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Abstract

We obtain the modular automorphism group of any quotient modular curve of level N, with 4,9t N. In
particular, we obtain some non-expected automorphisms of order 3 that appear for the quotient modular
curves when the Atkin-Lehner involution was belongs to the quotient modular group, such automorphisms
are not necessarily defined over Q. As a consequence of the results, we obtain the full automorphism group
of the quotient modular curve Xg(N?), for sufficiently large N.

1 Introduction

A curve C with non-trivial automorphism group encodes deep arithmetic information (in particular the twists
of the curve C'). The Fermat quartic or the Klein quartic are examples of curves with big automorphism groups
extensively studied in the literature.

Some of the main curves in arithmetic geometry are the classical modular curves X over Q, which are moduli
spaces classifying elliptic curves with some N-level structure. A non-trivial automorphism group would have
deep arithmetic meaning for such curves. For example, when N is prime, one expects that such a modular curve
X has no rational point except the cusps and points associated to elliptic curves with complex multiplication,
usually called CM points, (which is related with Serre’s uniformity conjecture). In [Dol6], the author related
the existence (for certain X') of non-trivial automorphisms with the existence of rational points that are neither
CM nor cusp. Thus modular curves with non-trivial automorphism group are of key interest.

Let X be a modular curve (we assume that it is defined over QQ), where its complex points correspond to the
completion at certain cusps of the upper half plane H modulo the action by a congruence subgroup I' < SLy(Z)
(we assume +I € I'), and denote by Aut(X) the automorphism group over Q of the modular curve X. In
particular, the normalizer of I" in PSLa(R) (the automorphism group of H) modulo I' provides a subgroup of
Aut(X) which is known as the modular automorphism group of X. For a group G < PSLy(R), we denote
its normalizer inside PSLy(R) by N(G). In particular, the modular automorphism group of the modular curve
associated to I' corresponds to N (T)/T.

Let N € N (where N denotes the set of all positive integers), and consider the modular group T'o(N) :=
{(2.%) € SLa(Z)}. Tt is well known that the associated modular curve Xo(N) is defined over Q. Atkin-
Lehner in [AtLeh70, Theorem 8], stated the result for N'(I'g(N)) modulo I'g(N), (cf. [AkSi90], [Ba08] for the
correct statement and the proof of the result). Such normalizer contains the Atkin-Lehner involutions defined
by the matrices of the form wg n = %(X]i J) € SLy(R) with d > 1,d||N (i.e., d|N and (d, N/d) = 1) and
x,y, 2, w € Z such that zwd — yz(N/d) = 1 (we also use the notation wy to denote wy n, the level N will be
clear from the context). We denote the group generated by all such Atkin-Lehner involutions modulo I'g(N)
by B(N), which is an abelian group with every non-trivial element of order 2. For 4,94 N, we known that

N(To(N))/To(N) = B(N),

a group of order 2V where w(N) is the number of distinct prime divisors of N (loc.cit.). Later, Conway
[Con96] gave a characterization of the normalizer of To(N) in terms of a group action on lattices, which has
deep interest and consequences in Group Theory. We emphasize here that the existence of such Atkin-Lehner
automorphisms (involutions) play a crucial role in the understanding of the modular curves Xo(N) and the
theory of Hecke operators for Xo(N) (cf. [AtLeh70]).
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Now consider any subgroup Wy of B(N) (by abuse of notations we denote the collection of distinct repre-
sentatives of B(N) by B(N)), and the group (I'o(N), Wy) (we use the notation H + G or (H,G) to denote
the group generated by the elements of H and G). The associated modular curve Xo(N)/Wy is known as
a quotient modular curve and it is defined over Q. An automorphism of Xo(N)/Wy is said to be mod-
ular if it is coming from an element of PSLy(R) (note that such an element belongs to N((I'g(N), Wx))
and vice-versa). Since N (Io(N))/To(N) = B(N) for 4,9 { N, it is natural to ask whether the equality
N({(To(N), Wn))/(To(N),Wn) = B(N)/Wy is true or not for 4,9 { N. When N is square-free, Lang in
[Lan01] proved that the equality N'({To(N), Wn))/{To(N), Wy) = B(N)/Wy is true for any subgroup Wy.
The main motivation of this article is to study this question for general N with 4,9 + N. More precisely, we
completely determine the normalizer N ((I'o(N), Wx)) and prove the following results.

Theorem 1.1. [Theorem in text] Let N € N and Wy be a subgroup generated by the Atkin-Lehner
involutions such that 4,94 N and was ¢ W . Then N((TLo(N),Wn)) = (To(N), wq : d||N).

Theorem 1.2. [Theorem in text] Let N € N and Wy be a subgroup generated by the Atkin-Lehner
involutions such that 4,94 N and was € Wi

1. If there exists wqg € W such that ﬁ Z +1 (mod 5), then N((To(N), Wn)) = (To(N),wq : d||N).

2. If igy = 1 (mod 5) for allwg € W, then N'((To(N), W) = (o(N), Y5 B;CoTs, Y5 ' BoCi Y5, wa :
d||N) where Y5 = (g 195), Bj = (%@H _1j), Ci=(§1), 0<j,i <4 such that ££j =2 (mod 5) and
25
i=—j (mod 5). Moreover (Y5'B;CoYs5 = (Y5 BoC;Ys)™ ") has order 3 in N'((To(N), Wx'))/(To(N), Wy).

As an immediate consequence of Theorem and Theorem we obtain that for 4,9 t N, we have
N((To(N),Wx))/(To(N),Wn) 2 B(N)/Wy if and only if wes € Wi and (Q%d) =41 (mod 5) for all wy € Wy
Moreover, in such cases the group N((I'o(N),Wx))/{To(N),Wx) (and hence the group Aut(Xo(N)/Wy))
may be non-abelian and contains elements of order 3. In particular, this explains the new automorphisms of
order 3 that appear for the quotient curves Xo(25¢)/(was) and Xo(25q)/(was, w,) with ¢ prime (under some
assumptions), which is first observed in [BaDa24].

It is expected that when N is sufficiently large, the modular automorphism group of Xo(N)/Wy coincides
with the full automorphism group Aut(Xo(N)/Wy). This statement is true for the modular curve Xo(N) (cf.
[KenMom88]). Moreover, when N is either square-free (cf. [BaGo2l1]) or a perfect square (cf. [DLM22]), then
this statement is true for the modular curve X§(N) := Xo(N)/B(N). In particular, combining Theorem
and Theorem [1.2| with [DLM22] Theorem 5.8] we get

7./3Z, if 5||N,

Corollary 1.3. Let N > 10%%° and (6, N) = 1. Then Aut(Xo(N?)/B(N?)) = {{d} therwi
id}, otherwise.

In the last section of this paper, under some assumption we prove that the order 3 modular automorphisms
are defined over Q(v/5).

2 The Conway Big Picture for quotient modular groups

For N € N and a subgroup Wy generated by certain the Atkin-Lehner involutions, consider the group
(T'o(N), Wn). We denote by T'§(N), the subgroup generated by I'o(N) and all the Atkin-Lehner involutions
wg,n with d||N. The aim of this section is to prove that N'((I'o(N), Wx)) is a subgroup of I't(M), for some
positive divisor M of N. In order to do this, we will follow Conway’s Big Picture introduced in [Con96].

2.1 The Big Picture

Two lattices L(1) and L(2) (commensurable with Z x Z) are equivalent to each other if there exists ¢ € Q*
such that L(1) = ¢L(2). This is an equivalence relation on the set of lattices that are commensurable with
Z x Z. Each equivalence class has a representative of the form Ly ,/, := ((s,9/t),(0,1)) Lot = (se1+ Ze2, €2) Lat,
where s > 0 is a rational number and 0 < g/t < 1, with ¢ > 0 and ¢ > 0 coprime integers, e; = (1,0)
and es = (0,1); when g = 0 we denote Ls by L. For simplicity of notations we denote the equivalence class

containing the lattice Ly 4/; by L, 4/;- The hyperdistance between two equivalence classes L and L

51,91/t1 52,92/t2



is defined as follows: after a suitable base change one class corresponds to (e1, es) 1+ and the other corresponds
to (kei,e2)Lqt for a certain k£ € N, the number £ is the hyperdistance between L, 4, /¢, and Ly, g, /¢,

The Big Picture of Conway is a graph defined as follows: the points (or vertices) correspond to the equiv-
alence classes L g/ , and two classes {Lg, g, /¢, Ls,,g, /¢, } are connected by a non-oriented edge if and only if
the hyperdistance between such two classes is a prime number.

There is a natural action of PGL2(Q) on the Big Picture defined as follows: for 4 := (24) € GL2(Q),
AxLg 4/ corresponds to the representative of the class containing the lattice (s(aei +bez) + 4 (ce1 +dez), cer +
des) Lat, 1.€., in terms of basis elements, this action can be written as:

seq + %62 — s(ae; + bes) + %(661 + des), eg > cer + des. (2.1)

This action could be extended to PSLy(R) with the same definition. We would like to remark that wqn €
PSL2(Q) when d is a perfect square, and wq n ¢ PSL2(Q) if d is not a perfect square.
The following results are well-known (cf [Con96]).

Theorem 2.1 (Conway). The stabilizer of X = Ly 4/, in PSLa(R) is (§ 91/t)71PSL2(Z)(8 9/t) C PSLy(Q),
and in the Big Picture literature such stabilizer is denoted T'o(X|X)+.

