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Abstract. In the n-dimensional Euclidean space the measure of hyperplanes
that intersect a convex domain is equal to the (n−2)-integral of mean curvature
of the boundary. The same question was treated by Santaló in the hyperbolic
case. In non-euclidean geometry the analogue of linear subspaces are not
always the totally geodesic and complete hypersurfaces. In some situations
horospheres play the role of euclidean hyperplanes in hyperbolic spaces.

Santaló found in dimensions 2 and 3 that the measure of horospheres in-
tersecting a convex domain has the same expression, multiplied by 2, than the
measure of hyperplanes intersecting a convex body in the euclidean spaces.
Therefore a question arises: is this equality true for every dimension?

Here we find the measure of intersecting horospheres in H
n. For convex

bodies it is a linear combination of the integrals of curvature of the boundary,
and the analogy with the euclidean case does not hold in higher dimensions.

1. Introduction

One of the first results in integral geometry is the Cauchy-Crofton formula. It
says that the length of a piecewise differentiable plane curve C can be computed
measuring, with its multiplicity, the set of lines intersecting C:∫

l∩C �=∅
�(l ∩ C) dl = 2 length(C)(1)

where dl is the rigid motions invariant measure of lines in the plane and is given
by dl = dp dθ where p is the distance from l to the origin and θ the angle to a
fixed direction (see figure 1).

When applied to the boundary of a convex domain Ω, the Cauchy-Crofton for-
mula tells us that the measure of lines intersecting Ω equals the length of the
boundary.

There are some generalizations to higher dimensions in euclidean spaces (see
[San76]). First, the measure of hyperplanes intersecting a convex domain Ω with
C2 boundary is ∫

L∩Ω �=∅
dL = Mn−2(∂Ω)(2)

where Mn−2 is the integral of the (n − 2)-function of curvature of ∂K

Second, if we see �(l∩C) as the measure of the intersection l∩C, in higher dimen-
sions this measure corresponds to the volume of the intersection of a hyperplane L
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Figure 1.

with ∂Ω. In this case∫
L∩∂Ω �=∅

voln−2(L ∩ ∂Ω) dL =
OnOn−2

On−1O0
voln−1(∂Ω)(3)

with Or the volume of r-dimensional euclidean sphere. Third, if we count the
intersection points of lines l with ∂Ω we have∫

l∩∂Ω �=∅
�(l ∩ ∂Ω) dl =

On

O1
voln−1(∂Ω).(4)

Note that the same formulas hold changing ∂Ω by a compact C2 hypersurface M .

In the hyperbolic space H
n there are similar formulas, Cauchy-Crofton and for-

mulas (3) and (4) are valid without change. It is known (see [San76]) that the
measure of hyperplanes (complete totally geodesic hypersurfaces) intersecting a
convex body is a linear combination of integrals of curvature. For instance in H

3

the measure of hyperplanes intersecting a convex domain is the integral of mean
curvature of the boundary minus the volume of the domain, M1 − V .

The intrinsic geometry of horospheres (limit of spheres) is euclidean. Then it
is natural to ask whether we have similar formulas to the euclidean ones when we
substitute hyperplanes by horospheres.

In the works [San67] and [San68] Santaló started the study, in dimensions 2
and 3, of the measure of horospheres intersecting a given domain. In those cases
formulas (1) and (2) are still valid.

In this paper we obtain the measure of horospheres intersecting a convex domain
in H

n. Indeed the main theorem is more general

Theorem. If Ω is a domain in H
n bounded by an embedded C2 hypersurface ∂Ω

then ∫
H∩∂Ω �=∅

χ(H ∩ ∂Ω)dH = 2
[(n−2)/2]∑

h=0

(
n − 2
2h

)
1

2h + 1
Mn−2−2h(∂Ω)

where χ(H ∩ ∂Ω) is the Euler-Poincaré characteristic of H ∩ ∂Ω.

From here we conclude that the measure of the horospheres which intersect an
h-convex hypersurface (convex with respect to horocycles) M can be expressed as
a linear combination of the integral of mean curvatures. It must be noticed than
in dimensions 2 and 3 the measure of horosphere are 2M0 and 2M1 and it seemed
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natural to expect the measure of horospheres in higher dimensions to behave like
the measure of hyperplanes in the euclidean spaces. The theorem tells us that this
is not the case.

