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Abstract

This article surveys many standard results about the braid group, with
emphasis on simplifying the usual algebraic proofs.

We use van der Waerden’s trick to illuminate the Artin-Magnus proof
of the classic presentation of the braid group considered as the algebraic
mapping-class group of a disc with punctures.

We give a simple, new proof of the o1-trichotomy for the braid group,
and, hence, recover the Dehornoy right-ordering of the braid group.

We give three proofs of the Birman-Hilden theorem concerning the
fidelity of braid-group actions on free products of finite cyclic groups, and
discuss the consequences derived by Perron-Vannier and the connections
with Artin groups and the Wada representations.

The first, very direct, proof, is due to Crisp-Paris and uses the
o1-trichotomy and the Larue-Shpilrain technique. The second proof arises
by studying ends of free groups, and gives interesting extra information.
The third proof arises from Larue’s study of polygonal curves in discs
with punctures, and gives extremely detailed information.
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1 General Notation

Let N denote the set of finite cardinals, {0,1,2,...}.

Throughout, we fix an element n of N.

Let G be a multiplicative group.

For elements a, b of G, we write @:= a~!, a®:= bab, [a]:= {a? | g € G}, the
conjugacy class of @ in G, and a":= ba"b. We let Aut G denote the group of all
automorphisms of G, acting on G on the right with exponent notation.



2 Actions of the braid group

For two subsets A, B of a set X, the complement of AN B in A will be
denoted by A— B (and not by A\ B since we let G\Y denote the set of G-orbits
of a left G-set Y').

An ordering of a set will mean a total ordering for the set. An ordered set is
a set endowed with a specific ordering.

We will make frequent use of sequences, usually with vector notation. We
shall use the language of sequences to introduce indexed symbols and to realize
free monoids. Formally, we define a sequence as a set endowed with a specified
listing of its elements. Thus a sequence has an underlying set; with vector no-
tation, the coordinates are the elements of (the underlying set of) the sequence.
For two sequences A, B, their concatenation will be denoted AV B. By a se-
quence A in a given set X, we mean a sequence endowed with a specified map of
sets A — X; to avoid extra notation, we shall use the same symbol to denote an
element of A and its image in X even when the map is not injective. We often
treat A as an element in the free monoid on X with concatenation as binary
operation, and then the elements of A are its atomic factors.

Let 7, j € Z.

(i,0+1,...,5—1,5) € Z7 ifi < j,
()ez® ifi > 7.
Also, [iToo[ := (4, + 1, + 2,...). We define [j]i] to be the reverse of the
sequence [i17], (4,5 —1,...,i4 1,%).
Let v be a symbol.
For each k € Z, we let v denote the ordered pair (v, k).

We write [i]j]:=

Uiy Vi1, "+ 0 5, Vj—1, Y5 lflg -7
We let vy, := (Vi Vi i1 %) o ‘7
() if i > 7.
Also, Vjiteo = (Vi) Vit1, Vig2,...). We define vj;|;; to be the reverse of the se-

quence V).
Now suppose that vj;1;] is a sequence in the multiplicative group G, that is,
there is specified a map of sets vj;1;; — G, and we treat the elements of vj;1; as
elements of G (possibly with repetitions). We let

Vv v, € Goifd < g

HU[iTj] = o ! ! op - .

leG if 1> 3.

Vv vy € GOt g >,

o= " o L

leG if 7 <.

2 QOutline

Recall that n € N.
Let Xo,1,:= (21, tp1n) | 2111t = 1). Here, 2z and ¢ are symbols, and ¥,
is presented as a one-relator group with generating sequence (zy,t1,...,t,) =
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(z1) V tiitn). In particular, t1,) V fmn] is a sequence in X1, and we see that
Y0,1,n is freely generated by [y

Let Outg, ,, denote the subgroup of Aut X1, consisting of all the automor-
phisms of g1, which respect the sets {2} and {[t;] }icpin]. Let Outgq,o denote
a group of order two, and, for n > 1, let Outg,, denote the group of all auto-
morphisms of ¥, which respect the sets {z1,%1} and {[t;] U [t;] }icpirn. Then
Outg, ,, is a subgroup of index two in Outgy,. We call Outgy,, the algebraic
mapping-class group of the surface of genus 0 with 1 boundary component and
n punctures; see [18] for background on algebraic mapping-class groups.

Frequently, Outai 1., Will be denoted B,, and called the n-string braid group.
(The similar symbol B,, denotes a Coxeter diagram.)

In Section 3, we define a sequence o[ij(,—1) in Outaf 1ns WE review Artin’s
1925 proof that o[1(,—1) generates Outafl’n, and we present related results that
we shall apply in subsequent sections. In Section 4, we recall the definition of
Artin groups, specifically Artin(A,,), Artin(B,) and Artin(D,,). In Section 5, we
verify Artin’s 1925 result that Out[{lm ~ Artin(A,_1), by combining Magnus’
1934 proof, Manfredini’s observation that Ou’“&,(nq)n ~ Artin(B,_1), and the
van der Waerden trick, to condense the calculations involved.

In Section 6, we use results of Section 4 to recover the celebrated oy-tri-
chotomy and the Dehornoy right-ordering of B,. This free-group-action ap-
proach represents a substantial simplification over previous arguments. Let us
emphasize that we verify directly that Outaj 1. Satisfies the oy-trichotomy, which
is the reverse of the route taken by Larue [22], where the o;-trichotomy for
Artin(A,_1) is used to verify that Artin(A,,_;) acts faithfully on g1 ,.

In Section 7, we review the action of B,, on the set of ends of ¥ 1 ,,. We recall
the argument of Thurston [29] that yields the Dehornoy right-ordering of B,,
but not the oi-trichotomy. By analysing further, we obtain new results about
the B,,-orbit of ¢; in g1 .

In Section 8, for each m > 2, we introduce Outg ; ), the algebraic map-
ping-class group of the disc with n C,,-points. We recall the Larue-Shpilrain-
type proof by Crisp-Paris of the Birman-Hilden result that the natural map
from Outo,1, to Outg; ,em is injective. We then modify an argument of Steve
Humphries to show that there is a natural identification Outg; ,m) = Outg 1.
The results previously obtained in Section 7 then provide additional information
in this context.

In Section 9, we review some applications by Perron-Vannier [27] of the
above Birman-Hilden result, and discuss connections with the actions given by
Wada [31] and studied by Shpilrain [30] and Crisp-Paris [10], [11].

Following a kind suggestion of Patrick Dehornoy, we studied the analysis
of the B,-orbit of t; in 3¢, given by David Larue [21]. Larue’s approach is
combinatorial and uses polygonal curves in the punctured disc. By combining
Larue’s approach with Whitehead’s use of graphs, we were able to simplify
Larue’s main arguments; we record our combinatorial approach in an appendix.



4 Actions of the braid group

We also show how Larue’s results imply the results we had obtained in Section 7
by studying ends.

3 Artin’s generators of B,

In this section we recall Artin’s generating sequence oy1(,—1)) of By,.
Let us first fix more notation related to X1, = (21, t1n) | 210t1n) = 1) and
Bn S Aut 2071771.

3.1 Notation. Let m € N. Consider an element w of ¥y;, and a sequence
A[11m] N E1yn) V %[lTn}- We also view afi1,) as a sequence in g1 .

If Mlajim) = w in Yo 1 ,, we say that apyy,) is a monoid expression for w, in
tan) V tan), of length m. We say that ajiyy,) is reduced if, for all j € [1T(n —1)],
Ajp1 7 G5 ity \/Z[nn]- Each element of ¥y ; , has a unique reduced expression,
called the normal form.

Suppose that ajit,,) is the normal form for w. We define the length of w to
be |w|:= m. The set of elements of ¥, whose normal forms have a1, as an
initial segment is denoted (wx); and, the set of elements of ¥ ; ,, whose normal
forms have api1,,, as a terminal segment is denoted (xw). The elements of (wx)
are said to begin with w, and the elements of (xw) are said to end with w.

Let Sym,, denote the group of permutations of (the set underlying) [11n],
acting with exponent notation.

Let ¢ € B,,. There exists a unique permutation m € Sym,,, and a unique
sequence Wopn4+1) i Mg 1, such that wy = 1 and w,4; = 1, and, for each
i € [1Tn], w; & (ti=%) U (t;=x) and

0 =t
For each ¢ € [0Tn], let w; = w;w;1. If j € [iTn], then Iuy ;) = ww;sq. In
particular, ITujp, = w;. We define m(¢) := 7, w;(¢):= w; for i € [0Tn + 1], and
ui(¢) == u; for i € [0Tn]. We write ||¢]:= 3> [t7]=n+2 3 |wi(9)|-
i€liin] i€l
Let 0711(,—1) be the sequence in B,, defined as follows: for all i € [1T(n — 1)]
i if ke[17(i—1)]VI[(i+2)Tn],

and all k € [1n], 17" =<ty if k=1,
tr if k=44 1.
In the literature, o; is sometimes represented in 2 X n-matrix notation, for ex-
ample, in the format

t1 ... ti1 t; ti+1 ti+2 oty
g; = tit1 .
ti ... ti1 ti—i—l tz ti+2 R

We find it convenient to avoid dots and we say that o; and @; are determined by
the expressions
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ke[ (i-1)] ke((i+1)1n] ke[ (i-1)] ke[(i+1)1n]
(s ti it tr) and (s t; tiv1 tr)
ti
= (t tin Tt = (t £, t; te). O

We shall apply the following result in different situations.

3.2 Lemma (Artin [3]). Let ¢ € B,,. Let m = w(¢) and, for each i € [0Tn], let
(i). Suppose that there exists some i € [1T(n — 1)] such that u; € (¥t(q1)r).
Then ||o;o|| < ||o||—2. Moreover, for each j € [171], t U”S and t¢ both begin

with the same element of t1n) V tmn]

(ii). Suppose that there exists some i € [17(n — 1)] such that u; € (ty=x). Then
lz:o|l < |lo|| —2. Moreover, for each j € [17(i—1)], ‘;"ﬁ and t¢ both begin
with the same element of t11n) V tmn].

(iii). Suppose that, for each i € [1T(n—1)], u; & (Lixx) U (¥t(i11)~). Then ¢ = 1.

Proof. (i). There exists some v € X1, — (*t(i+1)) such that u; = vi(41)=. Since
w;(¢) = ujwi11(¢), we have

(3.2.1) wi(¢) = vy wis1(e).

Since v & (xt(it1)~) and wiy1(P) &€ (tu41)=*), there is no cancellation in the

tﬁ(iﬂ)ﬂwiﬂ(@

expression t; for t; hence

(3.2.2) t0 € (Wip1(P)tizyex) and [t7] = 1+ 2v] + 2 + 2|wi 1 (o).

For all j € [11(¢ — 1)] V [(i + 2)Tn], j“b = t¢ hence, ¢7 7% has the same first
letter as t¢ and, |t‘”¢| = |tq-5|
Since t'm5 = tz+1 € (le(gb)t(Hl)w*), we see, from (3.2.2), that t7° has the

same first letter as 7. Also, [t/ = [t7,,].
By (3.2.1), w (¢)w1+1<¢)t(1+1)w = v; hence

w;41(9)
t;r_ﬁ (# z+1>¢ _ (tﬁi(@)(t(iﬂl)w ) _ t’:’;UhLl((;S)‘
Hence, [t73%] < 1+ 2[o] + 2fwipa(¢)] “Z7 |tf] -

It now follows that ||o;6| < [|¢] — 2, and (i ) is proved.

(ii). There exists some v € ¥ 1, — (t;=%) such that u; = t;=v. Since w;;1(P) =
u;w;(¢), we have

(3.2.3) Wis1(@) = Vti=w; ().
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Since T & (xt;x) and w;(¢) & (tix), there is no cancellation in the expression

t?}:ﬁﬂi(qﬁ) for t7,,; hence
(3.2.4) 200 = 1+ 2[0] + 2 + 2Jwi(9)].

For all j € [11(¢ — 1)] V [(Z + 2)Tn], t?d’ = t;z-’; hence, t;i-“z’ has the same first
letter as t;’, and, |t?i¢ = \tf]

Since 719 = ¢, we see that 71| = |t7].

By (3.2.3), wi1(¢)wi(¢)t;= = v; hence

5 i; wit1(9)y (i) ow; (¢
t ¢ = (t§+1>¢ = (t(zill)(”))(t’ ) = Ui ( )-
Hence, [t7] < 1+2[a] + 2Jwi()] “2" |t2,,] — 2.

It now follows that ||7;¢|| < ||¢|| — 2, and (ii) is proved.

(iii). Since ug = Wy (@) & (xt1~) and u, = w,(P) & (t,=x), we see that there

is no cancellation anywhere in the expression uy I (t;=u;). Hence,
1€[17n]

lup TT (tmw;)] = Do |ui| +n, thatis, > [u| =[ug 11 ](ti‘rrul')| —n.

i€[11n] i€[0Tn] i€[07n] i€[lln

Recall that ug I (ti=u;) = 11 (t;ﬁi(¢))=( I t)*= 1II ¢ Hence

1€[1Tn] 1€[1Tn] 1€[1Tn] 1€[17n]

lug I (tiru;)|=nand > |w]=n—-n=0.
i€[17n] i€[01n]

Hence, all the elements of up;, are trivial.
For each i € [07(n + 1)], w; = iy hence, all the elements of w1, are

trivial. Also, II t#= = wy I (tiru;)) = 11 t;. Hence 7 is trivial. Thus
1€[17n] 1€[17n] 1€[17n]

¢ =1. [l
The following is then immediate.

3.3 Proposition (Artin [3]). For each ¢ € B, either ¢ = 1, or there exists some
05 € Olt(n—1)] V T11(n—1)] Such that ||o5o| < [|@|| — 2. Hence, (opi(m-1)) = Ba-
0

3.4 Remarks. If w € Yy, has odd length, then w?" has odd length, and
lw?| < 2Jw| 4+ 1, with equality being achieved only if every odd letter of w
equals t;,1 or t;;;. Similar statements hold with @; in place of o;.

Let ¢ € B, and let |¢| denote the minimum length of a monoid expression
for ¢ in opii(m_1y V Fim_ty. Thus, [t{] < 2!#+1 — 1. Hence, ||¢| < n21#*+ —n.
Proposition 3.3 gives an algorithm which yields a monoid expression for ¢
in oprn-1) V 0ntmn-1) of length at most W, and we have now seen that

loll=n < n2*1—2n _ polel . O
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4 Coxeter diagrams and Artin groups

4.1 Definition. A Cozeter diagram X consists of a set V' together with a func-
tion V xV — NU{oco}, (x,y) — my,, such that, for all z, y € V, m,, =0
and mg,, = m,,. The elements of V' are called the vertices of X, and, for all
x,y €V, we say that m, , is the number of edges joining x and y; thus we can
represent X diagrammatically. We then define the Artin group of X, denoted
Artin(X), to be the group presented with generating set V' and relations saying

that, for all x, y € V| Ty = yr if Mgy =0,
zyr = yry i mey =1,
ryry = yryr if my, =2,

etc.

