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Introduction

The sum of the inner of a hyperbolic triangle is always below π. The difference with
that value is the so-called defect of the triangle, and coincides with its area. This result
belongs to the beginnings of non-euclidean geometry but it is also a consequence of
the well-known Gauss-Bonnet theorem. By virtue of this theorem, the integral of the
geodesic curvature along a smooth simple closed curve in hyperbolic plane is known to be
the area of the bounded domain plus the Euler characteristic of this domain multiplied
by 2π. The defect of a curve in hyperbolic plane could be defined to be the difference
between its geodesic curvature integral and that of a topologically equivalent curve in
euclidean plane. Then one would state that the defect of a hyperbolic plane curve is
the area of the domain it bounds. Such a defect would measure the extra effort that a
sailor needs to make at the rudder in order to make the ship give a complete loop when
sailing in a hyperbolic sea.

When going to dimension 3, the Gauss-Bonnet theorem states that the Gauss cur-
vature integral of a closed surface is 2π times its Euler characteristic plus its area. Then
one can say that the defect of such a surface equals its area. In particular it is clear
that surfaces in hyperbolic space must provide more curvature than in euclidean space
in order to get closed.

In hyperbolic space of general dimension one finds a quite disappointing version of
the Gauss-Bonnet theorem: for even n and a domain Q ⊂ Hn of volume V ,

Mn−1(∂Q) + cn−3Mn−3(∂Q) + · · ·+ c1M1(∂Q) + (−1)n/2V = On−1χ(Q)

while for odd n,

Mn−1(∂Q) + cn−3Mn−3(∂Q) + · · ·+ c2M2(∂Q)−M0(∂Q) =
On−1

2
χ(∂Q)

where Oi is the volume of the i-dimensional unit sphere, the constants ci depend only on
the dimension, and Mi(∂Q) is the integral over ∂Q of the i-th mean curvature function.
In particular Mn−1(∂Q) is the Gauss curvature integral or total curvature of ∂Q. This
Gauss-Bonnet formula is deduced from the general intrinsic version proved by Chern for
abstract riemannian manifolds. However it is too bad to loose the simplicity we had in
dimensions 2 and 3. For instance, its is not so clear, even for a convex Q, whether if
the total curvature is greater in hyperbolic or in euclidean space. Nevertheless, integral
geometry will allow us to give a much smarter version of the Gauss-Bonnet theorem in
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Introduction

hyperbolic space. Indeed, it will be proved

Mn−1(∂Q) = On−1χ(Q) + c

∫

Ln−2

χ(Ln−2 ∩Q)dLn−2 (1)

where Ln−2 is the space of codimension 2 totally geodesic planes of Hn, and dLn−2 is the
invariant measure in this space. This way, the defect of a hyperbolic closed hypersurface
is the measure with some multiplicity of the set of codimension 2 planes intersecting
it. Integral geometry allows not only to state such a pretty formula but it is also the
key tool for the proof. Since one can easily deduce the Gauss-Bonnet theorem in Hn

from this formula, we will get a new proof of this theorem using the methods of integral
geometry.

This remarkable fact has an equivalent in spherical geometry that was already dis-
covered by E. Teufel in [Teu80]. In this case, the integral over the space on (n−2)-planes
in formula (1) appears with a minus sign. Let us take a look to the proof in this spher-
ical case, and we will have an idea of the difficulties hidden in the hyperbolic case. To
simplify take a strictly convex domain Q ⊂ Sn. Then one can define a Gauss map γ by
taking the inner unit normal vector at the points of S = ∂Q. The image γ(S) of such a
Gauss map is a hypersurface in Sn with volume equal to the total curvature of S. This
is due to the fact that the Gauss curvature at a point is the infinitesimal volume defor-
mation of γ. On the other hand, the Cauchy-Crofton formula in Sn allows to compute
this volume by just integrating the number of points where γ(S) is cut by all the great
circles of Sn. Up to some constant, one has that Mn−1(S) is the integral of the number
of intersection points #(l ∩ γ(S)) over the space of great circles l of Sn. Consider the
bundle of hyperplanes orthogonal to a great circle l. They all contain a common (n−2)-
plane Ln−2 which we call the pole of l. Moreover, every point of l∩ γ(S) corresponds to
a hyperplane of the bundle that is tangent to S. But, depending on whether the pole
Ln−2 meets S or not, the hyperplane bundle has none or two hyperplanes tangent to S.
Therefore, the total curvature of S is, up to some constant, the difference of the total
measure of (n− 2)-planes with the measure of those planes meeting the convex Q.

The general plan for hyperbolic space is similar. Consider a strictly convex domain
Q ⊂ Hn in the hyperboloid model

Hn = {x ∈ Rn+1 | L(x, x) = −1 x0 > 0}

with the Lorentz metric L(x, y) = −x0y0 + x1y1 + · · · + xnyn. Take, at every point in
S = ∂Q, the inner unit normal vector. This is a space-like vector of Rn+1; so one has a
Gauss map γ from S to the following quadric, called de Sitter sphere,

Λn = {x ∈ Rn+1 | L(x, x) = 1}.

The image γ(S) is a space-like hypersurface and, as in Sn, the Gauss curvature integral
over S coincides with the volume of this image. The next step would be to use a Cauchy-
Crofton formula in Λn to find the volume of γ(S). Unfortunately, such a formula does
not exist. In fact, the set of lines in Λn intersecting any small piece of hypersurface has
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infinite measure. This was the hidden difficulty of hyperbolic space: one needs to do
integral geometry in a Lorentz space, and this gives some difficulties. That the target
of the Gauss map of Hn is a Lorentz manifold is not accidental, nor it is due to the fact
that we have used a model contained in Minkowski space. As we will see, the reasons
for this fact are closely related to the existence of ultraparallel hyperplanes. Therefore,
it is a fact deeply related to the geometrical properties of hyperbolic space, and not to
those of any particular model.

However, we will here get over this difficulty while getting a Cauchy-Crofton-like
formula for hypersurfaces of Λn. To be precise we will prove

∫

L
(2−#(l ∩R))dl = On−2

n− 1
(vol(R)−On−1)

where R is any space-like hypersurface embedded in Λn, and L stands for the set of
space-like geodesics l. Then one can apply this formula to the hypersurface R = γ(S).
For every vector of some space-like geodesic in Λn, take the orthogonal subspace with
respect to the Lorentz metric. We get a bundle of hyperplanes in Hn containing all of
them an (n− 2)-dimensional geodesic plane Ln−2 of Hn. Now, the intersections of l and
γ(S) correspond to hyperplanes of the bundle tangent to S. Depending whether Ln−2

meets S or not, the hyperplanes bundle has none or two of these tangent hyperplanes.
Then we have seen that the measure of (n−2)-planes meeting Q is, up to some constant,
the total curvature of its boundary minus On−1.

Even if the previous lines contain the idea of the proof, it must be noticed that in the
general case one has to proceed more carefully, since the Gauss image of a non-strictly
convex surface can be far away from being embedded.

It is not surprising that integral geometry allows to prove the Gauss-Bonnet theorem.
Indeed, curvature integrals appear in many of the formulas of integral geometry. It is
also usual that through this relationship integral geometry allows to draw conclusions
on total curvature. For instance, the Fenchel-Fary-Milnor theorem for closed curves is
proved by just applying the Crofton formula to the spherical image of the unit tangent
vector of the curve. A similar result is the Chern-Lashof inequality. Recall that it
states, for any compact submanifold S immersed in Rn, that its total absolute curvature
TAC(S) is bounded by

TAC(S) ≥ On−1

2
β(S)

where β(S) is the sum of the Betti numbers of S. In the equality case S is called tight.
Tight immersions have been widely studied, and have been geometrically characterized in
many different ways. Recalling what we said in the beginning about how hypersurfaces
in hyperbolic space need much more curvature in order to get closed, one is lead to
think that the last inequality, being true in Rn, should also be true in Hn. However,
it was seen in [LS00] that this is false. To be precise, there one constructs orientable
surfaces S in H3 with a big genus g, such that its total absolute curvature is below
2πβ(S) = 2π(2 + 2g). Here we will do the same but for any genus g > 1. Having no
Chern-Lashof inequality, it is not clear what should tightness mean for submanifolds of

7



Introduction

Hn. However, following the geometrical characterizations of tight immersions in Rn, we
will give a natural definition of tightness in Hn. The natural question is then: what is
the difference between the total absolute curvature of an immersion in Hn and that of
its euclidean equivalent? We are asking for the defect in total absolute curvature of a
tight immersion in hyperbolic space. The answer will be again given in the ‘language’
of integral geometry. To be precise, we will prove that this ‘absolute defect’ is

∫

S
|K|dx− On−1

2
β(S) =

On−2

n− 1

∫

Ln−2

(β(S)− ν(S,L))dL

being ν(S,L) the number of hyperplanes containing Ln−2 and tangent to S. This defect
is not always positive; in the examples of [LS00] it must be negative. However, we will
show that that the absolute defect of a tightly immersed torus is positive. So for tight
tori in Hn the Chern-Lashof inequality does hold.

Hypersurfaces in hyperbolic space are not only more curved than in euclidean but
they also have a greater volume. Let us recall, for instance, that for a domain Q ⊂ Hn

the boundary has more volume than the interior. More precisely

vol(∂Q) > (n− 1)vol(Q).

This shocks to our intuition since in euclidean geometry these two volumes have different
orders. For instance, after a homothety of factor ρ the volume of Q is multiplied by ρn

and that of ∂Q is multiplied by ρn−1. This implies that vol(Q) and vol(∂Q) can not
be ‘compared’ in euclidean space. Nevertheless, they can be in hyperbolic space. This
is due to the fact that the negative curvature of the space gives much more ‘content’
to the boundary. Adding this to the idea that this boundary is also more curved, one
can think of inequalities in the style of vol(Q) < cMn−1(Q) or vol(∂Q) < cMn−1(Q).
We will prove such inequalities for Q convex. To be precise we will show that there are
constants such that for any convex Q ⊂ Hn

Mi(∂Q) < c vol(Q) Mi(∂Q) < cijMj(∂Q) for i < j

where Mi stands again for the i-th mean curvature integral. These inequalities are once
again completely impossible in euclidean geometry, since the mean curvature integralMi

has order n− i− 1. In other words, after stretching Q through a homothety of factor ρ,
the i-th mean curvature integral of its boundary becomes Mi(∂(ρQ)) = ρn−i−1Mi(∂Q).

In order to prove these inequalities, equation (1) will play an important role. Using
the reproductive properties of Mi, this formula gives

Mi(∂Q) = cWi−1(Q) + c′Wi+1(Q)

whereWi(Q) is the usually calledQuermassintegrale ofQ and stands, up to constants, for
the measure of i-planes meeting the convex Q. Thus, we will start looking for inequalities
between the Wi. From them one will deduce, by the previous formula, inequalities
between the Mi. The former inequalities will be in the style of Wi(Q) < cWi+1(Q). In
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particular one will have vol(Q) < cWi(Q). This inequality has an amazing interpretation
in terms of geometric probabilities. Indeed, throwing an i-plane L randomly to meet
a convex body Q, and measuring the volume of the intersection L ∩ Q one gets a
random variable λi. The mathematical expectation of such a random variable is E[λi] =
c ·vol(Q)/Wi(Q). Thus, the previous inequality amounts to give an upper bound for the
mathematical expectation of a random i-dimensional plane slice of a convex body. And
this bound is a constant not depending on how big is the body!

Besides of this interpretation, the inequalities between the QuermassintegraleWi(Q)
will allow to prove for any convex Q ⊂ Hn

Mi(∂Q) < Mj(∂Q) for j > i+ 1

and these inequalities are sharp. Indeed, it is easy to see that for a ball B with radius
growing to infinity Mi(∂B)/Mj(∂B) approaches to 1. We will also find constants such
that

Mi(∂Q) < ciMi+1(∂Q)

but in this case the constants will not be shown to be optimal.
Going back to the expectation of random plane slices, it is also interesting to look at

the intersections with different submanifolds randomly thrown. In particular, it is natu-
ral to look at the problem with horospheres and equidistants playing the role of geodesic
planes. Equidistants and horospheres are two kinds of hypersurface very specific of hy-
perbolic geometry, where, in some sense, are analogues of euclidean affine hyperplanes.
Indeed, in euclidean geometry one can think of affine hyperplanes as spheres of infinite
radius. One can also say that hyperplanes and spheres are the only hypersurfaces with
constant normal curvature. On the other hand, in hyperbolic geometry, a sphere with
center going to infinity approaches a hypersurface called a horosphere. Besides, spheres
in Hn have normal curvature greater than 1. So it is clear that between geodesic hyper-
planes and metric spheres there should be a range of hypersurfaces with constant normal
curvature between 0 and 1. These are the so-called equidistants and horospheres. The
former have constant normal curvature below 1 and its points are all at the same dis-
tance from some geodesic hyperplane. About horospheres, they have normal curvature 1
and we already said that they are limits of spheres. Thus, horospheres and equidistants
have a strong analogy with affine hyperplanes of euclidean geometry. Therefore, integral
geometry in hyperbolic space should deal with these hypersurfaces in the same way as
it deals with affine planes in euclidean space. For horospheres, this study was started
by Santaló in [San67] and [San68] in dimensions 2 and 3, and was followed by Gallego,
Mart́ınez Naveira and Solanes in [GNS] for higher dimensions. The case of equidistant
hypersurfaces is treated here for the first time, together with the previous one.

An outstanding fact is that the measure of horoballs (convex regions bounded by
horospheres) containing a compact set is finite. After, this fact will allow to prove some
geometric inequalities for h-convex sets (or convex with respect to horospheres). Finally
we will see that, the same as for geodesic planes, the expected volume of the intersection
of a domain with a random horosphere or equidistant is bounded above, no matter how
big the domain is.
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Next we explain the organization of the text. Chapter 1 contains some preliminaries
about hyperbolic space Hn and mean curvature integrals of hypersurfaces. There are
also some computations with moving frames which will be the basic tool for the rest of
the chapters. Moreover, the moving frames method will allow us to work without any
particular model of hyperbolic space. Only in some moments we will use the projective
model, and just in a synthetic way. It is worthy to say that everything we will do could
also be done working with the hyperboloid model. However, we have preferred to avoid
the models in order to show clearly the geometrical reasons leading to semi-riemannian
metrics.

Chapter 2 studies the spaces consisting of geodesic planes in Hn. We pay special
attention to its semi-riemannian structure invariant under the action of the isometry
group of Hn. As a particular case, we identify the de Sitter sphere Λn to the space of
oriented hyperplanes of Hn. In this space we also introduce moving frames and we study
the duality relationship between Λn and Hn. We also generalize to Λn some results on
contact measures which are known in constant curvature riemannian manifolds. These
results are used to finish the chapter with a Cauchy-Crofton formula in Λn. This formula
is one of the main results of this work and its proof will inspire great part of the content
of the next chapter.

Chapter 3 treats on total curvature of hypersurfaces. In a first part, one studies
the Gauss curvature integral of closed hypersurfaces. This is done from the point of
view of integral geometry, which presents some advantages with respect to the intrinsic
viewpoint. After recalling briefly the euclidean and spherical cases, one proceeds to
hyperbolic space. The result is the formula (1) which leads to a new proof of some
integral geometric formulas as well as of the Gauss-Bonnet theorem in hyperbolic space.

The second part of the chapter is concerned on the study of total absolute curva-
ture (in the sense of Chern and Lashof). After recalling briefly the classical theory
in euclidean space, we start the study of surfaces in H3. The most important point
in this section are some examples showing that the Chern-Lashof inequality does not
hold in hyperbolic geometry. Next we give a definition of tightness for submanifolds
in Hn, which is analogous in many aspects to the euclidean definition. Finally, we get
a kinematic formula which allows to measure the difference between the total absolute
curvature of a tight submanifold in Hn and that of its euclidean analogue. From this
formula one can deduce that tight tori in Hn do fulfill the Chern-Lashof inequality.

In chapter 4 one gets inequalities relating the mean curvature integrals of the bound-
ary of a convex body. The first step is to compare the measure of the set of planes
meeting the convex body for different dimensions of the planes. This is done by means
of a rather elementary but quite original and effective geometric argument. This result
is interpreted in terms of the expectation of the volume of the intersection of a random
plane meeting a fixed domain. Then, we get some inequalities for the mean curvature
integrals, and finally some examples are constructed showing that many of the obtained
inequalities are sharp.

The last chapter generalizes the classical formulas of integral geometry to horo-
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spheres and equidistant hypersurfaces. Both cases are treated together with those of
geodesic planes and spheres, since one deals with totally umbilical hypersurfaces of any
normal curvature. Next we use the results about horospheres to prove certain geometric
inequalities for h-convex domains. Finally we get results about the expectation of the
volume of the intersection between a randomly moving totally umbilical hypersurface
and a fixed domain.
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Chapter 1

Mean curvature integrals

1.1 Hyperbolic space

In this section we introduce hyperbolic space and we outline some of the fundamental
facts of its geometry.

1.1.1 Definition and basic facts

There are several models of hyperbolic space. Between the most known are the Poincaré
half-space and ball, the hyperboloid and the projective (or Klein, or Beltrami) model.
The hyperboloid is the most used in integral geometry (cf. [San76]). However, here
we will use exclusively the projective model and only eventually. Indeed, in order to
give the most geometric view, we will take an abstract viewpoint; i.e. not using any
model when possible. Thus, to do computations we will some classical techniques from
riemannian geometry as geodesic coordinates, Jacobi fields, moving frames, etc. Besides,
the formulas of hyperbolic trigonometry will be very useful.

Definition 1.1.1. Hyperbolic space of dimension n, denoted Hn, is the (only up to
isometry) n-dimensional complete, simply connected riemannian manifold with constant
sectional curvature −1.

As known, the unicity comes from Cartan’s classification theorem ([Car51, p.238]).
This theorem implies the following property, general for spaces of constant curvature.

Proposition 1.1.1. The isometry group of Hn acts transitively on the orthonormal
frames. That is, given two points p, q ∈ Hn and orthonormal basis on TpHn i TqHn,
there exists one only isometry sending p to qand the basis of TpHn to the one of TqHn.

In particular, hyperbolic space is homogeneous and isotropic. We will denote by G
the isometry group of Hn.

Another remark on Hn is that, for having negative sectional curvature and as a
consequence of Hadamard’s theorem, there are no conjugate points. Therefore it is
diffeomorphic to euclidean space. Concretely, if exp : TpHn −→ Hn is the exponential
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Chapter 1. Mean curvature integrals

map centered at a point p in Hn, then exp is a global diffeomorphism. Moreover, given
an r-dimensional linear subspace V of TpHn, the exponential map sends V to a totally
geodesic r-dimensional submanifold of Hn. These submanifolds are called geodesic r-
planes. With the metric induced by the ambient, each of these r-planes Lr is isometric
to Hr. Given two r-planes, clearly exists an isometry of Hn sending one to the other.

The fundamental difference between hyperbolic geometry and euclidean or spherical
geometries is the fact that two hyperplanes in Hn can be generically disjoint. In the
sphere Sn, two equators always intersect and, even if in Rn two hyperplanes can be
disjoint, we can always slightly move one of them to make them intersect. On the other
hand, two hyperplanes in Hn having a common perpendicular geodesic never intersect.
This geodesic gives the minimum distance between the hyperplanes. If we move slightly
one of the hyperplanes, the distance varies continuously and so they keep disjoint. Two
hyperplanes with a common perpendicular are called ultraparallel. There is a limit
case in which two hyperplanes are disjoint but at distance 0, that is inifinitely close to
intersect. In this case there is no common perpendicular and the hyperplanes are called
parallel.

Through the exponential map one cap send polar coordinates from TpM to Hn. We
get the so-called geodesic polar coordinates in which the metric of Hn is written

ds2 = dr2 + sinhn−1 rdu2 (1.1)

where r is the distance to p and du2 is the metric of the unit sphere in TpHn. To see
this, it is enough to recall that the Jacobi field that is null in p and orthogonal to the
radial geodesic has norm sinh r (cf.[dC92, p.113]). Thus, for instance, a circle C of
radius R in H2 has length 2π sinhR and bounds a disk of area 2π(coshR− 1). A simple
computation shows that the geodesic curvature of C is constant cothR. Note that it
is always greater than 1. It becomes clear that a geodesic line is not approxiamted by
circles. This is another characteristic property of hyperbolic geometry. If we fix a point
of C and we make the center go infinitely away, we get a curve of constant geodesic
curvature 1 called horocycle.

There is still another class of curves in H2 with constant geodesic curvature. For an
oriented line L take, for every point p ∈ H2, the (signed) distance r from p to L and the
point x ∈ L where this distance is attained. In these coordinates, the area element of
hyperbolic plane is

ds2 = dr2 + cosh2 rdx.

This is also seen via Jacobi fields. The curves r ≡ constant are called equidistants. It is
a computation to see that they have constant geodesic curvature tanh r, and thus lower
than 1.

Therefore, hyperbolic geometry includes four special types of curves: geodesics, cir-
cles, horocycles and equidistants. In higher dimensions one has four kinds of hypersur-
faces with constant normal curvature λ, called λ-hyperplanes: geodesic hyperplanes for
λ = 0, metric spheres for λ > 1, horospheres for λ = 1 and equidistant hypersurfaces
for λ < 1. Again, horospheres are limits of spheres and equidistants are at constant
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distance from some geodesic hyperplane. We only consider positive values of λ since the
normal curvature changes its sign when changing the unit normal vector.

Sometimes we will be interested in convex subsets of Hn. Naturally we will say that
a set Q ⊂ Hn is convex if for any pair of points in Q the geodesic segment joining them
is contained in Q. One can also define convexity by imposing that through every point
in the boundary of Q passes some hyperplane leaving Q at one side. A domain with
smooth boundary is convex if the normal curvature of its boundary is everywhere non-
negative with respect to the inner normal. Thus, for instance, a λ-hyperplane bounds a
convex region.

We will also be interested in stronger notions of convexity.

Definition 1.1.2. A set Q ⊂ Hn is called λ-convex if every point in the boundary is
contained in some λ-hyperplane leaving Q in its convex side.

When the boundary is differentiable, the latter condition is equivalent to have all
the normal curvatures with resect to the inner normal greater than λ. A λ-hyperplane
is clearly the boundary of a λ-convex region.

The λ-convex sets were studied in [GR99, BGR01, BM02]. There, one deals with
sequences of such sets growing to fill the whole space. It is easily seen that for λ > 1,
there are not arbitrarily big λ-convex sets. Therefore, we will be mainly interested in
the cases λ ≤ 1. When λ = 1, 1-convex sets are usually called h-convex.

In order to compute, the classical formulas of hyperbolic trigonometry will be very
useful. Let a, b and c be the sides of a geodesic triangle in Hn and let, respectively, α,
β and γ be the inner opposite angles. The following equalities then hold (cf. [Rat94])

cosh a = cosh b cosh c− sinh b sinh c cosα,

sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
, (1.2)

sinh a cosβ = cosh b sinh c− sinh b cosh c cosα.

1.1.2 Moving frames

In order to carry out the computations of integral geometry, the most useful method
is that of the moving frames. The most elegant formulation of this method uses the
language of principal bundles. For this, and because it allows us to work without any
model, we study the frame bundle of Hn. This bundle will be identified to the isometry
group.

Consider F(Hn), the bundle of orthonormal frames of Hn. These frames are denoted
by g = (g0; g1, . . . , gn) ∈ F(Hn) being g0 a point in Hn and g1, . . . , gn an orthonormal
basis of Tg0Hn. Concretely

π : F(Hn)→ Hn
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Chapter 1. Mean curvature integrals

is a principal bundle with structural group O(n). The action on the right of this group
is

R : F(Hn)×O(n) −→ F(Hn) (1.3)

((g0; g1, . . . , gn), u) 7−→ (g0; g1u
1
1 + · · ·+ gnu

n
1 , . . . , g1u

1
n + · · ·+ gnu

n
n). (1.4)

Recall that the frames g ∈ F(Hn) can be thought of as linear isometries

g : Rn → Tπ(g)Hn.

This way R(g, u) = g ◦u. The canonical form θ of F(Hn) takes values in Rn and is given
by

θ(X) = g−1dπ(X) X ∈ TgF(Hn).

The i-th component of θ is a real-valued form and will be denoted ωi0. Given a (local)
section g : Hn → F(Hn), for every vector v tangent to Hn

g∗ωi0(v) = ωi0(dgv) = 〈v, gi〉.

Consider now the infinitesimal action σ mapping every elementX of o(n), Lie algebra
of O(n), to a field σ(X) on (F(Hn)) defined by

σ(X)g := dR(g,e)(0, X) ∀g ∈ F(Hn)

That is, σ is a mapping from o(n) to the vertical fields (tangent to the fibers) of F(Hn).
The fields thus obtained are called fundamental fields. Recall that o(n) consists of the
antisymmetric matrices. Consider the matrix X j

i with zeros at all the positions except

from (Xj
i )
j
i = 1 and (Xj

i )
i
j = −1 (here and in the following Aj

i stands for the position
in the row i and the column j of the matrix A). Define the following field on F(Hn)

vji = σ(Xj
i ).

Since {Xj
i |1 ≤ i < j ≤ n} is a basis of o(n), the fields {vji |1 ≤ i < j ≤ n} are linearly

independent at every point. Note that vji = −vij . One can geometrically think of vji as
the tangent vector of the curve of frames in a point having all the vectors fixed except
from gi and gj . Concretely, vji is the tangent vector to the curve g(t) = (g1, . . . , gn) in
F(Hn) where

gr(t) ≡ gr r 6= i, j
gi(t) = cos tgi + sin tgj

gj(t) = − sin tgi + cos tgj .

A connection in the principal bundle π is a form ω taking values in o(n) such that
ω(σ(X)) = X and ω(dRuX) = Ad(u−1)ω(X). Such a form determines a (Koszul)
connection ∇ in Hn. If g : U → F(Hn) is a local section of π, then

ωji (dgv) = 〈∇vgj , gi〉

16



Chapter 1. Mean curvature integrals

where 〈 , 〉 is the metric on Hn. Note that the coefficients ωji , for 1 ≤ i, j ≤ n, are

real-valued forms F(Hn) such that ωji = −ωij . We choose the form ω which determines
the Levi-Civita connection ∇ in Hn.

The connection form ω determines a distribution H complementary to the vertical
part V = Tgπ

−1(π(g)) which is called the horizontal part; a vector X is horizontal, and
belongs to H, if and only if ω(X) = 0. The horizontal vectors are tangent to the parallel
transport of a frame along a curve in Hn. On the other hand, each vector x ∈ Rn has
an associated field B(x) on F(Hn), called basic field, which is the only horizontal field
such that dπB(x)g = g(x) ∈ Tπ(g)Hn. Define, for i = 1, . . . , n, the following linearly
independent system of basic fields

vi0 = B(ei).

It is convenient to define also v0i = vi0. Geometrically vi0 is the tangent vector to the curve
of frames obtained by parallel transport of the basis {gj} along the geodesic starting at
g0 with tangent vector gi.

Restricting the indices to 0 ≤ i < j ≤ n the system {vji } becomes a basis of TgF(Hn)

at every frame g. Besides, ωji is the dual basis of vji .

The structure equations of the principal bundle π are

dθ = −ω ∧ θ

dω = −[ω, ω] + Ω

Which must be understood this way: for every pair X,Y ∈ TgF(Hn)

dθ(X,Y ) = −ω(X) · θ(Y ) + ω(Y ) · θ(X)

dω(X,Y ) = −ω(X) · ω(Y ) + ω(Y ) · ω(X) + Ω(X,Y )

where · stands for the ordinary matrix product and the elements of Rn are columns. In
our case, since the sectional curvatures are −1, we have ([KN96a, p. 204]) Ω = −θ ∧ θ;
that is

Ω(X,Y ) = θ(Y ) · θ(X)t − θ(X) · θ(Y )t

The fact that Hn has constant curvature allows us to endow F(Hn) with a Lie
group structure. This is done through proposition 1.1.1. Fix a point e0 ∈ Hn and an
orthonormal basis (e1, . . . , en) of Te0Hn; that is, fix a frame e = (e0; e1, . . . , en) ∈ F(Hn).
Every frame g ∈ F(Hn) can be associated to the only isometry which maps e to g. Thus,
the bundle F(Hn) is identified to G, the isometry group of Hn.

The product operation of G can be thought of as a left action of G on the frame
bundle. Thinking of the elements of F(Hn) as isometries h : Rn −→ Tπ(h)Hn

G×F(Hn) −→ F(Hn)

(g, h) 7−→ dg ◦ h
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Chapter 1. Mean curvature integrals

with dg ◦ h : Rn → Tg(h0)Hn. Both ω and θ are invariant under this action since the
metric of Hn is invariant under G. Thus, fundamental and basic fields are left-invariant.
In other words, if g is the Lie algebra of G, then

σ : o(n)→ g and B : Rn → g

are injective morphisms (or inclusions) of Lie algebras. These inclusions allow us to
think of ω and θ as forms on G taking values in g (the one takes values in the vertical
part and the other in the horizontal one). Define a new form on G

ω = B ◦ θ + σ ◦ ω

taking values in g. This form is left-invariant and is the identity at the neuter element
e ∈ G. Therefore, ω is the Maurer-Cartan form of G. The structure equation of Lie
groups states

dω + [ω, ω] = 0

which, together with the structure equations of θ and ω, allows us to compute the Lie
bracket of g. For X,Y ∈ g

[X,Y ] = [ω(X), ω(Y )]e = −dω(X,Y ) = −σ(dω(X,Y ))−B(dθ(X,Y )) =

= σ([ω(X), ω(Y )]) + σ(θ(X) · θ(Y )t − θ(Y ) · θ(X)t)+

+B(ω(X) · θ(Y )− ω(Y ) · θ(X)).

That is, for fundamental and basic fields, if X,Y ∈ o(n) and x, y ∈ Rn

[σ(X), σ(Y )] = σ[X,Y ], [σ(X), B(y)] = B(X · y)

[B(x), B(y)] = σ(xyt − yxt). (1.5)

In particular, we know the bracket for the fields vji with 0 ≤ i 6= j ≤ n.

Lemma 1.1.2. The Lie bracket of g is given by

[vji , v
s
j ] = vsi for i 6= j 6= s

[vji , v
s
r ] = 0 for i < j < r < s.

Proof. It is easy to check knowing the bracket of o(n) and using (1.5) besides of vji =
−ε(i)ε(j)vij .

