# Retracts of vertex sets of trees and the almost stability theorem 

Warren Dicks and M. J. Dunwoody

January 6, 2007


#### Abstract

Let $G$ be a group, let $T$ be an (oriented) $G$-tree with finite edge stabilizers, and let $V T$ denote the vertex set of $T$. We show that, for each $G$-retract $V^{\prime}$ of the $G$-set $V T$, there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is $V^{\prime}$. This fact leads to various new consequences of the almost stability theorem.

We also give an example of a group $G$, a $G$-tree $T$ and a $G$-retract $V^{\prime}$ of $V T$ such that no $G$-tree has vertex set $V^{\prime}$.

2000 Mathematics Subject Classification. Primary: 20E08; Secondary: 05C25, 20 J 05. Key words. Group-action on a tree, retract of $G$-set, almost stability theorem.


## 1 Outline

Throughout the article, let $G$ be a group, and let $\mathbb{N}$ denote the set of finite cardinals, $\{0,1,2, \ldots\}$. All our $G$-actions will be on the left.

The following extends Definitions II.1.1 of [3] (where $A$ is assumed to have trivial $G$-action).
1.1 Definition. Let $E$ and $A$ be $G$-sets.

Let $(E, A)$ denote the set of all functions from $E$ to $A$. An element $v$ of $(E, A)$ has the form $v: E \rightarrow A, e \mapsto v(e)$. There is a natural $G$-action on $(E, A)$ such that $(g v)(e):=g\left(v\left(g^{-1} e\right)\right)$ for all $v \in(E, A), g \in G, e \in E$.

Two elements $v$ and $w$ of $(E, A)$ are said to be almost equal if the set

$$
\{e \in E \mid v(e) \neq w(e)\}
$$

is finite. Almost equality is an equivalence relation; the equivalence classes are called the almost equality classes in $(E, A)$.

A subset $V$ of $(E, A)$ is said to be $G$-stable if $V$ is closed under the $G$-action. In general, a $G$-stable subset is the same as a $G$-subset.

In this article, we wish to strengthen the following result.
1.2 The almost stability theorem [3, Theorem III.8.5]. If $E$ is a $G$-set with finite stabilizers, and $A$ is a nonempty set with trivial $G$-action, and $V$ is a $G$-stable almost equality class in the $G$-set $(E, A)$, then there exists a $G$-tree with finite edge stabilizers and vertex set $V$.

In the light of Bass-Serre theory, the almost stability theorem can be thought of as a broad generalization of Stallings' ends theorem; see [3, Theorem III.2.1].

Let us now recall the notion of a $G$-retract of a $G$-set. The following alters Definition III.1.1 of [3] slightly.
1.3 Definition. A $G$-retract $U$ of a $G$-set $V$ is a $G$-subset of $V$ with the property that, for each $w \in V-U$, there exists $u \in U$ such that $G_{w} \leq G_{u}$, or, equivalently, with the property that there exists a $G$-map, called a $G$-retraction, from $V$ to $U$ which is the identity on $U$.

Chapter IV of [3] collects together a wide variety of consequences of the almost stability theorem 1.2. In some of these applications, the conclusions assert that certain naturally arising $G$-sets are $G$-retracts of vertex sets of $G$-trees with finite edge stabilizers. This leads to the question of whether or not the class of vertex sets of $G$-trees with finite edge stabilizers is closed under taking $G$-retracts. We are now able to answer this in the affirmative; in Section 4 below, we prove that any $G$-retract of the vertex set of a $G$-tree with finite edge stabilizers is itself the vertex set of a $G$-tree with finite edge stabilizers.

In Section 5, we record the resulting generalizations of the almost stability theorem and the applications which are affected. In the most classic example, if $G$ has cohomological dimension one, and $\omega \mathbb{Z} G$ is the augmentation ideal of the group ring $\mathbb{Z} G$, one can deduce that $G$ acts freely on a tree whose vertex set is the $G$-set $1+\omega \mathbb{Z} G$, and, hence, $G$ is a free group; this is a slightly more detailed version of a theorem of Stallings and Swan.

In Section 6, we record an even more general form of the almost stability theorem in which the $G$-action on $A$ need not be trivial.

In Section 7 , we construct a group $G$ and a $G$-retract of a vertex set of a $G$-tree (with infinite edge stabilizers) that is not itself the vertex set of a $G$-tree.

## 2 Operations on trees

Throughout this section we will be working with the following.
2.1 Hypotheses. Let $T=(T, V, E, \iota, \tau)$ be a $G$-tree, as in [3, Definition I.2.3].

We write $V T=V$ and $E T=E$, and we view the underlying $G$-set of $T$ as the disjoint union of $V$ and $E$, written $T=V \vee E$. Here $\iota: E \rightarrow V$ is the initial vertex map and $\tau: E \rightarrow V$ is the terminal vertex map.

We first consider a simple form of retraction, which amplifies Definitions III.7.1 of [3]. Recall that a vertex $v$ of a tree is called a sink if every edge of the tree is oriented towards $v$.

### 2.2 The compressing lemma. Suppose that Hypotheses 2.1 hold.

Let $E^{\prime}$ be a $G$-subset of $E$ such that each component of the subforest $T-E^{\prime}$ of $T$ has a (unique) sink. Let $V^{\prime}$ denote the set of sinks of the components of $T-E^{\prime}$.

Let $i: E^{\prime} \rightarrow E$ denote the inclusion map, and let $\phi: V \rightarrow V^{\prime}$ denote the $G$-retraction which assigns, to each $v \in V$, the sink of that component of $T-E^{\prime}$ which contains $v$.

Then the $G$-graph $T^{\prime}=\left(T^{\prime}, V^{\prime}, E^{\prime}, \phi \circ \iota \circ i, \phi \circ \tau \circ i\right)$ is a $G$-tree.
Let $E^{\prime \prime}=E-E^{\prime}$ and let $V^{\prime \prime}=V-V^{\prime}$. Then $T-E^{\prime}$ is the $G$-subforest of $T$ with vertex set $V$ and edge set $E^{\prime \prime}$. For each $v \in V, \phi(v)$ is reached in $T$ by starting at $v$ and travelling as far as possible along edges in $E^{\prime \prime}$ respecting the orientation. The initial vertex map $\iota: E \rightarrow V$ induces a bijective map $E^{\prime \prime} \rightarrow V^{\prime \prime}$.

We say that $T^{\prime}$ is obtained from $T$ by compressing the closures of the elements of $E^{\prime \prime}$ to their terminal vertices or by compressing the components of $T-E^{\prime}$ to their sinks.

In applications, we usually first $G$-equivariantly reorient $T$ and then, in the resulting tree, compress a $G$-set of closed edges to their terminal vertices; we then call the combined procedure a $G$-equivariant compressing operation.

Proof of Lemma 2.2. The map $\phi$ induces a surjective $G$-map $T \rightarrow T^{\prime}$ in which the fibres are the components of $T-E^{\prime}$. It follows that $T^{\prime}$ is a $G$-tree.

We now recall the sliding operation of Rips-Sela [8, p. 59] as generalized by Forester [7, Section 3.6]; see also the Type 1 operation of [6, p. 146]. We find it convenient to express the result and the proof in the notation of [3].
2.3 The sliding lemma. Suppose that Hypotheses 2.1 hold.

Let $e$ and $f$ be elements of $E$.
Suppose that $\tau e=\iota f, G_{e} \leq G_{f}$, and $G f \cap G e=\emptyset$.
Let $\tau^{\prime}: E \rightarrow V$ denote the map given by

$$
e^{\prime} \mapsto \tau^{\prime}\left(e^{\prime}\right):= \begin{cases}\tau\left(e^{\prime}\right) & \text { if } e^{\prime} \in E-G e \\ \tau(g f) & \text { if } e^{\prime}=\text { ge for some } g \in G\end{cases}
$$

for all $e^{\prime} \in E$.
Then the $G$-graph $T^{\prime}=\left(T^{\prime}, V, E, \iota, \tau^{\prime}\right)$ is a $G$-tree.
Here, we say that $T^{\prime}$ is obtained from $T$ by $G$-equivariantly sliding $\tau e$ along $f$ from $\iota f$ to $\tau f$.

In applications, we usually first $G$-equivariantly reorient $G e$, or $G f$, or both, or neither, and then, in the resulting tree, $G$-equivariantly slide $\tau e$ along $f$ from $\iota f$ to $\tau f$, and then reorient back again. We then call the combined procedure a $G$-equivariant sliding operation.