Following the notation in the Big Picture, for a positive integer h with h?|N, we define the group
To(N/hlh)+:= (1! 9)TG(N/h*) (4 9) € PGLy(Q).

Theorem 2.2 (Conway). The point L g, is fived by T'o(N) if and only if s is a positive integer and t|24
is the largest integer such that t>|N and 1|s|(N/t?). The collection of all such points on the Big Picture is
called the (N|1)-snake. Furthermore, o € PSLy(R) leaves the (N|1)-snake invariant as a set (not necessarily
point-wise) if and only if o € To(N/h|h)+, where h is the largest positive integer such that h|24 and h?|N.
Thus N(To(N)) =To(N/h|h)+.

Example 2.3. 1f4,9 1 N, then from Theorem 2.2 the (N|1)-snake corresponds to the set of all classes Ls,o where
s is a positive divisor of N. Furthermore, under such assumption we have N (To(N)) = To(N/1|1)+ =T§(N).

2.2 The normalizer of I' :=T'((N) + Wy with w,2 x ¢ T.

Let N be a positive integer. Following the ideas of [Lan01], we now study the normalizer of T'o(N) + Wy,
where Wy is a subgroup generated by Atkin-Lehner involutions such that for any Atkin-Lehner involution
wg,N € To(N) 4+ Wy, d is not a perfect square. Note that under such assumption wqny ¢ PSL2(Q). For
simplicity of notations we write wq n by wq. Let di,...,d, be exact divisors of N (i.e., d;||N) such that
To(N) + Wy =To(N) + (wgy, - - . ,wa, ). Now consider the action of I'o(N) + Wy on the Big Picture. We use
the following notations:

o t: a (Io(N)+ (wa,,- - ,wa,))-orbit of size 2™,
e T: the set of all the t’s.

Lemma 2.4. Let N be a positive integer, and Wy be a subgroup generated by Atkin-Lehner involutions such
that for any Atkin-Lehner involution wyq € To(N) + Wi, d is not a perfect square. For each X € (N|1)-snake

{o(X):0€ (To(N)+ (way, - ywa,))} ={X,wa(X) : d||[Nywq € To(N) + Wn}
is a member of T .
Proof. Let X € (N|1)-snake. Then X is fixed by I'o(IN). Since wg, € N(To(NV)), the elements of T'o(N) +
(wqy, -+ ,wa,) are of the form [\, w(’Z”y for some v € T'o(N) and k; € {0,1}. Moreover, we can write
T, waV = wk~', for some 7' € Ty(N), wg € Wy and k € {0,1}. Hence

{0(X):0€ ([To(N)+ (way, - ,wa,))} ={X,wa(X) : d||[N,wg € To(N) + Wx}.

Let Cyy, denote the representatives of distinct left cosets of (V) in T'o(N) 4+ W Since w? € I'o(N) for d||N,
Co(N)+ Wy : To(N)] = 2" and T'g(N) fixes X, the set {X, wq(X) : d||N,wq € To(N)+Wn} ={X,6(X):d €
Cwy \ {id}} has at most 2" elements. Recall that the stabilizer of X is of the form (T'o(X|X)+) C PSL2(Q).
Let 01,92 be two distinct elements of Cyy,, \ {id}. Then there exist integers dy,,, dm, with d,, ||V such that
0; = wq,, € Wy for i € {1,2}. By the assumption on Wy, it is easy to see that Wwq,, W w;llde &
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PSL2(Q). Thus 6;(X) # X and §1(X) # d2(X). The result follows. O



Lemma 2.5. Under the assumptions of Lemma for any t € Ty, t is a subset of the (N|1)-snake.

Proof. Consider an element t € T, and X = L, ,/; € t. Suppose X ¢ (N|1)-snake. Then I'g(X|X)+ is not a
supergroup of I'g(N) (cf. [Lan01) p.33,(8)]). Consequently, T'o(N)NTy(X|X)+ is a proper subgroup of I'y(V).
In particular we have

Recall that T'o(X|X)+ C PSL2(Q), and (To(N) + (wq,, - -+ ,wa, ) N PSL2(Q) = I'x(N). Hence we obtain

(Lo(N) + (wa,, -+ ,wa,)) NTo(X|X)+ =To(N) NTo(X|X) +

(
Therefore, [Co(N) + (way, -+ ywa,) : To(N) + (way, -+ ywa,)) NTo(X|X)+]
=[Lo(N) + (wa, -+ ,wq,) : To(N) N To(X|X)+ ]
=[Co(N) + (wa,, -+, wa,) : To(N)][Co(N) : To(N) N To(X]X)+] > 2"
Observe that (Tg(N) + (wq,, -+ ,wq, ) NTo(X|X )+ is the stabilizer of X in T'o(N) + (wq,, - ,wq, ). The last
equality shows that the (Uo(N) + (wg,, - -+ ,wq, ))-orbit of X has at least 2"*! elements, which contradicts that
X € t. Therefore X € (N|1)-snake. O

Lemma 2.6. Let N,Wy be as in lemma[2., Then, N(Do(N) + Wy) is a subgroup of To(N/h|h)+, where
h|24 is the largest natural number such that h*|N.

Proof. By Lemma and Lemma X € (N|1)-snake if and only if X € t € Ty .
Now for each o € N(Do(N) + (wq,, -+ ,wq,)), and t € Ty, we have

(To(N) + (way; -+ ywa,))o(t) = o(Co(N) + (wa,, - - s wa,))(t) = o(t).

Thus o fixes the (IN|1)-snake. Now the result follows from the fact that o € PSLy(R) leaves the (N|1)-snake
invariant if and only if o € To(N/h|h)+, where h|24 is the largest natural number such that h2|N (cf. Theorem

22). 0

Corollary 2.7. Let N, Wy be as in Lemmal[2.4 with 4,91 N. Then, N(To(N)+Wx)=T§(N). In particular
the modular automorphism group of the quotient curve Xo(N)/Wy is B(N)/Why.

Proof. Under the assumption 4,9 N we have h = 1 in Lemma Now the result follows from the facts that
To(N/1|1)+ =T(N) and N(To(N) + Wx) D TH(N). O
2.3 Towards the normalizer of I' :=I'¢(V) + Wy with w,2 y € T

Next consider the group I' := I'g(NN) + Wi such that w,z2 x € T'\ {id} for some natural number u # 1. Inspired
by [Con96] we try to obtain the points L, 4/, of the Big Picture which are fixed by I'.

Consider the conjugation by Y, = (0 1 /u) of To(N)+ Wy, where we write once and for all in this subsection
N =M -u? with (M,u?) = 1.

Lemma 2.8. The conjugation by Y, satisfies the following properties:
o T, Lo(N)Y;t={(2%) € To(Mu)|b=0 (mod u)}, and we denote such conjugate group by Ty (Mu),
o Tywuz NTo(N)Yt ={(,9.5) €To(M)la=d=0 (mod u)}.

o If (d,u) =1, then YTywanT," is equal to wynry or wan. If (d,u?) =o', then Tywa,nT, " is equal to
W /!, Mu also equal to W fur M -

We write f‘“M =Y u(Lo(N) + (w2 n)) Lyt = (Tu(M), T (uM)). We now study the lattices Ly ,/; fixed by
I‘“M Note that F u fixes the class containing the lattice L, 4/, if and only if it fixes the lattice L ;.

Lemma 2.9. If the equivalence class Ly g/, is fized by f‘g(Mu), then su € Z, and sut? is a divisor of u>M.



Proof. An arbitrary element of T%(Mu) can be written in the form (i ™) with a,b,c,d € Z such that
ad — Mu?bc = 1. Assume that the lattice Ly g/ is fixed by f‘g(Mu). Recall that L; ,/; are generated by the
vectors v1 := se; + Ze5 and v := e, and the smallest multiple of e; that it contains is v3 = ste; = tv; — gus.
Under the action , the matrix (§ %) sends the lattice L 4+ to the lattice generated by vy + suvy and vs.
Since ((1) 11‘) fixes Ly 4/¢, we must have su € Z.

For the second condition, consider the matrix ( v (1)) which sends the lattice L 4/ to the lattice generated
by v{ =v1+2(—Mu)e; and vj = vo—Muey. Since ( _j;, o) fixes the lattice Ly /4, we have L 4/ = (U], 5) Las-
In particular, this implies Muey, ¥ Muey € Ly 4/4. Since ste; is the smallest multiple of e; which belongs to
Ly 4/¢, there exist ki, ka2 € Z such that gMu? = sut’k; and Mu? = stuks. Since (g,t) = 1, these relations give
sut?|Mu? as claimed. O

Lemma 2.10. Let M,u € N such that (u, M) =1 and 4,91 N, where N = Mu?. Iff}(/lu fizes the lattice Ly o,
then Ly s is of the form Lq o where d is positive divisor of M.

Proof. Suppose f‘ﬁM fixes the lattice Lg s. By Lemma we have su € Z and sut?|u>M. For simplicity of
notations, in the proof we denote the group I'%,, by T. ~

Since (u, M) = 1, there exist z,y € Z such that u?z — My =1, ie., (37 %) €. Since (7 2) fixes L,
we must have Me; € LS’%. Thus there exist ¢1,co € Z such that

Mey = cq(se; + %62) + coes. (2.2)

From , we get M = c1s and ¢ € Z. Since (g,t) = 1, we must have t|c; and there exists N; € Z such
that M = stNy. Recall that if ¢ = 1, then ¢ = 0. Now assume that g # 0 equivalently ¢ > 1.

