
Mémoire d’habilitation à diriger des recherches
Université Lille 1
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Florent BALACHEFF
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Introduction and statement of the results

We start this report with a short overview of the main results we will present in the sequel.
First recall the context. Let M be a closed manifold of dimension m. For a given Riemannian
metric g on M , we denote by sys(M, g) the systole defined as the least length of a closed geodesic
and by vol(M, g) the Riemannian volume. When the manifold is non-simply connected, we define
the homotopical systole denoted by sysπ(M, g) as the least length of a non-contractible closed
geodesic. Lastly, when the first integral homology group of the manifold is non-trivial, we define
the homological systole denoted by sys1(M, g) as the least length of a homologically non-trivial
closed geodesic. There exist other notions of systole such as the Z2-homological systole, the stable
systole or the higher dimensional systoles for instance, but they will not be considered in the sequel.
It is important to underline that the term systole usually stands for the homotopical systole, but
in order to unify our terminology, we fix this vocabulary which was suggested by M. Berger in
[Berg00, p.107].

The main topic in systolic geometry is to etablish systolic inequalities which are inequalities of
the form

vol(M, g) ≥ C · sys∗(M, g)m,
where C is some positive constant and which hold for a large subset of metrics g on M . Here
sys∗ denotes either the systole, the homotopical systole or the homological systole. If we authorize
more general metrics such as Finsler metrics, then the first systolic inequality was discovered by
H. Minkowski [Mink96], who proved that the Hausdorff volume of any flat reversible Finsler torus
(Tm, F ) of dimension m satisfies the optimal inequality

vol(Tm, F ) ≥ bm
2m
· sys1(Tm, F )m.

Here bm denotes the Euclidian volume of the unit ball in dimension m. This statement is a
reformulation of the celebrated theorem on which is based the geometry of numbers theory, and
obviously still holds for the homotopical systole or even the systole. Since, other optimal systolic
inequalities have been discovered, see [CroKatz02] for an overview.

Variations around systolic inequalities.

In its celebrated paper [Gro83], M. Gromov proved the following central result in systolic ge-
ometry: every essential closed manifold satisfies a systolic inequality for the set of all Riemannian
metrics. In the same paper, he also precised the result for closed orientable surfaces of genus γ: a
closed Riemannian surface of area equal to its genus γ admits a homologically non-trivial closed
geodesic of length at most log γ (up to some universal constant). This bound is known to be optimal
since the work [BusSar94] of P. Buser and P. Sarnak.

In the article [4] written in collaboration with H. Parlier and S. Sabourau, we extend Gromov’s
asymptotic log γ bound on the homological systole of genus γ surfaces: for any λ ∈ (0, 1) there exists
a constant Cλ such that every closed Riemannian surface of genus γ whose area is normalized at γ
has at least [λγ] homologically independent loops of length at most Cλ log γ. We construct hyperbolic
surfaces showing that our general result is sharp for the number of such loops. We also extend the
upper bound obtained by P. Buser and P. Sarnak in [BusSar94] on the minimal norm of nonzero
period lattice vectors of Riemann surfaces in their geometric approach of the Schottky problem
to almost γ homologically independent vectors. Finally we derive a lower bound on the systolic
area of finitely presentable groups with no free factor isomorphic to Z in terms of their first Betti
number which corresponds to a generalization of Gromov’s asymptotic log γ bound.

In the article [6] written in collaboration with S. Sabourau, we present another type of general-
ization of Gromov’s result. Loosely speaking, we prove the following result: any closed Riemannian
surface of area equal to its genus γ can be swept out by a family of multi-loops of total length at
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most γ (up to some universal constant). This diastolic inequality, which relies on an upper bound
on Cheeger’s constant, yields an effective process to find short closed geodesics on the two-sphere,
for instance. The diastolic term comes from the fact that a family of multi-loops sweeping out a
surface produces a closed geodesic via a minimax process.

Finally in the article [3] written in collaboration with H. Parlier we consider another type of
minimax quantity which bounds from below the area of surfaces. Our central result is as follows:
any hyperbolic two-sphere with n cusps admits a decomposition by three-holed spheres all of whose
boundary loops are of length at most

√
n (up to some universal constant). We produce examples

showing that this bound is optimal. These results address to a question asked by P. Buser in
[Bus92].

Local versions of systolic inequalities.

Among subsets of metrics for which systolic inequalities are relevant, we find neighbourhoods of a
fixed metric (for some reasonnable topology). In [Cro88] C. Croke proved the existence of a systolic
inequality for the set of all Riemannian metrics on the two-sphere and conjectured (following E.
Calabi) that the corresponding optimal constant C should be 1/(2

√
3). This optimal constant

corresponds to the flat metric gc with three conical singularities obtained by gluing two copies of
an equilateral triangle along their boundary. In [5], we proved the following local version of this
conjecture: any Riemannian metric g sufficiently C1-closed from the Calabi-Croke metric gc outside
its singularities satisfies the optimal inequality

vol(S2, g) ≥ 1
2
√

3
· sys(S2, g)2,

the equality case being reached only by metrics homothetic to gc. It is important to remark that such
Riemannian metrics g necessarily also have three conical singularities of angle 2π/3. The major
ingredient in our proof is a degree 3 ramified cover of the two-sphere by the two-torus, relying the
systolic properties of both surfaces.

In the same spirit, we can look for systolic inequalities available for a subset of metrics made
of some one-parameter deformations of a fixed metric. The first result in this direction has been
proved in [8] and states that the round metric g0 on the two-sphere satisfies an optimal systolic
inequality for natural one-parameter deformations: for any non-trivial smooth function Ψ : S2 → R
such that

∫
S2 Ψdvg0 = 0 there exists a positive ε such that for 0 < |t| < ε

area(S2, (1 + tΨ)2 · g0)
sys(S2, (1 + tΨ)2 · g0)2

>
area(S2, g0)
sys(S2, g0)2

=
1
π
.

In the article [1] written in collaboration with Juan-Carlos Álvarez Paiva, we reformulate systolic
geometry in a contact-geometric context. By using the canonical perturbation theory to exploit the
large symmetry group that systolic geometry inherits, we prove among others things the following
optimal systolic inequality: any smooth volume-preserving deformation gt of the canonical metric
g0 on the real projective space RPm which does not coincide to all orders to trivial defomations of
the form φ∗t g0 for some isotopy φt satisfies

vol(RPm, gt)
sys(RPm, gt)m

>
vol(RPm, g0)

sys(RPm, g0)m

for small non-zero values of t. To appreciate the result, recall that for m > 2 the systolic optimality
of the standard metric g0 on RPm is an open question since the work of P. Pu in 1952. In this
paper, we also characterize contact structures which are critical for the systolic volume: they are
exactly the regular contact structures, that is contact forms for which the Reeb flow is periodic (the
analog of Zoll metrics in Riemannian geometry). As a consequence, for any closed manifold, the
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smooth Finsler metrics which are critical for the systolic volume associated to the Holmes-Thompson
volume notion are exactly Zoll Finsler metrics.

The comparaison of the systole with other Riemannian invariants such as the diameter is also
a natural and deep question. For a closed non-simply connected Riemannian manifold (M, g), it
is straighforward to see that sys(M, g) ≤ 2 · diam(M, g). But for simply connected manifolds,
the question is much more difficult. Until now, the only simply connected manifold for which a
universal inequality exists between the systole and the diameter is the two-sphere. More precisely,
A. Nabutovsky & R. Rotman [NabRot02] and S. Sabourau [Sab04], improving previous bounds
due to C. Croke [Cro88] and M. Maeda [Mae94], proved that for any Riemannian metric g on the
two-sphere sys(S2, g) ≤ 4 · diam(S2, g). It was a long-standing conjecture that the best constant
in this inequality should be 2, the equality case being reached by the round metric. In the article
[7] written in collaboration with C. Croke and M. Katz, we prove that this conjecture is false, even
in its local form: there exists smooth deformations {gt} of the round metric by Zoll Riemannian
metrics such that sys(S2, gt) > 2 · diam(S2, gt) for small non-zero values of t.

Systolic geometry of homology classes.

