
DIOPHANTINE STABILITY FOR CURVES OVER FINITE FIELDS

FRANCESC BARS AND JOAN-C. LARIO

Abstract. We carry out a survey on curves defined over finite fields that are Diophantine stable;
that is, with the property that the set of points of the curve is not altered under a proper field
extension. First, we derive some general results of such curves and then we analyze several families
of curves that happen to be Diophantine stable.
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1. Introduction

Let V be an algebraic variety defined over a field K. Borrowing Mazur-Rubin, we say that V
has Diophantine stability for a proper field extension L/K if V (L) = V (K). In this paper, we
restrict ourselves to the case of curves defined over finite fields. Throughout, for curve we mean a
geometrically irreducible projective smooth algebraic variety of dimension 1.

From now on, let C be a curve defined over a finite field of size a prime power q and genus g ≥ 1.
The curve C/Fq is a Diophantine stable curve (DS-curve for short) if there is m > 1 such that
C(Fqm) = C(Fq). As usual, we shall denote its Hasse-Weil zeta function by:

ζ(C/Fq, t) = exp

( ∞∑
m=1

Nm

m
tm

)
=

∞∏
d=1

(1− td)−ad

where Nm = #C(Fqm) and ad denotes the number of closed points of C of degree d. One has the
relation

Nm =
∑
d|m

d ad ,
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2 FRANCESC BARS AND JOAN-C. LARIO

and using the Möebius inversion formula we also have

ad =
1

d

∑
d′|d

µ(d′)Nd′ .

Due to the Weil conjectures [Kat76], we can express

ζ(C/Fq, t) =
P (t)

(1− t)(1− qt)

with P (t) =
∏g

i=1(1− πit)(1− πit) ∈ Z[t] and the reciprocal of the complex roots satisfy |πi| = q1/2.
We call P (t) the Frobenius polynomial of C. It is also common to consider the corresponding monic
reciprocal polynomial

L(t) =

g∏
j=1

(t− πi)(t− πi) ∈ Z[t] .

The polynomial L(t) is called the Weil polynomial (or L-polynomial) of the curve, and their roots
πi are called Weil q-numbers. The relation between them is L(t) = t2gP (1/t).

For future use, we also introduce the real Weil polynomial h(x) that has roots the real numbers
µi = πi + πi for 1 ≤ i ≤ g. The real Weil polynomial has degree g and satisfies

P (t) = tgh

(
qt2 + 1

t

)
.

Given P (t), we can find h(x) by means of the t-resultant Rest(qt2 + 1− tx, P (t)− tgh(x)) , and vice
versa, given h(x), we can find P (t) by means of the x-resultant Resx(qt

2 + 1− tx, P (t)− tgh(x)) .
In order for the curve C to be a DS-curve we need analyze the numbers Nm (or equivalently the

numbers ad). Since the number of points satisfy:

Nm = #C(Fqm) = 1 + qm −
g∑

i=1

(πm
i + πm

i ) ,

it seems natural to explore Diophantine stability through the study of the Hasse-Weil zeta function.
In the following section we obtain some basic results regarding Diophantine stability over finite

finite fields, and the subsequent sections collect a number of families of DS-curves: low genus curves,
Deligne-Lusztig curves, M -torsion Carlitz curves, and M -torsion Drinfeld curves.

The authors want to thank E. Howe, R. Lercier, C. Ritzenthaler, and A. Sutherland for useful
comments on a first draft of the manuscript. The second author also wants to thank B. Mazur,
A. Quirós, J.-P. Serre, R. Schoof, and B. Vrioni for inspiring conversations on the subject at the
beginning of this work.

2. Basic properties

We begin with a result about the finiteness of (isomorphism classes) of DS-curves of a given genus
g ≥ 1.

Proposition 2.1. Let C/Fq be a curve of genus g ≥ 1 such that C(Fq) = C(Fqm) for some m > 1.
Then, the pair (q,m) has to be chosen from a finite set depending only on g.

Proof. Suppose that C(Fq) = C(Fqm) for some m > 1. By the Hasse-Weil-Serre bound, one the one
hand we have that N1 = #C(Fq) belongs to the interval centered in 1 + q and radius g ⌊2√q⌋:

|N1 − (1 + q)| ≤ g ⌊2√q⌋ .

On the other hand, Nm = #C(Fqm) belongs to the interval centered in 1+ qm and radius g ⌊2
√
qm⌋:

|Nm − (1 + qm)| ≤ g ⌊2
√
qm⌋ .
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Since we are assuming that N1 = Nm with m > 1, we need to show that the intersection of these
two intervals is always empty except for a finite number of pairs (q,m). Thus, let us show that if q
and m are large enough, then one has

(1 + q) + g ⌊2√q⌋ < (1 + qm)− g ⌊2
√
qm⌋ .

The above inequality is equivalent to

g(⌊2√q⌋+ ⌊2
√
qm⌋) < qm − q

which is clear to be true when qm is large enough since g is fixed. □

Since the number of isomorphism classes of curves defined over a given number field is finite, we
get the following consequence.

Corollary 2.2. The number of isomorphism classes of DS-curves defined over finite fields of a given
genus is finite.

A similar argument along the above lines allows us to obtain an immediate generalization for the
case of algebraic varieties of higher dimension defined over finite fields. We left the proof to the
reader.

Proposition 2.3. Let V be a non-singular projective variety of a given dimension d and given Betti
numbers βi over a finite field. If V is a DS-variety for Fqm/Fq, then the pair (q,m) is chosen from a
finite set. In particular, the number of isomorphism classes of d-dimensional non-singular projective
varieties with prescribed Betti numbers that are DS-varieties is finite.

Our second result concerns the determination of a list containing all possible Frobenius polyno-
mials P (t) for the numerators of the potential Hasse-Weil zeta functions attached to curves of fixed
genus g defined over a fixed finite field Fq. Equivalently, we can ask for the list of possible candidate
Weil polynomials L(t) or the list of possible candidate real Weil polynomials h(x). In all three cases,
the sequence of possible number of places [a1, a2, a3, . . . , ag] determines either P (t), L(t), and h(x).
For instance, writing

P (t) =

2g∑
n=0

Ant
n

with Ak = qk−gA2g−k for k > g, from the Taylor series in both sides of the formal identity
(1− t)(1− qt)

(1− t)a1(1− t2)a2 . . . (1− tg)ag
= P (t)

∏
d≥g

(1− td)ad ,

we can get polynomial expressions An = An(a1, a2, . . . , ag) with rational coefficients. As we shall
see, the coefficients Hn(a1, a2, . . . , ag) of the potential real Weil polynomials

h(x) =

g∑
n=0

Hg−n(a1, a2, . . . , ag)x
n

satisfy a remarkable property that helps us to determine the list of candidates in an efficient way. In
any case, after getting the list of candidate polynomials, the hard task is to discard the cases that do
not correspond to any curve. To this end, one can use the partial criteria of Serre and Howe [Ser20].

There are at least two different methods to face the task to construct the list of candidate sequences
[a1, a2, . . . , ag] for the number of places of curves of genus g defined over Fq. A first option is to
make use of the Weil-Serre explicit formulas: one can choose a double-positive function F (t) ≫ 0,
F (t) = 1 + 2

∑
n≥1 cn cos(nt) such that cn = 0 for all n > g and c1 ̸= 0. Then one has

∑
d≥2

dad

∑
d|n

cnq
−n/2

 ≤ g +
∑
n≥1

cnq
n/2 + (1− a1)

∑
n≥1

cnq
−n/2 ,

so that we get the list of all positive integers [a1, a2, a3, . . . , ag] satisfying the inequality above. Since
all the coefficients of the unknown ad in the above inequality are non-zero for d ≤ g, we can guarantee
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that the list of candidates [a1, a2, a3, . . . , ag] is a finite list. The problem of this method is that one
usually gets a huge list of candidates.

