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Abstract

This article surveys many standard results about the braid group, with
emphasis on simplifying the usual algebraic proofs.

We use van der Waerden’s trick to illuminate the Artin-Magnus proof
of the classic presentation of the braid group considered as the algebraic
mapping-class group of a disc with punctures.

We give a simple, new proof of the σ1-trichotomy for the braid group,
and, hence, recover the Dehornoy right-ordering of the braid group.

We give three proofs of the Birman-Hilden theorem concerning the
fidelity of braid-group actions on free products of finite cyclic groups, and
discuss the consequences derived by Perron-Vannier and the connections
with Artin groups and the Wada representations.

The first, very direct, proof, is due to Crisp-Paris and uses the
σ1-trichotomy and the Larue-Shpilrain technique. The second proof arises
by studying ends of free groups, and gives interesting extra information.
The third proof arises from Larue’s study of polygonal curves in discs
with punctures, and gives extremely detailed information.

2000Mathematics Subject Classification. Primary: 20F36; Secondary: 20F34,
20E05, 20F60.
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1 General Notation

Let N denote the set of finite cardinals, {0, 1, 2, . . .}.
Throughout, we fix an element n of N.
Let G be a multiplicative group.
For elements a, b of G, we write a := a−1, ab := bab, [a] := {ag | g ∈ G}, the

conjugacy class of a in G, and anb := banb. We let Aut G denote the group of all
automorphisms of G, acting on G on the right with exponent notation.
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2 Actions of the braid group

For two subsets A, B of a set X, the complement of A ∩ B in A will be
denoted by A−B (and not by A\B since we let G\Y denote the set of G-orbits
of a left G-set Y ).

An ordering of a set will mean a total ordering for the set. An ordered set is
a set endowed with a specific ordering.

We will make frequent use of sequences, usually with vector notation. We
shall use the language of sequences to introduce indexed symbols and to realize
free monoids. Formally, we define a sequence as a set endowed with a specified
listing of its elements. Thus a sequence has an underlying set; with vector no-
tation, the coordinates are the elements of (the underlying set of) the sequence.
For two sequences A, B, their concatenation will be denoted A ∨ B. By a se-
quence A in a given set X, we mean a sequence endowed with a specified map of
sets A → X; to avoid extra notation, we shall use the same symbol to denote an
element of A and its image in X even when the map is not injective. We often
treat A as an element in the free monoid on X with concatenation as binary
operation, and then the elements of A are its atomic factors.

Let i, j ∈ Z.

We write [i↑j] :=
{

(i, i + 1, . . . , j − 1, j) ∈ Zj−i+1 if i ≤ j,

() ∈ Z0 if i > j.

Also, [i↑∞[ : = (i, i + 1, i + 2, . . .). We define [j↓i] to be the reverse of the
sequence [i↑j], (j, j − 1, . . . , i + 1, i).

Let v be a symbol.
For each k ∈ Z, we let vk denote the ordered pair (v, k).

We let v[i↑j] :=

{
(vi, vi+1, · · · , vj−1, vj) if i ≤ j,

() if i > j.

Also, v[i↑∞[ := (vi, vi+1, vi+2, . . .). We define v[j↓i] to be the reverse of the se-
quence v[i↑j].

Now suppose that v[i↑j] is a sequence in the multiplicative group G, that is,
there is specified a map of sets v[i↑j] → G, and we treat the elements of v[i↑j] as
elements of G (possibly with repetitions). We let

Πv[i↑j] :=

{
vivi+1 · · · vj−1vj ∈ G if i ≤ j,

1 ∈ G if i > j.

Πv[j↓i] :=

{
vjvj−1 · · · vi+1vi ∈ G if j ≥ i,

1 ∈ G if j < i.

2 Outline

Recall that n ∈ N.
Let Σ0,1,n := 〈z1, t[1↑n] | z1Πt[1↑n] = 1〉. Here, z and t are symbols, and Σ0,1,n

is presented as a one-relator group with generating sequence (z1, t1, . . . , tn) =
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(z1) ∨ t[1↑n]. In particular, t[1↑n] ∨ t[1↑n] is a sequence in Σ0,1,n, and we see that
Σ0,1,n is freely generated by t[1↑n].

Let Out+
0,1,n denote the subgroup of Aut Σ0,1,n consisting of all the automor-

phisms of Σ0,1,n which respect the sets {z1} and {[ti]}i∈[1↑n]. Let Out0,1,0 denote
a group of order two, and, for n ≥ 1, let Out0,1,n denote the group of all auto-
morphisms of Σ0,1,n which respect the sets {z1, z1} and {[ti] ∪ [ti]}i∈[1↑n]. Then
Out+

0,1,n is a subgroup of index two in Out0,1,n. We call Out0,1,n the algebraic
mapping-class group of the surface of genus 0 with 1 boundary component and
n punctures; see [18] for background on algebraic mapping-class groups.

Frequently, Out+
0,1,n will be denoted Bn and called the n-string braid group.

(The similar symbol Bn denotes a Coxeter diagram.)
In Section 3, we define a sequence σ[1↑(n−1)] in Out+

0,1,n, we review Artin’s
1925 proof that σ[1↑(n−1)] generates Out+

0,1,n, and we present related results that
we shall apply in subsequent sections. In Section 4, we recall the definition of
Artin groups, specifically Artin〈An〉, Artin〈Bn〉 and Artin〈Dn〉. In Section 5, we
verify Artin’s 1925 result that Out+

0,1,n ' Artin〈An−1〉, by combining Magnus’
1934 proof, Manfredini’s observation that Out+

0,1,(n−1)⊥1 ' Artin〈Bn−1〉, and the
van der Waerden trick, to condense the calculations involved.

In Section 6, we use results of Section 4 to recover the celebrated σ1-tri-
chotomy and the Dehornoy right-ordering of Bn. This free-group-action ap-
proach represents a substantial simplification over previous arguments. Let us
emphasize that we verify directly that Out+

0,1,n satisfies the σ1-trichotomy, which
is the reverse of the route taken by Larue [22], where the σ1-trichotomy for
Artin〈An−1〉 is used to verify that Artin〈An−1〉 acts faithfully on Σ0,1,n.

In Section 7, we review the action of Bn on the set of ends of Σ0,1,n. We recall
the argument of Thurston [29] that yields the Dehornoy right-ordering of Bn,
but not the σ1-trichotomy. By analysing further, we obtain new results about
the Bn-orbit of t1 in Σ0,1,n.

In Section 8, for each m ≥ 2, we introduce Out0,1,n(m) , the algebraic map-
ping-class group of the disc with n Cm-points. We recall the Larue-Shpilrain-
type proof by Crisp-Paris of the Birman-Hilden result that the natural map
from Out0,1,n to Out0,1,n(m) is injective. We then modify an argument of Steve
Humphries to show that there is a natural identification Out0,1,n(m) = Out0,1,n.
The results previously obtained in Section 7 then provide additional information
in this context.

In Section 9, we review some applications by Perron-Vannier [27] of the
above Birman-Hilden result, and discuss connections with the actions given by
Wada [31] and studied by Shpilrain [30] and Crisp-Paris [10], [11].

Following a kind suggestion of Patrick Dehornoy, we studied the analysis
of the Bn-orbit of t1 in Σ0,1,n given by David Larue [21]. Larue’s approach is
combinatorial and uses polygonal curves in the punctured disc. By combining
Larue’s approach with Whitehead’s use of graphs, we were able to simplify
Larue’s main arguments; we record our combinatorial approach in an appendix.



4 Actions of the braid group

We also show how Larue’s results imply the results we had obtained in Section 7
by studying ends.

3 Artin’s generators of Bn

In this section we recall Artin’s generating sequence σ[1↑(n−1)] of Bn.
Let us first fix more notation related to Σ0,1,n = 〈z1, t[1↑n] | z1Πt[1↑n] = 1〉 and

Bn ≤ Aut Σ0,1,n.

3.1 Notation. Let m ∈ N. Consider an element w of Σ0,1,n and a sequence
a[1↑m] in t[1↑n] ∨ t[1↑n]. We also view a[1↑m] as a sequence in Σ0,1,n.

If Πa[1↑m] = w in Σ0,1,n, we say that a[1↑m] is a monoid expression for w, in
t[1↑n] ∨ t[1↑n], of length m. We say that a[1↑m] is reduced if, for all j ∈ [1↑(n− 1)],
aj+1 6= aj in t[1↑n]∨t[1↑n]. Each element of Σ0,1,n has a unique reduced expression,
called the normal form.

Suppose that a[1↑m] is the normal form for w. We define the length of w to
be |w| := m. The set of elements of Σ0,1,n whose normal forms have a[1↑m] as an
initial segment is denoted (w?); and, the set of elements of Σ0,1,n whose normal
forms have a[1↑m] as a terminal segment is denoted (?w). The elements of (w?)
are said to begin with w, and the elements of (?w) are said to end with w.

Let Symn denote the group of permutations of (the set underlying) [1↑n],
acting with exponent notation.

Let φ ∈ Bn. There exists a unique permutation π ∈ Symn, and a unique
sequence w[0↑n+1] in Σ0,1,n such that w0 = 1 and wn+1 = 1, and, for each
i ∈ [1↑n], wi 6∈ (tiπ?) ∪ (tiπ?) and

tφi = twi
iπ .

For each i ∈ [0↑n], let ui = wiwi+1. If j ∈ [i↑n], then Πu[i↑j] = wiwj+1. In
particular, Πu[i↑n] = wi. We define π(φ) := π, wi(φ) := wi for i ∈ [0↑n + 1], and

ui(φ) := ui for i ∈ [0↑n]. We write ‖φ‖ :=
∑

i∈[1↑n]

|tφi | = n + 2
∑

i∈[1↑n]

|wi(φ)|.
Let σ[1↑(n−1)] be the sequence in Bn defined as follows: for all i ∈ [1↑(n− 1)]

and all k ∈ [1↑n], tσi
k =





tk if k ∈ [1↑(i− 1)] ∨ [(i + 2)↑n],

ti+1 if k = i,

t
ti+1

i if k = i + 1.
In the literature, σi is sometimes represented in 2 × n-matrix notation, for ex-
ample, in the format

σi =

(
t1 . . . ti−1 ti ti+1 ti+2 . . . tn
t1 . . . ti−1 ti+1 t

ti+1

i ti+2 . . . tn

)
.

We find it convenient to avoid dots and we say that σi and σi are determined by
the expressions
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k∈[1↑(i−1)] k∈[(i+1)↑n]

(tk ti ti+1 tk)
σi

= (tk ti+1 t
ti+1

i tk),

and

k∈[1↑(i−1)] k∈[(i+1)↑n]

(tk ti ti+1 tk)
σi

= (tk ttii+1 ti tk).

We shall apply the following result in different situations.

3.2 Lemma (Artin [3]). Let φ ∈ Bn. Let π = π(φ) and, for each i ∈ [0↑n], let
ui = ui(φ).

(i). Suppose that there exists some i ∈ [1↑(n − 1)] such that ui ∈ (?t(i+1)π).

Then ‖σiφ‖ ≤ ‖φ‖−2. Moreover, for each j ∈ [1↑i], tσiφ
j and tφj both begin

with the same element of t[1↑n] ∨ t[1↑n].

(ii). Suppose that there exists some i ∈ [1↑(n− 1)] such that ui ∈ (tiπ?). Then
‖σiφ‖ ≤ ‖φ‖−2. Moreover, for each j ∈ [1↑(i−1)], tσiφ

j and tφj both begin
with the same element of t[1↑n] ∨ t[1↑n].

(iii). Suppose that, for each i ∈ [1↑(n− 1)], ui 6∈ (tiπ?)∪ (?t(i+1)π). Then φ = 1.

Proof. (i). There exists some v ∈ Σ0,1,n−(?t(i+1)π) such that ui = vt(i+1)π . Since
wi(φ) = uiwi+1(φ), we have

(3.2.1) wi(φ) = vt(i+1)πwi+1(φ).

Since v 6∈ (?t(i+1)π) and wi+1(φ) 6∈ (t(i+1)π?), there is no cancellation in the

expression t
vt(i+1)π wi+1(φ)

iπ for tφi ; hence

(3.2.2) tφi ∈ (wi+1(φ)t(i+1)π?) and |tφi | = 1 + 2|v|+ 2 + 2|wi+1(φ)|.

For all j ∈ [1↑(i − 1)] ∨ [(i + 2)↑n], tσiφ
j = tφj ; hence, tσiφ

j has the same first

letter as tφj , and, |tσiφ
j | = |tφj |.

Since tσiφ
i = tφi+1 ∈ (wi+1(φ)t(i+1)π?), we see, from (3.2.2), that tσiφ

i has the

same first letter as tφi . Also, |tσiφ
i | = |tφi+1|.

By (3.2.1), wi(φ)wi+1(φ)t(i+1)π = v; hence

tσiφ
i+1 = (t

ti+1

i )φ = (t
wi(φ)
iπ )(t

wi+1(φ)

(i+1)π
) = t

vwi+1(φ)
iπ .

Hence, |tσiφ
i+1| ≤ 1 + 2|v|+ 2|wi+1(φ)| (3.2.2)

= |tφi | − 2.
It now follows that ‖σiφ‖ ≤ ‖φ‖ − 2, and (i) is proved.

(ii). There exists some v ∈ Σ0,1,n−(tiπ?) such that ui = tiπv. Since wi+1(φ) =
uiwi(φ), we have

(3.2.3) wi+1(φ) = vtiπwi(φ).
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Since v 6∈ (?tiπ) and wi(φ) 6∈ (tiπ?), there is no cancellation in the expression

t
vtiπ wi(φ)
(i+1)π for tφi+1; hence

(3.2.4) |tφi+1| = 1 + 2|v|+ 2 + 2|wi(φ)|.

For all j ∈ [1↑(i − 1)] ∨ [(i + 2)↑n], tσiφ
j = tφj ; hence, tσiφ

j has the same first

letter as tφj , and, |tσiφ
j | = |tφj |.

Since tσiφ
i+1 = tφi , we see that |tσiφ

i+1| = |tφi |.
By (3.2.3), wi+1(φ)wi(φ)tiπ = v; hence

tσiφ
i = (ttii+1)

φ = (t
wi+1(φ)
(i+1)π )(t

wi(φ)

iπ ) = t
vwi(φ)
iπ .

Hence, |tσiφ
i | ≤ 1 + 2|v|+ 2|wi(φ)| (3.2.4)

= |tφi+1| − 2.
It now follows that ‖σiφ‖ ≤ ‖φ‖ − 2, and (ii) is proved.

(iii). Since u0 = w1(φ) 6∈ (?t1π) and un = wn(φ) 6∈ (tnπ?), we see that there
is no cancellation anywhere in the expression u0 Π

i∈[1↑n]
(tiπui). Hence,

|u0 Π
i∈[1↑n]

(tiπui)| =
∑

i∈[0↑n]

|ui|+ n, that is,
∑

i∈[0↑n]

|ui| = |u0 Π
i∈[1↑n]

(tiπui)| − n.

Recall that u0 Π
i∈[1↑n]

(tiπui) = Π
i∈[1↑n]

(t
wi(φ)
iπ ) = ( Π

i∈[1↑n]
ti)

φ = Π
i∈[1↑n]

ti. Hence

|u0 Π
i∈[1↑n]

(tiπui)| = n and
∑

i∈[0↑n]

|ui| = n− n = 0.

Hence, all the elements of u[0↑n] are trivial.
For each i ∈ [0↑(n + 1)], wi = Πu[i↑n]; hence, all the elements of w[1↑n] are

trivial. Also, Π
i∈[1↑n]

tiπ = u0 Π
i∈[1↑n]

(tiπui) = Π
i∈[1↑n]

ti. Hence π is trivial. Thus

φ = 1.

The following is then immediate.

3.3 Proposition (Artin [3]). For each φ ∈ Bn, either φ = 1, or there exists some
σε

i ∈ σ[1↑(n−1)] ∨ σ[1↑(n−1)] such that ‖σε
iφ‖ ≤ ‖φ‖ − 2. Hence, 〈σ[1↑(n−1)]〉 = Bn.

3.4 Remarks. If w ∈ Σ0,1,n has odd length, then wσi has odd length, and
|wσi| ≤ 2|w| + 1, with equality being achieved only if every odd letter of w
equals ti+1 or ti+1. Similar statements hold with σi in place of σi.

Let φ ∈ Bn and let |φ| denote the minimum length of a monoid expression
for φ in σ[1↑(n−1)] ∨ σ[1↑(n−1)]. Thus, |tφi | ≤ 2|φ|+1 − 1. Hence, ‖φ‖ ≤ n2|φ|+1 − n.
Proposition 3.3 gives an algorithm which yields a monoid expression for φ
in σ[1↑(n−1)] ∨ σ[1↑(n−1)] of length at most ‖φ‖−n

2
, and we have now seen that

‖φ‖−n
2

≤ n2|φ|+1−2n
2

= n2|φ| − n.
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4 Coxeter diagrams and Artin groups

4.1 Definition. A Coxeter diagram X consists of a set V together with a func-
tion V × V → N ∪ {∞}, (x, y) 7→ mx,y, such that, for all x, y ∈ V , mx,x = 0
and mx,y = my,x. The elements of V are called the vertices of X, and, for all
x, y ∈ V , we say that mx,y is the number of edges joining x and y; thus we can
represent X diagrammatically. We then define the Artin group of X, denoted
Artin〈X〉, to be the group presented with generating set V and relations saying
that, for all x, y ∈ V , xy = yx if mx,y = 0,

xyx = yxy if mx,y = 1,
xyxy = yxyx if mx,y = 2,

etc.

Notice that if mx,y = ∞, then no relation is imposed. Notice also that if V is
empty, then Artin〈X〉 is the trivial group.

4.2 Notation. (i). Let An denote the Coxeter diagram

a1 a2 · · · an−1 an.

It is understood that A0 is empty. We define A−1 to be empty also.
Thus, in An, the vertex set is a[1↑n], and, for i, j ∈ [1↑n], the number of edges

joining ai to aj is

{
1 if |i− j| = 1,

0 if |i− j| 6= 1.