Notice that if m,, = 0o, then no relation is imposed. Notice also that if V' is
empty, then Artin(X) is the trivial group. [

4.2 Notation. (i). Let A, denote the Coxeter diagram
Ay —— Gy —— " = Ay —— Oy

It is understood that Ay is empty. We define A_; to be empty also.
Thus, in A, the vertex set is afiyy,), and, for i, j € [1Tn], the number of edges

1 if i =g =1,
joming a; to a; 1s D
0 if|i—j|# 1
Hence, Artin(A,) has a presentation with generating set aji1,; and relations
saying that, for i, j € [1n], a;ia; = a;a; if |1 — j| # 1,
aa;a; = ajaa;  if i —j] =1
(ii). Let B, denote the Coxeter diagram
by — by — - — by = bn.

Here, the vertex set is by, and, for ¢, j € [11n], the number of edges joining b;
2 if {i,j} ={n—1,n},
tobjis ¢ 1 if|i—j|=1and {i,j} # {n—1,n},

0 if i —j| # 1.
(iii). For n > 2, let D,, denote the Coxeter diagram
dy,
dy — dy— - — dpyg — dpo — dp1.

Here, the vertex set is dfiq,), and, for 4, j € [1Tn], the number of edges joining
di to dj is

{1 if {i,7} € {{1,2},{2,3},....{n—2,n — 1}, {n — 2,n}},

0 otherwise. O
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5 Artin’s presentation of B,

In this section, we verify Artin’s result that there exists an isomorphism
i€[11(n—1)]

Yn: Artin(A,_;) — B, determined by Eaig% . We express this result by
= (0;

writing B, = Artin{(oy — o9 — -+ — 0,_1).

5.1 Proposition. There exists a homomorphism v, : Artin(A,_1) — B, de-
i€[1T(n—1)]
termined by (q;) . and 7y, is surjective.

= (03)

Proof. (a). Suppose that 1 <i <i+2 < j <n— 1. We have the following.

ke[11(i-1)] ke[ ~1)] Kel(G+2)1n]
(tk t; Liv1 y tj tit1 ty) 7%
= (& tipg 0 t t; ti t)?
= (t) tiy 0 t tier Tty
= (tx t; tin th ti T )7
= (t t; tit1 i tj i1 tr)79%.

(b). Suppose that 1 <i <n — 2. We have the following.

ke[11(i—1)] ke[(i+3)1n]
(s ti tit1 lit2 tg )71
= (t tipn 6T i tg) 7
= (& tive 4 Lt t)”
St 5 g
— (tkz ti—i—l ti+2 t$i+1ti+2 tk)UiJrl
= (tw ti tito tt L)
= (t ti tit1 lito tg)oi1oioin
By (a) and (b), there exists a homomorphism =, : Artin(A4, ;) — B, de-
i€[17(n—1)]
termined by  (g;)» . By Proposition 3.3, (on1(n-1)) = Bn, and, hence, v,
= (03)
is surjective. [

In the remainder of this section, we shall use induction on n to show that the
surjective homomorphism ~,: Artin(A4,,_;) — B, of Proposition 5.1 is an iso-
morphism. Notice that 7, endows Artin(A4,,_;) with a canonical action on ¥ .

The following is precisely [25, Proposition 1] and, also, [10, Proposition 2.1(2)].
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5.2 Lemma (Manfredini [25]). If n > 1, then
Artin(A,_1) X Xo 1, = Artin(a; — ag — -+ — a,-1 = b, ) =~ Artin(B,).

Proof. For n = 1, the result is clear.
For n = 2, we have the following.

Artin(A1> X 2071’2 = <CL1,t[1T2] | tclll = tg, t%l = %2t1t2>
= (a1, b2 | 15" = oty ta) = (ar, ta | (@it2)(a1) = (f2a1)(tatit2))
= <a1,t2 ’ (al)(g2a1z2> = (fgal)(l_bal)) = Art1n< ay —— ZQ

From the case n = 2, we see that there exists a homomorphism
i€[1T(n—1)]

w: Artin( B, ) — Artin(A,,_1) X ¥¢ 1, determined by (b; by )
= (a; tn)
For each k € [11n], let t; denote the element Efb["*“ " of Artin(B,,). For each
i€ [17(n—1)] and k € [1Tn], let us formally define

te  if ke [17i— 1]V [i +27n],

= qti, ifk=i,

t; ithk=i+1.

We shall see that tZi = tgi; this immediately implies that there exists a homomor-
i€[1T(n—1)] k€[L1n]
phism fz: Artin(A,_1) x ¥g 1, — Artin(B,, ) determined by (a; ti) "
= (bi t)
which is then clearly inverse to u, and the result will be proved.

For each m € [n]1], we shall show, by decreasing induction on m, that, for
cach k € [nlm] and each i € [(n —1)|m], €& = 7. For m = n, this is trivial,
and, for m = n—1, it follows from the case n = 2. Suppose that m € [(n—2)]1].
(a). For each k € [n](m + 1)] and each i € [(n — 1)[(m + 1)], & = ¢, by

hypothesis.

For each k € [n|(m + 2)], & € (b (m+2)) and, hence, t%” =t ="

(b). : *

(0t =B < g, =

(@). For each i € [(n — D)1(m +2)], & 2 0y = 6l S, o, =
). g (©) bt @) B 1Bmbonss _ Pt b ) b ibn @ 5, @ _ s,
).

(e

(f

m+1 — "m+2  "mA42 — *m+42 m+1

tl;m — tbm+1bm5m+lzmgm+1 g tbmgm+lgnLgm+1 (i—) tgm—:llgmngrl
a - 77 c),(b),(c -\ e),(a),(e - 5
2 (st b )b QO g T e PO g =

Now the result follows by induction. m



10 Actions of the braid group

We write Stab(Artin(A,); [t,+1]) to denote the Artin(A,)-stabilizer of the
conjugacy class [t,11] under the Artin(A,)-action on ¥ ,4+1. The Reidemeis-
ter-Schreier rewriting technique automatically gives a useful presentation of
Stab(Artin(A,); [tn+1]) but the resulting exposition is tedious. Once the pre-
sentation has been found, we can verify it directly using the van der Waerden
trick, as in the following proof.

5.3 Theorem (Magnus [24]). Let n > 1.

(i). There ezists a homomorphism i€[17(n—1)]
Gn: Artin(A, 1) X o1, — Artin(A,) determined by  (a; t, )"

(ii). ¢y, is injective.
(iii). For eachi € [1Tn], t9" =@, "D in Artin(A,).
(iv). The image of ¢, is Stab(Artin{A,); [tni1])-

Proof. Let us write G = Artin(A4,) and H = Artin(A,_1) X Xo.1,-
In G,

(an—laian—l)an:(anan—lan) (anan—lan):(an—lanan—l) (an—lanan—l):an—laian—l )

and, hence, a, 1a2a, 10> = a’a, 1a2a,_1. By Lemma 5.2, H ~ Artin(B,),

and we see that there exist a homomorphism ¢,: H — G determined by
i€[1T(n—1)]

(a; t, )% and (i) is proved.
= (a; a,)

Let v be a symbol and let H X vj11(n41) denote a free left H-set with left
H-transversal vi1(n41)). We construct a right G-action on H X vp1(n41) such
that H X vp1(n+1)) becomes an (H, G)-bi-set. For each i € [1Tn], the element a;
of G acts on the right on H X vj11(,41)) as the left H-map that is determined by
the following.

ke[11(i—1)] ke[(i4+2)1(n+1)]
( Vg (% _Vig1 Uk)az‘
= (aj—1vk Vit1 Liv; a; V).

We now verify that the relations of GG are respected.
(a). Suppose that 1 <i <i+2 < j <n. We have the following.

ke[11(i—1)] ke[(i42)1(G—1)] ke[(74+2)1(n+1)]
( Vg V; Vit1 Uk Uy Vj+1 Uk)ai
( ;1 Vit1 tiv; a; Vg, a;V; V41 a;Vk)a;
(az’—laj—lvk A _1Vit1 ziaj—lvi ;a5 1V QU541 ai%jvj aiajvk)
(aj—lai—lvk Aj—1Vi+1 aj—lfivz‘ a; 10V Q;Vj41 ij_Lin ajaﬂ’k)
( aj_qvg aj_10;  Qj_1Vig aj_1v Vjt1 tjv; a;vg)a;
( Vg V4 Vi1 Uk Uy Vj+1 Uk)aj

a;

a;.
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(b). Suppose that 1 <¢ <n — 1. We have the following.

ke[11(i—1)] kE[(i+3)1 (n+1)]
( Uk (% Vi1 Vi42 Uk)aiai+1ai
= ( A; 1V Vit1 B Eivi _ QiVig2 aivk)ai—f—lai
=( a0 Vg2 _tiaivg aitipVig ;041 V) @
= (@i—10;04;1V%  AVipo iy aitiativg ;0410
= ( @010V AV Qiti1Vig tip1tiaiv; Ai10i 041V
= @1V QUi a;Viy2 Liv1tiv; Ai110i V) Qi1
= ( a; Vg a;V; Vit2 zz’+1vz'+1 ai+lvk)aiai+1
= ( VU, Uy Vit1 Vi42 Uk)ai+1aiai+1-

By (a) and (b), the relations of G are respected. Hence, we have a right
G-action on H X vji1(n+1) by left H-maps.

Notice that vnﬂff” = Vpy102 = 1,00y = LyUnt1, and, for each i € [17(n—1)],
vn+1afn = VUp41G; = AUpy1. It follows that, for each h € H, v, h®" = hv,4.
Hence, ¢, is injective. This proves (ii).

Recall that G = Artin(A4,,).

Let ¢ € [17n].

We shall show by decreasing induction on 7 that

Ma,—1y14 Tar,
(5.3.1) gl e,

()

If i = n, then (5.3.1) holds. Now suppose that ¢ > 2, and that (5.3.1) holds.
Conjugating (5.3.1) by @;_; yields

a1y (i— Iay; n)Gi— a;—11lay; n a;lag; n a1y
alte-016-ol _ (Waenm)@ioy _diallerymm _ pallagarym _ Mg

7 i i—1 i—1

By induction, (5.3.1) holds.

Now " = (Frfe=—nul)én = g2Hon-b1i o2 o.M This proves ().
Also, anﬂa[nm = (Ha[nl(i+1)})ai.
If k € [17( — 1)], then

Hajgrn Hapgri—onar; —1yraHar; n Iar; —1yradag; n Iar; n
a. [kIn] __ a. [FT(E=2)] A=) T A+ 1) Tn] a. (=D T] a; [(i+1)Tn]

7 - - i—1 = Q1.

Hence, ai_lﬂdmk} = (Ha[nlk])az
Let 1, denote the map of sets

wni H x Vitn+1] — G, hvk s hd’”Ha[mk] for all hvk = (h, Uk) € H x Ul11(n+1)]-

Hence, for each h € H, we have the following, in G.

ke[11G-1)] R[4 1(n41)]
(h (g v; Vit1 (2 ) a;
= (h*( Mapyy G @y 41y) M@, ) a;
= (h®(a;1TTap, k) a1 f?jﬂa[nu] a; 1@, 1))
= (h (a;—1vy Vit1 tiv; a;Vy ))¥m
=(h ( w v; Vi1 vp o )ag)'r
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This proves that 1, is a map of right G-sets, and, hence, 1,, must be surjective.
Thus, G = U H (z’”v}f”, and, hence, the index of H?" in G is at most n+1.
kE[LT(n+1)]

Consider the action of G' on the set of conjugacy classes {[ts]}rcpinr1) in
Y01n+1. Forany i € [17n], a; acts as the transposition ([t;], [t;i+1]). In particular,
the index of Stab(G; [t,41]) in G is n+ 1. Also, the elements of apjm_1y V (a2)
fix [t,41], and, hence, H?" < Stab(G; [t,+1]). By comparing indices in G, we see
that H?» = Stab(G; [t,41]). This proves (iv). O

5.4 Theorem (Artin). B, = Artin(oy — 09 — -+ — 0,1).

Proof. This is trivial for n < 1.
Hence, we may assume that n > 1 and that the homomorphism
i€[17(n—-1)]
Yn: Artin{A,_1) — By, of Proposition 5.1, determined by ~ (g,)™  is an iso-
= (0i)
morphism. By induction, it remains to show that the surjective homomorphism
Yni1: Artin(A,) — B, is injective.
Consider an element w of the kernel of v,,;. In particular, w fixes ¢,
in the Artin(A,)-action on g ,41. By Theorem 5.3(iv), w lies in the image
of the homomorphism ¢,,: Artin(A4,_1) X ¥, — Artin(A4,) determined by

i€[11(n—1)]
gai Eg;%, and there is a resulting factorization of the form w =
= (a; a,,

w1(a[1T(n—1)])w2(tﬁ?n])- Now,

wi(ap1p—11)w tén wa (¥
(5.4.1) in ArtinA,) X Sormet, tosr =17, :tn—li-(l ntn-1)w2 (i) tnj-(lmn])
Consider the homomorphism ¢,,41: Artin(A,) X g 1,41 — Artin(A4,) de-
1€[1Tn]
termined by (a; t,4q1 )%t . Let ¢ € [1Tn]. By Theorem 5.3(iii),
= (a; 6112—&-1)

s]

(t{iﬁn)¢n+1an+1 _ ( 'QHa[(i+1>T"])¢n+1an+1 — (a'2na[(i+1)Tn])an+1
i i

1

_ (E'QH‘I[(iJrl)T(nJrl)]) — (ti)¢n+1
)

1

(bngn) Pt = (@7, )" = a2 = (b)) o4

In particular, the two sequences tﬁ?n} V(tn41) and tppqq) (in Artin(Ay,) x 3o 1n41)
become conjugate (in Artin{A,;)) under ¢,.;. By Theorem 5.3(ii), @1
is injective.  Since fn41) freely generates the free subgroup g ,41 of
Artin(A,) X Xo1.,+1, we see that t‘ﬁ’}n] V (tn41) also freely generates a free sub-
group of Artin(A,) X ¥g 1 ,41. From (5.4.1), we see that wy must be trivial.
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Hence, w = wi(apjm-1)) in Artin(A,). By the induction hypothesis,
wi(apin-1y) = 1 in Artin(A,_1). Hence w = 1 in Artin(A,,).
Now the result holds by induction. O]

Combining Lemma 5.2, Theorem 5.3 and Theorem 5.4, we have the following.

5.5 Corollary (Artin-Magnus-Manfredini). If n > 2, then

B, = Artin{oy — 09 — -+ — 0,9 — 0y_1) ~ Artin(A4,,_4),

Stab(B,; [tn]) = Artin{o; — oy — -+ — 0,y = 0>_,) ~ Artin(B,,_,),
Bn—l X 2071,71_1 = Artin<01 — 09 —— =+ —— Op—92 —— fn—l) ~ AI’tiIl<Bn_1>.
O

5.6 Historical Remarks. In 1925, Artin [3] found the above presentation of
B,, by an intuitive topological argument; later [4], he indicated that there were
difficulties that could be corrected. In 1934, Magnus [24] gave an algebraic
proof that the relations suffice. In 1945, Markov [26] gave a similar algebraic
proof. In 1947, Bohnenblust [7] gave a similar algebraic proof; in 1948, Chow [8]
simplified the latter proof. All these algebraic proofs of the sufficiency of the
relations involve the Reidemeister-Schreier rewriting process for the subgroup of
index n.