Proof of Lemma 2.3. It is clear that $T^{\prime}$ is a $G$-graph.
Let $X$ be the $G$-graph obtained from $T$ by deleting the two edge orbits $G e \cup G f$, and then inserting one new vertex orbit $G v$ and three new edge orbits $G e^{\prime} \cup G f_{1} \cup G f_{2}$, with $G_{e^{\prime}}=G_{e}, G_{v}=G_{f_{1}}=G_{f_{2}}=G_{f}$, and setting

$$
\iota\left(e^{\prime}\right):=\iota(e), \quad \iota\left(f_{1}\right):=\iota(f)=\tau(e), \quad \iota\left(f_{2}\right):=\tau\left(e^{\prime}\right):=\tau\left(f_{1}\right):=v, \quad \tau\left(f_{2}\right):=\tau(f)
$$

Thus we are $G$-equivariantly subdividing $f$ into $f_{1}$ and $f_{2}$ by adding $v$, and then sliding $\tau e$ along $f_{1}$ from $\iota f_{1}$ to $\tau f_{1}=v$.

Then $T$ is recovered from $X$ by $G$-equivariantly compressing the closure of $f_{1}$ to $\iota\left(f_{1}\right)$, and renaming $f_{2}$ as $f, e^{\prime}$ as $e$. Thus $X$ maps onto $T$ with fibres which are trees. It follows that $X$ is a tree; see [3, Proposition III.3.3].

Also $T^{\prime}$ is recovered from $X$ by $G$-equivariantly compressing the closure of $f_{2}$ to $\tau\left(f_{2}\right)$, and renaming $f_{1}$ as $f, e^{\prime}$ as $e$. By the compressing lemma 2.2, $T^{\prime}$ is a tree.

## 3 Filtrations

Throughout this section we will be working with the following.
3.1 Hypotheses. Let $T=(T, V, E, \iota, \tau)$ be a $G$-tree, let $U$ be a $G$-retract of the $G$-set $V$, and let $W=V-U$.
3.2 Conventions. We shall use interval notation for ordinals; for example, if $\kappa$ is an ordinal, then $[0, \kappa)$ denotes the set of all ordinals $\alpha$ such that $\alpha<\kappa$.

If we have an ordinal $\kappa$ and a specified map from a set $X$ to $[0, \kappa)$, then we will understand that the following notation applies. Denoting the image of each $x \in X$ by height $(x) \in[0, \kappa)$, we write, for each $\alpha \in[0, \kappa)$ and each $\beta \in[0, \kappa]$,

$$
X[\alpha]:=\{x \in X \mid \operatorname{height}(x)=\alpha\} \quad \text { and } \quad X[0, \beta):=\{x \in X \mid \operatorname{height}(x)<\beta\} .
$$

### 3.3 Definitions. Suppose that Hypotheses 3.1 hold.

Let $P(T)$ denote the set of paths in $T$, as in Definitions I.2.3 of [3]. Thus, for each $p \in P(T)$, we have the initial vertex of $p$, denoted $\iota p$, the terminal vertex of $p$, denoted $\tau p$, the set of edges which occur in $p$, denoted $E(p) \subseteq E$, the length of $p$, denoted length $(p) \in \mathbb{N}$, and the $G$-stabilizer of $p$, denoted $G_{p} \leq G$.

Let $\kappa$ be an ordinal and let

$$
\begin{equation*}
T \rightarrow[0, \kappa), \quad x \mapsto \operatorname{height}(x), \tag{3.3.1}
\end{equation*}
$$

be a map. Since $T$ is nonempty, $\kappa$ must be nonzero. As a set, $T=V \cup E$. Thus, for each $\alpha \in[0, \kappa)$, we have $T[\alpha], E[\alpha]$ and $V[\alpha]$, and, for each $\beta \in[0, \kappa]$, we have $T[0, \beta), E[0, \beta)$ and $V[0, \beta)$.

For each $w \in W$, we then define

$$
\begin{aligned}
P_{T}(w):=\{p \in P(T) \mid \iota p & =w, G_{p}=G_{w}, \operatorname{height}(\tau p)<\operatorname{height}(w) \\
& \operatorname{height}(E(p)) \subseteq\{\operatorname{height}(w), \operatorname{height}(w)+1\}\}
\end{aligned}
$$

We say that (3.3.1) is a $U$-filtration of $T$ if all of the following hold:
(3.3.2) for each $\beta \in[0, \kappa], T[0, \beta)$ is a $G$-subforest of $T$;

$$
\begin{equation*}
T[0]=U \tag{3.3.3}
\end{equation*}
$$

for each $\alpha \in[1, \kappa), T[\alpha]$ is a $G$-finite $G$-subset of $T$; and,
for each $w \in W, P_{T}(w)$ is nonempty.
3.4 Lemma. If Hypotheses 3.1 hold, then there exists a $U$-filtration of $T$.

Proof. We shall recursively construct a family $(E[\alpha] \mid \alpha \in[0, \kappa))$ of $G$-subsets of $E$, for some nonzero ordinal $\kappa$.

We take $E[0]=\emptyset$.
Suppose that $\gamma$ is a nonzero ordinal, and that we have a family $(E[\alpha] \mid \alpha \in[0, \gamma))$ of $G$-subsets of $E$.

For each $\beta \in[0, \gamma]$, we define

$$
E[0, \beta):=\bigcup_{\alpha \in[0, \beta)} E[\alpha] \quad \text { and } \quad V[0, \beta):= \begin{cases}\emptyset & \text { if } \beta=0 \\ U \cup \iota(E[0, \beta)) \cup \tau(E[0, \beta)) & \text { if } \beta>0\end{cases}
$$

For each $\alpha \in[0, \gamma)$, we define $V[\alpha]:=V[0, \alpha+1)-V[0, \alpha)$. Thus

$$
V[0, \beta)=\bigcup_{\alpha \in[0, \beta)} V[\alpha] .
$$

If $E[0, \gamma)=E$, we take $\kappa=\gamma$ and the construction terminates.
Now suppose that $E[0, \gamma) \subset E$. We shall explain how to choose $E[\gamma]$.
If $\gamma$ is a limit ordinal or 1 , we take $E[\gamma]$ to be an arbitrary single $G$-orbit in $E-E[0, \gamma)$.

If $\gamma$ is a successor ordinal greater than 1 then there is a unique $\alpha \in[1, \gamma)$ such that $\gamma=\alpha+1$, and we want to construct $E[\alpha+1]$. Notice that $V[0, \alpha)$ is a $G$-retract of $V$ because $V[0, \alpha)$ contains $U$. Thus we can $G$-equivariantly specify, for each $w \in V[\alpha]$, a $T$-geodesic $p=p(w)$ from $w$ to an element $v=v(w) \in V[0, \alpha)$ fixed by $G_{w}$. Since $G_{w}$ fixes both ends of $p, G_{w}$ fixes $p$. Hence we may assume that $v$ is the first, and hence only, vertex of $p$ that lies in $V[0, \alpha)$. Clearly $G_{p}$ fixes $w$. Thus $G_{w}=G_{p}$. Let $P_{\alpha+1}$ denote the set of edges which occur in the $p(w)$, as $w$
ranges over $V[\alpha]$. Then $P_{\alpha+1} \subseteq E-E[0, \alpha)$, since each element of $E[0, \alpha)$ has both vertices in $V[0, \alpha)$. If $P_{\alpha+1} \subseteq E[\alpha]$, we choose $E[\alpha+1]$ to be an arbitrary single $G$-orbit in $E-E[0, \alpha+1)$. If $P_{\alpha+1} \nsubseteq E[\alpha]$, we take $E[\alpha+1]=P_{\alpha+1}-E[\alpha]$. This completes the description of the recursive construction.

We now verify that we have a $U$-filtration of $T$.
It can be seen that, for each ordinal $\gamma$ such that $(E[\alpha] \mid \alpha \in[0, \gamma))$ is defined, the $E[\alpha], \alpha \in[1, \gamma)$, are pairwise disjoint, nonempty, $G$-subsets of $E$. Hence the cardinal of $\gamma$ is at most one more than the cardinal of $E$. Therefore the construction terminates at some stage. This implies that there exists a nonzero ordinal $\kappa$ such that $E[0, \kappa)=E$. Also $V[0, \kappa)=V$, and $(V[\alpha] \mid \alpha \in[0, \kappa))$ gives a partition of $V$. Thus we have an implicit map $T \rightarrow[0, \kappa)$ and we denote it by $x \mapsto \operatorname{height}(x)$.