In section 2 we review some general notions and fix the notation needed in the
rest of the paper. Section 3 is devoted to the definition of an invariant measure
for horospheres in the hyperbolic space, with the normalization considered, some
key formulas will give the same measure (multiplied by a 2 factor) than the ‘linear’
case (i.e. the totally geodesic case) (see (11) and (12) in proposition 3.1). Next,
in section 4 we prove the main theorem, give examples and discuss some related
problems.

2. Preliminaries

The hyperbolic space is the unique simply connected and complete Riemannian
manifold of constant curvature −1. We do not consider any particular model but
sometimes it will be useful to think in the half-space model, obtained considering
the metric ( dx2

1 + · · ·+ dx2
n)/x2

n in the half-space xn > 0 in R
n. In geodesic polar

coordinates {ρ, θ1, . . . θn} the hyperbolic arc element has the form

ds2 = dρ2 + sinh2 ρ(dθ2
1 + · · · + dθ2

n−1)

and the volume element

dV = sinhn−1 ρdρ ∧ dΩn−1

where dΩn−1 represents the element of solid angle corresponding to the direction
θ1, . . . θn−1.

Geodesic lines —or simply lines— are, in the half-space model, euclidean semi-
circles and straight lines orthogonal to the boundary.

We consider two particular families of hypersurfaces in the hyperbolic space.
Hyperplanes are complete totally geodesic hypersurfaces. In the half-space we see
them as euclidean half spheres with center in {xn = 0} and euclidean hyperplanes
orthogonal to {xn = 0}. Horospheres are limit spheres, given a geodesic c(t) and
a fixed point c(t0) = p consider the hyperbolic sphere with center c(t) passing
through p, if the center c(t) tends to infinity we obtain two horospheres, one for
every direction of divergence. Horospheres can also be thought as hypersurfaces
orthogonal to a family of parallel geodesics. In the half-space model horospheres
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are seen as euclidean spheres tangent to the boundary and also as the horizontal
hyperplanes xn = ct .

Let Σ be a compact hypersurface of class C2. Consider it oriented by a unit
normal n, the second fundamental form h is h(X, Y ) = 〈∇XY,n〉. It is a bilinear
symmetric form and its eigenvalues κ1, . . . , κn−1 are the principal curvatures. We
define the functions of mean curvature σΣ

i (x) to be such that

det(I + thx) =
n−1∑
i=0

(
n − 1

i

)
σΣ

i (x)ti

and the integrals of mean curvature Mk are

Mk(Σ) =
∫

Σ

σΣ
k (x) dx.

When the context is clearly defined we shall write only Mk and σk. Note that
M0 is the volume of the hypersurface Σ and Mn−1 is the integral of the Gauss
curvature K = κ1 . . . κn−1.

Every hypersurface has the intrinsic geometry induced by the immersion in H
n.

Hyperplanes L have the geometry of H
n−1. The metric induced on horospheres H

is flat metric and they are isometric to the (n − 1)-dimensional euclidean space.

We shall need Gauss-Bonnet formula for hypersurfaces of the euclidean space: if
Σ is a compact, orientable hypersurface of class C2 in the n-dimensional euclidean
space and n − 1 is even we have

Mn−1(Σ) =
1
2
On−1χ(Σ)

with χ(Σ) the Euler characteristic of Σ. When Σ is the boundary of a domain Ω,
for every n

Mn−1(∂Ω) = On−1χ(Ω).(5)

3. Density for horospheres

In this section we shall give invariant measures for horospheres in H
n.

We have invariant measures for geodesic planes and for rigid motions, i.e. an
inavariant measure for the group of isometries, in H

n. We denote them respectively
by dL and dK. The measure dK is called kinematic density. In [San76] it is
proved

Theorem. Let Mq be a fixed q-dimensional compact manifold in H
n and Nr an r-

dimensional compact manifold moving with kinematic density dK. If r + q−n ≥ 0
and volr+q−n(M ∩N) denote the r + q − n-dimensional volume of the intersection
then ∫

M∩N �=∅
volr+q−n(M ∩ N) dK =

OnOn−1 . . . O1Or+q−n

OqOr
volq(M)volr(N)(6)

where volq(M) and volr(N) are the volumes of M and N respectively and Ok denote
the volume of the k-dimensional euclidean sphere.