Hence, Artin〈An〉 has a presentation with generating set a[1↑n] and relations

saying that, for i, j ∈ [1↑n], aiaj = ajai if |i− j| 6= 1,
aiajai = ajaiaj if |i− j| = 1.

(ii). Let Bn denote the Coxeter diagram

b1 b2 · · · bn−1 bn.

Here, the vertex set is b[1↑n], and, for i, j ∈ [1↑n], the number of edges joining bi

to bj is





2 if {i, j} = {n− 1, n},
1 if |i− j| = 1 and {i, j} 6= {n− 1, n},
0 if |i− j| 6= 1.

(iii). For n ≥ 2, let Dn denote the Coxeter diagram

d1 d2 · · · dn−3

dn

dn−2 dn−1.

Here, the vertex set is d[1↑n], and, for i, j ∈ [1↑n], the number of edges joining
di to dj is

{
1 if {i, j} ∈ {{1, 2}, {2, 3}, . . . , {n− 2, n− 1}, {n− 2, n}},
0 otherwise.
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5 Artin’s presentation of Bn

In this section, we verify Artin’s result that there exists an isomorphism

γn : Artin〈An−1〉 → Bn determined by

i∈[1↑(n−1)]

(ai)
γn

= (σi)
. We express this result by

writing Bn = Artin〈σ1 σ2 · · · σn−1〉.
5.1 Proposition. There exists a homomorphism γn : Artin〈An−1〉 → Bn de-

termined by

i∈[1↑(n−1)]

(ai)
γn

= (σi)

, and γn is surjective.

Proof. (a). Suppose that 1 ≤ i ≤ i + 2 ≤ j ≤ n− 1. We have the following.

k∈[1↑(i−1)] k∈[(i+2)↑(j−1)] k∈[(j+2)↑n]

(tk ti ti+1 tk tj tj+1 tk)
σiσj

= (tk ti+1 t
ti+1

i tk tj tj+1 tk)
σj

= (tk ti+1 t
ti+1

i tk tj+1 t
tj+1

j tk)

= (tk ti ti+1 tk tj+1 t
tj+1

j tk)
σi

= (tk ti ti+1 tk tj tj+1 tk)
σjσi .

(b). Suppose that 1 ≤ i ≤ n− 2. We have the following.

k∈[1↑(i−1)] k∈[(i+3)↑n]

(tk ti ti+1 ti+2 tk)
σiσi+1σi

= (tk ti+1 t
ti+1

i ti+2 tk)
σi+1σi

= (tk ti+2 t
ti+2

i t
ti+2

i+1 tk)
σi

= (tk ti+2 t
ti+2

i+1 t
ti+1ti+2

i tk)

= (tk ti+1 ti+2 t
ti+1ti+2

i tk)
σi+1

= (tk ti ti+2 t
ti+2

i+1 tk)
σiσi+1

= (tk ti ti+1 ti+2 tk)
σi+1σiσi+1

By (a) and (b), there exists a homomorphism γn : Artin〈An−1〉 → Bn de-

termined by

i∈[1↑(n−1)]

(ai)
γn

= (σi)

. By Proposition 3.3, 〈σ[1↑(n−1)]〉 = Bn, and, hence, γn

is surjective.

In the remainder of this section, we shall use induction on n to show that the
surjective homomorphism γn : Artin〈An−1〉 → Bn of Proposition 5.1 is an iso-
morphism. Notice that γn endows Artin〈An−1〉 with a canonical action on Σ0,1,n.

The following is precisely [25, Proposition 1] and, also, [10, Proposition 2.1(2)].



Llúıs Bacardit and Warren Dicks 9

5.2 Lemma (Manfredini [25]). If n ≥ 1, then

Artin〈An−1〉nΣ0,1,n = Artin〈 a1 a2 · · · an−1 tn 〉 ' Artin〈Bn〉.

Proof. For n = 1, the result is clear.
For n = 2, we have the following.

Artin〈A1〉n Σ0,1,2 = 〈a1, t[1↑2] | ta1
1 = t2, ta1

2 = t2t1t2〉
= 〈a1, t2 | ta1

2 = t2t
a1
2 t2〉 = 〈a1, t2 | (a1t2)(a1) = (t2a1)(t2a1t2)〉

= 〈a1, t2 | (a1)(t2a1t2) = (t2a1)(t2a1)〉 = Artin〈 a1 t2 〉.

From the case n = 2, we see that there exists a homomorphism

µ : Artin〈Bn 〉 → Artin〈An−1 〉n Σ0,1,n determined by

i∈[1↑(n−1)]

(bi bn)µ

= (ai tn)

.

For each k ∈ [1↑n], let tk denote the element b
Πb[n−1↓k]

n of Artin〈Bn〉. For each
i ∈ [1↑(n− 1)] and k ∈ [1↑n], let us formally define

tσi
k :=





tk if k ∈ [1↑i− 1] ∨ [i + 2↑n],

ttii+1 if k = i,

ti if k = i + 1.

We shall see that tbi
k = tσi

k ; this immediately implies that there exists a homomor-

phism µ : Artin〈An−1 〉nΣ0,1,n → Artin〈Bn 〉 determined by

i∈[1↑(n−1)] k∈[1↑n]

(ai tk)
µ

= (bi tk)
which is then clearly inverse to µ, and the result will be proved.

For each m ∈ [n↓1], we shall show, by decreasing induction on m, that, for

each k ∈ [n↓m] and each i ∈ [(n − 1)↓m], tbi
k = tσi

k . For m = n, this is trivial,
and, for m = n−1, it follows from the case n = 2. Suppose that m ∈ [(n−2)↓1].

(a). For each k ∈ [n↓(m + 1)] and each i ∈ [(n − 1)↓(m + 1)], tbi
k = tσi

k , by
hypothesis.

(b). For each k ∈ [n↓(m + 2)], tk ∈ 〈b[n↓(m+2)]〉 and, hence, tbm
k = tk = tσm

k .

(c). tbm
m+1 = b

(Πb[(n−1)↓(m+1)])bm

n = tm = tσm
m+1.

(d). For each i ∈ [(n− 1)↓(m + 2)], tbi
m

(c)
= tbm bi

m+1 = tbi bm
m+1

(a)
= tbm

m+1

(c)
= tm = tσi

m .

(e). tbm+1
m

(c)
= t

bmbm+1

m+1

(a)
= t

bm+1bmbm+1

m+2 = t
bmbm+1bm

m+2

(b)
= t

bm+1bm

m+2

(a)
= tbm

m+1

(c)
= tm = tσm+1

m .

(f). tbm
m = tbm+1bmbm+1bmbm+1

m

(e)
= tbmbm+1bmbm+1

m

(c)
= t

bm+1bmbm+1

m+1
(a)
= (tm+1tm+2tm+1)

bmbm+1
(c),(b),(c)

= (tmtm+2tm)bm+1
(e),(a),(e)

= tmtm+1tm = tσm
m .

Now the result follows by induction.
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We write Stab(Artin〈An〉; [tn+1]) to denote the Artin〈An〉-stabilizer of the
conjugacy class [tn+1] under the Artin〈An〉-action on Σ0,1,n+1. The Reidemeis-
ter-Schreier rewriting technique automatically gives a useful presentation of
Stab(Artin〈An〉; [tn+1]) but the resulting exposition is tedious. Once the pre-
sentation has been found, we can verify it directly using the van der Waerden
trick, as in the following proof.

5.3 Theorem (Magnus [24]). Let n ≥ 1.

(i). There exists a homomorphism

φn : Artin〈An−1〉nΣ0,1,n → Artin〈An〉 determined by

i∈[1↑(n−1)]

(ai tn )φn

= (ai a 2
n ).

(ii). φn is injective.

(iii). For each i ∈ [1↑n], tφn

i = a
2Πa[(i+1)↑n]

i in Artin〈An〉.
(iv). The image of φn is Stab(Artin〈An〉; [tn+1]).

Proof. Let us write G = Artin〈An〉 and H = Artin〈An−1〉n Σ0,1,n.
In G,

(an−1a
2
nan−1)

an=(anan−1an)(anan−1an)=(an−1anan−1)(an−1anan−1)=an−1a
2
nan−1,

and, hence, an−1a
2
nan−1a

2
n = a2

nan−1a
2
nan−1. By Lemma 5.2, H ' Artin〈Bn〉,

and we see that there exist a homomorphism φn : H → G determined by
i∈[1↑(n−1)]

(ai tn )φn

= (ai a 2
n )

and (i) is proved.

Let v be a symbol and let H × v[1↑(n+1)] denote a free left H-set with left
H-transversal v[1↑(n+1)]. We construct a right G-action on H × v[1↑(n+1)] such
that H × v[1↑(n+1)] becomes an (H,G)-bi-set. For each i ∈ [1↑n], the element ai

of G acts on the right on H × v[1↑(n+1)] as the left H-map that is determined by
the following.

k∈[1↑(i−1)] k∈[(i+2)↑(n+1)]

( vk vi vi+1 vk)ai

= (ai−1vk vi+1 tivi aivk).

We now verify that the relations of G are respected.
(a). Suppose that 1 ≤ i < i + 2 ≤ j ≤ n. We have the following.

k∈[1↑(i−1)] k∈[(i+2)↑(j−1)] k∈[(j+2)↑(n+1)]

( vk vi vi+1 vk vj vj+1 vk)aiaj

= ( ai−1vk vi+1 tivi aivk aivj aivj+1 aivk)aj

= (ai−1aj−1vk aj−1vi+1 tiaj−1vi aiaj−1vk aivj+1 aitjvj aiajvk)
= (aj−1ai−1vk aj−1vi+1 aj−1tivi aj−1aivk aivj+1 tjaivj ajaivk)
= ( aj−1vk aj−1vi aj−1vi+1 aj−1vk vj+1 tjvj ajvk)ai

= ( vk vi vi+1 vk vj vj+1 vk)ajai.
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(b). Suppose that 1 ≤ i ≤ n− 1. We have the following.

k∈[1↑(i−1)] k∈[(i+3)↑(n+1)]

( vk vi vi+1 vi+2 vk)aiai+1ai

= ( ai−1vk vi+1 tivi aivi+2 aivk)ai+1ai

= ( ai−1aivk vi+2 tiaivi aiti+1vi+1 aiai+1vk)ai

= (ai−1aiai−1vk aivi+2 tiaivi+1 aiti+1tivi aiai+1aivk)
= ( aiai−1aivk aivi+2 aiti+1vi+1 ti+1tiaivi ai+1aiai+1vk)
= ( aiai−1vk aivi+1 aivi+2 ti+1tivi ai+1aivk)ai+1

= ( aivk aivi vi+2 ti+1vi+1 ai+1vk)aiai+1

= ( vk vi vi+1 vi+2 vk)ai+1aiai+1.

By (a) and (b), the relations of G are respected. Hence, we have a right
G-action on H × v[1↑(n+1)] by left H-maps.

Notice that vn+1t
φn

n = vn+1a
2
n = tnvnan = tnvn+1, and, for each i ∈ [1↑(n−1)],

vn+1a
φn

i = vn+1ai = aivn+1. It follows that, for each h ∈ H, vn+1h
φn = hvn+1.

Hence, φn is injective. This proves (ii).
Recall that G = Artin〈An〉.
Let i ∈ [1↑n].
We shall show by decreasing induction on i that

(5.3.1) a
Πa[(n−1)↓i]
n = a

Πa[(i+1)↑n]

i .

If i = n, then (5.3.1) holds. Now suppose that i ≥ 2, and that (5.3.1) holds.
Conjugating (5.3.1) by ai−1 yields

a
Πa[(n−1)↓(i−1)]
n = a

(Πa[(i+1)↑n])ai−1

i = a
ai−1Πa[(i+1)↑n]

i = a
aiΠa[(i+1)↑n]

i−1 = a
Πa[i↑n]

i−1 .

By induction, (5.3.1) holds.

Now t
φn

i = (t
Πa[(n−1)↓i]

n )φn = a
2Πa[(n−1)↓i]
n

(5.3.1)
= a

2Πa[(i+1)↑n]

i . This proves (iii).

Also, t
φn

i Πa[n↓i] = (Πa[n↓(i+1)])ai.
If k ∈ [1↑(i− 1)], then

a
Πa[k↑n]

i = a
Πa[k↑(i−2)]Πa[(i−1)↑i]Πa[(i+1)↑n]

i = a
Πa[(i−1)↑i]Πa[(i+1)↑n]

i = a
Πa[(i+1)↑n]

i−1 = ai−1.

Hence, ai−1Πa[n↓k] = (Πa[n↓k])ai.
Let ψn denote the map of sets

ψn : H × v[1↑n+1] → G, hvk 7→ hφnΠa[n↓k] for all hvk = (h, vk) ∈ H × v[1↑(n+1)].

Hence, for each h ∈ H, we have the following, in G.

k∈[1↑(i−1)] k∈[(i+2)↑(n+1)]

(h ( vk vi vi+1 vk ))ψnai

= (hφn( Πa[n↓k] Πa[n↓i] Πa[n↓(i+1)] Πa[n↓k]))ai

= (hφn(ai−1Πa[n↓k] Πa[n↓(i+1)] t
φn

i Πa[n↓i] aiΠa[n↓k]))
= (h (ai−1vk vi+1 tivi aivk ))ψn

= (h ( vk vi vi+1 vk )ai)
ψn .
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This proves that ψn is a map of right G-sets, and, hence, ψn must be surjective.
Thus, G =

⋃
k∈[1↑(n+1)]

Hφnvψn

k , and, hence, the index of Hφn in G is at most n+1.

Consider the action of G on the set of conjugacy classes {[tk]}k∈[1↑(n+1)] in
Σ0,1,n+1. For any i ∈ [1↑n], ai acts as the transposition ([ti], [ti+1]). In particular,
the index of Stab(G; [tn+1]) in G is n + 1. Also, the elements of a[1↑(n−1)] ∨ (a2

n)
fix [tn+1], and, hence, Hφn ≤ Stab(G; [tn+1]). By comparing indices in G, we see
that Hφn = Stab(G; [tn+1]). This proves (iv).

5.4 Theorem (Artin). Bn = Artin〈σ1 σ2 · · · σn−1〉.
Proof. This is trivial for n ≤ 1.

Hence, we may assume that n ≥ 1 and that the homomorphism

γn : Artin〈An−1〉 → Bn, of Proposition 5.1, determined by

i∈[1↑(n−1)]

(ai)
γn

= (σi)

is an iso-

morphism. By induction, it remains to show that the surjective homomorphism
γn+1 : Artin〈An〉 → Bn+1 is injective.

Consider an element w of the kernel of γn+1. In particular, w fixes tn+1

in the Artin〈An〉-action on Σ0,1,n+1. By Theorem 5.3(iv), w lies in the image
of the homomorphism φn : Artin〈An−1〉 n Σ0,1,n → Artin〈An〉 determined by

i∈[1↑(n−1)]

(ai tn )φn

= (ai a 2
n )

, and there is a resulting factorization of the form w =

w1(a[1↑(n−1)])w2(t
φn

[1↑n]). Now,

(5.4.1) in Artin〈An〉n Σ0,1,n+1, tn+1 = twn+1 = t
w1(a[1↑n−1])w2(tφn

[1↑n]
)

n+1 = t
w2(tφn

[1↑n]
)

n+1 .

Consider the homomorphism φn+1 : Artin〈An〉nΣ0,1,n+1 → Artin〈An+1〉 de-

termined by

i∈[1↑n]

(ai tn+1 )φn+1

= (ai a 2
n+1)

. Let i ∈ [1↑n]. By Theorem 5.3(iii),

(tφn

i )φn+1an+1 = (a
2Πa[(i+1)↑n]

i )φn+1an+1 = (a
2Πa[(i+1)↑n]

i )an+1

= (a
2Πa[(i+1)↑(n+1)]

i ) = (ti)
φn+1 ,

(tn+1)
φn+1an+1 = (a 2

n+1)
an+1 = a 2

n+1 = (tn+1)
φn+1 .

In particular, the two sequences tφn

[1↑n]∨(tn+1) and t[1↑n+1] (in Artin〈An〉nΣ0,1,n+1)

become conjugate (in Artin〈An+1〉) under φn+1. By Theorem 5.3(ii), φn+1

is injective. Since t[1↑(n+1)] freely generates the free subgroup Σ0,1,n+1 of

Artin〈An〉n Σ0,1,n+1, we see that tφn

[1↑n] ∨ (tn+1) also freely generates a free sub-

group of Artin〈An〉n Σ0,1,n+1. From (5.4.1), we see that w2 must be trivial.



Llúıs Bacardit and Warren Dicks 13

Hence, w = w1(a[1↑(n−1)]) in Artin〈An〉. By the induction hypothesis,
w1(a[1↑(n−1)]) = 1 in Artin〈An−1〉. Hence w = 1 in Artin〈An〉.

Now the result holds by induction.

Combining Lemma 5.2, Theorem 5.3 and Theorem 5.4, we have the following.

5.5 Corollary (Artin-Magnus-Manfredini). If n ≥ 2, then

Bn = Artin〈σ1 σ2 · · · σn−2 σn−1〉 ' Artin〈An−1〉,
Stab(Bn; [tn]) = Artin〈σ1 σ2 · · · σn−2 σ2

n−1〉 ' Artin〈Bn−1〉,
Bn−1 n Σ0,1,n−1 = Artin〈σ1 σ2 · · · σn−2 tn−1〉 ' Artin〈Bn−1〉.

5.6 Historical Remarks. In 1925, Artin [3] found the above presentation of
Bn by an intuitive topological argument; later [4], he indicated that there were
difficulties that could be corrected. In 1934, Magnus [24] gave an algebraic
proof that the relations suffice. In 1945, Markov [26] gave a similar algebraic
proof. In 1947, Bohnenblust [7] gave a similar algebraic proof; in 1948, Chow [8]
simplified the latter proof. All these algebraic proofs of the sufficiency of the
relations involve the Reidemeister-Schreier rewriting process for the subgroup of
index n.