Case I: First assume that s is an integer.

The condition M = stN; implies that t|M, s|M, and (u,t) = (u,s) = 1 (recall that N = Mu? and
(u, M) = 1 by assumption). Furthermore, the condition sut?|u?M implies that ¢2|M. Since 4,91 N there exists
a prime £ > 5 with £|t|M. Moreover, we can choose w € Z such that u?w? # 1 (mod ¢) (this is possible since
(u,t) = 1 and (Z/¢Z)* has an element of order more than 2). There exist z, y, z € Z such that u?zw—Mtyz = 1

ie., (s uw) €T Since (477, 5 ) fixes the lattice L s, we get

t

s(uxer + yez) + %(Mtzel + uwey) € Ly 3. (2.3)
Since s € Z and ez € L, /4, the last equation implies
suzer + Zuwes € L (2.4)
1 m 2 5,9 .
Thus there exist ¢1,ca € Z such that
9 _ 9
sure; + Juwes = c1(ser + ;62) + coeo. (2.5)
Solving the above equation we get ¢; = ux € Z, co = Ju(w — x) € Z. Since (g,t) = 1 and Yu(w — z) € Z,
we must have uz = uw (mod t), in particular we have uz = uw (mod ¢). On the other hand, the relation
u?xw — Mtyz = 1 implies that u?w? = 1 (mod f), which contradicts the assumption that u?w? #Z 1 (mod /).
Therefore co ¢ Z. Hence s can not be an integer if ¢t > 1.
Case II: Now suppose that s is not an integer. From the relation su € Z, it is clear that s € Q. Let p be
a prime such that v,(s) < 0 (for a prime p and n € N, we use the notation v,(n) to denote the unique integer
n, such that p"»||n). Since su € Z, we have v,(u) > 0 and v,(s) + v,(u) > 0.

There exist a, ¢,d € Z such that v?ad — Mc=1, ie, (¢ L)€ I. Since Ly s is fixed by (fa 1) eT, we
have s(uaey + e2) + 4(Mcey + udey) € L, a. Hence there exist c11,c12 € Z such that

s(uaey + ez) + %(Mcel + udes) = c11(seq + %62) + cro€0. (2.6)
Solving the last equation we get

c11 =ua+ gNic €7Z, c12 =5+ %(ud —ua — gNic) € Z. (2.7)



If v, (t) < —vp(s), then from it is easy to see that v,(c12) = vp(s) < 0. Hence v,(t) > —v,(s), consequently
from the relations M = stN; and (M, u) = 1 we get v,(t) = —v,(s) and v,(N7) = 0.

Since vp(u) > 0, the assumption 4,9 { N forces that p > 5. In this case, there exists y € Z such that
(u,y) =1 and y> Z 1 (mod p~*»(¥)) ie., vp(y? — 1) < —v,(s). By the choice of y, there exist z, z, w € Z such
that u?zw — Mzy = 1, ie, (15 .2), (af%, ww) € T. Since Ly g fixed by the matrices ( 5/ % )5 (275 ww )
we must have s(uzer + ye2) + $(Mzer + uwez), s(uzer + e2) + (Mzyer + uwez) € L, s. Thus there exist
c1,Co9,dy,dy € 7Z such that

s(uzer + yea) + %(Mzel + uwes) = c1(seq + %62) + coeq, and (2.8)
s(uzer + e2) + %(szel + uwesy) = dq(seq + %62) + dges. (2.9)
Solving the previous equations we get
co=ur+gNiz €7, ca =sy+ %(uw —ux — gN1z) € Z and (2.10)
dy =ux+ gNizy € Z, ds :s—&-%(uw—ux—g]\flzy) €Z. (2.11)
From (2.10) and (2.11) we get
%uw(l —y) — %um(l —y) — %gle(l —y?) € Z. (2.12)

This is a contradiction since v,(Zuw(l — y)) > 0,v,(2uz(l — y)) > 0 but v,(£gN12(1 — y?)) < 0 (it follows
from the assumption on y). Therefore we must have v,(t) = 0 i.e., v,(s) = 0 which is not possible. Hence we
conclude that ¢ = 1. Therefore the lattice Ls’g/t is of the form L, .

Any matrix v = (7&” 55}) eI acts on L as follows: v+ Ly o = (s(uzer + yzea), Mey + uwea) pqr. If v fixes
L, then we must have

s(uze; +yzes) = diser + dses and (2.13)
Mey + uwes = d)seq + dyes, (2.14)

for some dy,dy,d},d, € Z. From the above equations we have d; = uz and dy = syz. Recall that dg, su € Z.
If s ¢ Z (observe that s € Q), then there exists a prime p such that v,(s) < 0 but v,(u) > 0 and v,(yz) > 0.
This contradicts that u?xw — Mzy = 1. Hence s € Z. On other hand from equation we have M = d)s.
Since d}, s € Z, we must have s|M. This completes the proof. O

Corollary 2.11. Let u, M, N be as in Lemma|2.10, The normalizer of ' := (T'o(N), wy2 n) is a subgroup of
[';(M) conjugated by the matriz T ;1.

Proof. The conjugation of " by T, is I:= f‘}f/lu Recall that by Lemmam the lattices fixed under T forms

a (M]1)-snake. For X € (M]1)-snake and o € N(I"), we have
o ' To(X) = X, ie., To(X)=0o(X).

Thus T fixes o(X), consequently o(X) € (M]1)-snake. Therefore we obtain that o set-wise fixes the (M|1)-
snake. By Theorem we conclude that the normalizer of I" is contained in the group I'o(M/1]1)+ = T'§(M).
The result follows. O

Let us study the general situation. For certain Atkin-Lehner involutions wy, , . . ., wq, , we write [{wq, , . . ., Wq,, )|
for |[(To(N), wq,, - .., wa,)/To(N)].

Theorem 2.12. Let N € N such that 4,94 N and u?,...,u? be divisors of N such that u?||N fori=1,... k
and [(wyz, ..., w.2)| = 2%, Then the normalizer of (To(N), Wy2, ..., Wy2) 15 a subgroup of Fg(m
conjugated by Y1, where Y := Tiem(u,

Moreover, if Wy = (wyz2,..., W2, Wy, - - -, Wo,) < B(N) such that [(wy, ..., we,)| = 2% and for
any Atkin-Lehner involution wg € (Uo(N), Wy, ..., Wy, ), d is not a perfect square, then the normalizer of

Lo(N) + Wi is a subgroup of T(M) conjugated by Y1 where M = ——~—~. In general, we have
group 0 Jug Y a2) g
k

)
lem(uf,ug,...,

N({(Lo(N), Wn)) S N((To(N) w2, .. wy2)).



Proof. We first prove the statement regarding the normalizer of (T'o(IV), wyz, ... s Wy2 ). The case k =1 follows
from Corollary Consider the group (T'o(IV), w2, wyz3)-
Taking conjugation by Y,,, we get the group (f"]‘v}ul,meug .1, where M = 771\/2' Recall that by Lemma
1
the lattices fixed by F}j}u forms a (M|1)-snake.
. 4 1 _
we obtain the group Wy, 4, := <Tu2/(u1,u2) [V SHTHRIRTS GRTTEI Y § g )

(uy,u2) (u1,u2)

Now taking conjugation by T

uz/(u1,u2)>

If Wuhu,z fixes the lattice L 4/, then the group fﬁul fixes the lattice

1 0 (ur,u2) g (u1,us2) Ug g
(u1,u) ) - L = = = L. = )
(o 2722) s/t = (se1 + w 7w €2)Lat = (5 (o, u2)61 + ez, €2)Lat = S g/t
By Lemma we have t = 1 and 1|s(u 2 |M Hence the lattice L, 4/, is of the form L, o, where 1|s(u 23 |M
U X L
Let x,y,w € Z such that uizw — u—%y =1, then ( (UZLW) “‘ulz:j) ) € Wy us- If Wa, 0, fixes the lattice Ly,
u2  uluy
U X yul
then the matrix ( ~ (“,21‘“2) (“ul u2) ) fixes the lattice Ly o. Hence there exist dy,ds,ds,ds € Z such that
ug upuy 2w
u
s(ugxer + 1y e2) = dyser + daea, (2.15)
(u1,uz)
N (u1,u
—Mel + usweg = dzse; + dges. (2.16)
U2 UTUL

From , we have di = usx and doy = s(u ™ ) Recall that 5o U2 ) € Z. If s ¢ Z, then there exists a prime
p such that vp(s) < 0 but vp(m) > 0 such that vp(s) + vp(
Since s(u u 7Y € Z and

W) > 0. In particular we have vp(uz) > 0.

(u ) T oy has no common factor, we must have vp(y) > 0. This contradict the

assumption that u3zw — u—y = 1. Hence s € Z.
2

From (2.16)), we have dzs = & (a:u2) ¢ S|M On the other hand we also have s|N(Lu:2) Since

U2 Ui1U2 u1u2

(N(ul,uz) N(Ul,uz)) _ N
wiud 7 udug T lem(u?,ul)’

For the general case assume that w2 ¢ (To(N),w, 2,0, W ?71>' Now the result follows by applying

we conclude that s|m. This completes the proof for the case k = 2.
1272

induction on Y wtemur,..ouy 1) (FO(N),wuﬁ, C Wy W z)T 1 and proceeding similarly as in

0 uplom(uy,...,up_1)
(ug,lem(uy,..., up_1)) (ug, lem(uy,..ug_1))

the case k = 2.