An alternative route is as follows. We want to determine the list of candidate real Weil polynomials

h(x) = xg +H1x
g−1 + · · ·+Hg−2x

2 +Hg−1x+Hg

where each Hn = Hn(a1, . . . , ag) is a polynomial expression in Q[a1, . . . , ag].

Proposition 2.4. For every 1 ≤ i ≤ g, the polynomial Hi(a1, . . . , ag) has multi-degree (1, 0, . . . , 0)
in the variables (ai, ai+1, . . . , ag). In other words, we can write Hi = Hi(a1, a2, . . . , ai) linearly in
the variable ai.

Proof. First, we prove that the 2g-degree polynomial P (t) =
∑2g

n=0Ant
n with indeterminate coef-

ficients An = An(a1, a2, . . . , ag) satisfies the reverse statement. More precisely, we want to show
that for every k < g the polynomial Ak = Ak(a1, a2, . . . , ag) = Ak(a1, a2, . . . , ak) does not depend
on ak+1, . . . , ag and it is of degree one in the variable ak. We have A0(a1, a2, . . . , ag) = 1 and
A1(a1, a2, . . . , ag) = a1 − (q + 1). The polynomial Ak(a1, a2, . . . , ag) is the kth coefficient of the
Taylor series of

(1− t)(1− qt)

(1− t)a1(1− t2)a2 . . . (1− tg)ag
=

(1− t)(1− qt)(1− t)−a1(1− t2)−a2 . . . (1− tg)−ag =

(1− t)(1− qt)

( ∞∑
n=0

(
−a1
n

)
(−t)n

)( ∞∑
n=0

(
−a2
n

)
(−t)2n

)( ∞∑
n=0

(
−ag
n

)
(−t)gn

)

where
(
α
n

)
denotes the generalized binomial number. To compute the coefficient of tk we only need

to take care of the partial product

(1− (q + 1)t− qt2)
k∏

i=1

( ∞∑
n=0

(
−ai
n

)
(−t)in

)
.

Therefore Ak = Ak(a1, a2, . . . , ag) = Ak(a1, a2, . . . , ak) does not depend on the variables ak+1, . . . , ag.
The unique contribution of ak into the coefficient of tk occurs in

(1− (q + 1)t− qt2)

( ∞∑
n=0

(
−ak
n

)
(−t)kn

)

and it is equal to −
(−ak

1

)
= ak.

The claim on the coefficients of the real Weil polynomial h(x) follows from the equality

P (t) = tgh

(
qt2 + 1

t

)
.

Indeed, letting P (t) =
∑2g

n=0Ant
n with Ak = qk−gA2g−k for k > g, and h(x) =

∑g
n=0Hnx

g−n

with H0 = 1, one has

2g∑
n=0

Ant
n = tg

(
g∑

n=0

Hn

(
qt2 + 1

t

)g−n
)

=

g∑
n=0

Hn(qt
2 + 1)g−ntn =

g∑
n=0

Hn

g−n∑
k=0

(
g − n

k

)
qkt2k+n =

2g∑
n=0

 n∑
k=0

k≡n(2)

Hk

(
g − k

(n− k)/2

)
q(n−k)/2

 tn .
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Hence, for 0 ≤ n ≤ 2g, it holds

An =
n∑

k=0
k≡n(2)

Hk

(
g − k

(n− k)/2

)
q(n−k)/2 .

The matrix of the corresponding linear system is lower triangular and non-singular. Thus, the inverse
matrix is upper triangular and it follows that Hi = Hi(a1, . . . , ai) and of degree one in ai as desired,
since we have proved the same property for the polynomials Ai = Ai(a1, . . . , ai) for i ≤ g and
Ai = qi−gA2g−i for i > g. □

The roots of h(x) must be real and contained in the interval [−2
√
q, 2

√
q]. The same assertion

holds also for the derivatives of h(x) by Rolle’s theorem. Then, to obtain the list of candidate
sequences [a1, a2, . . . , ag], we can proceed by recursion as follows.

Start with a candidate of length one [a1], with a1 in the Hasse-Weil-Serre interval. By increasing
i from 2 to g, suppose we have the list of partial candidate sequences of length i− 1. For each one
of the candidates [a1, a2, . . . , ai−1], we substitute these values into the (g − i)th derivative

h(g−i)(x) = Ti(x) + t(ai)

where Ti(x) is a i-degree polynomial in Q[x] with no constant term, and t(ai) is the constant term.
That is, t(ai) = (g − i)!Hi(a1, . . . , ai−1, ai) which is a linear polynomial in Q[ai] due to Proposi-
tion 2.4.

Obviously, we do not know how to compute the roots of h(g−i)(x) since we do not know the value
of ai, but we can (and do) compute the roots of the derivative Ti(x)

′ ∈ Q[x]. Let α1, . . . , αi−1

be the roots of Ti(x)
′. By recursion, we know that all of them are real and belong to the interval

[−2
√
q, 2

√
q] since they are also the roots of h(g−i+1)(x). Let α0 = −2

√
q and αi = 2

√
q. For even i,

set
m = max

j odd
{Ti(αj)} , M = min

j even
{Ti(αj)} .

For odd i, set
m = max

j even
{Ti(αj)} , M = min

j odd
{Ti(αj)} .

Finally, it remains to solve the linear inequalities in integers

0 ≤ ai , t(ai) ≤ min{M, |m|}
when i is even, or

0 ≤ ai , t(ai) ≤ min{|M |,m}
when i is odd, since we want the translates h(g−i)(x) = Ti(x) + t(ai) to have all the roots in
[−2

√
q, 2

√
2]. Every solution ai contributes to enlarge the list of partial sequence of candidates with

[a1, a2, . . . , ai−1, ai].

Let us illustrate the above procedure with an example.

The elephant silhouette. Take genus g = 5 and finite field of size q = 2. Assume we start with
[a1] = [9]. Formally, the real Weil polynomial is given by

h(x) = x5 + 6x4 + (10 + a2)x
3 + (6a2 + a3)x

2+

1

2

(
a22 + 29a2 + 12a3 − 20 + 2a4

)
x+(

3 a22 + a2a3 + 27a2 + 16a3 + 6a4 − 12 + a5
)
.

The fourth derivative h(4)(x) = 24(6 + 5x) has root α = −6/5, and the third derivative is

h(3)(x) = 6(10x2 + 24x) + 6(10 + a2) .

Thus T2(x) = 6(10x2 + 24x) and T2(−6/5) = −432/5. Hence, we want

6(10 + a2) ≤ 432/5 = 86.4
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which amounts to a2 ≤ 4. At this point, our list of partial 2-length candidates [a1, a2] is given by
[9, 0], [9, 1], [9, 2], [9, 3], and [9, 4]. Keep going on the procedure, at some point we get the partial
candidate [9, 0, 0, 2]. A priori, since we know that N5 = a1 + 5a5 ≤ 25 + 1 + 2g

√
25 = 89.5685, we

must have a5 ≤ 16. But our strategy performs better. The real Weil polynomial attached to the
sequence [9, 0, 0, 2, a5] is

h(x) = x5 + 6x4 + 10x3 − 8x+ a5 .

In the figure below, the elephant silhouette corresponds to the plot of the polynomial T5(x) =
x5 + 6x4 + 10x3 − 8x and it suggests that the possible values of a5 (if any) are very limited once we
have obtained the previous values [a1, a2, a3, a4]. Indeed, one has that the unique polynomial h(x)
obtained as a translation by positive integers from T5(x) that has the five reals roots in [−2

√
2, 2

√
2]

is achieved by a5 = 0.