Given a pair (G, a) where G is a finitely presentable group and a an integer homology class of G,
the systolic volume is defined as the least volume of any geometric realisation of the homology class
by a pseudomanifold endowed with a polyhedral metric for which the length of curves representing
elements of G are at least 1. We know by [Gro83] that an essential manifold M always satisfies
a systolic inequality for the homotopical systole over the set of all Riemannian metrics. The best
constant S(M) involved in such an inequality is called the systolic constant and coincides with
the systolic volume of the pair (π1(M), f∗[M ]) where f : M → K(π1(M), 1) is the classifying
map of M into its corresponding Eilenberg-MacLane space. This result shared by I. Babenko
[Bab06, Bab08] and M. Brunnbauer [Bru08] determines precisely the topological nature of the
systolic constant. In the paper [2] written in collaboration with I. Babenko we study numerous
aspects of the systolic volume showing that it is a complex invariant of homology classes of finitely
presentable groups. Among other results, we show that for any dimension m ≥ 3 there exists
an infinite sequence of finitely presentable pairwise distinct groups {Gi} for which at least one
irreducible class ai ∈ Hm(Gi,Z) satisfies S(Gi, ai) ≤ 1. So we can not hope finiteness results
without additional restrictions. An example of efficient restriction is illustrated by the following
result: the systolic volume of integer multiples ka of a fixed homolgy class a is a sublinear function
in k. This result is strongly connected with the asymptotic behaviour of the systolic constant
under the operation of connected sum. We also prove that the systolic volume of a homology class
is bounded from below by its torsion, thus addressing to a question of M. Gromov in [Gro96].
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1. Geometry of surfaces through the length of closed curves

The first part of this report deals with surfaces. In the same way a taylor determines the
geometry of a body by carefully taking some relevant measures, we study the geometry of surfaces
through the lengths of some special closed curves. These curves are respectively the diastole, which
corresponds to a curve obtained by a minimax process on the one-cycle space, the curves involved
in a short decomposition of the surface by elementary topological subsets—the pants—, and short
homologically independent curves. We look for bounds on the length of these curves by the area
of the surface which is equivalent to estimate their length while the area is normalized. We will
present the main results of the article [3], [4], and [6] written in collaboration with H. Parlier
and S. Sabourau. In the sequel, all surfaces are supposed to be orientable in order to facilitate
the presentation and we refer to [3], [4], and [6] for considerations in the non-orientable case. All
Riemannian metrics are supposed to be smooth. Otherwise stated all surfaces are supposed to be
closed and connected.

1.1. Diastole. Using the isomorphism between the second homotopy group of a two-sphere and
the fundamental group of its loop space relatively to the subspace of constant loops, G. D. Birkhoff
proved the existence of a nontrivial closed geodesic on every Riemannian two-sphere using a mini-
max argument, see [Bir27]. The length of the shortest closed geodesic obtained by such a minimax
process can not be uniformly bounded by the square root of the area as follows from the example
of two-spheres with constant area and three spikes arbitrarily long (see [Sab04, Remark 4.10] for
further detail). This made remarkable the result of C. Croke [Cro88] that the systole—the shortest
length of a closed geodesic—of any Riemannian two-sphere is uniformly bounded by the square
root of its area. More precisely, any Riemannian metric g on the two-sphere satisfies the systolic
inequality

(1.1) sys(S2, g) ≤ 31
√

area(S2, g).

The constant in this inequality is not optimal and has been improved several times, see [NabRot02],
[Sab04] and [Rot06].

On non-simply connected closed Riemmanian surfaces, no minimax principle is required to show
the existence of a closed geodesic. The minimum of the length functional over all non-contractible
loops is always positive and realized by the length of a non-contractible closed geodesic. We call this
minimum the homotopical systole and denote it by sysπ. In particular the systole is well defined
on such surfaces and satisfies sys ≤ sysπ. This is a central result in systolic geometry that the
homotopical systole can be uniformly bounded by the square root of the area. More precisely,
every closed Riemannian surface (M, g) of genus γ ≥ 1 satisfies the following systolic inequality

(1.2) sysπ(M, g) ≤ C log(γ + 1)
√
γ

√
area(M, g)

where C is a universal constant, cf. [Gro83], [Bal04] and [KatzSab05] for three different proofs. In
this theorem, the homotopical systole can be replaced by the homological systole— the shortest
length of a homologically non-trivial loop—, see [Gro96]. The dependence on the genus in inequal-
ity (1.2) is optimal for both homotopical and homological systoles, see [BusSar94].

The existence of a closed geodesic on a Riemannian closed surface (M, g), possibly a two-
sphere, can also be proved through a minimax argument on a different space, namely the one-cycle
space Z1(M ; Z). Loosely speaking, this space arising from geometric measure theory is made of
multiple curves (unions of oriented loops) endowed with some special topology, cf. [6] for a precise
definition. The use of the one-cycle space, rather than the loop space, introduces some flexibility
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and permits to define a minimax process on any closed Riemannian surface (M, g) using F. Alm-
gren’s isomorphism [Almg60] between the relative fundamental group π1(Z1(M ; Z), {0}) and the
second homology group H2(M ; Z) ' Z. More precisely, we define the diastole over the one-cycle
space as

(1.3) dias(M, g) := inf
(zt)

sup
0≤t≤1

mass(zt)

where (zt) runs over the families of one-cycles inducing a generator of π1(Z1(M ; Z), {0}) and
mass(zt) represents the mass (or length) of zt. From a result of J. Pitts [Pit74, p. 468], [Pit81,
Theorem 4.10] (see also [CalCao92]), this minimax principle gives rise to a union of closed geodesics
(counted with multiplicity) of total length dias(M, g). Hence,

sys(M, g) ≤ dias(M, g).

This principle has been used in [CalCao92], [NabRot02], [Sab04], [Rot05] and [Rot06] in the study
of closed geodesics on Riemannian two-spheres.

In the article [6] we show in collaboration with S. Sabourau that the length of the shortest closed
geodesic obtained by such a minimax process on the one-cycle space is uniformly bounded by the
square root of the area. More precisely, we obtain the following diastolic inequality.

Theorem 1.1. There exists a positive constant C ≤ 108 such that every closed Riemannian sur-
face (M, g) of genus γ ≥ 0 satisfies

(1.4) dias(M, g) ≤ C
√
γ + 1

√
area(M, g).

Since the minimax principle (1.3) gives rise to a union of closed geodesics of length dias(M, g),
Theorem 1.1 yields a construction of short closed geodesics on surfaces through Morse theory over
the one-cycle space.

The dependence on the genus in inequality (1.4) is optimal: the closed hyperbolic surfaces
of arbitrarily large genus with Cheeger constant bounded away from zero constructed in [Bro86]
provide examples of surfaces with area ' γ and dias & γ, see [6, Remark 7.3]. This dependence of
the inequality (1.4) on the genus should be compared with the one in (1.2).

When the metric is bumpy, the diastole corresponds by definition to the length of a one-cycle of
index one. Recall that the index of a one-cycle z of mass κ is defined as

indZ(z) = min{i ∈ N | πi(Zκ1 (M,Z) ∪ {γ},Zκ1 (M,Z)) is not trivial }

where Zκ1 (M,Z) = {z ∈ Z1(M,Z) | mass(z) < κ}. It is important to remark that the relation
between the filling radius (see [Gro83]) of a bumpy Riemannian two-sphere and the length of its
shortest one-cycle of index one established in [Sab04] cannot be extended to the diastole. Indeed,
from [Sab04, Theorem 1.6], there exists a sequence gn of Riemannian metrics on the two-sphere
such that

lim
n→+∞

FillRad(S2, gn)
dias(S2, gn)

= 0.

This result illustrates the difference of nature between the length of the shortest closed geodesic
or of the shortest one-cycle of index one, which can be bounded by the filling radius on the two-
sphere, and the diastole. It also shows that the proof of Theorem 1.1 requires different techniques.
The proof relies on an inequality between the area and the Cheeger constant, and a cut-and-paste
argument on one-cycles.
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1.2. Pants decompositions. Start with a hyperbolic surface S of genus γ with n cusps and recall
that its area is equal to 2π(2γ − 2 + n). A pants decomposition is a maximal collection of disjoint
simple closed geodesics. Such a collection is necessarily made of exactly 3γ − 3 + n loops whose
complementary region is a disjoint union of 2γ − 2 + n surfaces of topological type (0, 3) (so-called
pants). For a given pants decomposition P of S, we define its length as

length(P) = max
α∈P

length(α).

