
On free-group algorithms that sandwich
a subgroup between free-product factors

Warren Dicks

Abstract. Let F be a finite-rank free group and Z be a finite subset of F .
We give topology-free proofs for two algorithms that yield sub-bases E ′′ and E ′

of F satisfying ⟨E ′′⟩ 6 ⟨Z⟩ 6 ⟨E ′⟩ that minimize the value |E ′|−|E ′′|.
Here, the subgroup ⟨E ′⟩ is uniquely determined, and Richard Stong showed

that a special basis thereof is produced by J.H.C.Whitehead’s cut-vertex algo-
rithm. Stong’s proof used bi-infinite paths in a Cayley tree and sub-surfaces of
a handlebody. We give a new proof that uses edge-cuts of the Cayley tree that
are induced by edge-cuts of a Bass–Serre tree.

A.Clifford and R. Z.Goldstein used Whitehead’s three-manifold techniques
to give an algorithm that determines whether or not there exists a basis of F
that meets ⟨Z⟩. We replace the topology with the cut-vertex algorithm, and
obtain a slightly simpler Clifford–Goldstein algorithm that yields a basis B of F
that maximizes the value |B ∩ ⟨Z⟩|.
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1 Introduction

1.1 Definitions. For any set A, we let ⟨A | ⟩ denote the free group on A. By a
basis of ⟨A | ⟩, we mean a free-generating set of ⟨A | ⟩. By a sub-basis of ⟨A | ⟩
we mean a subset of a basis of ⟨A | ⟩.

For any subset S of ⟨A | ⟩, we let ⟨S⟩ denote the subgroup of ⟨A | ⟩ generated
by S. We let A|S denote the ⊆-smallest subset of A such that S ⊆ ⟨A|S⟩. We
denote by Cl(S), or Cl⟨A | ⟩(S), the intersection of all the free-product factors
of ⟨A | ⟩ that contain S.

In general, Cl(S) is not necessarily a free-product factor of ⟨A | ⟩, but it is
if A is finite. See [1] and Review 2.8 below, respectively.

1.2 Hypotheses. Throughout, let E be a finite set and Z be a finite subset
of ⟨E | ⟩.
1.3 History. • In [11, Theorem, p. 52], J. H.C.Whitehead showed that a graph-
based, length-reducing procedure that we shall call the cut-vertex algorithm
determines whether or not Z is a sub-basis (of ⟨E | ⟩). The word ‘algorithm’ is
being used here in the loose sense of a procedure with choices that has various
possible outputs all of which have a specified property.



2 Sandwiching subgroups between free-product factors

One form of the cut-vertex algorithm accepts as input E and Z, and re-
turns as output a basis D of ⟨E | ⟩ such that, in the terminology introduced in
Notation 2.3 below, the graph Wh(Z rel D|Z) has no Whitehead cut-vertices.
Whitehead used a three-manifold model to prove that Z is a sub-basis if and
only if Z is one of the sub-bases contained in D ∪D−1; see [11, Lemma, p. 51].
Richard Stong proved the more general result that if (Hi)i∈I is any family of
subgroups of Cl(Z) such that Cl(Z) = ∗i∈I Hi and Z ⊆

∪
i∈I Hi, then D con-

tains a basis of each Hi; see (1)⇒(3) of [10, Theorem10]. In the case where Z
is a sub-basis, we have Cl(Z) = ⟨Z⟩ = ∗z∈Z⟨{z}⟩ and Z ⊆ ∪

z∈Z⟨{z}⟩, whence
D contains a basis of each ⟨{z}⟩, either {z} or {z−1}, and Z ⊆ D ∪D−1. In
his proof, Stong used bi-infinite paths in a Cayley tree and sub-surfaces of a
handlebody that are homologous to an essential disk.
• A.Clifford and R. Z.Goldstein revisited Whitehead’s three-manifold tech-

niques, and constructed an algorithm that determines whether or not some el-
ement of ⟨Z⟩ forms a sub-basis of ⟨E | ⟩ and, if so, returns such an element;
see [2].

1.4 Outline. In Section 2, we use edge-cuts of a Cayley tree induced by edge-
cuts of a Bass–Serre tree to prove Stong’s beautiful result.

In Section 3, we present the form of the cut-vertex algorithm that we will use.
By the end of the section, we will have given a topology-free version of Stong’s
detailed proof that the cut-vertex algorithm yields a special basis of Cl(Z).

In Section 4, we restructure the Clifford–Goldstein algorithm, and replace
the topology with the cut-vertex algorithm. The revised Clifford–Goldstein algo-
rithm then yields a basis B of ⟨E | ⟩ which maximizes |B ∩ ⟨Z⟩ |. The cut-vertex
algorithm has been largely overshadowed by Whitehead’s general-purpose algo-
rithm [12, Theorem 3], but here the former carries out a task that the latter, as
yet, can not.

In order to streamline the exposition, we do not digress to consider the
cyclic-word analogues.