We now prove the statement regarding the normalizer of (I'g(N), W), which is inspired from ideas of
[Lan01], and follows from the arguments introduced in §1.2.

Consider the group I' := T(T'g(V), Wy2, - ,wuiyr*l, and denote by §,, = Yw,, NY ! fort € {k+1,...,n},
and write M = N/lem(u3,...,u}). Observe that the assumptions on Wy imply d,, ¢ PGL2(Q) and 51,“51,,2 ¢
PGL,(Q) for t1 # ¢2, and 62, € I.

Now consider the action of (T', 4 0y, ) on the Big Picture. We use the following notations:

Vg1 ** *

o : (T',0y.,,s--.,0y,) orbit of size 2", e Ty : The set of all such {, orbits of size 2",

e Cw, denotes the representatives of distinct left cosets of T in (T, Ovprs s Ou,)-

Following the argument described in we obtain:
e For X € (M|1)-snake, {o(X):0 € (I, 6u,,s---,00,)} = {X,8(X) : 6 € Cwy \ {id}} is a member of Ty.
e If i € Ty, then £ is a subset of the (M|1)-snake.

Using these properties and arguing similarly as in the proofs of Lemma [2.4] and Lemma we obtain
X € (M]1)-snake if and only if X €fely. o
Now for each o € N((T', 0v,.)), and t € T, we have

V419"

V19 ®** 761771))0—({) = J(<f7 6'Uk+1? ceey 5Uﬂ>)(£) = O—(E)

Therefore (M|1)-snake is fixed by o. Since 4,9 1 N, using Theorem we conclude that o € T'o(M|1)+. This
proves the second statement.

((T,a



For the last statement, write I'y := (I'g(IV), wyz2, ..., w,z2) and I'y := (I'1, Wy yy 500 W, ).

Any element of I'y can be written in the form w'§ [Ti, . | witiv, where ng,n; € {0, 1}, v?|[lem(uf, ..., u}), wy2 €
Ty and v € To(N). Any element of Iy is of the form w37, where mq € {0,1}, w?|[lem(u?, ..., u}), wy2 € Ty

and 7' € To(N). Note that w,2,v € PSLy(Q) for v € I'o(N) and w?||lem(u?,...,u2). By the assumptions on
vi’s, we have [[_, ., wi & PSLy(Q) for n; € {0,1} with at least one of n,;’s is non-zero.

Now consider 6 € N'(I'z) and w}39" € T'y, where mg € {0, 1}, u'?[|lem(u?, ... ,uz) and 7' € To(N). Since
N([2) C Y ITH(M)Y, we have gw!,37'6~" € PSLy(Q), dw!37'd~ € T'y. Thus we can write

Gwl8y's = wl [ wiiy € T2, where ng,n; € {0,1}, w,> € 'y and v € To(N). (2.17)
i=k+1

If n; > 0 for some i, then from (2.17), we have 6w],37'6~! € PSLy(Q) but w9 [T, ., wiiy & PSLa(Q),
which is a contradiction. Hence n; = 0 for k£ + 1 < i < n. Therefore we conclude that 5w;'33’y’&*1 eIy, ie

o € N(T'1). The result follows. O

3 Exact normalizer of (I'((N), W)

In this section we completely determine the normalizer of (I'g(N), W) where 4,9 { N and W is a subgroup
generated by certain Atkin-Lehner involutions. We compute it in two steps. First we compute the exact
normalizer of (T'o(N), Wy2, W2, - - - wui>. Then with the help of this result we compute the exact normalizer
of (To(NV), W) for any arbitrary subgroup W.

Throughout the section we assume that 4,91 N. We introduce the following notations:

For a matrix A = (3;’3 avl ), we write A[i, j] := oy ; for 4,5 € {0,1}. For a prime p and n € N, we use the
notation vp,(n) to denote the unique integer n, such that p"»||n. Consider the group (I'o(N),wyz,. .. ,wui>,

where u?||N. Since lem(u?, ..., u?)||N, we have M := € Z. We define

N
lem(u?,...,u?)

yllcm(ul ,,,,, up)

r,:= {(M,lcm(ulf«ww_z - ) elg(M) :z,y,z,w € Z} for any w||lem(uq,...,ug), u>1, and

D) = {(M~lcm( z y~lcm(u1;,...,uk)) elg(M) :z,y,z,w e Z}.

Ul)uwuk)'z

Observe that any element of (I'o(N),wyz2,...,w,2)\I'o(N) can be written in the form w,2", for some
u'|[lem(us, ..., ux) and 4" € To(N). Furthermore, for any wy2y" € (Lo(N),wyz, ..., w,2)\I'o(N) it is easy
to check that Yicmuy,...u)War2To(N) T} =Ty and Ty ) = Yiem(un,.un) Do(N) T

lem(uy,...,uk) lem(uy,...,;ug)"
Therefore

-1

Tlcm(ul,...,uk)<F0(N)v wufa e ’wui>Tlcm(u1 ug) = <F(u1,...,uk)7 Fulv oo 7Fuk>~

.....

Furthermore if § € (Cruy..ug)s Dugs o Due ) \D(uy .o yuy)> then d € Ty for some o/|[lem(ug, ug, ..., ug). In
particular we have (I'(y, .. w)s D)\l (uy.... ) = - We mention some basic facts about w,2’s and Ty, ’s.

o If v,(lem(ug, ug, ..., ug)) > 0 for some prime p, then 2v,(lem(ug, ug, ..., ux)) = vp(INV).

o For i # j, wewy,2 € wy2To(N) with u|[lem(u;, u;), in particular w := w;u;/(u1,u2)?.
i J

If vy (u;), vp(uj) > 0, then vy(u;) = vp(uj) = vp(lem(ur, ug, . .., uk)).

If6 € (Ciur,un)s Durs oo o5 T )\ (s oo yug)» then 6 € Ty for some o/|[lem(ug, u, . . ., ug). In particular we
have <F(u1,-~-’uk)7Fu’)\r(uhm’uk) =Tw.

Furthermore, if ((I'(,, .. Purs e s Ty )\D (o ug)) N T is non-empty and vy, (u’) > 0, then

.,uk)v

vp(lem(ug, uz, ..., ug)) = vp(u').

We recall the following result from Theorem [2.12



Lemma 3.1. Let N,u; € N such that 4,94 N and u?||N fori € {1,...,k}. Then N(Tuy,un)s Ly -5 D))
is a subgroup of (M) (recall that M = %) Suppose {h1,ha, ..., hn} is a complete set of coset
YU

lem(u?,...
representatives of (M) /(T (uy ... up)s Duss - - - Ty ), and consider the set

A={h;: hfyhi_1 € (Cruryoun)> Duns oo Ty ) for every v € Dy w)s Tugs 5 D) 1
Then N((Tuy,...un)» Durs -5 Twy)) s generated by {v,hi v € (T(uy, o up)> Dugs - - - Dy )y hi € A}

Consider the set

Sty = {(g 5) € To(M)\(T(ur.....cu09> Tunr - s T} tac = bd = 0 (mod lem(u, ... ,uk))}.

Observe that for (#5) € S(,, .y if @/ = (a,lem(ug, ..., ug)) and «” = (¢,lem(uy, ..., ug)), then

lem(uq, ..., ug) = v'u”, (b, lem(u, ..., ux)) = v and (d,lem(uy,...,ux)) =u'.

Let g := (2}) € Stur,. gy, and v’ = (a,lem(uy, ... ug)) (note that this implies '|[lem(us, ..., ux) and

u/2||N)_ It is easy to check that Y} ‘_,uk)ngcm(uhwuk) € w2 NTo(N). Since wy2 n € N((To(N), W2, . .. ,wui>),

lem(uy,.

we have g € N((T(uy,...;up)s Turs - - - Ty ). Therefore we obtain

Lemma 3.2. S/ ), M g N(<r(u1’...,uk);ru17' .. 7Fuk>)

(u1,~~~7uk
For e[| M, we fix (¢, a1,k), Y(e,m,k) € Z such that eyie ik — %lcm(ul7 e ,uk)Qx(evak.) =1ie.,
s L i( e lcm(ul,...,uk).z(e‘M‘k) ) c T (M)
(e,M.k) -— \/E M-lem(ug,...,ux) €Y(e,M,k) We, M1 0 :

Note that the set {id, d(c arx) : €|[M} forms a complete set of representatives for the left cosets of I'g(M) in
Ts(M). If the set S(J\gl gy = 190 01 <0 < [Do(M) ¢ (Tuy, )y Ty - -5 Ty )]} forms a complete set of
Tuys.-.y Ty, ) in To(M), then the set

representatives for the left cosets of (I'¢y, . uy),
M, i . .
Sturt ey = Ao ar9i 0 <G < L€l M1 < i < [Lo(M) (D, ug)s Dus -5 Tu )1}

forms a complete set of representatives for the left cosets of (I, ... ue)s Tuys -+ Ty ) in TE(M).
Since lel}(l(ul,...,uk)‘s(e,M,k)Tlcm(u17~--,uk) € we,NTo(N) (with el[M) and we,x € N((To(N), wyz, ... wy2)),
we have 0. a7 k) € /\/’((I‘(u1 ,,,,, w)s Ly« e - ,Tu,)). Therefore by Lemma it suffices to compute the g;’s such

that g; € N((Cuy,..oup)s Tuns - - Ty ), 1€, we need to compute the set N((Tuy . ug)s Dugs - - Dy ) NTo (M),
Proposition 3.3. Let N,uj,uz...,ur € N such that 4,91 N and u?||N forie {1,2,... . k}. If

lem(uy, ..., ux)

5us(lem(uy,...,uk))

(2%) € N((Ciu,un)s Tuns - - Ty )) NTo (M), then ac=bd =0 (mod ).
Proof. Let o := (‘é Z) EN(T(uy,un)s Turs -+ s Ty ))NLo(M) and py > 5 be a prime such that py [lem(uy, ug, . . ., ug).
Without loss of generality we assume that vy, (u1) = vy, (lem(ug, ug, ..., ug)), and write ny = vy, (u1).