L. Bers [Bers74, Bers85] showed that there always exists a pants decomposition whose length
is bounded from above by some universal constant which only depends on the topology of the
surface. This result was quantified in the closed case by P. Buser [Bus81, Bus92], and P. Buser and
M. Sëppala [BusSep92] who showed that the optimal constant —called Bers’ constant— behaves
at least like ∼ √γ and at most like ∼ γ. In the punctured case P. Buser proved [Bus92] that Bers’
constant grows at most linearly in the number of cusps. In any case the correct behavior remains
unknown, but P. Buser conjectured the following.

Conjecture 1.1. Bers’ constants for surfaces of genus γ with n cusps behave roughly like
√
γ + n.

In the sequel we will denote Bers’ constant in signature (γ, n) by Bγ,n. Before explaining our
results in the hyperbolic case, we explain how to generalize pants decomposition to the Riemannian
context. Given a Riemannian surface (M, g) of genus γ with nmarked points, a pants decomposition
is a collection of 3γ − 3 + n disjoint simple loops which cut the surface into 2γ − 2 + n pairs of
pants. Here a pair of pants is either a three holed sphere, a cylinder with one marked point or a
disk with two marked points. The length of such a pants decomposition is defined as the maximal
length of its loops. As a byproduct of the proof of Theorem 1.1 we derive the following result, see
[4, Proposition 6.3].

Corollary 1.1. Let (M, g) be a closed Riemannian surface of genus γ with n marked points. Then
(M, g) admits a pants decomposition with respect to the marked points of length at most

C
√
γ + 1

√
area(M, g)

for an explicit universal constant C.

This corollary implies previously known linear upperbounds by P. Buser and M. Sëppala for genus
growth. It also implies the square root upperbound conjectured by P. Buser for hyperbolic punc-
tured spheres. Indeed given a hyperbolic sphere S with n punctured points, cut a small punctured
disk of area ε around each punctured point and define a new surface S̃ by gluing along each bound-
ary component a round hemisphere with a marked point at its center. As the Riemannian surface
S̃ with n marked points (the centers of the round hemispheres) admits a pants decomposition of
length at most

C

√
area(S̃),

this implies that

B0,n ≤ C
√

2π(n− 2)

by letting ε→ 0 as area(S) = 2π(n− 2).

But the constant involved in this last inequality is very bad (more than 107), the techniques of
[6] being not adapted to the study of pants decomposition. In collaboration with H. Parlier, we
prove in [3] Buser’s conjecture in the case of punctured spheres by showing that it fundamentally
relies on a classical result: the so-called Besicovitch lemma. Then we prove Buser’s conjecture in
the closed case for hyperelliptic surfaces. More precisely, our results are the following.
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Theorem 1.2. 1) Any hyperbolic sphere with n ≥ 4 cusps admits a pants decomposition of length
at most 30

√
2π(n− 2).

2) For any n > 6, there exists a hyperbolic sphere with n punctured points such that any pants
decomposition has length at least

8 arcsinh 1 (

√
n− 4

2
− 1).

3) Any hyperelliptic hyperbolic surface of genus γ ≥ 2 admits a pants decomposition of length at
most 51

√
4π(γ − 1).

4) For any γ ≥ 2, there exists a hyperelliptic hyperbolic surface of genus γ such that any pants
decomposition has length at least

4arcsinh1(

√
γ − 3

2
− 1).

In particular, we derive from this theorem the optimal dependance of Bers’ constant B0,n in the
number of punctured points:

4
√
n− 2 . B0,n ≤ 76

√
n− 2.

The proof of point 1) in Theorem 1.2 relies both on an induction argument and Besicovitch lemma,
and should be compared to the proof of Theorem 1.1. The proof of point 2) is the explicit construc-
tion of the asymptotically optimal two-spheres. This construction is inspired by the example of
P. Buser called the ”hairy torus”—a hairy torus with hair tips pairwise glued together whose genus
is γ and whose length of pants decompositions asymptotically grows at least like ∼ √γ—. Point
3) is obtained as follows. Our upper estimate for length of short pants decomposition of punctured
spheres admits a version for two-spheres with conical points of angle π. Quotient of hyperelliptic
surfaces by their hyperelliptic involution being such two-spheres, we pull back short pants decom-
position on the quotient sphere to pants decomposition of controlled length on the initial surface.
Lastly point 4) is proved by adapting the examples of point 2) to quotient of hyperelliptic surfaces
and using the strategy of point 3).

Given a pants decomposition on a closed marked Riemannian surface or a punctured hyperbolic
surface, we can also ask for bounds on the total length of the pants decomposition defined as the
sum of the length of the curves involved in the pants decomposition. Our main theorem in this
direction states that for any fixed genus γ, one can control the growth rate of total length of some
pants decomposition of a surface of area ∼ γ + n by a factor which grows like n log n, where n is
the number of marked or punctured points. This result appeared in [4] written in collaboration
with H. Parlier and S. Sabourau. More precisely, we have the following statement.

Theorem 1.3. Fix n ≥ 1 and γ ≥ 0. Let (M, g) be a hyperbolic surface of genus γ with n
cusps or a closed Riemannian surface of genus γ with n marked points whose area is normalized to
2π(2γ + n− 2).

Then (M, g) admits a pants decomposition whose total length is bounded from above by

Cγ n log(n+ 1),

where Cγ is an explicit genus dependent constant.

This estimate is sharp except possibly for the log(n + 1) term. Indeed, the total lengths of the
pants decompositions of hyperbolic surfaces of genus γ with n cusps and no closed geodesics of
length less than 1

100 are at least C ′γ n for some positive constant C ′γ depending only on the genus.
As a corollary to the above we show that a hyperelliptic surface of genus γ admits a pants

decomposition of total length at most ∼ γ log γ. This is in strong contrast with the general case
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according to a result of L. Guth, H. Parlier and R. Young [GutParY12]: “random” hyperbolic
surfaces have all their pants decompositions of total length at least ∼ γ7/6−ε for any ε > 0.

Theorem 1.3 is proved by considering naturally embedded graphs which capture part of the
topology and geometry of the surface, and studying these graphs carefully. This method also
permits us to generalize estimate (1.2) to almost γ homologically independent curves. This is the
purpose of the next section.

1.3. Homologically independent loops. The homological systole of a closed Riemannian surface
of genus γ with normalized area 4π(γ − 1) is at most ∼ log γ. This result is equivalent to the
version of inequality (1.2) for the homogical systole due to M. Gromov, see [Gro96, 2.C]. The
dependence in the genus is optimal: there exist families of hyperbolic surfaces, one in each genus,
whose homological systoles grow like ∼ log γ. The first of these were constructed by P. Buser and
P. Sarnak in their seminal article [BusSar94], and there have been other constructions since by R.
Brooks [Bro99] and M. Katz, M. Schaps and U. Vishne [KatzSchVish07]. By showing that the
shortest homologically nontrivial loop on a hyperbolic surface lies in a “thick” embedded cylinder,
P. Buser and P. Sarnak also derived new bounds on the minimal norm of nonzero period lattice
vectors of Riemann surfaces. This result paved the way for a geometric approach of the Schottky
problem which consists in characterizing Jacobians (or period lattices of Riemann surfaces) among
abelian varieties.

In [BusSep02, BusSep03], P. Buser and M. Seppälä studied bounds on the lengths of curves in
a homology basis for closed hyperbolic surfaces. Note however that without a lower bound on
the homological systole, the γ + 1 shortest homologically independent loop cannot be bounded by
any function of the genus. Indeed, consider a hyperbolic surface with γ very short homologically
independent (and thus disjoint) loops. Every loop homologically independent from these short
curves must cross one of them, and via the collar lemma, can be made arbitrarily large by pinching
our initial γ curves.

On the other hand, without assuming any lower bound on the homological systole, M. Gro-
mov [Gro83, 1.2.D’] proved that on every closed Riemannian surface of genus γ with area nor-
malized to 4π(γ − 1), the length of the γ shortest homologically independent loops is at most
∼ √γ. Furthermore, Buser’s so-called hairy torus example [Bus81, Bus92] shows that this bound
is optimal, even for hyperbolic surfaces.