2 Bass–Serre proofs of cut-vertex lemmas

2.1 Definitions. We use the terminology of [3]. In particular, a graph is a set
given as the disjoint union of two sets, called the vertex-set and the edge-set,
together with an initial-vertex map and a terminal-vertex map, each of which
maps the edge-set to the vertex-set.
• Let S be a set. We let K(S) denote the graph which has vertex-set S and

edge-set S×2 := S×S, where an edge (x, y) has initial vertex x and terminal
vertex y.
• Let F be a group and A be a subset of F . We let Cayley(F,A) denote the

graph with vertex-set F and edge-set F×A, where each edge (g, a) ∈ F×A has
initial vertex g and terminal vertex ga; we shall sometimes write edge(g

• a−→ ga)
to denote the pair (g, a) viewed as an edge. In a natural way, Cayley(F,A) is
an F -graph.
• Let F be a group, I be a set, and (Hi)i∈I be a family of subgroups of F . We

let BassSerre(F, (Hi)i∈I) denote the graph whose vertex-set is the disjoint union
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of the set F together with the sets F/Hi, i ∈ I, and whose edge-set is F ×I,
where each edge (g, i) ∈ F ×I has initial vertex g and terminal vertex gHi; we

shall sometimes write edge(g
•Hi−−→ gHi) to denote the pair (g, i) viewed as an

edge. In a natural way, BassSerre(F, (Hi)i∈I) is an F -graph.

2.2 Review. In [7], Bass and Serre developed a powerful theory of groups acting
on trees, which we shall now apply following [3, I.7]. Here, we have a graph of
groups (G( ), Y ), together with the resulting fundamental group G and standard
G-graph T . The corner-stone of Bass–Serre theory is the fact that T is a tree;
the proof given in [3, I.7.6] uses universal properties rather than normal-form
expressions. We shall be interested in two cases, the first of which is classical.
• Let A be a set. Take Y to be the one-vertex graph with vertex-set {v0}

and edge-set A. For each y ∈ Y, set G(y) := {1}. Here, we may make the
identifications G = ⟨A | ⟩ and T = Cayley(G,A); see Definitions 2.1.
• Let (Hi)i∈I be a family of groups. Take Y to be the star-graph with

vertex-set (vj | j ∈ I ∪ {0}), 0 ̸∈ I, and edge-set I, where each i ∈ I has ini-
tial vertex v0 and terminal vertex vi. For each i ∈ I, set G(vi) := Hi and
G(i) := G(v0) := {1}. Here, we may make the identifications G = ∗

i∈I
Hi and

T = BassSerre(G, (Hi)i∈I); see Definitions 2.1.

2.3 Notation. Recall Hypotheses 1.2.
• For e ∈ E, we write e±1 := {e, e}, where e := e−1. We set E±1 := E ∪ E−1,

where E−1 := {e | e ∈ E}. We shall be interested in the graph K(E±1 ∪ {1}),
which has basepoint 1 and an inversion map on the vertex-set. (Whitehead
employs a graph with vertex-set E±1 ∪ {O} in which a finite set of edges joins
any vertex to any other vertex.)
• Consider any s ∈ ⟨E | ⟩, and let e1e2 · · · en represent the reduced E±1-ex-

pression for s.
Notice that E|{s} =

n∪
i=1

(E ∩ e±1
i ) and E|Z =

∪
z∈Z

E|{z}.

We write ||s||E := n and ||Z||E :=
∑
z∈Z
||z||E . We shall write a product gh as

g·h when we wish to indicate that ||gh||E = ||g||E + ||h||E.
We set e0 := en+1 := 1 and edges(s rel E) := { (ei, ei+1) }ni=0, a set of edges of

K(E±1 ∪ {1}). The key point is that if (e′, e′′) ∈ edges(s rel E), then there exist
g′, g′′ ∈ ⟨E | ⟩ such that s = g ′·e ′·e′′·g′′, g′ = 1 if e′ = 1, and g′′ = 1 if e′′ = 1.
• Let S be a subset of ⟨E | ⟩. We let Wh(S rel E) denote the subgraph

E±1 ∪ {1} ∪
∪
s∈S

edges(s rel E)

of K(E±1 ∪ {1}). Set W := Wh(S rel E). A vertex e⋆ of W is said to be a
Whitehead cut-vertex of W if e⋆ ̸= 1 and the graph obtained from W by remov-
ing e⋆ and all the edges incident to e⋆ is not connected. (Whitehead employs
the phrase ‘a cut vertex other than O’.)

The basepointed star-graph Wh(E rel E) has no Whitehead cut-vertices. If
S ⊇ E, then W has no Whitehead cut-vertices. Theorem 2.4 will give a partial
converse to the latter implication.

If W itself is not connected, then E±1 ̸= ∅ and each element of E±1 is a
Whitehead cut-vertex of W , since the set of valence-zero vertices of W is closed
under inversion.



4 Sandwiching subgroups between free-product factors

We now give a new proof of the (1)⇒(3) portion of [10, Theorem10]; the
case where each free-product factor is cyclic is [11, Lemma, p. 51].

2.4 The Stong–Whitehead theorem. For each finite set E and free-product
factorization ⟨E | ⟩ = ∗

i∈I
Hi such that

∪
i∈I
Hi ̸⊇ E, the graph Wh( (

∪
i∈I
Hi) rel E)

has a Whitehead cut-vertex.

Proof. Set F := ⟨E | ⟩ = ∗i∈I Hi. Then F lies in the vertex-sets of the two
F -trees T := Cayley(F,E) and U := BassSerre(F, (Hi)i∈I); see Review 2.2.