Larue [22] gave a new algebraic proof of the sufficiency of the relations, by
using the o-trichotomy [14] for braid groups. We shall proceed in the opposite
direction. Proofs of the o;-trichotomy for Artin{A,_;) have tended to be more
difficult than proofs that Outg,, = Artin(4,_1), and we shall now see that
Artin’s generation argument easily gives the o;-trichotomy for Outa Ln- m

6 Three trichotomies

6.1 Definitions. Let ¢ € B,,.

We say that ¢ is oy-neutral if ¢ lies in the subgroup of B, generated by
0(21(n—1)]- This holds automatically if n < 1.

We say that ¢ is oy-positive if n > 2 and ¢ has a monoid expression in
O1(n=1)] V O21(n—1) Such that at least one term of the expression is o,. We
say that ¢ is o-positive if n > 2 and, for some i € [17(n — 1)], ¢ has a monoid
expression in ojit(n—1) vV 0i+1)1(n—1)] Such that at least one term of the expression
is o;.

We say that ¢ is oq-negative if ¢ is oq-positive, that is, n > 2 and ¢ has
a monoid expression in o1y V 0[11(n—1) such that at least one term of the
expression is 7.

If ¢ satisfies exactly one of the properties of being oi-neutral, oi-positive
oi-negative, we say that ¢ satisfies the oi-trichotomy.

If every element of B,, satisfies the o;-trichotomy, then we say that B,, sat-
isfies the oi-trichotomy. m
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6.2 Historical Remarks. View Artin(A,) as a subgroup of Artin(A4,,,1) in a
natural way, and let Artin{A,) denote the union of the resulting chain; thus
Artin{A) = (apjoo[). Dehornoy [14, Theorem 6] gave a one-sided ordering of
Artin(A..); the positive semigroup for this ordering is the set of ‘a-positive’
elements of Artin(Ay).

Let ¢ € B,. By replacing ¢ with ¢ if necessary, we can apply Dehornoy’s
result to deduce that there exists some n’ > n such that ¢ is o-negative in
B, or ¢ = 1. Larue [21] showed that this implies that ¢{ € (t;%) and that
this in turn implies that ¢ has a monoid expression in op(n—1y V O[1(n-1)), of
length at most |¢| + in23|¢|. Thus, B, satisfies the o;-trichotomy. Larue’s work
is surveyed in [16, Chapter 5]. Fenn-Greene-Rolfsen-Rourke-Wiest [19] gave
a direct topological proof of the o;-trichotomy for B, without being aware of
Larue’s work and without applying Dehornoy’s result. Their work is surveyed
in [16, Chapter 6.

We shall give elementary direct proofs of the foregoing results and replace
Larue’s bound |¢|+ Z—lln23|¢‘ with the much smaller bound n2/¢! —n. Larue’s proof
contains much interesting information that we shall rework in the Appendix.

O

Part (iii) of the following is new.
6.3 Lemma. Let n > 1 and let ¢ be an element of B, such that t7 € (t1%). Let
7w =m(p) and, for each i € [1Tn], let u; = u;(¢).
(i). Suppose that there exists some i € [17(n — 1)| such that u; € (kg ip1y~).

Then ||o:¢|| < ||| — 2 and t7° € (tyx). Moreover, if t = ty, then
i€27(n—1)].

(ii). Suppose that there exists some i € [21(n — 1)] such that u; € (ti=x). Then
[Zigll < [l — 2 and 17 € (t1%).

(iii). Suppose that, for each i € [11(n — 1)], u; & (*tus1ny~) and, for each
i €21(n—1)], u; & (ti=x). Then ¢ = 1.
Proof. For each i € [0T(n + 1)], let w; = w;(¢).

(i). The first conclusion follows from Artin’s Lemma 3.2(i). Notice that, if
t‘f =ty, then wy =1 and u; = Wy & (xtar).

(ii) follows from Lemma 3.2(ii).

(iii). Recall that ug [] (twu) = [] (t2) = ( [] t)®= ] t: Hence,

1€[17n] 1€[17n] 1€[17n] i€[17n]
upti=uy ] (tiru;) =t1 [] ¢, and, hence,
1€[21n] 1€[21n]
(631) ‘Ul H (tlﬂul)\ = ’zlwﬂotl H tly S |leﬂ0t1\ +n—1.

i€[27n] 1€[21n]
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Since u, = w, & (t,=*), the hypotheses imply that there is no cancellation
anywhere in the expression u; [] (t;=u;). Hence,

1€[27n]
(6.3.1) _
i€[17n] 1€[21n]
Since 110 =t =19 € (t1%), we see that ugti~ € (t1%), and

(633) ‘51U0t17r| =—-1+ |U0t1w| < -1+ ‘U()’ +1= |u0|

Since [ ujorn) = woWn41 = 1, we see that

(634) Hu[lTn} = ﬂo = W1 ¢ (%177*).
(632) _(633) (534 '
Now, > |u| < |ti=woti| < |wo] =" |[]upqn|- Therefore, there is no
i€[17n]
cancellation in [] upy,), and, by (6.3.4), uy & (f1-x). By Lemma 3.2(iii), ¢ = 1.

O

As in Remarks 3.4, we deduce the following from Lemma 6.3 by induction

on |||

6.4 Corollary (Larue [21]). Let n > 1 and let ¢ € B,,.

(i). If t0 € (t1), then ¢ has a monoid expression in T121(n=1)] Y 11 (n—1)]
of length at most W < n2ll — . In particular, ¢ is o1-negative or
o1-neutral.

(ii). ¢ is o1-neutral if and only if t7 = t;. O

6.5 Notation. For each i € [17(n — 1)], let o and ¢! be the automorphisms of
Y0,1,n determined by

ke[114] ke[(i4+2)Tn) ke[17(i—1)] ke[(i+1)Tn]
(te  tin i)™ (te ti tiyn te)T
=(t i, t), = (tw it ti tr).

Then 0; = oj0. Any normal form in t[;;, factorizes into an alternating prod-

uct with factors which are normal forms of non-trivial elements of (tfij(it1))
alternating with factors which are normal forms of non-trivial elements of
(tnra—vvia+2)m))- On (tira+1y), 0; acts as conjugation by t;, while o inter-
changes the two free generators. On (tpju—1)viG+2)n]), 0; and of act as the
identity map. O]

The next result gives three trichotomies, called (a), (b) and (c), which hold
for elements of B,,. Attribution is not sharply defined, but it is reasonable to
attribute (b) to Dehornoy [14], and (c) to Larue [21].
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6.6 Theorem (Dehornoy-Larue [14], [21]). Let n > 1, let ¢ € B,,, and consider
the following nine assertions.

(al). t0 =t;. (a2). t € (t1%) — {t1}. (a3). 7 & (t1%).
(bl). ¢ is oy-neutral. (b2). ¢ is o1-negative. (b3). ¢ is o1-positive.

(cl). (t1%)? = (tix)  (c2). (t1%)? C (t1*). (e3). (t1%)? D (t1%).
Then the following column-equivalences hold:
(al) & (bl) & (cl); (a2) & (b2) & (c2); (a3) < (b3) < (c3).
Hence, exactly one of (bl), (b2), (b3), holds; that is, ¢ satisfies the oy-tri-
chotomy. Hence, B,, satisfies the oi-trichotomy.

Proof. (al) < (bl) by Corollary 6.4(ii). We shall use (al) and (b1) interchange-
ably in the remainder of the proof.

(bl) = (cl). If ¢ is oy-neutral, then so is ¢. It follows that (t;%)? C (t1%)
and (t1x)? C (t1%). Thus, (t%)? = (t1*).

(a2) = (b2). If (a2) holds, then Corollary 6.4(i) shows that (bl) or (b2)
holds. Since (al) fails, (bl) fails. Thus (b2) holds.

(b2) = (c¢2). Using Notation 6.5, we see that

(t1 %) = (tl*)ﬂ'?/l = (tg*)?l C (titax) C (t1x).

Since the composition of injective self-maps of (¢1%) can be bijective only if all
the factors are bijective, we see that (b2) = (c2).
(a3) = (b3). We translate into algebra the crucial reflection argument of [16,
Corollary 5.2.4].
Suppose that (a3) holds.
With Notation 3.1, let wy = wy(¢) and 7 = 7(¢). Then Witi=wy = t{ & (t1%).
It follows that w1~ & (t1x). Hence, W t1= & (t1%). Hence,
T =w, L-wy € (t1%) U {1}. On conjugating by t1, we see that 7" € (f1%).
ke[11n]
Let ¢ be the automorphism of ¥, determined by ( R )¢ .
_ (gkﬂtuk—l)m)
For each k € [11n], (IT¢qx)¢ = ey . It follows that ¢? = 1. Notice that ¢
ke[21n]

belongs to Outg, , = Outg 1, —Out, . Also,  (t; ya< . Hence,
= (% zkm[(k—l)u] )

t(fc _ t§¢c _ ziﬁhﬁ( €<z1*>flq C (tl*)-

By Corollary 6.4(i), ¢¢ has a monoid expression in o21(n=1)] V Olt(n-1)- 1t is
not difficult to check that, for each i € [17(n — 1)], 0% = &, in Outg,. Hence

i =
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¢ (= ¢) has a monoid expression in U[szhl)] \/E[Cn(nq)} (= Tp1(m-1)) YV OQ11(n-1)))-
Hence, (b3) or (bl) holds. Since (a3) holds, (al) fails, and (b1) fails. Thus (b3)
holds.

(b3) = (c3). If ¢ is oi-positive, then ¢ is oi-negative, and, by (b2) = (c2),
(t1%)? C (t1%) and, hence, (t;x) C (t1x)?.

(c1) = (al). Suppose that (al) fails. Then (a2) or (a3) holds. Hence (c2)
or (c3) holds. Hence (cl) fails.

(c2) = (a2) and (c3) = (a3) are proved similarly.

Thus the desired equivalences hold.

Since exactly one of (al), (a2), (a3) holds, exactly one of (bl), (b2), (b3)
holds. [

Recall the definition of o-positive from Definitions 6.1.

6.7 Theorem (Dehornoy [14]). For each ¢ € B, exactly one of the follow-
g holds: ¢ = 1; ¢ is o-positive; ¢ is o-negative. The set of o-positive ele-
ments of B,, is the positive cone of a right-ordering of B,,, called the Dehornoy
right-ordering of B,,.

Proof. Suppose that ¢ # 1.

Let i be the largest element of [1T(n — 1)] such that ¢ € (0pjm-1y). The
natural subscript-shifting isomorphism from (t;1,)) to Xo1n—i+1 induces an iso-
morphism from (ofij(n-1))) t0 Bn_i+1. Notice that ¢ is mapped to an element
of B,,_;11 which is not o;-neutral; by Theorem 6.6, this image is o;-positive or

o1-negative but not both. Hence exactly one of ¢, ¢ is o-positive.
It is easy to see that the product of two o-positive elements of B, is

o-positive.
Hence the set of o-positive elements of B, is the positive cone for a
right-ordering of B,,. m

7 Ends, right-orderings and squarefreeness

7.1 Review. An end of ¥y 1, is a sequence ajjjoo[ il t[11p) \/fmn] such that, for
each i € [17o0] , a;1 # @;. We represent a[1100f @S & formal right-infinite reduced
product, ajas - - - or Ilap .

We denote the set of ends of ¥, by (3¢ 1,,), or simply by € if there is no
risk of confusion.

An element of X1, U E(Xg1,,) is said to be squarefree if, in its reduced ex-
pression, no two consecutive terms are equal; for example: (t1¢2)> is a squarefree
end; titotots is non-squarefree.

For each w € ¥ ; ,,, we define the shadow of w in & to be

(w<) = {@[ITOO[ c¢ | Ha[mw” = ’LU}.
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Thus, for example, (14) = €.

We now give € an ordering, <, as follows. For each w € ¥ ,, we assign
an ordering, <, to a partition of (w<t) into 2n or 2n — 1 subsets, depending as
w=1or w# 1, as follows. We set

(1) < (t14) < (tr€) < (lrd) < -+ < (t,4) < ({, Q).
If i € [1Tn] and w € (*;), then we set

(UJ%Z‘) < (wti+1<) < (U)Ezq_l{) < (wti+2<) < (wagd) < v
s < (wt,4) < (wt, ) < (wt4) < (w;4) < (wtr€) < -
R (wti_1<) < (wfi_1<).

If i € [11n] and w € (xt;), then we set

(wti+1<) < ('lU%Z‘_H‘) < (th_Q{) < (w%i-‘rQ‘) < e
< (wt,4) < (wi,4) < (wi,4) < (wt;€4) < (wty€) < -
e K (wti,1<) < (wfi,1<) < (wtl<)

Hence, for each w € ¥y, we have an ordering < of a partition of (w<) into
2n or 2n — 1 subsets.

If aj100] and byijoo[ are two different ends, then there exists ¢ € N such that
a[lTi] = b[lTi] and Ai4+1 7é bi+1- Let w = Ha[m] = Hb[lﬁ] in EO,Ln‘ Then a[lToo[ and
bj1100f lie in (wt), but lie in different elements of the partition of (w«) into 2n or
2n — 1 subsets. We then order a1 and bpjjso[ using the order of the elements
of the partition of (w<t) that they belong to. This completes the definition of
the ordering < of €.

We remark that the smallest element of € is 20° = (II¢[11,))> and the largest
element of & is 2{° = (ITZp, ). O

7.2 Review. By work of Nielsen-Thurston [9], [29], there is an order-preserving
action of B, on (&(X01,), <); we shall give an elementary version of this result.

We assume that n > 2, and we first define the action of ¢; on €.

Consider any ¢ € €. There is then a unique factorization ¢ = Ilwyq; or
¢ = Ilwpjoc[, Where, in the former case, wp1(;—1) is a finite sequence of non-trivial
group elements, and w; is an end, and, in the latter case, wyjoo[ is an infinite
sequence of non-trivial group elements, and in both cases, the w; alternate be-
tween elements of (t119) U €({tn12))), and elements of (t3)) U E((tz1n))). We
shall express this factorization as e = [wy][ws] - - -.

Recall, from Notation 6.5, that we have the factorization oy = ojof. On
(tnpg) U €((tp1e))s 01 acts as conjugation by ¢, while ¢f interchanges the two
free generators. On (t31,)) U €((t[31n])), 01 and of act as the identity map. This
completes the description of the action of o7, ¢f and oy on €.
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It is not difficult to show that, for any ends aji1oof and byijoc], if (a1100) ™" =
biiteof» then for all 4,57 € N, if j > 2i, then (Ilapq;)”™ € (Hbpyg*). Thus,

(@p1100)”

= lim ((Iaqp;)”)-

It is clear that o7, o] and, hence, o, act bijectively on €. Hence we have the
action of 1 on €. It is then not difficult to verify that we have an action of B,

on €.