In the article [4], we obtain with H. Parlier and S. Sabourau new bounds on the lengths of short
homology basis for closed Riemannian surfaces with homological systole bounded from below.

Theorem 1.4. Let (M, g) be a closed Riemannian surface of genus γ with homological systole at
least ` and area equal to 4π(γ − 1). Then there exist 2γ loops α1, . . . , α2γ on M which induce a
basis of H1(M ; Z) such that

(1.5) length(αk) ≤ C0
log(2γ − k + 2)

2γ − k + 1
γ,

where C0 = 216

min{1,`} .
In particular:

(1) the lengths of the αi are bounded by C0 γ;
(2) the median length of the αi is bounded by C0 log(γ + 1).

The linear upper bound in the genus of item (1) already appeared
in [BusSep03] for hyperbolic surfaces, where the authors obtained a similar bound for the length of
so-called canonical homology basis. They also constructed a genus γ hyperbolic surface all of whose
homology bases have a loop of length at least C γ for some positive constant C. This shows that
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the linear upper bound in (1) is roughly optimal. However, the general bound (1.5) on the length
of the loops of a short homology basis, and in particular the item (2), cannot be derived from the
arguments of [BusSep03] even in the hyperbolic case. The bound obtained in (2) is also roughly
optimal. Indeed, the Buser-Sarnak surfaces [BusSar94] have their homological systole greater or
equal to 4

3 log γ minus a constant.

A natural question is to find out for how many homologically independent curves does Gromov’s
log γ bound hold. In [4], we show using Theorem 1.4 that on every closed Riemannian surface of
genus γ with normalized area there exist almost γ homologically independent loops of lengths at
most ∼ log γ. More precisely, we prove the following.

Theorem 1.5. Let η : N→ N be a function such that

λ := sup
γ

η(γ)
γ

< 1.

Then there exists a constant Cλ such that for every closed Riemannian surface (M, g) of genus γ
there are at least η(γ) homologically independent loops α1, . . . , αη(γ) which satisfy

length(αi) ≤ Cλ
log(γ + 1)
√
γ

√
area(M, g)

for every i ∈ {1, . . . , η(γ)}.

Typically, this result applies to η(γ) = [λγ] where λ ∈ (0, 1).

Thus, the previous theorem generalizes Gromov’s log bound on the homological systole to the
lengths of almost γ homologically independent loops. Note that its proof differs from other systolic
inequality proofs. Specifically, it directly yields a log γ bound on the homological systole without
considering the homotopical systole (that is, the shortest length of a homotopically nontrivial loop).
Initially, M. Gromov obtained his bound from the bound (1.2) on the homotopical systole using
surgery, cf. [Gro96, 2.C]. However the original proof of the log γ bound on the homotopical systole,
cf. [Gro83, 6.4.D’] and [Gro96], as well as the alternative proofs available, cf. [Bal04, KatzSab05],
do not directly apply to the homological systole.

One can ask how far from being optimal our result on the number of short (homologically
independent) loops is. Of course, in light of the Buser-Sarnak examples, one can not hope to do
(roughly) better than a logarithmic bound on their lengths, but the question on the number of
such curves remains. Now, because of Buser’s hairy torus example, we know that the γ shortest
homologically independent loops of a hyperbolic surface of genus γ can grow like ∼ √γ and that
the result of Theorem 1.5 cannot be extended to η(γ) = γ. Still, one can ask for γ−1 homologically
independent loops of lengths at most ∼ log γ, or more generally for any number of homologically
independent loops of lengths at most ∼ log γ which grows asymptotically like γ. Note that the
surface constructed from Buser’s hairy torus does not provide a counterexample in any of these
cases.

Our next theorem shows this is impossible, which proves that the result of Theorem 1.5 on the
number of homologically independent loops whose lengths satisfy a log γ bound is optimal. Before
stating this theorem, it is convenient to introduce the following definition.

Definition 1.1. Given k ∈ N∗, the k-th homological systole of a closed Riemannian mani-
fold (M, g), denoted by sysk(M, g), is defined as the smallest real L ≥ 0 such that there exist k
homologically independent loops on M of length at most L.
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With this definition, under the assumption of Theorem 1.5 every closed Riemannian surface of
genus γ with area 4π(γ − 1) satisfies

sysη(γ)(M, g) ≤ Cλ log(γ + 1)

for some constant Cλ depending only on λ. Furthermore, still under the assumption of Theorem 1.5,
Gromov’s sharp estimate, cf. [Gro83, 1.2.D’], with this notation becomes

sysγ(M, g) ≤ C√γ
where C is a universal constant.

We can now state the second main result of [4].

Theorem 1.6. Let η : N→ N be a function such that

lim
γ→∞

η(γ)
γ

= 1.

Then there exists a sequence of genus γk hyperbolic surfaces Sγk
with γk tending to infinity such

that

lim
k→∞

sysη(γk)(Sγk
)

log γk
=∞.

We now present an application of theorem 1.5 to the geometry of Jacobians of Riemann surfaces,
extending the work [BusSar94] of P. Buser and P. Sarnak.

Consider a closed Riemann surface S of genus γ. We define the L2-norm |.|L2 , simply noted |.|,
on H1(S; R) ' R2γ by setting

(1.6) |Ω|2 = inf
ω∈Ω

∫
S
ω ∧ ∗ω

where ∗ is the Hodge star operator and the infimum is taken over all the closed one-forms ω on S
representing the cohomology class Ω. The infimum in (1.6) is attained by the unique closed harmonic
one-form in the cohomology class Ω. The space H1(S; Z) of the closed one-forms on S with integral
periods (that is, whose integrals over the cycles of M are integers) is a lattice of H1(S; R). The
Jacobian J of S is a principally polarized abelian variety isometric to the flat torus

T2γ ' H1(S; R)/H1(S; Z)

endowed with the metric induced by |.|.

In their geometric approach of the Schottky problem, P. Buser and P. Sarnak [BusSar94] also
proved that the homological systole of the Jacobian of a Riemann surface S of genus γ is at most
∼
√

log γ and this bound is optimal. In other words, there is a nonzero lattice vector in H1(S; Z)
whose L2-norm satisfies a

√
log γ upper bound. We extend their result by showing that there exist

almost γ linearly independent lattice vectors whose norms satisfy a similar upper bound. More
precisely, we have the following.

Corollary 1.2. Let η : N→ N be a function such that

λ := sup
γ

η(γ)
γ

< 1.

Then there exists a constant Cλ such that for every closed Riemann surface S of genus γ there are
at least η(γ) linearly independent lattice vectors Ω1, . . . ,Ωη(γ) ∈ H1(S; Z) which satisfy

(1.7) |Ωi|2L2 ≤ Cλ log(γ + 1)

for every i ∈ {1, . . . , η(γ)}.
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The only extension of the Buser-Sarnak estimate we are aware of is due to B. Muetzel [Mue10],
who recently proved a similar result with η(γ) = 2. Contrary to Theorem 1.5, we do not know
whether the result of Corollary 1.2 is sharp regarding the number of independent lattice vectors of
norm at most ∼

√
log γ.

To prove Theorem 1.4 we consider naturally embedded graphs which capture a part of the topol-
ogy and geometry of the surface, and recursively use on these graphs a systolic inequality due to
B. Bollobás, E. Szemerédi and A. Thomason [BolTho97, BolSze02]. Then, we derive Theorem 1.5
in the absence of a lower bound on the homological systole. In the hyperbolic case (restricting
ourselves to hyperbolic metrics in our constructions), we further obtain a crucial property for the
proof of Corollary 1.2: the loops given by Theorem 1.5 have embedded collars of uniform width.
To prove Theorem 1.6, we adapt known constructions of surfaces with large homological systole to
obtain closed hyperbolic surfaces of large genus which asymptotically approach the limit case.
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2. Local systolic geometry

In this second part of our report we present local systolic properties of some special metrics.
All these metrics share the same property: they have a lot of closed geodesics whose length is
precisely their systole. These results are included in the articles [1], [5], [7] and [8], the article [1]
being written in collaboration with J.C. Álvarez Paiva while the article [7] was a collaboration with
C. Croke and M. Katz. In a first part we consider the two-sphere endowed with two remarkable
metrics: a singular metric with three conical singularities which was conjectured by E. Calabi to
realize the minimum value of the ratio area/sys2 over smooth metrics, and the round metric. Then
we enlarge our study using contact geometry and give strong local systolic properties for any Zoll
Finsler smooth metric on a closed manifold. In the sequel, otherwise stated, all Riemannian or
Finsler metrics are supposed to be smooth.