For | € {1,2,3}, there exist 7y, 1, ku, 1 € Z such that

lem(uq, ..., ug)?
Why | + lM%nw =1, (3.1)
uy
w“ plem(ur,ug)
l'e'7 ryuhl = (Mlcm(ul ,,,,, “k) k ! ) E <F(u1,...,uk)7ru1> g <F(u1’~u,’uk)7l—‘u17"'7Fuk>' COnSequently,
T uy Tuwil Ul Ruq,l
Y10t € (Curyoug)s Tugs -, Dy ). In particular, oYy 10t E (T s, up)> Loy ) for some vy|[lem(ug, u, . . ., ug).

Suppose there exist l1,l> € {1,2,3} (with l; # l2) such that oy, ;07! € (Cus,.coour)s Ty ) and OVuy 1,0 €
(C(ur,ur)s Luy) for some uy, up with py § ujus. Then from the constructions of Iy, ... uy)s ', we have (see the
discussions before Lemma |3.1])

lem(ug, ...

/
Uy

Uwuhlio_l[Q 1] = Uwuhlia_l[LO} =0 (mod 7uk))7 for i € {1,2}. (3.2)



. 1 I
Since p; 1 ujul, we have p* |%,1u’“) and pit [femlte) - From ([3.2) we have

Ua
0Yuy.1,0 H0,1] = 0y, 0,0 1,0 =0 (mod pt), for i € {1,2}. (3.3)
Combining (3.1]) with (3.3), we get
1 e 2 1 . 2
aZ‘m(m’u—Q’“’“)z? +b?2 = c2cm(“1’u—2’“’“)z§ +d2=0 (modp™), for i€ {1,2}. (3.4)
1 1
From ({3.4) we obtain
lem(ug, ..., ug)? lem(ug, ..., ug)? n
a? 2 (3 -13) = CQT(Z% —13)=0 (mod pt). (3.5)
1 1

Recall that p { (12 —13) for any prime p > 5 and wuy||lem{uy, ..., ux}. Since p* > 5 and p; { w, (13-5)
implies that (a,c) > 1. Which contradicts that (‘Z Z) € T'y(M). Therefore, for any two distinct elements 41, i3 €
{1,2,3} we must have {07y, i,0 7', 0V, 0 1} & Lu,un)s OVuy,iy0 L E <F(u1,~~’uk)’rvl1> and 0v,, ;,0 ' €
(C(ur,ur)s Loy) for some vf, vy with pyfvivs i.e., either plv; or plvg. Hence there exist Iyl € {1,2,3} (with
Iy # ly) such that o7y, 1,0 € Ty and oy, 1,0 € Ty for some uj, u) with py|(uj, ujy) (for example suppose
that i; € {1,2,3} such that ov,, ;,07! € (Cus,.coun)s Loy ) With p { v, then for the two remaining elements
ig, i3 € {1,2,3}\{i1} we must have 0y,, 5,0 ' € Ty and 07y, 4,0~ " € I'yy for some vh, vh with p;[vh and p|vs).
Therefore we have

Yy 1,0 10,0] = 0y ;0 M1, 1] =0 (mod uh, ), for i € {1,2}, (3.6)
1 e
Yy 1,0 H[0,1] = 07y, 1,0 11,0 =0 (mod ML for i € {1,2}. (3.7)
U
Recall that from (3.1) we have
1 e 2
ziM‘m(“;—Q’wﬂ)ruhli =1 (mod p}") for i € {1,2}. (3.8)
1
Using this congruence, from (3.6) we have
1 e 2 1 e 2
Gomuns e u) ey golembun W) o nod i), (3.9)
uf uy
Thus we obtain | 5
U g2 2y =0 (amod pi), (3.10)
i
equivalently we get
ac(l3 —13) =0 (mod p}). (3.11)
Since (pi'*,|l3 — 13]) = 1, (3.11) implies that ac = 0 (mod p}'). Since p; is arbitrary, we conclude that
ac=bd =0 (mod pvrlem(ui,u2,uk))) for every prime p > 5. The result follows. O
In order to compute the set N((T(yuy,. . up)s Turs -+ -5 Ty )) N To(M) explicitly, first we consider the case
was & (Do(NV), wy2,wyz, ..., w,2) and then we consider the case was € (Fo(N), wyz, wyz, ..., wy2).
3.1 Exact normalizer of (I'g(N), w2, w,z, . .. ,wui> with wes & (To(N), w2, wys, . .. ’w“i>

The following result will be very useful for computing the normalizer when 5|u;.
Lemma 3.4. Let N,uj,uz...,ux € N such that 4,91 N,u7||N and wsz ¢ (To(N),w,z, ..., wyz). If

Ui

(‘c’ Z) e N((Tiuy,un)s Turs - - - Ty )) NTo (M), then vs(abed) > 2vs(lem(uy, ug, . . ., uk)).

10



Proof. For simplicity of notations, we write n := lem(uj,ug,...,ux) and ng := vs(n). If ng = 0, then
the proposition is obvious, so we assume that ng > 0. Since wsz ¢ (FO(N),wuf,...7wui>, the set I's N
(Teur,un)> Lurs - Ty ) is empty. Let o := (24) € N((Tguy,up)> Duss - -5 Dy ) NTo(M). Since (2,7) = 1,
there exists a prime p such that p = 2 (mod 7) andp {N. Sinceu > 5 forany I'y C (Teuyun)s Duns - o5 D)\ (un o)
we have p? =4 # +1 (mod u) (because uln and p? = 4 # £1 (mod 7n)). Moreover, there exist k’,r € Z such
that pk/ — n?Mr =11i.e., (nMr i ) € I'(uy,...,up)- Consequently, we have pk’ = 2k =1 (mod 7).

Since o € N((F(ul v Turs o Twy)), we have E =0 (,ar, 10 )0 € (Clay o) Duns - - - Dy ). Therefore

E € (Truy,oug)s Tu) for some I, C <F(u1 ,,,,, wn)r Lurs -+ s D )\D(us .o oup) - Suppose E € T'y for some T', €
(g un)s Ful,... Lu)\L ... pup)- Then E[O 0] = E[1,1] =0 (mod w). Thus
E[0,0]+ E[1,1]=(p+ k) (ad—bc) =2+ Kk =0 (mod u). (3.12)

The congruences 2k’ =1 (mod u) and 2+ k' = 0 (mod u), imply that 22 = —1 (mod u), which is not possible.
Therefore £ ¢ Ty, for any T'y € (T, ) Dugs o D)\ (o) -
Now suppose that £ € I'(,, . u,). Then E[1,0] = E[0,1] =0 (mod n). Consequently, we have

E[1,0]- E[0,1] = (p — k')?abecd =0 (mod n?). (3.13)

Thus vs((p — k')2abed) > 2v5(n) = 2ng. Since ng > 0, we have p = 2 (mod 5) and pk’ = 2k’ =1 (mod 5). If
vs(p—k') > 0, then the congruence pk’ = 2k’ =1 (mod 5) implies 4 = 1 (mod 5), which is not possible. Hence
vs(p — k') = 0. Consequently, we get vs(abed) > 2ng. O

Now we compute the set N((T'(uy,.up)s Dugs - - -5 Ty )) NTo(M) when wse & (Do(N), wyz, ..., wyz2).
Proposition 3.5. Let N,uj,us...,u; € N such that 4,91 N,u?||N and w2 ¢ (Lo(N), wyz, ... wy2). If
(2%) € N({Ciun,sun)s Durs - - » Ty ) (M), then ac=bd =0 (mod lem(uy, ..., uy)).

Proof. Let o := (2%) € N((C(uy.... un)> Durs - - - Ty )NLo (M) and ng := vs(lem(uy, ug, . . ., ug)). By Proposition
we know that ac = bd = 0 (mod lc’m(“l;‘ijuk)) We now prove that ac = bd = 0 (mod 5™). If ng = 0,
then this is clear. Hence we assume that ng > 1. Recall that the assumption ws2 ¢ (I'o(N),wyz2, ..., wy2)
implies the set I's N (T'(u,,...up)» Dugs - - - Ty, ) 15 empty.

Without loss of generality we assume that vs(u1) = ng. If ng = 1, then there exists a prime p; (# 5) such

tifng=1
that nq := vy, (u1) > 0 (this is possible since was & (Fo(N), w2, ..., w,2)). We define 1y := P, 1t Mo .
t k 5™ otherwise
Boptt | if ng = 1 if ng = 1
= L nf) and 7y 1= b1, 1 7o . . Then 1 ||uz. Recall that for any prime p if v,(u’) >0
5™ otherwise 5, otherwise
for some T'yr € (T(uy o ue)s Do - - o> D )\ (un o) then vp(lem(ug, ug, ... ug)) = vp(w).
For | € {1,2,3}, there exist 7y, 1, ku, 1 € Z such that
1 . 2
Wl + ZMMTUIJ =1, (3.14)
Uy
) w1 _llcm(ul ..... ug)
L€, Yuq,l = (Mlcrn(uh,l...,uk)rulJ ulkull,l ) S <F(u1,...,uk), Fu1> C <F(u1,...,uk), I R ,Fuk>.