Clearly (3.3.2), (3.3.3) and (3.3.5) hold.
If $\alpha \in[1, \kappa)$ and $E[\alpha]$ is $G$-finite, then either $E[0, \alpha+1)=E$ or $V[\alpha], P_{\alpha+1}$ and $E[\alpha+1]$ are $G$-finite. It follows, by transfinite induction, that $E[\alpha]$ and $V[\alpha]$ are $G$-finite for all $\alpha \in[1, \kappa)$. Thus (3.3.4) holds.

## 4 The main result

Let us introduce a technical concept which generalizes that of a finite subgroup.
4.1 Definitions. A subgroup $H$ of $G$ is said to be $G$-conjugate incomparable if, for each $g \in G, H^{g} \subseteq H$ (if and) only if $H^{g}=H$. This clearly holds if $H$ is finite.

We say that a $G$-set $X$ has $G$-conjugate-incomparable stabilizers if, for each $x \in X$, the $G$-stabilizer $G_{x}$ is a $G$-conjugate-incomparable subgroup, that is, for each $g \in G, G_{x} \subseteq G_{g x}$ (if and) only if $G_{x}=G_{g x}$.

Throughout this section we will be working with the following.
4.2 Hypotheses. Let $T=(T, V, E, \iota, \tau)$ be a $G$-tree, let $U$ be a $G$-retract of the $G$-set $V$, and let $W=V-U$.

Suppose that the $G$-set $W$ has $G$-conjugate-incomparable stabilizers.
Let $\kappa$ be an ordinal and let

$$
\begin{equation*}
\text { height }: V \cup E \rightarrow[0, \kappa), \quad x \mapsto \operatorname{height}(x) \tag{4.2.1}
\end{equation*}
$$

be a $U$-filtration of $T$.
4.3 Definitions. Suppose that Hypotheses 4.2 hold.

Let $w \in W$. Define $d_{T}(w):=\min \left\{\operatorname{length}(p) \mid p \in P_{T}(w)\right\}$. Then $d_{T}(w)$ is a positive integer and

$$
\begin{equation*}
d_{T}(g w)=d_{T}(w) \text { for all } g \in G \tag{4.3.1}
\end{equation*}
$$

For $v_{0}, v_{1}$ in $V$, we say that $v_{1}$ is lower than $v_{0}$ if one of the following holds:

$$
\begin{align*}
& \operatorname{height}\left(v_{0}\right)>\operatorname{height}\left(v_{1}\right) ;  \tag{4.3.2}\\
& \operatorname{height}\left(v_{0}\right)=\operatorname{height}\left(v_{1}\right)>0 \text { and } G_{v_{0}}<G_{v_{1}} ; \text { or, }  \tag{4.3.3}\\
& \operatorname{height}\left(v_{0}\right)=\operatorname{height}\left(v_{1}\right)>0 \text { and } G_{v_{0}}=G_{v_{1}} \text { and } d_{T}\left(v_{0}\right)>d_{T}\left(v_{1}\right) \tag{4.3.4}
\end{align*}
$$

An edge $e$ of $T$ is said to be problematic if it joins vertices $v_{0}, v_{1}$ such that $\operatorname{height}(e)=\operatorname{height}\left(v_{1}\right)=\operatorname{height}\left(v_{0}\right)+1$. Notice that height $(e)$ is a successor ordinal and that $v_{0}$ is lower than $v_{1}$.

For each $v_{0} \in W$, there exists a path

$$
\begin{equation*}
v_{0}, e_{1}^{\epsilon_{1}}, v_{1}, e_{2}^{\epsilon_{2}}, v_{2}, \ldots, e_{d}^{\epsilon_{d}}, v_{d} \text { in } P_{T}\left(v_{0}\right) \text { such that } d=d_{T}\left(v_{0}\right) \tag{4.3.5}
\end{equation*}
$$

Here height $\left(v_{1}\right) \leq \operatorname{height}\left(v_{0}\right)+1$. We say that $v_{0}$ is a problematic vertex of $T$ if there exists a path as in (4.3.5) such that height $\left(v_{1}\right)=\operatorname{height}\left(v_{0}\right)+1$. In this event $\operatorname{height}\left(e_{1}\right)=\operatorname{height}\left(v_{1}\right)$ and $e_{1}$ is a problematic edge of $T$.
4.4 Lemma. If Hypotheses 4.2 hold, then applying some transfinite sequence of $G$-equivariant sliding operations to $T$ yields a $G$-tree $T^{\prime}=\left(T^{\prime}, V, E, \iota^{\prime}, \tau^{\prime}\right)$ such that (4.2.1) is also a $U$-filtration of $T^{\prime}$ and $T^{\prime}$ has no problematic vertices.
Proof. We shall construct a family of trees

$$
\left(T_{\beta}=\left(T_{\beta}, V, E, \iota_{\beta}, \tau_{\beta}\right) \mid \beta \in[0, \kappa]\right)
$$

such that, for each $\beta \in[0, \kappa],(4.2 .1)$ is a $U$-filtration of $T_{\beta}$, and $T_{\beta}$ has no problematic vertices in $V[0, \beta)$.

We take $T_{0}=T$.
For each successor ordinal $\beta=\alpha+1 \in[0, \kappa), T_{\alpha+1}$ will be obtained from $T_{\alpha}$ by altering, if necessary, $\iota_{\alpha}$ and $\tau_{\alpha}$ on $E[\alpha+1]$, as described below.

For each limit ordinal $\beta \in[0, \kappa]$, we let $\iota_{\beta}$ be given on $E[\alpha]$ by $\iota_{\alpha}$, for each $\alpha \in[0, \beta)$, and similarly for $\tau_{\beta}$.

Suppose then that $\beta=\alpha+1 \in[0, \kappa)$, that we have a tree $T_{\alpha}=\left(T_{\alpha}, V, E, \iota_{\alpha}, \tau_{\alpha}\right)$, and that (4.2.1) is a $U$-filtration of $T_{\alpha}$, and that $T_{\alpha}$ has no problematic vertices in $V[0, \alpha)$.

We now describe a crucial problem-reducing procedure that can be applied in the case where there exists some $v_{0} \in V[\alpha]$ which is a problematic vertex of $T_{\alpha}$.

Let $d=d_{T_{\alpha}}\left(v_{0}\right)$. Thus, there exists a path

$$
v_{0}, e_{1}^{\epsilon_{1}}, v_{1}, e_{2}^{\epsilon_{2}}, v_{2}, \ldots, e_{d}^{\epsilon_{d}}, v_{d}
$$

in $P_{T_{\alpha}}\left(v_{0}\right)$ such that $v_{1} \in V[\alpha+1]$. Hence, $e_{1} \in E[\alpha+1]$. Without loss of generality, let us assume that $\epsilon_{1}=-1$.

There exists a least $i \in[2, d]$ such that $v_{i} \in V[0, \alpha+1)$. Then

$$
\left\{v_{1}, \ldots, v_{i-1}\right\} \subseteq V[\alpha+1] \quad \text { and, hence, } \quad\left\{e_{1}, \ldots, e_{i}\right\} \subseteq E[\alpha+1]
$$

We claim that $G e_{1} \cap \bigcup_{j=2}^{i} G e_{j}=\emptyset$. Suppose this fails. Then $e_{1} \in \bigcup_{j=2}^{i} G e_{j}$. Here, $v_{0} \in \bigcup_{j=1}^{i} G v_{j}$. Since $v_{0} \in V[\alpha]$ and $\bigcup_{j=1}^{i-1} G v_{j} \subseteq V[\alpha+1]$ we see that $v_{0} \in G v_{i}$. Hence $v_{i} \in V[\alpha]$ and, by (4.3.1), $d_{T_{\alpha}}\left(v_{i}\right)=d_{T_{\alpha}}\left(v_{0}\right)=d$. But $G_{v_{0}}=G_{p} \subseteq G_{v_{i}}$. Since $G_{v_{0}}$ is a $G$-conjugate-incomparable subgroup, $G_{v_{0}}=G_{v_{i}}$. It follows that

$$
v_{i}, e_{i+1}^{\epsilon_{i+1}}, v_{i+1}, \ldots, e_{d}^{\epsilon_{d}}, v_{d}
$$

lies in $P_{T_{\alpha}}\left(v_{i}\right)$. Hence $d_{T_{\alpha}}\left(v_{i}\right) \leq d-i$, which is a contradiction. This proves the claim.