With all this we can obtain the Killing form Kg of g. Recall that this is defined to
be Kg(X,Y ) = tr(adX ◦ adY ) and it is bi-invariant. A first remark is that, as a general
fact on symmetric spaces, the horizontal and vertical subspaces of g are orthogonal
with respect to Kg (cf. [Hel01]). The restriction to the vertical subspace is, up to a
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constant, the Killing form of o(n) given by Ko(n)(X,Y ) = (n− 2)trXY for X,Y ∈ o(n)
(cf. [KN96b, p.266]).

Kg(σ(X), σ(Y )) = tr(adσ(X)adσ(Y )|V) + tr(adσ(X)adσ(Y )|H)
= Ko(n)(X,Y ) + tr(B(x) 7→ B(XY x)) =

= (n− 2)tr(XY ) + tr(XY ) = (n− 1)tr(XY )

=
n− 1

n− 2
Ko(n)(X,Y ).

It remains to determine the restriction to the horizontal part. A general property of
the Killing form is K(X, [Y,Z]) = K(Y, [Z,X]) (cf.[Hel01]). Thus, for Y ∈ o(n) and
x, z ∈ Rn

Kg(B(x), B(Y z)) = Kg(B(x), [σ(Y ), B(z)]) = Kg(σ(Y ), [B(z), B(x)]) =

= Kg(σ(Y ), σ(zxt − xzt)) = (n− 1)tr(Y (zxt − xzt)) = 2(n− 1)(Y z)tx.

Since every vector of Rn can be written as Y z, we have seen that the restriction of Kg

to the horizontal part is, up to a constant, the metric of Hn. Since the vertical and
horitzontal subspaces are orthogonal, the Killing form of g is determined; namely

Kg(X,Y ) =
n− 1

n− 2
Ko(n)(ω(X), ω(Y )) + 2(n− 1)〈dπ(X), dπ(Y )〉 X,Y ∈ g

where 〈 , 〉 is the metric on Hn. That is,

Kg = 2(n− 1)
n∑

i=1

ωi0 ⊗ ωi0 − 2(n− 1)
∑

1≤i<j≤n

ωji ⊗ ωji .

In particular Kg is a semi-riemannian metric on G, bi-invariant, non-degenerate and
with signature n. Later we will see that G does not admit a bi-invariant positive (nor
negative) definite metric.

However, it is convenient to take the following metric in G

〈X,Y 〉 := − 1

2(n− 1)
Kg(X,Y ) X,Y ∈ g. (1.6)

This way, the basis {vji }i<j of g is orthonormal with respect to 〈 , 〉. Indeed, being
ε(i) = 1 for i 6= 0 and ε(0) = −1,

〈vji , vsr〉 = ε(i)δirδjs i < j i r < s.

1.1.3 Models

Hyperboloid model.

The hyperboloid model, even if it will not be strictly necessary at any moment, can be
useful to get a concrete vision of hyperbolic space.
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Chapter 1. Mean curvature integrals

Consider the (n + 1)-dimensional Minkowski space. That is, consider in Rn+1 the
following Lorentz metric

L(x, y) = −x0y0 + x1y1 + · · ·+ xnyn.

A vector v ∈ Rn+1 is called time-like if L(v, v) < 0. When L(v, v) > 0 it is called space-
like. A vector v such that L(v, v) = 0 is light-like. The set of light-like vectors is the light
cone. Similarly, a linear subspace of Rn+1 is time-like if it contains time-like vectors, it
is space-like if it contains only space-like vectors, and it is light-like if it contains only
light-like and space-like vectors. In the latter case the subspace is tangent to the light
cone.

The hyperboloid model of hyperbolic space Hn is the set of vectors with squared norm
−1 having the first component positive

Hn = {v ∈ Rn+1 | L(v, v) = −1 i v0 > 0}.

The tangent vectors to Hn in a point p are orthogonal respect to L to the vector p ∈ Rn+1;
i.e. TpHn = (p)⊥. This implies that the restriction of L to the tangent space of Hn at
every point is positive definite. This way we endow Hn of a riemannian structure. It
can be checked that this manifold has constant curvature −1 and is therefore a model
for hyperbolic space.

The connection ∇ of Hn is given by ∇, the usual connection of Rn+1, through

(∇XY )p = (∇XY )p − L(p, (∇XY )p) · p X, Y ∈ X(Hn) p ∈ Hn. (1.7)

That is, ∇ is the L-orthogonal projection of ∇ to Hn. Therefore, the geodesics of Hn

are intersections of linear 2-planes in Rn+1 with Hn. In general, the intersection of a
linear subspace of Rn+1 with Hn is a totally geodesic submanifold.

The hyperboloid model gives a representation of G, isometry group of Hn, as a
subgroup of the linear group. Indeed, the isometry group of Hn is

G = {g ∈ Gl(n+ 1) | gtJg = J, g00 > 0}

on J =




−1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 .

With this representation, the identification between G and F(Hn) is very simple.
Indeed, fix in Hn the frame given by the canonical basis of Rn+1. For every matrix in
G, the columns represent the image of this frame. So, every matrix in G is identified
with the frame of F(Hn) given by its columns.

If a curve g(t) ⊂ G passes by e at t = 0, then

ġt(0)J + Jġ(0) = 0.
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Chapter 1. Mean curvature integrals

We deduce that the Lie algebra of G consists of the antisymmetric matrices multiplied
by J

g = {V ∈Mn+1(R) | V J + JV t = 0}.

With this representation, it is easy to check that for every pair u, v ∈ g, the metric (1.6)
is

〈u, v〉 = 1

2
(−L(u0, v0) + L(u1, v1) + · · ·+ L(un, vn))

where ui and vi stand for the i-th columns of u and v.

The projective model.

The projective model is the projectivization of the hyperboloid. In this model, geodesics
look as straight lines and this makes it very useful when dealing with qualitative ques-
tions; not when computing.

Projectivize Rn+1. The Lorentz metric L becomes a non-degenerate quadric C.
Thus, the points in Hn are those x such that C(x, x) < 0. The conic {C(x, x) = 0} is
called the sphere at infinity and its points are called ideal points. The totally geodesic
submanifolds of Hn are here intersections of projective manifolds. The isometries are
given by projective transformations preserving C. Note that such transformations
preserve automatically the interior since the exterior of a conic is topologically non-
orientable. Obviously, this model is also a Riemann manifold but we will not need to
know explicitly its metric (which can be found for instance in [LS00]).

Since all the non-degenerate quadrics are projectively equivalents, the projective
model of hyperbolic space is the interior of any non-degenerate conic in RPn. We will
usually take an affine chart in which the conic appears as a sphere centered at the origin.

1.2 Mean curvature integrals

Here we define the main object of study of this text. We are interested in mean curvature
integrals of hypersurfaces in Hn. However, we will also deal with hypersurfaces in other
spaces. So, we give the definitions for arbitrary Riemann manifolds.

Let N be an n-dimensional Riemann manifold. Unless otherwise stated, we will
always assume that all the objects are infinitely differentiable. Let S ⊂ N be a hyper-
surface. At every point p ∈ S, given a unit vector n⊥TpS the second fundamental form
II of S is

II(X,Y ) = 〈∇XY, n〉 X,Y ∈ TpS.

where ∇ denotes the connection in N . It is a symmetric bilinear form on TpS. Thus, it
has an orthonormal basis of eigenvectors. The corresponding eigenvalues k1, . . . , kn are
called principal curvatures of p. Define the i-th mean curvature function of S to be

σi =
fi(k1, . . . , kn−1)(

n− 1
i

)
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where fr is the i-th symmetric elementary polynomial. They are also defined by

det(II + tId) =
r∑

j=0

(
n− 1
j

)
σjt

j .

The following property is very used in integral geometry.

Proposition 1.2.1. [LS82, p. 559],[Teu86] For every linear subspace l of dimension i
of TxS, denote II|l the restriction of II to l. Then,

∫

G(i,TxN)
det(II|L)dL = vol(G(i, n− 1))σi

We will usually refer to the determinant of the restriction II|L as the normal cur-
vature in the direction L. Thus, the mean curvature is the mean value of the normal
curvatures. These normal curvatures have a geometric meaning in terms of intersections.
The following theorem is a generalization of the classical Meusnier’s theorem.

x

θ

l

L

S

Figure 1.1: MeusnierÝs theorem

Theorem 1.2.2. [LS82, p. 561] If L is an (r+1)-dimensional affine plane intersecting
a hypersurface S ⊂ Rn in x, then the normal curvature of S at x in the direction
l = TxS ∩ L is

K(l) = det(II|l) = cosr θ ·K(L ∩ S)
where θ is the angle in x between the (chosen) unit normal vectors of S and l ⊂ L, and
K(L ∩ S) is the Gauss curvature in x of L ∩ S as a hypersurface of L ∼= Rr.
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Therefore, the normal curvature is the Gauss curvature of the intersection with an
orthogonal affine plane.

The latter theorem holds for hypersurfaces S in any Riemann manifold N if one
changes L by expx L for some linear subspace L ⊂ TxN . Indeed, S can be locally copied
to a hypersurface of TxN through expx. It is easy to check that expx does not change
the second fundamental form of S in x. Since TxN is euclidean we will be in conditions
to apply the last theorem.

This theorem allows us to prove that the projective model is faithful with respect to
the sign of normal curvatures.

Proposition 1.2.3. Let S ⊂ Hn be an oriented hypersurface in the projective model.
Let n and n′ be the unit normal vectors to TpS in a point p of S with respect to the
euclidean and hyperbolic metrics respectively and according to the orientation. Then,
for every direction in TpS, the normal curvature of S with these normal vectors has the
same sign with respect to both metrics.

Proof. Let us start with the euclidean metric. Intersect with an affine plane L containing
p and n. The curvature of the intersection curve L ∩ S is the normal curvature of S.
With respect to the hyperbolic metric, L is still totally geodesic. The Meusnier theorem
states that the (hyperbolic) normal curvature of S is a positive multiple of the curvature
of L ∩ S since 〈n, n′〉 > 0.

Next we define the mean curvature integrals which are the main object of study in
this text.

Definition 1.2.1. LetN be a Riemann manifold and S ⊂ N be a compact hypersurface,
possibly with boundary, oriented with a unit normal. The i-th mean curvature integral
of S is

Mi(S) =

∫

S
σi(p)dp

where dp is the volume element of S. Note that M0(S) is the volume of S and Mn−1(S)
is the integral of the Gauss curvature (or total curvature, or even curvatura integra) of
S.

As an example, the mean curvature integrals in Sn, Rn and Hn of a sphere S(R) of
radius R are

Mi(S(R)) = On−1 cos
iR sinn−i−1R in Sn (1.8)

Mi(S(R)) = On−1R
n−i−1 in Rn (1.9)

Mi(S(R)) = On−1 cosh
iR sinhn−i−1R in Hn (1.10)

In constant curvature spaces, the mean curvature integrals appear, for instance,
in the Steiner formula for the volume of parallel hypersurfaces. Let S be a compact
hypersurface C2 differentiable of a space of constant curvature k, oriented through a
unit normal n. Consider the map sending x ∈ S to γ(ε) where γ(t) is the geodesic
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starting at x with tangent n. For small enough ε, the image of S through this mapping
is a hypersurface Sε of Hn called parallel at distance ε. The Steiner (cf.[Gra90]) formula
expresses, for small enough ε, the volume of Sε as a homogeneous polynomial in cos(

√
kε)

and sin(
√
kε)/

√
kε having the mean curvature integrals of S as coefficients

vol(Sε) =
n−1∑

i=0

(
n− 1
i

)
Mi(S) cos

n−i−1(
√
kε)

sini(
√
kε)

(
√
kε)i

. (1.11)

For k < 0 it must be taken cos(
√
kε) = cosh(

√
−kε) and sin(

√
kε)/

√
kε = sinh(

√
−kε).

For k = 0 take sin(
√
kε)/

√
kε = ε.

A generalization of this formula expresses Mi(Sε) in terms of Mj(S). This formula
was discovered by Santaló in [San50]. The prove given there was not completely correct
in the hyperbolic case since it made use of osculating circles. In hyperbolic geometry,
osculating circles exist only where a curve has curvature greater than 1. Anyway, we
next give another elementary proof.

Proposition 1.2.4. If Sε is the parallel hypersurface to S ⊂ Hn, then

(
n− 1
i

)
Mi(Sε) =

n−1∑

k=0

(
n− 1
k

)
Mk(S)φik(ε) (1.12)

where

φik(ε) =

min(i,k)∑

h=max(0,i+k−n+1)

(
n− k − 1
i− h

)(
k
h

)
sinhi+k−2h ε coshn−1−i−k+2h ε.

Proof. For small t > 0 we have

vol(Sε+t) =
n−1∑

i=0

(
n− 1
i

)
Mi(S) cosh

n−i−1(ε+ t)sinhi(ε+ t) =

=
n−1∑

i=0

(
n− 1
i

)
Mi(Sε) cosh

n−i−1(t)sinhi(t).

We finish substituting

cosh(ε+ t) = cosh ε cosh t+ sinh ε sinh t sinh(ε+ t) = cosh ε sinh t+ sinh ε cosh t

and equating the coefficients of the two resulting homogeneous polynomials in cosh ε
and sinh ε.

Remark. For any abstract smooth manifold S and an immersion i : S → N , one endows
S with the pull-back of the metric on N . Then, there is no problem on identifying
locally the neighborhoods p ∈ U ⊂ S with their image i(U) ⊂ N . Thus, all what has
been said for hypersurfaces stands also for codimension 1 immersions.
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The mean curvature integrals are directly related to the so-called Quermassintegrale
of convex sets of euclidean space. For a convex domain Q ⊂ Rn, the Quermassintegrale
are defined to be, up to a constant factor, the mean value of the volumes of the orthogonal
projections πL of the convex domain onto the linear subspaces L ∈ G(n− r, n),

Wr(Q) =
(n− r) ·On−1

n ·On−r−1vol(G(n− r, n))

∫

G(n−r,n)
vol(πL(Q))dL. (1.13)

where dL is a measure in G(n− r, n) invariant under rotations. One also defines usually
W0(Q) = vol(Q) and Wn(Q) = On−1χ(Q)/n. When the boundary ∂Q is smooth, the
Quermassintegrale are directly linked to the mean curvature integrals through the so-
called Cauchy formula

Mr(∂Q) = nWr+1(Q). (1.14)

However, this point of view is nonsense in hyperbolic space (and also in Sn). One
should start choosing some origin p ∈ Hn and then projecting onto totally geodesic
submanifolds through p. But the result would depend on p, and thus, one would not
even get an isometry invariant. In the next chapter we will give an invariant definition
for the Quermassintegrale of a convex domain in Hn that is related to the mean curvature
integrals. Moreover, this definition will make sense for not necessarily convex domains
with smooth boundary. Before, one has to study the spaces of geodesic planes of Hn.
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Chapter 2

Spaces of planes

2.1 Spaces of planes

In this section we study the spaces of totally geodesic planes of Hn. They are homo-
geneous spaces of the isometry group G. These spaces do not admit any riemannian
metric invariant under G. However, they can be endowed with a semi-riemannian in-
variant metric. The fact that these metric are not definite becomes a deep difference
with euclidean and spherical geometries. Let us advance, for instance, that a bundle of
ultra-parallel hyperplanes is a curve with time-like tangent in the space of hyperplanes.
On the other hand, in chapter 3, when dealing with some questions on total curvature
and total absolute curvature, the non-definiteness of these metrics will make things quite
difficult.

We have already said that we call r-planes the complete r-dimensional totally geodesic
submanifolds.

Definition 2.1.1. We call space of r-planes of Hn the set of complete r-dimensional
totally geodesic submanifolds of Hn. We denote this space by Lr.

Let us choose some r-plane in hyperbolic space; for instance L0r = expe0〈e1, . . . , er〉.
If Hr ⊂ G is the subgroup of motions leaving L0r invariant, we identify Lr to the
homogeneous space G/Hr trough the following bijection

G/Hr −→ Lr
g ·Hr 7−→ gL0r = expg0〈g1, . . . , gr〉.

We have then a projection πr : G −→ Lr. The tangent space to a fiber of an r-plane Lr
is

hr = 〈vji | 0 ≤ i < j ≤ r o r < i < j ≤ n〉.
On the other hand, the tangent space to Lr in Lr is identified through dπr to

mr = (hr)
⊥ = 〈vji | 0 ≤ i ≤ r < j ≤ n〉.

In particular we note that Lr has dimension (r + 1)(n− r).
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Chapter 2. Spaces of planes

The space of lines in hyperbolic plane is a Möbius band. Indeed, they are parametrized
in the following way: take some unit geodesic γ starting at the origin e0 making an angle
angle θ with the direction e1; for every ρ ∈ R take the orthogonal line to γ in γ(ρ). In
this way, every line in H2 in given by the polar coordinates (ρ, θ) with 0 ≤ θ ≤ π and
ρ ∈ R. But it is clear that the line (ρ, 0) is identified to (−ρ, π).

e0

Lr

p

Ln−r

Figure 2.1: The space of planes is identified to the tautological fibre bundle

The same can be done to identify topologically Lr. Note that given an r-plan Lr,
exists one only orthogonal (n − r)-plane to Lr passing by the origin e0 ∈ Hn. This
(n−r)-plane intersects Lr at the minimum distance point from e0. Then, every element
of Lr is given by a couple (Ln−r, p) where Ln−r is an (n − r)-plane by the origin and
p is a point in Ln−r (figure 2.1). In other words, Lr is identified to the tautological
(or canonic) bundle of the grassmannian G(n− r, n) of n− r-dimensional subspaces of
Te0Hn. Moreover, this identification is a diffeomorphism.

Remark. All what we have said so far about the planes in Hn holds without change for
the affine planes of Rn. Concerning to Sn, its spaces of planes are the usual grassmannian
manifolds. To be precise, an r-dimensional totally geodesic submanifold in Sn (geodesic
r-plane) is the intersection of the sphere with an (r + 1)-dimensional linear subspace
of Rn+1. When no confusion is possible we will denote the space of r-planes of Sn
indistinctly by G(r + 1, n+ 1) or by Lr. These are homogeneous spaces of O(n+ 1).
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Chapter 2. Spaces of planes

2.1.1 Invariant metrics and measures

Invariant metrics

When a group is acting on a manifold it is natural to endow this manifold with invariant
objects under this action. For instance it is natural to look for invariant metrics which
also define invariant measures. In our case, one would like to endow Lr with a riemannian
metric invariant under the action of G. It is easy to see that this is not possible.

Proposition 2.1.1. The space of planes Lr does not admit a riemannian metric in-
variant under the action of G.

Proof. Consider two parallel r-planes. Take a 2-plane such that both r-planes intersect
it orthogonally. We get a couple of parallel lines in H2. If we take the projective model
of H2, we can find an isometry mapping these two lines two any other couple of parallel
lines (figure 2.2). Indeed, the projective mappings preserving a conic act transitively on
the triples of points. These isometries extend trivially to isometries of Hn. Therefore,
in a bundle of parallel r-planes, one can map any pair of r-planes to any other. This
bundle is a curve in Lr and a riemannian metric defines an arc length on this curve.
But if the metric is invariant under G, any two of the arcs of this curve have the same
length; a contradiction.

Figure 2.2: Equivalent pairs of parallel lines

Nevertheless, if the metric in Lr were not supposed to be positive definite, instead
of a contradiction one would arrive at the conclusion that the curve has a light-like
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tangent vector. Next we find semi-riemannian metrics in Lr invariant under G. This is
immediate using the bi-invariant metric of G.

Proposition 2.1.2. In Lr there is a metric 〈 , 〉r that makes the projection πr : G −→ Lr
be a semi-riemannian submersion. This metric is invariant and its pull-back through π
is

π∗r 〈 , 〉r =
∑

1≤i≤r<j≤n

ωji ⊗ ωji −
n∑

j=r+1

ωj0 ⊗ ωj0 (2.1)

Proof. The metric (2.1) is the restriction of the metric 〈 , 〉 of G to the subspace mr

(cf. (1.6)). Projecting it to Lr trough π we get a metric in Lr which is well defined since
(2.1) is right invariant and thus, constant on the fibres. By the left invariance of the
metric of G, this metric on Lr is invariant under the action of G.

Remark. On the other hand, the space of r-planes in Sn, the grassmanian G(r+1, n+1),
does admit a riemannian metric invariant under the action of O(n). This metric can be
geometrically described by saying that the geodesics are bundles of r-planes contained
in an (r + 1)-plane and containing an (r − 1)-plane.

Concerning the r-planes in Rn, we will see below that it does not even admit an
invariant semi-riemannian (non-degenerate) metric. This is essentially due to the fact
that the isometry group of the euclidean space has a degenerate Killing form.

Next we prove that, up to scalar factors, 〈 , 〉r is the only semi-riemannian met-
ric of Lr invariant under the action of G. Moreover, we will have a more geometric
understanding of it.

Recall that we have fixed an orthonormal frame e1, . . . , en in a point e0 and that we
have chosen the r-plane L0r = expe0(〈e1, . . . , er〉). We have identified the tangent space
at L0r of the space of r-planes to the linear subspace mr of g. We can split TL0rLr ≡ mr in
the vertical part V and the horizontal part (tangent to the base) H of the tautological
bundle over G(n− r, n)

mr = V ⊕H = 〈vj0〉 ⊕ 〈v
j
i 〉 1 ≤ i ≤ r < j ≤ n

The vertical directions correspond to move Lr keeping it orthogonal to the same (n−r)-
plane, Ln−r = expe0(er+1, . . . , en). The horizontal directions, correspond to rotate Lr

around e0. In other words, the vertical part V = 〈vj0〉 is the tangent space to Ln−r ≡
Hn−r, and the horizontal part H = 〈vji 〉 is the tangent space to the grassmannian of
r-planes through e0 which we denote Lr[0](≡ G(r, Te0Hn)). Through this identification,
the metrics on Ln−r and Lr[0] induce metrics in the subspaces V and H which we denote
〈 , 〉Ln−r and 〈 , 〉Lr[0] respectively.

Given an invariant metric on Lr it is clear that its restriction to TL0rLr is invariant
under the action of the isotropy group of L0r . Besides, in order to know the invariant
metric on the whole space Lr it is enough to know this restriction.

Proposition 2.1.3. Up to scalar factors, the tangent space TLrLr admits one only
semi-riemannian metric invariant under the isotropy group of Lr. This metric is

〈 , 〉r = 〈 , 〉Lr[0] − 〈 , 〉Ln−r . (2.2)
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Proof. Suppose a metric which is invariant under the action of the isotropy group.
Since G(n − r, n) admits one only (up to scalars) metric invariant under rotations, the
restriction toH must be a multiple of 〈 , 〉Lr[0] . Since Lr admits one only metric invariant
under its isotropy group, the restriction to V must be 〈 , 〉Lr or a scalar multiple.

θ

ρ

θ′

tθ

Figure 2.3: Curves x and h ◦ x

Next we prove that vj0 and vji must be orthogonal and with opposite signature for
1 ≤ i ≤ r < j. Let γ be the unit geodesic of Lr starting at e0 with tangent vector ei.
Take a point p = γ(t) and the parallel transport g1, . . . , gn of the chosen frame along γ
up to p. Let h be the motion given by the obtained frame in p. The vector vji correspond
to the tangent vector of the curve x(θ) ⊂ Lr obtained when turning Lr around p and
〈ei, ej〉⊥, orthogonal complement of the space generated by ei and ej , with angle speed
1. The curve h(x(θ)) moves Lr around p keeping it orthogonal to 〈gi, gj〉. If ρ is the
distance from h(x(θ)) to e0, and if θ′ is the angle between h(x(θ)) and γ (figure 2.3),
then using the hyperbolic trigonometry formulas (1.2) we get

sinh ρ = sinh t sin θ and cosh ρ sin θ′ = cosh t sin θ

where t is still the distance from e0 to p. Then dhvji = cosh t vji + sinh t vj0. Finally if
the metric is invariant, then for every t we must have

〈vji , v
j
i 〉 = 〈dhv

j
i , dhv

j
i 〉 = cosh2 t〈vji , v

j
i 〉+ 2 cosh t sinh t〈vj0, v

j
i 〉+ sinh2 t〈vj0, v

j
0〉.

Thus

〈vji , v
j
i 〉 = −〈v

j
0, v

j
0〉 and 〈vj0, v

j
i 〉 = 0.

Remark. The same arguments in Rn lead to the following equation

〈vji , v
j
i 〉 = 〈v

j
i , v

j
i 〉+ 2t〈vj0, v

j
i 〉+ t2〈vj0, v

j
0〉 ∀t

which implies that vj0 is a vector with null modulus. Therefore the only symmetric
bilinear form in the space of r-planes of Rn is degenerate.

A good introduction to the geometry of semi-riemannian manifolds, which we will
cite often, is the book [O’N83]. For instance, there one can find formulas that allow to
compute the sectional curvatures of Lr with the preceding metrics.
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Proposition 2.1.4. Let G be a Lie group with a bi-invariant metric and G/H a homo-
geneous space with a metric such that π : G −→ G/H is a semi-riemmannian submer-
sion. Then, for every pair X,Y ∈ g, the sectional curvature of the plane defined by its
projections is

K(dπX, dπY ) =
1
4〈[X,Y ]m, [X,Y ]m〉+ 〈[X,Y ]h, [X,Y ]h〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2

where Zm and Zh denote the normal and tangent parts to H of Z ∈ g.

Proof. Straight forward consequence of propositions 11.9 and 11.26 in [O’N83].

Using this formula and lemma 1.1.2 one gets the sectional curvatures of Lr,

K(dπvji , dπv
j′

i ) = 〈v
j′

j , v
j′

j 〉 = 1 for 0 ≤ i ≤ r < j < j ′

K(dπvji , dπv
j
i′) = 〈vi

′

i , v
i′

i 〉 = 1 for 0 ≤ i < i′ ≤ r < j

K(dπvji , dπv
j′

i′ ) = 0 for 0 ≤ i, i′ ≤ r < j, j′ i 6= i′ j 6= j′.

We are mostly interested in the codimension 1 case.

Corollay 2.1.5. The space of hyperplanes in Hn has constant sectional curvature equal
to 1.

Invariant measures

Locally, a semi-riemannian metric defines a volume element; that is, a top order dif-
ferential form taking the values ±1 on orthonormal basis (cf. [O’N83, p. 195]). In the
case where the manifold is orientable this volume element can be made to be global.
Otherwise, only the absolute value of this volume element is globally defined. Recall
that the absolute value of a top order form is called a density, and defines a measure.
From now on, unless otherwise stated, when we talk about measures we will be referring
to densities. Moreover, the equalities between differential forms should be understood
up to the sign. This is because we are only interested in the measures (densities) defined
by these forms.

The volume element of the isometry group G, called kinematic measure in hyperbolic
space, allows us to measure sets of motions Hn. This is equivalent to measure sets of
positions of geometric objects. The kinematic measure is bi-invariant and is defined by

dK =
∧

0≤i<j≤n

ωji .

About the manifolds Lr, its invariant measure dLr (cf. [San76]) is given by

π∗rdLr =
∧

ωh0
∧

ωji 1 ≤ i ≤ r < j, h ≤ n. (2.3)

From now on, as usual, we will abuse the notation making dLr = π∗rdLr. In the same
way we will identify 〈 , 〉r = π∗r 〈 , 〉r.

Thinking of Lr in terms of the tautological bundle we can write dLr in a different
way.
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Proposition 2.1.6 ([San76]). The bi-invariant measure of Lr is

dLr = coshr ρdxn−r ∧ dL(n−r)[0] (2.4)

where dxn−r is the volume element inside the orthogonal (n−r)-plane by the origin, and
dL(n−r)[0] is the volume element on the grassmannian of (n− r)-planes by the origin.

Remark. Both in Sn and in Rn there are analogous measures of motions and planes
(cf. [San76]).

Now we briefly describe a property of such measures that we will use after. Consider
the flag space made of the couples of planes Lr ⊂ Lr+s. This is a homogeneous space
of G and is at the same time a double fibred space over Lr and Lr+s. The fibre of an
(r+ s)-plane are the r-planes it contains, and is identified with the space of r-planes in
Hr+s. The measure dLr determines a measure in this fibre which we denote dL[r+s]r.
On the other hand, the fibre of an r-plane Lr are the (r + s)-planes containing it and,
it is diffeomorphical to G(s, n− r). We denote by dL(r+s)[r] the natural measure in this
fibre. It is deduced form (2.3) that

dL(r+s)[r]dLr = dL[r+s]rdLr+s. (2.5)

This equality holds also in the analogous flag spaces of Rn and Sn.

2.2 Kinematic formulas

Classically, integral geometry is concerned on measuring sets of positions of geometrical
objects. This is made with respect to the invariant measure we have just described.
The result is a quite wide variety of the so-called kinematic formulas. Next we present
a selection which holds in any constant curvature simply connected space.

The Cauchy-Crofton formula is the oldest and most known formula in integral ge-
ometry. It allows to compute the volume of a hypersurface by means of the integral of
the number of its intersection points with a moving line.

Proposition 2.2.1. [San76] Let S be a hypersurface of Sn, Rn or Hn.

∫

L1

#(L1 ∩ S)dL1 =
On

O1
M0(S). (2.6)

Recall that Oi is the volume of the unit sphere Si. It is worthy to mention the
following fact about these volumes because we will use it often

On

O1
=
On−2

n− 1
. (2.7)

We give the proof of the Cauchy-Crofton formula in order to have an example of how
the moving frames are used.
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Proof. Consider the following bundle over S

E(S) = {(p, L1) | p ∈ L1 ∩ S}.

Through the projection E(S)→ L1 we can lift the measure dL1 to E(S). This way, by
the area formula (cf. [Fed69, 3.2.3])

∫

L1

#(L1 ∩ S)dL1 =
∫

E(S)
dL1.

Consider the adapted references

G(S) = {g ∈ G | g0 ∈ S g2, . . . , gn−1 ∈ Tg0S}.

There is a projection G(S) → E(S) which maps g to (g0, L) where L is the geodesic
line passing by g0 with tangent vector g1. For every frame g ∈ G(S) we take another
g ∈ G(S) in such a way that

g0 = g0, g2 = g2, . . . , gn−1 = gn−1, g1 ∈ Tg0S

Take the differential forms ωji and ωji corresponding to g and g respectively. Now,

gn = 〈g1, gn〉g1 + 〈gn, gn〉gn

and since vn0 is horizontal with respect to π, for all v ∈ TgG(S),

ωn0 (v) = −〈vn0 , v〉 = −〈dπvn0 , dπv〉 = −〈gn, dπv〉 = 〈g1, gn〉ω10(v) + 〈gn, gn〉ωn0 (v)

and we have ωn0 = 〈g1, gn〉ω10 + 〈gn, gn〉ωn0 . But ωn0 vanishes on G(S)

∀v ∈ TgG(S) ωn0 (v) = −〈v, vn0 〉 = −〈dπv, dπvn0 〉 = 0

since gn = dπvn0 is orthogonal to S. Thus

dL1 =
n∧

i=2

ωi0 ∧
n∧

i=2

ωi1 = 〈g1, gn〉
n−1∧

i=1

ωi0 ∧
n∧

i=2

ωi1 = sinαdxdu

where α is the angle of L1 with S, dx is the volume element of S at the intersection
point and du measures the direction of TxL1. Integrating sinαdu over RPn−1 we get
the constant On/O1.