-4 -3 -2 -1 1

-20

-15

-10

-5

5

10

Figure 1. The real Weil polynomial h(x) = x5 + 6x4 + 10x3 − 8x .

This example corresponds to the DS-curve of genus 5 over F2 with [a1, a2, a3, a4, a5] = [9, 0, 0, 2, 0]
given by the affine equation

y4 + (x2 + x+ 1)y2 + (x2 + x)y + x7 + x3 = 0 .

The corresponding Frobenius polynomial is:

P (t) = 32t10 + 96t9 + 160t8 + 192t7 + 184t6 + 144t5 + 92t4 + 48t3 + 20t2 + 6t+ 1 .

The above tree-type algorithm can be useful to speed the searching for DS-curves since one is
looking for curves with certain number of places ad equals zero. Regarding the procedure to compute
all of the Frobenius polynomials with a given value of a1, we must mention the earlier works of Smith
[Smi84] that uses this basic technique to enumerate all monic polynomials in Z[x] with a given trace
and with all roots positive, and the idea goes back at least to Robinson [Rob64]. Also, Lauter [Lau00]
spells out the procedure in the context of enumerating possible Frobenius polynomials for a curve
over a given finite field with a given number of points.

Proposition 2.5. Let C/Fq be a curve of genus g ≥ 1. Then one has C(Fq) = C(Fqm) for some
m > 1 if and only if for every integer d with 1 < d | m it holds ad = 0.

Proof. It follows directly from ad ≥ 0 and the fact Nm =
∑

d|m d ad = a1 = N1. □

As a final remark in this section, we show the existence of curves with some ad = 0 that are not
DS-curves. For example, consider the hyperelliptic curve of genus g = 6 over the finite field of size
q = 2 defined by

y2 + (x6 + x5 + x4 + x3 + x2 + x+ 1) y = x13 + x5 + x+ 1 .
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Its Frobenius polynomial is

P (t) = (t2 − t+ 2)(t2 + t+ 2)(t4 − t3 − t2 − 2t+ 4)(t4 + t3 − t2 + 2t+ 4) .

The sequence of number of points over F2m , for m = 1, .., 16 is

[N1, N2, . . . , N16] = [3, 5, 9, 17, 33, 11, 129, 257, 513, 1025, 2049, 4379, 8193, 16385, 32769, 65537] ,

and the sequence of number of places for m = 1, .., 16 is

[a1, a2, . . . , a16] = [3, 1, 2, 3, 6, 0, 18, 30, 56, 99, 186, 363, 630, 1161, 2182, 4080] .

By using Proposition 2.1, one can show that this curve is not a DS-curve.

3. Low genus curves

The following tables include the set of admissible pairs (q,m) for which a DS-curve for Fqm/Fq of
genus g ≤ 5 can exist. These values are obtained via Proposition 2.1.

g = 1

q m
2 2, 3
3 2
4 2

g = 2

q m
2 2, 3, 4
3 2, 3
4 2
5 2

g = 3

q m
2 2, 3, 4, 5
3 2, 3
4 2, 3
5 2
7 2
8 2
9 2

g = 4

q m
2 2, 3, 4, 5, 6
3 2, 3, 4
4 2, 3
5 2
7 2
8 2
9 2
11 2

g = 5

q m
2 2, 3, 4, 5, 6
3 2, 3, 4
4 2, 3
5 2, 3
7 2
8 2
9 2
11 2
13 2

We do not claim that all values in the above tables are necessarily attained by some DS-curve. For
instance, this is the case for g = 2 and the admissible pair (4, 2) as we shall see.

3.1. Genus 1. The case of elliptic curves is by far the easiest. In the following table (and successive),
the first column displays the admissible pairs (q,m) relative to g for which there exist DS-curves; the
second column shows defining equations of (representatives of the isomorphism classes of) DS-curves
for Fqm/Fq. The third column indicates the number of points N = #C(Fq) = #C(Fqm).

Proposition 3.1. The following table displays the set of all (isomorphism classes of) genus one
DS-curves.

(q,m) C N
(2, 2) y2 + y = x3 + x 5
(2, 3) y2 + y = x3 + 1 4

y2 + y = x3 + x 5

(3, 2) y2 = x3 + 2x+ 1 7

(4, 2) y2 + y = x3 9
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Proof. For every admissible pair (q,m) one proceeds by inspection of the isomorphism classes of
elliptic curves over Fq which can be listed easily. □

Remark 3.2. Notice that the elliptic curve C : y2 + y = x3 in the last row is in fact defined over
F2 (hence also over F4) and satisfies #C(F4) = #C(F16) = 9 but #C(F2) = 3.

3.2. Genus 2. As for genus-2 curves over finite fields Fq, the list of isomorphism classes is practicable
for small values of q so that we can get easily the sublist of DS-curves for that genus.

Proposition 3.3. The following table displays all the isomorphism classes of DS-curves of genus
g = 2 along with the admissible pairs (q,m).

(q,m) C N
(2, 2) y2 + (x2 + x) y = x5 + x3 + x2 + x 3

y2 + x y = x5 + x 4
y2 + y = x5 + x3 5
y2 + (x3 + x+ 1) y = x5 + x4 + x3 + x 6

(2, 3) y2 + y = x5 + x3 + 1 1
y2 + x y = x5 + x2 + x 2
y2 + y = x5 + x4 5

(3, 2) y2 = x5 + 2x4 + 2x3 + 2x 5
(3, 3) y2 = x6 + x4 + x2 + 1 8

(5, 2) y2 = x5 + 4x 6

Proof. To get the table, one can build first the list of isomorphism classes of hyperelliptic curves of
genus g = 2 defined over Fq for the needed values of q fairly easy and then select the DS-curves in
the list. Alternatively, one can use directly the database on isomorphism classes of curves of small
genus over finite fields elaborated by Sutherland [Sut]. □

Remark 3.4. According to the tables at the begging of the present section, a priori the cases
(q,m) = (2, 4) and (4, 2) have a chance to appear for genus-2 DS-curves. Both cases are excluded
by inspection of the representatives of isomorphism classes of curves. For instance, in the case
(q,m) = (4, 2), it turns out that the intersection of the Hasse-Weil intervals for N1 and N2 is [7, 10],
but there are not genus-2 curves C over F4 with N = #C(F4) = #C(F16) for N = 7, 8, 9 or 10.
The minimal difference #C(F16) −#C(F4) among the genus-2 curves defined over F4 turns out to
be 2 and it is attained by the curve

y2 + (x2 + x) y = α (x5 + x3 + x2 + x) .

In the equation above and hereafter, for non-prime fields we let α denote a Conway generator of the
finite field Fq = Fp(α); that is, α is a root of the Conway polynomial defining the extension Fq/Fp

where p is the prime characteristic.

3.3. Genus 3. For genus-3 curves, things begin to get more intricate. Still we can make use of
Sutherland’s database. However, the database does not cover yet all the isomorphism classes of
genus-3 curves defined over the finite fields for all the cases with potential presence of Diophantine
stability. To be more precise, from Sutherland’s database, we lack the following isomorphism classes
of genus-3 curves:

• Hyperelliptic curves over F4;
• Hyperelliptic curves over F8;
• Non-hyperelliptic curves over F7;
• Non-hyperelliptic curves over F8.

Luckily, we shall be able to either justify the absence of DS-curves or to find the ones with
Diophantine stability in the isomorphism classes under-construction in Sutherland’s database. Hence,
we can (and do) provide the complete list of DS-curves of genus 3.
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Proposition 3.5. The following tables display all the genus-3 DS-curves over finite fields. We first
display the hyperelliptic DS-curves followed by the plane quartics defining equations for the non-
hyperelliptic DS-curves.