Remark. In formula (6) the rigid motions are always considered as direct rigid
motions.

Example 3.1. When r + q−n = 0, vol0 denotes the number of intersection points
�(M ∩ N) of M and N . For instance, if M = Γ is a curve of length L and N a
compact hypersurface∫

Γ∩N �=∅
�(Γ ∩ N) dK =

OnOn−1 . . . O1O0

On−1O1
L voln−1(N).
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Now, let us consider N to be a sphere SR of radius R. As rotations leave
the sphere invariant and dK = dV dΩn−1 · · · dΩ1, where dΩk denote the volume
element of Sk, we have

∫
Γ∩SR �=∅

�(Γ ∩ SR) dK =

= vol(SO(n − 1))
∫

Γ∩SR �=∅
�(Γ ∩ SR) dV

= On−1 . . . O1

∫
Γ∩SR �=∅

�(Γ ∩ SR) dV.

Therefore, as the volume of a sphere in H
n is On−1 sinhn−1(R) we have that, with

respect to the measure dV of the center of the sphere, the measure of the spheres
intersecting a curve Γ of length L with its multiplicity is given by:∫

Γ∩SR �=∅
�(Γ ∩ SR) dV =

OnO0

O1
L sinhn−1 R.(7)

If dLn−1 is the usual measure (see [San76]) for oriented hyperplanes in H
n then it

is known that ∫
Γ∩Ln−1 �=∅

�(Γ ∩ Ln−1) dLn−1 =
On O0

O1
L(8)

We modify the measure of spheres of radius R in order to make formulas (7) and
(8) equal. To this end we put dSR = dV/ sinhn−1 R. When R tends to infinity we
obtain a measure for horospheres. To see how this measures can be expressed fix
an origin O, therefore the measure of spheres of radius R, with O an exterior point,
can be written as

dV = sinhn−1(ρ + R) dρ ∧ dΩn−1

where ρ denotes the distance from O to SR.
When R goes to infinity we obtain a measure for the horospheres leaving O

outside of its convex side

dH+ = e(n−1)ρdρ ∧ dΩn−1,(9)

and considering dV = sinhn−1(R− ρ)dρ∧ dω, for spheres with O an interior point,
if R tends to infinity we obtain the measure

dH− = e−(n−1)ρdρ ∧ dΩn−1(10)

of the horospheres leaving O on its convex side.
If dH denotes the measure for all the horospheres, with the previous definitions

we have the formula ∫
Γ∩H �=∅

�(Γ ∩ H) dH =
On O0

O1
L(11)

Remark. If n = 2 we have
∫

�(Γ ∩ H) dH = 4L and for dimension n = 3 we have∫
�(Γ ∩ H) dH = 2πL. These formulas were given in [San67] and [San68].

If we consider in formula (6) a compact manifold M and a sphere with radius R
the same arguments lead to a more general result

Proposition 3.1. Let Mq be a fixed q-dimensional compact manifold in H
n and

H horospheres with invariant measure dH given by (9) and (10). If volr denote
the r-dimensional volume then∫

H∩M �=∅
volq−1(H ∩ M)dH =

OnOq−1

Oq
volq(M).(12)
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4. Horospheres which intersect convex bodies in hyperbolic space

Suppose M a hyperbolic hypersurface of class at least C2, given an horosphere
H denote by C the intersection M ∩ H. When H and M are in general position,
C is an embedded submanifold of H and also of M .

Using Gauss-Bonnet formula (5) for Q ∩ H as a domain of H we have

χ(H ∩ Q) =
1

On−2
Mn−2(C).

(remember that H has an intrinsic euclidean structure).
Integrating χ(H ∩ Q) for every H intersecting Q∫

H∩Q�=∅
χ(Q ∩ H)dH =

1
On−2

∫
H∩Q�=∅

Mn−2(C)dH

=
1

On−2

∫
H

∫
C

σC
n−2 dxn−2dH.

Using the next proposition it will be possible to change the order of integration in
the last integral.