Thinking of # as the 0-dimensional volume, the Cauchy-Crofton formula generalizes
in the following way.

Theorem 2.2.2. [San76, p. 245] For a compactm-dimensional submanifold S immersed
in Sn, Rn or Hn, the integral of the volume volr+m−n(Lr ∩ S) of intersections with r-
planes is ∫

Lr

volr+m−n(Lr ∩ S)dLr =
On · · ·On−rOr+m−n

Or · · ·O0Om
volm(S). (2.8)
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Substituting the r-planes by arbitrary compact submanifolds and taking the measure
dK instead of dLr one gets the so-called Poincaré formula.

Theorem 2.2.3. [San76, p. 259] Let R and S be two compact submanifolds of Sn, Rn

or Hn with dimensions r and m respectively, then
∫

G
volr+m−n(gR ∩ S)dK =

On · · ·O1Or+m−n

OrOm
volr(R)volm(S).

It is also remarkable the so-called reproductive property of the mean curvature inte-
grals.

Proposition 2.2.4. [San76, p. 248] For a hipersurface S in Hn, Rn or Sn oriented by
a unit normal n

∫

Lr

M
(r)
i (S ∩ Lr)dLr =

On−2 · · ·On−rOn−i

Or−2 · · ·O0Or−i
Mi(∂Q) i < r

where M
(r)
i denotes the i-th curvature integral considered inside an r-plane with respect

to the unit normal n′ such that 〈n, n′〉 > 0.

In euclidean space, for a domain Q ⊂ Rn with C2 boundary, there is another gener-
alization of the Cauchy-Crofton formula (cf. [San76, p. 248]).

Mr−1(∂Q) =
(n− r) ·Or−1 · · ·O0
On−2 · · ·On−r−1

∫

Lr

χ(Lr ∩Q) dLr (2.9)

where Lr denotes the space of affine r-planes of Rn and dLr is the invariant measure
on this space. When Q is convex, (2.9) can be thought of as a reformulation of the
Cauchy equation (1.14). We see then that the Quermassintegrale of a convex domain
coincide, up to constants, with the measure of planes intersecting it. Thus it is natural
to generalize the Quermassintegrale to not necessarily convex domains Q ⊂ Rn in the
following way (as it is also done in [Had57, p. 240])

Wr(Q) =
(n− r) ·Or−1 · · ·O0
n ·On−2 · · ·On−r−1

∫

Lr

χ(Lr ∩Q) dLr.

When ∂Q is smooth the Cauchy equation (2.2.5) will remain valid.
This definition of Quermassintegrale makes full sense for domains of Hn and Sn

(recall the remarks at the end of section 1.2). Besides, it defines metric invariants. Thus
we adopt the following

Definition 2.2.1. Let Q be a domain in Hn (or Rn or Sn). For r = 1, . . . , n − 1 we
define

Wr(Q) =
(n− r) ·Or−1 · · ·O0
n ·On−2 · · ·On−r−1

∫

Lr

χ(Lr ∩Q) dLr.

Besides we define

W0(Q) = V (Q) and Wn(Q) =
On−1

n
χ(Q)
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Even if it is not so simple, there is a generalization of the Cauchy equation (1.14) in
simply connected spaces of constant curvature.

Proposition 2.2.5. [San76] If Q is a domain in the n-dimensional, simply connected
manifold of constant curvature k, and its boundary ∂Q is compact and of class C2, then
for r = 2l < n

Wr(Q) =
2(n− r)

nOrOn−r−1

[
klOn−1vol(Q)+

+
l∑

i=1

(
r − 1
2i− 1

)
OrOr−1On−2i+1

O2i−1Or−2iOr−2i+1
kl−iM2i−1(∂Q)

]
(2.10)

and for r = 2l + 1 < n

Wr(Q) =
2(n− r)

nOn−r−1

l∑

i=0

(
r − 1
2i

)
Or−1On−2i

O2iOr−2i−1Or−2i
kl−iM2i(∂Q). (2.11)

In chapter 3 we give a new proof of this fact that, in addition, gives some equivalent
but much more simple formulas.

To finish the selection, we present Blaschke’s fundamental kinematic formula in
spaces of constant curvature k. It is analogous to the preceding when one takes compact
domains instead of planes.

Theorem 2.2.6. [San76] Let Q0 and Q1 be compact domains in a simply connected
space of constant curvature k. Assume its boundaries to be of class C2. Then for even
n

∫

G
χ(Q0 ∩ gQ1)dK = −2(−1)n/2On−1 · · ·O1

On
V (Q0)V (Q1)+

+On−1 · · ·O1
(
V (Q1)χ(Q0) + V (Q0)χ(Q1)

)
+

+On−2 · · ·O1
1

n

n−2∑

h=0

(
n

h+ 1

)
Mh(∂Q0)Mn−2−h(∂Q1)+

+On−2 · · ·O1
n/2−2∑

i=0

k(n/2−i−1)
(

n− 1
2i+ 1

)
n− 2i− 2

On−2i−3

2

On−2i−2
·

·




n−2∑

h=n−2i−2

(
2i+ 1

n− h− 1

)
O2n−h−2i−2

(h+ 1)On−h

Oh

O2i+h−n+2
Mn−2−h(∂Q0)Mh+2i+2−n(∂Q1)


 ,
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and for odd n
∫

G
χ(Q0 ∩ gQ1)dK = On−1 · · ·O1

(
V (Q1)χ(Q0) + V (Q0)χ(Q1)

)
+

+On−2 · · ·O1
1

n

n−2∑

h=0

(
n

h+ 1

)
Mh(∂Q0)Mn−2−h(∂Q1)+

+On−2 · · ·O1
(n−3)/2∑

i=0

k(n−2i−1)/2
(
n− 1
2i

)
n− 2i− 1

On−2i−1

2

On−2i−2
·

·




n−2∑

h=n−2i−1

(
2i

n− h− 1

)
O2n−h−2i−1

(h+ 1)On−h

Oh

O2i+h−n+1
Mn−2−h(∂Q0)Mh+2i+1−n(∂Q1)


 .

This formula has a rather complicated aspect but it is worthy to say that it is
extremely general. Indeed, even if it is stated for domains, it is also useful for pairs of
compact submanifolds. It is enough to take the solid tube of each submanifold and both
radii go to 0.

2.3 The de Sitter sphere

A very particular case among the spaces of hyperplanes in hyperbolic space is that of
the space of hyperplanes. In this section we study it in detail.

Recall that according to corollary 2.1.5, Ln−1 has constant sectional curvature 1.
For Lorentz manifolds one also has a Cartan classification theorem.

Theorem 2.3.1. [O’N83, 8.23 8.26] Given k ∈ R, there is a Lorentz manifold, unique
up to isometry, simply connected and with constant sectional curvature k.

The space Ln−1 is not simply connected, so that we will consider the space of oriented
hyperplanes which is a double cover of Ln−1, diffeomorphical to a cylinder and thus
simply connected for n > 2.

Definition 2.3.1. The space of oriented hyperplanes of Hn is called the n-dimensional
de Sitter sphere and is denoted by Λn.

This way, for n > 2, the de Sitter sphere is the only simply connected Lorentz
manifold with constant sectional curvature 1. For n = 2, the simply connected Lorentz
surface of constant curvature 1 is the universal cover of Λ2.

Remark. In the Minkowski space, besides of the hyperboloid model of Hn one also has a
good model of the de Sitter sphere Λn. Indeed, an oriented hyperplane in the hyperboloid
is given by an oriented linear hyperplane of Rn+1 containing some time-like vector. Such
a hyperplane is uniquely determined by a normal unit vector given by the orientation
which will be space-like. Thus, in this model

Λn = {v ∈ Rn+1 | L(v, v) = 1}.
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Ln−1

Λn

Hn

n

Figure 2.4: Hyperbolic space and the de Sitter sphere in Minkowski space.

Moreover, the semi-riemannian structure is the one induced by the Minkowski space.
Even thought we will keep on our abstract viewpoint, this can be a good way to visualize
the de Sitter sphere. Concerning the projective model, we can say that via polarity Ln−1
is identified to the exterior points of the infinity conic.

Next we show that the orthonormal frame bundle of Λn is identified to that of Hn.
This will show the duality relation between Hn and Λn. For convenience we denote
by (h0, . . . , hn−1;hn) the orthonormal frames of Λn where hn ∈ Λn is the point and
h0, . . . , hn−1 is an orthonormal basis in hn. Set then

F(Λn) = {(h0, . . . , hn−1;hn) | hn ∈ Λn h0, . . . , hn−1 ∈ ThnΛn 〈hi, hj〉 = ε(i)δij}

where ε(0) = −1 and ε(i) = 1 for 1 ≤ i ≤ n − 1. Thus, π̃ : F(Λn) → Λn is a principal
bundle with structural group O(n − 1, 1). One can think of the frames h as linear
isometries from the Minkowski space Rn to Tπ̃(h)Λ

n. Let θ̃ = h−1dπ̃ be the dual (or
canonic) form of the bundle π̃. Consider the i-th component of θ

ω̃ni = θ̃i i = 0, . . . , n− 1

where we think of the coordinates of Rn to be numbered form 0 to n− 1. Denote σ̃ the
infinitesimal action of the bundle. Take the collection of matrices {Y j

i } ⊂ o(n − 1, n)
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with zeros in all the components except of (Y j
i )

j
i = 1 and (Y j

i )
i
j = −ε(i)ε(j)

Y i
0 =




0 . . . 1 . . . 0
...

...
...

1 . . . 0 . . . 0
...

...
...

0 . . . 0 . . . 0




Y j
i =




0 . . . 0 . . . 0 . . . 0
...

...
...

...
0 . . . 0 . . . 1 . . . 0
...

...
...

...
0 . . . −1 . . . 0 . . . 0
...

...
...

...
0 . . . 0 . . . 0 . . . 0




.

We construct the following vector fields for 0 ≤ i, j ≤ n− 1 and i 6= j:

ṽji = σ̃(Y j
i ).

Let ω̃ be the connection form with values in o(n − 1, 1) corresponding to ∇̃, the
Levi-Civita connection of Λn. Let us number from 0 to n− 1 the rows and columns of
these matrices and denote by ω̃ji the position i, j of ω̃. We have

ω̃ji + ε(i)ε(j)ω̃ij = 0. (2.12)

Each x ∈ Rn has an associated the basic field B̃(x), which is horizontal and defined by
dπ̃hB̃(x) = h(x). We can construct, for the canonical frame e0, . . . , en−1 of Rn,

ṽni = −ṽin = B̃(ei).

On the other hand, since Λn has constant curvature, after choosing some frame its
isometry group G̃ is identified to F(Λn) (cf.[O’N83, 8.17]). If e is the chosen frame in
Hn, we take the following frame in Λn

(h0, . . . , hn−1;hn) = ((dπn−1v
n
0 )e, . . . , (dπn−2v

n
n−1)e;πn−1(e))

As in Hn, the structure equations of the principal bundle determine the Lie bracket.

[X,Y ] = σ̃([ω̃(X), ω̃(Y )]) + σ̃(θ̃(X) · θ̃(Y )t − θ̃(Y ) · θ̃(X)t)+

+B̃(ω̃(X) · θ̃(Y )− ω̃(Y ) · θ̃(X))

In particular
[ṽji , ṽ

s
j ] = ṽsi si i 6= s 6= j

[ṽji , ṽ
s
r ] = 0 si i < j < r < s.

But recall that G acts transitively and effectively on Λn by isometries. Therefore,
we have a map

Φ : G −→ G̃ = F(Λn)

g 7−→ (dgh0, . . . , dghn−1; g(hn))
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which is an injective morphism of Lie groups. Since the dimensions of G and G̃ coincide,
we can think that they have the same connected component of the neuter element. But
it is easily seen that they both have two connected components. Therefore Φ is a Lie
group isomorphism. In particular,

Φ∗Kg̃ = Kg (2.13)

being Kg̃, the Killing form of G̃.

We are interested in computing the pull-back of the differential forms ω̃ji . Let us
start noting that for i = 0, . . . , n− 1 and v tangent to G,

Φ∗ω̃ni (v) = ω̃ni (dΦv) = (h−1)idπ̃dΦv = (h−1)idπn−1v =

= ε(i)〈dπn−1v, hi〉 = ε(i)〈dπn−1v, dπn−1vni 〉 = −ε(i)〈v, vni 〉 = ωni (v) (2.14)

since the metric of Λn is lifted to that of 〈ṽn0 , . . . , ṽnn−1〉. Since Λn is a symmetric space,
the vertical and horizontal parts are orthogonal with respect to Kg̃. By (2.13) we see
that dΦvni is orthogonal to the fibers of π̃ and thus must be horizontal. Then it is a
linear combination of ṽn0 , . . . , ṽ

n
n−1 and for (2.14), we have dΦ(vni ) = ṽni . For the rest of

vji , one can argue as follows

dΦ(vji ) = −ε(i)ε(j)dΦ([vni , vnj ]) = −ε(i)ε(j)[dΦvni , dΦvnj ] = −ε(i)ε(j)[ṽni , ṽnj ] = ṽji .

Therefore

dΦ(vji ) = ṽji ⇒ Φ∗(ω̃ji ) = ωji 0 ≤ i, j ≤ n.

To make the notation lighter, from now on we completely identify G and G̃. In
particular, we will write ωji and vji instead of ω̃ji and ṽji .

Geometrically h0 = dπ̃vn0 is interpreted as the infinitesimal element of the paral-
lel transport of a hyperplane along the geodesic orthogonal in the point g0. About
hi = dπ̃vni for i > 0, it can be thought of as the rotation element around Ln−2 =
expg0(〈g1, . . . , ĝi, . . . , gn−1). Thus, the time-like directions of TLn−1Λ

n are identified to
the points of Ln−1 itself and the space-like directions are identified to the (n− 2)-planes
it contains.

2.3.1 Spaces of planes in the de Sitter sphere

Given a non-oriented (n− r− 1)-plane Ln−r−1 ∈ Ln−r−1, consider the submaifold of Λn

consisting of the oriented hyperplanes containing it

Lsr = {Ln−1 ∈ Λn|Ln−r−1 ⊂ Ln−1}.

Clearly Lsr is diffeomorphic to the sphere Sr. Now consider the isometries leaving in-
variant Ln−r−1 and all the hyperplanes containing it. Such isometries act on Λn and for
some of them Lsr is the locus of fixed points. We deduce that Lsr is a totally geodesic sub-
manifold of Λn. Besides, the tangent space to Lsr is space-like. Such a submanifold will
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be called a space-like r-plane of Λn. In particular, the curves Ls1, which are hyperplane
bundles containing some Ln−2, are space-like geodesic lines.

For some r-plane Lr of Hn consider the hyperplanes intersecting it orthogonally

Ltr = {Ln−1 ∈ Λn | Ln−1⊥Lr}.

It is clear that Ltr is diffeomorphical to Λr. Again we have a totally geodesic submanifold
of Λn. For r = 1 it is a bundle of hyperplanes orthogonal to some geodesic. This
bundle is itself a geodesic line in the de Sitter sphere and, having time-like tangent
vectors, it is called a time-like geodesic line of Λn. Note that there is a canonical way to
give an orientation to the time-like geodesic lines of Λn. Indeed, if Lt1 is the bundle of
hyperplanes orthogonoal to some geodesic line L1 of Hn, we orient L1 in such a way that
its tangent vectors are the normal vectors defined by the orientation of the hyperplanes,
and this determines an orientation of Lt1. Since for r > 1, the planes Ltr contain time-like
lines, we say that Ltr is a time-like r-plane of Λn.

Definition 2.3.2. Denote by Lsr and Ltr the spaces of space-like and time-like r-planes
of Λn respectively.

The space of space-like r-planes is identified to Ln−r−1 and is thus a smooth manifold
with a semi-riemannian metric and a measure dLsr which are invariant under the action
of G

dLsr =
∧

ωh0
∧

ωji 1 ≤ i ≤ n− r − 1 < j, h ≤ n.

On the other hand, the space Ltr is identified to Lr and its measure is dLtr = dLr.

A short computation will show the difficulty of doing integral geometry in Λn. Let
us try to repeat the proof of the Cauchy-Crofton formula (proposition 2.2.1). Suppose
a space-like hypersurface S ⊂ Λn. Consider the spaces

E(S) = {(p, L) ∈ S × Ls1 | p ∈ L ∩ S}

G(S) = {h ∈ F(Λn) | hn ∈ S h1, . . . , hn−2 ∈ ThnS}
and the projection G(S) → E(S) defined by h 7→ (hn, L) where L is the time-like
geodesic starting at hn with tangent vector hn−1. For every frame h ∈ G(S) take some
other frame h ∈ G(S) such that

h1 = h1, . . . , hn−2 = hn−2, hn = hn, hn−1 ∈ ThnS

Take the differential forms ωji and ωji corresponding to h and h. Then,

h0 = 〈h0, hn−1〉hn−1 + 〈h0, h0〉h0 ⇒ ωn0 = 〈h0, hn−1〉ωnn−1 + 〈h0, h0〉ωn0

But it is clear that ωn0 = 0 on G(S). Thus,

dLs1 =
n−2∧

i=0

ωni ∧
n−2∧

i=0

ωn−1i = 〈hn−1, h0〉
n−1∧

i=1

ωni ∧
n−2∧

i=0

ωn−1i = sinh ρdxdu
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where dx is the volume element of S in the intersection point x, du is the measure of
space-like unit directions in x and sinh ρ is the Lorentz product of L1 and the normal
vector to S. But the integral of sinh ρdu over all the space-like directions is divergent.
Therefore, following the scheme of the proof of 2.2.1 we must stop before the last step.
We have not proved any Cauchy-Crofton formula in Λn but instead we have proved the
following proposition.

Proposition 2.3.2. The measure of space-like lines intersecting some space-like hyper-
superface in Λn is infinite.

It is analogous to see that the same happens with time-like lines or also with time-like
hypersurfaces.

Note that the problem comes from the fact that the space of space-like lines passing
by a point in Λn is not compact (and with infinite measure). It is clear here the im-
portance of the fact that Λn is a Lorentz manifold and not a Riemann one. In fact, in
any semi-riemannian manifold one can expect to have the same trouble in the way to
kinematic formulas.

On the other hand, recalling that the space-like lines in Λn correspond to (n − 2)-
planes of Hn, the previous proposition was to be expected. A family of hyperplanes in
Hn, no matter how ‘small’ it is, should contain an infinite measure set of (n− 2)-planes.

We finish with an important remark. Suppose p ∈ L ∈ Λn and consider the hyper-
plane Lsn−1 ⊂ Λn consisting of the hyperplanes that, as L, contain p.

Proposition 2.3.3. The tangent spaces TpL and TLL
s
n−1 are canonically identified

through and isometry Ψ.

Proof. We define Ψ first on the unitary tangent bundle of L at p in the following way.
For v ∈ TpL with length 1

Ψ(v) =
d

dt

∣∣∣∣
t=0

exp(cos tv + sin tn)

where n is the unit normal vector to L at p given by the orientation of L. We extend
Ψ to Ψ : TpL → TLL

s
n−1 linearly. To see that Ψ is an isometry it is enough to take

a frame g ∈ G such that g0 = p and gn = n. Then for i = 1, . . . , n − 1 one sees that
Ψ(gi) = dπ̃g(v

n
i ).

2.3.2 The Gauss map

The de Sitter sphere is the natural target space of the Gauss map of a hypersurface in
Hn. This map was already studied in [Teu82].

Definition 2.3.3. Let S ⊂ Hn be an oriented hypersurface. The Gauss map of S is
defined as

γ : S −→ Λn

p 7−→ expp(TpS)
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When S is non oriented one can naturally define a Gauss map to Ln−1 or a map from
the unit normal bundle N(S) to Λn.

The following proposition allows, as in Rn, to think of the differential of the Gauss
map as an endomorphism of TpS.

Proposition 2.3.4. [Teu82] If S ⊂ Hn is a hypersurface in the hyperbolic space and
γ : S → Λn is the corresponding Gauss map, then dγ(TpS) is isometrically identified
through Ψ−1 to a subspace of TpS.

Therefore, when dγ has maximum rank, γ(S) is locally a space-like hypersurface of
Λn.

Proof. Let g : U → G be a moving frame defined in a neighborhood of p inside S in
such a way that gn⊥Tg0S. This way, γ = π̃ ◦ g and for i = 1, . . . , n− 1,

〈dγgi, dπ̃vn0 〉 = 〈dπ̃dg(gi), dπ̃vn0 〉 = 〈dg(gi), vn0 〉 = 〈dπdg(gi), dπ(vn0 )〉 = −〈gi, gn〉 = 0

since vn0 is horizontal with respect to π̃ and π. Thus, if L is the tangent hyperplane to S
at p and Lsn−1 is the hyperplane of Λn consisting of the hyperplanes containing p, then
we have dγ(TpS) ⊂ (dπ̃vn0 )

⊥ = TLL
s
n−1 which is identified to TpL = TpS trough Ψ−1

according to proposition 2.3.3.

As in the euclidean case, we have a Weingarten formula.

Proposition 2.3.5. If II denotes the second fundamental form of S corresponding to
the unit normal n, then for any pair of tangent vectors X,Y

〈dγX,ΨY 〉 = −II(X,Y ).

Proof. Take some section g : U → G as before.

〈dγ(gi),Ψgj〉 = 〈dγ(gi), dπ̃vnj 〉 = 〈dg(gi), vnj 〉 = ωnj (dg(gi)) =

= −ωjn(dg(gi)) = 〈−∇gigj , gn〉 = −II(gi, gj).

Therefore, the Gauss curvature of S is, up to the sign, the jacobian (inifinitesimal
volume deformation) of γ (cf.[Teu82])

K = det II = ± det dγ = ±jacγ. (2.15)

The Sard-Federer theorem [Fed69, 3.4.3] warrants that the set of critical values of γ
has null (n− 1)-dimensional Haussdorff measure. Thus, the Gauss map image of S is a
hypersurface almost everywhere. If dx̃ is the volume element of γ(S) in a regular point,
we have just seen that

Mn−1(S) =

∫

S
Kdx =

∫

γ(S)
sgnKdx̃. (2.16)
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Remark. This point of view allows to define Mn−1 for the boundary of a convex set
in Hn even if it is not smooth. For any convex Q, a hyperplane is said to support Q
when it meets his closure Q but leaves Q at some side. We define the total curvature
of Mn−1(∂Q) as the (n − 1)-dimensional volume of the subset of Λn consisting of the
hyperplanes supporting Q. By (2.16), if ∂Q is smooth then both definitions coincide.
Besides, Mn−1 is a continuous functional in the space of convex domains with respect to
the Haussdorff topology. Indeed, a convex domain Q can be approximated (with respect
to this topology) by a sequence Qr of convex sets with smooth boundary. It is seen in
[LS00] that Mn−1(∂Qr) tends to Mn−1(∂Q), as has just been defined.

Curvature integrals in constant curvature spaces have been defined and studied for
sets of positive reach; a much more general class than that of convex sets (cf. [Koh91]).

In contrast with the euclidean case, but similarly to the spherical case, one can define
a Gauss map going in the opposite sense. We can not give a reference where this map
is studied but it probably belongs to the folklore.

Definition 2.3.4. Given S ⊂ Λn a space-like hypersurface in the de Sitter sphere, the
Gauss map of S is defined as

γ̃ : S −→ Lsn−1 ≡ Hn

p 7−→ expp(TpS)

where expp is the exponential map of Λn in p.

Proposition 2.3.4 has the following analogue in Λn.

Proposition 2.3.6. If γ̃ is the Gauss map associated to a hypersurface S ⊂ Λn, then

Ψdγ̃(TpS) ⊂ TpS.

Proof. Let g : U → G be a section defined in a neighborhood of p inside S such that the
moving frame h = Φ(g) ∈ F(Λn) fulfills h0⊥ThnS. Thus, γ̃ = π◦g and for i = 1, . . . , n−1

〈dγ̃(hi), gn〉 = 〈dπdg(hi), dπvn0 〉 = 〈dg(hi), vn0 〉 = 〈dπ̃dg(hi), dπ̃vn0 〉 = −〈hi, hn〉 = 0.

Therefore, dγ̃ ⊂ (gn)
⊥ is identified to TpS = h⊥0 through Ψ.

Given a space-like hypersurface in Λn, take its (time-like) unit normal n according
to the time orientation of Λn. If ∇̃ is the connection in Λn, the fundamental form of S
is defined as

ĨI(X,Y ) = 〈∇̃XY, n〉.
We again have a Weingarten formula

Proposition 2.3.7. The second fundamental form ĨI of a space-like hypersurface S in
Λn is such that for every pair of tangent vectors X,Y ,

〈dγ̃X,Ψ−1Y 〉 = −ĨI(X,Y ).
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Proof. Take some section g : U → G as in the previous proof, and consider h = Φ ◦ g.

〈dγ̃hi,Ψ−1hj〉 = 〈dπdg(hi), gj〉 = −〈dg(hi), vj0〉 = ωj0(dg(hi)) = −〈∇̃hihj , h0〉.

We get again that the Gauss curvature measures the infinitesimal volume deforma-
tion through γ̃

K̃ = det ĨI = ± det dγ̃.

Finally we have the following result that completes the idea of duality between
hypersurfaces in Hn and in Λn. Again we can not give a reference for it even thought it
is probably already known. Anyway it is trivially proved, and it will play an important
role after.

Proposition 2.3.8. If the hypersuperface S ⊂ Hn is such that γ is an immersion, then
the second fundamental forms of S and of γ(S) are mutually inverse. More precisely, if
II and ĨI are the second fundamental forms of S and γ(S) respectively, then its respective
matrices A and Ã, associated to the orthonormal basis g1, . . . , gn−1 and Ψg1, . . . ,Ψgn−1,
are inverse one of the other

A · Ã = id.

Note that γ is an immersion if and only if the Gauss curvature K of S does not
vanish anywhere.

Proof. Denote by γ̃ the Gauss map associated to γ(S) ⊂ Λn. Note that Ã is also the
matrix associated to Ψ∗ĨI in the basis g1, . . . , gn−1. Besides, by the preceding Weingarten
formulas −Ψ−1dγ and −Ψdγ̃ are the associated endomorphisms of II and ĨI. Thus, for
X,Y ∈ TpS we have

Xt ·AÃ · Y = (XtA) · Ã · Y = Ψ∗ĨI(AX,Y ) = Ψ∗ĨI(−Ψ−1dγX, Y ) =

= ĨI(−dγX,ΨY ) = 〈dγ̃dγX, Y 〉 = 〈X,Y 〉

since γ̃ ◦ γ = id.

Corollay 2.3.9. If σr(x) and σ̃r(γ(x)) are the symmetric curvature functions of S ⊂ Hn

and γ(S) ⊂ Λn, in the points x and γ(x) respectively, then

σr(x) = σn−1(x)σ̃n−r(γ(x)).

Proof. Choose a basis where II diagonalizes and automatically ĨI diagonalizes with in-
verse coefficients. Therefore,

σ̃n−r

(
n− 1

n− r

)
= fn−r(1/k1, . . . , 1/kn−1) =

fr(k1, . . . , kn−1)

k1 · · · kn−1
=

σr
σn−1

(
n− 1

r

)

being fi the elementary symmetric polynomial of degree i.
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2.4 Contact measures.

Next we introduce some results of [Teu86] about the measure of tangent planes of a
hypersurface in Hn (o Rn o Sn). This results generalitze (2.15) for higher codimensional
planes. After we will give analogous results for hypersurfaces in Λn.

Definition 2.4.1. If S ⊂ Hn (or Rn or Sn) is a smooth hypersurface, we call contact
r-planes of S to those planes that are tangent to S at some point. Denote Lr(S) the
subset of Lr containing all such r-planes.

One can parametritze Lr(S) through a generalized Gauss map. Consider the follow-
ing manifold of dimension (r + 1)(n− r)− 1

Gr(S) = {(p, Vr) | p ∈ S Vr ∈ G(r, TpS)}

where G(r, TpS) denotes the grassmannian of the r-dimensional linear subspaces of TpS.
The r-th generalized Gauss map is defined as r

γr : Gr(S) −→ Lr
(p, Vr) 7−→ expp(Vr).

it is clear that its image γr(Gr(S)) is Lr(S), which is a hypersurface of Lr out of the set
of critical values. By the Sard-Federer theorem [Fed69, 3.4.3], this set has null Haussdorf
measure of dimension (r + 1)(n− r)− 1. Thus, Lr(S) is regular almost everywhere. In
the regular points, we take the volume element of Lr(S) defined by the contraction of
dLr with some unit normal n.

In Gr(S) we take the volume element dGrdp, exterior product of the volume element
of S with the natural volume element of G(r, TpS) for each p.

Theorem 2.4.1. [Teu86] The pull-back of the contraction ιndLr through γr in a point
(p, Vr) ∈ Gr(S) is, up to the sign

γ∗r (ιndLr) = |Kp(Vr)|dGrdp

where Kp(Vr) is the normal curvature of S in the direction of the subspace Vr ⊂ TpS.

Corollay 2.4.2. [Teu86] The (signed) measure of the contact r-planes of S is

∫

Lr(S)
sgn(Kp(Lr))dLr = volG(r, n− 1) ·Mr(S)

and for any integrable function f defined on S

∫

Lr(S)
f · sgn(Kp(Lr))dLr = volG(r, n− 1)

∫

S
f(x)σr(x)dx
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For the de Sitter sphere the preceding results are easily generalized as we next do.
The following are new results with some interest in its own but we mainly introduce
them because they will be used after.

Let S ⊂ Λn be some space-like hypersurface. Consider the grassmann fiber of S

Gr(S) = {(x, Vr) | Vr ∈ G(r, TxS)}

and the map
γ̃r : Gr(S) −→ Lsr

(p, Vr) 7−→ expp(Vr).
(2.17)

The image of γ̃r are the contact r-planes of S and we denote it by Lsr(S).

Proposition 2.4.3. If S is a space-like hypersurface, its pull-back under γ̃r of the volume
form of Lsr(S) at a regular point (p, Vr) ∈ Gr(S) is

γ̃∗r (ιndL
s
r) = |Kp(Vr)|dpdG(r, TpS)

where n is a unit normal vector on Lsr(S) and Kp(Vr) is the normal curvature of S in
the direction Vr.