2.1. Local systolic and diastolic geometry of the two-sphere. Given a smooth Riemannian
metric g on the two-sphere, recall that the systole is defined as the shortest length of a nontrivial
closed geodesic and is denoted by sys(S2, g). According to Croke’s inequality (1.1) the area is
bounded from below by the systole as follows:

area(S2, g) ≥ 1/312 · sys(S2, g)2.

The constant in the inequality was successively improved by A. Nabutovsky and R. Rotman
[NabRot02], S. Sabourau [Sab04] and R. Rotman [Rot06]. The best known constant (due to R. Rot-
man) is 1/32 but the optimal constant remains unknown. Surprisingly, the round sphere is not
a global minimum of the systolic area—the ratio area/sys2—. Indeed E. Calabi, see [Cro88], has
remarked that the singular metric gc on S2 defined by taking two identical equilateral triangles
glued along their boundary has systolic area 1/(2

√
3). While gc is nor smooth or (strictly) convex,

the surface (S2, gc) can be thickened to yield convex smooth two-spheres for which the systolic area
is strictly smaller than 1/π, the value which corresponds to the systolic area of the round metric
g0. This singular metric gc is conjectured to achieve the global minimum of the systolic area for
S2:

Conjecture 2.1 (Optimal systolic inequality for the two-sphere). For any smooth Riemannian
metric g on the two-sphere,

area(S2, g) ≥ 1
2
√

3
· sys(S2, g)2.

In section 1.1, we presented a diastolic inequality obtained in [6] with S. Sabourau that asserts
that for any smooth Riemannian two-sphere (S2, g)

area(S2, g) ≥ C · dias(S2, g)2

where C is some positive constant. Recall that the diastole denoted by dias(S2, g) is defined as the
value obtained by a minimax process over the space of one-cycles and satisfies

dias(S2, g) ≥ sys(S2, g).

Furthermore the two quantities coincide for smooth strictly convex Riemannian metrics by [CalCao92].
The diastolic area—the ratio area/dias2—of the singular metric gc equals to 1/(2

√
3) and the fol-

lowing conjecture appears rather natural.

Conjecture 2.2 (Optimal diastolic inequality for the two-sphere). For any Riemannian two-sphere
(S2, g),

area(S2, g) ≥ 1
2
√

3
· dias(S2, g)2.
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Observe that this conjecture is stronger than conjecture 2.1. By Pál’s Theorem [Pál21], conjec-
ture 2.2 holds for the special set of singular metrics obtained by gluing two copies of any convex
disk of the plane along their boundary.

In this section we focus on local properties of systolic and diastolic area near the singular metric
gc and near the round metric g0. By the uniformization theorem the two-sphere admits only one
conformal structure up to diffeomorphism. So we reduce our study to the local behaviour of systolic
and diastolic area over the space of metrics conformal respectively to gc or g0. Furthermore, these
functionals being scale invariant, we use this additional symmetry to further reduce the space of
metrics studied in the neighbourhood of g0, see below. We already point out that we will obtained
another type of local result for the round metric—and more generally for Zoll Finsler manifolds—
by using contact geometry and perturbation theory in section 2.3.

We begin by presenting our results in the neighbourhood of the singular metric. Denote by Mc

the space of Riemannian metrics of class C1 with three conical singularities of angle 2π/3. We
remark in [5, Proposition 2.2] that the infimum of the diastolic area over Mc coincides with the
infimum of the diastolic area over the space of smooth metrics. So Mc is relevant for our local
study. The natural topology on Mc is the C1-topology, defined as the topology induced by the
C1 compact-open topology on C1(S2,R∗+) (see [Hir76, p. 34]). In [5] we prove the following local
version of conjecture 2.2.

Theorem 2.1 (Local minimality of the singular metric for the C1-topology). There exists an open
neighborhood O of gc in Mc with respect to the C1-topology such that for all g ∈ O,

area(S2, g) ≥ 1
2
√

3
dias(S2, g)2

with equality if and only if g is isometric to some multiple of gc.

As dias ≥ sys, Theorem 2.1 remains valid with the systole replacing the diastole. Our proof is
based on the study of a degree 3 ramified cover of S2 by the two-torus T2 and an optimal systolic
inequality on the torus due to C. Loewner. In [Sab10], S. Sabourau found an alternative proof of
our theorem which does not make use of the uniformization theorem, but is based on the study
of the same ramified cover, and carries over to metrics which are closed enough for the Lipschitz
distance (in particular thus authorizing small variations of the angles of the three conical points).

We now present our results in the neighbourhood of the round metric. Denote byM0 the space
of smooth Riemannian metrics of the two-sphere. The space D of smooth diffeomorphism naturally
acts on M0 and both diastolic and systolic area are invariant under this action, as well as under
the action of R∗+ on M0 by homothety : for any metric g ∈ M0, any diffeomorphism φ ∈ D and
any scalar λ > 0, the metric λ · φ∗g has the same diastolic (respectively systolic) area as g. Denote
by

T0 :=
{
f2 · g0 | f ∈ C∞(S2,R∗+) with

∫
S2

fdvg0 = 4π
}

the space of normalized Riemannian metrics smooth conformal to g0. (Here dvg0 denotes the
Riemannian volume associated to g0 which satisfies

∫
S2 dvg0 = 4π.) The space T0 parametrizes the

quotient ofM0 under the action of D and R∗+, any smooth metric being isometric to some multiple
of a metric in T0 thanks to the uniformization theorem. It is important to remind that diastole and
systole coincide for smooth strictly convex metrics according to [CalCao92]. Thus near the round
metric it is equivalent to study systolic or diastolic area. In order to state our next result, we need
the following definition.
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Definition 2.1 (Natural paths between metrics). Let g and h be two Riemannian metrics on some
manifold. The natural path {gt}t∈[0,1] of Riemannian metrics from g to h is defined by the following
equation on the associated distance functions :

dgt = (1− t)dg + tdh

for t ∈ [0, 1].

A natural path between two metrics is thus the linearly parametrized segment between the
corresponding distance functions. By a result of V. Guillemin [Gui76], there exist plenty of smooth
deformations of the round metric by smooth (non-isometric) Zoll metrics—metrics all of whose
geodesics are closed and of the same length—. As Zoll metrics all have the same diastolic area,
the round metric can not be a strict local minimum of diastolic area. Somewhat surprising, a
consequence of our results in [8] is that the round metric is a strict local minimum of diastolic area
along natural paths in T0. More precisely, we have the following theorem.

Theorem 2.2 (Local minimality of the round metric along natural paths). Let g be a metric in
T0 different from g0 and denote by {gt} the natural path from g0 to g. Then there exists a positive
ε such that for 0 < t < ε

area(S2, gt) >
1
π

dias(S2, gt)2.

This statement strongly suggests that the round metric is a local minimum of diastolic (and thus
systolic) area. However recall that even in the finite dimensional case we can construct functions
with a local minimum along natural paths which is not a local minimum.

We now briefly explain how to derive Theorem 2.2 from the main result of [8].

Proof. Recall that (see [8, Proposition 4]) if Ψ : S2 → R is a non-trivial smooth function such that∫
S2

Ψdvg0 = 0,

then there exists a positive ε such that for 0 < |t| < ε

area(S2, (1 + tΨ)2 · g0) >
1
π

dias(S2, (1 + tΨ)2 · g0)2.

Now for any g = f2 · g0 ∈ T0 the natural path from g0 to g writes as

gt = (1 + t(f − 1))2 · g0

with
∫
S2(f − 1)dvg0 = 0, and Theorem 2.2 directly follows. �

In [8] we derive the criticality of the metric g0 for diastolic area. But we will present this result
in a more general framework in section 2.3. In particular, we will see that in fact any smooth Zoll
Finsler metric is a critical point of systolic area.