Larue [22] gave a new algebraic proof of the sufficiency of the relations, by
using the σ1-trichotomy [14] for braid groups. We shall proceed in the opposite
direction. Proofs of the σ1-trichotomy for Artin〈An−1〉 have tended to be more
difficult than proofs that Out+

0,1,n = Artin〈An−1〉, and we shall now see that
Artin’s generation argument easily gives the σ1-trichotomy for Out+

0,1,n.

6 Three trichotomies

6.1 Definitions. Let φ ∈ Bn.
We say that φ is σ1-neutral if φ lies in the subgroup of Bn generated by

σ[2↑(n−1)]. This holds automatically if n ≤ 1.
We say that φ is σ1-positive if n ≥ 2 and φ has a monoid expression in

σ[1↑(n−1)] ∨ σ[2↑(n−1)] such that at least one term of the expression is σ1. We
say that φ is σ-positive if n ≥ 2 and, for some i ∈ [1↑(n − 1)], φ has a monoid
expression in σ[i↑(n−1)]∨σ[(i+1)↑(n−1)] such that at least one term of the expression
is σi.

We say that φ is σ1-negative if φ is σ1-positive, that is, n ≥ 2 and φ has
a monoid expression in σ[2↑(n−1)] ∨ σ[1↑(n−1)] such that at least one term of the
expression is σ1.

If φ satisfies exactly one of the properties of being σ1-neutral, σ1-positive
σ1-negative, we say that φ satisfies the σ1-trichotomy.

If every element of Bn satisfies the σ1-trichotomy, then we say that Bn sat-
isfies the σ1-trichotomy.
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6.2 Historical Remarks. View Artin〈An〉 as a subgroup of Artin〈An+1〉 in a
natural way, and let Artin〈A∞〉 denote the union of the resulting chain; thus
Artin〈A∞〉 = 〈a[1↑∞[〉. Dehornoy [14, Theorem 6] gave a one-sided ordering of
Artin〈A∞〉; the positive semigroup for this ordering is the set of ‘a-positive’
elements of Artin〈A∞〉.

Let φ ∈ Bn. By replacing φ with φ if necessary, we can apply Dehornoy’s
result to deduce that there exists some n′ ≥ n such that φ is σ-negative in
Bn′ , or φ = 1. Larue [21] showed that this implies that tφ1 ∈ (t1?) and that
this in turn implies that φ has a monoid expression in σ[2↑(n−1)] ∨ σ[1↑(n−1)], of
length at most |φ|+ 1

4
n23|φ|. Thus, Bn satisfies the σ1-trichotomy. Larue’s work

is surveyed in [16, Chapter 5]. Fenn-Greene-Rolfsen-Rourke-Wiest [19] gave
a direct topological proof of the σ1-trichotomy for Bn without being aware of
Larue’s work and without applying Dehornoy’s result. Their work is surveyed
in [16, Chapter 6].

We shall give elementary direct proofs of the foregoing results and replace
Larue’s bound |φ|+ 1

4
n23|φ| with the much smaller bound n2|φ|−n. Larue’s proof

contains much interesting information that we shall rework in the Appendix.

Part (iii) of the following is new.

6.3 Lemma. Let n ≥ 1 and let φ be an element of Bn such that tφ1 ∈ (t1?). Let
π = π(φ) and, for each i ∈ [1↑n], let ui = ui(φ).

(i). Suppose that there exists some i ∈ [1↑(n − 1)] such that ui ∈ (?t(i+1)π).

Then ‖σiφ‖ ≤ ‖φ‖ − 2 and tσiφ
1 ∈ (t1?). Moreover, if tφ1 = t1, then

i ∈ [2↑(n− 1)].

(ii). Suppose that there exists some i ∈ [2↑(n− 1)] such that ui ∈ (tiπ?). Then
‖σiφ‖ ≤ ‖φ‖ − 2 and tσiφ

1 ∈ (t1?).

(iii). Suppose that, for each i ∈ [1↑(n − 1)], ui 6∈ (?t(i+1)π) and, for each
i ∈ [2↑(n− 1)], ui 6∈ (tiπ?). Then φ = 1.

Proof. For each i ∈ [0↑(n + 1)], let wi = wi(φ).

(i). The first conclusion follows from Artin’s Lemma 3.2(i). Notice that, if
tφ1 = t1, then w1 = 1 and u1 = w2 6∈ (?t2π).

(ii) follows from Lemma 3.2(ii).

(iii). Recall that u0

∏
i∈[1↑n]

(tiπui) =
∏

i∈[1↑n]

(twi
iπ ) = (

∏
i∈[1↑n]

ti)
φ =

∏
i∈[1↑n]

ti. Hence,

u0t1πu1

∏
i∈[2↑n]

(tiπui) = t1
∏

i∈[2↑n]

ti, and, hence,

(6.3.1) |u1

∏
i∈[2↑n]

(tiπui)| = |t1πu0t1
∏

i∈[2↑n]

ti| ≤ |t1πu0t1|+ n− 1.
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Since un = wn 6∈ (tnπ?), the hypotheses imply that there is no cancellation
anywhere in the expression u1

∏
i∈[2↑n]

(tiπui). Hence,

(6.3.2)
∑

i∈[1↑n]

|ui|+ n− 1 = |u1

∏
i∈[2↑n]

(tiπui)|
(6.3.1)

≤ |t1πu0t1|+ n− 1.

Since tu0
1π = tw1

1π = tφ1 ∈ (t1?), we see that u0t1π ∈ (t1?), and

(6.3.3) |t1u0t1π | = −1 + |u0t1π | ≤ −1 + |u0|+ 1 = |u0|.

Since
∏

u[0↑n] = w0wn+1 = 1, we see that

(6.3.4)
∏

u[1↑n] = u0 = w1 6∈ (t1π?).

Now,
∑

i∈[1↑n]

|ui|
(6.3.2)

≤ |t1πu0t1|
(6.3.3)

≤ |u0| (6.3.4)
= |∏ u[1↑n]|. Therefore, there is no

cancellation in
∏

u[1↑n], and, by (6.3.4), u1 6∈ (t1π?). By Lemma 3.2(iii), φ = 1.

As in Remarks 3.4, we deduce the following from Lemma 6.3 by induction
on ‖φ‖.
6.4 Corollary (Larue [21]). Let n ≥ 1 and let φ ∈ Bn.

(i). If tφ1 ∈ (t1?), then φ has a monoid expression in σ[2↑(n−1)] ∨ σ[1↑(n−1)]

of length at most ‖φ‖−n
2

≤ n2|φ| − n. In particular, φ is σ1-negative or
σ1-neutral.

(ii). φ is σ1-neutral if and only if tφ1 = t1.

6.5 Notation. For each i ∈ [1↑(n− 1)], let σ′i and σ′′i be the automorphisms of
Σ0,1,n determined by

k∈[1↑i] k∈[(i+2)↑n]

(tk ti+1 tk)
σ′i

= (tk ttii+1 tk),

k∈[1↑(i−1)] k∈[(i+1)↑n]

(tk ti ti+1 tk)
σ′′i

= (tk ti+1 ti tk).

Then σi = σ′iσ
′′
i . Any normal form in t[1↑n] factorizes into an alternating prod-

uct with factors which are normal forms of non-trivial elements of 〈t[i↑(i+1)]〉
alternating with factors which are normal forms of non-trivial elements of
〈t[1↑(i−1)]∨[(i+2)↑n]〉. On 〈t[i↑(i+1)]〉, σ′i acts as conjugation by ti, while σ′′i inter-
changes the two free generators. On 〈t[1↑(i−1)]∨[(i+2)↑n]〉, σ′i and σ′′i act as the
identity map.

The next result gives three trichotomies, called (a), (b) and (c), which hold
for elements of Bn. Attribution is not sharply defined, but it is reasonable to
attribute (b) to Dehornoy [14], and (c) to Larue [21].
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6.6 Theorem (Dehornoy-Larue [14], [21]). Let n ≥ 1, let φ ∈ Bn, and consider
the following nine assertions.

(a1). tφ1 = t1. (a2). tφ1 ∈ (t1?)− {t1}. (a3). tφ1 6∈ (t1?).

(b1). φ is σ1-neutral. (b2). φ is σ1-negative. (b3). φ is σ1-positive.

(c1). (t1?)
φ = (t1?) (c2). (t1?)

φ ⊂ (t1?). (c3). (t1?)
φ ⊃ (t1?).

Then the following column-equivalences hold:
(a1) ⇔ (b1) ⇔ (c1); (a2) ⇔ (b2) ⇔ (c2); (a3) ⇔ (b3) ⇔ (c3).

Hence, exactly one of (b1), (b2), (b3), holds; that is, φ satisfies the σ1-tri-
chotomy. Hence, Bn satisfies the σ1-trichotomy.

Proof. (a1) ⇔ (b1) by Corollary 6.4(ii). We shall use (a1) and (b1) interchange-
ably in the remainder of the proof.

(b1) ⇒ (c1). If φ is σ1-neutral, then so is φ. It follows that (t1?)
φ ⊆ (t1?)

and (t1?)
φ ⊆ (t1?). Thus, (t1?)

φ = (t1?).
(a2) ⇒ (b2). If (a2) holds, then Corollary 6.4(i) shows that (b1) or (b2)

holds. Since (a1) fails, (b1) fails. Thus (b2) holds.
(b2) ⇒ (c2). Using Notation 6.5, we see that

(t1?)
σ1 = (t1?)

σ′′1σ′1 = (t2?)
σ′1 ⊆ (t1t2?) ⊂ (t1?).

Since the composition of injective self-maps of (t1?) can be bijective only if all
the factors are bijective, we see that (b2) ⇒ (c2).

(a3) ⇒ (b3). We translate into algebra the crucial reflection argument of [16,
Corollary 5.2.4].

Suppose that (a3) holds.
With Notation 3.1, let w1 = w1(φ) and π = π(φ). Then w1t1πw1 = tφ1 6∈ (t1?).

It follows that w1t1π 6∈ (t1?). Hence, w1 t1π 6∈ (t1?). Hence,

t
φ
1 = w1 t1πw1 6∈ (t1?) ∪ {1}. On conjugating by t1, we see that t

φt1
1 ∈ (t1?).

Let ζ be the automorphism of Σ0,1,n determined by

k∈[1↑n]

( tk )ζ

= (t
Πt[(k−1)↓1]

k )
.

For each k ∈ [1↑n], (Πt[1↑k])
ζ = Πt[k↓1]. It follows that ζ2 = 1. Notice that ζ

belongs to Out−0,1,n := Out0,1,n−Out+
0,1,n. Also,

k∈[2↑n]

(t1 tk )t1ζ

= (t1 t
Πt[(k−1)↓2]

k )

. Hence,

tφ
ζ

1 = tζφζ
1 = t

φt1t1ζ
1 ∈(t1?)

t1ζ ⊆ (t1?).

By Corollary 6.4(i), φζ has a monoid expression in σ[2↑(n−1)] ∨ σ[1↑(n−1)]. It is

not difficult to check that, for each i ∈ [1↑(n − 1)], σζ
i = σi in Out0,1,n. Hence
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φζ2
(= φ) has a monoid expression in σζ

[2↑(n−1)]∨σζ
[1↑(n−1)](= σ[2↑(n−1)]∨σ[1↑(n−1)]).

Hence, (b3) or (b1) holds. Since (a3) holds, (a1) fails, and (b1) fails. Thus (b3)
holds.

(b3) ⇒ (c3). If φ is σ1-positive, then φ is σ1-negative, and, by (b2) ⇒ (c2),

(t1?)
φ ⊂ (t1?) and, hence, (t1?) ⊂ (t1?)

φ.
(c1) ⇒ (a1). Suppose that (a1) fails. Then (a2) or (a3) holds. Hence (c2)

or (c3) holds. Hence (c1) fails.
(c2) ⇒ (a2) and (c3) ⇒ (a3) are proved similarly.
Thus the desired equivalences hold.
Since exactly one of (a1), (a2), (a3) holds, exactly one of (b1), (b2), (b3)

holds.

Recall the definition of σ-positive from Definitions 6.1.

6.7 Theorem (Dehornoy [14]). For each φ ∈ Bn exactly one of the follow-
ing holds: φ = 1; φ is σ-positive; φ is σ-negative. The set of σ-positive ele-
ments of Bn is the positive cone of a right-ordering of Bn, called the Dehornoy
right-ordering of Bn.

Proof. Suppose that φ 6= 1.
Let i be the largest element of [1↑(n − 1)] such that φ ∈ 〈σ[i↑(n−1)]〉. The

natural subscript-shifting isomorphism from 〈t[i↑n]〉 to Σ0,1,n−i+1 induces an iso-
morphism from 〈σ[i↑(n−1)]〉 to Bn−i+1. Notice that φ is mapped to an element
of Bn−i+1 which is not σ1-neutral; by Theorem 6.6, this image is σ1-positive or
σ1-negative but not both. Hence exactly one of φ, φ is σ-positive.

It is easy to see that the product of two σ-positive elements of Bn is
σ-positive.

Hence the set of σ-positive elements of Bn is the positive cone for a
right-ordering of Bn.

7 Ends, right-orderings and squarefreeness

7.1 Review. An end of Σ0,1,n is a sequence a[1↑∞[ in t[1↑n] ∨ t[1↑n] such that, for
each i ∈ [1↑∞[ , ai+1 6= ai. We represent a[1↑∞[ as a formal right-infinite reduced
product, a1a2 · · · or Πa[1↑∞[.

We denote the set of ends of Σ0,1,n by E(Σ0,1,n), or simply by E if there is no
risk of confusion.

An element of Σ0,1,n ∪ E(Σ0,1,n) is said to be squarefree if, in its reduced ex-
pression, no two consecutive terms are equal; for example: (t1t2)

∞ is a squarefree
end; t1t2t2t3 is non-squarefree.

For each w ∈ Σ0,1,n, we define the shadow of w in E to be

(wJ) := {a[1↑∞[ ∈ E | Πa[1↑|w| ] = w}.



18 Actions of the braid group

Thus, for example, (1J) = E.
We now give E an ordering, <, as follows. For each w ∈ Σ0,1,n, we assign

an ordering, <, to a partition of (wJ) into 2n or 2n − 1 subsets, depending as
w = 1 or w 6= 1, as follows. We set

(t1J) < (t1J) < (t2J) < (t2J) < · · · < (tnJ) < (tnJ).

If i ∈ [1↑n] and w ∈ (?ti), then we set

(wtiJ) < (wti+1J) < (wti+1J) < (wti+2J) < (wti+2J) < · · ·
· · · < (wtnJ) < (wtnJ) < (wt1J) < (wt1J) < (wt2J) < · · ·
· · · < (wti−1J) < (wti−1J).

If i ∈ [1↑n] and w ∈ (?ti), then we set

(wti+1J) < (wti+1J) < (wti+2J) < (wti+2J) < · · ·
· · · < (wtnJ) < (wtnJ) < (wt1J) < (wt1J) < (wt2J) < · · ·
· · · < (wti−1J) < (wti−1J) < (wtiJ).

Hence, for each w ∈ Σ0,1,n, we have an ordering < of a partition of (wJ) into
2n or 2n− 1 subsets.

If a[1↑∞[ and b[1↑∞[ are two different ends, then there exists i ∈ N such that
a[1↑i] = b[1↑i] and ai+1 6= bi+1. Let w = Πa[1↑i] = Πb[1↑i] in Σ0,1,n. Then a[1↑∞[ and
b[1↑∞[ lie in (wJ), but lie in different elements of the partition of (wJ) into 2n or
2n− 1 subsets. We then order a[1↑∞[ and b[1↑∞[ using the order of the elements
of the partition of (wJ) that they belong to. This completes the definition of
the ordering < of E.

We remark that the smallest element of E is z∞1 = (Πt[1↑n])
∞ and the largest

element of E is z∞1 = (Πt[n↓1])
∞.

7.2 Review. By work of Nielsen-Thurston [9], [29], there is an order-preserving
action of Bn on (E(Σ0,1,n),≤); we shall give an elementary version of this result.

We assume that n ≥ 2, and we first define the action of σ1 on E.
Consider any e ∈ E. There is then a unique factorization e = Πw[1↑i] or

e = Πw[1↑∞[, where, in the former case, w[1↑(i−1)] is a finite sequence of non-trivial
group elements, and wi is an end, and, in the latter case, w[1↑∞[ is an infinite
sequence of non-trivial group elements, and in both cases, the wj alternate be-
tween elements of 〈t[1↑2]〉 ∪ E(〈t[1↑2]〉), and elements of 〈t[3↑n]〉 ∪ E(〈t[3↑n]〉). We
shall express this factorization as e = [w1][w2] · · · .

Recall, from Notation 6.5, that we have the factorization σ1 = σ′1σ
′′
1 . On

〈t[1↑2]〉 ∪ E(〈t[1↑2]〉), σ′1 acts as conjugation by t1, while σ′′1 interchanges the two
free generators. On 〈t[3↑n]〉 ∪E(〈t[3↑n]〉), σ′1 and σ′′1 act as the identity map. This
completes the description of the action of σ′1, σ′′1 and σ1 on E.
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It is not difficult to show that, for any ends a[1↑∞[ and b[1↑∞[, if (a[1↑∞[)
σ1 =

b[1↑∞[ , then for all i, j ∈ N, if j ≥ 2i, then (Πa[1↑j])σ1 ∈ (Πb[1↑i]?). Thus,
(a[1↑∞[)

σ1 = lim
j→∞

((Πa[1↑j])σ1).

It is clear that σ′1, σ′′1 and, hence, σ1 act bijectively on E. Hence we have the
action of σ1 on E. It is then not difficult to verify that we have an action of Bn

on E.
We next show that σ1 respects the ordering of E. We do this by considering

all the ways that two ends can be compared, and the resulting effect of σ′1
and σ1. We represent the information in tables. In all of the following, we
understand that t1a, t1b, t2c, and t2d are reduced expressions for elements of
〈t[1↑2]〉 ∪E(〈t[1↑2]〉), and b 6= 1. Since a does not begin with t1, aσ′′1 t2 begins with
t1 or t1 or t2. We make the convention that Σ0,1,n acts trivially on the right
on E.