Suppose there exist l1,l> € {1,2,3} (with l; # l2) such that oy, ;07! € (Cus,.cour)s Tuy) and OVuy 1,0+ €
(C(ur,our)s Luy) for some uy, uy with ng f ujuy. Therefore we must have

lem(ug, ... 7uk))

0Yuy 1,0 H[0,1] = 07y 1,0 11,0 =0 (mod , forie{1,2}. (3.15)

!
u;

Since 72  ujub, we have 7 |1°m”;7"’“) and 19 |M From (3.15) we have
1 Uy

0Yuy 1,0 10,1 = 0y, 0,0 1,0 =0 (mod 1), for i € {1,2}. (3.16)

11



Combining (3.14]) with (3.16)), we get

1 2 1 2
P ) o plemlun W)y g (od ), forie (1,2}, (3.17)
uy uy
s we have Glem(uy, ... ,ur)? o o olem(up,...,ux)? o o
a T(Zl —l5)=c¢ 2 (I —=15)=0 (mod np). (3.18)
1 1

Recall that 52 (13 —13) and p 1 (13 —13) for any prime p > 5. Since nj* > 5 and 7o t lcm(uluifzu"y, (3.18) implies
1

that (a,c) > 1. Which contradicts that (2Y) € T'o(M). Hence there exist l;,ls € {1,2,3} (with l; # l3) such

that 07y, 1,0 " € Ty and 07y, 1,0~ " € Ty for some ufy, )y with na|(uj, ujy) (which automatically implies that

nol(usz,uy)) and Ty, Tuy © (T ug)s Tugs - - 5 g )\D (s ... o) - Therefore for i € {1,2} we must have
Yy 1,0 10,0] = 079y, 0,0 H[1,1] =0 (mod uh,;), and 3.19
15b4 15b4 +1

lem(uq, . .. ,uk))

0%y 1,0 10,1 = 094, 1,0 11,0 =0 (mod (3.20)

Uy
If possible let 51 (u%,u)) and WLOG assume that 5 { us. Then vy lemui.ue)y — - From (13.20)), we get
3y Yq 3 ul

I - 2 1 - 2
a2—cm(u1, 5 k) B4bv= C2—cm(u1, 5 k) 24+d*>=0 (mod 5™), (3.21)
Uy uy
ie.,
a’*d*> —b*c* =0 (mod 5m). (3.22)
Since ad — bc = 1, from the last equation we get
ad+bc=0 (mod 5™). (3.23)

Therefore vs(a) = v5(b) = v5(c) = vs(d) = 0, in particular this implies vs(abed) = 0 < ng, which contradicts
Lemma Therefore 5|(u}, uy). In particular we have 50|(u}, ujy). Recall that from (3.14) we have

1 e 2
liMMruhli =1 (mod 5™) for i € {1,2}. (3.24)
uy
Using this congruence, from (3.19) we have
1 . 2 1 e 2
acwﬁ +bd= acwlg +bd=0 (mod 5™). (3.25)
uy uy
Thus we obtain | )
ac Cm(“l’u'2' DU 22— (mod 5™), (3.26)
i
equivalently we get
ac(l —12) =0 (mod 5™). (3.27)

Since (5", 12 — 13]) € {1,5}, (3.27) implies that 5ac = 0 (mod 5™).
Consider the case (5™, |12 — I3]) = 5, bac = 0 (mod 5™) but ac Z 0 (mod 5™), i.e., vs(ac) = ng — 1. If
2
v (bd) # %(ac%l%), then
1

1 .. 2 1 e 2
%(acMﬁ +bd) = min{v5(bd)7vs(accm(%—2’wc)l%)} < no,
uy uy
which contradicts (3.25). Thus we have
1 e 2
o5 (bel) = v (ac SR . L) 12y e ac) = g — 1. (3.28)
uy

Consequently we get vs(abed) < 2ng, which contradicts Lemma Hence we must have ac = 0 (mod 5™°).

Consequently, from ([3.25)) we obtain ac = bd = 0 (mod 5"). Thus, we obtain that if (¢ %) € N((T(u,,... ug)> Luss - - -
O

To(M), then ac = bd =0 (mod lem(ug, ug, ..., ug)).

12
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Corollary 3.6. Let N,uj,us...,ux € N such that 4,91 N,u?||N and ws: ¢ (To(N),wuz, - .., wyz). Then

N i) Tuns -5 Taig)) = (Ceurreciun)s T -+ D Oenrp)» 9 €l1My 9 € Stur iy ar 0 Sty )
Consequently we have N'((To(N),w,z, ..., w,z2)) = [5(N).

Proof. Recall that the set S(]‘{fl o) =901 <0 < [Fo(M) = (Ciuy,ug)s Ty - -+ Ty )]} forms a complete set
of representatives for the left cosets of I'o(M) in (T'(u; .. ug)s Tuys -+ -5 Ty ), and the set

SMHr {6]

(ul,mﬂl«k) = (67]\/[71€)gi . O S] S 1>€||M7 1 S Z S [FO(M) : <F(u1 ..... uk)aruu et aruk>]}

forms a complete set of representatives for the left cosets of I'5 (M) in (', | RRUIN R

By previous discussions and Lemma we know that

N i) Tuns -5 Ta)) 2 (P T+ D om0 €l1My 9 € Star iy ar VSl )

Lyeees ug)»

If gi € N((Cuy,oun)s Tugs o Ty )) N S(J\;{l,m,uk)’ then by Proposition we have g; € SE Since

Ste,mk) € N((Ciuy,iun)s Tugs - - - Ty ), by Lemma we conclude that

UL, ug),M*

N(<F(u1,...,uk)uru1w . 7Fuk>) = <F(u1,...,uk)aru1w .- arumé(e,M,k)ug : €||M,g € Séul,..‘,uk),M N S(]\;Il,..‘,uk))

This proves the first part. For the second part, it suffices to show that

Tl_crln(ul uk)<r(u1,...,uk)a Ful yoee 7Fuk>5(e,M,k)a g: GHM,g € Sguly__wuk)’M N S(]\gl7,__,uk)>Tlcm(u1,...,uk) = FS(N)

.....

This follows from the facts that
b lerln(ul’_”,uk)(s(e,M,k)F(ul ..... uk)Tlcm(ul ..... ug) — we7NF0(N) (Wlth €||M) and
e for any g € Sful ), Mo W have Tfaln(ul uk)ngcm(m ,,,,, up) € Wy2 NTo (V) for some '|[lem(uy, ..., ug).

i !
Conversely, for any u/[[lem(u1, ..., ux), we have Ticm(u,,..., uk)wul27NTlcm(u17...,uk) € S(ul,...,uk),M'

3.2 Exact normalizer of (I'o(N), was, wygz, ..., w,2)

Now suppose that was € (L'o(N), wy2, wyz, ..., w,z2) (note that this assumption implies 25/|N'). Without loss of

generality we can assume that u; =5 and 5 ¢ Hf:z u;. We first compute the normalizer of (I'o(IN), wes). Then
with the help of this result and Proposition we compute the normalizer of (I'o(N), was, wy3, -, wyz2).

By Theorem [2.12} we know that N'((To(N), was)) C Y5 'T§(M') Y5, where M’ := 2% (note that (5, M’) = 1).
We introduce the following notations:

Ds(M') := {(Af;fz 53;) elo(M'):z,y,z,w € Z},

T5(5M') := {(5;,,2 WY eTo(M'): .y, 2,w € Z}, and T2, := (Ts(M'),T5(5M")).
For e||M', we fix (¢ pv 1), Ye,m7 1) € Z such that eyee a1y — 25M7/x(67M/71) =11ie.,

1 e 5T(e M7 1)

5(e,M/71) = %(SM' e_y(eﬁlel)) S ’we’M/]_—‘()(M/).

The set {id, §(e,ar,1) @ e[| M’} forms a complete set of representatives for the left cosets of I'5(M') in I'o(M’).
Let B; == (M7617) and C; == (} ). First observe that [[o(M) : T§(5M")] = [[o(M’) : To(25M")],
and the set S5y = {B;C;,C; : 0 < i,j < 4} forms a complete set of representatives for the left cosets of
I3(5M") in To(M’). Let S(Ng)’ (a subset of S5 5s/) be a complete set of representatives for the left cosets of I'2,,,
in To(M’). Consequently the set S(J\g)/’+ = {(5%6_’M,’1)g tg € S(]‘/[s)/7e|\M',l € {0,1}} forms a complete set of

representatives for the left cosets of I'2,,, in T§(M’).

Proposition 3.7. We have N(f‘gM,) = <ng/75(67M/,1)7Bj00,300i : e||M’>, where 0 < j,1 < 4 such that
M’'j =2 (mod 5) and i+ j =0 (mod 5).
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Proof. Tt is easy to check that (¢ a7 1) € N(f‘gM,) and C; ¢ N(f‘gM,) for ¢ # 0, hence it suffices to compute the
Bj’s and Cj’s such that B;C; € 5(1‘45)/ AN(T2,,) (cf. Lemma. We give a complete proof for the case M’ =1
(mod 5), the proofs are similar for other cases. Assume that M’ =1 (mod 5). There exist 71, k; € Z such that
V= (ary o) €T5(M'). Let B;C; ¢ T2, If B;C; € N(I'2,,,), then E := B;Civ(B;C;) ™t € N(I'3,,,), i.e.,
either F[0,0] = E[1,1] =0 (mod 5) or E[0,1] = E[1,0] =0 (mod 5).