By Lemma 2.3, we can $G$-equivariantly slide $\iota e_{1}$ along $e_{2}^{\epsilon_{2}}$ from $v_{1}$ to $v_{2}$, and then $G$-equivariantly slide $\iota e_{1}$ along $e_{3}^{\epsilon_{3}}$ from $v_{2}$ to $v_{3}$, and so on, up to $v_{i}$. We then get a new $G$-tree $T_{\alpha, 1}=\left(T_{\alpha, 1}, V, E, \iota_{\alpha, 1}, \tau_{\alpha, 1}\right)$ by $G$-equivariantly sliding $\iota e_{1}$ along our path from $v_{1}$ to $v_{i}$.

Let $e_{1}^{\prime}$ denote $e_{1}$ viewed as an edge of $T_{\alpha, 1}$. Wherever $v_{1}, e_{1}, v_{0}$ occurs in a path in $T_{\alpha}$, it can be replaced with the sequence

$$
v_{1}, e_{2}^{\epsilon_{2}}, v_{2}, \ldots, v_{i-1}, e_{i}^{\epsilon_{i}}, v_{i}, e_{1}^{\prime}, v_{0}
$$

to obtain a path in $T_{\alpha, 1}$. It is important to note that all the edges involved here lie in $E[\alpha+1]$. In terms of the free groupoid on $E[\alpha+1]$, $e_{1}=e_{2}^{\epsilon_{2}} e_{3}^{\epsilon_{3}} \cdots e_{i}^{\epsilon_{i}} e_{1}^{\prime}$, and we are performing the change-of-basis which replaces $e_{1}$ with $e_{1}^{\prime}$.

It is easy to see that (3.3.2)-(3.3.5) then hold for $T_{\alpha, 1}$. Thus (4.2.1) is a $U$-filtration of $T_{\alpha, 1}$. Notice that $T_{\alpha, 1}$, like $T_{\alpha}$, has no problematic vertices in $V[0, \alpha)$. We have reduced the number of $G$-orbits of problematic edges in $E[\alpha+1]$.

This completes the description of a problem-reducing procedure.
Since $E[\alpha+1]$ is $G$-finite by (3.3.4), on repeating problem-reducing procedures as often as possible, we find some $m \in \mathbb{N}$, and a sequence

$$
T_{\alpha}=T_{\alpha, 0}, T_{\alpha, 1}, \ldots, T_{\alpha, m},
$$

such that $T_{\alpha, m}$ has no problematic vertices in $V[0, \alpha) \cup V[\alpha]=V[0, \alpha+1)$. We define $T_{\alpha+1}=\left(T_{\alpha+1}, V, E, \iota_{\alpha+1}, \tau_{\alpha+1}\right)$ to be $T_{\alpha, m}$. Notice that $\iota_{\alpha+1}$ agrees with $\iota_{\alpha}$ on $E-E[\alpha+1]$, and similarly for $\tau_{\alpha+1}$.

Continuing this procedure transfinitely, we arrive at a tree $T_{\kappa}$ which has no problematic vertices.
4.5 Lemma. If Hypotheses 4.2 hold and $T$ has no problematic vertices, then applying some $G$-equivariant compressing operation on $T$ yields a $G$-tree with vertex set $U$.

Proof. We claim that any sequence in $V$ is finite if each term is lower than all its predecessors.

Let $\alpha \in[0, \kappa)$.
If $v_{0}, v_{1}$ are elements of the same $G$-orbit of $V[\alpha]$, then $v_{1}$ is not lower than $v_{0}$, that is, (4.3.2)-(4.3.4) all fail; this follows from (4.3.1) and the fact that $V[\alpha]$ has $G$-conjugate-incomparable stabilizers.

Thus, if $n \in \mathbb{N}$ and $v_{1}, v_{2}, \ldots, v_{n}$ is a sequence in $V[\alpha]$ such that each term is lower than all its predecessors, then $G v_{1}, G v_{2}, \ldots, G v_{n}$ are pairwise disjoint, and $n$ is at most the number of $G$-orbits in $V[\alpha]$. It follows that any sequence in $V[\alpha]$ is finite if each term is lower than all its predecessors. The claim now follows.

Let us $G$-equivariantly reorient $T$ so that, for each edge $e, t e$ is not lower than $\tau e$.
Let $v_{0} \in W$. Let us $G$-equivariantly choose a path

$$
v_{0}, e_{1}^{\epsilon_{1}}, v_{1}, e_{2}^{\epsilon_{2}}, v_{2}, \ldots, e_{d}^{\epsilon_{d}}, v_{d}
$$

in $P_{T}\left(v_{0}\right)$ such that $d=d_{T}\left(v_{0}\right)$. Then we call $e_{1}$ the distinguished edge associated to $v_{0}$, and $v_{1}$ the distinguished neighbour of $v_{0}$.

Let $E^{\prime \prime}$ denote the set of distinguished edges chosen in this way.
Let us consider the above path for $v_{0}$. From Definitions 4.3 , we see that, since $T$ has no problematic vertices, $\operatorname{height}\left(v_{0}\right) \geq \operatorname{height}\left(v_{1}\right)$. We claim that $v_{1}$ is lower than $v_{0}$. The claim is clear if height $\left(v_{0}\right)>\operatorname{height}\left(v_{1}\right)$ (in which case, $d=1$ ), and we may assume that height $\left(v_{0}\right)=\operatorname{height}\left(v_{1}\right)(>0)$. Again, the claim is clear if $G_{v_{0}}<G_{v_{1}}$, and we may assume that $G_{v_{0}}=G_{v_{1}}$. Here $G_{v_{1}}$ fixes $p$, and the path

$$
v_{1}, e_{2}^{\epsilon_{2}}, v_{2}, \ldots, e_{d}^{\epsilon_{d}}, v_{d}
$$

shows that $d_{T}\left(v_{1}\right) \leq d-1<d=d_{T}\left(v_{0}\right)$, and the claim is proved. Hence $\epsilon_{1}=1$.
Thus $\iota$ induces a bijection $E^{\prime \prime} \rightarrow W$.
Moreover, in travelling along the distinguished edge $e_{1}$ respecting the orientation, from $v_{0}$ to its distinguished neighbour $v_{1}$, we move to a lower vertex.

Thus, starting at any element $v$ of $V$, after travelling a finite number of steps along distinguished edges respecting the orientation, we arrive at a vertex, denoted $\phi(v)$, with no distinguished neighbours, that is, $\phi(v) \in U$.

By Lemma 2.2, compressing the closures of the distinguished edges to their terminal vertices gives a $G$-tree with vertex set $U$ and edge set $E-E^{\prime \prime}$.

We now come to our main result. In Section 7 , we will see that the $G$-conju-gate-incomparability hypotheses cannot be omitted.
4.6 Theorem. Let $T$ be a $G$-tree, and let $U$ be a $G$-retract of the $G$-set $V T$. Suppose that the $G$-set ET has $G$-conjugate-incomparable stabilizers, or, more generally, that the $G$-set $V T-U$ has $G$-conjugate-incomparable stabilizers.

Then applying to $T$ some transfinite sequence of $G$-equivariant sliding operations followed by some $G$-equivariant compressing operation yields a $G$-tree $T^{\prime}$ such that $V T^{\prime}=U$.

Here $E T^{\prime}$ is a $G$-subset of $E T$, and there exists a $G$-set isomorphism

$$
E T-E T^{\prime} \simeq V T-V T^{\prime}=V T-U
$$

Proof. For each $w \in V T-U$, there exists $u \in U$ such that $G_{w} \leq G_{u}$. If $e$ denotes the first edge in the $T$-geodesic from $w$ to $u$, then $G_{e}=G_{w}$. Thus, if $E$ has $G$-conjugate-incomparable stabilizers, then the same holds for $V T-U$.

By Lemma 3.4, we may assume that Hypotheses 4.2 hold. By Lemma 4.4, we may assume that $T$ itself has no problematic vertices. Applying Lemma 4.5, we obtain the result; the final assertion follows from the compression lemma 2.2.

We record the special case of Theorem 4.6 that is of interest to us.
4.7 The retraction lemma. Let $T$ be a G-tree whose edge stabilizers are finite, and let $U$ be any $G$-retract of the $G$-set $V T$. Then there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is the $G$-set $U$.

## 5 The almost stability theorem and applications

We now combine the almost stability theorem 1.2 and the retraction lemma 4.7.
5.1 Theorem. Let $E$ and $A$ be $G$-sets such that $E$ has finite stabilizers and $A$ is nonempty and has trivial $G$-action. If $V$ is a $G$-retract of a $G$-stable almost equality class in $(E, A)$, then there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is the $G$-set $V$.

Proof. Let $\widetilde{V}$ be a $G$-stable almost equality class in $(E, A)$ which contains $V$ as a $G$-retract. By the almost stability theorem 1.2 , there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is $\widetilde{V}$. By the retraction lemma 4.7, there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is $V$.