(· · · ][wt1J) (· · · ][wt1J)σ′1 (· · · ][wt1J)σ1

· · · ][wt1 t2c][· · · · · · ][(t1w)t1 t2(ct1)][· · · · · · ][(t2wσ′′1 )t2 t1(c
σ′′1 t2)][· · ·

· · · ][wt1 t2d][· · · · · · ][(t1w)t1 t2(dt1)][· · · · · · ][(t2wσ′′1 )t2 t1(d
σ′′1 t2)][· · ·

· · · ][wt1][t3↑tn · · · · · · ][(t1w)t1 t1][t3↑tn · · · · · · ][(t2wσ′′1 )t2 t2][t3↑tn · · ·
· · · ][wt1 t1a][· · · · · · ][(t1w)t1 t1(at1)][· · · · · · ][(t2wσ′′1 )t2 t2(a

σ′′1 t2)][· · ·
Here, the case w = 1 does not present any problems.

(· · · ][wt1J) (· · · ][wt1J)σ′1 (· · · ][wt1J)σ1

· · · ][wt1 t1b][· · · · · · ][(t1w) t1t1(bt1)][· · · · · · ][(t2wσ′′1 ) t2t2(b
σ′′1 t2)][· · ·

· · · ][wt1 t1][t3↑tn · · · · · · ][(t1w) t1][t3↑tn · · · · · · ][(t2wσ′′1 ) t2][t3↑tn · · ·
· · · ][wt1 t2c][· · · · · · ][(t1w) t1t2(ct1)][· · · · · · ][(t2wσ′′1 ) t2t1(c

σ′′1 t2)][· · ·
· · · ][wt1 t2d][· · · · · · ][(t1w) t1t2(dt1)][· · · · · · ][(t2wσ′′1 ) t2t1(d

σ′′1 t2)][· · ·
· · · ][wt1][t3↑tn · · · · · · ][(t1w)][t3↑tn · · · · · · ][(t2wσ′′1 )][t3↑tn · · ·

Here, w does not end with t1, and, hence, (t2w
σ′′1 ) ends with t1, t1 or t2.

(· · · ][wt2J) (· · · ][wt2J)σ′1 (· · · ][wt2J)σ1

· · · ][wt2][t3↑tn · · · · · · ][(t1w)t2 t1][t3↑tn · · · · · · ][(t2wσ′′1 )t1 t2][t3↑tn · · ·
· · · ][wt2 t1a][· · · · · · ][(t1w)t2 t1(at1)][· · · · · · ][(t2wσ′′1 )t1 t2(a

σ′′1 t2)][· · ·
· · · ][wt2 t1b][· · · · · · ][(t1w)t2 t1(bt1)][· · · · · · ][(t2wσ′′1 )t1 t2(b

σ′′1 t2)][· · ·
· · · ][wt2 t1][t3↑tn · · · · · · ][(t1w)t2][t3↑tn · · · · · · ][(t2wσ′′1 )t1][t3↑tn · · ·
· · · ][wt2 t2c][· · · · · · ][(t1w)t2 t2(ct1)][· · · · · · ][(t2wσ′′1 )t1 t1(c

σ′′1 t2)][· · ·

(· · · ][wt2J) (· · · ][wt2J)σ′1 (· · · ][wt2J)σ1

· · · ][wt2 t2d][· · · · · · ][(t1w)t2 t2(dt1)][· · · · · · ][(t2wσ′′1 )t1 t1(d
σ′′1 t2)][· · ·

· · · ][wt2][t3↑tn · · · · · · ][(t1w)t2 t1][t3↑tn · · · · · · ][(t2wσ′′1 )t1 t2][t3↑tn · · ·
· · · ][wt2 t1a][· · · · · · ][(t1w)t2 t1(at1)][· · · · · · ][(t2wσ′′1 )t1 t2(a

σ′′1 t2)][· · ·
· · · ][wt2 t1b][· · · · · · ][(t1w)t2 t1(bt1)][· · · · · · ][(t2wσ′′1 )t1 t2(b

σ′′1 t2)][· · ·
· · · ][wt2 t1][t3↑tn · · · · · · ][(t1w)t2][t3↑tn · · · · · · ][(t2wσ′′1 )t1][t3↑tn · · ·
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(· · · t3J) (· · · t3J)σ′1 (· · · t3J)σ1

· · · t3 t4↑tn · · · · · · t3 t4↑tn · · · · · · t3 t4↑tn · · ·
· · · t3][t1a][· · · · · · t3][(at1)][· · · · · · t3][(aσ′′1 t2)][· · ·
· · · t3][t1b][· · · · · · t3][t1t1(bt1)][· · · · · · t3][t2t2(bσ′′1 t2)][· · ·
· · · t3][t1][t3↑tn · · · · · · t3][t1][t3↑tn · · · · · · t3][t2][t3↑tn · · ·
· · · t3][t2c][· · · · · · t3][t1t2(ct1)][· · · · · · t3][t2t1(cσ′′1 t2)][· · ·
· · · t3][t2d][· · · · · · t3][t1t2(dt1)][· · · · · · t3][t2t1(dσ′′1 t2)][· · ·
· · · t3 t3 · · · · · · t3 t3 · · · · · · t3 t3 · · ·

The remaining tables are clearly of the same form as the last one. Thus we
have proved that the action of σ1 respects the ordering of E. It follows that the
action of σ1 respects the ordering of E. Similarly, the action of σ[2↑(n−1)]∨ σ[2↑(n−1)]

respects the ordering of E. Hence Bn acts on (E,≤).

7.3 Remarks (Thurston [29]). The (right) action of Bn on (E,≤) gives rise to
many right orderings of Bn.

Let us use the left-to-right lexicographic ordering on (En,≤), and consider the
Bn-orbit of t∞[1↑n] := (t∞i )i∈[1↑n]. It is not difficult to show that the Bn-stabilizer
of t∞[1↑n] is trivial. Thus we have an injective map

Bn → En, φ 7→ t∞φ
[1↑n] := ((t∞i )φ)i∈[1↑n].

Let ≤ denote the ordering of Bn induced by pullback from En. Clearly ≤ is a
right-ordering of Bn.

If n ≥ 2 and φ ∈ Bn is σ1-negative, then, as in the proof of Theo-
rem 6.6(b2)⇒(c2), we have (t1J)φ ⊂ (t1J). Since max(t1J) = t∞1 and φ re-
spects the ordering, we see that (t∞1 )φ < t∞1 . Hence φ < 1 and 1 < φ. Sim-
ilar arguments with (tiJ), i ∈ [2↑n], show that, if φ ∈ Bn is σ-positive (resp.
σ-negative), then 1 < φ (resp. 1 > φ). Hence the right-ordering of Bn obtained
from (t∞[1↑n])

Bn ⊆ (En,≤) coincides with the Dehornoy right-ordering.

The following will be useful in the study of squarefreeness.

7.4 Lemma. Let n ≥ 1, let i ∈ [1↑n], and let w ∈ Σ0,1,n − (?ti)− (?ti). Then,
in (E(Σ0,1,n),≤), the following hold:

(i). wtiw((Πt[1↑n])
∞) ≤ wti((Πt[i↑n]∨[1↑i−1])

∞) = min(wtitiJ);

(ii). min(wtitiJ) < max(wtitiJ);

(iii). max(wtitiJ) = wti((Πt[i↓1]∨[n↓i+1])
∞) ≤ wtiw((Πt[n↓1])

∞);

(iv). (wtitiJ) ∪ (wtitiJ) ⊆ [(wtiw((Πt[1↑n])
∞))↑(wtiw((Πt[n↓1])

∞))].

(v). If n ≥ 3, then one of the following holds:

(a). t1((Πt[n↓1])
∞) < wtiw((Πt[1↑n])

∞);
(b). t1((Πt[n↓1])

∞) > wtiw((Πt[n↓1])
∞);
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and, hence, t1((Πt[n↓1])
∞) 6∈ [(wtiw((Πt[1↑n])

∞))↑(wtiw((Πt[n↓1])
∞))], that

is, t1(z
∞
1 ) 6∈ [(wtiw(z∞1 ))↑(wtiw(z∞1 ))]

Proof. Recall that:
(t1J) < (t1J) < (t2J) < · · · < (tnJ) < (tnJ),

(titi+1J) < (titi+1J) < · · · < (titnJ) < (tit1J) < · · · < (titi−1J) < (titiJ),
(titiJ) < (titi+1J) < · · · < (titnJ) < (tit1J) < · · · < (titi−1J) < (titi−1J).

(i). It is straightforward to see that wti((Πt[i↑n]∨[1↑i−1])
∞) = min(wtitiJ).

Let x denote the element of t[1↑n] ∨ t[1↑n] such that w((Πt[1↑n])
∞) ∈ (xJ);

notice that x 6= ti.
If x 6= ti, then (wtixJ) < (wtitiJ), and we have

wtiw((Πt[1↑n])
∞) ∈ (wtixJ) < (wtitiJ) 3 min(wtitiJ).

If x = ti, then w is completely cancelled in w((Πt[1↑n])
∞), and, moreover,

wtiw((Πt[1↑n])
∞) = wti((Πt[i↑n]Πt[1↑i−1])

∞) = min(wtitiJ).

Thus, (i) holds.
(ii) is clear.
(iii). It is straightforward to see that wti((Πt[i↓1]∨[n↓i+1])

∞) = max(wtitiJ).
Let x denote the element of t[1↑n] ∨ t[1↑n] such that w((Πt[n↓1])

∞) ∈ (xJ);
notice that x 6= ti.
If x 6= ti, then (wtitiJ) < (wtixJ), and we have

max(wtitiJ) ∈ (wtitiJ) < (wtixJ) 3 wtiw((Πt[n↓1])
∞).

If x = ti, then w is completely cancelled in w(Πt[n↓1])
∞, and, moreover,

wtiw((Πt[n↓1])
∞) = wti((Πt[i↓1]∨[n↓i+1])

∞) = max(wtitiJ).

Thus, (iii) holds.
(iv) follows from (i)-(iii).
(v). It is not difficult to see that

wtiw((Πt[1↑n])
∞) ∈ (wtiJ) and wtiw((Πt[n↓1])

∞) ∈ (wtiJ).
Case 1. w = 1.

Here, t1((Πt[n↓1])
∞) ∈ (t1tnJ) < (tit1J) 3 ti((Πt[1↑n])

∞) = wtiw((Πt[1↑n])
∞),

and (a) holds.
Case 2. w 6∈ (t1?) ∪ {1}.

Here, t1((Πt[n↓1])
∞) ∈ (t1J) < (wJ) 3 wtiw((Πt[1↑n])

∞), and (a) holds.
Case 3. w ∈ (t1t1?).

Here, t1((Πt[n↓1])
∞) ∈ (t1tnJ) < (t1t1J) 3 wtiw((Πt[1↑n])

∞), and (a) holds.
Case 4. w ∈ (t1?)− (t1t1?).

Here, wtiw((Πt[n↓1])
∞) ∈ (wtiJ) ⊆ (t1J)− (t1t1J). Hence,

wtiw((Πt[n↓1])
∞) ≤ max((t1J)− (t1t1J)) = max(t1tnJ) = t1((Πt[n↓1])

∞).
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To prove that (b) holds, it remains to show that

wtiw((Πt[n↓1])
∞) 6= t1((Πt[n↓1])

∞),

that is, t1wtiw((Πt[n↓1])
∞) 6= (Πt[n↓1])

∞, that is, t1wtiw 6∈ 〈Πt[n↓1]〉. We can
write w = t1u where u 6∈ (t1?). Then t1wtiw = utiut1, in normal form. Thus it
suffices to show that utiut1 6∈ 〈Πt[n↓1]〉.

If u = 1, then utiut1 = tit1 6∈ 〈Πt[n↓1]〉, since n ≥ 3.
If u 6= 1, then utiut1 6∈ 〈Πt[n↓1]〉, since utiut1 does not lie in the submonoid

of Σ0,1,n generated by t[1↑n], nor in the submonoid generated by t[1↑n].
In both subcases, (b) holds.

In all four cases, (v) holds.

The following appeared as [5, Lema 2.2.17].

7.5 Theorem. If n ≥ 1 then, for each φ ∈ Bn, tφ1((Πt[n↓1])
∞) is a squarefree

end.

Proof. This is clear if n = 1.
For n = 2, B2 = 〈σ1〉, and

tB2
1 = {tσ2m

1
1 , t

σ1+2m
1

1 | m ∈ Z} = {t(t1t2)m

1 , t
(t1t2)m

2 | m ∈ Z}.

Thus, every element of tB2
1 is squarefree and does not end in t2. Hence, every

end in tB2
1 ((Πt[n↓1])

∞) is squarefree.
Thus, we may assume that n ≥ 3.
Recall that z1 = Πt[n↑1] and z1 = Πt[1↑n]. Let ∪[t][1↑n] denote

⋃
i∈[1↑n]

[ti]. By

Lemma 7.4(v), t1(z
∞
1 ) does not lie in

⋃
x∈∪[t][1↑n]

[(x(z∞1 ))↑(x(z∞1 ))] (=
n⋃

i=1

⋃
w∈Σ0,1,n−(?ti)−(?ti)

[(wtiw(z∞1 ))↑(wtiw(z∞1 ))]).

Notice that φ permutes the elements of each of the following sets:

∪[t][1↑n]; {z∞1 }; {z∞1 }; and
⋃

x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )].

Hence (t1(z
∞
1 ))φ does not lie in

⋃
x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )]. By Lemma 7.4(iv),

⋃
x∈∪[t][1↑n]

[x(z∞1 ), x(z∞1 )] ⊇
n⋃

i=1

⋃
w∈Σ0,1,n−(?ti)−(?ti)

((wtitiJ) ∪ (wtitiJ)).

Hence, (t1(z
∞
1 ))φ does not lie in the latter set either, and, hence, (t1(z

∞
1 ))φ is a

squarefree end. Since (t1(z
∞
1 ))φ = tφ1(z

∞
1 ), the desired result holds.
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We now obtain new information about the Bn-orbit of t1 in Σ0,1,n.

7.6 Corollary. Let n ≥ 1, let φ ∈ Bn, and let k ∈ [1↑n].

(i). tφ1 is squarefree.

(ii). tφ1 6∈ ((Πt[n↓(k+1)])tk?)− {tΠt[(k+1)↑n]

k }.
(iii). tφ1 6∈ ((Πt[1↑(k−1)])tk?).

Proof. Recall from Notation 3.1 that we write tφ1 = t
w1(φ)

1π(φ) . Let π = π(φ) and
w1 = w1(φ).

It is not difficult to see that

tφ1(z
∞
1 ) = w1t1πw1((Πt[n↓1])

∞) ∈ (w1J).

By Theorem 7.5, tφ1(z
∞
1 ) is a squarefree end. Hence, w1 is squarefree, and w1 6∈

(?tkΠt[(k+1)↓n]).

Since w1 is squarefree, tφ1 is also squarefree. Hence (i) holds.
Also, w1 6∈ (?tkΠt[(k+1)↑n]) implies that w1 6∈ ((Πt[n↓(k+1)])tk?) and, hence,

tφ1 6∈ ((Πt[n↓(k+1)])tk?)−{tΠt[k+1↑n]

k } and, also, t
φ
1 6∈ ((Πt[n↓(k+1)])tk?). In particular,

(ii) holds.

Let ξ be the automorphism of Σ0,1,n determined by

j∈[1↑n]

(tj)
ξ

= (tn+1−j)

. Then

ξ2 = 1 and ξ ∈ Out−0,1,n := Out0,1,n−Out+
0,1,n. Also,

tφ
ξ

n = tξφξ
n = t

φξ
1 6∈ ((Πt[n↓(k+1)])tk?)

ξ = ((Πt[1↑(n−k)])tn+1−k?).

It follows that tB
ξ
n

n ∩ ((Πt[1↑(n−k)])tn+1−k?) = ∅. Since Bξ
n = Bn and tBn

n = tBn
1 ,

we see that tφ1 6∈ ((Πt[1↑(n−k)])tn+1−k?). Now replacing k with n + 1 − k gives
(iii).

In Remark IV.3, we shall give a second proof of Corollary 7.6 using
Larue-Whitehead diagrams.

8 Actions on free products of cyclic groups

8.1 Notation. Throughout this section, we assume that n ≥ 1 and we fix a
positive integer N .

Let p[1↑N ] be a partition of n, that is, p[1↑N ] is a sequence in [1↑∞[ such that
p1 + · · ·+ pN = n.

Let m[1↑N ] be a sequence in N− {1}.
We let Σ

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

denote the group with presentation

〈z, τ[1↑n] | zΠτ[1↑n], {τmi

j+
∑

p[1↑i−1]
}i∈[1↑N ],j∈[1↑pi]〉.
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Thus, Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

is isomorphic to a free product of cyclic groups,

C∗p1
m1
∗C∗p2

m2
∗ · · · ∗C∗pN

mN
, where C0 is interpreted as C∞, and p

(0)
i is also written pi.

We let Out+

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

denote the group of all automorphisms of

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

which respect {z} and {[τi]}i∈[(p1+...+pj−1+1)↑(p1+...+pj)] for

each j ∈ [1↑N ].
We let Out

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

denote the group of all automorphisms of

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

which respect {z, z} and

{[τi] ∪ [τ i]}i∈[(p1+...+pj−1+1)↑(p1+...+pj)]

for each j ∈ [1↑N ].
In the case where all the mi are 0, we get groups denoted Out0,1,p1⊥p2⊥···⊥pN

and Out+
0,1,p1⊥p2⊥···⊥pN

. Notice that Out0,1,p1⊥p2⊥···⊥pN
is the subgroup of Out0,1,n

consisting of those elements such that the permutation in Symn, arising from
the permutation of {[ti] ∪ [ti]}i∈[1↑n], lies in the natural image of

Symp1
× Symp2

× · · · × SympN

in Symn.
There are natural maps

Out0,1,p1⊥p2⊥···⊥pN
→ Out

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

,(8.1.1)

Out+
0,1,p1⊥p2⊥···⊥pN

→ Out+

0,1,p
(m1)
1 ⊥p

(m2)
0 ⊥···⊥p

(mN )

N

.(8.1.2)

Since (8.1.2) is of index two in (8.1.1), we see that (8.1.1) is injective, surjective
or bijective, if and only if (8.1.2) has the same property.