Suppose E[0,0] = E[1,1] =0 (mod 5), then

M (M +1) —i(25M + 1)+ 5+ M (M'j+1) =G +1) —i(2 +1) +2j+1=0 (mod 5).  (3.29)

If (j,4) is a solution of (3.29)) in Z/5Z, then it is easy to see that (j,7) € {(2,0), (4,1),(1,2)}. Since B4,C; € 2.,
we get B;C; € {B1Cs, BoCp}. Observe that (B2Co)I'2,, = (B1C2)I'E,,
Now suppose that E[0,1] = E[1,0] =0 (mod 5). The condition E[1,0] =0 (mod 5) gives

i?—=2i+2=0 (mod 5). (3.30)
The solutions of (3.30) are i € {3,4}. On the other hand, the relation E[0,1] =0 (mod 5) gives
G2 (=i +2i—2) —j(2i* =21 +2)—i*—1=0 (mod 5). (3.31)
For i = 3 (resp., ¢ = 4), from (3.31)) we get j = 0 (resp., j = 3). Therefore in this case B;C; € {ByCs, BsCy}. It
is easy to check that (BoC3)'2,, = (B3C4)['2,,,. Thus we obtain that N'(T2,,,) C <f‘gM, ,0(e,M7,1), B2Co, BoCs
e||M’>. Now to prove the equality, it suffices to show that B2Cy, BoCs € N(f‘g’M,).

First consider a matrix of the form ~ := (Ajifz 5‘1}) € T2, Since M’ =1 (mod 5), we have
(B2Coy(B2Co)H)[0,0] = =2(y + 2)  (mod 5), (B2Cov(B2Co) H)[1,1] =2(y +2) (mod 5), and
(BoCoy(B2Co)™)[0,1] = 2 —y (mod 5), (B2Coy(B2Co) ™ M)[1,0]=2—y (mod 5).

Since yz = —1 (mod 5), either y + 2z =0 (mod 5) or z —y =0 (mod 5). Thus BoCoy(B2Co) ! € T3,

Now consider the matrix of the form 6§ := (7, _°¥) € I'2,,,. We have

(B2Co6(B2Co)™1)[0,0] = —2(z +w) (mod 5), (B2Cod(B2Co) M)[1,1] = —2(x +w) (mod 5), and
(B2CoS(B2Co) ™ M)[0,1] =2 —w (mod 5), (BaCod(B2Co) H)[1,0] = —(x —w) (mod 5).

Since zw = 1 (mod 5), either  +w = 0 (mod 5) or z —w = 0 (mod 5). Thus ByCy6(B2Co) €~ng"
Therefore we conclude that BoCy € N'(I'2,,/). A similar argument discussed so far shows that BoC3 € N'(I'2,,/).

Thus N(T'2,,) 2 <f§M,, (e, m7,1), B2Co, BoCs e||M’>. This completes the proof. O
As an immediate consequence of Proposition [3.7} we obtain

Corollary 3.8. Let M’ € N such that (5,M') =1 and 4,91 M’. Then
N(<F0(52M’),w52>) = <F0(52M/),’LU52,’LU5,52M/,TngjCQTg,,TngoCiTg; : €HM/>,

where 0 < 7,4 < 4 such that M'j =2 (mod 5) and i + j =0 (mod 5).

We now prove that N ({T'o(V), wa5) € N ((Uo(N), was, wyz, . . . ,w,z2)), and the following lemma plays a very
important role in proving such result.

Lemma 3.9. Let M’ € N such that 4,91 M’, (5, M’) = 1 and W be any subgroup generated by the Atkin-Lehner
involutions such that wsz s2p € W. Let wg := waszpr € (To(52M'), W) be an Atkin-Lehner involution and
o€ {TngjCoT5,TngOCiT5}, where i,j are defined as in Corollary . Then ocwgo~t € (To(52M"), W) if
and only if ﬁ = +1 (mod 5).

Proof. Note that we have (52,d) € {1,52}. Since cwsz0~! € (I'g(52M"), ws2), without loss of generality we can
assume that (52,d) = 1 (note that this also implies d||M").
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Since 0 € PSLy(Z[1])\PSL2(Z), it is easy to observe that cwgso~' € PSLy(Z[3, ﬁ])\PSLQ(Z[%]). Any

arbitrary element of (Ug(52M"), W) can be written in the form w;* w57y, where mg, m; € {0,1}, v € To(5°M’)
and wy € W.

If cwgo ™t € (Tg(52M"), W), then we have owgo ' = wjwify ie., wy"owgo ™" = wif~, for some n,ng €
{0,1}, wg € W and v € To(52M’). If w}j # wq, then w}"ocwqo~! & PSLy(Z[L]) but wi$~y € PSLy(Z[1]).
Hence we have w; 'cwgo~! = w5y, equivalently we have E := Tsw; lowao T3t € T2y,

Recall that if § € T'2,,, then we must have either 6[0,0] = 6[1,1] = 0 (mod 5) or 6[1,0] = §[0,1] = 0
(mod 5) (note that we always have §[1,0] = 0 (mod M’)). We give a complete proof for the case M’ = 1

(mod 5). The proofs are similar for the other cases.

Let M’ = 1 (mod 5). In this case, without loss of generality we can assume that o = Y5 ByCy Y5, and
consider a representative wg = ﬁ(sﬂf\j/z qu) such that xwd? — 5°M'yz = d. Considering the modulo 5
reductions, we get

E[0,0] = 2—2w?d+1 = —2(1+w?d) = —2(1+d) (mod 5), E[0,1] = 4+2—w?d = 1—w?d = 1—(+d) (mod 5),
E[1,0] = —2%d4+1=1-2?d = 1—(£d) (mod 5), E[1,1] = —22%d+2+1 = —2(1+2%d) = —2(1+d) (mod 5).
From the last relations it is easy to see that either E[0,0] = E[1,1] = 0 (mod 5) or E[1,0] = E[0,1] = 0
(mod 5) if and only if d = £1 (mod 5).

Therefore for M’ = 1 (mod 5), we have cwgo~t € ([g(52M’), W) if and only if d = +1 (mod 5). The
result follows. O

Corollary 3.10. Let N, us,...,u; € N such that 4,91 N, u?||N and 5{u; fori € {2,...,k}. Then
N(<F0(N),w25) - N(<F0(N),’w25,wug, ce ,wui>)

Proof. Recall that was, we, v € N((T'o(V), was, wyg, - - ., wy2)) for e|| 2. Any element of (T'o(N), was, Wz, ..., w2 )\L'o(N)
can be written in the form wagmgzy for some v € Ty(N), m € {0,1} and d|/lem(us,...,ur). Let o €
{TngjCoT5,TngOCiT5}, where ¢,j are defined as in Corollary Since (252752+ﬁl,22) = +1 (mod 5), by
Lemma we get owosmgzo L € (Lo(N), was, wyz, - -, wyz). Thus o € N((To(N), was, w3, ..., wyz2)). Now
the result follows from Corollary O

We are now ready to compute the normalizer of (I'g(N), wos, Wy2, .- ,wu%>.
Proposition 3.11. Let N,ua,...,u; € N such that 4,91 N, u?||N and 51{u; fori € {2,...,k}. Then
N(<F0(N),’u)25,’wug, e ,’wui>) = N(<F0(N),’U)25>)

Proof. By Corollary we know that N'((To(N), wa5) € N((To(NV), was, Wz, - .., wy2)). We now prove the
other inclusion. For simplicity of notation, we write u := lem(us, ..., ux) and assume that u > 1.

Recall that (5,u) = 1. By Theorem we know that N'((T'o(IV), was, wygz, - .., wyz2)) © Y5 15 (M) Y5,
where M := 25])\;2. As discussed in the beginning of it suffices to compute the elements Tgula'rg,u with o €
[o(M) such that Y5, 05, € N((Lo(N),was, wyz, -, wy2)). Let o = (¢%) € To(M) such that Y3, 0Ts5, €
N((To(N), was, Wyz, - - ., wyz2)). Note that for such o, we have

o€ T5uN(<FO(N)7w257wu§» ey wui>)Tgu1 = N(<F(5,u1,...,uk)aF57Fu27 cee ,Fuk>)
By Proposition we know that ac = bd =0 (mod u).

Claim: We now prove that v := Y5 05, = (SZC % ) € N((To(N), was)).

Since (a,b) = (¢,d) = 1, the condition ac = bd =0 (mod ) implies ab = ¢d =0 (mod u).

Since v € N((T'o(IV), was, wyz, - - -, wy2)), for any § € (L'o(IV), was) we have Y3y~ € (To(N), W5, Wy2, - - - s Wy2).
Note that a € (T'o(IV), was, wyz, - . ., wyz) N PSLy(Z[2]) if and only if a € (To(NN), wzs). We prove the claim by
showing that 4y~ € PSLy(Z[2]) for any 5 € (Io(V), was).