We now recall Definitions IV.2.1 and IV.2.2 of [3].
5.2 Definitions. Let $M$ be a $G$-module, that is, an additive abelian group which is also a $G$-set such that $G$ acts as group automorphisms on $M$. Thus a $G$-module is simply a left module over the integral group ring $\mathbb{Z} G$.

If $d: G \rightarrow M$ is a derivation, that is, a map such that $d(x y)=d(x)+x d(y)$ for all $x, y \in G$, then $M_{d}$ denotes the set $M$ endowed with the $G$-action

$$
G \times M \rightarrow M, \quad(g, m) \mapsto g \cdot m:=g m+d(g) \quad \text { for all } g \in G \text { and all } m \in M
$$

It is straightforward to show that $M_{d}$ is a $G$-set. This construction has made other appearances in the literature; see [1, Remarque 4.a.5].

We say that $M$ is an induced $G$-module if there exists an abelian group $A$ such that $M$ is isomorphic, as $G$-module, to $A G:=\mathbb{Z} G \otimes_{\mathbb{Z}} A$.

We say that $M$ is a $G$-projective $G$-module if $M$ is isomorphic, as $G$-module, to a direct summand of an induced $G$-module.
5.3 Example. If $R$ is any ring and $P$ is a projective left $R G$-module, then there exists a free left $R$-module $F$ such that $P$ is isomorphic, as $R G$-module, to an $R G$-summand of

$$
R G \otimes_{R} F=\mathbb{Z} G \otimes_{\mathbb{Z}} R \otimes_{R} F=\mathbb{Z} G \otimes_{\mathbb{Z}} F=F G
$$

Hence $P$ is $G$-projective.
The following generalizes Theorem IV.2.5 and Corollary IV.2.8 of [3].
5.4 Theorem. If $P$ is a $G$-projective $G$-module, and $d: G \rightarrow P$ is a derivation, then there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is the $G$-set $P_{d}$.

Proof. There exists an abelian group $A$ such that $P$ is isomorphic to a $G$-summand of $A G$. We view $P$ as a $G$-submodule of $A G$. There exists an additive $G$-retraction $\pi: A G \rightarrow P$.

We view $A G$ as the almost equality class of $(G, A)$ which contains the zero map. Thus $A G$ is a $G$-submodule of $(G, A)$, and we have a derivation

$$
d: G \rightarrow P \subseteq A G \subseteq(G, A)
$$

By a classic result of Hochschild's, there exists $v \in(G, A)$ such that, for all $g \in G, d(g)=g v-v$. For example, we can take $v: x \mapsto-(d(x))(x)$, for all $x \in G$. See the proof of Proposition IV.2.3 in [3].

Let $U=v+P$ and $V=v+A G$. Then $U \subseteq V \subseteq(G, A)$, and $V$ is the almost equality class which contains $v$. Also, $U$ and $V$ are $G$-stable, since, for each $g \in G$, $g v=v+d(g) \in v+P \subseteq v+A G$. The map

$$
V \rightarrow U, \quad v+m \mapsto v+\pi(m), \text { for all } m \in A G
$$

is a $G$-retraction, since, for all $m \in A G$,

$$
\begin{aligned}
g(v+m)=v+g m+d(g) \quad \mapsto \quad v+\pi(g m+d(g)) & =v+g \pi(m)+d(g) \\
& =g(v+\pi(m))
\end{aligned}
$$

By Theorem 5.1, there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is the $G$-set $U$.

The bijective map $P \rightarrow U, p \mapsto v+p$, is an isomorphism of $G$-sets $P_{d} \xrightarrow{\sim} U$. Now the result follows.
5.5 Remark. Notice that, in Theorem 5.4, the stabilizer of a vertex $p \in P_{d}$ is precisely the kernel of the derivation

$$
d+\operatorname{ad} p: G \rightarrow P, \quad g \mapsto d(g)+g p-p=(g-1)(v+p)
$$

The following generalizes Corollary IV.2.10 of [3] and is used in the proof of Lemma 5.16 of [5].
5.6 Corollary. Let $M$ be a G-module, let $P$ be a $G$-projective $G$-submodule of $M$, and let $v$ be an element of $M$. If the subset $v+P$ of $M$ is $G$-stable, then there exists $a G$-tree whose edge stabilizers are finite and whose vertex set is the $G$-set $v+P$.

Proof. The inner derivation ad $v: G \rightarrow M$ restricts to a derivation $d: G \rightarrow P$, $g \mapsto g v-v \in P \subseteq M$, for all $g \in G$. The bijective map $P \rightarrow v+P, p \mapsto v+p$, is then an isomorphism of $G$-sets $P_{d} \xrightarrow{\sim} v+P$. Now the result follows from Theorem 5.4.
5.7 Example. Let $R$ be a nonzero associative ring, and let $\omega R G$ be the augmentation ideal of the group ring $R G$.

Notice that, in the (left) $G$-set $R G$, the $G$-subset $R G-\{0\}$ has finite stabilizers. The coset $1+\omega R G$ lies in $R G-\{0\}$ and is $G$-stable. Hence $1+\omega R G$ is a $G$-set with finite stabilizers.

If $\omega R G$ is projective as left $R G$-module, then, by Corollary 5.6 , there exists a $G$-tree $T$ with $V T=1+\omega R G$; hence $T$ has finite stabilizers. This sheds some light on the main step in the characterization of groups of cohomological dimension at most one over $R$. See, for example, [3, Theorem IV.3.13].

## 6 A more general almost stability theorem

We next want to generalize Theorem 5.1.
The following is similar to Lemma 2.2 of [4], and the proof is straightforward.
6.1 Lemma. Let $E$ and $A$ be $G$-sets such that, for each $e \in E, G_{e}$ acts trivially on $A$.

Let $\bar{A}$ denote the $G$-set with the same underlying set as $A$ but with trivial $G$-action.

Let $E_{0}$ be a $G$-transversal in $E$.
For each $\phi \in(E, A)$, let $\widehat{\phi} \in(E, \bar{A})$ be defined by $\widehat{\phi}(g e)=g^{-1} \cdot \phi(g e)$ for all $(g, e) \in G \times E_{0}$, where $\cdot$ denotes the $G$ action on $A$.

For each $\psi \in(E, \bar{A})$, let $\widetilde{\psi} \in(E, A)$ be defined by $\widetilde{\psi}(g e)=g \cdot \psi(g e)$ for all $(g, e) \in G \times E_{0}$.

Then

$$
(E, A) \rightarrow(E, \bar{A}), \quad \phi \mapsto \widehat{\phi}, \quad \text { and } \quad(E, \bar{A}) \rightarrow(E, A), \quad \psi \mapsto \widetilde{\psi}
$$

are mutually inverse isomorphisms of G-sets which preserve almost equality between functions.

Combined, Lemma 6.1 and Theorem 5.1 give the most general form that we know of the almost stability theorem.
6.2 Theorem. Let $E$ and $A$ be $G$-sets such that $A$ is nonempty and, for each $e \in E$, $G_{e}$ is finite and acts trivially on $A$. If $V$ is a $G$-retract of a $G$-stable almost equality class in $(E, A)$, then there exists a $G$-tree whose edge stabilizers are finite and whose vertex set is the $G$-set $V$.

For each $e \in E$, if $G_{e}$ is trivial, then $G_{e}$ is finite and acts trivially on $A$. It was this case that was useful in [4].