We consider first U . Let linkU(1) denote the set of U -edges incident to the
U -vertex 1. Let starU(1) denote the set of components of the forest U− linkU(1).
For each U -vertex v, there exists a unique component κ(v) ∈ starU(1) such that
v ∈ κ(v). For U -vertices v and w, we let U [v, w] denote the ⊆-smallest sub-
tree of U that contains {v, w}; then κ(v) ̸= κ(w) if and only if 1 ∈ U [v, w] and
{v, w} ̸= {1}.

In T now, let δ := {edge(g • e−→ ge) ∈ F×E | κ(g) ̸= κ(ge)}. An arbitrary
T -edge (g, e) ∈ F×E lies in δ if and only if 1 ∈ U [g, ge], or, equivalently,
g ∈ U [1, e]. Since E is nonempty and finite, it is clear that δ is nonempty and fi-
nite. Hence, there exists a pair (gδ, eδ) ∈ F×E±1 satisfying ||gδeδ||E = ||gδ||E +1
and κ(gδ) ̸= κ(gδeδ) such that ||gδ||E has the largest possible value.

We now show that gδ ̸= 1. By hypothesis, there exists some e0 ∈ E−
∪
i∈I Hi.

Since e0 ̸= 1, there exists a unique U [1, e0]-neighbour of 1, necessarily 1Hi0

for some i0 ∈ I. Since e0 ̸= 1Hi0 , there exists a unique U [1Hi0 , e0]-neighbour
of 1Hi0 , necessarily some h0 ∈ Hi0−{1}. Now h0 ∈ U [1, e0], 1 ∈ U [h0, h0e0],
κ(h0) ̸= κ(h0e0), and ||gδ||E > min{||h0||E, ||h0e0||E}. We know e0 ∈ E−{h0}
and h0 ∈ Hi0−{1}. Hence, 1 ̸∈ {h0, h0e0} and gδ ̸= 1.

There exists a unique e⋆ ∈ E±1 such that ||gδe⋆||E = ||gδ||E −1. Clearly,
e⋆ ̸∈ {1, eδ}.

In T , define linkT (1) and starT (1) as for U . For each e ∈ E±1 ∪ {1},
there exists a unique component [e] ∈ starT (1) such that e ∈ [e]. Then the
map E±1 ∪ {1} → starT (1), e 7→ [e], is bijective. Notice that 1 ∈ gδ[e⋆] and
δ ⊆ gδ linkT (1) ∪ gδ[e⋆].

Fix an edge (e′, e′′) of Wh(
∪
i∈I Hi rel E). Then there exist j ∈ I, h ∈ Hj,

and g′, g′′ ∈ F such that h = g ′·e ′·e′′·g′′, g′ = 1 if e′ = 1, and g′′ = 1 if e′′ = 1.
Here, e′·g′ ∈ [e′], even when [e′] = {1}, for then g′ = 1. Similarly, e′′·g′′ ∈ [e′′].
Also, e′g′Hj = e′′g′′Hj, since e

′g′h = e′′g′′.
Let W ′ denote the graph that is obtained from Wh(

∪
i∈I Hi rel E) by re-

moving e⋆ and its incident edges. Suppose that (e′, e′′) ∈ W ′. As e′ ̸= e⋆, we
see that gδ[e

′] ∩ δ = ∅, and, by the definition of δ, κ is constant on the ver-
tex-set of the tree gδ[e

′]. Also, 1 ̸∈ gδ[e′]. As {gδe′, gδe′g′} ⊆ gδ[e
′], we see that

κ(gδe
′) = κ(gδe

′g′). Also, gδe
′g′ ̸= 1, edge(gδe

′g′
•Hj−−→ gδe

′g′Hj) ̸∈ linkU(1), and
κ(gδe

′g′) = κ(gδe
′g′Hj). Thus, κ(gδe

′) = κ(gδ(e
′g′Hj)). It follows that

κ(gδe
′) = κ(gδ(e

′g′Hj)) = κ(gδ(e
′′g′′Hj)) = κ(gδe

′′).

We now see that the map e 7→ κ(gδe) is constant on the vertex-set of each com-
ponent ofW ′. Since 1 and eδ are vertices ofW

′ such that κ(gδ1) ̸= κ(gδeδ),W
′ is

not connected. Hence, e⋆ is a Whitehead cut-vertex of Wh(
∪
i∈I Hi rel E).
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2.5 Corollary. With Hypotheses 1.2, suppose that Wh(Z rel E) has no White-
head cut-vertices. If (Hi)i∈I is any family of subgroups of ⟨E | ⟩ such that
⟨E | ⟩ = ∗i∈I Hi and Z ⊆

∪
i∈I Hi, then, for each j ∈ I, E contains a basis

of Hj. Also, Cl(Z) = ⟨E | ⟩.

Proof. As it contains Wh(Z rel E), Wh(
∪
i∈I Hi rel E) has no Whitehead

cut-vertices. By the contrapositive of Theorem 2.4, E ⊆
∪
i∈I Hi. We have a

retraction ⟨E | ⟩ → Hj which carries
∪
i∈I−{j}Hi to {1}; since E is mapped to

(E ∩Hj) ∪ {1}, we see that E ∩Hj generates Hj, freely.
Since Wh(Z rel E) has no valence-zero vertices, E−E|Z = ∅. If Z ⊆ Hj,

then E = E|Z ⊆ E|Hj
= E ∩Hj ⊆ Hj. It follows that Cl(Z) = ⟨E | ⟩.