For topological reasons, we suspect that (8.1.1) and (8.1.2) are isomorphisms.
In this section, we shall prove that this holds in the case where all the mi

are equal, which includes the case N = 1. We begin by proving that (8.1.1)
and (8.1.2) are injective, which seems to be new.

8.2 Theorem. With Notation 8.1, the maps

Out0,1,p1⊥p2⊥···⊥pN
→ Out

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

,(8.1.1)

Out+
0,1,p1⊥p2⊥···⊥pN

→ Out+

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

(8.1.2)

are injective.

Proof. Suppose that φ is an element of the kernel of (8.1.1) or (8.1.2). Clearly,
φ ∈ Out+

0,1,n. Also tφ[1↑n] and t[1↑n] both have the same image in

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

. By Theorem 7.5, tφ[1↑n] is a sequence of squarefree ele-

ments of Σ0,1,n, and, hence, they have the same normal form in Σ0,1,n and in

Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

. Hence tφ[1↑n] = t[1↑n], as sequences in Σ0,1,n. Thus φ = 1,

and the result is proved.
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8.3 Historical Remarks. Let us now restrict to the classic case where N = 1.
Here, for an integer m ≥ 2, we are considering the action of Out0,1,n on C∗n

m ,
and it induces maps

Out0,1,n → Out0,1,n(m) ,(8.3.1)

Out+
0,1,n → Out+

0,1,n(m) .(8.3.2)

Theorem 8.2 shows that these maps are injective. Birman-Hilden [6, Theo-
rem 7] gave a topological proof that (8.3.2) is injective, thus answering a question
of Magnus. Crisp-Paris [11] gave an elegant algebraic proof of the injectivity
of (8.3.2) using the σ1-trichotomy and the technique of Larue [22] and Shpil-
rain [30]. Here is the essence of their proof.

Suppose that φ is a non-trivial element of Bn = Out+
0,1,n. We will show that

φ acts non-trivially on Σ0,1,n(m) .
We may assume that n ≥ 3. By Theorem 6.7, we may replace φ with

φ if necessary, and assume that φ is σ-negative. Thus there exists some
i ∈ [1↑(n − 1)] such that φ has a monoid expression in σ[(i+1)↑(n−1)] ∨ σ[i↑(n−1)],
and σi appears at least once in the expression.

Let (τ ∗i ?) denote the set of elements of Σ0,1,n(m) whose free-product normal
form begins with an element of 〈τi〉 − {1}. With Notation 6.5,

(τ ∗i ?)σi = (τ ∗i ?)σ′′i σ′i = (τ ∗i+1?)
σ′i ⊆ τi(τ

∗
i+1?)

(n>2)⊂ (τ ∗i ?).

Because the elements of σ[(i+1)↑(n−1)] ∨ σ[i↑(n−1)] act as injective self-maps
on (τ ∗i ?), it follows that (τ ∗i ?)φ ⊂ (τ ∗i ?), and, hence, φ acts non-trivially on
Σ0,1,n(m) , as desired.

Let us now verify the surjectivity of the maps (8.3.1) and (8.3.2). The case
where m = 2 is due to Stephen Humphries [2, Lemma 2.1.7].

8.4 Notation. Let m, n ∈ N with n ≥ 1 and m ≥ 2. Let bm
2
c denote the

greatest integer not exceeding m
2
. Then [0↑bm

2
c]∨ [(−1)↓(−bm−1

2
c)] is a sequence

of representatives for the integers modulo m. For τ k ∈ 〈τ | τm = 1〉, we define
|τ k| by

k∈[0↑bm
2
c] k∈[(−1)↓(−bm−1

2
c)]

( |τ k| |τ k| )
= ( 2k −2k − 1)

and we then extend | − | to all of Σ0,1,n(m) additively on normal forms for the
free product C∗n

m .
Let φ ∈ Out+

0,1,n(m) . There exists a unique permutation π ∈ Symn, and a
unique sequence w[0↑(n+1)] in Σ0,1,n(m) such that w0 = 1 and wn+1 = 1, and, for

each i ∈ [1↑n], wi 6∈ (τ ∗iπ?) and τφ
i = τwi

iπ . For each i ∈ [0↑n], let ui = wiwi+1.
We define π(φ) := π, wi(φ) := wi, i ∈ [0↑(n + 1)], and ui(φ) := ui, i ∈ [0↑n]. We
write ‖φ‖ := n + 2

∑
i∈[1↑n]

|wi(φ)|.
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The following is similar to Artin’s Lemma 3.2.

8.5 Lemma. Let n ≥ 1, m ≥ 2 and let φ ∈ Out0,1,n(m). Let π = π(φ). For each
i ∈ [0↑n], let ui = ui(φ). For each i ∈ [1↑n], let ai, bi denote the elements of
[0↑(m− 1)] determined by the following:

there exists some u′i ∈ Σ0,1,n(m) − (?τ ∗iπ) such that ui−1 = u′iτ
ai
iπ ;

there exists some u′′i ∈ Σ0,1,n(m) − (τ ∗iπ?) such that ui = τ bi
iπu′′i .

In particular, a1 = bn = 0.

(i). Let i ∈ [2↑n]. If ai ∈ [bm
2
c↑(m− 1)], then ‖σi−1φ‖ < ‖φ‖.

(ii). Let i ∈ [1↑(n− 1)]. If bi ∈ [bm+1
2
c↑(m− 1)], then ‖σiφ‖ < ‖φ‖.

(iii). If φ 6= 1, there exists some σε
i ∈ σ[1↑(n−1)]∨ σ[1↑(n−1)] such that ‖σε

iφ‖ < ‖φ‖.
Proof. (i). Let a = ai. There exists some v ∈ Σ0,1,n(m) − (?τ ∗iπ) such that
ui−1 = vτa

iπ . Since wi−1(φ) = ui−1wi(φ), we have

(8.5.1) wi−1(φ) = vτa
iπwi(φ);

since wi(φ) 6∈ (τ ∗iπ?) and v 6∈ (?τ ∗iπ), vτa
iπwi(φ) is a free-product normal form for

wi−1(φ).

Claim. |τa+1
iπ | < |τa

iπ |.
Proof of claim. If a′ ∈ [(bm

2
c + 1)↑(m − 1)], then a′ − m ∈ [(−bm−1

2
c)↑(−1)],

and, hence,

|τa′
iπ | = |τa′−m

iπ | = −2(a′ −m)− 1 = 2m− 2a′ − 1.

Therefore, if a ∈ [bm
2
c↑(m− 2)], |τa+1

iπ | = 2m− 2(a + 1)− 1 = 2m− 2a− 3.
Thus, |τa+1

iπ | < |τa
iπ | if a ∈ [(bm

2
c+ 1)↑(m− 2)].

For a = bm
2
c, a ≥ m−1

2
, and |τa

iπ | = 2a > 2m− 2a− 3 = |τa+1
iπ |.

For a = m− 1, |τa
iπ | = 1 and |τa+1

iπ | = 0. This proves the claim.

Thus, |wi−1(φ)| = |v|+ |τa
iπ |+ |wi(φ)| > |v|+ |τa+1

iπ |+ |wi(φ)|.
By (8.5.1), wi−1(φ)wi(φ)τiπ = vτa+1

iπ ; hence

τ
σi−1φ
i = (τ τi

i−1)
φ = (τ

wi−1(φ)
(i−1)π )(τ

wi(φ)

iπ ) = τ
vτa+1

iπ wi(φ)

(i−1)π .

Hence, |wi(σi−1φ)| = |vτa+1
iπ wi(φ)| ≤ |v|+ |τa+1

iπ |+ |wi(φ)| < |wi−1(φ)|.
For each j ∈ [1↑(i− 2)] ∨ [(i + 1)↑n], τ

σi−1φ
j = τφ

j , and, hence, |wj(σi−1φ)| =
|wj(φ)|.

Also, τ
σi−1φ
i−1 = τφ

i ; in particular, |wi−1(σi−1φ)| = |wi(φ)|.
It now follows that ‖σi−1φ‖ < ‖φ‖.
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(ii). Let b = bi. There exists some v ∈ Σ0,1,n(m) − (τ ∗iπ?) such that ui = τ b
iπv.

Since wi+1(φ) = uiwi(φ), we have

(8.5.2) wi+1(φ) = v τ b
iπwi(φ).

Since wi(φ) 6∈ (〈τiπ〉?) and v 6∈ (?〈τiπ〉), v τ b
iπwi(φ) is a free-product normal form

for wi+1(φ). Hence, |wi+1(φ)| = |v|+ |τ b
iπ |+ |wi(φ)|.

Claim. |τ b+1
iπ | < |τ b

iπ |.
Proof of claim. Suppose that b′ ∈ [bm+1

2
c↑m]. Then m − b′ ∈ [bm

2
c↓0], and,

hence,
|τ b′

iπ | = |τm−b′
iπ | = 2(m− b) = 2m− 2b′.

Since b ∈ [bm+1
2
c↑(m− 1)],

|τ b+1
iπ | = 2m− 2(b + 1) = 2m− 2b− 2 < |τ b

iπ |.
This proves the claim.

Hence |wi+1(φ)| > |v|+ |τ b+1
iπ |+ |wi(φ)|.

For all j ∈ [1↑(i− 1)] ∨ [(i + 2)↑n], τσiφ
j = τφ

j ; hence, |wj(σiφ)| = |wj(φ)|.
Since τσiφ

i+1 = τφ
i , we see that |wi+1(σiφ)| = |wi(φ)|.

By (8.5.2), wi+1(φ)wi(φ)τ iπ = v τ b+1
iπ ; hence

τσiφ
i = (τ τ i

i+1)
φ = (τ

wi+1(φ)
(i+1)π )(τ

wi(φ)

iπ ) = τ
v τb+1

iπ wi(φ)

iπ .

Hence, |wi(σiφ)| = |v τ b+1
iπ wi(φ)| ≤ |v|+ |τ b+1

iπ |+ |wi(φ)| < |wi+1(φ)|.
It now follows that ‖σiφ‖ < ‖φ‖, and (ii) is proved.

(iii). If φ 6= 1, we choose a distinguished element of [1↑n] as follows.
If, for some i ∈ [1↑n], τai+1+bi

iπ = 1, we take any such i to be our distinguished
element of [1↑n].

Consider then the case where, for all i ∈ [1↑n], τai+1+bi
iπ 6= 1. Thus, there is

no further cancellation in Πτφ
[1↑n]. Since φ fixes Πτ[1↑n], it is not difficult to see

that, for all i ∈ [1↑n], τai+1+bi
iπ = τi. Since φ 6= 1, it is then not difficult to show

that there exists some i ∈ [1↑n] such that (ai, bi) 6= (0, 0). We take any such i
to be our distinguished element of [1↑n].

In each case, let i denote our distinguished element of [1↑n].
Notice that (ai, bi) 6= (0, 0) and that τai+1+bi

iπ ∈ {1, τiπ}.
Hence, ai + 1 + bi ∈ {m,m + 1}, and, hence, bi ∈ {m− ai − 1,m− ai}.

Case 1. ai ∈ [bm
2
c↑(m− 1)].

Here, i ∈ [2↑n] and, by (i), ‖σi−1φ‖ < ‖φ‖.
Case 2. ai ∈ [0↑bm−2

2
c]

Here, m− ai− 1 ∈ [(m− 1)↓bm+1
2
c], and, hence, bi ∈ [bm+1

2
c↑(m− 1)]. Here,

i ∈ [1↑(n− 1)] and, by (ii), ‖σiφ‖ < ‖φ‖.
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8.6 Theorem. Let n ≥ 1, m ≥ 2. The natural map Out+
0,1,n → Out+

0,1,n(m)

is an isomorphism, and, hence, the natural map Out0,1,n → Out0,1,n(m) is an
isomorphism.

With Notation 8.1, the maps Out0,1,p1⊥p2⊥···⊥pN
→ Out

0,1,p
(m)
1 ⊥p

(m)
2 ⊥···⊥p

(m)
N

,

and Out+
0,1,p1⊥p2⊥···⊥pN

→ Out+

0,1,p
(m)
1 ⊥p

(m)
2 ⊥···⊥p

(m)
N

are isomorphisms.

The following is essentially an algebraic translation of a part of a topological
argument in [27, Section 3].

8.7 Proposition. With Notation 8.1, in Σ
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

let H be any

subgroup of finite index, and now in Out
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

let A be any sub-

group consisting of automorphisms which map H to itself. Then, either the
induced map A → Aut H is injective or (n,N, m1) = (2, 1, 2).

Proof. Suppose that φ ∈ Out
0,1,p

(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

, and that φ acts as the iden-

tity on H. We shall show that φ = 1 or (n,N,m1) = (2, 1, 2).
Let G = Σ

0,1,p
(m1)
1 ⊥p

(m2)
2 ⊥···⊥p

(mN )

N

.

For any g ∈ G, right multiplication by g permutes the elements of the finite
set H\G, so there exists some positive integer k such that gk acts trivially on
H\G. In particular, Hgk = H and, hence, gk ∈ H.

Hence, there exists some positive integer k such that (Πτ[1↑n])
k ∈ H. Now

(Πτ[1↑n])
φ = (Πτ[1↑n])

ε for some ε ∈ {1,−1}, and, hence,

(Πτ[1↑n])
k = (Πτ[1↑n])

kφ = (Πτ[1↑n])
φk = (Πτ[1↑n])

εk = (Πτ[1↑n])
kε.

Since Πτ[1↑n] has infinite order in G, we see that ε = 1. Thus φ fixes Πτ[1↑n].
Consider any i ∈ [1↑n]. Since (Πτ[1↑n])

τi ∈ G, there exists some positive
integer k such that (Πτ[1↑n])

τik ∈ H. Hence,

(Πτ[1↑n])
kτi = (Πτ[1↑n])

τik = (Πτ[1↑n])
τikφ = (Πτ[1↑n])

kφτφ
i = (Πτ[1↑n])

kτφ
i .

Hence τφ
i τ i commutes with (Πτ[1↑n])

k. A straightforward normal-form argument

shows that τφ
i τ i ∈ 〈Πτ[1↑n]〉.

Hence there exists an integer j such that τφ
i = (Πτ[1↑n])

jτi. Since τφ
i is a

conjugate of τiπ(φ) , the cyclically-reduced form of (Πτ[1,n])
jτi is τiπ(φ) . Either

j = 0, or there must be cyclic cancellation, and a straightforward analysis then
shows that (n,N, m1) = (2, 1, 2). Since i was arbitrary, this completes the
proof.

9 The Bn+1-group Φn

9.1 Notation. Recall that Σ0,1,(n+1)(2) = C
∗(n+1)
2 = 〈τ[1↑(n+1)] | τ 2

[1↑n+1] = 1〉.
By Theorem 8.6, Bn+1 = Out+

0,1,n+1 = Out+
0,1,(n+1)(2)

. We define Φn to be the
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subgroup of Σ0,1,(n+1)(2) consisting of the elements which have even exponent sum
in the τi. It is not difficult to see that Φn is a free group of rank n, and that there
is induced a map from Out0,1,(n+1)(2) to Aut Φn. Hence Φn has a Bn+1-action;
we say that Φn is a Bn+1-group, and that Φn is a Bn+1-subgroup of Σ0,1,(n+1)(2) .

Proposition 8.7 shows that, if n 6= 1, then the map from Out0,1,(n+1)(2) to
Aut Φn is injective, and we say that the Bn+1-action is faithful, and that Φn is a
faithful Bn+1-group.

Over the course of this section, we shall choose various free generating sets
of Φn to obtain interesting actions. In the next two examples, we identify Σg,1,0

with Φ2g and identify Σg,2,0 with Φ2g+1.

9.2 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.6] which was an algebraic approximation of
results in [27, Section 3].

Let g ∈ N. Let

Σg,1,0 := 〈x[1↑g], y[1↑g], z1 | (Πi∈[1↑g][xi, yi])z1 = 1〉,
where the commutator [x, y] of group elements x, y is x yxy. Let Out+

g,1,0 de-
note the group of all automorphisms of Σg,1,0 which fix z1. Then Σg,1,0 is free
of rank 2g, freely generated by x[1↑g] ∨ y[1↑g], and Out+

g,1,0 is the group of all
automorphisms of Σg,1,0 which fix Πi∈[1↑g][xi, yi].

We now recall some Dehn-twist elements of Out+
g,1,0 from Definitions 3.10

and Remarks 5.1 of [18].
For each i ∈ [1↑g], we define αi, βi ∈ Out+

g,1,0 by

k∈[1↑(i−1)] k∈[(i+1)↑g]

(xk yk xi yi xk yk)
αi

= (xk yk yixi yi xk yk),

and

k∈[1↑(i−1)] k∈[(i+1)↑g]

(xk yk xi yi xk yk)
βi

= (xk yk xi xiyi xk yk).

For each i ∈ [1↑(g− 1)], write fi = yixi+1yi+1xi+1 and define γi ∈ Out+
g,1,0 by

k∈[1↑(i−1)] k∈[(i+2)↑g]

(xk yk xi yi xi+1 yi+1 xk yk)
γi

= (xk yk f ixi yfi

i xi+1fi yi+1 xk yk).

Let us identify Σg,1,0 with Φ2g via

k∈[1↑g]

(xk yk z1)
Σg,1,0

∼→Φ2g

= (Πτ[(2k+1)↓(2k)] τ2k+1Πτ[1↑(2k+1)] z2
1).

Notice that [xk, yk] = xkykxkyk is then identified with

(Πτ[(2k)↑(2k+1)])(Πτ[(2k+1)↓1])τ2k+1(Πτ[(2k+1)↓(2k)])τ2k+1(Πτ[1↑(2k+1)])
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which equals (Πτ[(2k−1)↓1])(Πτ[(2k)↑(2k+1)])(Πτ[1↑(2k+1)]). It follows that Π
k∈[1↑g]

[xk, yk]

is identified with (Πτ[1↑(2g+1)])
2.

