Warren Dicks and J. Porti,
On the Hausdorff dimension of the Gieseking fractal.
Topology Appl., 126 (2002), 169-186.
Addenda
May 1, 2005.
In this article,
we studied the Hausdorff dimension d of the Gieseking
fractal. We can also say
that d is the Hausdorff dimension of the Gieseking-fractal
arcs that tessellate the Euclidean plane
like this:
n |
bn |
an |
log an/an-1 |
Programmer |
Year |
0 |
1 |
|
|
|
|
1 |
4 |
3 |
|
W. Dicks |
2000 |
2 |
11 |
7 |
0.8472978 |
W. Dicks |
2000 |
3 |
38 |
27 |
1.3499267 |
W. Dicks |
2000 |
4 |
153 |
115 |
1.4490952 |
W. Dicks |
2000 |
5 |
526 |
373 |
1.1766462 |
W. Dicks |
2000 |
6 |
1946 |
1420 |
1.3368337 |
W. Dicks |
2000 |
7 |
7111 |
5165 |
1.2912482 |
W. Dicks |
2000 |
8 |
25882 |
18771 |
1.2904080 |
W. Dicks |
2000 |
9 |
95156 |
69274 |
1.3057565 |
W. Dicks |
2000 |
10 |
348335 |
253179 |
1.2960270 |
A. Dicks |
2000 |
11 |
1271898 |
923563 |
1.2941422 |
A. Dicks |
2000 |
12 |
4658192 |
3386294 |
1.2992523 |
A. Dicks |
2000 |
13 |
17040856 |
12382664 |
1.2965613 |
A. Dicks |
2000 |
14 |
62350742 |
45309886 |
1.2972278 |
A. Dicks |
2000 |
15 |
228147404 |
165796662 |
1.2972368 |
A. Dicks |
2000 |
16 |
834711907 |
606564503 |
1.2970489 |
J.- C. Artés |
2000 |
17 |
3053925244 |
2219213337 |
1.2970969 |
P. Taylor |
2000 |
18 |
11172970200 |
8119044956 |
1.2970597 |
P. Taylor |
2000 |
19 |
40878223775 |
29705253575 |
1.2971113 |
P. Taylor |
2000 |
20 |
149563132885 |
108684909110 |
1.2971290 |
P. Taylor |
2000 |
21 |
547206912858 |
397643779973 |
1.2971036 |
J. Amoros |
2003 |
22 |
2002063012565 |
1454856099707 |
1.2971056 |
J. Amoros |
2003 |
23 |
7324919842341 |
5322856829776 |
1.2971031 |
J. Amoros |
2003 |
24 |
26799555593731 |
19474635751390 |
1.2971027 |
J. Amoros and |
2004 |
25 |
98051175064382 |
71251619470651 |
1.2971046 |
J. Vindel |
2004 |
By left conjugating by h( a, b, c,
d ) = ( a, b, d, b + c
+ d ) we can rewrite the above procedure as
follows.
Let S denote the free semigroup on the two-letter
alphabet {g, f }. Let S act
on Z4 by
g ( a,
b, c, d ) = ( a, b + c,
c, a + 2b + c + d )
= ( a, b + c,
c, (b + c) + d + (a + b)) ,
f ( a, b, c,
d ) = ( a + b, - b - c + d, a - b + d, a
- b - c + 2d )
= ( a + b, - (b + c)
+ d, a - b + d, - c + d + (a - b+ d )).
For each n in N, let bn
denote the number of words w in S
such that the fourth coordinate of
w ( 0, 0, 1, 2 ) is at most 2 cosh(n).
If n is positive, let an
= bn - bn-1. Then
d lies
between the liminf and the limsup of ( log an/an-1
| n = 2, 3, ... ). We do not know whether or
not this sequence converges. The first 24 terms are as above.
Return to Warren Dicks'
publications.