Proposition 4.1. Let M be a C2 hypersurface in H
n, H a horosphere intersecting

M in C then

dxn−2 ∧ dH = sin θ dxn−1 ∧ dΩn−1.(13)

Where dxn−2 and dxn−1 denote the volume elements in C and M respectively,
dΩn−1 the volume element of Sn−1, sphere that gives the normal vectors defining
horospheres through x and θ the angle between M and H.

Proof. We consider a quite more general setting. Let M and Σ be hypersurfaces of
class C2 in H

n, M is fixed and Σ is moving with kinematic density dK (i.e. the
volume element of isometries of H

n). Let C = M ∩ Σ, we denote by θ the angle
between the normal directions of M and Σ in a point x of C. It is known (see
[San76]) that

dC ∧ dK = sinn−1 θ dθ ∧ dM ∧ dΣ(14)

where dC = dxn−2 ∧ dO(n− 2) with dO(n− 2) the volume element of orthogonal
transformations in TxC and dM and dΣ the analogous densities for M and Σ.

If we consider Σ a sphere SR of radius R and write dΣ = dσx∧dΩn−2∧· · ·∧dΩ1

and dK = dV ∧ dΩn−1 ∧ · · · ∧ dΩ1 with dσx the volume element in SR at x, dV
the volume element of H

n in the center of the sphere and dΩi the volume element
of Si (with the corresponding identifications), then integrating over the orthogonal
group we have

dC ∧ dV = sinn−1 θ sinhn−1 R dθ ∧ dM

because dσx = sinhn−1 RdΩn−1 in hyperbolic polar coordinates.
Normalizing and making R go to infinity we get

dxn−2 ∧ dH = sinn−1 θ dθ ∧ dxn−1 ∧ dΩn−2.

Writing dΩn−1 in polar coordinates we have dΩn−1 = sinn−2 θ dθ∧dΩn−2, therefore
we obtain formula (13).

We have ∫
H

∫
C

σC
n−2 dxn−2dH =

∫
M

∫
Sn−1

σC
n−2 sin θ dΩn−1dxn−2.(15)

Now, let us compare normal curvatures in C with normal curvatures in M .
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Lemma 4.1. Let v be a tangent vector in C then

kM (v) = cos θ kH(v) + sin θ kH
C (v)

where θ is the angle between the hypersurfaces M and H, kM (v) and kH(v) the nor-
mal curvatures in M and H and kH

C (v) the normal curvature in C as a hypersurface
of H.

Proof. The vectorial second fundamental forms satisfy BH
C = BC − BH . Here

BC(X, Y ) is the normal part of ∇XY in H
n. Let n be the normal of C in H, then

n·nM = sin θ. If a superindex in ∇ means covariant derivative in the corresponding
manifold we have BH

C (X, Y ) = BM (X, Y )−BH(X, Y )+∇M
X Y −∇C

XY . Multiplying
both sides by the normal nM we finish the proof of the lemma.

If BM (X, Y ) = hM (X, Y ) · nM , BH(X, Y ) = hH(X, Y ) · nH and BH
C (X, Y ) =

hH
C (X, Y ) · n, from the lemma and taking into account that for horospheres hH is

the identity I (as a matrix) we have the equality

hH
C =

hM

sin θ
− I

tan θ
.(16)

when the forms are restricted to tangent vectors of C.
Now we relate σC

n−2 the curvature of C as a hypersurface of H and the symmetric
functions of hM restricted to the tangent space of C. We have that σC

n−2 = det(hH
C ),

then

σC
n−2 = det

(
hM

sin θ
− I

tan θ

)
=

=
n−2∑
i=0

(
n − 2

i

)
(−1)n−2−i cosn−2−i θ

sinn−2 θ
σM

i

(17)

Using this expression we compute
∫

Sn−1 σC
n−2 sin θdΩn−1 in (15). In this integral

the point x in M is fixed, then we have the direction nM normal to M fixed too.
Sn−1 is the space of directions defining H, hence if we use polar coordinates with
‘center’ nM by virtue of formula (17) we have

∫
Sn−1

σC
n−2 sin θdθdΩn−1 =

∫
Sn−2

∫ π

0

σC
n−2 sin θ sinn−2 θdΩn−2

=
∫

Sn−2

∫ π

0

(
n−2∑
i=0

(
n − 2

i

)
(−1)n−2−i cosn−2−i θ

sinn−2 θ
σM

i

)
sin θ sinn−2 θ dθ dΩn−2.