Proof. Take some orthonormal frame (section) h : U → F(Λn) in an open subset U of
Lsr(S) in such a way that for every γ̃r(p, Vr)

hn = p ∈ S 〈hn−r, . . . , hn−1〉 = Vr 〈h1, . . . , hn−1〉 = TpS.

Then
dLsr =

∧
ωh0 ∧

∧
ωji 0 < i ≤ n− r − 1 < h, j ≤ n

It is clear that n, the unit normal of Lsr(S) is vn0 . Then,

ιndL
s
r =

∧
ωh0 ∧

∧
ωji 0 < i ≤ n− r − 1 < j ≤ n n− r ≤ h ≤ n− 1

As a consequence of proposition 2.3.7, for every v ∈ TpS,

ωi0(dhv) = −〈Ψdπdh(v), hi〉 = ĨI(v, hi) = ĨI(
∑

j

ωnj (dhv)hj , hi) =
∑

j

ĨI(hi, hj)ω
n
j (dhv)

And thus,

ωn−r0 ∧ . . . ∧ ωn−10 = K(V )ωnn−r ∧ . . . ∧ ωnn−1 +
n−r−1∑

i=1

ωni ∧ ηi

for some ηi. Finally,

ιndL
s
r = K(V )

∧
ωnh
∧

ωji 0 < i ≤ n− r − 1 < j ≤ n− 1 1 ≤ h ≤ n− 1
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Corollay 2.4.4. The (signed) volume of Lsr(S) is
∫

Lsr(S)
sgnK(Lr) ιndL

s
r = vol(G(r, n− 1))

∫

S
σr(x)dx,

and more generally, for a function f in S,

∫

Lsr(S)
f · sgnK(Lr) ιndL

s
r = vol(G(r, n− 1))

∫

S
fσr(x)dx. (2.18)

Proof. We finish by integrating the preceding result and using proposition (1.2.1) which
holds in semi-riemannian ambient. Indeed, it is a general (algebraic) property of the
symmetric bilinear forms.

2.5 Cauchy-Crofton formula in the de Sitter sphere.

Here we prove a formula for the integral of the number of intersection points of space-like
lines with a space-like hypersurface in Λn. The formula relates directly this integral to
the (n− 1)-dimensional volume of the hypersurface. This are reasons enough to call it
Cauchy-Crofton formula in the de Sitter sphere. However, it must be prevented that at
a first glance the formula does not look exactly as the usual Cauchy-Crofton formulas
existing in constant curvature spaces or in homogeneous riemannian manifolds. We have
already said that in these ambients, these formulas are in the style of

∫

L
#(L ∩ S)dL = c · vol(S) (2.19)

where dL is a measure in L, the space of space-like geodesics, S is a hypersurface and c
is a constant. In the de Sitter sphere there is no such formula since for any small piece
of hypersurface there is an infinite measure set of intersecting space-like lines, as seen in
proposition 2.3.2. In general, the same problem does not allow to have formulas in the
style of (2.19) on semi-riemannian manifolds.

A way to solve this trouble appears in [Teu82]. It consists of counting only the inter-
sections occurring with an angle below some fixed value. This restricts the integration
to the interior of some compact set of Ls1. This way, the integral is finite and it is shown
to be multiple of the volume of the hypersurface.

Here we propose an alternative approach which will lead to a different kind of formula
but which will have into account all the intersection points. The price to pay is that we
must restrict to space-like compact hypersurfaces S, without boundary and embedded in
Λn. Concretely we will prove that

∫

Ls

2−#(Ls ∩ S)dLs =
On−2

n− 1
(vol(S)−On−1)

where the space of space-like lines is denoted by Ls instead of Ls1. Also Ls is one of these
lines and dLs is the invariant measure dLs1. We will keep with this simpler notation for
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the rest of this text. For the finiteness, it will be seen that outside a compact set of Ls
all the lines meet S in 2 points. If for instance S is the Gauss image of some convex in
Hn, for almost every line the intersection has two points or none. In this case we will
be measuring the set of lines disjoint from S.

The assumption for S to be space-like and closed is essential in order to warrant that
the integrand vanishes outside a finite measure set.

The proof amounts to study the variational properties of the two members in the
equality.

Proposition 2.5.1. Let S be a closed hypersurface and let ϕ : S × (−ε, ε) → Λn, be a
smooth map such that ϕt = ϕ(·, t) is a space-like embedding for every t. Assume also
that 〈∂ϕ/∂t, n〉 < 0 for some unit normal vector field n. If St = ϕt(S) then

lim
t→0

1

t

∫

Ls

(#(Ls ∩ S0)−#(Ls ∩ St))dLs =
On−2

n− 1

d

dt

∣∣∣∣
t=0

vol(St).

Remark. The assumption on ∂ϕ/∂t warrants the St to be disjoint. This simplifies the
proof but it will be clear (a posteriori) that this assumption is not necessary.

Sε

St

Ls

S0

Figure 2.5: Tangent line of type µ−

Proof. For every line Ls denote by C(Ls) the set of points where Ls is tangent to some
hypersurface of the foliation {St}|t|<ε. Now let µ+(Ls) be the number of points in C(Ls)
such that Ls is locally at the opposite side of n with respect to St. Let µ−(Ls) be the
number of the rest of the points of C(Ls), and define µ(Ls) = µ+(Ls) − µ−(Ls). For ε
small enough, every interval of Ls∩(∪tSt) with endpoints in S0 (not intersecting Sε) has
some tangency of the type µ+ and vice-versa (cf. figure 2.5). For every segment with
endpoints in Sε not intersecting S0 one has a tangent point for µ−. Thus,

∫

Ls

(#(Ls ∩ S0)−#(Ls ∩ St))dLs =
∫

Ls

2µdLs
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Now consider the map

γ : G1(S)× (−ε, ε) −→ Ls
( (p, l), t ) 7−→ expϕt(p) l.

Note that γt = γ(·, t) : G1(S)→ Ls coincides with the Gauss map defined in (2.17), and
thus the hypersurfaces Ls(St) = γt(G1(S)) ⊂ Ls consist of tangent lines of St. By the
area formula

2

∫

Ls

µdLs = −2
∫ ε

0

∫

G1(S)
sgnK(Ls)γ

∗dLs.

But
γ∗dLs = ι∂tγ

∗(dLs)dt = γ∗t (ιdγ∂tdLs)dt.

By the fundamental calculus theorem and by virtue of (2.18)

2 lim
ε→0

1

ε

∫ ε

0

∫

G1(S)
sgnK(Ls)γ

∗
t (ιdγ∂tdLs)dt = 2

∫

G1(S)
sgnK(Ls)γ

∗
0(ιdγ∂tdLs) =

= −2
∫

G1(S)
sgnK(Ls)〈dγ∂t, N〉γ∗0(ιNdLs) = −2

On−2

2

∫

S0

〈dγ∂t, N〉σ1(x)dx

where N is the unit normal field to Ls(S0), and this way ιNdLs is the volume element
induced by the ambient. The minus sign appears because 〈dγ∂t, N〉 is negative, as we
will see, and we are working with (positive) densities.

On the other hand, the first variation formula of the volume states (cf. [Spi79])

d

dt

∣∣∣∣
t=0

vol(St) =

∫

S0

〈∂ϕ/∂t, n〉(n− 1)σ1(x)dx

where σ1 denotes the mean curvature of S0. Note that we changed one sign in the
classical variation formula because 〈n, n〉 < 0.

Take a moving frame g : G1(S) × (−ε, ε) → G such that ϕ = π̃ ◦ g i γ = πn−2 ◦ g.
Then,

〈dγ∂t,N〉 = 〈dπn−2
∂g

∂t
, dπn−2v

n
0 〉 = 〈

∂g

∂t
, vn0 〉 = 〈dπ̃

dϕ

dt
, n〉 = 〈∂ϕ

∂t
, n〉

which is precisely what we needed.

Corollay 2.5.2. Let R and S be two space-like hypersurfaces embedded in Λn. Then

∫

Ls

(#(Ls ∩ S)−#(Ls ∩R))dLs =
On−2

n− 1
(vol(R)− vol(S))

Proof. Take B ⊂ Hn a ball with a radius big enough so that every hyperplane L ∈ R
meets B. Take the hypersurface S ′ ⊂ Λn consisting of the tangent hyperplanes of ∂B
oriented by its outer normal. Consider the bundles of hyperplanes orthogonal to the
diameters of B. They foliate Λn by time-like geodesics. Since R is space-like, it is
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transverse to this foliation. Thus, we can smoothly deform S ′ into R following the lines
of this foliation. Applying the last proposition and integrating we get the result for R
and S′.

For arbitrary R and S take a ball B which is big enough for both and the correspond-
ing hypersurface S ′. Then we apply the result to R and S ′ and to S and S ′. Finally, we
take the difference.

Corollay 2.5.3. [Cauchy-Crofton formula in the de Sitter sphere] Let S ba a space like
embedded hypersurface in Λn. Then

∫

Ls

(2−#(Ls ∩ S))dLs =
On−2

n− 1
(vol(S)−On−1)

Proof. Choose some point p ∈ Hn and apply the last corollary with R = {L ∈ Λn|p ∈ L}.
We have finished since almost every space-like line intersects R in two points.
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Total Curvature

3.1 The Gauss-Bonnet Theorem in Euclidean Space

In this chapter we study the integral of the Gauss curvature of a closed hypersurface
in hyperbolic space. Concretely we will give a proof of the Gauss-Bonnet theorem for
such hypersurfaces using the methods of integral geometry. Before it will be convenient
to treat the euclidean and spherical cases. In this section we briefly recall the Gauss-
Bonnet for hypersurfaces in euclidean space. When this space has odd dimension one
has the most known version of this theorem which is due to Hopf.

Theorem 3.1.1. [Hop25] If i : S → Rn is a C2 immersion of a closed (compact
boundaryless) hypersurface in Rn with odd n, then the integral of the Gauss curvature
of S is ∫

S
Kdx =

On−1

2
χ(S)

where dx is the measure in S induced by i.

It is an almost direct consequence of the Poincaré-Hopf index theorem. We give the
proof since it presents some simliarities with what will follow.

Proof. Since S is not oriented we consider its unit normal bundle N(S) = {(p, n) ∈
S × Sn−1 | n⊥di(TpS)}. There is a Gauss map γ : N(S) → Sn−1 between oriented
maniflods defined by γ(p, n) = n. The curvature of S is defined to be K = − det dγ.
Note that, being S even dimensional, K has the same value in n and in −n. By the area
formula ∫

S
Kdx =

1

2

∫

N(S)
Kdx = −deg(γ)On−1

2
.

The proof is reduced to compute deg(γ), the degree of the Gauss map. Let y,−y ∈ Sn−1
regular values of γ. Consider in N(S) the field X = y − 〈y, γ〉γ, orthogonal projection
of y to the tangent space of i(S). The zeros of X are the points of γ−1({y,−y}) and are
non-degenerate. If X is null in p, then n = ±y and

(dX)(p,n) = −(grad〈y, γ〉)t(p,n) · n− 〈y, n〉(dγ)(p,n) = −〈y, n〉(dγ)(p,n) (3.1)
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since 〈y, γ〉 has a maximum or a minimum in (p, n). In particular dX(TpS) ⊂ di(TpS).
Being non-degenerate, the index ι of X in (p, n) is ±1, according to the sign of the
determinant of the (endomorphism) dX (cf.[Mil97]). But this is − det dγ and by the
Poincaré-Hopf theorem,

χ(N(S)) =
∑

(p,n)∈γ−1(±y)

ι(p, n) = −2
∑

x∈γ−1(y)

sgn(det dγ)x = −2degγ.

The proof is finished since χ(N(S)) = 2χ(S).

The latter theorem need the dimension of the space to be odd but there is a version
for arbitrary dimensions. In this case the hypersurface must be assumed to be embedded
or equivalently, the boundary of some domain. This theorem is also due to Hopf, though
this is not so well known.

Theorem 3.1.2. [Hop27, p.248, Satz VI] If S = ∂Q is a compact C2 hypersurface in
Rn, Then the Gauss curvature integral of S, with respect to the inner normal is

∫

S
Kdx = On−1χ(Q). (3.2)

Recall that for odd n and S = ∂Q one has χ(S) = 2χ(Q). The condition of being
boundary is necessary. In general, for odd dimensional immersed hypersurfaces the
topology does not determine the curvature integral. For instance, the integral of the
curvature of a closed plane curve can take many different values unless it is assumed to
be simple.

Next we give the proof of (3.2) that appears in [Got96]. This is again very simple
but it uses the following generalitzation of the Poincaré-Hopf theorem which is due to
M. Morse.

Theorem 3.1.3. [Mor29] Let X be a smooth field in a manifold N with boundary
M = ∂N . Assume that X has no zero in M and it conicides with the inner normal at
isolated points of M . Then the sum IndX of the indices at singular points of X is

IndX = χ(N)− Ind−∂X

where Ind−∂X is the sum of the indices of the projection of X at M in the singular
points where X is inward (normal).

Proof (of theorem 3.1.2). As before, it is enough to compute the degree of the Gauss
map. But now we choose the Gauss map γ : S → Sn−1 defined by the inner normal.
Let y ∈ Sn−1 be a regular value γ. Now apply the latter theorem to the constant field
X ≡ y definied on the domain Q. Clearly the points of ∂Q where X is inner normal are
the anti-images of y. The equation (3.1) shows that the indices of the projection of X
in these points coincides with the sign of − det dγ. Therefore, since X nowhere null,

χ(Q) = Ind−∂X = −degγ.

54



Chapter 3. Total Curvature

The fact that for even dimensional hypersurfaces one needed only to assume im-
mersion, led Hopf to suspect of the existence of an intrinsic Gauss-Bonnet theorem for
even dimensional abstract manifolds. Later, Allendoerfer and Fenchel gave a version
for even dimensional immersed manifolds with any codimension. Finally Chern proved
the Gauss-Bonnet for even dimensional abstract manifolds in [Che44], and a little af-
ter he generalized it to manifolds with boundary in [Che45]. Thus, theorem 3.1.1 is a
consequence of this intrinsic theorem while theorem 3.1.2 follows from the latter version
applied to the manifold with boundary Q.

However, it is good to keep in mind the elementary proof we have just given. Be-
sides of ‘aesthetical’ reasons, note that these extrinsic methods can also derive into
some questions, like the study of total absolute curvature, that do not admit intrinsical
reformulation.

In the following section we present an extrinsic proof of the Gauss-Bonnet theorem
for hypersurfaces of Sn, which is due to Teufel (cf. [Teu80]) and is based on integral
geometry. After taking a look at this proof, it will be clear why the method did not
apply to hyperbolic space. However, the same ideas that led to the Cauchy-Crofton
formula in the de Sitter sphere will allow us to go on with the hyperbolic case, using
also integral geometry. The first step will be to find some variation formulas for the
Quermassintegrale Wi that have interest on their own.

Again, we should say that the Gauss-Bonnet theorem in Sn and Hn follows easily
from the intrinsic version (with boundary if needed). However, in these geometries, even
more than in euclidean, some remarkable aspects that appear in the integral geometric
proofs, remain hidden when working intrinsically.

Finally, this kind of ideas will lead to a formula for total absolute curvature of a
certain class of immersions in hyperbolic space, that will be called tight. This result
is completely new and will allow to prove the Chern-Lashof inequality holds for tight
immersions of tori in hyperbolic space.

3.2 The Gauss-Bonnet Theorem in the sphere

Next, following [Teu80] we relate the total curvature of the boundary of a domain in Sn
to its (n− 2)-th Quermassintegrale. Only in the case of odd n the results will generalize
to immersions.

Given Ln−2 an oriented geodesic (n − 2)-plane of Sn, consider the bundle of ‘half-
hyperplanes’ bounded by it. Parametritzing the bundle by an angle one gets a function

hL : Sn \ Ln−2 −→ S1.

Proposition 3.2.1. [Teu80] Let i : S → Sn be a compact immersed hypersurface ori-
ented through a unit normal vector n. The curvature integral is given by

Mn−1(S) =
n− 1

On−2

∫

L+n−2

µ(Ln−2, S)dLn−2

where L+n−2 is the space of oriented (n − 2)-planes and µ(Ln−2, S) is the sum of the
Morse indexes in the critical points of hL ◦ i where gradhL coincides with n.
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Proof. In first place, if γ : S → Sn is the Gauss map (γ(x) = nx), the total curvature of
S is the (signed) volume of the ‘dual hypersurface’ γ(S) (cf. [Teu82])

Mn−1(S) =

∫

γ(S)
sgn(K(x))dx.

Note that γ(S) is smooth out of a null measure set. Now, by the Cauchy-Crofton formula
(2.6), ∫

γ(S)
sgn(K(x))dx =

n− 1

On−2

∫

L1

∑

x∈l∩γ(s)

sgn(K(x))dl

where L1 is the space of great circles l of Sn. For each circle l determined by a plane
P , consider the polar (n − 2)-plane Ln−2 = P⊥ ∩ Sn. The intersections of l with γ(S)
correspond to points of S where gradhL coincides with n for some of the two possible
orientations of Ln−2. Thus,

Mn−1(S) =
n− 1

On−2

∫

L+n−2

∑
sgn(K(x))dLn−2.

where the sum runs over the points x where n coincides with the gradient of hL ◦ i. A
computation similar to that of (3.1) shows the sign of K in this points to be the Morse
index of hL ◦ i.

Suppose S ⊂ Sn to be a closed embedded hypersurface and let Q be one of the
domains bounded by S. Orient S through the unit normal n interior to Q. For every
generic (n− 2)-plane (i.e. out of a null measure set), the sum of tangency indexes µ is
determined by the topology of the intersection between the (n− 2)-plane and Q.

Proposition 3.2.2. [Teu80] If Ln−2 is an oriented geodesic (n − 2)-plane generical
position with respect to S = ∂Q ⊂ Sn (or Rn or Hn) then the index sum in the critical
points of hL|S where gradhL is inwards is

µ(Ln−2, S) = χ(Q)− χ(Q ∩ Ln−2).

The following proof is shorter than that of [Teu80] since we use Morse’s theorem
3.1.3.

Proof. Since L is generic we can assume hL|S to be a Morse function and also Ln−2
to ba transverse to S. Take a tubular neighbourhood Lεn−2 of Ln−2 not containing
any critical point of hL|S and in such a way that Lεn−2 ∩Q is a deformation retract of
Ln−2 ∩ Q. Consider X the gradient of hL defined in Sn \ Lεn−2. The gradient of the
restriction of hL to S is precisely the orthogonal projection of X to TpS; denote it by
∂X. At singular points, the index of the gradient filed of a function equals its Morse
index. Thus, µ(Ln−2, S) is the index sum of ∂X in those singular points where X is
inwards. Now we apply theorem 3.1.3 to the manifold N = Q \ Lεn−2 (or some slight
C∞ modification of it). Since X is nowhere null,

µ(Ln−2, S) = Ind−∂X = χ(N) = χ(Q \ Lεn−2).
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By the additivity of the Euler characteristic, we finish the proof with

χ(Q \ Lεn−2) = χ(Q)− χ(Lεn−2 ∩Q) = χ(Q)− χ(Ln−2 ∩Q)

since Ln−2 is a deformation retract of χ(Lεn−2).

In particular we have seen that µ(Ln−2, S) is independent of the orientation of Ln−2.
Thus, in 3.2.1 no attention should be paid to the orientation of (n − 2)-planes and we
have

Mn−1(S) =
2(n− 1)

On−2

∫

Ln−2

(χ(Q)− χ(Ln−2 ∩Q))dLn−2.

Since Ln−2 = G(n− 1, n+ 1) and

vol(G(r, n)) =
On−1 · · ·On−r

Or−1 · · ·O0
,

from the definition of Wi(Q) we get the following formula.

Corollay 3.2.3. [Teu80] If S = ∂Q ⊂ Sn is differentiable then

Mn−1(S) = On−1χ(Q)− n(n− 1)

2
Wn−2(Q)

This relation can be transported to higher codimensions. That is, the mean curvature
integrals are expressed in terms of only two Quermassintegrale. This fact, which is not
mentioned in [Teu80], is quite surprising and shows that the relation between mean
curvature integrals and Quermassintegrale is much more direct than what equations
(2.10) and (2.11) could suggest.

Corollay 3.2.4. If S = ∂Q is differentiable,

Mr(S) = n

(
Wr+1(Q)− r

n− r + 1
Wr−1(Q)

)
.

Proof. For almost every geodesic r-plane Lr, the intersection Q∩Lr has smooth bound-
ary. By the previous theorem we have

Mr−1(S ∩ Lr) = Or−1χ(Lr ∩Q)− r(r − 1)

2
Wr−2(Q ∩ Lr).

Integrating with respect to Lr,

∫

Lr

Mr−1(S ∩ Lr)dLr = Or−1

∫

Lr

χ(Lr ∩Q)dLr −
r(r − 1)

2

∫

Lr

Wr−2(Q ∩ Lr)dLr =

= Or−1

∫

Lr

χ(Lr ∩Q)dLr −
(r − 1) ·O0

Or−2

∫

Lr

∫

L[r](r−2)

χ(Lr−2 ∩Q)dL[r](r−2)dLr (3.3)
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where L[r](r−2) is the space of (r− 2)-planes contained in Lr and dL[r](r−2) is the corre-
sponding measure. But equality (2.5) gives

dL[r](r−2)dLr = dLr[r−2]dLr−2

where dLr[r−2] is the natural measure in the space of r-planes containing Lr−2. Thus,
∫

Lr

∫

L[r](r−2)

χ(Lr−2 ∩Q)dL[r](r−2)dLr =
On−r+1On−r

O1O0

∫

Lr−2

χ(Lr−2 ∩Q)dLr−2.

On the other hand, by the reproductive property of the mean curvature integrals
(cf. proposition 2.2.4),

∫

Lr

Mr−1(S ∩ Lr)dLr =
On−2 · · ·On−rOn−r+1

Or−2 · · ·O0O1
Mr−1(S).

Substituting the two latter equations in 3.3 one gets the desired formula.

These formulas lead to a new proof of equations (2.10) and (2.11) for curvature
k = 1 (and all k > 0). It is worthy to say that we have found a completely different
way to get this result. Moreover, the classical proof of [San76] made essential use of the
Gauss-Bonnet theorem, which we have not used at all.

Proof (of proposition 2.2.5 in Sn). Use the recurrence

Wr+1(Q) =
1

n
Mr(∂Q) +

r

n− r + 1
Wr−1(Q)

and finish with

W1(Q) =
1

n
M0(∂Q) W0(Q) = V Wn(Q) =

On−1

n
χ(Q).

But one should remark that when r = n equations (2.10) and (2.11) are the Gauss-
Bonnet theorem for embedded hypersurfaces in Sn! Let us repeat that classically the
Gauss-Bonnet was used to obtain formulas (2.10) and (2.11). Here, we have proved
these formulas independently and in particular the Gauss-Bonnet formula. One could
also deduce the Gauss-Bonnet theorem directly by induction from corollary 3.2.3 as it
is done in [Teu80].

Theorem 3.2.5 (Gauss-Bonnet Theorem in Sn). Let Q ⊂ Sn be a domain with
compact and C2 boundary ∂Q. If n is even and V denotes the volume of Q,

cn−1Mn−1(∂Q) + cn−3Mn−3(∂Q) + · · ·+ c1M1(∂Q) + V = 1/2Onχ(Q).

If n is odd,

cn−1Mn−1(∂Q) + cn−3Mn−3(∂Q) + · · ·+ c2M2(∂Q) +M0(∂Q) = 1/2Onχ(Q).

The constants ch are

ch =

(
n− 1

h

)
On

OhOn−1−h
.
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Immersions

Assume here that i : S → Sn is an immersion (not necessarily embedding) of a hyper-
surface; i.e. auto-intersections are allowed. To give results analogous to the previous
ones, one must restrict the parity of some dimensions. Also, we need some definition.

Definition 3.2.1. Let i : S → Sn (or Rn or Hn) be an immersed hypersurface. When
r is odd we define

Wr(S) =
1

2

(n− r)Or−1 · · ·O0
n ·On−2 · · ·On−r−1

∫

Lr

χ(i−1Lr)dLr.

Note that if S = ∂Q then Wr(S) =Wr(Q) since χ(Lr ∩ S) = 2χ(Lr ∩Q).

From now on n is assumed to be odd. Proposition 3.2.1 holds for general immersions
but we should choose some orientation. Taking the unit normal bundle N(S) = {(p, n) ∈
Sn × Sn | n⊥di(TpS)}, one has an immersion i : N(S) → Sn and a well defined normal
at each point of N(S). Since S is even-dimensional, its curvature is independent of the
normal. For the same reason the index of the critical points of the functions hL ◦ i does
not depend on the orientation of the (n− 2)-planes Ln−2. Therefore,

∫

S
Kdp =

1

2

∫

N(S)
Kdp =

=
n− 1

2On−2

∫

L+n−2

µ(Ln−2, S)dLn−2 =
n− 1

On−2

∫

Ln−2

µ(Ln−2, S)dLn−2 (3.4)

where, in the case of non-oriented Ln−2, the index sum µ(Ln−2, S) is over all the critical
points of hL ◦ i. About proposition 3.2.2, this makes reference to the interior domain
which only exists for embeddings. Thus, we must replace it by the following proposition.

Proposition 3.2.6. Let i : S → Sn (or Rn or Hn) be an immersed hypersurface and
Ln−2 a (non-oriented) (n−2)-planein generical position with respect to i(S). The index
sumof the restriction hL ◦ i is

µ(S,Ln−2) = χ(S)− χ(i−1Ln−2) (3.5)

Here n needs not to be odd. For even n, since χ(S) = χ(i−1Ln−2) = 0, we get that
the total index sum of hL ◦ i is always 0.

Proof. Consider the gradient field X of hL ◦ i defined in S. Since Ln−2 is in generical
position, we can choose a tubular neighbourhood Lεn−2 not containing any zero of diX.
Set N = S \ i−1Ln−2. Note that X is nowhere orthogonal to ∂N . By Morse’s formula,
the index sum of X in N is

µ(S,Ln−2) = χ(N) = χ(S \ i−1Lεn−2) = χ(S)− χ(i−1Lεn−2) = χ(S)− χ(i−1Ln−2)

since, for ε small enough, i−1Ln−2 is a deformation retract of i−1Lεn−2.
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Substituting (3.5) in (3.4) one gets, for odd n,

Mn−1(S) =
n− 1

On−2

(
OnOn−1

O1O0
χ(S)−

∫

Ln−2

χ(i−1Ln−2)dLn−2

)
=

= nWn(S)−
n(n− 1)

2
Wn−2(S).

As for embeddings one can use the reproductive properties to get

Mr(S) = n

(
Wr+1(S)−

r

n− r + 1
Wr−1(S)

)
.

Therefore, we deduce formula (2.11) also for immersed hypersurfaces since the planes
involved there are odd-dimensional. In particular, we have also proved the Gauss-Bonnet
theorem for immersed hypersurfaces in odd-dimensional spheres.

At this point, the most natural willing is to repeat the process in hyperbolic space.
The first step would be to relate total curvature to the volume of the Gauss map. We
have seen in chapter 2 that this works in hyperbolic space the same as in euclidean
or spherical. The only peculiarity is that in hyperbolic case, the Gauss map has its
target space in the de Sitter sphere. Next step should be to use the Cauchy-Crofton to
compute this volume. It is clear that difficulties appear at this stage. It has been already
said that the usual Cauchy-Crofton formula does not hold in the de Sitter sphere. An
alternative version of this formula was given in [Teu82]. This formula led to a way to
compute the total curvature of immersions in hyperbolic space. However this method
did not lead to the Gauss-Bonnet theorem.

Thus, having found a new alternative to Cauchy-Crofton for space-like embedded
hypersurfaces in the de Sitter sphere, we should be hopeful. We can not use directly
theorem 2.5.3 since the Gauss image is not an immersion (may degenerate in some point).
However, in the two following sections we use the ideas of section 2.5 to complete this
study of total curvature in hyperbolic space.

3.3 Variation Formulas.

Let us make a little parenthesis to find some first variation formulas. They will be the
key to continue the study of total curvature, but in addition they have interest on their
own. Concretely we study the variation of Quermassintegrale Wr(Q) when the domain
Q is perturbed. If a plane Lr cuts ∂Q transversally, after an infinitesimal perturbation
of Q, the intersection Q ∩ Lr will not change its topology. Thus, it is clear that the
variation of Wr(Q) will be related to the measure of tangent r-planes. Therefore we will
need the results of section 2.4.

We are mainly interested in hyperbolic space but all all what we do in this section
holds in Rn and Sn. Thus, we work in the three geometries at the same time without
need of any additional remark.
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Let us start in the following situation. Let ϕ : Q × I −→ Hn (o Rn, o Sn) be
a smooth mapping such that for every t ∈ I = (−ε, ε), the restriction ϕt = ϕ(·, t) is
injective. We denote Qt = ϕt(Q) and call them a deformation of Q0. It is clear that ϕt
is an embedding of S = ∂Q and that the image St = ϕt(S) = ∂Qt.

Proposition 3.3.1. If Qt is a deformation of a domain Q0, then for a generic r-plane
Lr and 0 < t0 < ε

χ(Lr ∩Qt0)− χ(Lr ∩Q0) = −
∑

sgn〈∂ϕ
∂t
, n〉sgnK(Lr)

where the sum is taken over the points ϕt(x) where Lr is tangent to St for some t ∈
(0, t0), and K(Lr) is the normal curvature of St in the direction Tϕ(x,t)Lr with respect
to the inner normal n.

Proof. Consider Q × I −→ Hn × I defined by (p, t) 7→ (ϕ(p, t), t). By hypothesi, the
image is a domainM of Hn×I. Reduce for the moment I to (0, t0). Then ∂M ⊂ (Hn×I)
is smooth. For a generic Lr we can suppose Lr× I to be transverse to this hypersurface.
Thus, N = M ∩ (Lr × I) is a domain of Lr × I with smooth boundary (cf. figure 3.1).
Consider the unit vertical field ∂t and its orthogonal projection onto ∂N

A

yTy∂N

Lr ∩Q0

y

Hn × {0}

N

Lr × IM

Figure 3.1: Deformation d’un domini

X = ∂t− 〈∂t, n′〉n′

where n′ is the inner unit normal to ∂N . Let us place on a singular point y = ϕt(p) ∈ ∂N
of X. Next we compute the index ι of X in y. Let dX : Ty∂N → Ty∂N be the map
sending Z 7→ ∇ZX where ∇ is the Levi-Civita connection on Lr × I. Similarly to (3.1)
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we have,

dX(Z) = ∇ZX = ∇Z∂t−∇Z〈∂t, n′〉n′ = Z(〈∂t, n′〉)n′ − 〈∂t, n′〉∇Zn
′ = −〈∂t, n′〉∇Zn

′

(3.6)
and by hypothesi ∂t = ±n′. Thus, the determinant of dX is, up to the sign, the Gauss
curvature K ′ of ∂N in y as a hypersurface of Lr × I and with respect to n′

det dX = 〈∂t, n′〉rK ′.