2.6 Review. We sketch, with some minor modernizations, the proof by Schreier
[8, p. 179] that subgroups of free groups are free. The case of finitely generated
subgroups had been proved earlier by Nielsen [6, Sætning I].

Let A be a set, F := ⟨A | ⟩, H be a subgroup of F , and T := Cayley(F,A),
viewed as an H-tree; see Review 2.2. The vertices of the Schreier graph H\T
are the cosets Hg, g ∈ F , the basepoint is H1, and we write

edge(v
• a−→ va) := (v, a) ∈ (H\F )×A.

The graph H\T is connected. Let π(H\T,H1) denote the fundamental group
of H\T at the basepoint H1. Each (reduced) H\T -path from H1 to itself will
be viewed as a (reduced) A±1-expression for some element of H; for example, we

view (H1
• a1−−→ Ha1

• a2←−− Ha1a2
• a3−−→ Ha1a2a3 = H1) as anA±1-expression a1a2a3

for an element of H. In this way, we may identify π(H\T,H1) with H.
Choose a maximal subtree Y ′ of H\T , and let Y ′′ denote the complement

of Y ′ in H\T ; then Y ′′ is a set of edges. Each element y′′ of Y ′′ determines the
element of π(H\T,H1) that travels in Y ′ from H1 to the initial vertex of y′′,
travels along y′′, and then travels in Y ′ from the terminal vertex of y′′ to H1.
By letting y′′ range over Y ′′, we get a subset S of π(H\T,H1). By collapsing
the tree Y ′ to a vertex, we find that S freely generates π(H\T,H1) (= H).

For each a ∈ A ∩H, it is clear that edge(H1
• a−→ Ha = H1) is not in the

tree Y ′, and, hence, a ∈ S. Thus, A ∩H ⊆ S. ( I am indebted to Clifford and
Goldstein for this and other illuminating observations.)

The vertices and edges involved in S form a connected basepointed subgraph
of H\T that we shall denote core(H rel A). An alternative description is that
core(H rel A) consists of those vertices and edges that are involved in the
reduced H\T -paths from H1 to itself. Thus, π(core(H rel A), H1) = H and
core(H rel A) is the ⊆-smallest subgraph of H\T with this property.

2.7 Whitehead’s cut-vertex lemma. With Hypotheses 1.2, if Wh(Z rel E|Z)
has no Whitehead cut-vertices and Z is a sub-basis of ⟨E | ⟩, then Z ⊆ E±1.

Proof. By hypothesis, Z is contained in some basis A of ⟨E | ⟩. By Review 2.6,
A ∩ ⟨E|Z⟩ is contained in some basis S of ⟨E|Z⟩. Now ⟨E|Z⟩ = ∗s∈S⟨{s}⟩ and
Z ⊆ A ∩ ⟨E|Z⟩ ⊆ S ⊆

∪
s∈S⟨{s}⟩. By Corollary 2.5, E|Z contains a basis of

each ⟨{s}⟩, necessarily {s} or {s}. Thus, E±1 ⊇ (E|Z)
±1 ⊇ S ⊇ Z.

The final topic of this section is Stong’s generalization of Lemma 2.7.
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2.8 Review. • It is clear from an argument of Kurosch [5, p. 651] that ifH andK
are subgroups of a group F such thatK is a free-product factor of F , thenH ∩K
is a free-product factor of H and, therefore, K is a free-product factor of each
subgroup intermediate betweenK and F . We shall sketch a Bass–Serre-theoretic
proof, although for our purposes the case F = ⟨E | ⟩ and the graph-theoretic
techniques of Stallings [9] would suffice.

Say F = K∗L, and view BassSerre(F, (K,L)) as an H-tree; see Review 2.2.
Then the vertex 1K can be extended to a fundamental H-transversal. In
the resulting graph of groups, H ∩K is one of the vertex-groups and all of
the edge-groups are trivial. By another result of Bass and Serre, H ∩K is a
free-product factor of H. See, for example, [3, I.4.1].
•With Hypotheses 1.2, let S denote the set of all the free-product factors of

⟨E | ⟩ that contain Z. Thus, ⟨E|Z⟩ ∈ S . Let H be an element of S of smallest
possible rank. For eachK ∈ S, H ∩K is a free-product factor ofH, by Kurosch’s
result. Hence, H ∩K ∈ S, and, by the minimality of the rank, H = H ∩K. By
definition, Cl(Z) is the intersection of all the elements of S. Thus, Cl(Z) = H.
It follows that the bases of Cl(Z) are the smallest-cardinality sets of the form
B|Z for B a basis of ⟨E | ⟩. Also, Cl(Z) is a free-product factor of ⟨E | ⟩ and
of the intermediate subgroup ⟨E|Z⟩. Thus, Cl⟨E|Z⟩(Z) = Cl⟨E | ⟩(Z).

Corollary 2.5 gives the following.

2.9 Stong’s cut-vertex lemma. With Hypotheses 1.2, if Wh(Z rel E|Z) has
no Whitehead cut-vertices, then E|Z is a basis of Cl(Z); moreover, if (Hi)i∈I is
any family of subgroups of Cl(Z) such that Cl(Z) = ∗i∈I Hi and Z ⊆

∪
i∈I Hi,

then E|Z contains a basis of each Hi.