## 7 An example

In this section, we shall give an example of a group $G$ and a retract of a vertex set of a $G$-tree that is not the vertex set of any $G$-tree.
7.1 Hypotheses. Let $Y=(Y, \bar{V}, \bar{E}, \bar{\iota}, \bar{\tau})$ be the graph given as follows:

$$
\bar{V}=\{\bar{u}, \bar{w}\}, \quad \bar{E}=\{\bar{e}, \bar{f}\}, \quad \bar{\iota}(\bar{e})=\bar{u}, \quad \bar{\tau}(\bar{e})=\bar{\iota}(\bar{f})=\bar{\tau}(\bar{f})=\bar{w}
$$

Let $Y_{0}:=\left(Y_{0}, \bar{V},\{\bar{e}\}, \bar{\iota}, \bar{\tau}\right)$ be the unique maximal subtree of $Y$.
We now use the notation of Definitions I.3.1 of [3] to define a graph of groups $(G(-), Y)$ as follows. Let the vertex groups be given by

$$
G(\bar{u})=\langle x, y \mid\rangle, \quad G(\bar{w})=\left\langle x^{\prime}, y^{\prime} \mid\right\rangle
$$

Let the edge groups be given by

$$
G(\bar{e})=\left\langle x^{4}, x y x, y^{4} \mid\right\rangle, \quad G(\bar{f})=\left\langle x^{\prime}, y^{\prime} \mid\right\rangle
$$

where we have

$$
\begin{aligned}
& G(\bar{e})=\left\langle x^{4}, x y x, y^{4} \mid\right\rangle \leq\langle x, y \mid\rangle=G(\bar{u})=G(\bar{\iota} \bar{e}), \\
& G(\bar{f})=\left\langle x^{\prime}, y^{\prime} \mid\right\rangle=G(\bar{w})=G(\bar{\iota} \bar{f}) .
\end{aligned}
$$

Finally, let the edge-group monomorphisms be given by

$$
\begin{array}{rlrl}
t_{\bar{e}}: G(\bar{e})= & \left\langle x^{4}, x y x, y^{4} \mid\right\rangle & & \rightarrow \\
& \left(x^{4}, x y x, y^{4}\right) & & \left\langle x^{\prime}, y^{\prime} \mid\right\rangle=G(\bar{w})=G(\bar{\tau} \bar{e}), \\
t_{\bar{f}}: G(\bar{f})= & \left\langle x^{\prime}, y^{\prime} \mid\right\rangle & & \\
& \left(x^{\prime}, y^{\prime}\right) & & \left\langle x^{\prime} y^{\prime} x^{\prime}, y^{\prime 4}\right) \\
& & & \left\langle x^{\prime}, y^{\prime} \mid\right\rangle=G(\bar{w})=G(\bar{\tau} \bar{f}) \\
\left(x^{\prime 2}, y^{\prime 2}\right) .
\end{array}
$$

Using notation whose interpretation we hope is clear, we represent the resulting graph of groups as follows.

$$
\langle x, y \mid\rangle\left\langle x^{\langle }, y^{\prime}\right|\left\langle x^{4} \mapsto x^{4}, x y x \mapsto x^{\prime} y^{\prime} x^{\prime}, y^{4} \mapsto y^{\prime 4} \mid\right\rangle
$$

Let $G$ be the fundamental group of the graph of groups, $\pi\left(G(-), Y, Y_{0}\right)$, as in Definitions I.3.4 of [3]. We shall write $t$ for the element of $G$ that realizes the edge-group monomorphism $t_{\bar{f}}: G(\bar{f}) \rightarrow G(\bar{w})$; thus

$$
\begin{equation*}
G=\left\langle x, y, x^{\prime}, y^{\prime}, t \mid x^{4}=x^{\prime 4}, x y x=x^{\prime} y^{\prime} x^{\prime}, y^{4}=y^{\prime 4}, x^{\prime t}=x^{2}, y^{\prime t}=y^{2}\right\rangle \tag{7.1.1}
\end{equation*}
$$

where $x^{\prime t}$ denotes $t^{-1} x^{\prime} t$. Here $G(\bar{u})$ and $G(\bar{w})$ are subgroups of $G$; see [3, Corollary I.7.5].

Let $T=(T, V, E, \iota, \tau)$ be the Bass-Serre tree $T\left(G(-), Y, Y_{0}\right)$, as in Notation I.7.1 of [3]. Thus, using $\vee$ to denote disjoint union, we can write

$$
\begin{gathered}
V=G u \vee G w, \quad G_{u}=\langle x, y\rangle, \quad G_{w}=\left\langle x^{\prime}, y^{\prime}\right\rangle, \\
E=G e \vee G f, \quad G_{e}=\left\langle x^{4}, x y x, y^{4}\right\rangle, \quad G_{f}=\left\langle x^{\prime}, y^{\prime}\right\rangle, \\
\iota(e)=u, \quad \tau(e)=w, \quad \iota(f)=w, \quad \tau(f)=t w .
\end{gathered}
$$

By Bass-Serre Theory, $T$ is a $G$-tree; see [3, Theorem I.7.6].
For any subset $S$ of $T$, let $S^{x y x}$ denote $\{s \in S \mid(x y x) s=s\}$.
We shall see that $G u$ is a retract of a vertex set of a $G$-tree, but is not itself the vertex set of a $G$-tree.
7.2 Lemma. Suppose that Hypotheses 7.1 hold. In particular, in $T, V=G u \vee G w$, $E=G e \vee G f, \iota(e)=u, \tau(e)=w, \iota(f)=w$, and $\tau(f)=t w$.
(i) In $G, x^{\prime}=x^{4 t^{-2}}$ and $y^{\prime}=y^{4 t^{-2}}$.
(ii) $G=\left\langle x, y, t \mid x^{4 t}=x^{8}, y^{4 t}=y^{8}, x^{t^{2}} y^{t^{2}} x^{t^{2}}=x^{4} y^{4} x^{4}\right\rangle$.
(iii) In $T, G_{u}=\langle x, y\rangle, G_{w}=\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}}, G_{e}=\left\langle x^{4}, x y x, y^{4}\right\rangle, G_{f}=\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}}$.
(iv) $G u$ is a $G$-retract of $V$.

Proof. (i). Now $x^{\prime t^{2}}=x^{\prime 2 t}=x^{\prime 4}=x^{4}$. Thus $x^{\prime}=x^{4 t^{-2}}$. Similarly, $y^{\prime}=y^{4 t^{-2}}$.
(ii). By (7.1.1),

$$
\begin{aligned}
& G=\left\langle x, y, x^{\prime}, y^{\prime}, t \mid x^{4}=x^{\prime 4}, x y x=x^{\prime} y^{\prime} x^{\prime}, y^{4}=y^{\prime 4}, x^{\prime t}=x^{\prime 2}, y^{\prime t}=y^{\prime 2}\right\rangle \\
&=\left\langle x, y, x^{\prime}, y^{\prime}, t\right| x^{4}=x^{\prime 4}, x y x=x^{\prime} y^{\prime} x^{\prime}, y^{4}=y^{\prime 4}, \\
&\left.x^{\prime t}=x^{\prime 2}, y^{\prime t}=y^{\prime 2}, x^{\prime}=x^{4 t^{-2}}, y^{\prime}=y^{4 t^{-2}}\right\rangle \\
&=\langle x, y, t| x^{4}=x^{16 t^{-2}}, x y x=x^{4 t^{-2}} y^{4 t^{-2}} x^{4 t^{-2}}, y^{4}=y^{16 t^{-2}}, \\
&\left.x^{4 t^{-1}}=x^{8 t^{-2}}, y^{4 t^{-1}}=y^{8 t^{-2}}\right\rangle \\
&=\langle x, y, t| x^{4 t^{2}}=x^{16}, x^{t^{2}} y^{t^{2}} x^{t^{2}}=x^{4} y^{4} x^{4}, y^{4 t^{2}}=y^{16}, \\
& x^{4 t}=x^{8}, \\
&=\left\langle x, y, t \mid x^{4 t}=x^{8}, x^{t^{2}} y^{t^{2}} x^{t^{2}}=x^{4} y^{4} x^{4}, y^{4 t}=y^{8}\right\rangle .
\end{aligned}
$$

(iii). $G_{f}=G_{w}=\left\langle x^{\prime}, y^{\prime}\right\rangle=\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}}$.
(iv). We have $G_{w}=\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}} \leq\langle x, y\rangle^{t^{-2}}=G_{u}^{t^{-2}}=G_{t^{2} u}$. Thus $G u$ is a $G$-retract of $G u \vee G w=V$.

It remains to show that $G u$ is not the vertex set of any $G$-tree. We shall use a sequence of technical lemmas.

It is straightforward to prove the following, using Lemma 7.2(ii).
7.3 Lemma. Suppose that Hypotheses 7.1 hold, and let $n \in \mathbb{N}$.
(i) In $G,(x y x)^{t^{n+2}}=\left(x^{4}\right)^{2^{n}}\left(y^{4}\right)^{2^{n}}\left(x^{4}\right)^{2^{n}}$.
(ii) If $n \neq 1$, then, in $G$, $(x y x)^{t^{n}}=x^{2^{n}} y^{2^{n}} x^{2^{n}}$.