Since n′ is inwards to M , by theorem 1.2.2 (Meusnier), K ′ is a positive multiple of the
normal curvature of ∂M in the direction Ty∂N with respect to the inner normal to
∂M . For the same reaso, this normal curvature is a positive multiple of K(Lr), the
normal curvature of St ≡ (Hn × {t}) ∩ ∂M with respect to n in the direction TpLr. In
particular, y is a degenerate singular point if and only if St has normal curvature 0 at x
in the direction of Lr. For almost all Lr, the singularities are non-degenerate, and thus
isolated. To see this, it is enough to apply the Sard-Federer thoerm (cf.[Fed69]) to the
mapping Gr(S)× I → Lr defined by ((p, V ), t) 7→ expϕ(p,t) V . Its critical values are the
r-planes which are tangent to some St in such a way that K(Lr) = 0. Therefore, the
set of such r-planes, which are precisely those which give degenerate singularities of X,
has null measure.

Therefore, for almost every Lr we can assume all the singular points y of X to be
degenerate. Thus (cf. [Mil97]), their index is ±1 according to the sign of the determinant
of dX, or

ι(y) = sgn det dXy = 〈∂t, n′〉rsgnK(Lr) (3.7)

where K(Lr) is the normal curvature of St in the direction TyLr.
We now want to relate χ(Lr ∩ Qt0) − χ(Lr ∩ Q0) to the index sum of X. First we

extend I to [0, t0] and we slightly modify N in such a way that the new boundary ∂N in
Hn×I is smooth. This modification can be made outside the region N ∩ (Lr× [δ, t0−δ])
for a small δ. Moreover, we can assume the new ∂N to be orthogonal to ∂t only at
isolated points. Consider the open set A = ∂N ∩ (Lr × [0, δ)) in ∂N . The field X,
orthogonal projection of ∂t on ∂N , is outwards to A at ∂A. By the Poincaré-Hopf
theorem (with boundary), χ(A) is the index sum of X in the singular points contained
in A. Applying theorem 3.1.3, we get

χ(N) =
∑

C+

ι =
∑

C+∩A

ι+
∑

C+\A

ι = χ(A) +
∑

C+\A

ι

where C+ is the set of singular points of the projection of ∂t where it is interior, and ι
is the index of such singular points. That is

χ(Lr ∩Q0) = χ(N)−
∑

C+∩(δ,t0−δ)

ι.

Analogously one sees

χ(Lr ∩Qt0) = χ(N)−
∑

C−∩(δ,t0−δ)

ι′
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where the points in C− are singularities of −X where ∂t is interior and ι′ is its index.
Since ι′ = (−1)rι,

χ(Lr ∩Qt0)− χ(Lr ∩Q0) = −
∑

C−

ι′ +
∑

C+

ι =
∑

C

〈∂t, n′〉r+1ι

where C = C+ ∪C− and n′ is the inner normal to ∂N . We finish the proof substituting
(3.7) in the latter equation and noting that ∂t is interior to M if and only if ∂ϕ/∂t is
exterior to Qt.

With this proposition we can prove the first variation formula for the Quermassin-
tegrale of a domain with smooth boundary in Hn (or Rn or Sn).

Theorem 3.3.2. For a deformation of domains Qt,

n ·On−2 · · ·On−r−1

(n− r) ·Or−1 · · ·O0
d

dt

∣∣∣∣
t=0

Wr(Qt) =

=
d

dt

∣∣∣∣
t=0

∫

Lr

χ(Lr ∩Qt)dLr = −vol(G(r, n− 1))

∫

S0

φ(x)σr(x)dx

where φ(x) = 〈∂ϕ/∂t, n〉 and n is the inner unit normal.

Proof. By the previous proposition, for almost all Lr we have

χ(Lr ∩Qt)− χ(Lr ∩Q0) = −
∑

sgnφ sgnK(Lr)

where the sum is over the tangencies of Lr with the hypersurfaces St, and K(Lr) is the
normal curvature of St in the direction Lr with respect to n. Integrating with respect
to Lr, ∫

Lr

(χ(Lr ∩Qt)− χ(Lr ∩Q0))dLr = −
∫

Lr

∑
sgnφ sgnK(Lr)dLr.

Consider

γ : Gr(S)× (−ε, ε) −→ Lr
( (x, Vr), t ) 7−→ expϕt(x) Vr

and the hypersurfaces Lr(St) = γ(Gr(S), t) ⊂ Lr. By the area formula,

∫

Lr

∑
sgnφ sgnK(Lr)dLr =

∫ t

0

∫

Gr(S)
sgnφ sgnK(Lr)γ

∗
t ιdγ∂tdLrdt

where γt = γ(·, t). By the fundamental theorem of calculus

d

dt

∣∣∣∣
t=0

∫ t

0

∫

Gr(S)
sgnφ sgnK(Lr)γ

∗
t ιdγ∂tdLrdt =

∫

Gr(S)
sgnφ sgnK(Lr)γ

∗
0ιdγ∂tdLr =

=

∫

Gr(S)
sgnφ sgnK(Lr)|〈dγ∂t,N〉|γ∗0ιNdLr
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where N is the unit normal field to Lr(S0). Indeed,

ιdγ∂tdLr = |〈dγ∂t,N〉|ιNdLr

since we are dealing with densities. Note that ιNdLr is the volume element of Lr(St)
induced by the ambient.

Now take a ‘moving frame’ g : (−ε, ε)×Gr(S)→ G such that ϕ = π ◦ g, γ = πr ◦ g
and gn coincides with n. Then

〈dγ∂t,N〉 = 〈dπr
∂g

∂t
, dπrv

n
0 〉 = 〈

∂g

∂t
, vn0 〉 = −〈dπ

∂g

∂t
, dπvn0 〉 = −〈∂ϕ/∂t, n〉 = −φ. (3.8)

Thus,
d

dt

∣∣∣∣
t=0

∫

Lr

χ(Lr ∩Qt)dLr = −
∫

Gr(S)
φ sgnK(Lr)γ

∗
0ιNdLr

Finally by corollary 2.4.2

−
∫

Gr(S)
φ sgnK(Lr)γ

∗
0ιNdLr = −vol(G(r, n− 1))

∫

S0

φ σr(x)dx.

As in the previous section, we can extend this results to immersions if we restrict
the parity of some dimensions. Thus, suppose i : S × I −→ Hn a smooth mapping such
that for each t ∈ I = (−ε, ε), the restriction it = i(·, t) is an immersion (not necessarily
embedding) of a closed hypersurface S. We will say that we have a deformation of
the immersion i0. In this setting we have variation formulas for the Quermassintegrale
Wr(S) with odd r (cf. definition 3.2.1). Before we will need the following proposition.

Proposition 3.3.3. For an immersions deformation it, if r is odd and Lr is a generic
r-plane,

χ(i−1t0 Lr)− χ(i−10 Lr) = −2
∑

sgnK(Lr)

where the sum is taken over the contact points it(p) of Lr with St for some t ∈ (0, t0),
and K(Lr) is the normal curvature of St in the direction Ti(p,t)Lr with respect to the
unit normal n that makes 〈∂i/∂t, n〉 > 0.

Proof. Reduce I to [0, t0]. Let Φ : S × I −→ Hn × I be defined by Φ(x, t) = (it(x), t).
The image of Φ is am immersed hypersurface of Hn × I. By the genericity hypothesis
we can assume Lr × I to be transverse to this image. Then, N = Φ−1(Lr × I) is a
hypersurface of S × I. Consider the gradient field X of the function t restricted to N .
Let y = (p, t) ∈ N be a singular point of X. Since Φ is injective in a neighborhood U of
y, we can identify U to Φ(U) ⊂ Hn × I. Also, dΦX is the orthogonal projection of ∂t
to Φ(U). Equation (3.6) shows that for all Y ∈ TyN

dX(Y ) = −∇Y n
′
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Φ(N)

Lr × I

Φ(y)
y

N

Figure 3.2: Deformation of an immersion

where n′ is the unit normal vector that coincides with ∂t at y. Therefore, the determinant
of dX in y is the Gauss curvature K ′ of Φ(U) as a hypersurface op Lr × I with respect
to the unit normal n′. Let n′′ be the unit normal to Φ(S × I) such that 〈∂i/∂t, n′′〉 >
0. Since Φ(N) = Φ(S × I) ∩ (Lr × I), theorem 1.2.2 (Meusnier) states that K ′ is a
negative multiple of the normal curvature of Φ(S×I) with respect to n′′ in the direction
T(Φ(y))(Lr × {t}) = T(Φ(y))Φ(N). The same theorem gives that this normal curvature is
a positive multiple of K(Lr), the normal curvature of it(S) as a hypersurface of Hn×{t}
in the direction TpLr with respect to the normal vector of the statement. Thus,

det dX = −K(Lr)

and so, using the Sard-Federer theorem, for almost all Lr the normal curvature K(Lr) 6=
0 in the contact points and thus the singular points of X are non-degenerate and isolate.
In such case we have seen the index of X to be

ι = −sgnK(Lr).

Applying theorem 3.1.3 to X and −X, we get

∑

C

ι = χ(N)−
∑

D0

υ
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−
∑

C

ι = χ(N)−
∑

Dt0

υ

where C is the set of singular points of the fieldX and ι is the index of these singularities.
We have used the oddness of the dimension of N to deduce the index of −X to be
opposite to that of X. Similarly, Dt is the set of singularities of the projection of X
toi−1t (Lr) × {t} and υ is the index of each point. Even if these singularities are no
isolated, this can be fixed by extending I to [−δ, t0 + δ] (for small δ > 0) and extending
also X to S × I properly.

Subtracting and using the Poincaré-Hopf theorem we get

−2
∑

C

sgnK(Lr) = 2
∑

C

ι =
∑

Dt

υ −
∑

D0

υ = χ(i−1t Lr)− χ(i−10 Lr)

as was to be proved.

From this proposition, a proof analogous to that of theorem 3.3.2 gives the following

Theorem 3.3.4. For a deformation it of immersions of S, if r is odd,

n ·On−2 · · ·On−r−1

(n− r)Or−1 · · ·O0
d

dt

∣∣∣∣
t=0

Wr(St) =

=
1

2

d

dt

∣∣∣∣
t=0

∫

Lr

χ(i−1t Lr)dLr = −vol(G(r, n− 1))

∫

S0

〈∂i/∂t, n〉σr(x)dx

where n is any unit normal and σr is the mean curvature with respect to it.

When the immersions are embeddings, this theorem coincides with theorem 3.3.2.

3.4 The Gauss-Bonnet Theorem in Hyperbolic space

In this section we relate the total curvature of a closed hypersurface in hyperbolic space
to its (n − 2)-th Quermassintegrale. The basic ideas are the same as in spherical case
although technically it is quite different. The result is a formula analogous to (3.2.3)
which is equivalent to the Gauss-Bonnet theorem although it is much more simple.

Lemma 3.4.1. Suppose a deformation of one of the two treated kinds. That is

i) let Q be an n-dimensional manifold with boundary S and suppose ϕ : Q× (−ε, ε)→
Hn, a smooth mapping such that ϕt = ϕ(·, t) is embedding for every t, or

ii) let S be a compact manifold of even dimension n−1 and suppose a smooth mapping
ϕ : S × (−ε, ε)→ Hnsuch that ϕt = ϕ(·, t) is an immersion for every t.

In both cases assume that the Gauss curvature Kt(x) of St in ϕt(x) does not change its
sign with t. Then, for case i) we have

d

dt

∣∣∣∣
t=0

∫

Ln−2

χ(Qt ∩ Ln−2)dLn−2 =
On−2

2(n− 1)

d

dt

∣∣∣∣
t=0

∫

St

Kt(x)dx, (3.9)
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and for case ii)

d

dt

∣∣∣∣
t=0

∫

Ln−2

χ(ϕ−1t Ln−2)dLn−2 =
On−2

n− 1

d

dt

∣∣∣∣
t=0

∫

St

Kt(x)dx. (3.10)

Remark. The integrals on the left are finite since the integrand vanishes outside a com-
pact set. On the other hand, we will see a posteriori that the assumption that Kt does
not change its sign is superfluous.

Proof. Let us do only the case i) since the proof for ii) is identical. By theorem 3.3.2,
denoting S = ∂Q,

d

dt

∣∣∣∣
t=0

∫

Ln−2

χ(Qt ∩ Ln−2)dLn−2 = −
On−2

2

∫

S0

〈∂ϕ/∂t, n〉σn−2(x)dx. (3.11)

On the other hand, let

γ : S × (−ε, ε) −→ Λn

( x, t ) 7−→ expϕt(x)(TxS).

and let U = {x ∈ S | Kt(x) ≥ 0 ∀t}. Take a sequence (Ur) of compact sets in U with
smooth boundary such that Kt(x) > 0 for all x ∈ Ur and all t ∈ (−ε, ε), and such that
sup{Kt(x) | x ∈ ∂Ur, t ∈ (−ε, ε)} goes to 0 as r → ∞. By the Leibniz rule and the
dominated convergence theorem,

d

dt

∣∣∣∣
t=0

∫

U
Ktdx =

∫

U

d

dt

∣∣∣∣
t=0

(Ktdx) = lim
r→∞

∫

Ur

d

dt

∣∣∣∣
t=0

Ktdx = lim
r→∞

d

dt

∣∣∣∣
t=0

∫

Ur

Ktdx

But by (2.15), if dx̃ denotes the volume element of γt(S),

Ktdx = γ∗dx̃ (3.12)

and so ∫

Ur

Ktdx =

∫

γ(t,Ur)
dx̃.

Since γt = γ(t, ·) : Ur → Λn is immersion at every t ∈ (−ε, ε) we can apply the first
variation formula of volume (cf. [Spi79, p. 418])

d

dt

∣∣∣∣
t=0

∫

Ur

Ktdx = (n− 1)

∫

γ0(Ur)
〈dγ∂t,N〉σ̃1dx̃+

∫

∂Ur

γ∗ιXdx̃

where X is the tangent part of the variation vector dγ∂t. Since sup∂Ur Kt goes to 0 as
r grows we have that γ∗dx̃ also goes to 0 on this boundary and remains

d

dt

∣∣∣∣
t=0

∫

U
Ktdx = (n− 1)

∫

γ0(U0)
〈dγ∂t,N〉σ̃1dx̃ = (n− 1)

∫

U0

〈dγ∂t,N〉σn−2dx (3.13)

since σn−2 = Kσ̃1 by corollary 2.3.9. For the negatively curved part one proceeds
analogously. By equation (3.8) we have 〈dγ∂t,N〉 = −〈∂ϕ/∂t, n〉 and comparing (3.11)
with (3.13) we see that that was precisely the needed equality.
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Now the idea is to shrink any hypersurface up to almost collapse it to a point, and
integrate equations (3.9) and (3.10) with respect to t during this deformation.

Theorem 3.4.2. Let S be a hypersurface of Hn bounding a domain Q. Then,
∫

Ln−2

χ(Ln−2 ∩Q)dLn−2 =
On−2

2(n− 1)
(Mn−1(S)−On−1χ(Q)).

If i : S → Hn is an immersed hypersurface with odd n,
∫

Ln−2

χ(i−1Ln−2)

2
dLn−2 =

On−2

2(n− 1)

(
Mn−1(S)−

On−1χ(S)

2

)
.

Proof. Let us restrict to the first case. Suppose S in the projective (or Klein) model of
Hn. Through homotheties deform homotopically S to get S ′ = ∂Q′ contained in a ball
of arbitrarily small radius. Since the sign of the euclidean curvature of S is invariant
under, by proposition 1.2.3 the hyperbolic curvature does neither change its sign. Thus,
we can apply the previous proposition to get

∫

Ln−2

(χ(Ln−2 ∩Q)− χ(Ln−2 ∩Q′))dLn−2 =
On−2

2(n− 1)
(Mn−1(S)−Mn−1(S

′)).

Since the metric of a small ball is almost euclidean and the curvature depends continu-
ously on the metric, Mn−1(S

′) is as close to On−1χ(Q) as we want (cf. teorema 3.1.2).
On the other hand , χ(Ln−2 ∩Q′) = 0 when Ln−2 does not intersect the small ball.

Thus we obtain the following formulas which are analogous to that of corollary 3.2.3
and will lead to (2.10), (2.11) and in particular to the Gauss-Bonnet theorem in Hn.

Corollay 3.4.3. If Q ⊂ Hn is a domain with smooth boundary, then

Mn−1(∂Q) = n (Wn(Q) + fracn− 12Wn−2(Q)) .

If S is an immersed hypersurface and n is odd then

Mn−1(S) = n (Wn(S) + fracn− 12Wn−2(S)) .

Proof. Multiply the equations in the preceding propostion by the constants appearing
in definitions 2.2.1 and 3.2.1 of the Quermassintegrale.

These formulas can be moved to higher codimensions using reproductibility.

Corollay 3.4.4. If Q ⊂ Hn is a domain with smooth boundary S, then

Mr(S) = n

(
Wr+1(Q) +

r

n− r + 1
Wr−1(Q)

)
. (3.14)

If S is a hypersurface and r is odd, then

Mr(S) = n

(
Wr+1(S) +

r

n− r + 1
Wr−1(S)

)
.
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Proof. Identical to that of the spherical case (cf. corollary 3.2.4).

From here we have a new proof of formulas (2.10) and (2.11) for curvature k = −1
(and k < 0).

Proof (of proposition 2.2.5 in Hn). Use the recurrence

Wr+1(Q) =
1

n
Mr(∂Q)− r

n− r + 1
Wr−1(Q)

and finish with

W1(Q) =
1

n
M0(∂Q) W0(Q) = V Wn(Q) =

On−1

n
χ(Q)

Remark. The same formulas hold for immersions if r is odd.

As a particular case, if r = n we get the Gauss-Bonnet theorem.

Theorem 3.4.5 (Gauss-Bonnet theorem in Hn). Let Q ⊂ Hn be a domain with C2

compact boundary S = ∂Q. If n is even and V denotes the volume of Q,

cn−1Mn−1(S) + cn−3Mn−3(S) + · · ·+ c1M1(S) + (−1)n/2V = Onχ(Q)/2.

If n is odd, even if S is just immersed,

cn−1Mn−1(S) + cn−3Mn−3(S) + · · ·+ c2M2(S)−M0(S) = Onχ(S)

where the constants ch are

ch =

(
n− 1

h

)
(−1)(n−h−1)/2On

OhOn−1−h
.

We finish the section with some remarks about convex sets. Recall that the total
curvature of the (possibly non-smooth) boundary of a convex set equals the measure of
its support planes. It has also been said that with this definition the total curvature is
a continuous functional in the space of convex set with respect to the Haussdorf metric.
No need to say that the Quermassintegrale Wr make sense and are continuous in this
space. Therefore, the next proposition is immediate by approximating a convex set by
a sequence of smooth convex domains.

Proposition 3.4.6. If Q ⊂ Hn is a compact convex set then,

Mn−1(∂Q) = On−1 +
n(n− 1)

2
Wn−2(Q).

About mean curvature integrals, given an arbitrary convex Q ⊂ Hn we can take
(3.14) as a definition of Mi(∂Q). This way, all the Mi are continuous functionals with
respect to the Haussdorff metric. Moreover, we immediately have the following result
that may be new.

Corollay 3.4.7. The mean curvature integrals Mi(·) are increasing functionals (with
respect to inclusion) in the space of compact convex sets.
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3.5 Total Absolute Curvature in Hyperbolic Space

This section is devoted to the study of total absolute curvature of immersions in hy-
perbolic space. We start with surfaces in H3. We give some inequalities and construct
examples showing that the Chern-Lashof inequality does not hold in H3 for connected
sums of 2 or more tori. Then we go to higher dimensions where exploding the ideas of
the previous sections, we obtain a formula for the computation of total absolute curva-
ture of a tight immersion in Hn. But before, it is convenient to start recalling briefly the
subject in euclidean space.

3.5.1 Total Absolute Curvature in Euclidean Space

We recall the definition of total absolute curvature in Rn as well as the Chern-Lashof
inequality. If i : S −→ Rn is an r-dimensional submanifold immersed in Rn, the total
absolute curvature of S is defined as the integral on the unit normal bundle of i(S) of
the absolute value of the Lipschitz-Killing curvature K(x, n)

TAC(S) :=
1

2

∫

N(S)
|K(x, n)|dndx.

Thus, if for instance S is a hypersurface, TAC(S) is the integral of the absolute value
of the curvature of S. The Chern-Lashof inequality (cf. [CL57]) states that for every
compact+fracn-12 submanifold S immersed in Rn one has

TAC(S) ≥ On−1

2
β(S, F ) (3.15)

where β(S, F ) =
∑
βi(S, F ) =

∑
dimHi(S, F ) is the sum of the Betti numbers of S

with respect to any field F . The proof consists of two steps. First one expresses TAC(S)
as the integral of the number ν of critical points of the orthogonal projection of S on
the directions of RPn−1

TAC(S) =

∫

RPn−1
ν(S, u)du.

The second step is to apply the Morse inequalities to state that, for almost all u ∈ RPn−1,

ν(S, u) ≥
n∑

i=0

dimHi(S, F ). (3.16)

The study of equality case in 3.15 led to the notion of tight immersions.

Definition 3.5.1. An immersion i : S → Rn of a compact manifold in Rn is called tight
if for some field F

TAC(S) =
On−1

2
β(S, F ).

It is easy to see (cf. [Kui97], p.35) that an immersion is tight if and only if the
equality sign holds in (3.16) when the orthogonal projection onto u is a Morse function
(non-degenerate critical points with different values). A less obvious characterization
that is usually taken as a definition is the following.
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Proposition 3.5.1. Let i : S −→ Rn be an immersed submanifold. For every vector
v ∈ Rn consider the closed half-space Hv = {z ∈ Rn | 〈z, v〉 ≤ 1} and the inclusion
jv : i−1(Hv) → S. The immersion i of S is tight if and only if there is some field F
such that the homology morphisms (jv)∗ : Ȟ∗(i

−1(Hv), F )→ Ȟ∗(S, F ) induced by jv are
injective for every v.

The proof can be found in [Kui97, p.35].

Remark. In this proposition, Ȟ∗ stands for the Čech homology. For CW-complexs, it
coincides with H∗, the singular homology. If X is a compact subset of a manifold or
CW-complex then Ȟ∗(X) is the inverse limit of H∗(Yn) where Yi ⊃ Yi+1 ⊃ . . . ⊃ X is
sequence of open sets converging to X. This is the only fact about Čech homology we
will need to know.

If i : S → R3 is an immersed surface in euclidean space, the total absolute curvature
TAC(S) is the integral on S of the absolute value of the Gauss curvature. In this case,
it is easy to prove that

TAC(S) =

∫

S
|K|dx ≥ 2π(4− χ(S)). (3.17)

The idea of the proof is as follows. Take S the boundary of the convex hull of S and see
that S \ S has total absolute curvature 0. Then by the Gauss-Bonnet theorem,

∫

S
|K| = 2

∫

S
K+ −

∫

S
K ≥ 2

∫

S
K − 2πχ(S) = 8π − 2πχ(S). (3.18)

We will immediately see that (3.17) is a particular case of the Chern-Lashof inequality
(3.15).

Let us recall the homology groups of a compact surface of the form S = S2#gT2 in
the orientable case and of the form S ′ = S2#gRP2 in the non-orientable case.

H0(S,Z) = Z H1(S,Z) = Z2g H2(S,Z) = Z

H0(S
′,Z) = Z H1(S

′,Z) = Z2 ⊕ Zg−1 H2(S
′,Z) = 0.

while with coefficients in Z2 they are

H0(S,Z2) = Z2 H1(S,Z2) = Z2g2 H2(S,Z2) = Z2.

H0(S
′,Z2) = Z2 H1(S

′,Z2) = Zg
2 H2(S

′,Z2) = Z2.
We see that χ(S) = 2−2g, χ(S ′) = 2−g, β(S,Z2) = 2+2g and β(S ′,Z2) = 2+g. Observe
that in all cases 4−χ(S) = β(S,Z2). Note also that β(S,R) = β(S,Z) ≤ β(S,Z2). Thus
inequality (3.17) is just the Chern-Lashof inequality for the field Z2. Thus a surface in
R3 is tight when the equality sign holds in (3.17).

From (3.18) one can deduce that tightly immersed surfaces are characterized by the
fact of having all the positive curvature points in the boundary of the convex hull.

Another characteritzation of tight surfaces in R3 is the so-called two piece property:
a surface S immersed in R3 is tight if and only if every affine plane L divides it in
two or less pieces; i.e. i−1(R3 \ L) does not have more than 2 connected components
(cf.[Kui97]).
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3.5.2 Surfaces in Hyperbolic 3-Space.

We start the study of total absolute curvature in hyperbolic space with surfaces in H3.
Let i : S → H3 be an immersion of a closed surface (orientable or not). Its total absolute
curvature is the integral on i(S) of the absolute value of K, the Gauss curvature

TAC(S) :=

∫

S
|K|dx.

Proposition 3.5.2. If A is the area of i(S) and A is that of its convex envelope (bound-
ary of its convex hull) then

TAC(S) ≥ 2π(4− χ(S)) + 2A−A (3.19)

and

TAC(S) ≥ 4π +A.

The second part already appeared in [LS00].

Proof. Set K+ = max{K, 0} and K− = max{−K, 0}.
∫

S
|K|dx =

∫

S
K+dx+

∫

S
K−dx =

= 2

∫

S
K+dx−

∫

S
Kdx.

By the Gauss-Bonnet formula in H3,

∫

S
Kdx = 2πχ(S) +A. (3.20)

On the other hand, if U is the relative interior of S ∩S in S, it is clear that the support
planes at points of S \ U have at least two contact points with S. Thus, they have a
common segment with S. By the Sard-Federer theorem (cf. [Fed69, 3.4.3]), this implies
that the support planes of S \ U have null measure in γ(S) ⊂ Λn, the set of support
planes. Thus, the tangent planes in U have total measure and by proposition 3.4.6

4π +A = TAC(S) = TAC(U) =

∫

U
K.

Finally, ∫

S
K+ ≥

∫

U
K = 4π +A. (3.21)

From where the second inequality of the statement is deduced. The first inequality
follows from (3.20) and (3.21).
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From this proof is deduced that in (3.19) the equality sign holds if and only if all
the positive curvature points of S stay in the convex envelope. It has been already said
that this property characterizes tight surfaces in R3. Therefore, even if it is not clear
what should tight mean in hyperbolic geometry, a reasonable definition would be that a
surface immersed in H3 is tight if one has equality in (3.19); equivalently if all the points
with positive curvature belong to the convex envelope. Cecil and Ryan gave in [CR79]
a different definition of tightness in Hn which is more restrictive; but we will return to
this later.

Is the term 2A − A in (3.19) really necessary? This is a natural question. Some
works express the hope that the Chern-Lashof inequality should hold without change in
Hn (cf. [Teu88, WS66]). This hope was refuted in [LS00] where examples of surfaces in
H3 total absolute curvature below the bound of Chern-Lashof were constructed. More
precisely, for those examples the equality sign in (3.19) holds and the term 2A−A takes
a negative value for them. Next we construct examples of the same type but with a
lower genus.

P4

P3

P2

P1

Figure 3.3: Polyhedral Surface of genus 4

Theorem 3.5.3. For every g > 1 there is an orientable surface S in H3 with genus g
and total absolute curvature below 2π(2 + 2g).

Proof. We construct it almost explicitly in the projective model. Consider the orthohe-
dron

P (a, b, c) = {(x, y, z) ∈ R3 | |x| ≤ a, |y| ≤ b, |z| ≤ c}
for 0 < a, b, c such that a2 + b2 + c2 < 1 (i.e. P (a, b, c) ⊂ B(0, 1)). Now for a small
ε > 0 draw g rectangles in the upper and lower faces of P (a, b, c) at distance ε one
from the other, as shown in figure 3.3. These rectangles determine g orthohedrons
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P1, . . . , Pg contained in P (a, b, c). Then we consider the domain P = P (a, b, c) − ∪iPi
with polyhedral boundary. This boundary is a non-smooth topological surface orientable
of genus g and it is tight in the euclidean sense. Since all its vertices are convex or of
saddle type, one can apply the smoothenig procedure of [KP85] to get smooth tight
surfaces (in the euclidean sense) S coinciding with ∂P except in a small neighborhood
of the edges. Since S is tight in the euclidean sense, all its positive curvature points
belong to its convex envelope S. Thus, the total absolute curvature of S is

TAC(S) = 2π(2 + 2g) + 2A−A

where A and A are the respective areas of S and S. We finish by showing that, choosing
suitably a, b and c we can make 2A − A be negative. Indeed, let a go to 0. Then, the
areas of the sides of ∂P parallel to x = 0 converge all of them to the same value B > 0.
The rest of sides of P have arbitrarily small areas so, since S is arbitrarily close to ∂P ,

A ∼ 2B A ∼ (2g + 2)B

and for g > 1 we have 2A−A < 0 if a is small enough.

Some questions arise from these examples. The most general one is to find the
greatest lower bound for the total absolute curvature between all the immersions in H3

of a given surface. This value exists, is greater than 4π and in the orientable case is
lower than 2π(2 + 2g). It seems reasonable to expect this bound to be increasing with
g but this it is not clear. Related to this, it is worthy to mention that for immersions
included in a ball of radius ρ, one has the following bound (cf.[Teu88])

TAC(S) ≥ On−1

2

β(S)

coshn−1 ρ
.

Another question is whether there are examples with genus 1 of the same kind as
before. The answer is not. At the end of this chapter we will prove that a torus for
which the equality sign in (3.19) holds has total absolute curvature greater than 8π.
This suggests that this bound could be valid for any immersion of a torus.

Conjecture. For any immersed torus in H3, the total absolute curvature is greater 8π.

We finish this discussion of the dimension 3 case with a proposition about the integral
of the absolute value of intrinsic curvature. This is the curvature corresponding to the
metric induced by the ambient. The Gauss equation states that the intrinsic curvature
Ki and the extrinsic curvature K are related by K = Ki + 1.