Both Theorems 2.1 and 2.2 are proved using the same strategy. For the variations of the metric
in concern, the area could only increase while the average of the lengths of closed geodesics realizing
the diastole is constant. So at least one of these lengths is not greater than the initial diastole and
the local study of this closed curve permits to construct a short family of one-cycles sweeping out
the deformed two-sphere.
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2.2. Systole and diameter of Zoll metrics on the two-sphere. In this section we are inter-
ested in comparing the systole of a Riemannian two-sphere with another Riemannian invariant,
namely the diameter. C. Croke proved in [Cro88] that any Riemannian two-sphere (S2, g) satisfies
the inequality

sys(S2, g) ≤ 9 · diam(S2, g).

The constant in the inequality was successively improved by M. Maeda [Mae94], A. Nabutovsky and
R. Rotman [NabRot02], and S. Sabourau [Sab04]. The best known constant is 4, see [NabRot02] and
[Sab04], and it has been strongly believed that the optimal constant was 2 meaning that the round
metric is optimal for the relationship between these two invariants, see [NabRot02, Introduction].

In [7] we construct in collaboration with C. Croke and M. Katz counterexamples to this conjec-
tured inequality. More precisely, we prove the following.

Theorem 2.3. There exist smooth variations {gt} of the round metric g0 by smooth Zoll metrics
such that

sys(S2, gt) > 2 · diam(S2, gt)

for sufficiently small t > 0.

So the round metric is not optimal for the ratio sys/diam. Such families of Zoll metrics with sys >
2 · diam are obtained via the theorem of V. Guillemin’s [Gui76] asserting that for any smooth odd
function on the two-sphere there exists a smooth conformal deformation of the round metric by
Zoll metrics whose first derivative is precisely the prescribed odd function. By carefully choosing
the odd function, we are able to ensure that the diameter strictly decreases while the systole
remains unchanged. It is important to remark that, as Guillemin’s theorem is obtained by applying
an implicit function theorem, we have no idea of how far from 2 is the optimal constant in the
systole/diameter inequality.

2.3. Local systolic geometry of Zoll Finsler manifolds. In this section we present the results
obtained in collaboration with J.C. Álvarez Paiva in [1]. We first introduce contact geometry as a
natural setting for the study of systolic inequalities and then explain how we deduce new insights
in systolic geometry by applying basic tools in perturbation theory.

A contact manifold is a pair (X,α) consisting of a (2n+1)-dimensional manifold together with a
smooth 1-form α such that the top order form α∧dαn never vanishes. In the sequel we suppose our
contact manifolds are closed and oriented in such a way that α∧dαn > 0. The kernel of α defines a
field of hyperplanes in the tangent space of X (a vector sub-bundle of TX of co-dimension one) that
is maximally non-integrable called the contact structure associated to the contact form α. Note
that if (X,α) is a contact manifold and ρ : X → R is a smooth function that never vanishes, the
form ρα is also a contact form which defines the same contact structure as α. Contact manifolds
come with a natural volume:

vol(X,α) :=
∫
X
α ∧ dαn .

They also carry a natural vector field, the Reeb vector field Rα, defined by the equations dα(Rα, ·) =
0 and α(Rα) = 1. The flow of the vector field Rα (remember our contact manifolds are all closed)
is called the Reeb flow and its orbits are the Reeb orbits.

Definition 2.2. The systole of a contact manifold (X,α), which we denote by sys(X,α), is the
smallest period of any of its periodic Reeb orbits. We define the systolic volume of a contact
manifold (X,α) of dimension 2n+ 1 as the ratio

S(X,α) =
vol(X,α)

sys(X,α)n+1
.
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Remark that in this definition we are implicitly assuming the existence of periodic Reeb orbits
on closed contact manifolds. We can bypass this thorny issue by setting S(X,α) = 0 if there are
no periodic Reeb orbits, but Weinstein’s conjecture is that they always exist. More importantly,
their existence has been proved for all the contact manifolds that appear in our results, see [1].

From the viewpoint of perturbation theory, one advantage of working in the contact setting is
that we may assume that every smooth deformation of a contact manifold (X,α0) is of the form
ρsα0, where ρs is a smooth function on M depending smoothly on the parameter. More precisely,
Gray’s stability theorem (see Theorem 2.2.2 in [Gei08]) states that given a smooth deformation αs
(s ranging over some compact interval), there exists an isotopy Φs such that Φ∗sαs = ρsα0. In other
words, we may assume that the contact structure stays fixed along the deformation. Our main
results about local systolic geometry of contact manifolds concern the following generalization of
Zoll manifolds.

Definition 2.3. A contact manifold (X,α) is said to be regular if its Reeb flow is periodic and all
the Reeb orbits have the same prime period sys(X,α).

Our first main result in [1] states that the critical points of the systolic volume are precisely the
regular contact manifolds.

Theorem 2.4. A contact manifold (X,α) is regular if and only if for every smooth isosystolic
deformation the derivative of the function s 7→ vol(X,αs) vanishes at s = 0.

In studying systolic volume by perturbation techniques, we face the problem that it is not a
differentiable function. In Theorem 2.4 we bypassed this difficulty by considering smooth isosystolic
deformations—smooth deformations along which the systole remains constant—. However, one of
the key features of the work [1] is that we are able to work with arbitrary smooth deformations,
which we normalize to be volume-preserving. In order to state the next result we need the following.

Definition 2.4. A smooth deformation αs of a contact form α0 is said to be trivial if there exist
a smooth real-valued function λ(s) and an isotopy Φs such that αs = λ(s)Φ∗sα0.

A smooth deformation αs is said to be formally trivial if for every n ∈ N there exists a trivial
deformation α

(n)
s that has n-order contact with αs at s = 0.

Observe that systolic volume is constant along trivial deformations. Our second main result in
[1] is the following description of the local behaviour of systolic volume near regular manifolds.

Theorem 2.5. Let (X,αs) be a smooth deformation of a regular contact manifold (X,α0). If the
deformation is not formally trivial, then the function s 7→ S(X,αs) attains a strict local minimum
at s = 0. If, on the other hand, the deformation is formally trivial, then

S(X,αs) = S(X,α0) +O(|s|k) for all k > 0.

The main ingredient in proving Theorems 2.4 and 2.5 is the following. [1, Theorem 4.1] implies
that if a deformation of a regular contact form α0 is of the form αs = Φ∗sρsα0, where Φs is an
isotopy and ρs is a smooth one-parameter family of smooth integrals of motion—functions that
are invariant under the Reeb flow of α0—, then the systolic volume of αs attains a minimum at
s = 0. Given the large number of isotopies and integrals of motion for a periodic Reeb flow, we
could hope that every deformation of α0 is of this form and thus prove the local systolic minimality
of regular contact manifolds. Of course, this idea does not work. However, the theory of normal
forms—which we adapt to contact geometry—tells us that it almost works.

We shall now explain the consequences for classical systolic geometry. It is well known that
geodesic flows of Riemannian and Finsler metrics are Reeb flows (see, for example, Theorem 1.5.2
in [Gei08]). The precise setup is as follows: through the Legendre transform, a (not necessarily
reversible) Finsler metric F on a manifold M gives rise to a Hamiltonian H defined in the cotangent
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bundle. The restriction α of the canonical one-form to the unit cotangent bundle S∗HM (i.e., the
set of covectors where H = 1) is a contact form and its Reeb flow is the geodesic flow of the metric.
A periodic Reeb orbit in (S∗HM,α) projects down to a closed geodesic on M whose length equals
the period (and the action) of the orbit. In particular, sys(S∗HM,α) = sys(M,F ). If the metric
F is Riemannian and the manifold has dimension m, the Riemannian volume of (M,F ) and the
contact volume of (S∗HM,α) are related by the equality

vol(S∗HM,α) = m!bmvol(M,F ) ,

where bm is the volume of the m-dimensional Euclidean unit ball. When the metric is Finsler,
the Holmes-Thompson volume is defined by the preceding equality (see [Tho96] and [AlvTho04]
for a detailed discussion of this definition). Once we remark that the Finsler metric F is Zoll—all
geodesics are closed and of the same length—if and only if the restriction of the canonical one-
form to the cotangent bundle S∗HM is regular, we deduce from Theorems 2.4 and 2.5 the following
results.

Theorem 2.6. A closed Finsler manifold (M,F0) is Zoll if and only if for every smooth isosystolic
deformation Fs the derivative of the function s 7→ vol(M,Fs) vanishes at s = 0.