We next show that o) respects the ordering of €. We do this by considering
all the ways that two ends can be compared, and the resulting effect of o

and o;. We represent the information in tables.

In all of the following, we

understand that tia, t;b, toc, and tod are reduced expressions for elements of
(tire) U €({tnte))), and b # 1. Since a does not begin with #;, a®7t, begins with
t; or t; or t;. We make the convention that Yo,1n acts trivially on the right

on €.
(- Jwt14) (- Jlwt, @) (- Jwt, 47
- Jfwty 7520][ J[Gw)ty ta(cty)][ - "][(ﬁzw":{)b fl(CU{b)H'”

- J[wity H ClGw)ty G(dh)][-- |- J[(Ew )t B(dT)][ -

‘][@Utl][tﬂt Gl Gt - |- J[(E2w )t B[t - -
- J[wty tla][ ~l(tw)ty tiat)]- - f] - J[(B2w™ )t ta(a®r )] -

Here, the case w = 1 does not present any problems.

(- Jwti«) (- Jfwh €)% (- Jwt, 4
J[wty GO][--- - J[(Tw) Gt (bt)]] - J[(FwT) f%(ba%)][
cwty G][tsTt - | - J[(w) G][EsTEn (B B[t -
Jlwty toc][- - - J[(tw) tita(ch)]] - [(Ewet) ati(e oltz)][
- Jwty Tod][-- - - J[(tw) tita(dty)]] | th ) #at1(d 1?52)]["'
- Jwt][ts Tt - - - J[(tw)][ts T, - [(Faw)] [t 1 -

Here, w does not end with ¢;, and, hence, (f,w’) ends with ¢, ; or Zs.

(- Jwt,«) (- Jwt @)% (- J[wt, )™
[[wio][tsTt [(tw)tz t][tsTtn - ---}[@w":{)tl to][ts]n
- J[wty tial[--- e[ty t(at)][-- |- J[(Ewh )t G (a7t )|
- Jwty GO - e JlGw)ty B0t | J[(Ew )t £ (071
Jlwtz G][tsTt -+ || - J[(ow)ta] [t Tt - - o J{(Ew )t [t - -
Jlwty toc][- - J[(Grw)ta o)l || - J[(G2w )ty Ea(c7 )|
(- Jwt«) (- J[wh, ) (- Jwt, )™
- wty tad][- JGw)ts a(dty)]| e [Bw ) B (A7 )]
- Jwis][Es Tty - [(tw)ty t][tsTt, o [(tw ) tolfts Tt -
- [wty tyal[- Jl(tw)ty ti(aty)]] e J[(Bw )t Lo (a7t )] -
- Jlwty Gb][--- Jl(Ew)ty 1 (bty)]| - Jl(Ew )l G (071)]] -
- Jwty 4[ts 1ty Jl(Ew)ta][tsTt, - - - J[(G2w™ )i ][Es Tt - - -
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(- t;4) (- -t; )7 (- ty )™

oty t4ﬁn... ety tﬂfﬂ... oty t4ﬁn...

- tg][ta][- - - ts][(aty)][- - ] [(a%1t2)]]

o ts][G)] - + tg] Bt (0] - 3] [tala (b7 1) ][
cta][T[ts Tt || e te] [T [t TE - t3][t2][t3 12,

-t [tac][- - - ts][tata(cty)]] t3][tats ("1 o)][
- ta][tad][ - - ty] [Erta(di)]| t3][tat1 (d7rta)][
oty 13 oty taee ty tg---

The remaining tables are clearly of the same form as the last one. Thus we
have proved that the action of oy respects the ordering of €. It follows that the
action of & respects the ordering of €. Similarly, the action of oja1(n-1)]V Tj21(n1)]
respects the ordering of €. Hence B,, acts on (€, <). O

7.3 Remarks (Thurston [29]). The (right) action of B,, on (&, <) gives rise to
many right orderings of B,,.

Let us use the left-to-right lexicographic ordering on (€", <), and consider the
B,,-orbit of tin = (t3°)icnin)- It is not difficult to show that the B,-stabilizer
of t‘[’fm is trivial. Thus we have an injective map

By — €, =t = () )icpm)-

Let < denote the ordering of B,, induced by pullback from €&". Clearly < is a
right-ordering of B,,.

If n > 2 and ¢ € B, is o;-negative, then, as in the proof of Theo-
rem 6.6(b2)=(c2), we have (t,4) C (t;«0). Since max(t;«4) = 15° and ¢ re-
spects the ordering, we see that (£5°)? < #$°. Hence ¢ < 1 and 1 < ¢. Sim-
ilar arguments with (¢;«), i € [2]n], show that, if ¢ € B, is o-positive (resp.
o-negative), then 1 < ¢ (resp. 1 > ¢). Hence the right-ordering of B,, obtained
from (t([’fm])gn C (€™, <) coincides with the Dehornoy right-ordering. O

The following will be useful in the study of squarefreeness.

7.4 Lemma. Letn > 1, leti € [11n], and let w € Xg1,, — (*t;) — (xt;). Then,
n (E(Xo1,), <), the following hold:
(1), wtw((Wtpgn)™) < wti((Wngvii-1)™) = min(wt;t; <);
(ii). min(wt;t;4) < max(wt;t;<);
)
)

(iv). i ((thm) )]

(wtit;4) U (wiit; <) [(wt; w((Htmn]) )T ( tiw
If n > 3, then one of the following holds:

(a). t1((ITEpy0)>®) < wta((Tpgn)>);
(b). 1 ((Wepy1)>®) > whw((Ma))™);

(V).
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Proof. Recall that:
(t14) < (514)
(éiézﬁrl‘) (t; tz+1<) - <
(titia) < (titi4) <--- < (1

< (t2<) < < (tn<) (tn<)

(titn4) < (t; t1<) < (titi14) < ),

% ) (t t1<) (titi_1<) <Z1%2_1<).
t

(i). It is straightforward to see that wt;((ITtynviti—17)>) = mi
Let  denote the element of ¢y, V tjy,) such that w((Ityp,
notice that = # .
If © # t;, then (wt;z4) < (wt;t;«), and we have

1

— B
.
m =
=
A

wt; (1)) € (wtiz4) < (wt;t;«4) > min(wt;t;«).
If x = t;, then W is completely cancelled in w((Ilt;11,))*), and, moreover,

Thus, (i) holds.
(i) is clear.
(iii). It is straightforward to see that wi; (It} 1jvinyit1])*°) = max(wt;t; <0).
Let 2 denote the element of ¢y, V tjyy such that w((Itp, 1)) € (z<);
notice that = # t;.
If x # t;, then (wt;t;4) < (wt;r<), and we have

max(wt;it;4) € (wi;l;4) < (wtz4) > wt;w((Ip1)>).

If © =¢;, then W is completely cancelled in @W(IT¢,|1;)>°, and, moreover,

wgz‘w«ﬂf[nu])oo) = w%i((H%[ill]\/[nliJrl])oo) = max(wt;t; ).

Thus, (iii) holds.

(iv) follows from (i)-(iii).

(v). It is not difficult to see that

wtW((IMtpyn))>°) € (wt; <€) and  wtw((Ep, 1)) € (wt;«).

Case 1. w=1.

Here, t;((Iffny1))) € (it 4) < (tit1 ) 3 ti((Ht15))>) = wt;w((IlE 1)),
and (a) holds.
Case 2. w & (t1x) U {1}.

Here, t1((Ip,1))>) € (t14) < (w4) 3 wt;w((Iltp1,))>), and (a) holds.
Case 3. w € (t1t1*).

Here, t1((ITt,11))>) € (titn <) < (tit14) D wt;w((ITtpg,)>), and (a) holds.
Case 4. w € (t1x) — (tit1x).

Here, wt;w((Iltp,; 1)) € (wt; <) C (t,4) — (tit1«). Hence,

wE((1)™) < max((te) = (it <)) = max(tif, <) = t((Fp)™)
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To prove that (b) holds, it remains to show that
Wt (W 1)>) # 4 (Mhnyy) ™),

that iS, flwfzw((ﬂf[nll])w) §£ (Hf[nu])oo7 that iS, flwﬂ@ € <H%[nll}> We can
write w = tyu where u & (t1x). Then tywt;w = ut;ut;, in normal form. Thus it
suffices to show that ut;ut; & (I¢p,)1)).

If uw =1, then ututy = t;t; & (I, q7), since n > 3.

If u # 1, then ut;uty & (Iltp, 1)), since ut;ut; does not lie in the submonoid
of ¥o,1,» generated by i1y, nor in the submonoid generated by 11,

In both subcases, (b) holds.

In all four cases, (v) holds. O
The following appeared as [5, Lema 2.2.17].

7.5 Theorem. If n > 1 then, for each ¢ € B, t(f((Hf[nu])‘x’) is a squarefree
end.

Proof. This is clear if n = 1.
For n =2, By = (1), and

m 14+2m m m
12 = 1 4 | m e z) = ({07 (DT | e 7).

Thus, every element of t?Q is squarefree and does not end in ,. Hence, every
end in 72 ((ITf,;1))>) is squarefree.
Thus, we may assume that n > 3.

Recall that z; = Ity and Z; = IItpqy,). Let U]y, denote  |J [ti]. By
1€[17n]
Lemma 7.4(v), t1(2{°) does not lie in

U (wtiw(z7°)) T (wtw(z57)))).

w620717n—(*ti)—(*ti)

U [@E)1EER)] (=

meU[ﬂ[lTn] g

iCs

Notice that ¢ permutes the elements of each of the following sets:

Ul {2 (% and | BGED), 2(:00)].

LEEU[t][lTn]

Hence (¢;(25°))? does not liein ~ |J  [z(25°), T(2{°)]. By Lemma 7.4(iv),

IEU[t][lT,ﬂ]

[z(z7°), T(21°)] 2
EU[t][11) ?

U (wt;t; 4) U (wi;t;«)).

wEZo,lyn—(*ti)—(*fi)

TC-

Hence, (t;(25°))? does not lie in the latter set either, and, hence, (¢;(2$°))? is a
squarefree end. Since (t1(25°))? = t2(25°), the desired result holds. O
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We now obtain new information about the B,-orbit of ¢; in ¥ 1 ,,.

7.6 Corollary. Let n > 1, let ¢ € B, and let k € [11n].
(i). ¢ is squarefree.

(). ¢ & (M) ti) — {t “)

(iii). #7 & ((MWtrgh-))Ea)-

Proof. Recall from Notation 3.1 that we write ¢! = 19 Let = 7(¢) and

17(¢)
wy = w1(¢).
It is not difficult to see that

t‘f(zfo):wltlwwl((ﬂf[nu])m) S (w1<)

By Theorem 7.5, t(f(zj’o) is a squarefree end. Hence, w; is squarefree, and w; ¢
(%t LIt (1) 1)) -

Since w; is squarefree, tf is also squarefree. Hence (i) holds.

Also, wy, & (*Zkl_[t[(kﬂ)m) implies that @, & ((Ipk+1y)tex) and, hence,

t9 & (Mg (res 1)) ) ak) — {t fEHT and, also, 7 € ((ITépny (k1) ) tar) - In particular,
( i) holds.

Jetin]
Let £ be the automorphism of ¥ ;, determined by ()¢ - Then
= (tn+1-5)

¢ =1 and ¢ € Outy, ,, = Outgy, — Outy, ,. Also,

5 — —_ —_
15 = 1598 = B o (I oy tar)® = (Tt (i) Enr—i0)-

It follows that t?f’% N (g k) Ens1-x) = 0. Since B, = B,, and tBn = tPn,
we see that t7 ¢ ((TTtp1(n—rk)))tns1-k*). Now replacing k with n + 1 — k gives
(i) 0

In Remark IV.3, we shall give a second proof of Corollary 7.6 using
Larue-Whitehead diagrams.

8 Actions on free products of cyclic groups

8.1 Notation. Throughout this section, we assume that n > 1 and we fix a
positive integer N.

Let ppyn] be a partition of n, that is, pji1n) is a sequence in [1Too[ such that
p1+--+pN=n.

Let mp1n) be a sequence in N — {1}.

We let Z L) 1) | ) denote the group with presentation

(o mun) | 20700 AT FieivLgenpa)-
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Thus, ZO is isomorphic to a free product of cyclic groups,

,].,pgml)J_pémQ)J_'“J_pg\;nN)
P 0) . .
CoPrx Cpb2 - - x C7PN  where Cj is interpreted as C, and pg ) is also written i

Jr .
We let OUto,l,p({"l)Lpg’"?)L---LpS\TN) denote the group of all automorphisms of

20717p§m1)Lpémg)hip%nm which respect {z} and {[7] }ic((ps+...4p;1 +1)1(p1+...4;)] O
each j € [ITN].
We let Out
0,1,p;

20717p§m1)Lpng)LmLp%nN) which respect {z,Z} and

(my) | (my) _ (my) denote the group of all automorphisms of
1py =" Lelpy

{7l U [Tl Yoelor 4o tpjmr 411 (014 40))]

for each j € [1TN].

In the case where all the m; are 0, we get groups denoted Outo 1 p, 1po 1. 1py
and Outa“,LpleQL“LpN. Notice that Outo 1 p, 1po 1. 1py 18 the subgroup of Outg ;
consisting of those elements such that the permutation in Sym,,, arising from
the permutation of {[t;] U [t;]}iei1ny, lies in the natural image of

n’

Sym,, X Sym,,, X -+ x Sym,

in Sym,,.
There are natural maps

(811) Outo,Lplez,L...LpN — Out0717p5m1)J_p(zmQ)J_mLpg\r]nN),

- -
(8'1'2) OUtO,LplLPQJ-'“J-pN - OUtO’LpYM)J_pémQ)J_..,J_pS\?LN) :

Since (8.1.2) is of index two in (8.1.1), we see that (8.1.1) is injective, surjective
or bijective, if and only if (8.1.2) has the same property. O

For topological reasons, we suspect that (8.1.1) and (8.1.2) are isomorphisms.
In this section, we shall prove that this holds in the case where all the m;
are equal, which includes the case N = 1. We begin by proving that (8.1.1)
and (8.1.2) are injective, which seems to be new.

8.2 Theorem. With Notation 8.1, the maps

.. — m m m
(8.1.1) Outo,1,p) Lps L Lpy OUtO,Lpg D 1) [
8.1.2 Out,! — Out™

( ) Ovlvle—IJQJ-'“J-pN 0,1,p§m1)J_pém2)J_J_p§\TN)

are injective.