(q,m) C N
(2, 2) y2 + (x+ x2) y = x7 + x6 + x5 + x 3

y2 + (x+ x2) y = x7 + x6 + x5 + x4 + x2 + x 3
y2 + x y = x7 + x6 + x2 + x 4
y2 + x y = x7 + x6 + x5 + x 4
y2 + (x2 + x4) y = x5 + x4 + x3 + x 4
y2 + y = x7 + x6 5
y2 + (x4 + x2 + x+ 1) y = x7 + x5 + x4 + x3 5
y2 + (x4 + x2 + x) y = x6 + x3 + x2 + x 5
y2 + (x4 + x+ 1) y = x7 + x5 + x4 + x3 + x2 + x 6

x4 + x3y + y4 + x2y + y3 + x+ 1 0
x4 + x3y + y4 + x3 + x 1
x4 + xy3 + y4 + x3 + x2y + xy2 + x 1
x3y + xy3 + y4 + x2y + x 2
x3y + xy3 + y4 + xy2 + x 2
x4 + x3y + xy3 + x3 + xy2 + y2 + x 2
x4 + x2y2 + xy3 + x3 + x2y + y2 + x 2
x3y + xy3 + y4 + x3 + x 3
x4 + x3y + x3 + y3 + x 3
x3y + x2y2 + x2y + y3 + x 4
x3y + x2y2 + x3 + y3 + y2 + x 7

(q,m) C N
(2, 3) y2 + (x2 + x+ 1) y = x7 + x6 + x5 + x4 + x3 + x+ 1 1

y2 + (x4 + x+ 1) y = x8 + x5 + x+ 1 2
y2 + (x4 + x) y = x8 + x7 + x5 + x 2
y2 + x y = x7 + x2 + x 2
y2 + (x4 + x2) y = x8 + x4 + x2 + x 2
y2 + (x4 + x2 + 1) y = x2 + x+ 1 2
y2 + (x4 + x+ 1) y = x6 + x5 + x4 + x3 + 1 2
y2 + (x2 + x) y = x7 + x6 + x5 + x 3
y2 + y = x7 3
y2 + (x2 + x+ 1) y = x7 + x6 + x5 + x2 + x+ 1 3
y2 + y = x7 + x6 + x4 + 1 3
y2 + x y = x7 + x6 + x5 + x 4
y2 + (x4 + x+ 1) y = x6 + x4 + x3 + x2 + x+ 1 4
y2 + (x3 + 1) y = x7 + x4 4
y2 + (x4 + x2) y = x4 + x 4
y2 + (x4 + x+ 1) y = x8 + x4 + x2 + x 4
y2 + (x4 + x2 + 1) y = x4 + x 6
y2 + (x4 + x+ 1) y = x6 + x5 + x3 + x 6

x4 + x2y2 + y4 + x2y + xy2 + x 3
x2y2 + x3 + y3 + x2 + xy + x 4
x4 + xy3 + x2y + y2 + x 4
x3y + y4 + x3 + x 5
x2y2 + y4 + x3 + x2y + xy2 + x 5
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(q,m) C N
(2, 4) x3y + x2y2 + x3 + y3 + y2 + x 7
(2, 5) y2 + (x4 + x+ 1) y = x8 + x6 + x5 + x4 + x3 + x2 4

y2 + (x4 + x2 + 1) y = x4 + x 6

x4 + x2y2 + y4 + x2y + xy2 + x2 + xy + y2 + 1 0

(3, 2) y2 = x7 + 2x6 + x5 + x4 + x3 + 2x2 + 1 5
y2 = x8 + 2x5 + 2x4 + 2x2 + 2x 6
y2 = 2x7 + 2x4 + 2x3 + 2x2 + 1 6
y2 = x7 + x6 + 2x5 + x4 + x3 + 2x2 + 2x 6
y2 = x7 + 2x6 + 2x5 + x3 + x2 + 2x+ 1 7
y2 = x8 + 2x7 + x6 + 2x3 + 2x2 + 1 7
y2 = x8 + 2x6 + x4 + 2x3 + 2x2 + x+ 1 8

x4 − x2y2 − y4 + x3 − x 1
x4 + x2y2 − y4 + x3 − x 1
x4 − x3y − y4 + x3 − xy − x 1
x4 − x3y − y4 + xy2 − x 2
x4 + x3y − y4 + x3 − x2y + xy2 − x 2
x4 + x3y + x2y2 + y4 − x2 + xy + x 2
x4 + x3y − xy3 + x3 + x2y − y2 − x 2
x4 + x3y + x2y2 − xy3 − x3 − x2 − y2 − x 2
y4 − x3 + x 4
x3y + y4 − xy2 + x 5
x2y2 − y4 + x3 − x 10

(3, 3) y2 = 2x8 + 2x7 + x6 + 2x5 + x4 + 2x2 + x+ 2 3
y2 = x8 + 2x7 + 2x6 + 2x5 + x2 + x 4
y2 = x7 + x6 + 2x5 + x4 + x3 + x2 + 2x 4
y2 = x8 + x4 + 2x2 + 1 4
y2 = x8 + 2x7 + 2x5 + 2x4 + x3 + x+ 1 8

(q, f) C N
(4, 2) y2 + (x2 + x+ 1) y = x7 + x6 + x5 + x3 + x2 + x 7

y2 + (x4 + x2 + 1) y = x5 + x2 8
y2 + (x4 + x2 + x+ 1) y = x5 + x3 + x2 + x 9

αx4 + αx3 y + αx2 y2 + x+ y4 1
αx4 + α2 x3 y + α2 x2 y2 + x+ y4 1
α2 x4 + αx3y + αx y3 + x+ y4 2
αx4 + α2 x3 y + α2 x y3 + x+ y4 2
α2 x4 + x3 y + αx2 y2 + α2 x2 y + x y3 + αx y2 + x y + x+ y2 2
x4 + x3 + αx2 y2 + αx2 y + x y3 + α2 x y2 + x y + x+ y2 2
x3y + x2y2 + x3 + y3 + y2 + x 7
x4 + xy3 + x2y + y2 + x 14
x4 + x2y2 + y4 + x2y + xy2 + x2 + xy + y2 + 1 14

(5, 2) y2 = x7 + x5 + 3x3 + x 10

(9, 2) x4 + y4 + z4 28

Proof. The proof follows the same arguments as before by inspection but, in addition, we must
analyze the cases not covered in Sutherland’s database. To do so, we follow the directions in Section 1
to obtain the list of all candidate Weil polynomials for (potential) DS-curves of genus g = 3 attached
to the admissible pairs (q,m). If the list is empty, we are done. It happens to be so in all the
under-construction cases of Sutherland’s database, except for the genus-3 cases: hyperelliptic with
(q,m) = (4, 2), and non-hyperlliptic with (q,m) = (7, 2).
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As for the case hyperelliptic with (q,m) = (4, 2), we proceed to build the census of all (isomorphism
classes of) hyperelliptic curves over F4. To this end, we adapt the code provided by Xarles in [Xar]
for hyperlliptic curves over F2. There are 2162 isomorphism classes of hyperelliptic curves over F4,
of which three are DS-curves for F42/F4 ; in fact, these three DS-curves can be defined over F2.

With regard to the non-hyperelliptic case with (q, f) = (7, 2), we proceed following an argument
suggested to us by Howe. By using the strategy in Section 1, one finds that there is a unique
candidate Weil polynomial, namely:

L(t) = (t2 + 5 t+ 7)(t4 − 13 t2 + 49) .