Theorem 2.7. Let (M,Fs) be a smooth volume-preserving Finsler deformation of a Zoll manifold
(M,F0). If the deformation is formally trivial—that is, if for every n ∈ N there exists a deformation
F

(n)
s by Zoll Finsler metrics that has n-order contact with Fs at s = 0—, then

sys(M,Fs) = sys(M,F0) +O(|s|k) for all k > 0.

If, on the other hand, the deformation is not formally trivial, then the function s 7→ sys(M,Fs)
attains a strict local maximum at s = 0.

Our methods work better for Finsler (eventually non-reversible) metrics than for Riemannian
metrics because only the former are stable under small contact perturbations.

One of the major open problems in systolic geometry is to determine whether the canonical Rie-
mannian metric in RPm (m > 2) is a minimum of the systolic volume. Specializing Theorem 2.7 to
the Riemannian setting and using the solution of the infinitesimal Blaschke conjecture by R. Michel
[Mich73] and C. Tsukamoto [Tsu81], we obtain in [1] the following result.

Theorem 2.8. Let gs be a smooth volume-preserving deformation of the canonical metric on one
of the projective spaces RPm, CPm, HPm or CaP 2 where m ≥ 2. If at s = 0 the deformation gs
is not tangent to all orders to trivial deformations (i.e., to deformations of the form φ∗sg0 for some
isotopy φs), then the infimum of the lengths of periodic geodesics of the metric gs attains π as a
strict local maximum at s = 0.

Spheres admit non-trivial Zoll deformations so the situation is more delicate. However, on the
two-sphere the result takes a particularly simple form.

Theorem 2.9. Let g0 be the canonical metric on the two-sphere and let gs = eρsg0 be any smooth
volume preserving deformation. If dρs/ds |s=0 is not odd, then the length of the shortest periodic
geodesic of (S2, gs) attains 2π as a strict local maximum at s = 0.

This result is sharp: the main theorem of [Gui76] states that if ρ̇ is odd, then there exists a
smooth deformation eρsg0 by Zoll metrics satisfying dρs/ds |s=0 = ρ̇. The length of the shortest
periodic geodesic is then constantly equal to 2π along the deformation.
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3. Systolic geometry of homology classes and groups

Using systolic geometry one can construct invariants of homology classes and groups. In this
last part of our report we present some properties about these invariants. The results presented
here are part of the article [2] written in collaboration with I. Babenko and the article [4] written
in collaboration with H. Parlier and S. Sabourau.

3.1. Systolic volume of homology classes. Let G be a finitely presentable group, and a ∈
Hm(G,Z) a non-trivial homology class of dimension m ≥ 1. We consider the various ways this
class can be realized by a pseudomanifold endowed with a polyhedral metric. For such realizations,
the two main geometrical ingredients are the volume of the pseudomanifold and the length of loops
representing non-trivial elements of G. The systolic volume turns out to be the simplest natural
way to compare these geometrical quantities in order to form an invariant and is defined as follows.
A geometric cycle (X, f) representing a is a pair (X, f) consisting of an orientable pseudomanifold
X of dimension m and a continuous map f : X → K(G, 1) such that f∗[X] = a where [X] denotes
the fundamental class of X and K(G, 1) the Eilenberg-MacLane space. The representation is said
to be normal if in addition the induced map f] : π1(X)→ G is an epimorphism. Given a geometric
cycle (X, f), we can consider for any polyhedral metric g on X (see [Bab06]) the relative homotopic
systole denoted by sysf (X, g) and defined as the least length of a loop γ of X whose image under
f is not contractible. The systolic constant of the geometric cycle (X, f) is then the value

Sf (X) := inf
g

vol(X, g)
sysf (X, g)m

,

where the infimum is taken over all polyhedral metrics g on X and vol(X, g) denotes the m-
dimensional volume of X. In the case where f : X → K(π1(X), 1) is the classifying map (induced
by an isomorphism between the fundamental groups), we simply denote by S(X) the systolic
constant of the pair (X, f). From [Gro83, Section 6], we have for any m ≥ 1 that

σm := inf
(X,f)

Sf (X) > 0,

the infimum being taken over all geometric cycles (X, f) representing a non trivial homology class
of dimension m. The following notion was introduced by M. Gromov in [Gro83, Section 6]:

Definition 3.1. The systolic volume of the pair (G, a) is defined as the number

S(G, a) := inf
(X,f)

Sf (X),

where the infimum is taken over all geometric cycles (X, f) representing the class a.

Any integer class is representable by a geometric cycle, see Theorem 3.1 below. The systolic
volume of (G, a) is thus well defined and satisfies S(G, a) ≥ σm. But it is not clear if the infimum
value S(G, a) is actually a minimum and what is the structure of a geometric cycle that might
achieve it. In the case where the homology class a is representable by a manifold, we know that
the systolic volume coincides with the systolic constant of any normal representation of a by a
manifold, see [Bab06, Bab08, Bru08]. A manifold is an example of admissible pseudomanifold,
that is a special type of pseudomanifolds for which any element of the fundamental group can be
represented by a curve not going through the singular locus of X. In the article [2] written in
collaboration with I. Babenko, we first prove the following result.

Theorem 3.1. Let G be a finitely presentable group and a ∈ Hm(G,Z) a homology class of dimen-
sion m ≥ 3. For any normal representation of a by an admissible geometric cycle (X, f),

S(G, a) = Sf (X).

Furthermore, there always exists a normal representation of a by an admissible geometric cycle.
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Here an admissible geometric cycle (X, f) stands for a geometric cycle whose pseudomanifold
X is admissible. Thus the infimum in the definition of systolic volume of a homology class is a
minimum and the systolic constant of an admissible orientable pseudomanifold X depends only on
the image of its fundamental class f∗[X] ∈ Hm(π1(X),Z) as in the case of orientable manifolds.
We will see in the sequel an example showing that the condition of normalization (that is, f] is an
epimorphism between fundamental groups) can not be relaxed in our theorem. Loosely speaking,
this theorem is proved as follows. Any geometric cycle representing the class a ∈ Hm(G,Z) can be
used as starting point for the construction of the Eilenberg-MacLane space K(G, 1). This allows to
compare its systolic volume with the systolic volume of a fixed admissible geometric cycle normally
representing the homology class. The comparison is done using techniques initiated by I. Babenko
in [Bab06]. The existence of such normal representations by admissible geometric cycles is deduced
from a construction of singular manifolds representing homology classes due to N. Baas in [Baas73].

In order to understand the systolic volume invariant, one can ask for its distribution along the
real line. In [2] we show two new phenomena. First, the systolic volume function does not avoid
arbitrarily large intervals.

Proposition 3.1. Let m ≥ 3. For any interval I ⊂ R+ of length at least σm, there exists a pair
(G, a) consisting of a finitely presentable group and a homology class of dimension m such that
S(G, a) ∈ I.

Secondly, there is no finiteness result in great generality for systolic volume in dimension m ≥ 3.
In order to give this statement content, we introduce the following definition. A class a ∈ Hm(G,Z)
is said reducible if there exists a proper subgroup H ⊂ G and a class b ∈ Hm(H,Z) such that
i∗(b) = a where i denotes the canonical inclusion. Otherwise the class will be said irreducible.

Theorem 3.2. For any dimension m ≥ 3 there exists an infinite sequence of finitely presentable
pairwise distinct groups {Gi} for which at least one irreducible class ai ∈ Hm(Gi,Z) satisfies
S(Gi, ai) ≤ 1

This theorem is proved by explicitely constructing the pairs (Gi, ai) as reductions modulo prime
numbers of the pair (Zm, [Tm]). This implies the following unexpected result using surgery on
representations by manifolds for dimensions at least 4.

Corollary 3.1. For any dimension m ≥ 4, there exists an infinite number of irreducible orientable
manifolds M of dimension m with pairewise non-isomorphic fundamental groups such that S(M) ≤
1.

So we have to introduce topological or algebraic restrictions in order to derive finiteness results.
For instance, given a finitely presentable group G, a homology class a ∈ Hm(G,Z) and a positive
number T , the number of integer multiple classes ka whose systolic volume is less than T is at most
T. lnT (up to some multiplicative constant). More precisely we show in [2, section 5] the following.