Proof. Suppose that ¢ is an element of the kernel of (8.1.1) or (8.1.2). Clearly,

¢ € Outg, ,,. Also tﬁm and ?[11,) both have the same image in

¢ .
207 L) L) | ) By Theorem 7.5, {11y 18 & sequence of squarefree ele-
ments of ¥y ,, and, hence, they have the same normal form in Yg,, and in

Hence tﬁm] = l[11n], @8 sequences in Yo 1,. Thus ¢ =1,

2071,p§m1)Lp(2m2)J_J_p5\77‘N) .
and the result is proved. Il
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8.3 Historical Remarks. Let us now restrict to the classic case where N = 1.
Here, for an integer m > 2, we are considering the action of Outg;, on C)7,
and it induces maps

(8.3.1) Outg 1, — Outg g ,0m,
(8.3.2) Outg,,, — Outar,Ln(m) .

Theorem 8.2 shows that these maps are injective. Birman-Hilden [6, Theo-
rem 7| gave a topological proof that (8.3.2) is injective, thus answering a question
of Magnus. Crisp-Paris [11] gave an elegant algebraic proof of the injectivity
of (8.3.2) using the oy-trichotomy and the technique of Larue [22] and Shpil-
rain [30]. Here is the essence of their proof.

Suppose that ¢ is a non-trivial element of B,, = Outaf 1n- We will show that
¢ acts non-trivially on 3 ;,m).

We may assume that n > 3. By Theorem 6.7, we may replace ¢ with
¢ if necessary, and assume that ¢ is o-negative. Thus there exists some
i € [17(n — 1)] such that ¢ has a monoid expression in o[it1)1(n-1) V Tlit(n-1)
and o; appears at least once in the expression.

Let (7;x) denote the set of elements of X, ,m whose free-product normal
form begins with an element of (7;) — {1}. With Notation 6.5,

_ iy _, (n>2)
(77%)7 = (77%)7 % = (774%)7 © 7i(7ia%) C (77%).
Because the elements of o[t1)1(n—1)] V Tlit(n—1)] act as injective self-maps
on (77%), it follows that (77%)? C (77%), and, hence, ¢ acts non-trivially on
20,1,n(m), as desired. [l

Let us now verify the surjectivity of the maps (8.3.1) and (8.3.2). The case
where m = 2 is due to Stephen Humpbhries [2, Lemma 2.1.7].

8.4 Notation. Let m, n € N with n > 1 and m > 2. Let [%] denote the
greatest integer not exceeding %. Then [0T[ 2]V [(—1)[(— |22 ])] is a sequence
of representatives for the integers modulo m. For 7% € (7 | 7™ = 1), we define
7| by

ReOTIZ)]  kel—DL(- 251 )]

("] )
=( 2k —2k —1)
and we then extend | — | to all of ¥, e additively on normal forms for the
free product C)".
Let ¢ € Out:;l’n(m). There exists a unique permutation 7 € Sym,,, and a

unique sequence Wpj(n41)] N g q ,em such that wo =1 and w41 = 1, and, for
each i € [11n], w; & (17:%) and 7¥ = 7%, For each i € [07n], let u; = w;W; 1.

We define 7(¢) = 7, w;(¢):= wi,ii € [0T(n+1)], and u;(¢) = u;, i € [0Tn]. We
write ||p|l=n+2 > |wi(9)]. O

1€[17n]
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The following is similar to Artin’s Lemma 3.2.

8.5 Lemma. Letn > 1, m > 2 and let ¢ € Outyy o). Let m = w(¢). For each
i € [0Tn], let u; = ui(¢). For each i € [11n], let a;, b; denote the elements of
[0T(m — 1)] determined by the following:

! Qi

there exists some u; € X1 ,om) — (%7j%) such that u;_y = ulT;

1T

there exists some uj € X o) — (Tjx) such that u; = Thiul.

In particular, ay = b, = 0.
(). Leti€ [2Tn]. If a; € [[5|T(m —1)], then |[oi19]| < [|¢]|.
(ii). Letie [11(n—1)]. Ifb; € [["5]1(m = 1)], then [[7:0] < [¢]|.
(iii). If ¢ # 1, there exists some 0§ € Oy(n1)]V Tltmna) such that ||osé|| < ||o].

Proof. (i). Let a = a;. There exists some v € ¥j, ,m) — (%7;%) such that
ui—1 = vk, Since w;_1(¢) = u;_1w;(¢), we have

(8.5.1) wi—1(¢) = v wi(9);

since w; (@) & (T/=x) and v &€ (*7/%), vTiw;(¢) is a free-product normal form for
w;—1(3).
a+1

Claim. |7577] < |7%].

Proof of claim. If o' € [([2] + 1)T(m — 1)], then ¢/ —m € [(—[=~])1(-1)],
and, hence,
78| = [7&™ = —2(a' —m) — 1 =2m — 2d’ — 1.
Therefore, if a € [[2]1(m —2)], |75 =2m —2(a+ 1) — 1 = 2m — 2a — 3.
Thus, |75 < |7%] if a € [([2] + 1)T(m — 2)].
Fora=[2] a> ™" and 74| =2a > 2m — 2a — 3 = |75

a+1

Fora=m—1, |t%| =1 and |75""| = 0. This proves the claim. O

Thus, |w;—1(9)] = [v| + |7&] + [wi(@)] > |v| + |75 + |wi(¢)].
By (8.5.1), w;_1(¢)wi(¢)7i= = v7&; hence

i—1¢ 5 i—1(P) (i () vt twi ()
T’L'U Y= (Ti‘il)(ﬁ = (T(qffll)w ))(T2 ) = T(ifl)w

Hence, [w;(0i-10)| = [vriz wi(d)] < [v] + |75 + [wi(9)] < |wii(9)]-

For each 7 € [11(i —2)] V [(i + 1)Tn], T](-Ti_l(b = T;-z), and, hence, |w;(0;—19)| =
|w;(#)]-

Also, 777" = 7% in particular, |w;_1(0i_10)| = |wi(¢)).

It now follows that ||o;_10|| < ||¢].



Lluis Bacardit and Warren Dicks 27

ii). Let b = b;. There exists some v € X, ;. — (T%%) such that u; = 7%v.
0,1,n %

Since w;y1(¢) = ww;(¢), we have

(8.5.2) wip1 () = T Towi(9).

Since w;(¢) € ((1i=)x) and T & (x(7ix)), U Tonw;(¢) is a free-product normal form
for w;1(¢). Hence, [wiy1(0)] = 0] + 75| + [wi(9)].

Claim. [7.™| < |7%].

Proof of claim. Suppose that b € [LmHJTm] Then m — ' € [[%]]0], and,
hence,
7] = |72 = 2(m — b) = 2m — 2V

Since b € [| ™ ]1(m — 1)],
7o =2m —2(b+ 1) = 2m — 2b — 2 < |7%|.
This proves the claim. O]

Hence w1 (9)| > [o] + [T + [wi(9)].
For all j € [1T(z — )] V[(i+2)Tn], 77 = 77; hence, |w;(T:0)| = |w;(9)|.
Since 7’;1(125 = 7¥, we see that |w1+1(01¢)| = |w;()].

By (8.5.2), w1+1(¢)@i(¢)ﬂw =0 7ot hence

T;

5 7 w; wi(4) o 7o wi(9)
¢ _ ( )qﬁ = ( +1(¢>))( ) ‘

Tit1 (i+1)7 = Tir

Hence, [w;(7;0)| = [0 7 wi()] < 0] + 7] + [wi(@)] < [wisa(0)].

It now follows that ||0ng|| < ||¢]l, and (ii) is proved.

(iii). If ¢ # 1, we choose a distinguished element of [1Tn] as follows.

If, for some i € [17n], 7% % = 1, we take any such i to be our distinguished
element of [17Tn].

Consider then the case where, for all i € [17n], 7% £ 1. Thus, there is

no further cancellation in HTmn] Since ¢ fixes Hrmn], it is not difficult to see

that, for all 4 € [17n], 7% = 7,. Since ¢ # 1, it is then not difficult to show
that there exists some ¢ € [1Tn] such that (a;, b;) # (0,0). We take any such ¢
to be our distinguished element of [11n].

In each case, let i denote our distinguished element of [11n].

Notice that (a;,b;) # (0,0) and that 7%+ € {1, 7,2 1.

Hence, a; + 1+ b; € {m,m + 1}, and, hence, b; € {m —a; — 1,m — a;}.

Case 1. a; € [[5]T(m —1)].

Here, i € [21n] and, by (i), ||oi_16] < ||9||-
Case 2. a; € [07]252]]

Here, m —a; —1 € [(m—1)| | ], and, hence, b; € [ |1(m —1)]. Here,
i€ [11(n — 1)] and, by (i), [Z:0]) = 9] .
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8.6 Theorem. Let n > 1, m > 2. The natural map Outafl,n — OutaL1 ()
is an isomorphism, and, hence, the natural map Outgy, — Outy; ,m is an
1somorphism.

With Notation 8.1, the maps Outo 1 p, 1pyiipy — OutOJ,pgm)Lp(?m)L__Lp%n),

+ + ~ »
and Outgy ) 10100,y — Out™ () are isomorphisms. ]

0,1,p{™ 1p{™ 1. 1p{

The following is essentially an algebraic translation of a part of a topological
argument in [27, Section 3].

8.7 Proposition. With Notation 8.1, in X

subgroup of finite index, and now in Out

0,150 L) Lo ) let H be any

0,150 1p{m2) 11 ) let A be any sub-
group consisting of automorphisms which map H to itself. Then, either the

induced map A — Aut H is injective or (n, N,my) = (2,1, 2).

Proof. Suppose that ¢ € Outm’p(lmlupémﬁL“_Lp%nm, and that ¢ acts as the iden-

tity on H. We shall show that ¢ =1 or (n, N,m;) = (2,1,2).
Let G = Z (mq)

0,1,p¢ J_p;m2)J_-~~J_p§\T,ﬂN)'

For any g € GG, right multiplication by g permutes the elements of the finite
set H\G, so there exists some positive integer k such that ¢g* acts trivially on
H\G. In particular, Hg* = H and, hence, ¢* € H.

Hence, there exists some positive integer k such that (Il7jq,)* € H. Now
(I7p11))? = (II7(190))€ for some € € {1, —1}, and, hence,

(Mrppn)® = (Mr010)™ = 7)) = ) = (W)™

Since II711,) has infinite order in G, we see that e = 1. Thus ¢ fixes II7i4y,).
Consider any ¢ € [1Tn|. Since (Il7pq,)™ € G, there exists some positive
integer k such that (HT[lTn})”k € H. Hence,

T T S T — T.d’ _ T.q>
()™ = (Wr01n) ™ = 7)™ = (Wr0p) ™7 = (rpagn) ™™

Hence 77, commutes with (TI7pi1,))*. A straightforward normal-form argument

shows that Tfﬂ € (Iriqn)-

Hence there exists an integer j such that Tf = (It Y7;. Since Tf is a
conjugate of 7=, the cyclically-reduced form of (Il ,))’7; iS Tirs). Either
j = 0, or there must be cyclic cancellation, and a straightforward analysis then
shows that (n,N,m;) = (2,1,2). Since ¢ was arbitrary, this completes the

proof. O]

9 The B, -group P,

9.1 Notation. Recall that ¥ .12 = C’;er) = (Tn1(nt1)] | T[QlTn+1] = 1).

By Theorem 8.6, B, 41 = Outajlm+1 = Outar1 (nt1)@)" We define ®,, to be the
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subgroup of X ; (, 41y consisting of the elements which have even exponent sum
in the 7;. It is not difficult to see that ®,, is a free group of rank n, and that there
is induced a map from Outo’ly(nﬂ)(z) to Aut ®,. Hence ®, has a B, -action;
we say that ®,, is a By, 41-group, and that ®,, is a B,,1-subgroup of X (., 1y@-

Proposition 8.7 shows that, if n # 1, then the map from Outg; , 1)@ to
Aut @, is injective, and we say that the B, ,i-action is faithful, and that ®,, is a
faithful B, 1-group. n

Over the course of this section, we shall choose various free generating sets
of ®,, to obtain interesting actions. In the next two examples, we identify ¥,
with q)gg and ldentlfy 2972’0 with (I)2g+1-

9.2 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.6] which was an algebraic approximation of
results in [27, Section 3.

Let g € N. Let

Y10 = (Tptg Yntg 21 | Wicpig @i vs))zn = 1),

where the commutator [z,y] of group elements z, y is T xy. Let Out;,  de-
note the group of all automorphisms of ;9 which fix z;. Then X, is free
of rank 2g, freely generated by wpi1g V yp1g, and Out;L0 is the group of all
automorphisms of X ¢ which fix Icpqg (s, vil-

We now recall some Dehn-twist elements of Out}, , from Definitions 3.10
and Remarks 5.1 of [18].

For each i € [11g], we define o, §; € Out,, ; by

ke[17(i—1)] kel(i+1)1g] ke[17(i—1)] kel(i+1)1g]
(. we x  yi o oy and (e oy  © Yy we yR)”
= (»’Uk Yk YiTi Y Tk yk>7 = (xk Yk Ti LY Tk Z/k)-

For each i € [17(g — 1)], write f; = 4iTi 1174121 and define 5; € Outy, by

ke[17(i—1)] k€[(i+2)14]
(Tr Yk T Yo T Y Tk Yk)”
= (e oy fwi oyl miafi v meow).
Let us identify ¥, with ®,, via
ke[l1g]

(x4, Yk 21) P00~

= (Mreniniery) T Taperrn)  27)-

Notice that [z, yx]| = Tx¥pTrys is then identified with

(Trycamyt 2m+1)) (N7 2k 1) 1) Tome 1 (L0721 o)) Tt (LT 20 41)))
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which equals (HT[(2k71)l1})(HT[(Qk)T(2k+1)])(HT[lT(%H)])' It follows that . HT ][a:k, yk]
€lllg

is identified with (II7(i1(2g41)))%-

This corresponds to the surface of genus ¢ with one boundary component
arising as a two-sheeted branched cover of a sphere with one boundary com-
ponent and 2g + 1 double points. Then Bygyy = OutafwgJrl = Out&17(29+1)(2>
becomes embedded in Out;im via the homomorphism represented as

(01 O2 03 04 Op -+ 0292 O2g-1 02g>
ar B B2 e 0 Ber Vg1 By ) ]

Clearly, in the preceding example, the subgroup Bg, of Bgyi; is also em-
bedded in Outg;, but it is more natural to remove from the surface a handle
containing the boundary component (a sphere with three boundary components,
a ‘pair of pants’), and embed By, in Out,_q 2, as follows.

9.3 Example. Now that algebraic proofs of the requisite theorems are known
to us, let us review [18, Example 15.7] which was an algebraic approximation of
results in [27, Section 3.

