Pera Ara and Warren Dicks,
Universal localizations embedded in power-series rings.
Forum Math., 19 (2007), 365-378.
               Subscribers to deGruyter can download the article.
      

Abstract:  Let  R  be a ring, let  F  be a free group, and let  X  be a basis of  F.
    Let  \epsilon: RF -> R denote the usual augmentation map for the group ring  RF,
let X\partial:= {x-1 | x \in X} \subseteq RF, let  \Sigma  denote the set of matrices
over  RF  that are sent to invertible matrices by  \epsilon, and let  (RF)\Sigma-1  denote
the universal localization of  RF  at  \Sigma.
     A classic result of Magnus and Fox gives an embedding of  RF  in a 
power-series ring  R<<X\partial>>.  We show that if  R  is a commutative Bezout domain,
then the division closure of the image of  RF  in  R<<X\partial>>  is a universal
localization of  RF  at  \Sigma.
     We also show that  (RF)\Sigma-1  is stably flat as an  RF-ring, in the sense of
Neeman-Ranicki, whenever  R is a von neumann regular ring or a commutative
Bezout domain.

March 31, 2006 version, 12 pages, available as
 

  • 257K PostScript file

  • 237K Pdf file

  • Return to Warren Dicks' publications.