Proposition 3.5.4. [LS00] Let i : S → H3 be an immersed surface in H3. Then

∫

S
|Ki| ≥ 2π(4− χ(S))

where Ki is the intrinsic curvature ofM . The equality occurs only with topological sphere
with non-negative Ki. That is, for convex hypersurfaces with Gauss curvature above 1.
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Proof. Let S be the convex envelope of S. SetK+
i = max{Ki, 0} andK−

i = −min{Ki, 0}.
The arguments from proposition 3.5.2 give here

∫

S
K+
i ≥

∫

S∩S
K+
i ≥

∫

S∩S
Ki =

∫

S∩S
K − 1 = 4π +A(S)−A(S ∩ S) ≥ 4π. (3.22)

On the other hand,

∫

S
Ki =

∫

S
K+
i −

∫

S
K−
i = 2πχ(S). (3.23)

Comparing (3.22) and (3.23) we get the desired inequality.

3.5.3 Tight Immersions in Hyperbolic Space

The same ideas that led to the Cauchy-Crofton formula in the de Sitter sphere and to
the Gauss-Bonnet theorem in hyperbolic space will also lead to an integral geometric
formula for the total absolute curvature of tight immersions in Hn.

Here the functions defined by the hyperplane bundles around (n−2)-planes will play
again an important role. Concretely, given Ln−2 we define hL : Hn \ Ln−2 → RP1 = S1
sending every point p /∈ Ln−2, to the hyperplane through p containing Ln−2. We identify
naturally the bundle of hyperplanes around Ln−2 to RP1. We will not care about
orientations since we will have interest only on the number of critical points of the
functions hL (restricted to submanifolds).

Let i : S → Hn be an immersion. When Ln−2 is disjoint from the convex hull of
i(S), the function i ◦ h will have its image contained in an interval of S1. Thus we can
think of this function as having values in R. When it is a Morse function, the number
of its critical points will be greater or equal than β(S, F ). Motivated by this we adopt
the following definition of tightness in Hn.

Definition 3.5.2. An immersion i : S −→ Hn will be called tight when there is some
field F such that for every (n − 2)-plane such that Ln−2 does not intersect the convex
hull of i(S) and such that hL ◦ i is a Morse function, the number of critical points of
hL ◦ i is β(S, F ).

There are also other equivalent definitions that are more similar to the euclidean
one.

Proposition 3.5.5. The following conditions are equivalent

i) The immersion i : S −→ Hn is tight

ii) for every line L if the orthogonal projection πL ◦ i : S → L is a Morse function, the
number of critical points is the Betti numbers’ sum β(S, F ) for some field F ,

iii) for every closed half-space H bounded by a geodesic hyperplane, the inclusion j :
i−1(H) −→ S induces a homology monomorphism j∗ : Ȟ∗(i

−1(H), F )→ Ȟ∗(S, F ),
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iv) the inclusion is tight in the euclidean sense when taking the projective model of Hn.

Proof. First of all note that condition iv) is invariant under isometries of projective
model since euclidean tightness is invariant under projectivities not sending the points
of the submanifold to infinity. The same fact shows that ii) is equivalent to iv). Indeed,
is suffices to move L to contain the origin of the model. Then the orthogonal projections
onto L appear as euclidean orthogonal projections. To see that iv) implies i) send some
hyperplane Ln−1 disjoint to i(S) and containing Ln−2 to infinity. Then the function hL
becomes an orthogonal projection onto a direction u ∈ RPn and thus must have β(S, F )
critical points. Note also that for almost every Ln−2 contained in a hyperplane Ln−1
disjoint from i(S), hL ◦ i is a Morse function. Indeed, as a consequence of the Sard
theorem, for almost all u ∈ RPn the orthogonal projection is a Morse function.

To show that i) implies iii) let us remain in the projective model and let H be a
closed half-space bounded by a hyperplane. Take some hyperplane Ln−1 orthogonal to
∂H and disjoint from i(S). By the final remark of the last paragraph, there is some
sequence of half-spaces Hi such that ∂Hi is transverse to i(S), i−1(Hi) ⊃ i−1(Hi+1)
with H = ∩Hi, and such that for L = ∂Hi ∩ Ln−1 the function hL ◦ i is of Morse. By
hypothesis hL ◦ i has β(S) critical points. The standard arguments from Morse theory
(cf. [Kui97], p.35) prove that i−1(Hi) = (hL ◦ i)−1((−∞, 0]) ⊂ S induces a homology
monomorphism. We have

i−1H ⊂ · · · ⊂ i−1(H2) ⊂ i−1(H1) ⊂ S

and at each stage we have a homology induced monomorphism. Since H∗(S) has finite
dimension, the induced homology sequence must stabilize and we have that i−1(H) ⊂ S
induces an injective homology morphism.

Finally by proposition 3.5.1 it is clear that iii) implies iv) since geodesic hyperplanes
in the projective model are affine hyperplanes.

Definition 3.5.2 is less restricitive than that of Cecil and Ryan in [CR79] for tightness
in Hn. Indeed, their condition is as follows. Given an oriented hyperplane Ln−1, consider
the signed distance function dL to Ln−1. Given an immersion i : S → Hn and a value
a ∈ R consider the closed Sa = (dL ◦ i)−1((−∞, a]) of S. The immersion i is tight in
the sense of Cecil and Ryan if for every Ln−1 and every a ∈ R, the inclusion j : Sa → S
induces a homology monomorphism j∗ : Ȟ∗(Sa, F ) → Ȟ∗(S, F ). Note that we also
impose the same condition but only for a = 0.

To check that the definition 3.5.2 is really less restrictive than that of [CR79] it is
enough to note that the boundary of convex domain is tight according to our definition
but not always according to Cecil and Ryan.

One could adopt the following definition that we are not going to use. An immersion
is λ-geodesically tight if it is tight with respect to equidistant hypersurfaces of normal
curvature below λ (cf. section 1.1.1). More concretely, i is λ-geodescially tight if j∗ :
H(Sa, F )→ H(S, F ) is a monomorphism for every a such that | tanh a| ≤ λ. This way,
the immersions of 3.5.2 would be 0-tight and those of [CR79] would be 1-tight. Besides,
a topological sphere would be λ-tight if and only if it were λ-convex (cf. definition 1.1.2).
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Definition 3.5.2 is the less restrictive way to generalize the euclidean notion of tight-
ness. Anyway, in the subsequent statements the tightness condition appears as a hy-
pothesis. Therefore, these results would also hold with a more restrictive notion of
tightness, as that of [CR79].

Before going into the details let us state the main result. Given an immersion
i : S → Hn of a compact manifold S its total absolute curvature is

TAC(S) =
1

2

∫

N(S)
|K(x, n)|dndx.

We will prove that if i is tight (with respect to some field F ), then
∫

Ln−2

(β(S, F )− ν(Ln−2, i(S)))dLn−2 =
On−2

n− 1
(TAC(S)− On−1

2
β(S, F ))

where ν(Ln−2, i(S)) is the number of critical points of the function hL ◦ i (or the number
of contacts with i(S) of the bundle of hyperplanes around Ln−2). Note that the definition
of tightness warrants the integrand to vanish for every (n − 2)-plane disjoint from the
convex hull of i(S).

We start with the following lemma which is on tight immersions in euclidian space
but, in virtue of iv) in proposition 3.5.5 and of proposition 1.2.3, can also be used for
tight immersions in Hn.

Lemma 3.5.6. Let i : S → Rn be a tight immersion of a hypersurface. Consider a
generic (n− 2)-plane L and the bundle L(t) = L+ tv for every t ∈ R and some vector v
orthogonal to L. If ν(L, i(S)) is the number of critical points of hL ◦ i, then for almost
all t0 ∈ R

ν(L(t0), i(S))− ν(L, i(S)) = −2
∑

L(t) ⊂ diTxS
0 ≤ t ≤ t0

sgnKx sgnKx(L)

where Kx denotes the curvature of S with respect to the normal n that makes 〈v, n〉 > 0n
and Kx(L) is the normal curvature normal in the direction of L also with respect to n.

Proof. Take the vectorial 2-plane h orthogonal to L, and consider orthogonal projection
πh onto h. Consider the set Γh ⊂ S of critical points of the projection ph = πh◦i : S → h
(figure 3.4). For generic h, Γh is a smooth curve (cf. [Lan97, LS82]). Thus the image
γh = ph(Γh) is a smooth curve except in a finite number of pints. In particular, for
almost every direction u ∈ P(h), the projectivization of h, the orthogonal projection of
S onto u is a Morse function. Also, the tangent hyperplanes of S containing a L + tv
are tangent in points of Γh. Thus, such hyperplanes correspond, when intersected with
h, to lines tangent to γh and passing by p+ tv where p = L ∩ h. Besides, for generic h
the singular points of γh are cusps. Indeed, since the tangent plane to S in the points of
Γh moves continuously, if p ∈ γh had two tangent lines one would have a whole interval
of Γh projecting onto p. But this can be clearly avoided for generic h.
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γh

γh

Γh

Γh

Figure 3.4: Polar curves

Let y(s) be a length parametrization of γh, smooth except in a finite number of points
where y′ suddenly changes its sign. Consider the intersection point of the tangent line
at y(s) with line p+ 〈v〉; that is z(s) = (y(s) + 〈y′(s)〉) ∩ (p+ 〈v〉) (figure 3.5) which is
continuous as long as y′ and v are not parallel. For certain f(s) and g(s),

y(s) + g(s)y′(s) = p+ f(s)v (3.24)

Taking derivatives at a smooth point y(s), one gets

(1 + g′(s))y′(s) + g(s)k(s)n(s) = f ′(s)v

where n is the normal vector given by the orientation and k is the curvature of γh.
Multiplying by n,

g(s)k(s) = f ′(s)〈v, n(s)〉 (3.25)

Next we prove that when the immersion of S is tight the curvature k has constant
sign on every closed curve of γh. The curvature k of γh could change its sign in an
inflection point, or in a singularity or when crossing an interval of curvature 0. We
reduce ourselves to the first case since the others are almost identical. Let then, y(s0)
be an inflexion point where k changes its sign. Figure 3.6 shows a curve with inflection
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L + 〈v〉 γh

γh
z(s)

y(s)

Figure 3.5: Curves y(s) and z(s)

points such that at every point far enough the number of concurrent tangent lines is
constant. To discard this possibility, we slightly modify immersion i. First modify the
curve γh in a neighbourhood of y(s0) in the following way (figure 3.6). One can locally
think of γh as a function a(x) with a′(0) = a′′(0) = 0 and a(x) > 0 for small x > 0. Take
a slope λ > 0 also small and consider the line b(x) = λx. Finally consider the function

ρ(x) =

{
e

1
x+ε

− 1
x−ε −ε < x < ε

0 |x| ≥ ε

which is C∞ and has a bell shape. Now construct

c(x) = (1− ρ(x))a(x) + ρ(x)b(x).

One can easily check that for small enough λ, c has one only inflexion at the origin
with derivative equal to λ. Replacing the graphic a(x) by that of c(x) in γh we get
a new smooth curve. Now we can construct a diffeomorphism Φ : h → h being the
identity outside a neighborhood of y(s0), and modifying γh in the way we just described.
Now extend Φ trivially to the diffeomorphism Ψ = Φ × id of Rn. The composition
i′ = Ψ ◦ i : S → Rn is a new immersion of S that no longer has to be tight. The new
polar curve γh of S is the image through Φ of the ancient γh. Consider the interval
I ⊂ P(h) between y′(s0) and dΦ(y′(s0)). For every direction u ∈ I, the orthogonal
projection pu of γh (and thus that of i′(S)) in u⊥ has less than β(S, F ) critical points.
But for almost all these directions u, the projection pu ◦ i is a Morse function. Since
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dΦẏ(s0)

y(s0)
a(x)

c(x)

Figure 3.6: The case to refute

i has not been modified near the critical points of pu ◦ i′, for almost every u in I, the
projection pu ◦ i′ is also a Morse function. But this contradicts the fact that it has less
than β(S, F ) critical points!

Once we have seen that the curvature k of γh does not change its sign (even if it
can vanish) on every closed curve, take again the original (n − 2)-plane L and vector
v. Geometrically it is clear that when 〈n, v〉 changes its sign, g also changes its sign
(passing through infinity). By equation (3.25), if f ′ changes its sign in a regular point
y(s0) then g(s) also changes its sign at s = s0. On the other hand, when crossing a
singularity, g(s) and n(s) suddenly change its sign, and by l’equation (3.25) we see that
f ′ does not change its sign at these points.

We deduce that f ′ changes its sign only where g vanishes. Thus, f(s) is monotone in
the intervals where g(s) 6= 0. That is, as long as y(s) does not cross the line l = p+ 〈v〉.
From equation (3.24) we deduce that in the intersection points (where y(s0) = z(s0))
one has g′(s0) = −1. Taking derivatives again (3.24), in such a point s0 we have

g′′y′ − kn = f ′′v =⇒ −k = f ′′〈v, n〉.

So, locally the curves y(s) and z(s) are in opposite half-spaces with respect to the
tangent line at y(s0).

We have shown that the number of pre-images through z of the points of l is constant
on the intervals defined by the intersection points with γh. If y(s) is one of these points,
for small enough ε

#z−1(z(s) + εv)−#z−1(z(s)− εv) = −2sgn〈v, n〉sgnk

where k is the curvature of y.
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To finish we apply d’Ocagne’s theorem (cf. [LS82]) which states that the curvature
of S is product of the curvature of γh by the normal curvature of S in the direction
(h)⊥. In particular,

sgnk = sgnKsgnK(h)⊥.

After such a complicated proof the rest is mechanic.

Proposition 3.5.7. Let i : S → Hn be a tight immersion of a hypersurface in the
projective model of Hn. Consider the family of immersions it = h(1/t) ◦ i where h(λ) is
the euclidean homothety of ratio λ fixing the origin, and t > 1. Then for t′ > t > 1

lim
t′→t

1

t′ − t

∫

Ln−2

(ν(Ln−2, it′(S))− ν(Ln−2, it(S)))dLn−2 = −
On−2

n− 1

d

dt
TAC(it(S)).

Proof. Fix a generic Ln−2. After rescaling the situation is equivalent to have i(S) fixed
and Ln−2 moving as in lemma 3.5.6. Thus, for any unit normal n on i(St)

ν(Ln−2, it′(S))− ν(Ln−2, it(S)) = −2
∑

Ln−2 ⊂ disTxS
t ≤ s ≤ t′

sgnφ sgnKssgnKs(Ln−2).

where φ = 〈∂i/∂t, n〉. From here, tracking the proof of theorem 3.3.2 one gets that

lim
t′→t

1

t′ − t

∫

Ln−2

(ν(Ln−2, it′(S))− ν(Ln−2, it(S)))dLn−2 = On−2

∫

St

φσn−2sgnKtdx

being σn−2 the (n − 2)-th mean curvature of St. On the other hand, take U+ = {x ∈
S | Kx(St) > 0} and U− = {x ∈ S | Kx(St) < 0}. If γt : S → Ln−1 is the Gauss map of
it(S), in the proof of lemma 3.4.1 we have seen that

d

dt

∫

U+
Kt(x)dx = −(n−1)

∫

γt(U+)
φ σ̃1dx̃

d

dt

∫

U−
Kt(x)dx = −(n−1)

∫

γt(U−)
φ σ̃1dx̃

being σ̃1 the mean curvature and dx̃ the volume element of γt(S). Subtracting we get
that

d

dt

∫

S
Ktdx = −(n− 1)

∫

γt(S)
φσ̃1sgnKtdx̃

and by corollary 2.3.9 we have finished.

Theorem 3.5.8. If i : S −→ Hn is a tight immersion of any codimension of a compact
boundaryless manifold S, then the total absolute curvature is given by

TAC(i(S)) =
On−1

2
β(S) +

n− 1

On−2

∫

Ln−2

(β(S)− ν(Ln−2, i(S)))dLn−2 (3.26)

where β is the sum of the Betti numbers.
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Proof. Start with the case of codimension 1. Suppose the immersion is in the projective
model. Consider, for 1 ≤ t <∞ the family it of immersions of the previous proposition.
The image it(S) is included in a ball of radius 1/t; that is, arbitrarily small. Integrating
the formula from the previous proposition we have, for every t > 1,

TAC(i(S))− TAC(it(S)) =
n− 1

On−2

∫

Ln−2

(ν(Ln−2, i(S))− ν(Ln−2, i(S)))dLn−2

Since the geometry of small balls of Hn is more and more similar to euclidiean and it is
tight at any moment, it is clear that

lim
t→∞

TAC(it(S)) =
On−1

2
β(S).

On the other hand, for every Ln−2 not intersecting the ball of radius 1/t, we have
ν(Ln−2, it(S)) = β(S).

Let now i : S ⊂ Hn ⊂ Rn be an immersion of codimension bigger than 1 in the
projective model. One would like to take its tube which is a hypersurface. But this
tube with small enough radius is tight if and only if the Betti numbers’ sum of the unit
normal bundle is twice that β(S) (cf. [BK97]). A result from [BK97] states that this is
the case when S is contained in some hyperplane. Thus, we take a linear embedding
j : Hn → Hn+1 between projective models and we consider the euclidean tube Tε of
radius ε around (j ◦ i)(S). Then we apply the previous case to Tε, and make ε tend to
0. Now it is not difficult to check that

lim
ε→0

TAC(Tε) = 2TAC((j ◦ i)(S)) = 2On

On−1
TAC(i(S)).

On the other hand, the integrand in (3.26) is null for all the planes not intersecting
j(Hn) (or the convex hull of j ◦ i(S)). The rest of the (n − 1)-planes are given by an
(n−2)-plane in j(Hn) and some vector. Thus, since for almost all (n−2)-planes L there
is some ε such that ν(Tr, L) ≡ ν(i(S), L ∩ j(Hn)) for every r < ε, we have

2On

On−1
TAC(i(S)) =

On

2
β(Tr(j ◦ i(S)))−

− n

On−1

O1
n
·
∫

L[n](n−2)

β(Tr(j ◦ i(S)))− 2ν(i(S), L ∩ j(Hn))dLn−2.

Now we apply the preceding results to the space of dimension 3. We will get again
that a tight surface in H3 fulfills the equality in (3.17). Let i : S → H3 be a tightly
immersed surface in H3. We have

∫

L
(4− χ(S)− ν(i, L))dL = π(TAC(S)− 2π(4− χ(S))).

Integration can be restricted to lines intersecting the convex hull of i(S). For each line L
consider the field X(p) = d(p, L) · ∇hL(p), tangent to the rotation around Ln−2, which
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is smooth over all Hn. Let Y be the orthogonal projection of X on the tangent space
of i(S). The Poincaré formula states that χ(S) = i+ − i− where i+ is the number of
singularities of Y with positive index and i− is that of the ones with negative index.
In our case, i+ is the number of intersection points L ∩ i(S) plus the number of planes
containing L and tangent to i(S) in points of positive curvature. But if i is tight, all the
points with positive curvature belong to S, the boundary of the convex hull. Therefore,
if L cuts S we have i+ = #(L ∩ i(S)) and i− = ν(i, L) = #(L ∩ i(S))− χ(S). Thus

∫

{L∩S 6=∅}
(4−#(L ∩ i(S)))dL = π(TAC(S)− 2π(4− χ(S))).

And applying the Cauchy-Crofton formula we find again

TAC(S) = 2π(4− χ(S)) + 2A−A

where A and A are the areas of i(S) and the boundary of S, respectively.

Again in higher dimensions, combining theorem 3.5.8 and the ideas of lemma 3.5.6
we get the following proposition which for n = 3 is a particular case of the conjecture
in page 74.

Theorem 3.5.9. The total absolute curvature of a tight immersion of the torus T 2 in
Hn is strictly bigger than 8π.

Proof. Let i : T 2 → Hn be a tight immersion of the torus T 2 in the projective model.
Consider L a generic (n − 2)-plane. We will see that ν(i, L) ≤ 4. Take a 2-plane h
orthogonal to L. Consider the curve γh of critical values of the orthogonal projection
of T 2 onto h. Since i is tight we know that for almost every direction u ∈ P(h) ≡ RP1
there are exactly 4 lines in h, with direction u and tangent to γh.

Thus, γh will be made of two closed curves C1 and C2, the most exterior of which
(C1) is convex since it corresponds to the critical points belonging to the convex hull of
i(T 2).

We have to show that through p = L ∩ h there are no more than 4 tangent lines
to γh. Through almost every p that is exterior to C1 there are exactly 4 tangent lines.
Suppose a point p interior to C1 but not to C2. One can move p along a half-line crossing
γh in only one point, which will of C1. When crossing this point, since C2 is convex, by
lemma 3.5.6 we know that p will gain 2 tangent lines. Thus, through points between
C1 and C2 there are 2 tangent lines. Finally suppose p also interior to C2. In this case,
C2 turns exactly once around p. Indeed, if it turned twice or more, for every direction
there would be more than two lines tangent to C1 with the given direction. Thus, p can
be joint to a point p′ as in the previous case through a polygonal line crossing C2 only
in one point. When crossing C2, the point p can gain or loose 2 tangent lines. Since
through p′ there are 2 tangent lines, through p there can be 4 or none. In any case we
have seen the maximal number of concurrent tangent lines of γh to be 4. Finally, the
inequality is strict since there is always some generic L for which ν is 2.
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Chapter 4

Inequalities between mean

curvature integrals

4.1 Introduction

In euclidean space, the Minkowski inequalities are well-known. They apply to convex
bodies and involve its Quermassintegrale and thus, the mean curvature integrals. To be
precise, for a convex body Q ⊂ Hn, the Minkowski inequalities are

Mi(∂K)j ≥ cMj(∂K)i i > j

for certain constants c. For instance, in R3 they are

M2
0 ≥ 36πV 2, M3

1 ≥ 48π2V, M2
1 ≥ 4πM0 and M2

0 ≥ 3VM1.

Let us take a look at the powers. Its is natural that they appear sinceMi is a magnitude
of order n − i − 1. In other words, if tQ is the homothetic image of Q with ratio
t, then Mi(t∂Q) = tn−i−1Mi(Q). Therefore, its is nonsense to compare Mi and Mj

without taking the proper powers. Even more clear, for a radius R ball, the quotient
Mi/Mj = Ri−j (cf. (1.10)) can take any positive value. Then, one can not have any
inequality in the style Mi > cMj .

Its is worthy to recall here the following remark of Santaló (cf. [San70]). Any sequence
of convex sets Qr expanding to fill the whole Rn fulfills

lim
r→∞

Mi(∂Qr)

Mj(∂Qr)
= 0 i < j. (4.1)

In hyperbolic geometry there is no such notion of ‘magnitude order’. Firstly, ho-
motheties do no exist in hyperbolic space. Secondly, in the balls example one has
Mi/Mj = tanhj−iR which for j < i is strictly bigger than 1. Thus, it is not so hopeless
to try to compare Mi and Mj without taking any power. We should also consider the
problem of comparing the Quermassintegrale Wi of a convex body in Hn since they

85



Chapter 4. Inequalities between mean curvature integrals

also generalize the mean curvature integrals of euclidean convex sets. For instance, it is
known that for any domain Q ⊂ Hn

vol(Q)(n− 1) < vol(∂Q). (4.2)

In fact, a result by Yau (cf. [Yau75]) states the preceding inequality in any simply
connected manifold with sectional curvature K ≤ −1.

In this chapter we prove inequalities in the style

Mi(∂Q) > cMj(∂Q) i > j

where Q ⊂ Hn is any convex domain. We will use integral geometry in an essential
way, specially the formula (3.14). The plan starts by finding inequalities between Quer-
massintegrale. This is done by means of an elementary but quite original and effective
geometric argument. From here, thanks to the simplicity of expression (3.14), one gets
inequalities between the mean curvature integrals.

Note that if the radius R of a ball in Hn grows to infinity, then the quotient
vol(B(R))/vol(∂B(R)) approaches the bound n − 1 given by (4.2). In fact, Santaló
and Yañez proved in [SY72] that the same happens with any sequence of h-convex do-
main expanding to fill H2. There (and after in [San80]) it was conjectured that the
same was true for any sequence of (geodesically) convex domains. After, Gallego and
Reventós (cf. [GR85]) proved that this was false by constructing sequences of regular
polygons expanding to fill H2 and for which the quotient between area and perimeter
approaches any value between 1 and infinity. At the end of this chapter we will construct
examples generalizing this fact to higher dimensions.

Concerning sequences of h-convex bodies, Borisenko and Miquel generalized the
result of Santaló and Yañez by proving that

lim
r→∞

vol(Qr)

vol(∂Qr)
=

1

n− 1
and lim

r→∞

Mi(∂Qr)

Mj(∂Qr)
= 1

for any sequence (Qr) of h-convex domains expanding to fill hyperbolic space. Such a
controlled behavior of h-convex domains with respect to that of general convex domains
motivated the study of the same questions for sequences (Qr) of λ-convex domains for
0 ≤ λ ≤ 1 expanding to fill Hn. To be precise it was proved in [BV97] that

1

n− 1
≤ lim

vol(Qn)

vol(∂Qn)
≤ λ

n− 1
(4.3)

For dimension 2, examples are given in [GR99] of sequences attaining all the limit values
allowed by the previous inequality. At the end of this chapter we construct examples of
sequences showing the same in higher dimensions.

In connection to these problems, it has also been studied the quotient between diam-
eter and perimeter of sequences of convex domains expanding to fill H2 (cf. [GS01]). To
be precise it is found that this limit is conditioned by the limit of the quotient between
area and perimeter as well as by the λ-convexity assumption.
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For completeness, we mention that in the latest times these results have been gen-
eralized to manifolds with negative bounded sectional curvature. A domain Q in such a
manifolds called to be λ-convex if its boundary has normal curvature greater than λ > 0
at any point in any direction. In a simply connected manifold with sectional curvature
bounded by −k21 ≤ K ≤ k22, it was proved in [BGR01] that for any sequence Qr of
λ-convex sets expanding to fill the manifold one has

λ

k22(n− 1)
≤ lim

r

vol(Qr)

vol(∂Qr)
≤ 1

k21(n− 1)
(4.4)

or also ([BM02])

λi−j

k22
≤ Mi(∂Q)

Mj(∂Q)
≤ λj−i

k21
. (4.5)

Unfortunately, our methods, so linked to integral geometry, can hardly be used in
such non-homogeneous manifolds.

4.2 Inequalities between Quermassintegrale

In this section we prove that for any convex domain Q in Hn,

Wr(Q) < cn,r,jWr+j(Q)

for certain constants cn,r,j depending on the dimensions.

We start proving similar inequalities for convex domains in Sn which will be useful
after. Recall that the space of geodesic r-planes in Sn is just the grassmannian G(r +
1, n+ 1) of linear (r + 1)-planes of Rn+1.

Proposition 4.2.1. Let Q be a convex set in Sn. Then, for s = 1, . . . , n − 1 and
r = 0, . . . , n− s− 1

∫

G(r+1,n+1)
χ(Lr ∩Q) dLr ≤

Or+s . . . Or+1

On−r−1 · · ·On−r−s

∫

G(r+s+1,n+1)
χ(Lr+s ∩Q) dLr

and equality holds only when Q is a hemisphere of Sn.

Proof. Denote G(r + 1, r + s+ 1, n+ 1) the flag space consisting of pairs Lr ⊂ Lr+s of
geodesic planes of Sn. Recall (cf.(2.5)) that in this space

dL(r+s)[r]dLr = dL[r+s]rdLr+s

where dL[r+s]r is the measure on the grassmannian of r-planes contained in Lr+s and
dL(r+s)[r] is the measure of (r + s)-planes containing Lr.
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Note that, for any flag of G(r, r+ s, n+1), if the r-dimensional plane meets Q, then
so does the (r + s)-dimensional plane. Thus

vol(G(r + 1, r + s+ 1))

∫

G(r+s+1,n+1)
χ(Lr+s ∩Q) dLr+s =

=

∫

G(r+1,r+s+1,n+1)
χ(Lr+s ∩Q) dL[r+s]rdLr+s ≥

≥
∫

G(r+1,r+s+1,n+1)
χ(Lr ∩Q) dL(r+s)[r]dLr =

= vol(G(s, n+ 1− r))

∫

G(r+1,n+1)
χ(Lr ∩Q) dLr.

To finish recall that

vol(G(r, n)) =
On−1 · · ·On−r

Or−1 · · ·O0
.

Recalling the definition 2.2.1 we get the following corollary.

Corollay 4.2.2. If Q ⊂ Sn is convex then

Wr(Q) ≤ (n− r)Or+sOn−r−s−1

(n− r − s)On−r−1Or
Wr+s(Q).

and equality holds only for hemispheres.

Remark. This result holds only for convex sets. For general domains there are coun-
terexamples. For instance, for S2 minus a small neighborhood of the north pole one has
W1 ∼ 0 and W0 ∼ 4π.

Using these results, we prove the analogues in hyperbolic space.

Proposition 4.2.3. Let Q be a convex domain in Hn contained in a radius R ball.
Then, for s = 1, . . . , n− 1 and r = 0, . . . , n− s− 1

∫

Lr

χ(Lr ∩Q) dLr < tanhs(R)
Or+s−1 . . . Or

On−r−2 · · ·On−r−s−1

∫

Lr+s

χ(Lr+s ∩Q) dLr+s.

Proof. Choose an origin O ∈ Q. We denote by Pr the r-dimensional linear subspaces of
Rn. Using expression (2.4) for the measure of r-planes,

∫

Lr

χ(Lr ∩Q) dLr =

∫

G(n−r,n)

∫

Pn−r

χ(Lr ∩Q) coshr ρ dxdPn−r

where dx is the volume element of every Pn−r and Lr is the r-plane orthogonal to Pn−r
at the point x. About dPn−r, it is the natural invariant measure in G(n− r, n), leading
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to the measure of (n − r − 1)-planes in Sn−1. Let us write dx in polar coordinates. In
other words, let x be given by its distance to O and by the line joining them. Then
∫

Lr

χ(Lr∩Q) dLr =

∫

G(n−r,n)

∫

RPn−r−1

∫

R
χ(Lr∩Q) coshr ρ| sinhn−r−1 ρ| dρdP[n−r]1dPn−r

where dP[n−r]1 is the volume element of RPn−r−1. The formula (2.5) states that dP[n−r]1dPn−r =
dP(n−r)[1]dP1 where dP(n−r)[1] is the measure of the Pn−r containing P1. Then,

∫

Lr

χ(Lr∩Q) dLr =

∫

RPn−1

∫

G(n−r−1,(P1)⊥)

∫

R
χ(Lr∩Q) coshr ρ| sinhn−r−1 ρ| dρdP(n−r)[1]dP1

=

∫

RPn−1

∫

R

(∫

G(r,(P1)⊥)
χ(Lr ∩Q) dPr

)
coshr ρ| sinhn−r−1 ρ| dρdP1.