The corresponding real Weil polynomial of turns out to be:

h(x) = P1(x)P2(x) = (x+ 5)(x2 − 27) .

Recall that the roots of the real Weil polynomial h(x) are µi = πi + πi, where πi are the roots of
L(t). Since the resultant of P1(x) and P2(x) equals −2, we can apply Theorem 1 and Theorem 2
in [How12]. Thus, if there is a genus-3 curve C with the given Weil polynomial, then it must be a
double cover of a curve D such that either:

(a) D is a genus-2 curve with Weil polynomial t4 − 13t2 + 49, or
(b) D is a genus-1 curve with Weil polynomial t2 + 5t+ 7.

Case (a) does not work, because there is no genus-2 curve with Weil polynomial t4 − 13t2 + 49.
One can check this either by using the method in Section 1 again or by the Theorem on page 335 of
[MNH02].

So we must be in case (b). Note that #D(F7) = 13. We can ask how many of these rational
points of D split in the double cover C −→ D, how many ramify, and how many are inert. Since
we have #C(F7) = 13 and #C(F49) = 13, no rational points of D are inert, so every rational point
either splits or is ramified in the double cover C −→ D. If we let S be the number of split points
and R be the number of ramified points, then

S +R =#D(F7) = 13
2S +R=#C(F7) = 13,

so S = 0 and R = 13. But from the Riemann–Hurwitz formula, we see that only 4 geometric points
of D ramify. Thus, (b) cannot hold either.

We reach to the conclusion that such quartic curve over F7 with the above Weil polynomial does
not exist and this completes the classification of DS-curves of genus 3 over finite fields. □

Remark 3.6. For genus g ≥ 4, to list the DS-curves over finite fields is an extremely laborious
task. For genus g = 4, Xarles has obtained the list of isomorphism classes of hyperellipitc curves
over F2, but beyond that the numbers of isomorphism classes become large. One is lead to search
directly for the candidate real Weil polynomials h(x) as explained in Section 1 or alternatively use
[Ked22], and then apply Serre’s and Howe-Lauter’s criteria [HL12] to discard some candidates. See
[Lar21] for a list of DS 4-genus candidate polynomials (the list has been debugged by Howe using
the IsogenyClasses.magma [How] package).

Remark 3.7. We want to thank E.Howe for drawing our attention to notice the following fact. For
every odd q, one can find a hyperelliptic DS-curve of genus at most (q2−3)/2. His construction goes
as follows. Using Lagrange interpolation, construct a polynomial f in Fq[x] of odd degree at most
q2 − 1 such that:

(1) for every z in Fq, the value f(z) is a square in Fq, and
(2) for every z in Fq2 that is not in Fq, the value f(z) is a nonsquare in Fq2 .

The polynomial f might have square factors; let g be the polynomial obtained by dividing out all
the square factors from f . Then y2 = g provides a hyperelliptic curve of genus at most (q2 − 3)/2,
and it has the same number of points over Fq2 as it does over Fq.

This gives a DS-curve for Fq2/Fq. Much simpler is to get hyperelliptic DS-curves for Fq3/Fq,
although the genus is larger: choose a nonsquare n in Fq, and let C be the curve y2 = f with
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f = xq
3 − x + n. It is easy to check that f has nonzero discriminant, and that C has exactly one

rational point over Fq and exactly one rational point over Fq3 .

4. Deligne-Lusztig curves

In the middle 70’s, Deligne and Lusztig were able to give an explicit description of the irreducible
representations of the semi-simple finite groups of Lie type [DL76]. These representations can be
read from the ℓ-adic cohomology of the so-called Deligne-Lusztig algebraic varieties which are defined
over finite fields. In this section, we make the observation that, in the one-dimensional case, Deligne-
Lusztig curves turn out to be DS-curves.

4.1. Hermitian curves (type 2A2). Here q denotes a square prime-power, and q0 = q1/2. The
hermitian curve is defined by the affine equation:

C : xq0+1 + yq0+1 + zq0+1 = 0 .

It is an optimal curve (in fact, it is a maximal curve) of genus g = (q − q0)/2 over Fq. Its Weil
polynomial is

L(t) = (t+ q0)
2g .

An easy computation shows that

#C(Fq) = #C(Fq2) = q30 + 1 = q + 1 + 2gq1/2 .

4.2. Suzuki curves (type 2B2). Here, q = 22e+1 and q0 = 2e for e ≥ 1. The Suzuki curve is defined
by the affine equation:

C : yq − y = xq0(xq − x) .

It has genus g = q0(q − 1) and its Weil polynomial is

L(t) =

(
t− q1/2

−1 + i√
2

)g (
t− q1/2

−1− i√
2

)g

= (t2 + 2q0t+ q)g .

An easy computation shows that

#C(Fq) = #C(Fq2) = #C(Fq3) = q2 + 1 .

4.3. Ree curves (type 2G2). Now, we take q = 32s+1, q0 = 3s for s ≥ 1. The Ree curve is given
by the two equations

C : yq − y = xq0(xq − x) , zq − z = xq0(yq − y) .

It has genus g = 3
2q0(q − 1)(q + q0 + 1). Its Weil polynomial is

L(t) = (t2 + q)
1
2
q0(q−1)(q+3q0+1)(t2 + 3q0t+ q)q0(q

2−1) .

One readily checks that

#C(Fq) = #C(Fq2) = #C(Fq3) = #C(Fq4) = #C(Fq5) = 1 + q3 .

4.4. Drinfeld curve. Drinfeld inspired the general construction of Deligne-Lusztig varieties from
the so called Drinfeld curve (see [Bon11]):

C : yq − y = zq+1

with q a prime power. This is a DS-curve when q is odd since #C(Fq) = #C(Fq2) = 1 + q. Indeed,
the curve has a unique point at infinity defined over Fq, and if (y, z) ∈ C(Fq2) then zq+1 ∈ Fq thus
yq − y = yq + y − 2y ∈ Fq, but yq + y belongs to Fq, therefore −2y ∈ Fq which implies y ∈ Fq since
q is odd. Thus yq − y = 0 which implies z = 0. Hence the points of C defined over Fq2 are precisely
the point at infinity and (y, 0) for every y ∈ Fq.
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5. M-torsion Carlitz curves

Carlitz initiated the study of functions fields that play an analogous role to that of cyclotomic
number fields in algebraic number theory (see [Car35], [Car38]). In this section, we shall deal with
the projective no-singular curves attached to the Carlitz modules. Our aim is to point out that
Carlitz curves are a good source of DS-curves. First, we recall their definition. We refer to [Ros02],
[Con00], [Geb02], and [Bam14] for detailed expositions on the arithmetic of Carlitz extensions.

Let M ∈ Fq[t] be a monic polynomial of degree ≥ 1. The M -torsion Carlitz module

ΛM = {γ ∈ Fq(t) : [M ](γ) = 0} = ⟨λM ⟩
is a finite 1-dimensional Fq[t]-module via the Carlitz action determined by recursion and linearly
from the rules:

[t](x) = xq + tx , [tn](x) = [t]([tn−1](x)) for n ≥ 2, and [1](x) = x .

Let KM = Fq(t, λM ) and consider the Carlitz extension KM/Fq(t) attached to M . The field KM

produces an abelian extension over Fq(t) unramified outside the primes dividing M∞, where ∞
corresponds to the place 1/t. The Carlitz action induces an isomorphism between (Fq[t]/M)∗ and
the Galois group Gal(KM/Fq(t)):

(Fq[t]/M)∗ −→ Gal(KM/Fq(t)) , Q 7→ σQ : λM 7→ [Q](λM ) .