Let g € N. Let

Ng.20:= (T1g)s Yrgls 22y | (IT [, 9]) T 2p2) = 1).
i€[11g]
Recall that [z,y]:= T yaxy. Then ¥, is free of rank 2¢g + 1 with free gen-
erating sequence Z[i1g V Yntg V (21) and distinguished element z, such that

Zo = (. [111T ][xi, yi])z1. Let Out;1 11,0 denote the group of all automorphisms of
1e(llg
Y20 % (e1 | ) which map ¥, to itself, and fix zi* and z,. It can be shown
that Out}, |, , acts faithfully on the subset ¥g50 U ¥g20e1 of Xga0 % (e1 | ).
Here, e; represents an arc from the base-point of one boundary component,
to the base-point of the other boundary component. Karen Vogtmann calls such
an arc a ‘tether joining the basepoint to the second boundary component’. For
any surface-with-boundaries, A’Campo [1, Section 4, Remarque 6], [27, p.232]
identifies basepoints of all the boundary components, which makes tethers into
loops, to obtain a topological quotient space whose (free) fundamental group is
(faithfully) acted on by the mapping-class group of the surface-with-boundaries.
We now recall some Dehn-twist elements of Out ', , from Definitions 3.10
and Remarks 5.1 of [18].
For each i € [11g], we define oy, 5; € OUt;_,lLLO by

ke[17(i—1)] ke[(i+1)1g]

(35k Yk Z; Yi T Y 21 el)ai
= (T Y Ui Yi Tk Yu 2 €1),
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ke[11(i-1)] kel(i+1)1]
(T Y T ¥ T Y 2 e)
=(Tr Y T Ty Tx Yp 2 €1).
For i € [11(g — 1)], write f; = ¥iTi+1Y; 11211 and define 7; € OUt;,uLo by
ke[17(i—1)] ke[(i+2)1g]
(T Yn T Y o Tiga Yie1 Tk Y 21 e)”
= (Tr Y 71% yzf Tivfi Vi1 Tk Y 21 e1),
and write f; = yy21 and define v, € Out;il 110 by
ke[11(—1)]

(Tr Yk Tg Yy 21 e1)”

=(z oy f,re uy 2 Fer)

Let us identify ¥, ¢ with ®9441 and 320U, 2 0e1 with 2071’(294_2)(2) via the
map X,00 * (€1) — Yo,1,(2g+2) determined by

kelllg]
( Tk Yk 21 el 22)29,2,0*<61>~>ZO,1,(2g+2)(2)
T
:(HT[(2k+1)¢(2k)} Tzk+1HT[1T(2k+1)] 212”2 Tog+2 21)‘

This corresponds to the surface of genus g with two boundary components arising
as a two-sheeted branched cover of a sphere with one boundary component and
2g + 2 double points. Now Bygys = Outy, 5,0 = OUt(J)r,l,(QngZ)(Q) is embedded in
Out;1 11,0 Via a homomorphism represented as

01 02 O3 04 05 -+ 0292 0291 029 0O2g41
ar By Booye e 59—1 Yg—1 ﬁg Yo

For g > 1, Proposition 8.7 shows that this is an embedding. In the case where
g = 0, the interpretation of the notation is as follows: ¢y is mapped to 7y which
fixes z; and sends e; to Zje;. O

Clearly, in the preceding example, the subgroup Bogy1 of Bogio is also em-
bedded in Out:;1 11,0, but it is more natural to remove from the surface a disc
containing the two boundary components (a sphere with three boundary com-
ponents), and embed By, in Out;ilﬁo, as in Example 9.2.

We next discuss the Perron-Vannier isomorphism B, .1 X ®,, ~ Artin(D, 1)
for n > 1. The following was shown to us by Mladen Bestvina.

9.4 Lemma. Let n > 2. Then, Artin(D,) has a unique automorphism v of
order two which fizes dpy(n—2) and interchanges d,— and d,. The semidirect
product Artin(D,,) x (v) has presentation

Artin(dl— dgi 7dn—37 dn_gidn_l :U|U2:1>,
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Proof. Notice that

<dn717 dna v ‘ /U2 = 17 dz—l = drm dyp—1d, = dndnfl>
= (dyp_1,v |V =1,d,_1d"_| = d’_d,_1) = Artin{ d,_; = v | v =1).

The result now follows easily. O]
Part of the following appears in [27] and [10].

9.5 Theorem (Perron-Vannier [27]). Let n > 2.
On—1TnTn-1

(l) 3n X (I)n—l = Artin(01 — 09 —— *** —— Op—3 —— Op_—9 —— O'n_1>
~ Artin(D,,).
(ii). By, x ®,_1 has a unique automorphism v of order two which fizes op11(—2)]
and interchanges o,_1 and 0, 1Ty Tp_1.
(iii). (By X @) ¥ (V)

= Artin(oy — 0y — -+ — Op3— Opg — Op_1 — v |V =1).

Proof. By Corollary 5.5, we have a presentation

Bn X 20717,1 = Artin(al — . —— Op—-1 —— tn>

If we impose the relation t2 = 1, we transform B, X o1, into B, X X, e,
and we have

‘Bn X 2071,71(2) = Art1n<0'1 — e —— Op—1 P Tn | TZ — 1>
oy
- Art1n< Or—— " 7 On3 = On-—27" On-1 > X <Tn ‘ Tg = 1>7

by Lemma 9.4. This group has a retraction to (7, | 72 = 1) with kernel the
normal subgroup generated by o[11(,—1)). This normal subgroup contains o,
0;7ir1m; for all i € [17(n — 1)], and we see that this normal subgroup is

Tn

Op—1

B, x D, 1 = Artin{oy — -+ — 0y 3 — Opo—— On_1 );

this agrees with the desired presentation. O]
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9.6 Remarks. Corollary 5.5 says that, for n > 1, we can go down by index
n+ 1 from Artin(A,) by squaring the last generator, and arrive at Artin(B,,) ~

Artin(A,—1) X X014
Theorem 9.5 says that, for n > 2, we can kill the square of the new last
generator, go down by index 2, and arrive at Artin(D,,) ~ Artin(A, 1) x ®,_;.
m

We now review some other free generating sets of ®,, which appear in the
literature.

9.7 Examples. Recall Notation 9.1. In particular, the B, ;-action on ®,, is
faithful if n # 1.

(1). For each k € [1Tn], set xy, = 73,741 in @,,. Then x(11,) is a free generating
set for @, and, for each i € [1Tn], the action of o; on ®,, is determined by

ke[11(i—2)] ke[(i+2)1n]
(l’k Ti—1 T Tit1 xk)gi
= (mp T, T TiTip Tk),

interpreted appropriately for ¢ = 1 and ¢ = n.

(2). For each k € [1Tn], set 2, = 7,117, in @, Then xpq,, is a free generating
set for ®,,, and, for each ¢ € [1T(n — 1)], 0; acts on @[, as follows.

ke[11(i—1)] ke[(i+2)1n] ke[11(n—1)]
(x x; Tit1 xy) (o Ty)7"
= (a4 Ti+1 Tip1TiTi41 Tr). = (Tp_1TK,  Tp).

(3). We next consider a free generating set indicated by the proof of [11,
Proposition A.1(2)].

For each k € [11n], set o} = (TREZ[MI]T]C)HT[“(”*‘U] in ®,,. Then x[qy, is a free
generating set for ®,,, and, for each i € [17(n — 1)], 0; acts on xqy,) as follows.

ke[11(i—1)] ke[(i+2)1n]
(zk T; Tit1 TE)%
= (4, TillT (i 41)19 (g ig1)]) i T).
Let w = (Hx%n(n_l)})xn; then o,, acts as follows.
ke[11(n—1)]
( Tk Tn )7

= (WD ente-n gy, @D -0 g ), -

9.8 Historical Remarks. Let us view B,, as a subgroup of B,, 1 by suppress-
ing 0,. Then the B, -group ®,, becomes a faithful B,,-group, even if n = 1.
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Wada [31] defined various left actions of B,, on a free group of rank n. All but
four of the actions are obviously non-faithful, and two of the remaining four are
obviously equivalent up to changing the free generating set, leaving three actions
to be studied for faithfulness. Shpilrain [30] ingeniously used the o;-trichotomy
to prove that these three are all faithful. Crisp-Paris [11, Proposition A.1(2)]
showed that the second and third of these three faithful actions are equivalent up
to changing the free generating set. In fact, they correspond to Examples 9.7(2),
(3), above, with o,, suppressed, where our actions on the right are the inversions
of their actions on the left. Thus, the second and third of the faithful Wada
actions of B,, are both obtained by choosing suitable free generating sets of the
Perron-Vannier B, ;-group ®,, and suppressing o,,. Hence, Shpilrain [30] had
given the first algebraic proof that B,, acts faithfully on ®,; this includes the
information that B,, acts faithfully on the overgroup ¥ (1)@, and on the free
factor thereof X ,,2).

Sakuma [28] observed that the third Wada action of B, on (x| ) in-
duces an action of B, on (Tpin | :1:[2””]) which, when pre-composed with the
inversion-of-the-generators automorphism, agrees with the Artin action of B,
on ¥y ,». Since the latter is faithful by the Birman-Hilden Theorem [6, The-
orem 7], the third Wada action is faithful.

Shpilrain [30], unaware of Sakuma’s article, repeats the observation that the
third Wada action of B,, on (xp1, | ) induces an action of B,, on (z1y | xﬁm)
and notes that it does not agree with the Artin action of B,, on 3 2. It seems
to be tacitly understood in his discussion that the second Wada action of B,, on
(e | ) induces an action of B, on (j11y) | x[21m]> which clearly agrees with
the Artin action of B,, on X, ,, and then, by the Birman-Hilden Theorem,
the second Wada action is faithful.

The first faithful Wada action is constructed by choosing a non-zero inte-
ger m, and, for each i € [17T(n — 1)], letting o; act on (x| ) by

ke[17(i—1)] ke[(i+2)Tn]
(7 x; Tit1 7))
o7
= (g Tig1 x, Tg).

Edward Formanek has pointed out that T ) freely generates a faithful B,,-sub-
group of (xp1, | ), where faithfulness can be seen from the fact that the
B,-action is the standard Artin action with respect to this free generating set.
This argument gives a transparent proof that this action is faithful. m

Appendix. Larue-Whitehead diagrams

In this appendix, we rework ideas from Chapter 2 and Appendix A of
Larue’s thesis [21], using combinatorial arguments to obtain a description of
the B,-orbit of ;. A topological treatment of similar ideas was given by
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Fenn-Greene-Rolfsen-Rourke-Wiest [19], and it was arrived at independently
of Larue’s work; see [16, Chapters 5, 6].

I Self-homeomorphisms

This section is purely motivational. We shall briefly indicate the mapping-class
viewpoint of the braid group, and the Jordan-curve nature of the Whitehead
graphs of the elements in the B,-orbit of ty ifn>1.

Let C denote the complex plane, and C the Riemann sphere, or projective
complex line, CU{oo}. For each z € C and each non-negative real number r, let
D(z,7) denote the closed disc in C with centre z and radius r, and let D°(z, )
denote the interior of D(z, 7).

Let Sp1, denote the surface formed by deleting from a sphere one open
disc and n points. We shall think of the discs and points as being distin-
guished rather than deleted; for example, it is then meaningful to speak of the
self-homeomorphisms of Sy 1 ,, as permuting the points. We take as our model of
So.1.» the sphere C having [11n] as its set of distinguished points, and D°(0, %) as
its distinguished open disc. We are particularly interested in the set [0Tn], and,
in our diagrams, we shall indicate these points by drawing small discs around
them.

For each k € [01n], we have a distinguished oriented tether, or arc,

{k+7i|ris oo orreal, with r decreasing from oo to 0},

joining oo to k. We label the right flank of this oriented arc tj, and label the
left flank #;; we then cut C open along these arcs and obtain a (2n + 2)-gon,

with clockwise boundary label TI (txf1); see Fig. 1.1.4. We shall use ¢, and
ke[0Tn]

21 interchangeably in this section. Performing the boundary identifications then
gives back C.
The self-homeomorphism A of D(0,1) given by A(rel):= re ) fixes

the boundary of D(0,1) and interchanges + and —%; see Fig. I.1.1. For each

i(0—2mr

2 27

Figure I.1.1: The map A: D(0,1) — D(0, 1), rel s rei@=2mm),

i € [17(n — 1)], let ¢; denote the self-homeomorphism of C which acts
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as the identity map on C - D(i + 1),

and by z— Az —i—1)+i+ 1 onD(i+3,1).
Then ¢[11(,—1) generates a group (gbm n—1)]) of self-homeomorphisms of C which
sheds light on the B,-orbit of ¢;. To describe the induced action of (¢11(m-1y))
on the fundamental group of Sy 1 ,,, we first give C a CW-structure by specifying
a graph S(()}l)m embedded in C.

For each k € [(—1)1n], we have vertices wy,:= k + 3 —1i and vp:=k + 5 +1,
and (in C) an oriented straight edge f; joining wy to vy. For each k € [0Tn], we
have an oriented straight edge e joining wy_1 to wy, and an oriented straight
edge dy joining v_1 to v,. This completes the description of the graph S(g}l)m
Each distinguished point k € [0Tn] is the midpoint of the rectangle in C cut out
by the path fi_idyfer. Forn =3, SO i3 can be seen in Fig. I.1.2.

V-1 dy Yo di V1 dg V2 d3 V3

J=1 o Jo| o [ o fo o f3

Ww-1 ey Wo €1 W1 ey W2 €3 W3
Figure 1.1.2: Sp 1 3.

Let <S()1n | ) denote the (free) fundamental groupoid of Sé}l)’n, and let
(So1
subgraph of So

wW_ 1,w 1) denote the (Ifree) fundamental group o at w_1. €
denote the (free) fund 1 £S5 Th
spanned by e V f—1)1n) 1S @ maximal subtree of S((]ll)n,

Dol Yo, woy);

in |
1n
and djo1,) then determines a free generating set Zjgy, of (5’0
explicitly, for each k € [0Tn], t; = Ilejk—1)) fu— ldkfkl_[e[klo]
The path f-11ldjo1n £ ey, o) cuts out a rectangle in C; the complementary
is then a retract of C — [07n]. Let

~ denote homotopy for closed paths at w_; in C - [0Tn]. We can identify the

region in C together with the graph So

1,n

fundamental groupoid of Sy;, with <S(()11)n | foilld o folTepm o) ~ w_1). We
then identify ¥ ;, with the fundamental group of Sy, at w_q,

Som =SS5 | frlldiop fullEny0) ~ w_1)(w_1,w_1)
= (tptn) | Mporn) = 1).