3 A formalized cut-vertex algorithm

This technical section gives elementary definitions and arguments that formalize
part of Whitehead’s discussion [11, pp. 50–52] of cut-vertices and free-group
automorphisms.

We first introduce a subgraph of K(E±1 ∪ {1}) which is expressed as the
union of two subgraphs with exactly one vertex and one edge in common. We
then recall Whitehead’s associated free-group automorphism whose inverse will
be applied advantageously to elements compatible with the subgraph.

3.1 Notation. With Hypotheses 1.2, we let P denote the set of pairs (0E, e⋆)
such that e⋆ ∈ 0E ⊆ E±1. Whenever any P ∈ P is specified, it will be understood
that the following notation applies.

We write (0E, e⋆) := P and 1E := (E±1− 0E) ∪ {e⋆}.
For each (α, β) ∈ {0, 1}×2, we write αEβ := αE ∩ (βE)

−1.
We define Wh(P ) := K(0E ∪ {1}) ∪ K(1E), a subgraph of K(E±1 ∪ {1}).

We writeWh0(P ) := K(0E ∪ {1}) andWh1(P ) := K(1E), subgraphs with union
Wh(P ) and intersection K({e⋆}).

Let χ : E±1→{0, 1} be the characteristic map of 1E, e 7→ χ(e) := |{e} ∩ 1E|.
Set γ := γP := χ(e⋆ ) ∈ {0, 1} and d⋆ := e2γ−1

⋆ ∈ e±1
⋆ . Let φ := φP : g 7→ gφ de-
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note the automorphism of ⟨E | ⟩ that fixes d⋆ and maps e to d⋆
χ(e)·e ·d⋆χ(e) for

each e ∈ E±1− d±1
⋆ .

3.2 Observations. With Notation 3.1, fix P ∈ P.
(i) Let e ∈ E±1 and (α, β) ∈ {0, 1}×2. There are three possibilities.

(1) If e±1 ̸= e±1
⋆ , then e ∈ αEβ if and only if (α, β) = (χ(e), χ(e)). Here,

dα⋆ ed⋆
β = eφ.

(2) If e = e⋆, then e ∈ αEβ if and only β = γ. Here,
either (α, β) = (γ, γ), whence dα⋆ ed⋆

β = e = eφ,
or (α, β) = (1−γ, γ), whence dα⋆ ed⋆β = d 1−γ

⋆ d 2γ−1
⋆ d⋆

γ = 1.
(3) If e = e⋆, then e ∈ αEβ if and only if α = γ. Here,

either (α, β) = (γ, γ), whence dα⋆ ed⋆
β = e = eφ,

or (α, β) = (γ, 1−γ), whence dα⋆ ed⋆β = d γ⋆ d
1− 2γ
⋆ d⋆

1−γ = 1.
(ii) For each e ∈ E±1, there exists a unique (α, β) ∈ {0, 1}×2 such that

e ∈ αEβ and dα⋆ ed⋆
β = eφ, by (i).

(iii) Let z ∈ ⟨E | ⟩. Let e1e2 · · · en represent the reduced E±1-expression
for z, and set e0 := en+1 := 1.

Suppose that Wh({z} rel E) ⊆Wh(P ). For each i ∈ {0, 1, . . . , n}, there ex-
ists a unique αi ∈ {0, 1} such that (ei, ei+1) ∈Whαi

(P ). Here, α0 = αn = 0. For
each i ∈ {1, 2, . . . , n}, ei ∈ αi−1

Eαi
, and then, by (i), d

αi−1
⋆ eid⋆

αi ∈ {eφi , 1}. It fol-
lows that (dα0

⋆ e1d⋆
α1)(dα1

⋆ e2d⋆
α2) · · · (dαn−1

⋆ end⋆
αn) is an ((Eφ)±1 ∪ {1})-expression

for z. Thus, ||zφ||E = ||z||E φ 6 n = ||z||E.
Suppose further that e⋆ has positive valence in Wh({z} rel E) ∩Wh1−γ(P ).

Then there exists some j ∈ {0, 1, . . . , n} such that αj = 1−γ and e⋆ ∈ {ej, ej+1}.
If e⋆ = ej, then j > 1 and, by (i)(3), d⋆

αj−1ejd⋆
αj = 1. If e⋆ = ej+1, then j 6 n−1

and, by (i)(2), d
αj
⋆ ej+1d⋆

αj+1 = 1. In both cases, ||zφ||E = ||z||E φ < n = ||z||E.

We now come to the essence of the cut-vertex algorithm.

3.3 Algorithm. With Notation 3.1, the cut-vertex subroutine [11, p. 51] has the
following structure.
Input: a Whitehead cut-vertex d of Wh(Z rel E|Z).
Output: P ∈P such that Wh(Z rel E) ⊆Wh(P ) and ||Z φP ||E < ||Z||E.
Procedure. Find the component W of Wh(Z rel E|Z) that contains {1}, find
V := W ∩ (E|Z)

±1, and search for some c ∈ V−V −1. There are two cases.

Case 1: V−V −1 = ∅.
Here, V = V −1, Z ⊆ ⟨V ⟩, V = (E|Z)

±1, and Wh(Z rel E|Z) = W , which is
connected. Find the graph W ′ that is obtained from W by deleting d and
its incident edges. By hypothesis, W ′ is not connected. Find the compo-
nent W ′

0 of W ′ that contains {1}. Set P := ((W ′
0 ∩ E±1) ∪ {d}, d) ∈ P. Then

Wh(Z rel E) ⊆Wh(P ), and d has positive valence in Wh(Z rel E) ∩ Whα(P )
for each α ∈ {0, 1}. It follows from Observations 3.2(iii) that ||Z φP ||E < ||Z||E.
Return P and stop.

