of y, then vn−1 is a child of y and
we set x < y if and only if vn−1 ≺y y. If none of x and y is a descendant of the other, then
there exists three vertices vx, v and vy and two edges ex and ey such that

vx ex v ey vy

is a piece of the geodesic pxy and v is the closest vertex to the root on pxy. Then vx and vy
are two distinct children of v and we set x < y if and only if vx ≺v vy.

Less formally, a child that is smaller than its parent and all of its descendants come before
the parent, a child that is greater than its parent and all of its descendants come after the
parent, and a smaller sibling and all of its descendants come before a greater sibling and all
of its descendants.
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As written, it is not even immediately obvious that ≤ is an order. However, the following
proposition shows that the relation ≤ is equal to an order on a tree realized through a rise
index.

Proposition 14. Each relation ≤ on a rooted tree T = (V,E) described above (extending
given orders �v for v ∈ V ) can be realized as the order induced by appropriately chosen edge
orientations and local orders �′v on the edge sets Ev, for v ∈ V .

Proof. Let v be a vertex in V and let

`1 ≺v `2 ≺v · · · ≺v `m ≺v v ≺v r1 ≺v r2 ≺v · · · ≺v rn

be the total order �v on the set Vv. Orient the edges e`1 , . . . , e`n between the parent v and
the children `1, . . . , `m that are smaller than v toward v, and the edges er1 , . . . , erm between
v and the children r1, . . . , rn that are greater than v toward the children. Let ev be the edge
from v to its parent (if it exists). Define a local order �′v on Ev by setting

er1 ≺′v er2 ≺′v · · · ≺′v ern ≺′v ev ≺′v e`1 ≺′v e`2 ≺′v · · · ≺′v e`m ,
with the understanding that ev should be omitted if v is the root.

Let ≤′ be the order on V induced by the edge orientations and the local orders �′v on Ev,
for v ∈ V .

Let x and y be two distinct vertices such that x is a descendant of y and

pxy = x eε11 v1 e
ε2
2 v2 . . . vn−1 e

εn
n y.

We claim that r(pxy) = εn. This follows from the fact that the edge-rise contribution of ei
and the vertex-rise contribution of vi cancel each other for i = 1, . . . , n − 1. Indeed, if the
edge-rise contribution of ei is positive then the child vi−1 (with the understanding v0 = x,
when i = 1) is smaller than the parent vi under �vi , which means that the parent edge ei+1

is smaller than the child edge ei under �′vi , i.e., the vertex-rise contribution at vi is negative.
Similarly, if the edge-rise contribution of ei is negative, the vertex-rise contribution at vi is
positive. Since r(pxy) = εn, x <′ y if and only if εn is 1, which is equivalent to vn−1 ≺y y.

Let x and y be two distinct vertices none of which is a descendant of the other and let

vx e
εx
x v eεyy vy

be the piece of the geodesic pxy such that v is the closest vertex to the root on pxy. We have

r(x, y) = r(x, v) + r(v, y) + ρv = r(x, v)− r(y, v) + ρv = εx − (−εy) + ρv = εx + εy + ρv,

where ρv is the vertex-rise contribution at v along pxy. If εx and εy cancel, then both children
vx and vy are smaller or both are greater than the parent v under �v, and x <′ y if and
only if ρv = 1, which is equivalent to ex ≺′v ey, and this to vx ≺v vy. Otherwise, one of the
children vx and vy is smaller and the other larger than v under �v. In this case, x <′ y if
and only if εx = εy = 1, which happens if and only if vx is the child smaller than v and vy
the child larger than v under �v, i.e., vx ≺v vy.

Therefore, ≤′ and ≤ are the same. �

Remark 15. Note that the order associated to the standard breadth-first search on a rooted
tree can also be induced by appropriate edge orientations and local orders at all vertices.

The breadth-first order can be defined as follows. All vertices closer to the root come
before all vertices that are further from the root. The children of any parent v respect the
preassigned order �v on Vv, for v ∈ V . Vertices x and y at the same distance from the root
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that do not have a common parent inherit the order, recursively, from the parents of x and
y.

If, for v ∈ V ,
v ≺v r1 ≺v r2 ≺v · · · ≺v rn

is the total order �v on the set Vv, define a local order �′v on Ev, for v ∈ V , by setting

ev ≺′v er1 ≺′v er2 ≺′v · · · ≺′v ern ,
and orient all edges away from the root. The induced order is precisely the breadth-first
order. This is an easy corollary of the observation that, if y is a descendant of x at distance
k, k ≥ 1, in the tree, then r(x, y) = 2k − 1.

References

[Ber90] George M. Bergman. Ordering coproducts of groups and semigroups. J. Algebra, 133(2):313–339,
1990.

[BlGl09] V. V. Bludov and A. M. W. Glass. Word problems, embeddings, and free products of right-ordered
groups with amalgamated subgroup. Proc. Lond. Math. Soc. (3), 99(3):585–608, 2009.

[BuHa72] R. G. Burns and V. W. D. Hale. A note on group rings of certain torsion-free groups. Canad.
Math. Bull., 15:441–445, 1972.

[Chi11] I. M. Chiswell. Right orderability and graphs of groups. J. Group Theory, 14(4):589–601, 2011.
[HS72] C. Holland and E. Scrimger. Free products of lattice ordered groups. Algebra Universalis, 2:247–

254, 1972.
[Joh68] R. E. Johnson. Free products of ordered semigroups. Proc. Amer. Math. Soc., 19:697–700, 1968.
[Pas77] Donald S. Passman. The algebraic structure of group rings. Pure and Applied Mathematics. Wiley-

Interscience [John Wiley & Sons], New York-London-Sydney, 1977.
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