This corresponds to the surface of genus g with one boundary component
arising as a two-sheeted branched cover of a sphere with one boundary com-
ponent and 2g + 1 double points. Then B2g+1 = Out+

0,1,2g+1 = Out+
0,1,(2g+1)(2)

becomes embedded in Out+
g,1,0 via the homomorphism represented as

(
σ1 σ2 σ3 σ4 σ5 · · · σ2g−2 σ2g−1 σ2g

α1 β1 γ1 β2 γ2 · · · βg−1 γg−1 βg

)
.

Clearly, in the preceding example, the subgroup B2g of B2g+1 is also em-
bedded in Outg,1,0, but it is more natural to remove from the surface a handle
containing the boundary component (a sphere with three boundary components,
a ‘pair of pants’), and embed B2g in Outg−1,2,0, as follows.

9.3 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.7] which was an algebraic approximation of
results in [27, Section 3].

Let g ∈ N. Let

Σg,2,0 := 〈x[1↑g], y[1↑g], z[1↑2] | ( Π
i∈[1↑g]

[xi, yi]) Π z[1↑2] = 1〉.

Recall that [x, y] := x yxy. Then Σg,2,0 is free of rank 2g + 1 with free gen-
erating sequence x[1↑g] ∨ y[1↑g] ∨ (z1) and distinguished element z2 such that
z2 = ( Π

i∈[1↑g]
[xi, yi])z1. Let Out+

g,1⊥1,0 denote the group of all automorphisms of

Σg,2,0 ∗ 〈e1 | 〉 which map Σg,2,0 to itself, and fix ze1
1 and z2. It can be shown

that Out+
g,1⊥1,0 acts faithfully on the subset Σg,2,0 ∪ Σg,2,0e1 of Σg,2,0 ∗ 〈e1 | 〉.

Here, e1 represents an arc from the base-point of one boundary component,
to the base-point of the other boundary component. Karen Vogtmann calls such
an arc a ‘tether joining the basepoint to the second boundary component’. For
any surface-with-boundaries, A’Campo [1, Section 4, Remarque 6], [27, p.232]
identifies basepoints of all the boundary components, which makes tethers into
loops, to obtain a topological quotient space whose (free) fundamental group is
(faithfully) acted on by the mapping-class group of the surface-with-boundaries.

We now recall some Dehn-twist elements of Out+
g,1⊥1,0 from Definitions 3.10

and Remarks 5.1 of [18].
For each i ∈ [1↑g], we define αi, βi ∈ Out+

g,1⊥1,0 by

k∈[1↑(i−1)] k∈[(i+1)↑g]

(xk yk xi yi xk yk z1 e1)
αi

= (xk yk yixi yi xk yk z1 e1),
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k∈[1↑(i−1)] k∈[(i+1)↑g]

(xk yk xi yi xk yk z1 e1)
βi

= (xk yk xi xiyi xk yk z1 e1).

For i ∈ [1↑(g − 1)], write fi = yixi+1yi+1xi+1 and define γi ∈ Out+
g,1⊥1,0 by

k∈[1↑(i−1)] k∈[(i+2)↑g]

(xk yk xi yi xi+1 yi+1 xk yk z1 e1)
γi

= (xk yk f ixi yfi

i xi+1fi yi+1 xk yk z1 e1),

and write fg = ygz1 and define γg ∈ Out+
g,1⊥1,0 by

k∈[1↑(i−1)]

(xk yk xg yg z1 e1)
γg

= (xk yk f gxg y
fg
g z

fg

1 f ge1).

Let us identify Σg,2,0 with Φ2g+1 and Σg,2,0∪Σg,2,0e1 with Σ0,1,(2g+2)(2) via the
map Σg,2,0 ∗ 〈e1〉 → Σ0,1,(2g+2)(2) determined by

k∈[1↑g]

( xk yk z1 e1 z2)
Σg,2,0∗〈e1〉→Σ

0,1,(2g+2)(2)

= (Πτ[(2k+1)↓(2k)] τ2k+1Πτ[1↑(2k+1)] z
τ2g+2

1 τ2g+2 z1).

This corresponds to the surface of genus g with two boundary components arising
as a two-sheeted branched cover of a sphere with one boundary component and
2g + 2 double points. Now B2g+2 = Out+

0,1,2g+2 = Out+
0,1,(2g+2)(2)

is embedded in

Out+
g,1⊥1,0 via a homomorphism represented as

(
σ1 σ2 σ3 σ4 σ5 · · · σ2g−2 σ2g−1 σ2g σ2g+1

α1 β1 γ1 β2 γ2 · · · βg−1 γg−1 βg γg

)
.

For g ≥ 1, Proposition 8.7 shows that this is an embedding. In the case where
g = 0, the interpretation of the notation is as follows: σ1 is mapped to γ0 which
fixes z1 and sends e1 to z1e1.

Clearly, in the preceding example, the subgroup B2g+1 of B2g+2 is also em-
bedded in Out+

g,1⊥1,0, but it is more natural to remove from the surface a disc
containing the two boundary components (a sphere with three boundary com-
ponents), and embed B2g+1 in Out+

g,1,0, as in Example 9.2.

We next discuss the Perron-Vannier isomorphism Bn+1 nΦn ' Artin〈Dn+1〉
for n ≥ 1. The following was shown to us by Mladen Bestvina.

9.4 Lemma. Let n ≥ 2. Then, Artin〈Dn〉 has a unique automorphism υ of
order two which fixes d[1↑(n−2)] and interchanges dn−1 and dn. The semidirect
product Artin〈Dn〉o 〈υ〉 has presentation

Artin〈 d1 d2 · · · dn−3 dn−2 dn−1 υ | υ2 = 1 〉.
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Proof. Notice that

〈dn−1, dn, υ | υ2 = 1, dυ
n−1 = dn, dn−1dn = dndn−1〉

= 〈dn−1, υ | υ2 = 1, dn−1d
υ
n−1 = dυ

n−1dn−1〉 = Artin〈 dn−1 υ | υ2 = 1 〉.

The result now follows easily.

Part of the following appears in [27] and [10].

9.5 Theorem (Perron-Vannier [27]). Let n ≥ 2.

(i). Bn n Φn−1 = Artin〈σ1 σ2 · · · σn−3

σn−1τnτn−1

σn−2 σn−1〉
' Artin〈Dn〉.

(ii). BnnΦn−1 has a unique automorphism υ of order two which fixes σ[1↑(n−2)]

and interchanges σn−1 and σn−1τnτn−1.

(iii). (Bn n Φn−1)o 〈υ〉
= Artin〈σ1 σ2 · · · σn−3 σn−2 σn−1 υ | υ2 = 1〉.

Proof. By Corollary 5.5, we have a presentation

Bn n Σ0,1,n = Artin〈σ1 · · · σn−1 tn〉.

If we impose the relation t2n = 1, we transform Bn n Σ0,1,n into Bn n Σ0,1,n(2) ,
and we have

Bn n Σ0,1,n(2) = Artin〈σ1 · · · σn−1 τn | τ 2
n = 1〉

= Artin〈 σ1 · · · σn−3

στn
n−1

σn−2 σn−1 〉o 〈τn | τ 2
n = 1〉,

by Lemma 9.4. This group has a retraction to 〈τn | τ 2
n = 1〉 with kernel the

normal subgroup generated by σ[1↑(n−1)]. This normal subgroup contains σ
τi+1

i =
σiτi+1τi for all i ∈ [1↑(n− 1)], and we see that this normal subgroup is

Bn n Φn−1 = Artin〈 σ1 · · · σn−3

στn
n−1

σn−2 σn−1 〉;

this agrees with the desired presentation.
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9.6 Remarks. Corollary 5.5 says that, for n ≥ 1, we can go down by index
n + 1 from Artin〈An〉 by squaring the last generator, and arrive at Artin〈Bn〉 '
Artin〈An−1〉n Σ0,1,n.

Theorem 9.5 says that, for n ≥ 2, we can kill the square of the new last
generator, go down by index 2, and arrive at Artin〈Dn〉 ' Artin〈An−1〉n Φn−1.

We now review some other free generating sets of Φn which appear in the
literature.

9.7 Examples. Recall Notation 9.1. In particular, the Bn+1-action on Φn is
faithful if n 6= 1.

(1). For each k ∈ [1↑n], set xk = τkτk+1 in Φn. Then x[1↑n] is a free generating
set for Φn, and, for each i ∈ [1↑n], the action of σi on Φn is determined by

k∈[1↑(i−2)] k∈[(i+2)↑n]

(xk xi−1 xi xi+1 xk)
σi

= (xk xi−1xi xi xixi+1 xk),

interpreted appropriately for i = 1 and i = n.

(2). For each k ∈ [1↑n], set xk = τn+1τk in Φn, Then x[1↑n] is a free generating
set for Φn, and, for each i ∈ [1↑(n− 1)], σi acts on x[1↑n] as follows.

k∈[1↑(i−1)] k∈[(i+2)↑n]

(xk xi xi+1 xk)
σi

= (xk xi+1 xi+1xixi+1 xk).

k∈[1↑(n−1)]

( xk xn)σn

= (xn−1xk xn).

(3). We next consider a free generating set indicated by the proof of [11,
Proposition A.1(2)].

For each k ∈ [1↑n], set xk = (τ
Πτ[n↓1]

n+1 τk)
Πτ[k↑(n+1)] in Φn. Then x[1↑n] is a free

generating set for Φn, and, for each i ∈ [1↑(n− 1)], σi acts on x[1↑n] as follows.

k∈[1↑(i−1)] k∈[(i+2)↑n]

(xk xi xi+1 xk)
σi

= (xk xiΠx[(i+1)↓i] (Πx[i↑(i+1)])xi+1 xk).

Let w = (Πx2
[1↑(n−1)])xn; then σn acts as follows.

k∈[1↑(n−1)]

( xk xn )σn

= (w(−1)kΠx[1↑(k−1)]xk w(−1)nΠx[1↑(n−1)]xnw).

9.8 Historical Remarks. Let us view Bn as a subgroup of Bn+1 by suppress-
ing σn. Then the Bn+1-group Φn becomes a faithful Bn-group, even if n = 1.
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Wada [31] defined various left actions of Bn on a free group of rank n. All but
four of the actions are obviously non-faithful, and two of the remaining four are
obviously equivalent up to changing the free generating set, leaving three actions
to be studied for faithfulness. Shpilrain [30] ingeniously used the σ1-trichotomy
to prove that these three are all faithful. Crisp-Paris [11, Proposition A.1(2)]
showed that the second and third of these three faithful actions are equivalent up
to changing the free generating set. In fact, they correspond to Examples 9.7(2),
(3), above, with σn suppressed, where our actions on the right are the inversions
of their actions on the left. Thus, the second and third of the faithful Wada
actions of Bn are both obtained by choosing suitable free generating sets of the
Perron-Vannier Bn+1-group Φn and suppressing σn. Hence, Shpilrain [30] had
given the first algebraic proof that Bn acts faithfully on Φn; this includes the
information that Bn acts faithfully on the overgroup Σ0,1,(n+1)(2) , and on the free
factor thereof Σ0,1,n(2) .

Sakuma [28] observed that the third Wada action of Bn on 〈x[1↑n] | 〉 in-
duces an action of Bn on 〈x[1↑n] | x2

[1↑n]〉 which, when pre-composed with the
inversion-of-the-generators automorphism, agrees with the Artin action of Bn

on Σ0,1,n(2) . Since the latter is faithful by the Birman-Hilden Theorem [6, The-
orem 7], the third Wada action is faithful.

Shpilrain [30], unaware of Sakuma’s article, repeats the observation that the
third Wada action of Bn on 〈x[1↑n] | 〉 induces an action of Bn on 〈x[1↑n] | x2

[1↑n]〉
and notes that it does not agree with the Artin action of Bn on Σ0,1,n(2) . It seems
to be tacitly understood in his discussion that the second Wada action of Bn on
〈x[1↑n] | 〉 induces an action of Bn on 〈x[1↑n] | x2

[1↑n]〉 which clearly agrees with
the Artin action of Bn on Σ0,1,n(2) , and then, by the Birman-Hilden Theorem,
the second Wada action is faithful.

The first faithful Wada action is constructed by choosing a non-zero inte-
ger m, and, for each i ∈ [1↑(n− 1)], letting σi act on 〈x[1↑n] | 〉 by

k∈[1↑(i−1)] k∈[(i+2)↑n]

(xk xi xi+1 xk)
σi

= (xk xi+1 x
xm

i+1

i xk).

Edward Formanek has pointed out that xm
[1,n] freely generates a faithful Bn-sub-

group of 〈x[1,n] | 〉, where faithfulness can be seen from the fact that the
Bn-action is the standard Artin action with respect to this free generating set.
This argument gives a transparent proof that this action is faithful.

Appendix. Larue-Whitehead diagrams

In this appendix, we rework ideas from Chapter 2 and Appendix A of
Larue’s thesis [21], using combinatorial arguments to obtain a description of
the Bn-orbit of t1. A topological treatment of similar ideas was given by
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Fenn-Greene-Rolfsen-Rourke-Wiest [19], and it was arrived at independently
of Larue’s work; see [16, Chapters 5, 6].

I Self-homeomorphisms

This section is purely motivational. We shall briefly indicate the mapping-class
viewpoint of the braid group, and the Jordan-curve nature of the Whitehead
graphs of the elements in the Bn-orbit of t1 if n ≥ 1.

Let C denote the complex plane, and Ĉ the Riemann sphere, or projective
complex line, C∪{∞}. For each z ∈ C and each non-negative real number r, let
D(z, r) denote the closed disc in C with centre z and radius r, and let D◦(z, r)
denote the interior of D(z, r).

Let S0,1,n denote the surface formed by deleting from a sphere one open
disc and n points. We shall think of the discs and points as being distin-
guished rather than deleted; for example, it is then meaningful to speak of the
self-homeomorphisms of S0,1,n as permuting the points. We take as our model of

S0,1,n the sphere Ĉ having [1↑n] as its set of distinguished points, and D◦(0, 1
2
) as

its distinguished open disc. We are particularly interested in the set [0↑n], and,
in our diagrams, we shall indicate these points by drawing small discs around
them.

For each k ∈ [0↑n], we have a distinguished oriented tether, or arc,

{k + ri | r is ∞ or real, with r decreasing from ∞ to 0},

joining ∞ to k. We label the right flank of this oriented arc tk, and label the
left flank tk; we then cut Ĉ open along these arcs and obtain a (2n + 2)-gon,
with clockwise boundary label Π

k∈[0↑n]
(tktk); see Fig. I.1.4. We shall use t0 and

z1 interchangeably in this section. Performing the boundary identifications then
gives back Ĉ.

The self-homeomorphism λ of D(0, 1) given by λ(reiθ) : = rei(θ−2πr) fixes
the boundary of D(0, 1) and interchanges 1

2
and −1

2
; see Fig. I.1.1. For each

Figure I.1.1: The map λ : D(0, 1) → D(0, 1), reiθ 7→ rei(θ−2πr).

i ∈ [1↑(n− 1)], let φi denote the self-homeomorphism of Ĉ which acts
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as the identity map on Ĉ−D(i + 1
2
, 1),

and by z 7→ λ(z − i− 1
2
) + i + 1

2
on D(i + 1

2
, 1).

Then φ[1↑(n−1)] generates a group 〈φ[1↑(n−1)]〉 of self-homeomorphisms of Ĉ which
sheds light on the Bn-orbit of t1. To describe the induced action of 〈φ[1↑(n−1)]〉
on the fundamental group of S0,1,n, we first give Ĉ a CW-structure by specifying

a graph S
(1)
0,1,n embedded in Ĉ.

For each k ∈ [(−1)↑n], we have vertices wk := k + 1
2
− i and vk := k + 1

2
+ i,

and (in C) an oriented straight edge fk joining wk to vk. For each k ∈ [0↑n], we
have an oriented straight edge ek joining wk−1 to wk, and an oriented straight

edge dk joining vk−1 to vk. This completes the description of the graph S
(1)
0,1,n.

Each distinguished point k ∈ [0↑n] is the midpoint of the rectangle in C cut out

by the path fk−1dkfkek. For n = 3, S
(1)
0,1,3 can be seen in Fig. I.1.2.

w−1 w0 w1 w2 w3

v−1 v0 v1 v2 v3

e0 e1 e2 e3

d0 d1 d2 d3

f−1 f0 f1 f2 f3

Figure I.1.2: S0,1,3.

Let 〈S(1)
0,1,n | 〉 denote the (free) fundamental groupoid of S

(1)
0,1,n, and let

〈S(1)
0,1,n | 〉(w−1, w−1) denote the (free) fundamental group of S

(1)
0,1,n at w−1. The

subgraph of S
(1)
0,1,n spanned by e[0↑n] ∨ f[(−1)↑n] is a maximal subtree of S

(1)
0,1,n,

and d[0↑n] then determines a free generating set t[0↑n] of 〈S(1)
0,1,n | 〉(w−1, w−1);

explicitly, for each k ∈ [0↑n], tk = Πe[0↑(k−1)]fk−1dkfkΠe[k↓0].

The path f−1Πd[0↑n]fnΠe[n↓0] cuts out a rectangle in C; the complementary

region in Ĉ together with the graph S
(1)
0,1,n is then a retract of Ĉ − [0↑n]. Let

∼ denote homotopy for closed paths at w−1 in Ĉ − [0↑n]. We can identify the

fundamental groupoid of S0,1,n with 〈S(1)
0,1,n | f−1Πd[0↑n]fnΠe[n↓0] ∼ w−1〉. We

then identify Σ0,1,n with the fundamental group of S0,1,n at w−1,

Σ0,1,n = 〈S(1)
0,1,n | f−1Πd[0↑n]fnΠe[n↓0] ∼ w−1〉(w−1, w−1)

= 〈t[0↑n] | Πt[0↑n] = 1〉.