The next result concerns the free group of rank two.
7.4 Lemma. Suppose that Hypotheses 7.1 hold, let $n \in \mathbb{N}$, and let $g \in G_{u}$. In particular, $G_{u}=\langle x, y \mid\rangle$.
(i) If $x^{2^{n}} y^{2^{n}} x^{2^{n}} \in\left\langle x^{2}, y^{2}\right\rangle^{g}$, then $n \neq 0$ and $g \in\left\langle x^{2}, y^{2}\right\rangle$.
(ii) If $x^{2^{n}} y^{2^{n}} x^{2^{n}} \in\left\langle x^{4}, x y x, y^{4}\right\rangle^{g}$, then $n \neq 1$ and $g \in\left\langle x^{4}, x y x, y^{4}\right\rangle$.

Proof. Let $T_{u}=X\left(G_{u},\{x, y\}\right)$, the Cayley graph of $G_{u}$ with respect to $\{x, y\}$, as in [3, Definitions I.2.1]. Each (oriented) edge of $T_{u}$ is labelled $x$ or $y$.

Let $H$ be any subgroup of $G_{u}$; we have in mind the cases $H=\left\langle x^{2}, y^{2}\right\rangle$ and $H=\left\langle x^{4}, x y x, y^{4}\right\rangle$.

Let $w=x^{2^{n}} y^{2^{n}} x^{2^{n}} \in G_{u}$.
Let $X:=H \backslash T_{u}$, let $Y:=\langle w\rangle \backslash T_{u}$, and let $Z:=G_{u} \backslash T_{u}$.
The pullback of the two natural maps $X \rightarrow Z, Y \rightarrow Z$ provides detailed information about all nontrivial subgroups of $G_{u}$ of the form $\langle w\rangle \cap H^{g}$; see [2, p. 380]. However, this pullback can be rather cumbersome and we do not require detailed information. For our purposes, special considerations will suffice, as follows.

Define $g^{-1} X:=\left(H^{g}\right) \backslash T_{u}$.
There is a graph isomorphism $X \simeq g^{-1} X, H x \leftrightarrow H^{g} g^{-1} x$.
The fundamental group of $X$ with basepoint $H 1, \pi(X, H 1)$, is naturally isomorphic to $H$, with the elements of $H$ being read off closed paths based at $H 1$.

Similarly, $H^{g}$ is naturally isomorphic to $\pi\left(g^{-1} X, H^{g} 1\right)$, and this in turn is naturally isomorphic to $\pi(X, H g)$ via the graph isomorphism $g^{-1} X \simeq X$.

Suppose that $w$ lies in $H^{g}$. Then $w$ can be read off a closed path in $X$ based at Hg . Since $w$ is a cyclically reduced word, the closed path is cyclically reduced. The smallest subgraph of $X$ which contains all the cyclically reduced closed paths
in $X$ is called the core of $X$, denoted core $(X)$. It follows that the vertex $H g$ lies in core $(X)$, and that we can start at $H g$, read $w$ and stay inside core $(X)$.
(i) Suppose that $H=\left\langle x^{2}, y^{2}\right\rangle$.

Here core $(X)$ has vertex set $\{H 1, H x, H y\}$ and labelled-edge set

$$
\left\{(H 1, x, H x),\left(H x, x, H x^{2}\right),(H 1, y, H y),\left(H y, y, H y^{2}\right)\right\}
$$

with $H x^{2}=H y^{2}=H 1$.
We note that $H x y$ and $H y x$ are outside core $(X)$.
Notice that $(H y) x=H y x$. This lies outside core $(X)$. Thus, $H g \neq H y$, since $H g w$ can be read in core $(X)$. Hence, $H g \in\{H 1, H x\}$.

Notice that $(H 1)(x y)=H x y$ and $(H x)(x y x)=H y x$. These lie outside core $(X)$. Thus $n \neq 0$. Hence, $x^{2^{n}} \in H$.

Notice that $(H x)\left(x^{2^{n}} y\right)=H x y$ lies outside core $(X)$. Thus $H g \neq H x$. Hence, $H g=H 1$, that is, $g \in H$.

This proves (i).
(ii). Suppose that $H=\left\langle x^{4}, x y x, y^{4}\right\rangle$.

Here core $(X)$ has vertex set

$$
\{H 1\} \cup\left\{H x^{i}, H y^{i} \mid 1 \leq i \leq 3\right\}
$$

and labelled-edge set

$$
\left\{\left(H x^{i}, x, H x^{i+1}\right),\left(H y^{i}, y, H y^{i+1}\right) \mid 0 \leq i \leq 3\right\} \cup\{(H x, y, H x y)\}
$$

with $H x^{4}=H y^{4}=H 1$ and $H x y=H x^{3}$.
We note that $H x y^{2}=H x^{3} y, H x^{2} y, H y x, H y^{2} x$, and $H y^{3} x$ all lie outside core $(X)$.

Consider any $j$ with $1 \leq j \leq 3$. Notice that $\left(H y^{j}\right)(x)=H y^{j} x$. This lies outside core $(X)$. It follows that $H g \neq H y^{j}$. Hence $H g=H x^{i}$ for some $i$ with $0 \leq i \leq 3$.

Notice that $(H x)(x y)=H x^{2} y,\left(H x^{2}\right)(x y)=H x^{3} y$, and $\left(H x^{3}\right)(x y x)=H y x$. These all lie outside core $(X)$. Thus, if $n=0$, then $H g=H 1$.

Notice that $(H 1)\left(x^{2} y\right)=H x^{2} y,(H x)\left(x^{2} y\right)=H x^{3} y,\left(H x^{2}\right)\left(x^{2} y^{2} x\right)=H y^{2} x$, and $\left(H x^{3}\right)\left(x^{2} y^{2}\right)=H x y^{2}$. These all lie outside core $(X)$. Thus $n \neq 1$.

Now suppose that $n \geq 2$. Thus $x^{2^{n}}=\left(x^{4}\right)^{2^{n-2}} \in H$.
Notice that $(H x)\left(x^{2^{n}} y^{2}\right)=H x y^{2},\left(H x^{2}\right)\left(x^{2^{n}} y\right)=H x^{2} y$, and $\left(H x^{3}\right)\left(x^{2^{n}} y\right)=$ $H x^{3} y$. These all lie outside core $(X)$. Thus $H g=H 1$.

This proves (ii).
7.5 Lemma. Suppose that Hypotheses 7.1 hold and let $n \in \mathbb{N}$.
(i) $\left(t^{n} G_{u} e\right)^{x y x}=\left\{t^{n} e\right\}$ if $n \neq 1$.
(ii) $\left(t^{n} G_{w} e\right)^{x y x}= \begin{cases}\left\{t^{n} e\right\} & \text { if } n \neq 1, \\ \emptyset & \text { if } n=1 .\end{cases}$
(iii) $\left(t^{n} G_{w} t^{-1} f\right)^{x y x}= \begin{cases}\left\{t^{n-1} f\right\} & \text { if } n \neq 0, \\ \emptyset & \text { if } n=0 .\end{cases}$
(iv) $\left(t^{n} G_{w} f\right)^{x y x}=\left\{t^{n} f\right\}$.

Proof. (i). Let $g \in G_{u}=\langle x, y\rangle$.
Suppose that $n \neq 1$ and that $(x y x) t^{n} g e=t^{n} g e$. Then $(x y x)^{t^{n} g} \in G_{e}$. By Lemma 7.3(ii),

$$
\left(x^{2^{n}} y^{2^{n}} x^{2^{n}}\right)^{g} \in G_{e}=\left\langle x^{4}, x y x, y^{4}\right\rangle
$$

By Lemma 7.4(ii), $g \in\left\langle x^{4}, x y x, y^{4}\right\rangle=G_{e}$. Hence $t^{n} g e=t^{n} e$. It is now easy to see that (i) holds.
(ii). Let $h \in G_{w}=\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}}$. Let $g=h^{t^{2}} \in\left\langle x^{4}, y^{4}\right\rangle$.

Suppose that $(x y x) t^{n} h e=t^{n} h e$. Then (xyx) $t^{n+2} g t^{-2} e=t^{n+2} g t^{-2} e$, and $(x y x)^{t^{n+2} g t^{-2}} \in G_{e}$. By Lemma 7.3(i),

$$
\left(\left(x^{4}\right)^{2^{n}}\left(y^{4}\right)^{2^{n}}\left(x^{4}\right)^{2^{n}}\right)^{g} \in G_{e}^{t^{2}}=\left\langle x^{4}, x y x, y^{4}\right\rangle^{t^{2}}=\left\langle\left(x^{4}\right)^{4},\left(x^{4}\right)\left(y^{4}\right)\left(x^{4}\right),\left(y^{4}\right)^{4}\right\rangle
$$

By Lemma 7.4(ii) with $x^{4}, y^{4}$ in place of $x, y$, we see that $n \neq 1$ and

$$
g \in\left\langle\left(x^{4}\right)^{4},\left(x^{4}\right)\left(y^{4}\right)\left(x^{4}\right),\left(y^{4}\right)^{4}\right\rangle=G_{e}^{t^{2}}
$$

Hence $h \in G_{e}$ and $t^{n} h e=t^{n} e$. It is now clear that (ii) holds.
(iii). Let $h \in G_{w}=\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}}$. Let $g=h^{t^{2}} \in\left\langle x^{4}, y^{4}\right\rangle$.