Let ΦM (x) be the M -th Carlitz polynomial defining the extension KM/Fq(t); that is,

ΦM (x) =
[M ](x)∏

Q|M

ΦQ(x)

where Q runs the monic polynomials in Fq[t] dividing M of degree less than degM , and Φ1(x) = x.
The minimal polynomial of λM over Fq(t)[x] is the irreducible Carlitz polynomial ΦM (x).

The M -torsion field KM can be regarded as the function field of an algebraic curve defined over Fq,
that we shall denote here by XM and call it the Carlitz curve of level M . In fact, by Galois theory, for
every subgroup H ⊆ (Fq[t]/M)∗ we can consider the non-singular projective curve XH

M attached to
the fixed field KH

M . A result of Weil [Wei48] allows us to compute the zeta function of XH
M . Indeed,

on has

ζ(XH
M/Fp, t) =

PH(t)

(1− t)(1− qt)

with
PH(t) =

∏
χ ̸=1
χH=1

L(χ, t)

where χ : (Fq[t]/M)∗ −→ C∗ runs the non-trivial Dirichlet characters and χH stands for the restric-
tion of χ to H. The coefficients of the polynomials L(χ, t) =

∑∞
n=0A(n, χ)tn satisfy

A(n, χ) =
∑

deg(f)=n
f monic

χ(f) .

By the orthogonality relations, one has A(n, χ) = 0 for n ≥ deg(M). In order to explore the DS
property of the curves XH

M , we need to control the number of places aHd on XH
M of degree d.

To this end, one must take into account that all places of XH
M over the place ∞ of Fp(t) have degree

one. In other words, the place ∞ only contributes to aH1 (see [Ros02], Chap. 13). In general, for a
finite place P of degree d in XH

M over a place p = (π), where π ∈ Fq[t] is an irreducible polynomial
of degree d′, one has

#[(Fq[t]/M)∗ : H] = eπfπgπ

where eπ is the ramification index at P, fπ = [FP : Fp] = [Fpd : Fpd′ ] is the residual degree, and gπ
is the number of Galois conjugates of P. The residual degree fπ satisfies d = fπ · d′ and it can be
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computed as the order of the class π mod M in the subgroup H; that is, fπ is the minimum integer
f ≥ 1 such that πf mod M belongs to H.

For d > 1 one has

aHd =
m

h
.
∑
d′|d

 ∑
deg(π)=d′

d=fπd′

1

fπeπ


where m = #(Fq[t]/M)∗, and h = #H.

It is fairly easy to exhibit instances of M and H that produce DS-curves XH
M .

Proposition 5.1. Let ℓ be a prime number, and let H ⊆ (Fq[t]/M)∗ be a subgroup. Assume that
all irreducible factors of M ∈ Fq[t] have degree different form 1 and ℓ. Moreover, suppose that the
classes mod M of all primes π ∈ Fq[t] of degree 1 and ℓ do not have order ℓ and 1 in H, respectively.
Then, XH

M has Diophantine stability for Fqℓ/Fq.

Proof. When d = ℓ is a prime number, the primes π of Fq[t] that can contribute to aHℓ have residual
degree either fπ = 1 or ℓ. Thus, such a polynomial π must have degree ℓ or 1 and, due to the
hypothesis, they are coprime with M and hence are unramified in KH

M . Also we have that the order
of π mod M in H is not ℓ for all primes π of degree 1 and the order of π in H is not 1 for all primes
π of degree ℓ, then aHℓ = 0. Thus, XH

M has Diophantine stability for Fqℓ/Fq. □

Proposition 5.2. Let M ∈ Fq[t] be a polynomial of degree m > 2, and let H ⊆ F∗
q ⊆ (Fq[t]/M)∗

be a subgroup. Let k be an integer with 2 ≤ k < m. Assume that for every prime divisor π of M it
holds k ̸= deg(π)fπ. Then, one has aHk = 0.

Proof. Suppose for contradiction that XH
M has a place P of degree 2 ≤ k < m. Since k ̸= 1 we can

assume that P is a finite place. Then P ∩ Fq[t] = (π̃), with π̃ a prime in Fq[t] of degree d where
k = fπ̃d. By hypothesis we must have π̃ ∤ M ; that is, π̃ is an unramified prime, and thus fπ̃ is the
minimum power such that π̃fπ̃ ∈ H. Hence π̃fπ̃ −u ∈ MFq[t] for some u ∈ H ⊆ F∗

q and it has degree
fπ̃d = k < m. But this is impossible since M has degree m and π̃fπ̃ − u is not the zero polynomial.
Therefore we must have aHk = 0. □

Corollary 5.3. Let M = πr ∈ Fq[t] be a prime-power polynomial with m = deg(π) > 2 and r ≥ 1.
Let H ⊆ F∗

q ⊆ (Fq[t]/M)∗ be a subgroup. Then, aHk = 0 for all k such that 2 ≤ k < rm and k ̸= m.

Proof. Fix k with 2 ≤ k < rm and k ̸= m. Since KM/Fq(t) is totally ramified at π, it follows that
fπ = 1. Hence, we can apply Proposition 5.2 since k ̸= deg(π)fπ = m. □

Let us illustrate the above results with two examples.

Example 1. Consider M = t4 + t + 1 in F2[t] and let H be the trivial subgroup. The curve XM

has genus 14. The numerator of zeta function ζ(XM/F2, T ) is the polynomial:

P (T ) = (4T 4 − T 2 + 1) · (4T 4 + 2T 3 + 3T 2 + T + 1)2·

(16T 8 + 40T 7 + 52T 6 + 50T 5 + 39T 4 + 25T 3 + 13T 2 + 5T + 1)2 .

The sequence of number of places begins:

[ad] = [15, 0, 0, 1, 0, 5, 30, 30, 60, 45, 210, 345, 690, 1095, . . . ].

The values a2 = a3 = 0 are explained by Corollary 5.3.

Example 2. Take M = (t6 + t + 1)2 and H trivial in F2[t]. The extension KM/F2(t) has degree
4032 = 26 · 32 · 7 and the curve XM has genus 19969. The sequence of number of places begins:

[ad] = [4032, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . . ] .

The values ak = 0 for 2 ≤ k < 12 with k ̸= 6 are explained by Corollary 5.3. By Proposition 5.1, a6
can only be contributed by the unique ramified place (t6 + t+ 1) and easily one finds a6 = 1.
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The computations involved in the examples above have been performed with Magma [Bos97] and
SageMath [Sag24].

6. M-torsion Drinfeld curves

As we have discussed in the previous section, the Carlitz action is defined recursively and linearly
by the axioms:

[1](x) =x

[t](x) =xq + tx

[tn](x)= [t]([tn−1](x)) for n ≥ 2.
With the aim to attack the Langlands program in positive characteristic, Drinfeld generalized the
Carlitz action as follows. Consider a qn-degree polynomial of the form

(1) h(x) = unx
qn + un−1x

qn−1
+ . . .+ u1x

q + tx ∈ Fq(t)[x] ,

and define the Drinfeld action recursively and Fq-linearly by:

[1]h(x) =x

[t]h(x) = h(x)

[tn]h(x)= [t]h([t
n−1]h(x)) for n ≥ 2.