Consider the action of ¢; on the graph SO in- For n =3, the result can be
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do dy do ds
I
fal o fo .CD. f2 o f3
f1
€0 (&) €9 €3

Figure 1.1.3: S(()’ll);,, and its image under ¢;.

seen in Fig. 1.1.3. The crucial point is that f{' ~ ey fodsf @1 fodi, and all
the other elements of S(()’ll)’3 are fixed by ¢q; this makes the action quite simple

algebraically. Then, 71¢1 ~ di foe1fidafo€s, and, for the free generator ¢, =
60f0d1f1HE[1lo], we have

t(fl ~ e fody (81?061f1d2?252)né[1w] ~ H€[0T11f1d272H5[210} = 1.
Similarly, for this element, ¢y, we have

t%’l ~ He[om(62f282?1€1f0d1)d272né[210}
~ Hejopy) f2327151fOHd[1T2J2HE[2w] ~ Lot

where the latter homotopy can be seen directly by collapsing the elements of
e[z V flor2), which lie in the maximal subtree. Thus, we see that ¢; acts on X1,
as the automorphism o. It follows that the action of any given element of B,, on
Y0,1.n 1s induced by some self-homeomorphism ¢ & <¢[1T(n—1)]>- The interesting
feature now is that ¢ carries the oriented Jordan curve f,ll_[d[omflﬂé[l 10] (~

tot1) to an oriented Jordan curve f_ll_[d[omffbﬂé[lw] (~ (tot1)® ~ tot‘f).
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| |
21Z1 tuti taity  t3iis
; ; i
| | | |
| | | |
| | | |
P i i i
21 /,»‘\\\51 Z1 Zl
o i ye t
t‘g)\\ 1/%1 tS. / fl
to Ty to to

Figure 1.1.4: Jordan curves for zlt?l and a Whitehead graph for tfl = titoty.

Recall that C is obtained by edge identification from the (2n + 2)-gon with

clockwise boundary label T (;t;). The Jordan curve f_ll_[d[ml]?f) IIep o) has
1€[0Tn]

as its preimage, in the (2n + 2)-gon, the union of a family of disjoint oriented
arcs. These arcs can be used to reconstruct t(f, since the Jordan curve cyclically
reads off tot‘f from its meetings with the labelled oriented tethers; notice that
the set of tethers is now dual to the set of generators t/y,). The purpose of this
appendix is to define and study a combinatorial representation of the family of
arcs, and recover Larue’s characterization of the elements of 3",

Although it will not be used in our arguments, let us mention the fact that,
on collapsing the interior of each labelled edge of the (2n + 2)-gon to a labelled
vertex, each oriented arc in the family becomes an oriented edge, and we recover
the (directed, multi-edge, non-cyclic) Whitehead graph of ¢7; see Fig. 1.1.4.

II Nested sets

We now introduce some formal definitions that will allow us to associate a com-
binatorial Jordan curve to each element of ¢

I1.1 Definitions. Let (A, <) be a finite ordered set, and let m € N.

Let N denote the number of elements of A. Then A is order-isomorphic to
[1TN] in a unique way, and we assign to A the induced metric, denoted d4. Thus
da(ay,as) = 1if and only if a1 # as and no element of A lies strictly between a,
and as.
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Let ay, ag, by, by be elements of A. We say that {ay, b} is nested with {az, by}
(for (A, <)) if ay,aq9,by,by are distinct elements of A, and either both of, or
neither of, ay and by lie between a; and by in (A, <). It is not difficult to see
that, in this event, {ag, bo} is nested with {aq,b;}.

Let api1m) and bpipp be sequences in A.

We say that ajiq.,) is a sequence without repetitions if a; # a; for all i # j in
[1Tm)].

We say that afij,,) is an ascending sequence (in (A, <)) if a; < ag < -+ < ay,
in (A4, <).

We say that {{a;, b;}}iciim) is nested (for (A, <)) if, for all i # j in [11m],
{ai, b;} is nested with {a;,b;} for (A, <).

We let Sym,, act on A™, on the left, by "(apim)) := a7 For example,
(1:23) (a1, ay, as) = (as, a1, az), and, hence, “>3(a, b, c¢) = (c,a,b). The ascending
rearrangement of a1, is the unique ascending sequence in (A, <) that lies in
the Sym,,-orbit of ajiy,.

Let aji12m) be a sequence in A.

A permutation m € Sym,,, is said to embed aji1(2m) i a plane if a2 is
ascending for (A, <), and both {{2i —1,2i}" }icjimy and {{24, 20+ 1}7 Licpim—-1))
are nested in (N, <). We call {{2i —1,2i}" };c[11m] the odd-even pairing, and call
{{2,20 + 1}7 }icpi(m—1y the even-odd pairing.

We say that aqipm) is a planar sequence (in (A, <)) if there exists some
7 € Sym,,, which embeds afi1(2m) in a plane. (If no two consecutive terms of
aptem) are equal, 7 is then unique, but we shall not need this fact.) There is
then an associated diagram in C formed as follows. We assign, to each point
i € [17(2m)] C C the label a;; notice that this means that the label of i is a;.
For each i € [1Tm], we join (2i — 1)™ (labelled as;_1) to (24)™ (labelled ay;) by
an oriented semi-circle in the upper half-plane. For each i € [1T(m — 1)], we
join (29)™ (labelled ay;) to (2¢+1)™ (labelled ag;11) by an oriented semi-circle in
the lower half-plane. These oriented semi-circles link up to form an oriented arc
which traces out the sequence afi1(2m)), and the nesting property means that the
arc has no self-crossings. O]

I1.2 Example. Suppose that apg) = (Z1,t1, 81,82, 2, 81,61, 21) is a sequence
in some ordered set (A, <), and that the ascending rearrangement of apyg is
(zlatlatlatlatlat%t?aZl)-
. 2 3 45 6 78
The permutation 9 5 6 7 4 3 8) = (3,5,7)(4,6) embeds ajg)

in a plane since both {{1,2},{5,6},{7,4},{3,8}} and {{2,5},{6,7},{4,3}} are
nested in (N, <), and @500 (7) 1y 11,19, 1o, 11, 11, 21) = (Z1, 11, 11, 1, T1, B2, B, 21).
The associated diagram can be seen in Fig. I1.2.1.

1
1
L,
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Figure 11.2.1: (zl,tl,%l,tg,l_fg,l_fhtl,Zl). ]

Let us record two results which will be useful later.

II1.3 Lemma. Let (A, <) be an ordered set, let m € N, and let apjemy be a
sequence in A.

Then apymy is planar for (A, <) if and only if there exists an ordered set
(B, <) with |B| = 2m, and a sequence byiyamy in B, without repetitions, and an
ordered-set map B — A, b+ label(b), such that label(bjitam)) = apiem), and
{{bgi, b2i+1}}i6[1T(m—1)] and {{bQi_17 b2i}}i6[1Tm] are nested f07” (B, S)

Proof. Suppose first that apj(2m) is planar for (A, <), and let 7 be an element
of Sym,,, that embeds aji1(2m) in a plane. We take B to be [17(2m)] with the
usual ordering. For each i € [17(2m)], let label(i) = a; and let b; = i™; thus,
label(b;) = label(i™) = a;. All the conditions are satisfied.

Conversely, if B exists, we can identify B with [11(2m)] with the usual
ordering, in a unique way. Then the map ¢ — b; is an element 7 of Sym,,,
that embeds afi1(2m) in a plane. O

I1.4 Lemma. Let (A, <) be an ordered set, and let m be a positive inte-
ger. Let cppm) and Tty be sequences without repetitions in (A, <) such that
{{ei, i} Fiepim s nested, and max(cpyy)) < min(Cuym)). If cipm) is ascending in
(A, <), then Ty 1) is also ascending in (A, <).

Proof. We argue by induction on m. If m = 1, the conclusion is trivial. Now,
assume that m > 2 and that the implication holds with m — 1 in place of m.
We see that ¢; < c; < max(cppm)) < min(Cppy) < €. Since {1, } is nested
with {c2,C2}, we also see that ¢; < ¢ < ¢. By the induction hypothesis, ¢y
is ascending, and hence ¢},|1) is ascending. The result is proved. Il

IIT Planar elements of >,

ITI.1 Definitions. Let A denote (21,Z1) V tfyn V tjpy, the usual monoid-
generating sequence of ¥ ,. We form the ordered set (A, <) with

i<t <t < <tp,<t,<z.
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We remark that, for n # 1, the ordering on A is reminiscent of the ordering of
the ends of X1, in Section 7. We emphasize that, even if n = 1, 2; # t; in A.

Let m € N. Consider a sequence a1y, in t[i1p) \/%[lTn]a and let w = Iapy, €
Y0,1,n; thus ajiq,,) is an expression for w. We define the Whitehead expansion of
apitm) to be the sequence

(El) Vv (\/ze[le](azaal)) \ (Zl> = (217 a‘hala a27527 s 7am7am7 Zl)

in A. We say that afi1,, is a planar expression for w if the Whitehead expansion
of ajim is planar for (A, <). If the unique reduced expression for w is a planar
expression for w, then we say that w is a planar element of X ; ,,. O

II1.2 Examples. (i). tjfot; is planar, since the Whitehead expansion of the
reduced expression is (Z1, 11, 1, ta, t2, t1, 1, 21), which is planar for (A, <), by
Example I1.2; in a sense, Fig. I1.2.1 reflects Fig. [.1.4. We call Fig. 11.2.1 the
Larue- Whitehead diagram of titot;.

(ii). t1t is not planar; there is only one permutation to consider.

(iii). £2 is not planar; there are four permutations to consider.

(iv). t?ml is planar, while t?tzfl is not planar, and these two group elements
have the same Whitehead graph. O

IT1.3 Proposition. Let w € X1 ,. If there exists some planar expression for w,
then (the reduced expression for) w is planar.

Proof. Suppose that a1y, is a planar expression for w, as in Definitions III.1.

By Lemma II.3, there exists an ordered set (B,<) with |B| = 2m + 2,
and a planar sequence bpj(2m42) in (B, <), without repetitions, and an order-
respecting labelling B — A, b — label(b), such that label(bpij2m+2)) is the
Whitehead expansion of afit,).

Suppose that the given planar expression afi,, is not reduced. We shall find
a shorter planar expression for w.

There exists some j € [17(m — 1)] such that a;11 = @; in ¢ V ), and
we may suppose that we have chosen this j in such a way that dg(bgji1,b2ji2)
has the minimum possible value. Notice that label(byj12;43) = (a5, @;,aj, a;).

Clearly, w = Hap1¢j—1)laj;41)1m), and

label(byi12j—viicaens) = EOVE \ (@a)v( \/  (a,@)V(z).
i€[17(j—1)] i€[(j+2)Tm]

It suffices to show that bpj(2j—1)v2j+4)1(2m+2) is planar for (B, <).

Claim. dB(bgj, b2j+3) =1.

Proof of claim. Consider any k € [11T(2m — 1)] such that by lies between by,
and b2j+3.
Let 1 denote (—1)*.
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Since label(by;) = label(byji3) = a;, we see that label(by) = a;. Hence
label(bkM) = Ej = label(bng) = label(bgj+2).
Either a; < @; or a; > @; in (A, <). Hence,

either max{bgj, bk, b2j+3} < min{bng, bk-i-T]? b2j+2} in (B, S),
or min{bgj, bk, b2j+3} > max{bng, bk+n, ij+2} in (B, §),

respectively.
Since {{ba;j, b2j+1}, {b2j+2, baj+3}, {bk, brsn}} is nested, and by, lies between by,
and byjy3, we see, from Lemma I1.4, that by, lies between byj,; and byjio.
Since {bgj+1,bajro} is nested with {byyy, byyo,} and by, lies between bg;iq
and byj12, we see that byio, lies between byji 1 and byji2. Hence,

dp(bk+2n, bktn) < dp(baji1,boji2),

with equality hOlleg only if {bk+2777 karW} = {b2j+1, bgj+2}. AISO7 label(kargn) =
a;, and, hence, label(by43,) = a;. Thus

label(bg, by, brran, brtsy) = (a7, 85,85, a;).

By the minimality of dg(baji1,b2;42), we see that k = 2j or k = 25 + 3. This
proves the claim. Il

Now consider the passage from b[lT(2m+2)] to b[lT(Qj_l)] V b[(2j+4)T(2m+2)}'
For the odd-even pairing, we pass from {{bs;_1, b2} }icj11(m+1) to

{{b2i—1,b2i} FieptG— VG431 (ma1)] Y {{b2j—1, b2jya}}

Thus, we remove {{bgj_l,bgj}, {b2j+17b2j+2}, {b2j+3,b2j+4}}, and we add OIlly
{{bgj_1, b2j+4}}. To see that, forall k € [1T(] — 1)] V [(]—|—3)T(m+1)], {bgk_l, bgk}
is nested with {bg;_1, boj+4}, we note the following:

(byj_1 lies between by and boy)
& (by; lies between by,_1 and byy)
since {bg;_1, by;} is nested with {box_1, boi }
& (bgjys lies between by,_1 and byy)
since dp(baj, bajr3) =1
& (boj14 lies between boy_1 and boy)

since {bajt3, bajra} is nested with {bog_1, boy }.
For the even-odd pairing, we pass from {{b;, bait1} }icfim) to

{{b2s, b2is1 } FieptG-1)vi+2)tm)-

Thus, we remove {{by;, bajt1}, {b2j12,b2j+3}}, and we add nothing. Hence this
remains nested.
This completes the proof. n
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At the end of the next section, we shall see that the following generalizes
Corollary 7.6.

II1.4 Proposition. Let w be a planar element of g1, and let k € [11n].
(). w is squarefree.

(). w & (Mg i) — {1 <

(iii). w & ((IMtpqg—1)))tr*)-

Proof. Suppose that a1y, is the reduced planar expression for w, as in Defini-
tions III.1. By Lemma II.3, there exists an ordered set (B, <) with |B| = 2m+2,
and a planar sequence bpj(2m42) in (B, <), without repetitions, and an order-
respecting labelling B — A, b+ label(b), such that

label(biemszy)) = (Z) V (\/ (ai@)) V (21).

ic[17m)]

(i). Suppose that w is not squarefree; hence, for some i € [17m] and some
(e _[1T(nz—1)], aere+1y) 18 (i, t;) or (4, 6;). Hence label(byan1(aeta))) is (ti, tis ti, &)
or (t;, t;, t;, t;).

Let m; be the number of elements of B with label ¢;. Let cjiy,,,) be the
ascending sequence in (B, <) which is the interval of elements labelled ¢;. For
each k € [1Tm;], let ¢ denote the element of B such that {c, ¢} is an element
of the even-to-odd pairing for bpij2m+2). By the definition of the Whitehead
expansion, the label of ¢ is #;. By Lemma I1.4, €, 1) is the ascending sequence
in (B, <) which is the interval of elements of B labelled ¢;.

By hypothesis, there exists ¢ € [17(m — 1)] such that {by 1, baui2} = {¢j, i}
for some j, k € [1Tm;]. Let us choose ¢ so that j + k is as large as possible. We
claim that & = m,. Suppose not; then ¢ < cx41 < ¢;. Consider the d € B such
that {cy1, d} lies in the odd-even pairing for bji1(2m+2). Then d € ]c,1¢;[. Hence
label(d) is t; or t;. Since apiym is reduced, label(d) # t;. Hence label(d) = ;.
Thus, d = ¢; for some j* € [m;[(j + 1)]. This contradicts the maximality of
k + j. Hence k = m;, as claimed. Similarly, j = m;. Thus {c¢,,Cn,} lies in
both the even-odd pairing and the odd-even pairing. This gives a closed-curve
component within an arc which joins z; to z;. Hence, we have a contradiction.