Now, given P1 and ρ (i.e. given x), we projectivize (from x) the hyperplane Ln−1
orthogonal to P1 in x. The integral between brackets is the measure of the set of
geodesic (r− 1)-planes meeting a convex in Sn−2. Applying proposition 4.2.1 we bound
this measure in terms of the measure of (r+ s− 1)-planes meeting this convex in Sn−2.
We get

∫

G(r,(P1)⊥)
χ(Lr ∩ Q) dPr ≤

Or+s−1 . . . Or

On−r−2 · · ·On−r−s−1

∫

G(r+s,(P1)⊥)
χ(Lr+s ∩ Q) dPr+s.

And we finish since −R ≤ ρ ≤ R and so

coshr ρ| sinhn−r−1 ρ| ≤ tanhsR coshr+s ρ| sinhn−r−s−1 ρ|.

x

Ln−1

P1

Lr

O

Figure 4.1: r-planes meeting Q
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Corollay 4.2.4. If Q ⊂ B(R) ⊂ Hn is convex, then

Wr(Q) < tanhsR
n− r

n− r − s
Wr+s(Q).

In particular, since tanhR < 1 we always have

Wr(Q) <
n− r

n− r − s
Wr+s(Q) (4.6)

and this inequality is sharper as greater is Q.
But in the case r = 0, we can do it a little better.

Proposition 4.2.5. Let Q ⊂ Hn be a convex set contained in B(R), a radius R ball.
Then

W0(Q)

Wr(Q)
≤ W0(B(R))

Wr(B(R))
(4.7)

with equality only for Q = B(R).

Proof. Take as origin the center of the ball, and compute the volume of Q in polar
coordinates

W0(Q) =

∫

Sn−1

∫ l(u)

0
sinhn−1 ρdρdu

where l(u) is the distance to the origin of the intersection point of ∂Q with the geodesic
ray γ(u) starting with tangent vector u ∈ Sn−1. Since all the hyperplanes orthogonal to
γ(u) ∩Q meet Q, we have

Wr(Q) ≥ (n− r) ·Or−1 · · ·O0
n ·On−2 · · ·On−r−1

∫

Sn−1

∫ l(u)

0
coshr ρ sinhn−r−1 ρdρdu

On the other hand it is easy to see that the function

f(R) =
Wr(B(R))

W0(B(R))
=

(n− r) ·Or−1 · · ·O0
n ·On−2 · · ·On−r−1

∫ R
0 coshr ρ sinhn−r−1 ρdρ

∫ R
0 sinhn−1 ρdρ

is increasing. Thus, since l(u) ≤ R, we have f(l(u)) ≤ f(R) and then

Wr(Q) ≥ (n− r) ·Or−1 · · ·O0
n ·On−2 · · ·On−r−1

∫

Sn−1

∫ l(u)

0
coshr ρ sinhn−r−1 ρdρ =

=

∫

Sn−1
f(l(u))

∫ l(u)

0
sinhn−1 ρdρdu ≥

≥
∫

Sn−1
f(R)

∫ l(u)

0
sinhn−1 ρdρdu =

Wr(B(R))

W0(B(R))
W0(Q).

Observe that the inequalities we obtain run in the only possible sense. Indeed, an
inequality in the style Wr+s(Q) ≤ cWr(Q) could not be true. To see this take a convex
domain Q contained in a geodesic (n−r−s)-plane. Since Q is an (n−r−s)-dimensional
submanifold, by the Cauchy-Crofton formula in Hn (2.6), we have that the measure of
(r + s)-planes meeting Q is a multiple of its (n − r − s)-dimensional volume. Besides,
the set of r-planes meeting Q has null measure. Thus Wr(Q) = 0 while Wr+s(Q) > 0.
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4.3 Slice expectation for random geodesic planes

Consider the following problem on geometric probability: throw Lr, a geodesic r-plane
of Hn meeting a given convex domain Q ⊂ Hn, randomly (according to the invariant
measure dLr). Consider the random consisting to measure the r-dimensional volume of
the intersection of Lr with Q. We wonder about the expectation of this random variable

E[vol(Lr ∩Q)] =

∫
Lr

vol(Lr ∩Q) dLr∫
Lr
χ(Lr ∩Q) dLr

.

Santaló’s formula (2.8) gives
∫

Lr

vol(Lr ∩Q)dLr =
On−1 · · ·On−r

Or−1 · · ·O1
· vol(Q).

And thus

E[vol(Lr ∩Q)] =
(n− r) ·On−1O0

n ·On−r−1

vol(Q)

Wr(Q)
. (4.8)

We can compare these expectations for different dimensions r by using (4.7). Up to
constants, the expectation is lower as greater is the dimension r.

Q

L1

L2

Q ∩ L1

Q ∩ L2

Figure 4.2: Volume of the slice for a plane and a line

Proposition 4.3.1. For a convex domain Q ⊂ Hn contained in a radius R ball

E[vol(Q ∩ Lr+s)]
E[Q ∩ Lr]

≤ E[vol(B(R) ∩ Lr+s)]
E[vol(B(R) ∩ Lr)]

<
On−r−1

On−r−s−1

91



Chapter 4. Inequalities between mean curvature integrals

Proof. Immediate using (4.8) and (4.7)

In particular we have

Corollay 4.3.2. The expectation for the volume of the intersection of a random r-plane
with a domain Q in Hn is bounded by

E[vol(Lr ∩Q)] <
On−1

On−r−1
.

Proof. Take the convex hull of Q and apply the previous proposition with r = 0.

In H2 it was known that the expectation of a random chord is below π (cf. [San80]).
In the rest of the cases our estimation seems to be new. As an example, let us mention
that the expectation of a random chord in H3 is below π or that the expected area of a
random plane slice is below 2π.

These results shock strongly to our euclidean intuition. It is clear that in Rn these
expectations are arbitrarily big if one takes the domains to be big enough. This is
deduced from (4.1). A rough idea of what is going on in Hn is the following. In
negatively curved manifolds, the domains have a boundary greater than in curvature 0.
This forces a big amount of planes intersecting the convex domain to keep close to the
boundary, and thus to intersect a small region of the interior.

4.4 Inequalities between the mean curvature integrals

Now we are ready to find inequalities relating the mean curvature integrals of the bound-
ary of a convex domain in Hn. As will be seen, the key tool is the equality (3.14) which
will show this way to be useful besides of pretty.

Proposition 4.4.1. If Q ⊂ Hn is convex then, for r > 1

Mr(∂Q)

vol(∂Q)
> 1.

And this bound is sharp. For r = 1,

M1(∂Q)

vol(∂Q)
>
n− 2

n− 1
.

Thus for r > 1 the mean value of the mean curvature σr of the boundary of a convex
set is greater than 1 and the mean value of σ1 is also bounded below. This reflects again
the idea that hypersurfaces of hyperbolic space need to provide more curvature than in
euclidean geometry.

Proof. Thanks to equation (3.14), which relates the mean curvature integrals to the
Quermassintegrale, and to inequality (4.6), we can do

Mr(∂Q)

M0(∂Q)
=
Wr+1(Q) + r

n−r+1Wr−1(Q)

W1(Q)
>
n− r − 1

n− 1
+

r

n− r + 1

n− r + 1

n− 1
= 1.
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This inequality is sharp since for sequences of balls with radius going to infinityMr/M0 →
1 (cf. 1.10).

For r = 1, we use (3.14) and (4.2)

M1(∂Q)

M0(∂Q)
=
W2(Q) + 1

nW0(Q)

W1(Q)
>
W2(Q)

W1(Q)
>
n− 2

n− 1
.

Remark. Even if it is not clear that the bound for M1/M0 is sharp, it must be noticed
than one could not expect 1 to be the lower bound. Indeed, take a hyperplane Ln−1 and
Q ⊂ Ln−1 a ball of radius R inside Ln−1. Consider Q as a degenerate convex domain in
Hn,

M1(∂Q) = n

(
W2(Q) +

1

n
W0(Q)

)
=

O1
2(n− 1)

vol(∂Bn−1(R))

M0(∂Q) = vol(∂Q) = 2vol(Bn−1(R))

then M1/M0 goes to π(n−2)
2(n−1) when R grows. Thus, for n = 3 we have convex domains

such that M1/M0 approaches π/4 which is below 1.

We can also compare the mean curvature integrals with the volume of the interior.

Corollay 4.4.2. The following inequality holds for convex sets in Hn

Mi(∂Q)

V (Q)
> n− 1

and the bound is sharp.

Proof. The case i = 0 is the known inequality (4.2). For i > 1, applying proposition
4.4.1 and (4.2)

Mi

V
=
Mi

M0
· M0

V
> 1 · (n− 1).

For i = 1
M1

V
=
n(W2 +

1
nW0)

W0
> n

n− 2

n
+ 1 = n− 1.

In a similar way, we can find estimations for any quotient of mean curvature integrals.

Proposition 4.4.3. If Q ⊂ Hn is convex then, for i ≥ 0 and j ≥ 2 such that i+j ≤ n−1,

Mi+j(∂Q)

Mi(∂Q)
> 1

and the bound is sharp. For j = 1,

Mi+1(∂Q)

Mi(∂Q)
>
n− i− 2

n− i− 1
.
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Proof. Use again the equation (3.14) and the inequality (4.6)

Mi+j(∂Q)

Mi(∂Q)
=
Wi+j+1(Q) + i+j

n−i−j+1Wi+j−1(Q)

Wi+1(Q) + i
n−i+1Wi−1(Q)

>

=

n−i−j−1
n−i−j+1Wi+j−1(Q) + i+j

n−i−j+1Wi+j−1(Q)

Wi+1(Q) + i
n−i+1

n−i+1
n−i−1Wi+1(Q)

=

=
n− i− 1

n− i− j + 1

Wi+j−1(Q)

Wi+1(Q)
>

n− i− 1

n− i− j + 1

n− i− j + 1

n− i− 1
= 1. (4.9)

This is sharp since for a sequence of balls the quotient Mi/Mi+j approaches 1 as the
radius grows to ∞.

For j = 1,

Mi+1(∂Q)

Mi(∂Q)
=

Wi+2(Q) + i+1
n−iWi(Q)

Wi+1(Q) + i
n−i+1Wi−1(Q)

.

And we finish since

Wi+2(Q)

Wi+1(Q)
>
n− i− 2

n− i− 1

i+1
n−iWi(Q)
i

n−i+1Wi−1(Q)
>
i+ 1

i
> 1 >

n− i− 2

n− i− 1
.

Remark. Note that the bound for the quotient Mn−1/Mn−2 is 0. In section 4.5 we will
find convex domains for which this quotient takes arbitrarily small values.

In short, we have found lower bounds for all the quotients Mi+j/Mi. Except from
the caseMn−1/Mn−2, these bounds are strictly positive, and they are sharp when j > 1.

A natural question is to find upper bounds for such quotients. But it is immediate
to see that these quotients are not bounded from above. For instance, if Q is a radius
R ball,

Mi+j(∂Q)

Mi(∂Q)
=

coshj R

sinhj R

which is arbitrarily big if R is small enough.

One can also argue noting that in euclidean space there are examples of arbitrarily
small convex sets with arbitrarily big Mi+j/Mi. Since in small neighborhoods of a point
the metrics of Hn and Rn are very similar, there must be convex bodies in hyperbolic
space with Mi+j/Mi.

However, if we restrict ourselves to convex bodies that are big in some sense, it is
possible to find some upper bounds for Mi+j/Mi.

Consider the 2-dimensional case. Given a convex Q ⊂ H2 domain, M1(∂Q) is the
geodesic curvature integral of the boundary. Using the Gauss-Bonnet formula, we have
that

M1(∂Q) = 2π + vol(Q).
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Thus
M1(∂Q)

M0(∂Q)
=

2π + vol(Q)

vol(∂Q)
.

We have seen that the area of a convex domain is below the length of its boundary.
Thus, if the convex set is big enough, then M1(∂Q)/M0(∂Q) can not be much greater
than 1. To be more precise, if (Qr) is a sequence of convex sets expanding over the
hyperbolic plane, then

lim
M1(∂Qr)

M0(∂Qr)
≤ 1.

Definition 4.4.1. A sequence of convex sets (Qr) of Hn is said to expand over the whole
hyperbolic space when ∪rQr = Hn.

For such sequences we have the following upper bounds.

Proposition 4.4.4. Let (Qr) be a sequence of convex sets expanding over the whole
hyperbolic space. Then

i) lim
n→∞

Mn−1(∂Qr)

Mn−2(∂Qr)
≤ n− 1

ii) lim
n→∞

Mn−1(∂Qr)

Mn−3(∂Qr)
≤ n− 1

2

Proof. We have that

Mn−1(∂Qr)

Mn−2(∂Qr)
=

Wn(Qr) +
n−1
2 Wn−2(Qr)

Wn−1(Qr) +
n−2
3 Wn−3(Qr)

But Wn(Qr) does not depend on r but is always On−1/n. On the other hand Wn−1(Qr),
Wn−2(Qr) and Wn−3(Qr) go to infinity when Qr expands over Hn. Therefore

lim
n→∞

Mn−1(∂Qr)

Mn−2(∂Qr)
=
n− 1

2
lim
n→∞

Wn−2(Qr)

Wn−1(Qr) +
n−2
3 Wn−3(Qr)

≤

≤ n− 1

2
lim

Wn−2(Qr)

Wn−1(Qr)

Bearing in mind that Wn−2/Wn−1 < 2, we have proved i). Analogously one proves ii).

Mn−1(∂Qr)

Mn−3(∂Qr)
∼ n− 1

2

Wn−2(Qr)

Wn−2(Qr) +
n−3
4 Wn−4(Qr)

≤ n− 1

2
.

The second inequality is sharp, as next section shows by giving examples of sequences
attaining the bound. The same sequences show that the other quotients Mi+j/Mi can
not be bounded above even if the convex set is big.

Concerning (4.5) we can improve it when the convex sets are assumed to be in
hyperbolic space (instead of a manifold with bounded negative curvature). Recall that
in the definition 1.1.2 one introduces the concept of λ-convexity. One fact to have in
mind, which is easily seen, is that for λ > 1 every λ-convex set is contained in a ball of
radius arctanhλ. Then we will only care about the values 0 ≤ λ ≤ 1.

95



Chapter 4. Inequalities between mean curvature integrals

Proposition 4.4.5. If Qr is a sequence of λ-convex sets expanding over the whole Hn,
then

lim
r→∞

M1(∂Qr)

vol(∂Qr)
>
λ+ n− 2

n− 1
.

Proof. Using (4.6) and (4.3),

lim
r→∞

M1(∂Qr)

vol(∂Qr)
= lim

W2(Qr)

W1(Qr)
+

vol(Qr)

vol∂Qr
>
n− 2

n− 1
+

λ

n− 1
.

4.5 Examples

In this section we construct a family of examples whose behaviour is extreme in many
senses. They will show many of the inequalities seen in this chapter to be sharp.

B

R

O

P2

C2

a

r

C1

x′

ρ
β

α
P1

µ

x

Figure 4.3: The convex domain Q(r,R)

Consider a radius r > 0 ball centered at a point O ∈ Hn. Let P1 and P2 be the
endpoints of a segment of length 2R having its midpoint at O. Suppose R > r and
take the convex hull of the ball BO(r) and the points P1, P2. Denote by Q(r,R) this
convex hull (cf. figure 4.3). The union of all the segments going from P1 or P2 to a point
of tangency with ∂BO(r) defines two cones, C1 and C2. The set of all such tangency
points consists of two (n−2)-dimensional spheres of radius a contained in (n−1)-planes
orthogonal to the segment P1P2. If B denotes the region of ∂BO(r) bounded by these
two spheres, the boundary of Q(r,R) splits in three pieces; that is C1, B and C2.

Since ∂Q(r,R) is not everywhere smooth, we compute the mean curvature integrals
Mi(∂Q(r,R)) approximating Q(r,R) by convex sets of smooth boundary. This way one
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easily checks that for i < n− 1 the vertices do not provide mean curvature and we have

Mi(∂Q(r,R)) =

∫

∂Q(r,R)
σi(x)dx.

In the case i = n− 1, we can compute Mn−1(∂Q(r,R)) by directly measuring the set of
support hyperplanes of Q(r,R). Since the support hyperplanes at every vertex have a
measure below On−1/2, we have

Mn−1(∂Q(r,R)) <

∫

∂Q(r,R)
σn−1(x)dx+On−1.

For every r ∈ N take R = e2r and consider the sequence of convex domains Qr =
Q(r, e2r) which expands over the whole Hn.

Proposition 4.5.1. The quotients for the mean curvature integrals of the sequence
defined above have the following asymptotic values

lim
r→∞

Mn−2(∂Q(r))

Mi(∂Q(r))
=∞ lim

r→∞

Mi(∂Q(r))

Mj(∂Q(r))
= 1

for i, j 6= n− 2.

Proof. For the cone C1, let c and α be respectively the length of the generatrix and the
angle it makes with the rotation axis P1P2. In a point x ∈ C1, let µ be the distance
to the vertex P1. If x

′ is the orthogonal projection of x over the segment P1P2, we can
determine x by its polar coordinates ρ, θ1, . . . , θn−2 centered at x′ inside the hyperplane
orthogonal to P1P2. The hyperbolic trigonometry formulas (1.2) give

sinh ρ = sinα sinhµ.

Now, C1 is parametrized by the coordinates (µ, θ1, . . . , θn−2) and the volume element is

dx = (sinα sinhµ)n−2dµdθ.

Clearly, at any point x ∈ C1, the generatrix’s direction is principal with normal curvature
0. By the Meusnier theorem, for every direction orthogonal to the generatrix, the normal
curvature is sinβ coth ρ where β denotes the inner angle between x′x and the generatrix.
Again by hyperbolic trigonometry we get cosα = cosh ρ sinβ. Thus, the i-th curvature
integral of C1 is

Mi(C) =

∫

Sn−2

∫ c

0

(
n− 2
i

)(
n− 1
i

)−1
(sinβ coth ρ)i(sinα sinhµ)n−2dµdθ =

=
n− i− 1

n− 1
On−2 cosi α sinn−i−2 α

∫ c

0
sinhn−i−2 µdµ.

Note that when c grows to infinity, for m ≥ 1
∫ c

0
sinhm sds ∼ coshm c

m
.
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Now take R(r) = e2r. Since R, r and c are the sides of a right angle triangle

cosh c = cosh e2r/ cosh r ∼ ee
2r−r

α ∼ sinα = sinh r/ sinh e2r ∼ er−e
2r
.

Then, for i 6= n− 2,

lim
r→∞

MiC1 = lim
r→∞

n− i− 1

n− 1
On−2 e

(n−i−2)(e2r−r) e
(n−i−2)(r−e2r)

(n− i− 2)
=

=
n− i− 1

(n− 1)(n− i− 2)
On−2.

Therefore, when r goes to infinity,

Mi(∂Q) ∼Mi(∂B(r)).

And since the proportion of B(r) over the whole ball goes to 1,

Mi(∂Q) ∼Mi(∂BO(r)).

With this we have found the second limit of the statement.
Finally, Mn−2(∂Q)/Mi(∂Q)) goes to infinity since

Mn−2(∂Q) > Mn−2(C1) =
On−2

n− 1
cosα · c ∼ On−2

n− 1
e2r.

Given ε > 0, take the parallel convex domains Qε
r = {x ∈ Hn | d(c,Q) ≤ ε} at

distance ε from Qr.

Proposition 4.5.2. For i, j = 0, . . . , n− 1

lim
r→∞

Mi(∂Q
ε
r)

Mj(∂Qε
r)

=
i cothi−2 ε+ (n− i− 1) cothi ε

j cothj−2 ε+ (n− j − 1) cothj ε

Proof. Use the Steiner formula for the mean curvature integrals (1.12)

lim
r→∞

Mi(∂Q
ε
r)

Mj(∂Qε
r)

= lim
r→∞

(
n− 1
i

)−1∑n−1
k=0

(
n− 1
k

)
Mk(∂Qr)φik(ε)

(
n− 1
j

)−1∑n−1
k=0

(
n− 1
k

)
Mk(∂Qr)φjk(ε)

=

= lim
r→∞

(
n− 1
j

)
Mn−2(∂Qr)φi,n−2(ε)

(
n− 1
i

)
Mn−2(∂Qr)φj,n−2(ε)

=

(
n− 1
j

)
φi,n−2(ε)

(
n− 1
i

)
φj,n−2(ε)
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where

φi,n−2(ε) =

(
n− 2
i− 1

)
sinhn−i ε coshi−1 ε+

(
n− 2
i

)
sinhn−i−2 ε coshi+1 ε

These examples are interesting since they show thatMi+j/Mi can be bounded above
only in the cases contained in proposition 4.4.4. They also show the inequality ii) of
this proposition to be sharp. Besides, we have seen that the only quotient Mi+j/Mi

for which we had a null lower bound ( i = n − 2 and i + j = n − 1 ), can really take
arbitrarily small values.

Corollay 4.5.3. For every 1 ≤ L ≤ ∞, there exists some sequence (Qr) of convex
domains expanding over the whole Hn such that

lim
r→∞

Mi(∂Qr)

Mj(∂Qr)
= L

except from the cases i = n − 1 and j = n − 2, n − 3. For every 0 ≤ δ ≤ 1 there is a
sequence (Qr) of convex domains expanding over the whole Hn such that

lim
r→∞

Mn−1(∂Qr)

Mn−2(∂Qr)
= δ.

For every 1 ≤ α ≤ n−1
2 there is some sequence (Qr) of convex domains expanding over

the whole Hn such that

lim
r→∞

Mn−1(∂Qr)

Mn−3(∂Qr)
= α.

Proof. It is enough to study the images of the functions

fij(ε) =
i cothi−2 ε+ (n− i− 1) cothi ε

j cothj−2 ε+ (n− j − 1) cothj ε
.

Indeed,
fn−1,n−2 ((0,∞)) = (0, 1)

fn−1,n−3 ((0,∞)) = (1,
n− 1

2
)

fij ((0,∞)) = (1,∞)

for the rest of values of i and j. Thus, for the non extremal values of L, δ and α, there
is some ε > 0 such that Qε

r is the desired sequence. For L =∞, δ = 0 or α = (n− 1)/2
take the sequence εm = 1/m and a sequence rm such that

∣∣∣∣
Mi(∂Q

εm
rm)

Mj(∂Q
εm
rm)

− fij(εm)

∣∣∣∣ <
1

m
.

Finally, the quotients tend to 1 if for instance Qr is a radius r ball.
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Thus, among all the bounds we have given, the only ones that may be not sharp are
those of the second part of proposition 4.4.3 and of the first part of proposition 4.4.4.
The most interesting of these ‘maybe-non-sharp’ cases is the estimation

M1(∂Q)

vol(∂Q)
≥ n− 2

n− 1
.

Recall that we have only found examples approaching π(n−2)
2(n−1) and 1.

Finally, the sequencesQε
r also prove that inequalities (4.3) for the limit of the quotient

vol(Q)/vol(∂Q) in sequences of λ-convex domains are sharp. Indeed, given 0 ≤ λ < 1,
take ε > 0 such that tanh ε = λ. Then the boundary of Qε

r has normal curvature greater
than λ everywhere and we have seen that

lim
r→∞

vol(Qε
r)

vol(∂Qε
r)

=
λ

n− 1
.

This way we have generalized to any dimension the results of [GR85] and [GR99].
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Chapter 5

Integral geometry of horospheres

and equidistants

5.1 Introduction

So far we have been dealing with kinematic formulas involving totally geodesic planes.
We also know about kinematic formulas where these planes are replaced by compact sub-
manifolds. Thus, we have kinematic formulas for hyperplanes and also for spheres. This
can be satisfactory in euclidean geometry since these are the interesting hypersurfaces in
euclidean space. But it has already been said that in hyperbolic geometry there is a kind
of gap between geodesic hyperplanes and spheres. Recall that while hyperplanes have
null normal curvature, the normal curvature of spheres in Hn is greater than 1. This
gap is filled by two kinds of hypersurfaces called horospheres and equidistants. Recall
that geodesic hyperplaness, spheres, horospheres and equidistants are the four types of
totally umbilical hypersurfaces in hyperbolic space. We already said that horospheres
are obtained when the center of a sphere moves infinitely far away from a fixed point of
the sphere, and they have constant normal curvature 1. On the other hand, equidistants
are the geometric locus of points at a given distance from a hyperplane and have con-
stant normal curvature below 1. Both horospheres equidistants are non-compact and
thus one can not apply them the kinematic formulas of Poincaré and Blaschke.

It is natural then to look for kinematic formulas for horospheres and equidistants of
Hn. Santaló started to do this for horospheres in H2 and H3 (cf.[San67, San68]). Re-
cently, Gallego, Mart́ınez Naveira and the author (cf. [GNS]), have extended his results
to horospheres in any dimension. The main ideas, already in Santaló’s work, are to ap-
proximate horospheres by balls with growing radius, and to use the fact that the intrinsic
geometry of horospheres is euclidean. Finally the Gauss-Bonnet theorem in constant
curvature spaces allows to obtain the measure of horospheres meeting an h-convex set
(convex with respect to horospheres). In this chapter we pursue this study by giving
kinematic formulas involving also equidistant hypersurfaces. Concretely, we will find
kinematic formulas for totally umbilical hypersurfaces of Hn with any normal curvature
λ. Thus, for λ = 0 we will recover the classical formulas for geodesic hyperplanes, for
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λ > 1 we will have the case of spheres which is deduced from the kinematic formulas of
Poincaré and Blaschke, and for λ = 1 one will recover the results of [GNS]. Finally, the
new case is that of 0 < λ < 1, where equidistant hypersurfaces are involved.

Then the formulas for horospheres will be used to deduce some properties of h-convex
domains. We will also look at the expectation of the volume of the slice of a domain
with a random horosphere or equidistant. We will see that, as for geodesic hyperplanes,
this expectation is bounded above.

5.2 Definitions and invariant measures

Recall that a point in a hypersurface in called umbilical when the normal curvatures
are the same in all the directions at this point. A hypersurface such that all his points
are umbilical is called totally umbilical. In constant curvature spaces, totally umbilical
hypersurfaces have constant normal curvature (cf. for instance [dC92]). On the other
hand, such hypersurfaces are the boundary of convex regions. Taking the unit normal
vector which is interior to that region, the normal curvature will be always positive.

Definition 5.2.1. For λ ≥ 0, a complete totally umbilical hypersurface with normal
curvature λ is called a λ-hyperplane of Hn. Denote by Lλn−1 the set of all such λ-
hyperplanes of Hn.

This definition includes, for λ = 1, horospheres, and for λ = 0, geodesic hyperplanes.
The case λ > 1 contains the spheres of radius arctanh(1/λ). For λ < 1, the tube at
distance arctanhλ around a geodesic hyperplane has two connected components each
of which is a λ-hyperplane. With such a description it becomes clear that Lλn−1 is a
homogeneous space of the isometry group G for every λ.

An important fact that can be seen through the Gauss equation is that with the
metric induced by Hn, a λ-hiperplane is a complete simply connected Riemann manifold
with constant sectional curvature λ2 − 1. In particular the horospheres are euclidean
spaces and the equidistants with normal curvature λ are hyperbolic spaces of constant
sectional curvature λ2 − 1.

Remark. It is not hard to see that in the hyperboloid model the λ-hyperplanes are
intersections of Hn with affine hyperplanes of the form

{x ∈ Rn+1 | L(x, y) = −λ}

where L(y, y) = 1.

Now we introduce an analogue of λ-hyperplanes for higher codimensions. Since a
geodesic r-plane Lr ⊂ Hn is isometric to Hr, it has sense to consider the λ-hyperplanes
of Lr.

Definition 5.2.2. A λ-hyperplane of some geodesic (r + 1)-plane in Hn is called a
λ-geodesic r-plane. We define Lλr to be the set of all such λ-geodesic r-planes.
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Every λ-geodesic r-plane is contained in one only geodesic (r+ 1)-plane. Besides, it
can be seen that it is also contained in one only λ-hiperplane.

The isometry group G acts transitively on Lλr . Indeed, we know that it acts transi-
tively on the set of geodesic (r+1)-planes. The isotropy subgroup of one of these planes
is like the isometry group of Hr+1, so it acts transitively on the set of λ-hyperplanes
it conatins. Thus, take the geodesic (r + 1)-plane Lr+1 defined by the point e0 and
〈e1, . . . , er+1〉. Choose Lλr the λ-geodesic r-plane by e0, contained in Lr+1 and such that
er+1 is the normal vector in e0 pointing towards the convexity of Lλr . Let Hλ

r be the
subgroup of isometries leaving it invariant. Now, Lλr is identified to the homogeneous
space G/Hλ

r . This defines a projection πλr : G −→ Lλr .

Proposition 5.2.1. For 0 ≤ λ 6= 1 the space Lλr admits a semi-riemannian metric
〈 , 〉λr invariant under isometries. This metric is such that

(πλr )
∗〈 , 〉λr =

r∑

i=1

(ωr+1i − λωi0)⊗ (ωr+1i − λωi0)

1− λ2
+

∑

1≤i≤(r+1)<j≤n

ωji ⊗ω
j
i −

n∑

j=r+1

ωj0⊗ω
j
0.

(5.1)
For every λ ≥ 0 the space Lλr admits a measure dLλr invariant under isometries which
is defined by

(πλr )
∗dLλr =

r∧

h=1

(ωr+1h − λωh0 ) ∧


 ∧

1≤i≤(r+1)<j≤n

ωji


 ∧

n∧

k=r+1

ωk0 (5.2)

Proof. Let us look for the vertical part of πλr . Let g be a frame such that π(g) = Lλr . It
is clear that if g another frame with

g0 = g0 〈g1, . . . , gr〉 = 〈g1, . . . , gr〉 〈gr+2, . . . , gn〉 = 〈gr+2, . . . , gn〉,

then πλr (g) = πλr (g). Thus, vji ∈ ker dπλr for 1 ≤ i, j ≤ r or r + 2 ≤ i, j ≤ n. Let x(t)
be the geodesic line in Lλr leaving from g0 with direction gi (1 ≤ i ≤ r). Shift x(t) to a
curve g(t) ⊂ G such that πλr (g(t)) ≡ Lλr . Since all the normal curvatures of Lλr are equal
to λ,

∇gigr+1 = λgi.