Case 2: c ∈ V−V −1.
Set P := (V, c) ∈ P. It can be seen that Wh(Z rel E) ⊆Wh(P ). Here,

γP = |{c }−(V−{c})| = 1. Now Wh(Z rel E) ∩Wh0(P ) is the component W
of Wh(Z rel E|Z) that contains {c, 1}. As c has positive valence in W , it follows
from Observations 3.2(iii) that ||Z φP ||E < ||Z||E. Return P and stop.
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We shall use the following result in the next section.

3.4 Corollary. With Notation 3.1, if Z is a sub-basis of ⟨E | ⟩ and Z ̸⊆ E±1,
then, for some P ∈ P, Wh(Z rel E) ⊆Wh(P ) and ||Z φP ||E < ||Z||E.

Proof. By the contrapositive of Lemma2.7, Wh(Z rel E|Z) has a Whitehead
cut-vertex, and then Algorithm3.3 gives the desired conclusion.

3.5 Algorithm. Recall Hypotheses 1.2, and let Aut⟨E | ⟩ denote the group of
automorphisms of ⟨E | ⟩.

Set Φ := 1 ∈ Aut⟨E | ⟩ and Z ′ := Z (= ZΦ ).

↓
→ Construct Wh(Z ′ rel E|Z′).

↓
Search for a Whitehead cut-vertex d of Wh(Z ′ rel E|Z′).

↓
Does such a d exist?

No−→ Return (Φ, Z ′) and stop.

↓Yes

Algorithm3.3 yields a φ ∈ Aut⟨E | ⟩ such that ||Z ′φ||E < ||Z ′||E.
↓

← Reset Φ := φ·Φ and Z ′ := Z ′φ (= ZΦ ), thereby decreasing ||Z ′||E.

Figure 1: Mock flow chart for Whitehead’s cut-vertex algorithm.

Figure 1 presents a form of Whitehead’s cut-vertex algorithm [11, p. 51]

which finds some Φ ∈ Aut⟨E | ⟩ such that Wh(ZΦ rel E|ZΦ) has no Whitehead

cut-vertices, and returns (Φ, ZΦ ).
By Lemma 2.7, Z is a sub-basis of ⟨E | ⟩ if and only if Z ∩Z−1 = ∅ and

ZΦ ⊆ E±1, and then (EΦ−Z−1) ∪ Z is a basis of ⟨E | ⟩.
Knowing (Φ, ZΦ ), one can find (E|ZΦ )Φ, which, by Lemma 2.9, is a basis of

Cl(Z) that contains a basis of each constituent of each free-product factorization
Cl(Z) = ∗

i∈I
Hi for which Z ⊆

∪
i∈I
Hi. In particular, |E|ZΦ | is smallest-possible

over Aut⟨E | ⟩.

3.6 Remarks. Algorithm 3.5 determines whether or not Cl(Z) = ⟨E | ⟩ in any
specific case.

A finitely generated group G is said to have at most one end if, for some/each
finite generating set S of G, no graph obtained from Cayley(G,S) by deleting a
finite set of edges has two infinite components; Freudenthal [4, Satz 3] showed
that ‘some’ and ‘each’ are interchangeable here. If the group ⟨E |Z ⟩ has at most
one end, then Cl(Z) = ⟨E | ⟩, since the contrapositive is easily seen to hold.
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4 A strengthened Clifford–Goldstein algorithm

Clifford and Goldstein [2] produced an ingenious algorithm which determines
whether or not there exists some element of ⟨Z⟩ which forms a sub-basis of ⟨E | ⟩
and, if so, returns such an element. They used Whitehead’s three-manifold tech-
niques to construct a sufficiently large finite set of finitely generated subgroups
of ⟨E | ⟩ whose elements of sufficiently bounded E-length give the desired in-
formation.

In this section, we restructure their argument, replace the topology with
Corollary 3.4, and obtain a less complicated, more powerful algorithm which
yields a basis B of ⟨E | ⟩ which maximizes |B ∩ ⟨Z⟩|. In particular, B ∩ ⟨Z⟩ = ∅
if and only if no basis of ⟨E | ⟩ meets ⟨Z⟩. We construct a smaller sufficiently
large finite set of finitely generated subgroups of ⟨E | ⟩ whose intersections with
E give the desired information.

4.1 Review. With Hypotheses 1.2, we sketch Stallings’ important core con-
struction [9, Algorithm5.4] for the special case which synthesizes the methods
of Nielsen and Schreier. The graph core(⟨Z⟩ rel E) defined in Review 2.6 is
a finite, basepointed, E-labelled graph; we shall suppress the information that
the vertices are cosets, and we shall build an isomorphic finite, basepointed,
E-labelled graph modelcore(⟨Z⟩ rel E) that has an abstract set as vertex-set.