For a fixed point in Sn−2, when θ moves, the submanifold C changes but not his
tangent space, hence σM

i is independent of θ. Therefore∫
Sn−1

σC
n−2 sin θdθdΩn−1 =

=
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

) ∫
Sn−2

σM
i

(∫ π

0

cosn−2−i θ sin θ dθ

)
dΩn−2

=
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
2ε(n − 1 − i)

n − 1 − i

∫
Sn−2

σi
M dΩn−2

where ε(n − 1 − i) has value 0 if n − 1 − i is even and 1 if it is odd.
Now we need to compute

∫
Sn−2 σi

M dΩn−2. This computation can be found
for instance in [Lan80] and is a generalization of the well known relation between



8 E. GALLEGO, A.M. NAVEIRA, AND G. SOLANES July 10, 2002

mean and normal curvature in classical differential geometry of surfaces, i.e. H =
(1/π)

∫ π

0
kn(θ) dθ. We have∫

RP n−2
σi

M dΩn−2 = vol(G(n − 1, n − 2))σi.

Note that now σi in the right means function of curvature in x ∈ M for all the
directions in M .

Using this relation we have∫
Sn−1

σC
n−2 sin θ dθ dΩn−1 =

=
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
2ε(n − 1 − i)

n − 1 − i
2vol(G(n − 1, n − 2))σi

= 2
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
ε(n − 1 − i)
n − 1 − i

On−2 σi

and ∫
H∩Q�=∅

χ(Q ∩ H)dH =
1

On−2

∫
H

∫
C

σC
n−2 dxn−2dH

= 2
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
ε(n − 1 − i)
n − 1 − i

σi.

Reordering the indices we have proved the main theorem

Theorem. If Ω is a domain in H
n bounded by a embedded hypersurface ∂Ω then∫

H∩∂Ω �=∅
χ(H ∩ ∂Ω)dH = 2

[(n−2)/2]∑
h=0

(
n − 2
2h

)
1

2h + 1
Mn−2−2h(∂Ω)

Remark. Considering cases according the parity of n we have
• if n = 2m + 1∫

H∩∂Ω �=∅
χ(H ∩ ∂Ω)dH =

2
n − 1

∑
k odd

(
2m

k

)
Mk(∂Ω)

• If n = 2m∫
H∩∂Ω �=∅

χ(H ∩ ∂Ω)dH =
2

n − 1

∑
k>2 even

(
2m

k + 1

)
Mk(∂Ω)

When Ω is h-convex we have χ(H ∩ ∂Ω) = 1, therefore we can find the measure
of horospheres intersecting a h-convex set.

Corollary 4.1. The measure of the horospheres which intersect an h-convex hy-
persurface M can be expressed as a linear combination of the integrals of mean
curvature.

For H
2 and H

3 the formulas obtained in the theorem are∫
H∩Σ0 �=∅

χ(H ∩ ∂Ω)dH = 2M0 = 2 length(∂Ω)

for n = 2 and ∫
H∩∂Ω �=∅

χ(H ∩ ∂Ω)dH = 2M1

for n = 3 which are formulas given in [San67] and [San68] respectively.
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Given a convex body K in H
n using the formulas given in [San76] it can be found

the measure of hyperplanes intersecting K. For instance, in the plane this measure
equals the length of the boundary and in the space it is M1 − vol(K).

If SR is a (n − 1)-sphere in H
n let us compare the measures of hyperplanes L

and horospheres H intersecting SR. We have

m(L : L ∩ SR 
= ∅) = On−1

∫ R

0

coshn−1 r dr

and

m(H : H ∩ SR 
= ∅) ≈ 2n−2

n − 1
vol(SR).

When R tends to infinity m(L : L ∩ SR 
= ∅)/m(H : H ∩ SR 
= ∅) tends to 22−n.

Let us give some possible developments related to the problems trated here. Hy-
perplanes are hypersurfaces with vanishing normal curvature in every direction and
horospheres have normal curvature equal 1. Between hyperplanes and horospheres
there are equidistant hypersurfaces, they have normal curvature equal to λ between
0 and 1. It seems an interesting problem to find the measure of equidistants for
a given curvature λ that intersect a λ-convex body, i.e. its boundary has normal
curvature greater or equal than λ in every direction.
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