Consider the action of φ1 on the graph S
(1)
0,1,n. For n = 3, the result can be
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e0 e1 e2 e3

d0 d1 d2 d3

f−1

fφ1
1

f0

f1

f2 f3

Figure I.1.3: S
(1)
0,1,3 and its image under φ1.

seen in Fig. I.1.3. The crucial point is that fφ1

1 ∼ e2f2d2f 1e1f0d1, and all

the other elements of S
(1)
0,1,3 are fixed by φ1; this makes the action quite simple

algebraically. Then, f
φ1

1 ∼ d1f 0e1f1d2f 2e2, and, for the free generator t1 =
e0f0d1f 1Πe[1↓0], we have

tφ1

1 ∼ e0f0d1(d1f 0e1f1d2f 2e2)Πe[1↓0] ∼ Πe[0↑1]f1d2f 2Πe[2↓0] = t2.

Similarly, for this element, t2, we have

tφ1

2 ∼ Πe[0↑1](e2f2d2f 1e1f0d1)d2f 2Πe[2↓0]

∼ Πe[0↑2]f2d2f 1e1f0Πd[1↑2]f 2Πe[2↓0] ∼ t2t1t2,

where the latter homotopy can be seen directly by collapsing the elements of
e[0↑2]∨f[0↑2], which lie in the maximal subtree. Thus, we see that φ1 acts on Σ0,1,n

as the automorphism σ1. It follows that the action of any given element of Bn on
Σ0,1,n is induced by some self-homeomorphism φ ∈ 〈φ[1↑(n−1)]〉. The interesting

feature now is that φ carries the oriented Jordan curve f−1Πd[0↑1]f 1Πe[1↓0] (∼
t0t1) to an oriented Jordan curve f−1Πd[0↑1]f

φ

1 Πe[1↓0] (∼ (t0t1)
φ ∼ t0t

φ
1).
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z1 z1 t1 t1 t2 t2 t3 t3

z1 z1

t1

t1

t2t2

t3

t3

z1 z1

t1

t1

t2 t2

t3

t3

Figure I.1.4: Jordan curves for z1t
φ1
1 and a Whitehead graph for tσ1

1 = t1t2t1.

Recall that Ĉ is obtained by edge identification from the (2n + 2)-gon with

clockwise boundary label Π
i∈[0↑n]

(titi). The Jordan curve f−1Πd[0↑1]f
φ

1 Πe[1↓0] has

as its preimage, in the (2n + 2)-gon, the union of a family of disjoint oriented
arcs. These arcs can be used to reconstruct tφ1 , since the Jordan curve cyclically
reads off t0t

φ
1 from its meetings with the labelled oriented tethers; notice that

the set of tethers is now dual to the set of generators t[0↑n]. The purpose of this
appendix is to define and study a combinatorial representation of the family of
arcs, and recover Larue’s characterization of the elements of tBn

1 .
Although it will not be used in our arguments, let us mention the fact that,

on collapsing the interior of each labelled edge of the (2n + 2)-gon to a labelled
vertex, each oriented arc in the family becomes an oriented edge, and we recover
the (directed, multi-edge, non-cyclic) Whitehead graph of tφ1 ; see Fig. I.1.4.

II Nested sets

We now introduce some formal definitions that will allow us to associate a com-
binatorial Jordan curve to each element of tBn

1 .

II.1 Definitions. Let (A,≤) be a finite ordered set, and let m ∈ N.
Let N denote the number of elements of A. Then A is order-isomorphic to

[1↑N ] in a unique way, and we assign to A the induced metric, denoted dA. Thus
dA(a1, a2) = 1 if and only if a1 6= a2 and no element of A lies strictly between a1

and a2.
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Let a1, a2, b1, b2 be elements of A. We say that {a1, b1} is nested with {a2, b2}
(for (A,≤)) if a1, a2, b1, b2 are distinct elements of A, and either both of, or
neither of, a2 and b2 lie between a1 and b1 in (A,≤). It is not difficult to see
that, in this event, {a2, b2} is nested with {a1, b1}.

Let a[1↑m] and b[1↑m] be sequences in A.
We say that a[1↑m] is a sequence without repetitions if ai 6= aj for all i 6= j in

[1↑m].
We say that a[1↑m] is an ascending sequence (in (A,≤)) if a1 ≤ a2 ≤ · · · ≤ am

in (A,≤).
We say that {{ai, bi}}i∈[1↑m] is nested (for (A,≤)) if, for all i 6= j in [1↑m],

{ai, bi} is nested with {aj, bj} for (A,≤).
We let Symm act on Am, on the left, by π(a[1↑m]) := a[1↑m]π . For example,

(1,2,3)(a1, a2, a3) = (a3, a1, a2), and, hence, (1,2,3)(a, b, c) = (c, a, b). The ascending
rearrangement of a[1↑m] is the unique ascending sequence in (A,≤) that lies in
the Symm-orbit of a[1↑m].

Let a[1↑(2m)] be a sequence in A.
A permutation π ∈ Sym2m is said to embed a[1↑(2m)] in a plane if πa[1↑(2m)] is

ascending for (A,≤), and both {{2i−1, 2i}π}i∈[1↑m] and {{2i, 2i+1}π}i∈[1↑(m−1)]

are nested in (N,≤). We call {{2i−1, 2i}π}i∈[1↑m] the odd-even pairing, and call
{{2i, 2i + 1}π}i∈[1↑(m−1)] the even-odd pairing.

We say that a[1↑(2m)] is a planar sequence (in (A,≤)) if there exists some
π ∈ Sym2m which embeds a[1↑(2m)] in a plane. (If no two consecutive terms of
a[1↑(2m)] are equal, π is then unique, but we shall not need this fact.) There is
then an associated diagram in C formed as follows. We assign, to each point
i ∈ [1↑(2m)] ⊂ C the label aiπ ; notice that this means that the label of iπ is ai.
For each i ∈ [1↑m], we join (2i − 1)π (labelled a2i−1) to (2i)π (labelled a2i) by
an oriented semi-circle in the upper half-plane. For each i ∈ [1↑(m − 1)], we
join (2i)π (labelled a2i) to (2i + 1)π (labelled a2i+1) by an oriented semi-circle in
the lower half-plane. These oriented semi-circles link up to form an oriented arc
which traces out the sequence a[1↑(2m)], and the nesting property means that the
arc has no self-crossings.

II.2 Example. Suppose that a[1↑8] = (z1, t1, t1, t2, t2, t1, t1, z1) is a sequence
in some ordered set (A,≤), and that the ascending rearrangement of a[1↑8] is
(z1, t1, t1, t1, t1, t2, t2, z1).

The permutation

(
1 2 3 4 5 6 7 8
1 2 5 6 7 4 3 8

)
= (3, 5, 7)(4, 6) embeds a[1↑8]

in a plane since both {{1, 2}, {5, 6}, {7, 4}, {3, 8}} and {{2, 5}, {6, 7}, {4, 3}} are
nested in (N,≤), and (3,5,7)(4,6)(z1, t1, t1, t2, t2, t1, t1, z1)=(z1, t1, t1, t1, t1, t2, t2, z1).
The associated diagram can be seen in Fig. II.2.1.
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z1
1

t1
2

t1
3

t1
4

t1
5

t2
6

t2
7

z1
8

Figure II.2.1: (z1, t1, t1, t2, t2, t1, t1, z1).

Let us record two results which will be useful later.

II.3 Lemma. Let (A,≤) be an ordered set, let m ∈ N, and let a[1↑(2m)] be a
sequence in A.

Then a[1↑(2m)] is planar for (A,≤) if and only if there exists an ordered set
(B,≤) with |B| = 2m, and a sequence b[1↑(2m)] in B, without repetitions, and an
ordered-set map B → A, b 7→ label(b), such that label(b[1↑(2m)]) = a[1↑(2m)], and
{{b2i, b2i+1}}i∈[1↑(m−1)] and {{b2i−1, b2i}}i∈[1↑m] are nested for (B,≤).

Proof. Suppose first that a[1↑(2m)] is planar for (A,≤), and let π be an element
of Sym2m that embeds a[1↑(2m)] in a plane. We take B to be [1↑(2m)] with the
usual ordering. For each i ∈ [1↑(2m)], let label(i) = aiπ and let bi = iπ; thus,
label(bi) = label(iπ) = ai. All the conditions are satisfied.

Conversely, if B exists, we can identify B with [1↑(2m)] with the usual
ordering, in a unique way. Then the map i 7→ bi is an element π of Sym2m

that embeds a[1↑(2m)] in a plane.

II.4 Lemma. Let (A,≤) be an ordered set, and let m be a positive inte-
ger. Let c[1↑m] and c[1↑m] be sequences without repetitions in (A,≤) such that
{{ci, ci}}i∈[1↑m] is nested, and max(c[1↑m]) < min(c[1↑m]). If c[1↑m] is ascending in
(A,≤), then c[m↓1] is also ascending in (A,≤).

Proof. We argue by induction on m. If m = 1, the conclusion is trivial. Now,
assume that m ≥ 2 and that the implication holds with m − 1 in place of m.
We see that c1 < c2 ≤ max(c[1↑m]) < min(c[1↑m]) ≤ c1. Since {c1, c1} is nested
with {c2, c2}, we also see that c1 < c2 < c1. By the induction hypothesis, c[m↓2]

is ascending, and hence c[m↓1] is ascending. The result is proved.

III Planar elements of Σ0,1,n

III.1 Definitions. Let A denote (z1, z1) ∨ t[1↑n] ∨ t[1↑n], the usual monoid-
generating sequence of Σ0,1,n. We form the ordered set (A,≤) with

z1 < t1 < t1 < · · · < tn < tn < z1.
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We remark that, for n 6= 1, the ordering on A is reminiscent of the ordering of
the ends of Σ0,1,n in Section 7. We emphasize that, even if n = 1, z1 6= t1 in A.

Let m ∈ N. Consider a sequence a[1↑m] in t[1↑n] ∨ t[1↑n], and let w = Πa[1↑m] ∈
Σ0,1,n; thus a[1↑m] is an expression for w. We define the Whitehead expansion of
a[1↑m] to be the sequence

(z1) ∨ (
∨

i∈[1↑m](ai, ai)) ∨ (z1) = (z1, a1, a1, a2, a2, . . . , am, am, z1)

in A. We say that a[1↑m] is a planar expression for w if the Whitehead expansion
of a[1↑m] is planar for (A,≤). If the unique reduced expression for w is a planar
expression for w, then we say that w is a planar element of Σ0,1,n.

III.2 Examples. (i). t1t2t1 is planar, since the Whitehead expansion of the
reduced expression is (z1, t1, t1, t2, t2, t1, t1, z1), which is planar for (A,≤), by
Example II.2; in a sense, Fig. II.2.1 reflects Fig. I.1.4. We call Fig. II.2.1 the
Larue-Whitehead diagram of t1t2t1.

(ii). t1t2 is not planar; there is only one permutation to consider.
(iii). t21 is not planar; there are four permutations to consider.

(iv). tt1t2t1
3 is planar, while tt1t2t1

3 is not planar, and these two group elements
have the same Whitehead graph.

III.3 Proposition. Let w ∈ Σ0,1,n. If there exists some planar expression for w,
then (the reduced expression for) w is planar.

Proof. Suppose that a[1↑m] is a planar expression for w, as in Definitions III.1.
By Lemma II.3, there exists an ordered set (B,≤) with |B| = 2m + 2,

and a planar sequence b[1↑(2m+2)] in (B,≤), without repetitions, and an order-
respecting labelling B → A, b 7→ label(b), such that label(b[1↑(2m+2)]) is the
Whitehead expansion of a[1↑m].

Suppose that the given planar expression a[1↑m] is not reduced. We shall find
a shorter planar expression for w.

There exists some j ∈ [1↑(m − 1)] such that aj+1 = aj in t[1↑n] ∨ t[1↑n], and
we may suppose that we have chosen this j in such a way that dB(b2j+1, b2j+2)
has the minimum possible value. Notice that label(b[2j↑2j+3]) = (aj, aj, aj, aj).

Clearly, w = Πa[1↑(j−1)]Πa[(j+1)↑m], and

label(b[1↑(2j−1)]∨[(2j+4)↑(2m+2)]) = (z1)∨(
∨

i∈[1↑(j−1)]

(ai, ai))∨(
∨

i∈[(j+2)↑m]

(ai, ai))∨(z1).

It suffices to show that b[1↑(2j−1)]∨[(2j+4)↑(2m+2)] is planar for (B,≤).

Claim. dB(b2j, b2j+3) = 1.

Proof of claim. Consider any k ∈ [1↑(2m − 1)] such that bk lies between b2j

and b2j+3.
Let η denote (−1)k.
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Since label(b2j) = label(b2j+3) = aj, we see that label(bk) = aj. Hence
label(bk+η) = aj = label(b2j+1) = label(b2j+2).

Either aj < aj or aj > aj in (A,≤). Hence,

either max{b2j, bk, b2j+3} < min{b2j+1, bk+η, b2j+2} in (B,≤),

or min{b2j, bk, b2j+3} > max{b2j+1, bk+η, b2j+2} in (B,≤),

respectively.
Since {{b2j, b2j+1}, {b2j+2, b2j+3}, {bk, bk+η}} is nested, and bk lies between b2j

and b2j+3, we see, from Lemma II.4, that bk+η lies between b2j+1 and b2j+2.
Since {b2j+1, b2j+2} is nested with {bk+η, bk+2η} and bk+η lies between b2j+1

and b2j+2, we see that bk+2η lies between b2j+1 and b2j+2. Hence,

dB(bk+2η, bk+η) ≤ dB(b2j+1, b2j+2),

with equality holding only if {bk+2η, bk+η} = {b2j+1, b2j+2}. Also, label(bk+2η) =
aj, and, hence, label(bk+3η) = aj. Thus

label(bk, bk+η, bk+2η, bk+3η) = (aj, aj, aj, aj).

By the minimality of dB(b2j+1, b2j+2), we see that k = 2j or k = 2j + 3. This
proves the claim.

Now consider the passage from b[1↑(2m+2)] to b[1↑(2j−1)] ∨ b[(2j+4)↑(2m+2)].
For the odd-even pairing, we pass from {{b2i−1, b2i}}i∈[1↑(m+1)] to

{{b2i−1, b2i}}i∈[1↑(j−1)]∨[(j+3)↑(m+1)] ∪ {{b2j−1, b2j+4}}.
Thus, we remove {{b2j−1, b2j}, {b2j+1, b2j+2}, {b2j+3, b2j+4}}, and we add only
{{b2j−1, b2j+4}}. To see that, for all k ∈ [1↑(j−1)]∨[(j+3)↑(m+1)], {b2k−1, b2k}
is nested with {b2j−1, b2j+4}, we note the following:

(b2j−1 lies between b2k−1 and b2k)

⇔ (b2j lies between b2k−1 and b2k)

since {b2j−1, b2j} is nested with {b2k−1, b2k}
⇔ (b2j+3 lies between b2k−1 and b2k)

since dB(b2j, b2j+3) = 1

⇔ (b2j+4 lies between b2k−1 and b2k)

since {b2j+3, b2j+4} is nested with {b2k−1, b2k}.
For the even-odd pairing, we pass from {{b2i, b2i+1}}i∈[1↑m] to

{{b2i, b2i+1}}i∈[1↑(j−1)]∨[(j+2)↑m].

Thus, we remove {{b2j, b2j+1}, {b2j+2, b2j+3}}, and we add nothing. Hence this
remains nested.

This completes the proof.
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At the end of the next section, we shall see that the following generalizes
Corollary 7.6.

III.4 Proposition. Let w be a planar element of Σ0,1,n, and let k ∈ [1↑n].

(i). w is squarefree.

(ii). w 6∈ ((Πt[n↓(k+1)])tk?)− {tΠt[(k+1)↑n]

k }.
(iii). w 6∈ ((Πt[1↑(k−1)])tk?).

Proof. Suppose that a[1↑m] is the reduced planar expression for w, as in Defini-
tions III.1. By Lemma II.3, there exists an ordered set (B,≤) with |B| = 2m+2,
and a planar sequence b[1↑(2m+2)] in (B,≤), without repetitions, and an order-
respecting labelling B → A, b 7→ label(b), such that

label(b[1↑(2m+2)]) = (z1) ∨ (
∨

i∈[1↑m]

(ai, ai)) ∨ (z1).

(i). Suppose that w is not squarefree; hence, for some i ∈ [1↑m] and some
` ∈ [1↑(m−1)], a[`↑(`+1)] is (ti, ti) or (ti, ti). Hence label(b[(2`)↑(2`+3)]) is (ti, ti, ti, ti)
or (ti, ti, ti, ti).

Let mi be the number of elements of B with label ti. Let c[1↑mi] be the
ascending sequence in (B,≤) which is the interval of elements labelled ti. For
each k ∈ [1↑mi], let ck denote the element of B such that {ck, ck} is an element
of the even-to-odd pairing for b[1↑(2m+2)]. By the definition of the Whitehead
expansion, the label of ck is ti. By Lemma II.4, c[mi↓1] is the ascending sequence
in (B,≤) which is the interval of elements of B labelled ti.

By hypothesis, there exists ` ∈ [1↑(m− 1)] such that {b2l+1, b2l+2} = {cj, ck}
for some j, k ∈ [1↑mi]. Let us choose ` so that j + k is as large as possible. We
claim that k = mi. Suppose not; then ck < ck+1 < cj. Consider the d ∈ B such
that {ck+1, d} lies in the odd-even pairing for b[1↑(2m+2)]. Then d ∈ ]ck↑cj[. Hence
label(d) is ti or ti. Since a[1↑m] is reduced, label(d) 6= ti. Hence label(d) = ti.
Thus, d = cj′ for some j′ ∈ [mi↓(j + 1)]. This contradicts the maximality of
k + j. Hence k = mi, as claimed. Similarly, j = mi. Thus {cmi

, cmi
} lies in

both the even-odd pairing and the odd-even pairing. This gives a closed-curve
component within an arc which joins z1 to z1. Hence, we have a contradiction.