For each z ∈ Z−{1}, we create a circle, we divide it into ||z||E segments by
adding ||z||E vertices, we choose one of the vertices to be the basepoint, and we
orient and E-label the segments in such a way that the reduced E±1-expression
for z can be read off the circle-graph in one direction starting from the base-
point. We next create a basepoint, and attach to it each of our circle-graphs
at its basepoint. Here, and henceforth, each edge has an expression of the form
edge(v

• e−→ w) with v, w vertices and e ∈ E, but, for the moment, the expres-
sion need not determine the edge. We identify any distinct pair of edges having
expressions edge(v

• e−→ w) and edge(v′
• e−→ w′) where v = v′ or w = w′ or both;

identifying the edges entails identifying w with w′ or v with v′ or neither, re-
spectively. When no such pair of distinct edges is left, the procedure has yielded
a basepointed E-labelled graph isomorphic to core(⟨Z⟩ rel E). Here, any ex-
pression edge(v

• e−→ w) does determine an edge, and, moreover, we may define
formal products ve := w and we := v.

The following is the key construction, extracted from [2, Theorem 1].

4.2 Notation. With Notation 3.1, fix P ∈ P. Set F := ⟨E | ⟩.
We first construct a map ψ from the edge-set of T := Cayley(F,E) to the

edge-set of T ′ := Cayley(F,E φ) by defining, for each T -edge (g, e) ∈ F×E,
(edge(g

• e−→ ge))ψ := edge(gd⋆
α • eφ−−→ ged⋆

β) for the unique (α, β) ∈ {0, 1}×2 such
that e ∈ αEβ and eφ = dα⋆ ed⋆

β; see Observations 3.2(ii). The map ψ does not act
on vertices. It is clear that ψ is a map of F -sets.

Let H be a finitely generated subgroup of F . Then ψ induces a map from
the edge-set of H\T to the edge-set of H\T ′. The image of the edge-set of
core(H rel E) under this induced map is the edge-set of a unique subgraph X
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ofH\T ′ with the full vertex-set, H\F . LetK := π(X,H1) 6 π(H\T ′, H1) = H,
where we view (H\T ′)-paths as (E φ)±1-expressions. We set ∂PH := Kφ 6 Hφ.

Recall that modelcore(H rel E) was constructed in Review 4.1; we shall
be viewing ∂P as a graph operation that converts modelcore(H relE) into
modelcore(∂PH relE).

4.3 Lemma. With Notation 4.2, the following hold for ∂PH 6 HφP .

(i) modelcore(∂PH rel E) may be constructed from modelcore(H rel E)
algorithmically.

(ii) The number of edges of core(∂PH rel E) is at most the number of edges
of core(H rel E).

(iii) For each h ∈ H, if Wh({h} rel E) ⊆Wh(P ), then hφP ∈ ∂PH.
(iv) If C is any sub-basis of ⟨E | ⟩ such that C ⊆ H and C ̸⊆ E±1, then there

exists some P ′ ∈ P such that C φP ′ ⊆ ∂P ′H and ||C φP ′ ||E < ||C||E.
Proof. (i). Since Kφ = ∂PH, there is a natural graph isomorphism that

maps core(K rel E φ) to core(∂PH rel E), changing each Kg
• eφ−−→ Kg(eφ)

to Kφgφ
• e−→ Kφgφe. Hence, there is a natural graph isomorphism that maps

modelcore(K rel E φ) to modelcore(∂PH rel E), changing each v
• eφ−−→ w to

v
• e−→ w; the labels on the non-basepoint vertices are irrelevant or non-existent.

It remains to construct modelcore(K rel E φ) algorithmically.
For each vertex v of modelcore(H rel E) for which no formal product vd⋆

is defined, we create a valence-zero vertex called vd⋆. In modelcore(H rel E)
adorned with these valence-zero vertices, we simultaneously replace each

edge(v
• e−→ w) with edge(vd⋆

α • eφ−−→ wd⋆
β) for the unique (α, β) ∈ {0, 1}×2 such

that e ∈ αEβ and eφ = dα⋆ ed⋆
β. In the resulting finite graph, we then keep

only the component that has the basepoint. We next successively delete
non-basepoint, valence-one vertices and their unique incident edges, while pos-
sible. When this is no longer possible, we have completed the algorithmic con-
struction of modelcore(K rel E φ).

(ii). There exist bijective maps first from the edge-set of core(∂PH rel E)
to the edge-set of core(K rel E φ) and then to a subset of the edge-set of
core(H rel E).

(iii). Let e1e2 · · · en represent the reduced E±1-expression for h. By Obser-
vations 3.2(iii), there exists a map {0, 1, . . . , n} → {0, 1}, i 7→ αi, such that
α0 = αn = 0 and, for i ∈ {1, 2, . . . , n}, ei ∈ αi−1

Eαi
and d

αi−1
⋆ eid⋆

αi ∈ {eφi , 1}.
We view h as a reduced H\T -path from H1 to itself, which we may write in
H\Cayley(F,E±1) as

H1
• e1−−→ He1

• e2−−→ He1e2
• e3−−→ · · · • en−−→ He1e2 · · · en = Hh = H1.

The H\T -path stays within the subgraph core(H rel E). Let us change each

He1 · · · ei to He1 · · · eid⋆αi and each He1 · · · ei−1
• ei−−→ He1 · · · ei−1ei to

He1 · · · ei−1d⋆
αi−1

• d⋆αi−1eid⋆
αi−−−−−−−−→ He1 · · · ei−1eid⋆

αi ,
which corresponds to an edge, inverse edge, or equality in the graph X of
Notation 4.2. We thus obtain an X-path from H1 to itself that reads an
((E φ)±1 ∪ {1})-expression for h. Hence, h ∈ π(X,H1) = K, and hφ ∈ ∂PH.