(ii). Suppose that w € (It} 1)) tik)-

Then apt(n—r+1)] = E[nl(kﬂ)} V (tx) and

label(b[lT(2n72k+3)}) = (zlvzna tna ZTL—17 tn—la ) 7Ek+la tk’-i—la tk’a Zk‘)
Since label(bjon—2k+1)1(2n—2k+3)]) = (te41, ths ti), we see that, in (B, <),
bon—ok+2 < ban_okts < boy_op1 with labels tx, tr, trii.

Since {bon—ok+1, bon—okr2} and {ba,_ok+3, bon_2k+4} are nested in (B, <), we see
that b2n72k+4 € ]bgn,QkJrQTbgn,QkJrl[. In particular, 1ab€1<bgn,2k+4) S {tk, tr, tk+1}
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and label(bgy,_og14) = An_gio. Since appm is reduced, a2 # te. By (i),
Gp_pio 7 tp. Hence a,_gio = tiy1 and the nesting is

bon—akt2 < ban—okts < bap_opra < bap—opy1 with labels ¢y, r, tyir, trtr.
Using the last inequality and Lemma I1.4, we see that

bon—2k+4 < bap—2kt1 < ban—2k < bon—op+s With labels 1, thy1, tos, Totr-

Now 1ab€1(b[1T(2n_2k+7)} ) is

(Z1, oy by b1y b1y« oy Bt 2y Eir2y Lot 1y Tty ks ks Ehtts Lkt 1y Gkt 3y Gn—k+3)
Notice that
bon—ak < Don—ok45 < ban—ok—1 with labels i1, tpi1, tpso.

Also {an—Qk—i—Sa b2n—2k+6} is nested with {bgn_gk, bgn_gk_l}. Hence label(bgn_2k+6)
lies in {tg41,thr1, teso}, and label(bon—okt6) = Gn_ki3. Since appm is reduced,
Un—t+3 7 tir1- By (1), an_krs # ter1. Hence a,_jy3 = tri2 and the nesting is

ban—ok < bon—ok+5 < bon—2k46 < ban—2k—1 With labels i1, tpi1, o, toso.

Using the last inequality and Lemma I1.4, we see that

ban—2kt6 < ban—ok—1 < bap_op—2 < bap_opy7 With labels tj 1o, tyio, tita, thsa.
By repeating the argument in the last paragraph, we eventually find that
I [(kt1)1n)

(iii). Suppose that w € (It p—1)te*).
Then apipr) = tpye-1y V (G,

label (bt akr1)) = (Z1, t1, b, ta, to, ooy ety toet, By Tr),

and by an argument similar to that given in (ii), we find that this is impossible.
]

IV B, permutes the planar elements of X,

IV.1 Proposition. Let w € ¥y, and leti € [17(n —1)]. If w is planar, then
w? 1s planar.

Proof. Suppose that 71y, is any planar expression for w, as in Definitions ITL.1.
In applying o; to (21) V (Vicj1ym (73, 72)) V (21) we replace
each (t;,t;) with (ti41,ti11),
each (%z, tl) with (%i+17ti+1)7

each (tiy1,tiv1) With (Lipr, tipr, iyt tigr, tign),s
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each (tiy1,ti1) with (€41, tivr, Ly tis tivy, tivt)-
We will not perform any cancellations in the resulting sequence.
By Lemma II.3, there exists an ordered set (B,<) with |B| = 2m + 2,
and a planar sequence pjitm+2) in (B, <), without repetitions, and an order-
respecting labelling B — A, b+ label(b), such that

label(pir2m+2)) = (1) V (Vicppm (1)) V (21).

Let m; denote the number of elements of B with label ¢;, and let m;,; denote
the number of elements of B with label t;,1. To begin, we have to add 4m;,4
elements to B, and we have to specify the ordering on the expanded set.

Let ¢[11m,] denote the ascending sequence of those elements of B which have
label ;. Let ¢, 1) denote the ascending sequence of those elements of B which
have label ¢;,. Let dj1tm,,,] denote the ascending sequence of those elements of
B which have label #;1,. Let 3[7,” .11 denote the ascending sequence of those
elements of B which have label ¢;;;. We then have an interval in B

[Cl Tal] = Cl11my) \ E[mill] \ d[leH—l] \ E[mi-o-lll}'

Figure IV.1.1: C[lTl} V E[lll} V d[ng] V E[Qu]

We create an interval of 4m;; new elements
[alTbl] = A1tmiga] V Q11 V b[leiJrl] N b[mz‘+1ll]

and expand B by inserting this interval [a;7b;] just before the interval [c;Td,].
We then have a new ordered set B’ with 2m + 2 + 4m;, 1 elements.

We now specify the labelling B — A. On cpym,], we change the labels from
ti to tiz1. On €y, 1y, we change the labels from #; to #;11. On dppm,,,), we
change the labels from ¢;; to £;1;. On Zl[ml. +111], we keep the same labels, tivt.
On B — [clTEll], we keep the same labels. We give all the elements of apijm,,
the label t;; all the elements of G, 1) the label ¢;; and all the elements of
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bitmisn) V l_?[m,. . 11) the label ¢;,;. The labelling clearly respects the orderings of
B’ and A.
It follows from Lemma II1.4 that

{{pars P2ks1} Frepim) 2 {{Ciaéi}}iE[ITmi]U{{dﬁc_lj}}jE[ITmH_l]'

Let q11(2m+4m.,,) be the sequence in B’ obtained from ppj(2m+2) as follows. For
each j € [17m;11], there exists a unique k € [1Tm] such that {pox,pori1} =
{d;,d;}. I (pok,pa+1) = (dj,d;) in pujmi2), then it is to be expanded to
(dj, bj, aj, Ej, bj, dj) n q[lT(2m+4mi+1)]‘ If (p2knp2k+l) = (dj, dj) n p[lT(2m+2)]’ then
it is to be expanded to (d;, b;, @;, a;, b;,d;) in q[11(2m+4m,1))- Lhis completes the
definition of gpi1@m4ami 1)

/0N

ai as [ ax b1 ba bo b ¢ a o da da &
i t; t; fipl tipl tipn tipr o Bl Tign Figpn Figpn o Fyq T

N N

Figure IV.1.2: a[lm] V 6[211] V b[ng} V I_)[Qll] V C[lTl] V 5[111] V d[sz] V 3[211}'

In passingfrom {{p2k717p2k}}k€[nm+1] to {{qax—1, q2k}}k€[1T(m+2mi+1)]7 we add
{{@;, b}, {a;, b} tieptma - In B, for each j € [1Tm44],

[@;165] = apin V bpy
has induced odd-even pairing {{@x, bx } }refi1)1,
[@Tb5] = ajtmia V Tlmegatn) V i) V Blmegalil
has induced odd-even pairing {{a, b}, {ax, b} teeljtme -

Both types of intervals are closed under the odd-even pairing; this shows that
Hazk-1, q2k}}k€[1T(m+2mi+1)] is nested.
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In passin_g from {{kaap2k+1}}k€[1Tm] 130 {{Q2k7QZk+1}}_lc€[1T(m+2mi+1fl)}a we
delete {{d;,d;}}jeprm,,), and add {{d;,b;},{a;,a;},{b;j.d;}}jenmiry In B,
for each j € [1Tm;44],

la;1@;] = apyy) V ajjj1) has induced even-odd pairing {{ax, @} }rep1)
[Edej] = Z_)[ju] Ve V Gy V dpyy) has induced even-odd pairing
{{bx, di} Yeent) U {6, G} iepima,
[0;1d5] = bjtmia) V O 1) V Cptma] V Cmata) V digtmgga) V iy )

has induced even-odd pairing

{0k, dic} Freptmesn) Y {{bk, dic} oejtmein) U {{ci, @} Fieptma-

All three types of intervals are closed under the even-odd pairing; this shows
that {{qax, 2k+1} }eept(mt2m,. 1 —1) 1s nested. O

A similar argument shows that &; carries planar elements to planar elements.

IV.2 Theorem. The group B,, acts on the set of planar elements of ¥o 1., and,
hence, if n > 1, every element of t7™ is planar.

IV.3 Remark. By combining Theorem IV.2 and Proposition I11.4, we get an-
other proof of Corollary 7.6. O

V  The B,-orbits of the planar elements of > ,

In this section we rework [21, Lemma 2.3.12] and in this case our argument is
longer than Larue’s. The object is to show that the number of B,,-orbits in the
set of all planar elements of ¢, is n+ 1, and that {II¢;114 }rejorn) s a complete
set of representatives.

V.1 Lemma. Leti, j be elements of [11n] such that j < i—1, let ¢ = Ilopjpi-1y,
and let w be a planar element of X1 .

(1) If w € ((Itppg)tj*), then [w?| < |wl.

(i) If w € ((Htppg)ti*), then |[w?| < |wl.

Proof. 1t is straightforward to show that ¢ acts as

ke11(—1)] ke[G+D)1i]  ke[(i+1)1n]
(ts t; th t)?
= (tg t; e te).

(i). Suppose that w € ((ITt[q4)t%)-
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Figure V.1.1: w e ((Ht[lm})tj*), j <i—1.

Since t;t; is a subword of w and w is planar, every letter occurring in w that
belongs to tj1; V tj1 belongs to a (reduced) subword of w of the form avb,
where a,b € {t;,t;} and v € (t};1;7). Since, moreover, w begins with ITtyy, it
can be shown that it is not possible to have a = ¢; or b =t;. Thus a = b = t;.
Here, |(avb)?| = |avb| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in Z11¢;—1)v[i+1)1n]V f[lT(j_l)]v[(iH)Tn},
and all of which are mapped to single letters by ¢.

Since t; occurs in w, we see that [w?| < |w].

(ii). Suppose that w € ((ITt;14)E;%).

Figure V.12: we ((Ht[lm})%]*), j S 1 — 1.

Since t;t; is a subword of w and w is planar, every letter occurring in w
that belongs to t(41)1q V f[(j+1)m belongs to a (reduced) subword of w of the
form avh, where a,b € {t;,#;} and v € (tj+112)). Since, moreover, w begins with
IIZ}114), it can be shown that it is not possible to have a = #; or b = ;. Thus
a =0b=t;. Here, |(avh)?| = |avb| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in £[11;v(i+1)1n) V fmﬂv[(iﬂnn], and
all of which are mapped to single letters by ¢.

Since t; occurs in w, it is then clear that |w?| < |w| — 2. O

V.2 Lemma. Let i, j be elements of [11n| such that j > i+ 2, let ¢ =
G ((j—1) 1 (i+1)], and let w be a planar element of Yo 1 p-
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(1) If w € ((Mtpqg)t;*), then |w?| < |w|, and, moreover, if |w?| = |w| then
w¢ S (Ht[lTi—l—l}*)-

(i) If w € ((Htpp)t*), then |[w?| < |wl.

Proof. 1t is straightforward to show that ¢ acts as

kel kell+D1G—1) kel(+1)1n]
(tx 12 t t)?
= (tx bt tipn ).

(i). Suppose that w € ((ITt;iq4)t;%).

El)v\ ti ti 4
“— “—

Figure V.2.1: w € ((Itpqq)tj*), 7 > i + 2.

Since t;t; is a subword of w, every letter occurring in w that belongs to
i+ 1G-1) V ta+1)1(j—1) belongs to a (reduced) subword of w of the form avb,
where a,b € {t;,t;} and v € (t{i41)(j_1)). Since, moreover, w begins with
IIZ[114), it can be shown that it is not possible to have a = ¢; or b = t;. Thus
a=0b=1;. Here, |(avh)?| = |avd| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in #[15y(jtn) V E[lTi}V[anb and all of
which are mapped to single letters by ¢.

It is then clear that |w?| < |w].

Moreover, if [w?| = |w|, then w € (tppivijtng), and w? € (Ieppr1y*).

(ii). Suppose that w € ((ITt;114))E;%).

Elvti g ti
“— -’

Figure V.2.2: w € ((Itpqq)t%), j > i+ 2.

Since t;t; is a subword of w and w is planar, every letter occurring in w that
belongs to tit1)15 V Z[(z‘+1)m belongs to a (reduced) subword of w of the form
avb, where a,b € {t;,t;} and v € (ti+1)15))- Since, moreover, w begins with
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It[14, it can be shown that it is not possible to have a = t; or b = t;. Thus
a=0b=1%;. Here, |(avh)?| = |avh| — 2.

We factor w into syllables consisting of all such subwords together with the
individual remaining letters, all of which lie in Zi1iv(+1)1n) V Z[m]v[(ﬂl)m], and
all of which are mapped to single letters by ¢.

Since #; occurs in w, it is then clear that |w?| < |w| — 2. O

V.3 Theorem (Larue). The set {Ilt{x }rejorn) @5 a complete set of representa-
twes of the B,,-orbits in the set of all planar elements of 3¢ 1 .

Proof. Let w be a planar element of Yy ;,. We wish to show that there exists
some k € [01n] such that Iltpy € w®n

Let ¢ be the largest integer such that w € (ITtpq%).

We may assume that, for all v € w® |v| > |w|, and if |v| = |w]|, then
v & (IMtppirax).

By Lemma V.1, for all j € [11(i — 1)], w & ((Itpqq)t%) U (Hepq)E%)-

By Proposition IIL4(i), w & ((ITtpqq)ti*)-

By the maximality of 4, w & ((Ilt{114)tit1%).

By Proposition I11.4(iii), w & ((ITt;11q)tit1%).

By Lemma V.2, for all j € [(i +2)Tn], w & ((Itqpq)tx) U (Tt %).

Hence, w = IIt[11,, as desired. Il

V.4 Remarks. (i). Let w be a planar element of 3 ; ,.

Lemmas V.1 and V.2 give an effective procedure for finding ¢ € B, first to
minimize |w?|, and then to obtain the form w? = Ilt1 for some k € [0Tn].

(ii). Let n > 1 and let w € g 1 .

Theorem V.3 shows that w lies in the B,-orbit of #; if and only if the
cyclically-reduced form of w lies in 11, and w is planar. Moreover, in this
event, Lemmas V.1 and V.2 effectively produce a ¢ € B,, such that w? = ¢,.

(iii). There is an algorithm which, for any & € [1Tn], and any sequence
Wiy in Xo,1,n, decides if there exists some ¢ € B,, such that wﬁm = t114], and
effectively finds such a ¢, by using (ii) to convert w; to t; if possible, and then
restricting to (0j21(n-1)])-

This algorithm for B,, is simpler than the Whitehead algorithm for the larger
group Aut X 1 ,, essentially because the information carried by planarity is more
detailed then the information carried by the Whitehead graph used in the White-
head algorithm. Enric Ventura has pointed out to us that Whitehead’s algorithm
has the power to decide whether any pair of conjugacy classes in ¥ 5, lie in the
same B,-orbit or not; see, for example, [23, Proposition 1.4.21]. O

Let us conclude by emphasizing (ii).

V.5 Theorem (Larue). Let n > 1 and let w € Xo1,. Then w lies in the
B,-orbit of ty if and only if the cyclically-reduced form of w lies in tp1, and w
1$ planar. Il
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