Then 0 = dπλr (ġ(0)) = dπλr (v
i
0 + λvr+1i ) and we have

TggH = ker dπλr = 〈vi0 + λvr+1i | i = 1, . . . , r〉 ⊕ 〈vji | 1 ≤ i < j ≤ r o r + 2 ≤ i < j ≤ n 〉

and the orthogonal space with respect to the metric in G is

(TggH)⊥ = (ker dπλr )
⊥ = 〈vr+1i + λvi0 | i = 1, . . . , r〉 ⊕ 〈vh0 | h = r + 1, . . . , n〉⊕

⊕〈vji | 1 ≤ i ≤ r + 1 < j ≤ n 〉
Thus, we endow Lλr of the metric (1.6) of G restricted to (ker dπλr )

⊥. The expression
(5.1) is this restriction since it vanishes on ker dπλr and coincides with the metric of G
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over a basis of (ker dπλr )
⊥. This metric is constant along the fibres and it is invariant

because the metric on G is bi-invariant. On the other hand, the form (5.2) defines an
invariant measure in the space of r-dimensional λ-planes since it is closed and it is the
wedge of 1-forms vanishing on gH (cf. [San76, p.166]).

Remark. Note that from the expression (5.2) one deduces that

dLλr = dLλ[r+1]r ∧ dLr+1 (5.3)

where dLr+1 is the measure of Lr+1 and dLλ[r+1]r denotes the measure of λ-geodesic

r-planes contained in the geodesic (r + 1)-plane Lr+1.

In polar coordinates, the measure of λ-hyperplanes is

dLλn−1 = (cosh ρ− λ sinh ρ)n−1dρdSn−1 (5.4)

where ρ is the distance from the origin to Lλn−1, taken with negative sign when the origin
is outside the convex region bounded by Lλn−1.

5.3 Volume of intersections with λ-geodesic planes

In this section we generalize to λ-geodesic planes the formula (2.8) for the integral of
the volume of intersections with geodesic planes. We start with the case of codimension
1.

Proposition 5.3.1. Let S be a compact q-dimensional submanifold of Hn, picewise C1,
possibly with boundary. Then

∫

Lλn−1

volq−1(L
λ
n−1 ∩ S)dLλn−1 =

OnOq−1

Oq
· volq(S).

Proof. Consider the manifold

E(S) = {(Lλn−1, p) ∈ Lλn−1 × S | p ∈ Lλn−1 ∩ S}.

For almost every (Lλn−1, p), i.e out of a null measure subset of E(S), the intersection
Lλn−1 ∩ S is una C1 submanifold in a neighborhood of p. Denote by dxq−1 the volume
element of this submanifold. Now,

∫

Lλn−1

volq−1(L
λ
n−1 ∩ S)dLλn−1 =

∫

E(S)
dxq−1 ∧ dLλn−1

where dLλn−1 denotes the volume element on Lλn−1 and also its pull-back to E(S). Con-
sider now,

G(S) = {g ∈ G | g0 ∈ S ∩ Lλn−1 g1, . . . , gq−1 ∈ Tg0(S) gq+1, . . . , gn−1⊥Tg0S}
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and the projection π : G(S) −→ E(S) mapping the frame g to (πλn−1(g), g0). Thus,

π∗(dxq−1∧dLλn−1) =
q−1∧

h=1

ωh0 ∧ωn0 ∧
n−1∧

i=1

(ωni −λωi0) =
q−1∧

h=1

ωh0 ∧ωn0 ∧
q−1∧

i=1

ωni ∧
n−1∧

i=q

(ωni −λωi0)

Given g ∈ G(S) take g ∈ G(S) such that

g0 = g0 . . . gq−1 = gq−1 i gq ∈ Tg0S

But for every v ∈ TgG(S),

ωi0(v) = 〈v, vi0〉 = 〈dπ0v, gi〉 = 0 q < i < n

ωi0(v) = 〈v, vi0〉 = 〈dπ0, gi〉 = 0 q < i.

Then,

ωn0 =

n∑

i=q

〈gi, gn〉ωi0 = 〈gq, gn〉ωq0

ωq0 =

n∑

i=q

〈gi, gq〉ωi0 = 〈gq, gq〉ωq0

Since we are dealing with measures we do not have to care about the signs, and we can
write

π∗(dxq−1 ∧ dLλn−1) = 〈gq, gn〉
q−1∧

h=1

ωh0 ∧ ωq0 ∧
n−1∧

i=1

ωni = | sin θ|dxq ∧ du (5.5)

where du is the volume element on Sn−1 corresponding to the normal vector to Lλn−1 in
x, dxq corresponds to the volume element of S and θ is the angle between S and Lλn−1
in x. Integrating both members of (5.5) we get

∫

E(S)
dxq−1 ∧ dLλn−1 =

∫

G(S)
π∗(dxq−1 ∧ dLλn−1) =

∫

Sn−1
| sin θ|du ·

∫

S
dxq.

Finally one computes that
∫

Sn−1
| sin θ|dSn−1 = OnOq−1

Oq
.

Consider the case of λ-geodesic planes with higher codimension.

Proposition 5.3.2. Let S be a q-dimensional compact submanifold in Hn, piecewise
C1, maybe with boundary. Then for r + q ≥ n

∫

Lλr

volr+q−n(L
λ
r ∩ S)dLλr =

On · · ·On−r−1Or+q−n

Or · · ·O0Oq
· volq(S).
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Proof. Using (5.3) and the previous proposition,
∫

Lλr

volr+q−n(L
λ
r ∩ Sq)dLλr =

∫

Lr+1

∫

Lλ
[r+1]r

volr+q−n(L
λ
r ∩ Sq)dLλ[r+1]rdLr+1 =

=
Or+1Or+q−n

Or+1+q−n

∫

Lr+1

volr+1+q−n(S ∩ Lr+1)dLr+1.

The formula for the integral of the intersection volumes with geodesic planes (2.8) gives
∫

Lr+1

volr+1+q−n(S ∩ Lr+1)dLr+1 =
On · · ·On−r−1Or+1+q−n

Or+1 · · ·O1O0Oq
volq(S)

Note that for λ = 0, these formulas coincide with (2.8) up to a factor On−r−1. This
agrees with the fact that, also for λ = 0, the space Lλr is a fiber bundle of base Lr
and fiber Sn−r−1. Indeed, for every geodesic r-plane Lr consider the tube at distance
ε = arctanhλ. We get a ‘revolution’ hypersurface made of λ-geodesic r-planes. Now
the unit normal vectors of Lr at a fixed point are in correspondence to the λ-geodesic
r-planes of the tube.

For r + q = n, we have the following Cauchy-Crofton formula
∫

Lλr

#(Lλr ∩ Sq)dLλr =
On · · ·On−r+1On−r−1

Or · · ·O1
· volq(S)

In particular, the integral of the number of intersection points of a λ-hyperplane with
a curve is 4/(On−1 . . . O2) times its length. When λ = 1, this coincides with a result
by Santaló for the cases n = 2, 3 and by Gallego, Mart́ınez Naveira and the author for
general n (cf.[San67, San68, GNS]).

5.4 Mean curvature integrals of intersections with

λ-geodesic planes

Our aim is now to generalize proposition 2.2.4 replacing geodesic planes by λ-geodesic
planes. Indeed, given a hypersurface S ⊂ Hn, the intersection S ∩ Lλr is, for almost
every Lλr , a hypersurface of Lλr . It has sense to consider the mean curvature integral
Mi(S ∩ Lλr ) of this hypersurface. Next we compute the integral of these value when Lλr
moves over all the positions meeting S.

Let L = Lλn−1 be a λ-hyperplane meeting S. If TpS and TpL
λ
n−1 are transverse in

p ∈ Lλn−1, then C = L∩ S is, at least locally, a codimension 2 submanifold. The second
fundamental forms of these submanifolds are bilinear symmetric forms given by

hL : (TxL)× (TxL) −→ (TxL)
⊥ ∇XY = ∇L

XY + hL(X,Y )

hS : (TxS)× (TxS) −→ (TxS)
⊥ ∇XY = ∇S

XY + hS(X,Y )

hC : (TxC)× (TxC) −→ (TxC)⊥ ∇XY = ∇C
XY + hC(X,Y ).
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where ∇M denotes the connection on the submanifold M . One can also consider the
second fundamental form hLC (or hSC) of C as a submanifold of L (or of S). Clearly,

hC(X,Y ) = hLC(X,Y ) + hL(X,Y ) = hSC(X,Y ) + hS(X,Y ) (5.6)

Let us orient S and Lλn−1 respectively by the unit normals NS and NL. For X,Y ∈
TxC one has

hS(X,Y ) = IIS(X,Y ) ·NS hL(X,Y ) = IIL(X,Y ) ·NL

where IIS and IIL are bilinear forms of TxS and TxL, respectively, with real values. On
the other hand, for some bilinear form IILC of TxC with real values

hLC(X,Y ) = IILC(X,Y )NC

where we have taken NC ∈ TxL normal to C, unitary and such that 〈NC , NS〉 > 0. The
following proposition is a generalization of Meusnier’s thorem.

Proposition 5.4.1. With the above notation

IIS = cos θIIL + sin θIILC

where θ is the angle between NL and NS.

Proof. Using (5.6),

IIS(X,Y ) = 〈hS(X,Y ), NS〉 = 〈hC(X,Y ), NS〉 = IILC(X,Y )〈NC , NS〉+IIL(X,Y )〈NL, NS〉

Since L = Lλn−1 is totally umbilical with normal curvature λ, clearly IIL = λid and
we can express IILC in terms of the restriction of IIS to TxC

IILC =
IIS
sin θ

− λId

tan θ
. (5.7)

To avoid confusions we take the following notation. Given a real-valued bilinear
symmetric form µ of rank r, denote

σj(µ) =
fj(ki1 . . . kij )(

r
j

)

where k1 . . . kr are the eigenvalues of µ and fj is the j-th elementary symmetric polyno-
mial.

Recall that

det(µ+ tId) =
r∑

j=0

fj(k1, . . . kr)t
r−j .

With these notation, the j-th mean curvature σSj (x) of the hypersurface S in a point is
σj(IIS).
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Proposition 5.4.2. The mean curvatures σk(II
L
C) of C as a hypersurface of L are given

by

σk(II
L
C) =

k∑

l=0

(
n− l − 2
n− k − 2

)(
n− 2
l

)

(
n− 2
k

) (−1)k−l cos
k−l θ

sink θ
λk−lσl(II

S
P )

where IISP is the restriction of IIS to P = TxC.

Proof.

IILC + tId =
IISP
sin θ

+ (t− λ

tan θ
)Id =

1

sin θ
(IISP + (t sin θ − λ cos θ)Id)

Taking determinants

n−2∑

j=0

(
n− 2
j

)
σn−j−2(II

L
C)t

j = det(IIC+tId) =
1

sinn−2 θ
det(IISP +(t sin θ−λ cos θ)Id) =

=
1

sinn−2 θ

n−2∑

i=0

(
n− 2
i

)
σn−i−2(II

S
P )(t sin θ − λ cos θ)i =

=
1

sinn−2 θ

n−2∑

i=0

(
n− 2
i

)
σn−i−2(II

S
P )

i∑

j=0

(
i
j

)
(−1)i−jλi−j cosi−j θ sinj θtj =

=
n−2∑

j=0

1

sinn−j−2 θ



n−2∑

i=j

(
i
j

)(
n− 2
i

)
(−1)i−jλi−j cosi−j θσn−i−2(IISP )


 tj

The following lemma is a generalization of (1.2.1).

Lemma 5.4.3. Let S be a hypersurface of some n-dimensional Riemann manifold and
let II be the second fundamental form of S at a point x. For every i-dimensional linear
subspace P of TxS, denote by II|P the restriction of II to P . Then, for j ≤ i < n− 1

σj(II) =
1

vol(G(i, n− 1))

∫

G(i,TxS)
σj(II|P )dP.

Clearly σj(II|P ) is a generalitzation of the notion of normal curvature. Besides, if
another hypersurface L meets S orthogonally in x in such a way that TxL∩TxS = P , by
la proposition 5.4.1, II|P is the second fundamental form of S ∩L at x as a hypersurface
of R. Thus, σr(IIP ) is the r-th mean curvature of S ∩ L.
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Proof. The case j = i is the known proposition (1.2.1). For j < i we can reduce to the
previous case as follows

∫

G(i,TxS)
σj(II|P )dP =

∫

G(i,TxS)

(
vol(G(j, i))−1

∫

G(j,P )
σj(II|l)dl

)
dP =

= vol(G(j, i))−1
∫

G(j,TxS))

∫

G(i−j,l⊥)
σj(II|l)dPdl =

= vol(G(j, i))−1vol(G(i− j, n− j − 1))

∫

G(j,TxS))
σj(II|l)dl =

= vol(G(j, i))−1vol(G(i− j, n− j − 1))vol(G(j, n− 1))σj(II)

Given a hypersurface S ⊂ Hn, for almost every λ-hyperplane Lλn−1, the intersection
Lλn−1∩S is a smooth hypersurface of Lλn−1. In such cases, one can considerMi(L

λ
n−1∩S),

the mean curvature integrals of Lλn−1 ∩ S as a hypersurface of Lλn−1.

Proposition 5.4.4. If S is a hypersurface of Hn then the integral over all the λ-geodesic
hyperplanes of Mi(L

λ
n−1 ∩ S) is a polynomial in λ2 whose coefficients are multiples of

the mean curvature integrals Mj(S). To be precise,

∫

Lλn−1

Mj(L
λ
n−1 ∩ S)dLλn−1 =

[j/2]∑

l=0

cnl,jλ
2lMj−2l(S).

where

cnl,j =

(
n− j + 2l − 2
n− j − 2

)(
n− 2
j − 2l

)

(
n− 2
j

) On−2On−j+2lO0
On−j−1O2l

.

For λ = 0 we recover the formula (2.2.4) but again with an extra factor On−r−1.

Proof. Denote C = Lλn−1 ∩ S. Using the expression (5.5)

∫

Lλn−1

∫

C
σCj dx dLλn−1 =

∫

S

∫

Sn−1
sin θ σCj dudx.

By the proposition 5.4.2, if IISP is the restriction of IIS to P = TxC, then

(
n− 2
j

)∫

Sn−1
sin θ σCj du =

=

∫

Sn−1
sin θ

sinj θ

j∑

i=0

(
n− i− 2
n− j − 2

)(
n− 2
i

)
(−1)j−i cosj−i θλj−iσi(IISP )du
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which, taking polar coordinates in Sn−1, is equal to

=

j∑

i=0

(
n− i− 2
n− j − 2

)(
n− 2
i

)
(−1)j−i

∫

Sn−2

∫ π

0

1

sinj−1 θ
cosj−i θλj−iσi(II

S
P ) sin

n−2 θdθdP =

=

j∑

i=0

(
n− i− 2
n− j − 2

)(
n− 2
i

)
(−1)j−iλj−i

∫ π

0
sinn−j−1 θ cosj−i θdθ

∫

Sn−2
σi(II

S
P )dP.

Using lemma 5.4.3 we get the desired formula. The constants are easily computed.

Corollay 5.4.5. For j ≤ r − 1

∫

Lλr

Mj(L
λ
r ∩ S)dLλr =

[j/2]∑

l=0

cnl,j,rλ
2lMj−2l(S)

where

cnl,j,r =

(
r − j + 2l − 1
r − j − 1

)(
r − 1
j − 2l

)

(
r − 1
j

) On−2 . . . On−r−1On−j+2l

Or−2 . . . O1Or−jO2l
.

Remark. For j = 0 we recover the case q = n− 1 of the proposition 5.3.2.

Proof. The expression (5.3) for dLλr gives
∫

Lλr

Mj(L
λ
r ∩ S)dLλr =

∫

Lr+1

∫

Lλ
[r+1]r

Mj(L
λ
r ∩ S)dLλ[r+1]rdLr+1

which, by the last proposition, is equal to

∫

Lr+1



[j/2]∑

l=0

cr+1l,j λ2lMj−2l(S ∩ Lr+1)


 dLr+1.

Finally, the reproductibility formula for the mean curvature integrals through intersec-
tions with geodesic planes of proposition (2.2.4) gives

[j/2]∑

l=0

cr+1l,j λ2l
∫

Lr+1

Mj−2l(S∩Lr+1)dLr+1 =
[j/2]∑

l=0

cr+1l,j λ2l
On−2 · · ·On−r−1On−j+2l

Or−1 · · ·O0Or−j+2l+1
Mj−2l(S).

These formulas do not look very simple nor pretty. However, it is interesting to
note that all the coefficients are positive. This means that when all the mean curvature
integrals of S are positive, for instance if S bounds a convex body, then all the integrals
considered are positive. This was not clear a priori since, for instance, the intersection of
a λ-geodesic hyperplane Lλn−1 with a convex set can be non-convex inside Lλn−1 ≡ Hn−1.
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5.5 Measure of λ-geodesic planes meeting a

λ-convex domain.

Next we generalize the formulas (2.10) and (2.11) by replacing geodesic planes by λ-
geodesic planes. That is, we will express the integral of the Euler characteristic of the
intersection of λ-geodesic planes with a domain of Hn in terms of the mean curvature
integrals of its boundary and in terms of its volume.

Theorem 5.5.1. Let Q ⊂ Hn be a compact domain with smooth boundary. For even r

∫

Lλr

χ(Q ∩ Lλr )dLλr = (λ2 − 1)r/2
On−1 · · ·On−r−1

Or · · ·O1
· V (Q)+

+

r/2∑

j=1




r/2∑

i=j

(
r − 1
2i− 1

)
2

O2i−1Or−2i
cni−j,2i−1,r(λ

2 − 1)
r−2i
2 λ2i−2j


M2j−1(∂Q),

and for odd r

∫

Lλr

χ(Q ∩ Lλr )dLλr =

=

(r−1)/2∑

j=0



(r−1)/2∑

i=j

(
r − 1
2i

)
2

O2iOr−2i−1
cni−j,2i,r

(
λ2 − 1

) r−2i−1
2 λ2i−2j


M2j(∂Q).

Proof. We know that each Lλr is a simply connected manifold of constant sectional
curvature λ2 − 1. Now, for Lλr meeting Q, the Gauss-Bonnet theorem in spaces of
constant curvature λ2 − 1 states that, for even r,

Or

2
χ(Q ∩ Lλr ) = (λ2 − 1)r/2V (Q ∩ Lλr )+

+

r/2∑

i=1

(
r − 1
2i− 1

)
Or

O2i−1Or−2i
(λ2 − 1)(r−2i)/2M2i−1(∂Q ∩ Lλr );

and for odd r,

Or

2
χ(Q ∩ Lλr ) =

(r−1)/2∑

i=0

(
r − 1
2i

)
Or

O2iOr−2i−1
(λ2 − 1)(r−2i−1)/2M2i(∂Q ∩ Lλr ).

Integrating with respect to Lλr , in the even case

Or

2

∫

Lλr

χ(Q ∩ Lλr )dLλr = (λ2 − 1)r/2
∫

Lλr

V (Q ∩ Lλr )dLλr+

+

r/2∑

i=1

(
r − 1
2i− 1

)
Or

O2i−1Or−2i
(λ2 − 1)(r−2i)/2

∫

Lλr

M2i−1(∂Q ∩ Lλr )dLλr
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and by corollary 5.4.5 and the proposition 5.3.2,

Or

2

∫

Lλr

χ(Q ∩ Lλr )dLλr = (λ2 − 1)r/2
On−1 · · ·On−r−1

Or−1 · · ·O0
· V (Q)+

+

r/2∑

i=1

(
r − 1
2i− 1

)
Or

O2i−1Or−2i
(λ2 − 1)(r−2i)/2

(
i−1∑

l=0

cnl,2i−1,rλ
2lM2i−2l−1(∂Q)

)

and reordering the sums we get the desired formula. In the odd case one proceeds
analogously.

For λ = 1 and r = n−1 we get the integral of the Euler characteristic of intersections
with horospheres (as in [San67],[San68] and [GNS]).

Remark. These results are specially interesting in the case of λ-convex domains (cf. def-
inition 1.1.2). It is easy to see that when Q is a λ-convex domain, then Lλr ∩ Q is
contractible for every Lλr . Thus, the previous formulas give the measure of λ-geodesic
r-planes meeting Q. For instance, the measure of λ-geodesic planes in H3 meeting a
λ-convex domain is

∫

Lλ2∩Q6=∅
dLλ2 = 2M1(∂Q)− (1− λ2)V (Q).

To simplify we can state the following corollary.

Corollay 5.5.2. The measure of the set of λ-geodesic r-planes meeting a λ-convex
domain Q ⊂ Hn is a linear combination of the mean curvature integrals of ∂Q and,
when r is odd, the volume of Q.

5.6 h-convex domains

For short let us denote by H the space of horospheres which was denoted so far by L1n−1.
Besides we will call horoballs to the convex regions bounded by horospheres. In general
we will denote by H the horoball in such a way that the horospheres will be denoted
by ∂H. In this section we shall measure the set of horoballs containing an h-convex
domain. This will lead to some interesting inequalities for this kind of domains.

Start noting that from (5.4) one deduces that the total measure of d’horoballs con-
taining a point p is finite. Indeed, this measure is

∫

Sn−1

∫ ∞

0
e−ρdρdu = On−1

Our aim is to find the measure of horoballs containing an h-convex domain Q. Note
that this is the difference of the measure of the horoballs meeting Q and the measure of
horospheres meeting Q.
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Recall the fundamental kinematic formula (2.2.6) in Hn which, given two domains
Q0 and Q1, states for even n

∫

G
χ(Q0 ∩ gQ1)dK = −2(−1)n/2On−1 · · ·O1

On
V (Q0)V (Q1)+

+On−1 · · ·O1
(
V (Q1)χ(Q0) + V (Q0)χ(Q1)

)
+

+On−2 · · ·O1
1

n

n−2∑

h=0

(
n

h+ 1

)
Mh(∂Q0)Mn−2−h(∂Q1)+

+On−2 · · ·O1
n/2−2∑

i=0

(−1)(n/2−i−1)
(

n− 1
2i+ 1

)
n− 2i− 2

On−2i−3

2

On−2i−2
·

·




n−2∑

h=n−2i−2

(
2i+ 1

n− h− 1

)
O2n−h−2i−2

(h+ 1)On−h

Oh

O2i+h−n+2
Mn−2−h(∂Q0)Mh+2i+2−n(∂Q1)


 .

and for odd n

∫

G
χ(Q0 ∩ gQ1)dK = On−1 · · ·O1

(
V (Q1)χ(Q0) + V (Q0)χ(Q1)

)
+

+On−2 · · ·O1
1

n

n−2∑

h=0

(
n

h+ 1

)
Mh(∂Q0)Mn−2−h(∂Q1)+

+On−2 · · ·O1
(n−3)/2∑

i=0

(−1)(n−2i−1)/2
(
n− 1
2i

)
n− 2i− 1

On−2i−1

2

On−2i−2
·

·




n−2∑

h=n−2i−1

(
2i

n− h− 1

)
O2n−h−2i−1

(h+ 1)On−h

Oh

O2i+h−n+1
Mn−2−h(∂Q0)Mh+2i+1−n(∂Q1)


 .

In the same way as in [GNS], take Q1 to be a radius R sphere and normalize with
dSr = dK/(On−2 · · ·O0vol(Sr)). This way dSr = dLλn−1 where λ = coth r. It is clear
that limr dSr = dH. Thus, the integral of χ(Q0 ∩H) over all the horoballs H meeting
Q0 is obtained by dividing the previous expressions by (On−2 · · ·O0)vol(Sr) and making
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r go to infinity. Bearing in mind that limrMi(Sr)/vol(Sr) = 1 we get, for even n

∫

H
χ(Q0 ∩H)dH = −2(−1)n/2 On−1

(n− 1)On
V (Q0) +On−1

( 1

n− 1
χ(Q0)

)
+

+
1

n

n−2∑

h=0

(
n

h+ 1

)
Mh(∂Q0) +

n/2−2∑

i=0

(−1)(n/2−i−1)
(

n− 1
2i+ 1

)
n− 2i− 2

On−2i−3

2

On−2i−2
·

·




n−2∑

h=n−2i−2

(
2i+ 1

n− h− 1

)
O2n−h−2i−2

(h+ 1)On−h

Oh

O2i+h−n+2
Mn−2−h(∂Q0)


 ,

and for odd n
∫

H
χ(Q0 ∩H)dH = On−1

( 1

n− 1
χ(Q0)

)
+

+
1

n

n−2∑

h=0

(
n

h+ 1

)
Mh(∂Q0) +

(n−3)/2∑

i=0

(−1)(n−2i−1)/2
(
n− 1
2i

)
n− 2i− 1

On−2i−1

2

On−2i−2
·

·




n−2∑

h=n−2i−1

(
2i

n− h− 1

)
O2n−h−2i−1

(h+ 1)On−h

Oh

O2i+h−n+1
Mn−2−h(∂Q0)


 .

On the other hand, the integral of the Euler charactristic of the intersection of Q0
with the horospheres ∂H is

∫

H
χ(Q0 ∩ ∂H)dH = 2

[(n−2)/2]∑

h=0

(
n− 2
2h

)
1

2h+ 1
Mn−2h−2(∂Q0).

Assuming Q0 to be h-convex, all the intersections are contractible and the Euler charac-
teristics are 1 (or 0). Thus, subtracting we get the measure of horoballs containing Q0.
Since the formulas are very complicated, we give the results in dimensions n = 2, 3, 4, 5
and 6.

m = F − L+ 2π n = 2

m =M0 −M1 + 2π n = 3

m = −1

3
M0 +

3

2
M1 −M2 −

1

2
V +

2

3
π2 n = 4

m = −M1 + 2M2 −M3 +
2

3
π2 n = 5

m = −1

5
M0 +

5

8
M1 − 2M2 +

5

2
M3 −M4 +

1

5
π3 +

3

8
V n = 6

All these values m are positive assuming h-convexity. This estimation is sharp: for a
sequence of balls filling a horoball they go to 0. In fact, it is clear that for any sequence
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of h-convex sets with diameter going to infinity these measures m must go to 0. An
important fact is that m is decreasing in the space of h-convex domains (with respect
to inclusion). Thus, the value of m is always below its constant term. A stronger
consequence is that if BR is a ball containing Q and Br is another one contained in Q,
then

m(BR) ≤ m(Q) ≤ m(Br).

The cases n = 2 and 3 are really interesting

0 ≤ L− F ≤ 2π 0 ≤M1 −M0 ≤ 2π.

It was seen in [BM99] for any sequence of h-convex domains expanding over Hn,
that the quotients Mi/M0 tend to 1. In fact, the same is true in manifolds of negative
bounded curvature (cf. [BM02])). In H2 and H3 we have just seen something stronger.
For a sequence (Qr) of h-convex domains expanding to fill H2

M1(∂Q)−M0(∂Qr) = F (Qr) + 2π − L(∂Qr) = m(Qr) ≤ m(Br) −→ 0 r →∞
where Br is the biggest disk contained in Qr. Which is stronger than M1/M0 → 1. In
H3,

M0(∂Qr)−M1(∂Qr) + 2π = m(Qr) ≤ m(Br) −→ 0 r →∞
where Br is the biggest ball contained in Qr. Again this implies M1/M0 → 1.

Remark. It is a remarkable fact that, for h-convex domains in H2, L− F is increasing.
We wonder if it is true in general that M0 − (n − 1)V is increasing in the space of
h-convex domains of Hn.

5.7 Expected slice with λ-geodesic planes

Here we prove analogous results to those of section 4.3. That is, we give upper bounds
for the expected volume of the intersection of a λ-convex domain with a random λ-
hyperplane.

Given a λ-convex domain Q ⊂ Hn. Consider the random variable consisting to throw
randomly a λ-hyperplane Lλn−1 meeting Q and to measure the volume of the intersection.
By propositions 5.3.1 and 5.5.1 this expectation is

E[vol(Q ∩ Lλn−1)] =
∫
Lλn−1

vol(Q ∩ Lλn−1)dLλn−1∫
Lλn−1

χ(Q ∩ Lλn−1)dLλn−1
=

On−1V (Q)∑
i ciMi(∂Q) + cV

where the denominator of the last term is one of the expressions of proposition 5.5.1.
As in the geodesic case, no matter how big the domain is, the expectation is below some
bound.

Proposition 5.7.1. Let Q ⊂ B(R) ⊂ Hn be a domain contained in a radius R ball.
The expected the volume of the intersection of Q with a random λ-hyperplane is bounded
by

E[vol(Q ∩ Lλn−1)] ≤ E[vol(B(R) ∩ Lλn−1)] <
On−1

(1 + λ)n−1 + (1− λ)n−1
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Proof. We can assume Q to be λ-convex by taking its λ-convex hull, the smallest λ-
convex domaing containing it. Take an origin O interior to Q. For every unit vector
u in TOHn take the geodesic γ(ρ) = expO(ρu) and assign to ρ the λ-hyperplane Lλn−1
orthogonal to γ in γ(ρ) and with the convexity by the side of −γ ′(ρ). By the expression
(5.4) of the measure of λ-hyperplanes we have

∫

Lλn−1

χ(Q ∩ Lλn−1)dLλn−1 =
∫

Sn−1

∫ h2(u)

h1(u)
(cosh ρ− λ sinh ρ)n−1dρdu ≥

≥
∫

Sn−1

∫ l2(u)

l1(u)
(cosh ρ− λ sinh ρ)n−1dρdu

where [h1(u), h2(u)] is the interval of values ρ of corresponding to λ-hyperplanes meeting
Q, and [l1(u), l2(u)] = γ−1(Q∩ γ) is the interval of parameters where γ is interior to Q.
Since l1(−u) = −l2(u) the last integral is

∫

Sn−1

∫ l2(u)

0
(cosh ρ− λ sinh ρ)n−1 + (cosh ρ+ λ sinh ρ)n−1dρdu.

On the other hand, the volume of Q expressed in polar coordinates is

V (Q) =

∫

Sn−1

∫ l2(u)

0
sinhn−1 ρdρdu.

Now, studying the function

f(R) = E[vol(B(R) ∩ Lλn−1)] =
On−1

∫ R
0 sinhn−1 ρdρ

∫ R
0 (cosh ρ− λ sinh ρ)n−1 + (cosh ρ+ λ sinh ρ)n−1dρ

one can see that it is increasing and bounded by On−1((1+λ)
n−1+(1−λ)n−1)−1. Thus,

since l2(u) ≤ R for every u,

V (Q)

E[Lλr ∩Q]
=

∫

Lλn−1

χ(Q ∩ Lλn−1)dLλn−1 ≥

≥ On−1

∫

Sn−1

∫ l2(u)

0
(cosh ρ− λ sinh ρ)n−1 + (cosh ρ+ λ sinh ρ)n−1dρdu =

=

∫

Sn−1
1

f(l2(u))

∫ l2(u)

0
sinh ρn−1dρdu ≥

∫

Sn−1
1

f(R)

∫ l2(u)

0
sinh ρn−1dρdu =

=
V (B(R))

E[Lλr ∩B(R)]
.
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