(iv). By Corollary 3.4, there exists P ′ ∈ P such that ||C φP ′ ||E < ||C||E and
Wh(C rel E) ⊆Wh(P ′). By (iii), C φP ′ ⊆ ∂P ′H.
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We now give a variant of a construction of Clifford and Goldstein [2, p. 609].

4.4 Notation. With Notation 3.1, let F denote the set of all finitely generated
subgroups of ⟨E | ⟩, and let Γ denote the graph whose vertex-set is F and
whose edge-set is F×P, where each edge (H,P ) ∈ F×P has initial vertex H
and terminal vertex the finitely generated subgroup ∂PH defined in Notation 4.2.

Clearly ⟨Z⟩ ∈ F. Let ⟨Z⟩J denote the subgraph of Γ that radiates out
from ⟨Z⟩, that is, ⟨Z⟩J is the smallest subgraph of Γ that has ⟨Z⟩ as a ver-
tex and is closed in Γ under the operation of adding to each vertex H each
outgoing edge (H,P ) and its terminal vertex ∂PH.

For n > 0, we associate with each element (Pi)
n
i=1 of P×n the oriented

⟨Z⟩J-path with edge-sequence ((Hi−1, Pi))
n
i=1 and vertex-sequence (Hi)

n
i=0,

where H0 = ⟨Z⟩ and Hi = ∂Pi
Hi−1 for i = 1, 2, . . . , n. To simplify notation, we

shall say that (Pi)
n
i=1 itself is an oriented ⟨Z⟩J-path with initial vertex ⟨Z⟩.

To be able to recognize when two vertices are equal, we think of a vertex H
of ⟨Z⟩J as the graph modelcore(H rel E). We shall see that we are interested
in finding a vertex of ⟨Z⟩J which has the largest possible one-vertex subgraph
at the basepoint.

4.5 Theorem. With Notation 4.4, the following hold.

(i) ⟨Z⟩J has a finite, algorithmically constructible maximal subtree T0 that
radiates out from ⟨Z⟩.

(ii) Let H ′ be a ⟨Z⟩J-vertex, (Pi)
n
i=1 the oriented T0-path from ⟨Z⟩ to H ′, and

E ′ := EφPn ···φP1 . Then E ′ is a basis of ⟨E | ⟩, and |E ∩H ′| 6 |E ′ ∩ ⟨Z⟩|.
(iii) For each basis E ′′ of ⟨E | ⟩, there exists some ⟨Z⟩J-vertex H ′′ such that

|E ′′ ∩ ⟨Z⟩| 6 |E ∩H ′′|.

Proof. (i). By Review 4.1, we may construct modelcore(⟨Z⟩ rel E). By
Lemma4.3(ii), ⟨Z⟩J is finite. By Lemma4.3(i), we may use a depth-first search
to construct a maximal subtree T0 of ⟨Z⟩J that radiates out from ⟨Z⟩.

(ii). Here, E ∩H ′ = E ∩ ∂Pn · · · ∂P2∂P1⟨Z⟩ ⊆ (E ′ ∩ ⟨Z⟩)φP1
φP2

···φPn .
(iii). It follows from Lemma 4.3(iv) that there exists some n > 0 and some

(Pi)
n
i=1 such that (E ′′ ∩ ⟨Z⟩)φP1

φP2
···φPn ⊆ E±1 ∩ ∂Pn · · · ∂P2∂P1⟨Z⟩.

Notice that the cut-vertex algorithm is being run automatically in the pre-
ceding argument.

We now construct a basis B of ⟨E | ⟩ which maximizes |B ∩ ⟨Z⟩|, in the-
ory. However, even just to verify by hand that no basis of ⟨{x, y}| ⟩ meets
⟨{x2, yx3y}⟩ looks quite daunting.

4.6 Algorithm. • With Notation 4.4, construct a (finite) maximal subtree T0
of ⟨Z⟩J that radiates out from ⟨Z⟩; see Theorem 4.5(i).
• Find a T0-vertex H maximizing the number of edges in the one-vertex sub-

graph at the basepoint of modelcore(H rel E), that is, maximizing |E ∩H|.
• Find the oriented T0-path (Pi)

n
i=1 from ⟨Z⟩ to H.

• Return B := EφPn ···φP2
φP1 , a basis of ⟨E | ⟩ which maximizes |B ∩ ⟨Z⟩| by

Theorem4.5(ii),(iii).
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France, 1977).

[8] Otto Schreier. Die Untergruppen der freien Gruppen. Abh.Math.Univ.
Hamburg 5 (1927), 161–183.

[9] John R. Stallings. Topology of finite graphs. Invent.Math. 71 (1983), 551–
565.

[10] Richard Stong. Diskbusting elements of the free group. Math.Res. Lett. 4
(1997), 201–210.

[11] J. H.C.Whitehead. On certain sets of elements in a free group. Proc. London
Math. Soc. (2) 41 (1936), 48–56.

[12] J. H.C. Whitehead. On equivalent sets of elements in a free group. Ann. of
Math. (2) 37 (1936), 782–800.

Departament de Matemàtiques,
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