For a given polynomial M ∈ Fq[t], consider the n-rank M -torsion Drinfeld module

ΛM,h := {γ ∈ Fq(t) : [M ]h(γ) = 0} .
One has that ΛM,h

∼= (Fq[t]/M)n as Fq[t]-module with the Drinfeld action. The image of the
embedding

Gal(Fq(t)(ΛM,h)/Fq(t)) → GLn(Fq[t]/M)

has been studied by Pink and his collaborators (see [Pin06a], [Pin06b], [PT06], [PR09a], [PR09b].
Similarly as we did in the Carlitz case, we introduce the Drinfeld polynomials

Φ(x, t) = ΦM,h(x) :=
[M ]h(x)∏

Q|M ΦQ,h(x)
∈ Fq[t][x],

where Q runs through the monic polynomials in Fq[t] dividing the monic polynomial M ∈ Fq[t] and
degx(Q) < degx(M).

From now on, we assume that Φ(x, t) is an irreducible polynomial in Fq[t][x] and denote by XΦ

the Drinfeld curve over Fq determined by the defining equation Φ(x, t) = 0. We say that XΦ is the
M -torsion h-Drinfeld curve of rank n. Also, let KΦ be the function field associated to XΦ; namely,
the quotient field Fq(t)[x]/(Φ(x, t)).

Remark 6.1. To control the ramification divisor of the extension Fq(t)(ΛM,h)/Fq(t) is not an easy
task (see Taguchi [Tag91]). However, for a given Φ as above, the ramification divisor of the extension
KΦ/Fq(t) is more manageable using valuation theory.

In the next subsections we build some examples of Drinfeld curves with Diophantine Stability.

6.1. Examples of Drinfeld DS-curves of rank 3. We show how to impose conditions on the
coefficients of the polynomial

(2) h3(x) = u3x
q3 + u2x

q2 + u1x
q + tx ∈ Fq(t)[x]

to produce t-torsion Drinfeld curves of rank 3 with Diophantine stability with q = 2. The method
presented here can be extended to produce examples of Drinfeld DS-curves for higher rank. As usual
for a place π of Fq(t) we denote by ordπ(f) or vπ(f) for f ∈ Fq(t) the integer k such that πk||f ,
and denote by Fq(t)π the completion of Fq(t) at π with the natural extension of ordπ = vπ in the
completion field.

Lemma 6.2. Let h3(x) = u3x
q3 +u2x

q2 +u1x
q+ tx ∈ Fq(t)[x] with q = 2. Denote Φ(x, t) = Φt,h3(x)

defined by [t]h3(x) = x · Φt,h3(x). Assume that (ordt(u3), ordt(u2), ordt(u1)) = (0,≥ 1,≥ 1). Then,
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(1) Φt,h3(x) ∈ Fq(t)[x] is irreducible.
(2) Assume that for all π ∈ {1/t, t + 1, t2 + t + 1} it holds ordπ(ui) ≥ 0 for i ∈ {1, 2, 3}. In

addition, suppose that gcd(x4 + x,Φt,h3(x)(mod t2 + t+ 1)) = 1 and gcd(x2 + x+ 1,Φt,h3(x)

(mod t+ 1)) ̸= x2 + x+ 1, then the t-torsion h3-Drinfeld curve XΦ of rank 3 has DS for the
extension F4/F2. 1

Proof. Due to the hypothesis on the coefficients of Φt,h3(x) = u3x
7+u2x

3+u1x+t, the first claim is an
immediate consequence of Eisenstein’s irreducibility criterion applied to the prime t. By considering
the Newton polygon of Φt,h3(x) at the place t, we observe that t is totally ramified in the extension
KΦ/F2(t) (we refer to [Neu02, II,§6] for the properties of Newton polygons).

In order to compare the sets XΦ(F2) and XΦ(F4) we need to control the decomposition of the
places of degrees 1 and 2: t, t+ 1, t2 + t+ 1, ∞ = 1/t of F2(t) in the field extension KΦ/F2(t).

Since the place t is totally ramified in KΦ/F2(t), it does not produce points in XΦ(F4) \ XΦ(F2).
Similarly, considering the Newton polygon of Φt,h3(x) at the place 1/t and taking under consideration
our assumptions on ord1/t for the coefficients ui, we observe that the place 1/t produces a unique
point at infinity in XΦ which is defined over F2.

Now consider the place π = t + 1 of F2(t). Since ordt+1(ui) ≥ 0, we can consider the reduced
polynomial g(x) := Φt,h3(x) (mod t + 1) ∈ F2[x]. In order that the place t + 1 does not provide
points in XΦ(F4) \ XΦ(F2) we impose that the factorization over F4[x] of the above polynomial does
not appear any new linear factor; i.e. we need x2 + x+ 1 ∤ g(x).

Finally take the place π = t2 + t + 1 of F2(t), and assume ordt2+t+1(ui) ≥ 0. Now we consider
g(x) := Φt,h3(x) (mod t2+ t+1) ∈ F4[x], and we want to impose that g(x) has no roots in F4; that is
to say, gcd(x4+x, g(x)) = 1. Putting altogether, the hypothesis on the valuations of the coefficients
of h3(x) ensure that XΦ(F4) = XΦ(F2). □

6.2. Examples of Drinfeld DS-curves of arbitrary large rank. In this subsection we use base
change techniques to construct Drinfeld DS-curves defined over Fq of rank n ≥ 1.

To this end we consider the Drinfeld action on Fq[t] given by hq,n(x) = xq
n
+ tx. Observe that we

have the following equality:

(3) [t]hq,n(x) = xq
n
+ tx = [t]hqn,1

= [t](x).

In other words, for hq,n(x) = xq
n
+ tx, the Drinfeld action on Fq[t] is the same as the Carlitz action

on Fqn [t]. By linearity, one has that for every M ∈ Fq[t] it holds [M ]hq,n(x) = [M ]hqn,1
(x). From

now on in this section, we assume that M is a polynomial in Fq[t] that with the property that it
factorizes in Fqn [t] exactly as it does over Fq[t]. Then, we have

ΦM,hq,n(x) =
[M ]hq,n(x)∏

Q|M ΦQ,hq,n(x)
=

[M ]hqn,1
(x)∏

Q|M ΦQ,hqn,1
(x)

= ΦM,hqn,1
(x) ∈ Fq[t][x] .

Given such M ∈ Fq[t] and n ≥ 1, for each i | n we consider the function field:

KM,i = Fqi(t)[x]/(ΦM,hqn,1
(x)),

and the corresponding curve XM,i defined over Fqi . Notice that XM,n is the M -torsion Carlitz curve
over Fqn discussed in the previous section, and that XM,1 is the M -torsion hq,n-Drinfeld curve of
rank n defined over Fq. The different curves XM,i are obtained by constant field extensions from XM,1.
Thus by [Ros02, Proposition 8.19] one has the following relation on the number of k-degree places:

(4) ak(XM,n) =
1

k

∑
d|k

µ(d)a1(XM,nk/d)

where µ denotes the Möebius function.

1An explicit example of h3 satisfying all the assumptions in lemma 6.2 is: u1(t) =
t(t2+t+1)

(t3+t+1)
, u2(t) =

t(t+1)2

(t3+t+1)
and

u3(t) = 1.
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Lemma 6.3. Keep the notations as above and let n = ℓ be a prime number. If ak(XM,ℓ) = 0 for
some k with ℓ | k, then aℓk(XM,1) = 0.

Proof. We know that 0 = ak(XM,ℓ) =
1
k

∑
d|k µ(d)a1(XM,ℓk/d), and want to compute

(5) aℓk(XM,1) =
1

ℓk

∑
d|ℓk

µ(d)a1(XM,ℓk/d).

We can (and do) write k = ℓmk′ with k′ coprime with ℓ and m ≥ 1 by assumption. We consider
the set S = {d ∈ Z≥1 : d | ℓk , d ∤ k}. Notice that if d ∈ S, then one has d = ℓm+1k′′ with k′′|k′. We
rewrite (5) as follows:

(ℓk)aℓk(XM,1) =
∑
d|k

µ(d)a1(XM,ℓk/d) +
∑
d∈S

µ(d)a1(XM,ℓk/d) .