Theorem 3.3. Let G be a finitely presentable group and a ∈ Hm(G,Z) where m ≥ 3. There exists
a positive number C(G, a) depending only on the pair (G, a) such that

S(G, ka) ≤ C(G, a) · k

ln(1 + k)

for any integer k ≥ 1. In particular,

lim
k→∞

S(G, ka)
k

= 0.

The proof of this result relies on the behaviour of systolic volume of geometric cycles under
the operation of connected sum, and is related to a previous collaboration with I. Babenko, see
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[BabBal05]. It shows that systolic volume of multiples of a class is a sublinear function. For classes
a whose simplicial volume is not zero, we know after Gromov [Gro83] that there exists a positive
number C ′(G, a) depending only on the pair (G, a) such that

(3.1) S(G, ka) ≥ C ′(G, a) · k

(ln(1 + k))m
.

Moreover, for fundamental groups πl of orientable surfaces Σl of genus l ≥ 1 and their corresponding
fundamental classes [Σl], we know by [Gro83] and [BusSar94] that

S(πl, k[Σl]) ∼
k

(ln(1 + k))2
.

where f ∼ g means that there exists some positive constants c and C such that c.f ≤ g ≤ C.f .
This naturally leads to the following:

Conjecture 3.1. Let G be a finitely presentable group and a ∈ Hm(G,Z) a class of non-zero
simplicial volume where m ≥ 3. Then

S(G, ka) ∼ k

(ln(1 + k))m
.

The dependence of the systolic volume on torsion is another natural question. In [Gro96] Gromov
mentions that it may be possible to use the torsion ofH∗(π1(M),Z) to bound from below the systolic
volume of a manifold M . Given a finitely presentable group G and a homology class a of dimension
m, we define the 1-torsion of the class a as the integer

t1(a) := min
(X,f)
|TorsH1(X,Z)|,

where the minimum is taken over the set of geometric cycles (X, f) representing the class a and
|TorsH1(X,Z)| denotes the number of torsions elements in the first homology group of X. We now
state the main result of [2, section 6] :

Theorem 3.4. Let G be a finitely presentable group and a ∈ Hm(G,Z) where m ≥ 2. Then

S(G, a) ≥ Cm
ln t1(a)

exp(C ′m
√

ln(ln t1(a))
,

where Cm and C ′m are two positive numbers depending on m.
In particular for any ε > 0

S(G, a) ≥ (ln t1(a))1−ε

if t1(a) is large enough.

This result is optimal in the following sense: for any dimension m, there exists a sequence of
groups Gn and homology classes an ∈ Hm(Gn,Z) such that

lim
n→∞

S(Gn, an)
ln t1(an)

= 0.

In general the 1-torsion of a class is difficult to compute. In the case of Zn := Z/nZ, we can bound
from below the 1-torsion of any generator by the number n. In particular, the fundamental classes
of lens spaces Lm(n) realize exactly the generators of the group H2m+1(Zn,Z) and we obtain that

S(Lm(n)) ≥ (lnn)1−ε

for any ε > 0 if n is large enough.

Theorem 3.4 is proved by first bounding from below the minimal number of 2-simplices of any
geometric cycle (X, f) representing a by its 1-torsion, and then using an estimate due to M. Gromov
of the systolic volume S(G, a) by the simplicial height of a—the minimal number of simplices (of
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all dimensions) of a geometric cycle representing the class a—, see [Gro83, 6.4.C”] and [Gro96,
3.C.3]. Theorem 3.4 allows us to derive the following result.

Theorem 3.5. There exists two positive constants a and b such that, for any manifold M of
dimension 3 with finite fundamental group,

S(M) ≥ a ln |π1(M)|
exp(b

√
ln(ln |π1(M)|)

,

where |π1(M)| denotes the cardinal of π1(M).

Now we present the particular case of the Heisenberg group of dimension 3. We obtain a new
illustration of the possible behaviour of the systolic volume of cyclic coverings. The Heisenberg
group H of dimension 3 is the group of triangular matrices

 1 x z
0 1 y
0 0 1

 | x, y, z ∈ R

 .

The subset H(Z) of H composed of matrices with integer coefficients (i.e. matrices for which
x, y, z ∈ Z) is a lattice, and we will denote by MH = H/H(Z) the corresponding quotient space.
First of all, we obtain the following explicit upper bound for the systolic volume of multiples of the
fundamental class of MH, see [2].

Theorem 3.6. Let a = [MH] ∈ H3(H(Z),Z) be the fundamental class of MH. Then

S(H(Z), ka) ≤ 19 ·S(H(Z), a)

for any integer k ≥ 1.

The constant appearing here is the one involved in the resolution of the classical Waring problem
(see [BDD86]): any integer number decomposes into a sum of at most 19 fourth powers. The idea of
using the solution of the Waring problem in order to bound from above the function S(G, ka) when
(G, a) = (H(Z), [MH]) carries over to any pair (G, a) where G is a nilpotent graded group without
torsion and a denotes the fundamental class of the corresponding nilmanifold, see [2, Theorem 7.2].

Now consider the sequence of lattices {Hn(Z)}∞n=1 of H, where Hn(Z) denotes the subset of
matrices whose integer coefficients satisfy x ∈ nZ and y, z ∈ Z. Denote by MHn = H/Hn(Z) the
corresponding nilmanifolds. The manifold MHn is a cyclic covering with n sheets of MH, and the
techniques involved in the proof of Theorem 3.3 implies that

S(MHn) ≤ C · n

ln(1 + n)
.

The fact that the function S(MHn) goes to infinity is a consequence of Theorem 3.4.

Corollary 3.2. The function S(MHn) satisfies the following inequality:

S(MHn) ≥ a lnn
exp(b

√
ln(lnn)

,

where a an b are two positive constants. In particular,

lim
n→+∞

S(MHn) = +∞.

Note that in this case ‖MHn‖∆ = 0 and the lower bound 3.1 does not apply. For any integer n
the manifold MHn gives a non-normal realization of the class n[MH]. So normalization condition
in Theorem 3.1 cannot be relaxed.
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3.2. Systolic area of groups. Let G be a finitely presentable group and consider the various ways
this group can be realized as the fundamental group of a finite simplicial complexe of dimension
2. Using the systolic geometry of these realizations, one defines an invariant of the group called
systolic area and introduced by M. Gromov in [Gro96, 3.C.8].

Definition 3.2. The systolic area of G is defined as

S(G) = inf
X

S(X),

where the infimum is taken over all finite 2-complexes X with fundamental group isomorphic to G.

If the group is free, its systolic area is zero. In converse any group which is not free has positive
systolic area by [Gro83, 6.7.A]. The best known lower bound is due to Y. Rudyak and S. Sabourau
in [RudSab08] who proved that

S(G) ≥ π

16
for such groups. In the same article they also prove a finiteness result for systolic area of groups.

In [4] we prove the analog of Gromov’s log γ bound (1.2) for systolic area of groups. Recall that
the first Betti number of a group G is defined as the dimension of its first real homology group

H1(G,R) := H1(K(G, 1),R),

where K(G, 1) denotes the Eilenberg-MacLane space associated to G. Using the techniques ex-
plained in section 1.3 we proved with H. Parlier and S. Sabourau in [4] the following result.

Theorem 3.7. Let G be a finitely presentable nontrivial group with no free factor isomorphic to Z.
Then

S(G) ≥ C b1(G) + 1
(log(b1(G) + 2))2

for some positive universal constant C.

Consider the free product Gn = Fn ∗G, where Fn is the free group with n generators and G is a
finitely presentable nontrivial group. The first Betti number of Gn goes to infinity with n, while its
systolic area remains bounded by the systolic area of G. This example shows that a restriction on
the free factors is needed in the previous theorem. The order of the bound in the previous theorem
is asymptotically optimal, see [4, example 7.4].

We can also bound from below the systolic area of such groups by the number of torsion elements
in their first homology group. Indeed, we prove with I. Babenko in [2] the following result.

Theorem 3.8. Let G be a finitely presentable group with no free factor isomorphic to Z. Then

S(G) ≥ C ln |TorsH1(G,Z)|
exp(C ′

√
ln(ln |TorsH1(G,Z)|)

,

where C and C ′ are two positive numbers.
In particular for any ε > 0

S(G) ≥ (ln |TorsH1(G,Z)|)1−ε

if |TorsH1(G,Z)| is large enough.

This result should be compared with Theorem 3.4.
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