(ii). Suppose that w ∈ ((Πt[n↓(k+1)])tk?).
Then a[1↑(n−k+1)] = t[n↓(k+1)] ∨ (tk) and

label(b[1↑(2n−2k+3)]) = (z1, tn, tn, tn−1, tn−1, . . . , tk+1, tk+1, tk, tk).

Since label(b[(2n−2k+1)↑(2n−2k+3)]) = (tk+1, tk, tk), we see that, in (B,≤),

b2n−2k+2 < b2n−2k+3 < b2n−2k+1 with labels tk, tk, tk+1.

Since {b2n−2k+1, b2n−2k+2} and {b2n−2k+3, b2n−2k+4} are nested in (B,≤), we see
that b2n−2k+4 ∈ ]b2n−2k+2↑b2n−2k+1[. In particular, label(b2n−2k+4) ∈ {tk, tk, tk+1}
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and label(b2n−2k+4) = an−k+2. Since a[1↑m] is reduced, an−k+2 6= tk. By (i),
an−k+2 6= tk. Hence an−k+2 = tk+1 and the nesting is

b2n−2k+2 < b2n−2k+3 < b2n−2k+4 < b2n−2k+1 with labels tk, tk, tk+1, tk+1.

Using the last inequality and Lemma II.4, we see that

b2n−2k+4 < b2n−2k+1 < b2n−2k < b2n−2k+5 with labels tk+1, tk+1, tk+1, tk+1.

Now label(b[1↑(2n−2k+7)]) is

(z1, tn, tn, tn−1, tn−1, . . . , tk+2, tk+2, tk+1, tk+1, tk, tk, tk+1, tk+1, an−k+3, an−k+3)

Notice that

b2n−2k < b2n−2k+5 < b2n−2k−1 with labels tk+1, tk+1, tk+2.

Also {b2n−2k+5, b2n−2k+6} is nested with {b2n−2k, b2n−2k−1}. Hence label(b2n−2k+6)
lies in {tk+1, tk+1, tk+2}, and label(b2n−2k+6) = an−k+3. Since a[1↑m] is reduced,
an−k+3 6= tk+1. By (i), an−k+3 6= tk+1. Hence an−k+3 = tk+2 and the nesting is

b2n−2k < b2n−2k+5 < b2n−2k+6 < b2n−2k−1 with labels tk+1, tk+1, tk+2, tk+2.

Using the last inequality and Lemma II.4, we see that

b2n−2k+6 < b2n−2k−1 < b2n−2k−2 < b2n−2k+7 with labels tk+2, tk+2, tk+2, tk+2.

By repeating the argument in the last paragraph, we eventually find that

w = t
Πt[(k+1)↑n]

k .
(iii). Suppose that w ∈ (Πt[1↑k−1]tk?).
Then a[1↑k] = t[1↑(k−1)] ∨ (tk),

label(b[1↑(2k+1)]) = (z1, t1, t1, t2, t2, . . . , tk−1, tk−1, tk, tk),

and by an argument similar to that given in (ii), we find that this is impossible.

IV Bn permutes the planar elements of Σ0,1,n

IV.1 Proposition. Let w ∈ Σ0,1,n and let i ∈ [1↑(n− 1)]. If w is planar, then
wσi is planar.

Proof. Suppose that r[1↑m] is any planar expression for w, as in Definitions III.1.
In applying σi to (z1) ∨ (

∨
i∈[1↑m](ri, ri)) ∨ (z1) we replace

each (ti, ti) with (ti+1, ti+1),

each (ti, ti) with (ti+1, ti+1),

each (ti+1, ti+1) with (ti+1, ti+1, ti, ti, ti+1, ti+1),
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each (ti+1, ti+1) with (ti+1, ti+1, ti, ti, ti+1, ti+1).

We will not perform any cancellations in the resulting sequence.
By Lemma II.3, there exists an ordered set (B,≤) with |B| = 2m + 2,

and a planar sequence p[1↑(2m+2)] in (B,≤), without repetitions, and an order-
respecting labelling B → A, b 7→ label(b), such that

label(p[1↑(2m+2)]) = (z1) ∨ (
∨

i∈[1↑m](ri, ri)) ∨ (z1).

Let mi denote the number of elements of B with label ti, and let mi+1 denote
the number of elements of B with label ti+1. To begin, we have to add 4mi+1

elements to B, and we have to specify the ordering on the expanded set.
Let c[1↑mi] denote the ascending sequence of those elements of B which have

label ti. Let c[mi↓1] denote the ascending sequence of those elements of B which
have label ti. Let d[1↑mi+1] denote the ascending sequence of those elements of

B which have label ti+1. Let d[mi+1↓1] denote the ascending sequence of those
elements of B which have label ti+1. We then have an interval in B

[c1↑d1] = c[1↑mi] ∨ c[mi↓1] ∨ d[1↑mi+1] ∨ d[mi+1↓1].

c1
ti

c1
ti

d1
ti+1

d2
ti+1

d2
ti+1

d1
ti+1

Figure IV.1.1: c[1↑1] ∨ c[1↓1] ∨ d[1↑2] ∨ d[2↓1]

We create an interval of 4mi+1 new elements

[a1↑b1] = a[1↑mi+1] ∨ a[mi+1↓1] ∨ b[1↑mi+1] ∨ b[mi+1↓1]

and expand B by inserting this interval [a1↑b1] just before the interval [c1↑d1].
We then have a new ordered set B′ with 2m + 2 + 4mi+1 elements.

We now specify the labelling B′ → A. On c[1↑mi], we change the labels from
ti to ti+1. On c[mi↓1], we change the labels from ti to ti+1. On d[1↑mi+1], we

change the labels from ti+1 to ti+1. On d[mi+1↓1], we keep the same labels, ti+1.

On B − [c1↑d1], we keep the same labels. We give all the elements of a[1↑mi+1]

the label ti; all the elements of a[mi+1↓1] the label ti; and all the elements of
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b[1↑mi+1] ∨ b[mi+1↓1] the label ti+1. The labelling clearly respects the orderings of
B′ and A.

It follows from Lemma II.4 that

{{p2k, p2k+1}}k∈[1↑m] ⊇ {{ci, ci}}i∈[1↑mi] ∪ {{dj, dj}}j∈[1↑mi+1].

Let q[1↑(2m+4mi+1)] be the sequence in B′ obtained from p[1↑(2m+2)] as follows. For
each j ∈ [1↑mi+1], there exists a unique k ∈ [1↑m] such that {p2k, p2k+1} =
{dj, dj}. If (p2k, p2k+1) = (dj, dj) in p[1↑(2m+2)], then it is to be expanded to

(dj, bj, aj, aj, bj, dj) in q[1↑(2m+4mi+1)]. If (p2k, p2k+1) = (dj, dj) in p[1↑(2m+2)], then

it is to be expanded to (dj, bj, aj, aj, bj, dj) in q[1↑(2m+4mi+1)]. This completes the
definition of q[1↑(2m+4mi+1)].

a1
ti

a2
ti

a2
ti

a1
ti

b1
ti+1

b2
ti+1

b2
ti+1

b1
ti+1

c1
ti+1

c1
ti+1

d1
ti+1

d2
ti+1

d2
ti+1

d1
ti+1

Figure IV.1.2: a[1↑2] ∨ a[2↓1] ∨ b[1↑2] ∨ b[2↓1] ∨ c[1↑1] ∨ c[1↓1] ∨ d[1↑2] ∨ d[2↓1].

In passing from {{p2k−1, p2k}}k∈[1↑m+1] to {{q2k−1, q2k}}k∈[1↑(m+2mi+1)], we add

{{aj, bj}, {aj, bj}}j∈[1↑mi+1]. In B′, for each j ∈ [1↑mi+1],

[aj↑bj] = a[j↓1] ∨ b[1↑j]
has induced odd-even pairing {{ak, bk}}k∈[1↑j],

[aj↑bj] = a[j↑mi+1] ∨ a[mi+1↓1] ∨ b[1↑mi+1] ∨ b[mi+1↓j]

has induced odd-even pairing {{ak, bk}, {ak, bk}}k∈[j↑mi+1].

Both types of intervals are closed under the odd-even pairing; this shows that
{{q2k−1, q2k}}k∈[1↑(m+2mi+1)] is nested.



Llúıs Bacardit and Warren Dicks 47

In passing from {{p2k, p2k+1}}k∈[1↑m] to {{q2k, q2k+1}}k∈[1↑(m+2mi+1−1)], we

delete {{dj, dj}}j∈[1↑mi+1], and add {{dj, bj}, {aj, aj}, {bj, dj}}j∈[1↑mi+1]. In B′,
for each j ∈ [1↑mi+1],

[aj↑aj] = a[1↑j] ∨ a[j↓1] has induced even-odd pairing {{ak, ak}}k∈[1↑j],

[bj↑dj] = b[j↓1] ∨ c[1↑r] ∨ c[r↓1] ∨ d[1↑j] has induced even-odd pairing

{{bk, dk}}k∈[1↑j] ∪ {{ci, ci}}i∈[1↑mi],

[bj↑dj] = b[j↑mi+1] ∨ b[mi+1↓1] ∨ c[1↑mi] ∨ c[mi↓1] ∨ d[1↑mi+1] ∨ d[mi+1↓j]
has induced even-odd pairing

{{bk, dk}}k∈[1↑mi+1] ∪ {{bk, dk}}k∈[j↑mi+1] ∪ {{ci, ci}}i∈[1↑mi].

All three types of intervals are closed under the even-odd pairing; this shows
that {{q2k, q2k+1}}k∈[1↑(m+2mi+1−1)] is nested.

A similar argument shows that σi carries planar elements to planar elements.

IV.2 Theorem. The group Bn acts on the set of planar elements of Σ0,1,n, and,
hence, if n ≥ 1, every element of tBn

1 is planar.

IV.3 Remark. By combining Theorem IV.2 and Proposition III.4, we get an-
other proof of Corollary 7.6.

V The Bn-orbits of the planar elements of Σ0,1,n

In this section we rework [21, Lemma 2.3.12] and in this case our argument is
longer than Larue’s. The object is to show that the number of Bn-orbits in the
set of all planar elements of Σ0,1,n is n+1, and that {Πt[1↑k]}k∈[0↑n] is a complete
set of representatives.

V.1 Lemma. Let i, j be elements of [1↑n] such that j ≤ i−1, let φ = Πσ[j↑(i−1)],
and let w be a planar element of Σ0,1,n.

(i) If w ∈ ((Πt[1↑i])tj?), then |wφ| < |w|.
(ii) If w ∈ ((Πt[1↑i])tj?), then |wφ| < |w|.

Proof. It is straightforward to show that φ acts as
k∈[1↑(j−1)] k∈[(j+1)↑i] k∈[(i+1)↑n]

(tk tj tk tk)
φ

= (tk ti ttik−1 tk).

(i). Suppose that w ∈ ((Πt[1↑i])tj?).
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z1 tj tj ti ti

Figure V.1.1: w ∈ ((Πt[1↑i])tj?), j ≤ i− 1.

Since titj is a subword of w and w is planar, every letter occurring in w that
belongs to t[j↑i] ∨ t[j↑i] belongs to a (reduced) subword of w of the form avb,
where a, b ∈ {ti, tj} and v ∈ 〈t[j↑i]〉. Since, moreover, w begins with Πt[1↑i], it
can be shown that it is not possible to have a = ti or b = ti. Thus a = b = tj.
Here, |(avb)φ| = |avb| − 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in t[1↑(j−1)]∨[(i+1)↑n]∨ t[1↑(j−1)]∨[(i+1)↑n],
and all of which are mapped to single letters by φ.

Since tj occurs in w, we see that |wφ| < |w|.
(ii). Suppose that w ∈ ((Πt[1↑i])tj?).

z1 tj tj ti ti

Figure V.1.2: w ∈ ((Πt[1↑i])tj?), j ≤ i− 1.

Since titj is a subword of w and w is planar, every letter occurring in w
that belongs to t[(j+1)↑i] ∨ t[(j+1)↑i] belongs to a (reduced) subword of w of the

form avb, where a, b ∈ {tj, ti} and v ∈ 〈t[j+1↑i]〉. Since, moreover, w begins with
Πt[1↑i], it can be shown that it is not possible to have a = ti or b = ti. Thus

a = b = tj. Here, |(avb)φ| = |avb| − 2.
We factor w into syllables consisting of all such subwords together with the

individual remaining letters, all of which lie in t[1↑j]∨[(i+1)↑n] ∨ t[1↑j]∨[(i+1)↑n], and
all of which are mapped to single letters by φ.

Since ti occurs in w, it is then clear that |wφ| ≤ |w| − 2.

V.2 Lemma. Let i, j be elements of [1↑n] such that j ≥ i + 2, let φ =
Πσ[(j−1)↓(i+1)], and let w be a planar element of Σ0,1,n.
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(i) If w ∈ ((Πt[1↑i])tj?), then |wφ| ≤ |w|, and, moreover, if |wφ| = |w| then
wφ ∈ (Πt[1↑i+1]?).

(ii) If w ∈ ((Πt[1↑i])tj?), then |wφ| < |w|.
Proof. It is straightforward to show that φ acts as

k∈[1↑i] k∈[(i+1)↑(j−1)] k∈[(j+1)↑n]

(tk tk tj tk)
φ

= (tk t
ti+1

k+1 ti+1 tk).

(i). Suppose that w ∈ ((Πt[1↑i])tj?).

z1 ti ti tj tj

Figure V.2.1: w ∈ ((Πt[1↑i])tj?), j ≥ i + 2.

Since titj is a subword of w, every letter occurring in w that belongs to
t[(i+1)↑(j−1)] ∨ t[(i+1)↑(j−1)] belongs to a (reduced) subword of w of the form avb,
where a, b ∈ {ti, tj} and v ∈ 〈t[(i+1)↑(j−1)]〉. Since, moreover, w begins with
Πt[1↑i], it can be shown that it is not possible to have a = ti or b = ti. Thus

a = b = tj. Here, |(avb)φ| = |avb| − 2.
We factor w into syllables consisting of all such subwords together with the

individual remaining letters, all of which lie in t[1↑i]∨[j↑n] ∨ t[1↑i]∨[j↑n], and all of
which are mapped to single letters by φ.

It is then clear that |wφ| ≤ |w|.
Moreover, if |wφ| = |w|, then w ∈ 〈t[1↑i]∨[j↑n]〉, and wφ ∈ (Πt[1↑(i+1)]?).
(ii). Suppose that w ∈ ((Πt[1↑i])tj?).

z1 ti ti tj tj

Figure V.2.2: w ∈ ((Πt[1↑i])tj?), j ≥ i + 2.

Since titj is a subword of w and w is planar, every letter occurring in w that
belongs to t[(i+1)↑j] ∨ t[(i+1)↑j] belongs to a (reduced) subword of w of the form

avb, where a, b ∈ {ti, tj} and v ∈ 〈t[(i+1)↑j]〉. Since, moreover, w begins with
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Πt[1↑i], it can be shown that it is not possible to have a = ti or b = ti. Thus

a = b = tj. Here, |(avb)φ| = |avb| − 2.
We factor w into syllables consisting of all such subwords together with the

individual remaining letters, all of which lie in t[1↑i]∨[(j+1)↑n] ∨ t[1↑i]∨[(j+1)↑n], and
all of which are mapped to single letters by φ.

Since tj occurs in w, it is then clear that |wφ| ≤ |w| − 2.

V.3 Theorem (Larue). The set {Πt[1↑k]}k∈[0↑n] is a complete set of representa-
tives of the Bn-orbits in the set of all planar elements of Σ0,1,n.

Proof. Let w be a planar element of Σ0,1,n. We wish to show that there exists
some k ∈ [0↑n] such that Πt[1↑k] ∈ wBn .

Let i be the largest integer such that w ∈ (Πt[1↑i]?).
We may assume that, for all v ∈ wBn , |v| ≥ |w|, and if |v| = |w|, then

v 6∈ (Πt[1↑i+1]?).
By Lemma V.1, for all j ∈ [1↑(i− 1)], w 6∈ ((Πt[1↑i])tj?) ∪ ((Πt[1↑i])tj?).
By Proposition III.4(i), w 6∈ ((Πt[1↑i])ti?).
By the maximality of i, w 6∈ ((Πt[1↑i])ti+1?).
By Proposition III.4(iii), w 6∈ ((Πt[1↑i])ti+1?).
By Lemma V.2, for all j ∈ [(i + 2)↑n], w 6∈ ((Πt[1↑i])tj?) ∪ ((Πt[1↑i])tj?).
Hence, w = Πt[1↑i], as desired.

V.4 Remarks. (i). Let w be a planar element of Σ0,1,n.
Lemmas V.1 and V.2 give an effective procedure for finding φ ∈ Bn first to

minimize |wφ|, and then to obtain the form wφ = Πt[1↑k] for some k ∈ [0↑n].
(ii). Let n ≥ 1 and let w ∈ Σ0,1,n.
Theorem V.3 shows that w lies in the Bn-orbit of t1 if and only if the

cyclically-reduced form of w lies in t[1↑n] and w is planar. Moreover, in this
event, Lemmas V.1 and V.2 effectively produce a φ ∈ Bn such that wφ = t1.

(iii). There is an algorithm which, for any k ∈ [1↑n], and any sequence
w[1↑k] in Σ0,1,n, decides if there exists some φ ∈ Bn such that wφ

[1↑k] = t[1↑k], and

effectively finds such a φ, by using (ii) to convert w1 to t1 if possible, and then
restricting to 〈σ[2↑(n−1)]〉.

This algorithm for Bn is simpler than the Whitehead algorithm for the larger
group Aut Σ0,1,n, essentially because the information carried by planarity is more
detailed then the information carried by the Whitehead graph used in the White-
head algorithm. Enric Ventura has pointed out to us that Whitehead’s algorithm
has the power to decide whether any pair of conjugacy classes in Σ0,1,n lie in the
same Bn-orbit or not; see, for example, [23, Proposition I.4.21].

Let us conclude by emphasizing (ii).

V.5 Theorem (Larue). Let n ≥ 1 and let w ∈ Σ0,1,n. Then w lies in the
Bn-orbit of t1 if and only if the cyclically-reduced form of w lies in t[1↑n] and w
is planar.
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