The first summand is zero by hypothesis and the second as well due to m + 1 ≥ 2 which implies
µ(d) = 0 for all d ∈ S. □

Corollary 6.4. Let ℓ be a prime. Let M ∈ Fq[t] of degree > ℓ and irreducible over Fqℓ [t]. Then
XM,1(Fqℓ) = XM,1(Fqℓ2

), and thus XM,1 is a DS-curve for F
qℓ2

/Fqℓ .

Proof. From Corollary 5.3, we have that the M -torsion Carlitz curve XM,ℓ over Fqℓ satisfies aℓ(XM,ℓ) =
0. Applying Lemma 6.3 we get aℓ2(XM,1) = 0. Therefore by Proposition 2.5, we find XM,1(Fqℓ) =
XM,1(Fqℓ2

). □

Example 6.5. Take q = 2, n = ℓ = 2, and M = t3 + t+ 1. Observe that M is irreducible in F22 [t].
One has

ΦM,h2,2(x) = ΦM,h4,1(x) = x63 + (t16 + t4 + t)x15 + (t8 + t5 + t2)x3 + (t3 + t+ 1) .

From Corollary 5.3, we get that the Carlitz curve XM,2/F4 satisfies a2(XM,2) = 0. By Corollary 6.4,
we obtain a4(XM,1) = 0. Therefore

XM,1(F22) = XM,1(F24)

thus the Drinfeld curve XM,1/F2 is a DS-curve for the extension F24/F22 .

References

[Bam14] A.S. Bamunoba: “On some properties of Carlitz cyclotomic polynomials". J. Number Theory 143 (2014),
102–108.

[Bon11] C. Bonnafé: “Representations of SL2(Fq), Algebra and Applications, vol. 13, Springer-Verlag, London, 2011.
[Bos97] W. Bosma, J. Cannon, C. Playoust: “The Magma algebra system. I. The user language", J. Symbolic Comput.,

24 (1997), 235–265.
[Car35] L. Carlitz: “On certain functions connected with polynomials in a Galois field", Duke Math J. 1 (1935),

137—168.
[Car38] L. Carlitz: “A class of polynomials", Trans. Amer. Math. Soc. 43 (1938), 167—182.
[Con00] K. Conrad: “Carlitz extensions". Expository papers in Algebraic Number Theory in personal web page

https://kconrad.math.uconn.edu/
[DL76] P. Deligne, G. Lusztig: “Representations of reductive groups over finite fields", Ann. of Math. 103 (1976),

103—161.
[Geb02] M. Gebhardt: “Constructing function fields with many rational places via the Carlitz module". Manuscripta

math. 107, 89-–99 (2002). https://doi.org/10.1007/s002290100226
[How] E.W. Howe, in: https://ewhowe.com/papers/paper35.html
[How12] E.W. Howe: “New methods for bounding the number of points on curves over finite fields", pp. 173–212 in:

Geometry and Arithmetic (C. Faber, G. Farkas, and R. de Jong, eds.), European Mathematical Society, 2012.
[HL12] E.W. Howe, K. E. Lauter: “New methods for bounding the number of points on curves over finite fields”,

pp. 173–212 in “Geometry and arithmetic” (C. Faber, G. Farkas, R. de Jong, eds.), Eur. Math. Soc., 2012.
http://dx.doi.org/10.4171/119-1/12.

[Kat76] N. Katz: “An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields", Proc.
Symp. Pure Math. 28 (1976), 275–305.

[Ked22] K. Kedlaya (et al.): “Isogeny classes of abelian varieties over finite fields in the LMFDB", in Arithmetic
Geometry, Number Theory, and Computation, Simons Symposia, Springer, 2022, 375–448.

http://dx.doi.org/10.4171/119-1/12


18 FRANCESC BARS AND JOAN-C. LARIO

[Lar21] J-C. Lario, in: https://web.mat.upc.edu/joan.carles.lario/DS.html#
[Lau00] K. Lauter: “Zeta functions of curves over finite fields with many rational points”, pp. 167–174 in “Coding

theory, cryptography and related areas (Guanajuato, 1998)” (J. Buchmann, T. Hoholdt, H. Stichtenoth, H.
Tapia-Recillas, eds.), Springer, 2000.

[MNH02] D. Maisner, E. Nart (with an appendix by E. W. Howe): “Abelian surfaces over finite fields as Jacobians",
Experiment. Math. 11 (2002) 321—337.

[Neu02] J. Neukirch: “Algebraic Number Theory", Springer Verlag (2002).
[Pin06a] R. Pink: “The Galois Representations Associated to a Drinfeld Module in Special Characteristic, I: Zariski

Density" J. Number Theory 116 (2006), no. 2, 324–347.
[Pin06b] R. Pink: “The Galois Representations Associated to a Drinfeld Module in Special Characteristic, II: Open-

ness" J. Number Theory 116 (2006) no. 2, 348–372.
[PT06] R. Pink, M. Traulsen:“ The Galois representations associated to a Drinfeld module in special characteristic.

III. Image of the group ring". J. Number Theory 116 (2006), no. 2, 373–395.
[PR09a] R. Pink, E. Rütsche: “Adelic openness for Drinfeld modules in generic characteristic". J. Number Theory 129

(2009), no. 4, 882–907. MR2499412 Add to clipboard
[PR09b] R.Pink, E. Rütsche: “Image of the group ring of the Galois representation associated to Drinfeld modules".

J. Number Theory 129 (2009), no. 4, 866–881.
[Rob64] R.M. Robinson: “Algebraic equations with span less than 4”, Math. Comp. 18 (1964), 547—559.

http://dx.doi.org/10.2307/2002941
[Ros02] M. Rosen: “Number theory in function fields". Graduate Texts in Mathematics, 210. Springer-Verlag, New

York, 2002
[Sag24] SageMath, the Sage Mathematics Software System, The Sage Developers, 2024, https://www.sagemath.org.
[Ser20] J.-P. Serre: "Rational points on curves over finite fields". Documents mMth. vol. 18. Societé Mathématique

de France, 2020.
[Smi84] C.J. Smyth: “Totally positive algebraic integers of small trace”, Ann. Inst. Fourier 34 (1984), 1–28.
[Sut] A.V. Sutherland, in: https://math.mit.edu/ drew/avff/
[Tag91] Y. Taguchi: “Semisimplicity of the Galois representations attached to Drinfeld modules over fields of “finite

characteristics”". Duke Math. J. 62(3): 593–599 (1991).
[Xar] X. Xarles in: https://github.com/XavierXarles/Censusforgenus4curvesoverF2
[Wei48] A. Weil: “Sur les courbes algébriques et les variétés qui s’en déduisent”". Hermann, Paris (1948).

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Catalunya ,
Email address: brancesc.bars@uab.cat

Departament de Matemátiques, Universitat Politécnica de Catalunya, Barcelona, Catalunya
Email address: joan.carles.lario@upc.edu

http://dx.doi.org/10.2307/2002941

	1. Introduction
	2. Basic properties
	3. Low genus curves
	3.1. Genus 1
	3.2. Genus 2
	3.3. Genus 3

	4. Deligne-Lusztig curves
	4.1. Hermitian curves (type 2A2).
	4.2. Suzuki curves (type 2B2)
	4.3. Ree curves (type 2G2)
	4.4. Drinfeld curve

	5. M-torsion Carlitz curves
	6. M-torsion Drinfeld curves
	6.1. Examples of Drinfeld DS-curves of rank 3
	6.2. Examples of Drinfeld DS-curves of arbitrary large rank

	References