Suppose that $(x y x) t^{n} h t^{-1} f=t^{n} h t^{-1} f$. Then $(x y x) t^{n+2} g t^{-3} f=t^{n+2} g t^{-3} f$, and $(x y x)^{t^{n+2} g t^{-3}} \in G_{f}$. By Lemma 7.3(i),

$$
\left(\left(x^{4}\right)^{2^{n}}\left(y^{4}\right)^{2^{n}}\left(x^{4}\right)^{2^{n}}\right)^{g} \in G_{f}^{t^{3}}=\left\langle x^{4}, y^{4}\right\rangle^{t}=\left\langle\left(x^{4}\right)^{2},\left(y^{4}\right)^{2}\right\rangle
$$

By Lemma 7.4(i), with $x^{4}, y^{4}$ in place of $x, y$, we see that $n \neq 0$ and

$$
g \in\left\langle\left(x^{4}\right)^{2},\left(y^{4}\right)^{2}\right\rangle=G_{f}^{t^{3}}
$$

Hence $h^{t^{-1}} \in G_{f}$ and $t^{n} h t^{-1} f=t^{n-1} f$. It is now clear that (iii) holds.
(iv). By Lemma 7.3(i), $(x y x)^{t^{n}} \in\left\langle x^{4}, y^{4}\right\rangle^{t^{-2}}=G_{f}=G_{w}$.
7.6 Lemma. Suppose that Hypotheses 7.1 hold. Then

$$
V^{x y x}=\left\{t^{n} u \mid n \in \mathbb{N}-\{1\}\right\} \quad \cup \quad\left\{t^{n} w \mid n \in \mathbb{N}\right\}
$$

Proof. Let $n \in \mathbb{N}$.
From [3, Definitions I.3.4], we obtain the following.

$$
\begin{array}{ll}
\iota^{-1}\left(t^{n} u\right)=t^{n} G_{u} e, & \tau^{-1}\left(t^{n} u\right)=\emptyset \\
\iota^{-1}\left(t^{n} w\right)=t^{n} G_{w} f, & \tau^{-1}\left(t^{n} w\right)=t^{n} G_{w} e \cup t^{n} G_{w} t^{-1} f
\end{array}
$$

By Lemma 7.5(ii), (iii) and (iv), the edges of $T^{x y x}$ incident to $w$ are $e$ and $f$, the edges of $T^{x y x}$ incident to $t w$ are $f$ and $t f$, and, for $n \geq 2$, the edges of $T^{x y x}$ incident to $t^{n} w$ are $t^{n} e, t^{n-1} f$ and $t^{n} f$.

Hence, in $T^{x y x}$, the neighbours of $w$ are $u$ and $t w$, the neighbours of $t w$ are $w$ and $t^{2} w$, and, for $n \geq 2$, the neighbours of $t^{n} w$ are $t^{n} u, t^{n-1} w$ and $t^{n+1} w$.

By Lemma 7.5(i), if $n \neq 1$, then the unique edge of $T^{x y x}$ incident to $t^{n} u$ is $t^{n} e$, and hence the unique neighbour of $t^{n} u$ in $T^{x y x}$ is $t^{n} w$.

The result now follows.
7.7 Lemma. Suppose that Hypotheses 7.1 hold. There exists no $G$-tree with vertex set $G u$.

Proof. Suppose that there exists a $G$-tree $T^{\prime}$ with $V T^{\prime}=G u$. We will derive a contradiction.

Let $L$ denote the subtree of $T$ with vertex set $\langle t\rangle w$ and edge set $\langle t\rangle f$. Then $L$ is homeomorphic to $\mathbb{R}$ and $t$ acts on $L$ by translation. In particular, $\langle t\rangle$ acts freely on $V T$. Hence, $\langle t\rangle$ acts freely on $V T^{\prime} \subseteq V T$. As in [3, Proposition I.4.11], there exists a subtree $L^{\prime}$ of $T^{\prime}$ homeomorphic to $\mathbb{R}$ on which $t$ acts by translation.

Let $v^{\prime}$ denote the vertex of $L^{\prime}$ closest to $u$ in $T^{\prime}$. It is well known, and easy to prove, that the $T^{\prime}$-geodesic from $u$ to $t^{2} u$, denoted $T^{\prime}\left[u, t^{2} u\right]$, is the concatenation of the four $T^{\prime}$-geodesics $T^{\prime}\left[u, v^{\prime}\right], T^{\prime}\left[v^{\prime}, t v^{\prime}\right], T^{\prime}\left[t v^{\prime}, t^{2} v^{\prime}\right]$, and $T^{\prime}\left[t^{2} v^{\prime}, t^{2} u\right]$.

By Lemma 7.6, and the fact that $\langle t\rangle$ acts freely on $V T^{\prime}$,

$$
\begin{equation*}
V T^{\prime x y x}=(G u)^{x y x}=\left\{t^{n} u \mid n \in \mathbb{N}-\{1\}\right\}=\left\{t^{n} u \mid n \in \mathbb{N}\right\}-\{t u\} \tag{7.7.1}
\end{equation*}
$$

By (7.7.1), or by direct calculation, $x y x$ fixes $u$, moves $t u$, and fixes $t^{2} u$. Thus, $x y x$ fixes $T^{\prime}\left[u, t^{2} u\right]$, and, hence, $x y x$ fixes $v^{\prime}$, fixes $t v^{\prime}$, and fixes $t^{2} v^{\prime}$.

In particular, $t u \neq t v^{\prime}$, hence $u \neq v^{\prime}$, that is, $u \notin L^{\prime}$.
Since $x y x$ fixes $v^{\prime}$, we see, by (7.7.1), that $v^{\prime}=t^{n} u$ for some $n \in \mathbb{N}-\{1\}$. Hence $u=t^{-n} v^{\prime} \in t^{-n} L^{\prime}=L^{\prime}$. This is a contradiction.

We now have the desired example.
7.8 Theorem. There exists a group $G$ and $a G$-set $U$ such that $U$ is a $G$-retract of the vertex set of some $G$-tree but $U$ is not the vertex set of any $G$-tree.

## Acknowledgments

The research of the first-named author was jointly funded by the MEC (Spain) and the EFRD (EU) through Project BFM2003-06613.

We are grateful to Gilbert Levitt for making us think about the sliding operation at a most opportune moment.

We thank a referee for several useful suggestions.

## References

[1] Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175, Soc. Math. de France, 1989.
[2] Warren Dicks, Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture, Invent. Math. 117(1994), 373-389.
Errata at http://mat.uab.cat/~dicks/InvErr.html
[3] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Stud. Adv. Math. 17, CUP, Cambridge, 1989.
Errata at http://mat.uab.cat/~dicks/DDerr.html
[4] Warren Dicks and Peter Kropholler, Free groups and almost equivariant maps, Bull. London Math. Soc. 27(1995), 319-326.
Addenda at http://mat.uab.cat/~dicks/almost.html
[5] Warren Dicks and Peter A. Linnell, $L^{2}$-Betti numbers of one-relator groups, Math. Ann. (to appear). http://arxiv.org/abs/math.GR/0508370
[6] M. J. Dunwoody, Folding sequences, pp. 139-158 in: The Epstein birthday schrift (eds. Igor Rivin, Colin Rourke and Caroline Series), Geom. Topol. Monographs 1, Geom. Topol. Publ., Coventry, 1998.
http://www.maths.warwick.ac.uk/gt/GTMon1/paper7.abs.html
[7] Max Forester, Deformation and rigidity of simplicial group actions on trees, Geom. Topol. 6(2002), 219-267.
http://www.maths.warwick.ac.uk/gt/GTVol6/paper8.abs.html
[8] E. Rips and Z. Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. Math. 146(1997), 53-109.

Warren Dicks, Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

E-mail address: dicks@mat.uab.cat
URL: http://mat.uab.cat/~dicks/
M. J. Dunwoody, Department of Mathematics, University of Southampton, Southampton, England SO17 1BJ

E-mail address: M.J.Dunwoody@maths.soton.ac.uk
URL: http://www.maths.soton.ac.uk/staff/Dunwoody/