¥
First assume that 1 € wosTo(N), i.e., 71 1= (sz 5‘;)) with x, vy, z,w € Z such that 25zw — Q—I\éyz = 1. Then
5

1 b 1
Eq[0,0] := —acuy + 5adx — 5bcw + bdMuz, F1]0,1] := ga2y — a—(:c —w) — gMbQZ,
u
F1[1,0] := —5c%u?y + 25cduz — 25cduw 4+ 5Mu?d?z, Ei[1,1] := acuy + Sadw — 5bex — Mubdz, where Ey := yy,y7 L.
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Since ab =0 (mod u), we get By € PSLa(Z]
we obtain E1 S <F0(N), U.)25>.

Now consider 72 := ( n, &) € ['o(IN) and let Ey := yy2y~*. Then

]). Therefore Ey € (Io(N), was, wyg, .., wy,2) NPSL2(Z[5]). Thus

(S

1
5

1ab
E5[0,0] := —5acuy + adx — bew + 5bdMuz, F5[0,1] := a®y — 5a—(x —w) —b*Mz,
u

E5[1,0] := —25c2u?y + Sedur — Seduw + 25d* Mu?z, Eq[1,1] := Sacuy + adw — bex — 5bdMuz.

Since ab = 0 (mod u), we get Ey € PSLy(Z[3]). Therefore Ey € (To(N), was, w3, - - -, wy2 ) NPSLa(Z[E]). Thus
we obtain Fy € (I'g(N), was).
Hence we conclude that y(To(NV), was)y~ o(IN), was), ie.,, v € N({[o(IN),wss)). Consequently, we

Lo (r
obtain that N'((To(N), was, wyz, . .., wy2)) C N((F (N), was)). The result follows. O

3.3 Exact normalizer of (I'y(N),W) for arbitrary subgroup W
Let N € N such that 4,94 N and W be a subgroup generated by certain Atkin-Lehner involutions. Then we

can find positive integers uq,us ..., ur and vgy1,...,v, such that
(To(N), W) = (To(N),wyz, -, Wy2, Woy g5 -+ -, W, )y (3.32)
and for any Atkin-Lehner involution wq € (Io(N), Wy, ..., Wy, ), d is not a perfect squarﬁﬂ
It is well known that N ((T'o(N), W)) 2 I'(N). Moreover, by Theorem we know that
N({(To(N), W)) < N((To(N), wyz, - -, wyz))- (3.33)
If wos ¢ W, then wos ¢ (FO( ) Wy2, ..., w,z2). Consequently, by Corollarywe have N ((To(N), wyz, ..., wy2)) =

I's(N). Therefore using we conclude ‘that N({To(N),W)) =T§(N). Thus obtain the following theorem.

Theorem 3.12. Let N € N and W be a subgroup generated by certain Atkin-Lehner involutions such that
4,91 N and wes ¢ W. Then N((To(N),W)) =T§(N).

We now study the case where wes € W. More precisely, we prove the following theorem.

Theorem 3.13. Let N € N and W be a subgroup generated by certain Atkin-Lehner involutions such that
4,91’]\7 and waes € W.

1. If there exists wq € W such that g5 # +1 (mod 5), then N'({T'o(N), W)) =T§(N).

2. If gitgy = +1 (mod 5) for allwg € W, then N'((To(N), W)) = (T§(N), Y !'B;CoYs, Y5 BoCiY5) where
B; = (%jljl _1j), Ci:=(§1),0<j,i <4 suchthat 3j =2 (mod 5) andi+j =0 (mod 5). Moreover,

the subgroup (Y51 B;CoYs = (T5'BoCiY5)™ 1) has order 3 in N((To(N),W))/(To(N), W).

Proof. Recall that N((FO(N) W)) DTE(N). Since wes € W, without loss of generality in (3.32) we can assume
that u; =5 and 5¢ (HZ, o Uir - [/, vj). By Proposition and Corollary (3.8 we get

N((To(N),was,wyz, -y wy2)) = (T(N), T35 BjCo Y5, T5 ' BoC;Ts), (3.34)
(B Iy o (1 ¥ =
where B := (#’y" ), Ci:=(§1),0<j,i <4 such that fj=2 (mod5)andi+j=0 (mod 5).
25

Let 0 € {Y5;'B;CyYs5, Y5 BoC;Y5}. If there exists wq € W such that m # 41 (mod 5), then from
Lemma [3.9) we get cwgo~! ¢ (Io(N), W). Consequently from (3:33) and (3:34) we obtain N ((Io(N),W)) =
I'§(N). This proves the first part

On the other hand i d = 41 (mod 5) for all wy € W, then from Lemma we get owgo! €
(To(N), W) for all wy € (I‘o( ), W). Thus ¢ € N((Fo (N),W)). Moreover, it is easy to check that o has order 3
in N ((To(N),W))/(To(N), W) and T_ B;Co Y5, Y5 ByC; Y5 are inverse of each other in N'((To(N), W)) /(Do (N), W).
Now the second part follows from (3.33 and - O

IThis can be done as follows: let Hy := (I'o(N), W)/T'o(N) and Ha := (T'o(N),w,2 : w,2 € W)/To(N). Then the generators
of Ha will give the u;’s, and the non-trivial generators of Hy/Hz will give the v;’s.
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4 On the modular automorphisms of order 3 of Xy(N)/Wy
For N € N and a subgroup Wx < B(N), consider the quotient curve Xo(N)/Wy. Clearly we have
B(N)/Wn < N(To(N) +Wx)/(To(N) + Wy) < Aut(Xo(N)/Wy)

where N (To(N) + Wy)/(To(N) + Wy) is the modular automorphism group of Xo(N)/Wy.

Assuming 4,94 N, by Theorem and Theorem we know that the modular automorphism group of
Xo(N)/Wy is exactly B(N)/Wy, except for the case was € Wi and W‘% = +1 (mod 5) for all wy € Wy;
and in such situation we have

N(To(N) +Wx)/(To(N) + Wy) = (T5(N), Y5 ' B;Co Y5, T3 BoCiYs)/(To(N) + Wi ),

where 0 < j,i < 4 such that L =2 (mod 5) and i +j =0 (mod 5).

In this section we restrict to N = 25M where M is square-free, (5, M) = 1, and a subgroup Wy < B(N)
of the form (was, Wy, ..., w,, ) with v;||M and v; = +1 (mod 5) for all [ € {2,...,n}. Consider the order 3
element ON = TngjCOT5 in N(F0(25M) + W25M)/(FQ(25M) + W25]\/[).

Lemma 4.1. Under the assumptions and notations in this section, N'(I'o(25M ) +Wasar)/(Lo(25M)+Wasp) =
(B(25M)/Wasnr, oar) and oy has order 8. Then oy is defined over Q(v/5) (as an automorphism of Xo(N)/ W),
in particular Aut(Xo(N)/Wn) = Autg g (Xo(N)/Wy) (where Auty (X) denotes the group of all automor-
phisms of X defined over the field K ).

Proof. Note that the elements of Aut(Xo(N)/Wy) can be thought of as automorphisms on the Jacobian variety
of Xo(N)/Wy. Let co be the cusp at infinity of Xo(N)/Wyx. Then it is easy to check that opr(c0) is not a
rational cusp (cf. [Ogg73] for the field of definition of the cusps). Therefore oy is not defined over Q. Now
the result follows from the fact that any automorphism of the Jacobian is defined over the compositum of
the quadratic fields with discriminant D whose square divides N (cf. [KenMom88, Proposition 1.3, Lemma
1.5)). O

Remark 4.2. Assume p = 1 (mod 4) is a prime, M is a square-free positive integer coprime with p, and
Wiyenr = (Wp2, Wy, - . ., Wy, ) With v||M. Then, by [KenMom88, Lemma 1.5] and [KenMom88|, Proposition 1.3]
any automorphism of Xo(p?M)/W,2y is defined either over Q or over Q(,/p) (the same conclusion is true if
p = 3 (mod 4) and the Jacobian variety of Xo(p*M)/W,z2p does not contain any subvariety with complex
multiplication). For a prime ¢ { p? M we can reduce the curve Xo(p?>M)/W,y2) modulo ¢, and denote such
curve by Xo(p?M)/W,2p ® F. Then we have an injection

Aut(Xo(p* M) /Wy2ps) = Aut,, (Xo(p* M) /W2 p @ Fy),

and using Magma in many cases (with small genus) we can compute the automorphism group over the finite
field 2, via the instruction

Automorphisms (ChangeRing (XONQuotient (p~2*M, [p~2,v_2,\1dots,v_n]) ,GF(\ell~2))).

Consequently, we have an upper bound for the order of the automorphism group, and a lower bound is given by
the order of the modular automorphism group. For example, using Magma we obtain |Auty, (Xo(275)/{was))| =
6, consequently we get |Aut(X(275)/(was5))| < 6. Furthermore by Theorem[3.13] we have [Aut(Xo(275)/(w2s))| >
6. Therefore we conclude that |Aut(Xo(275)/(was))| = 6 = [N (To(275) + (was))/(To(N) + (was))], ie.,
Aut(X0(275)/<w25)> = N(F0(275) + <w25>)/(F0(275) + <U/25>).

Now consider o as an element of X(25M)/(ws5). We now give a theoretical explanation of the fact that
for positive integers vs, ..., v, with v||M and v; = £1 (mod 5), s induces an automorphism of order 3 on
X0(25M)/<w25,w1,2, e 7U.)Un>.

We write the Q-decomposition of the Jacobian of X¢(25M)/(was) by:

Jac(Xo(25M)/(wss)) ~g [ A}, (4.1)

m=1

where f,, is a newform of level N,, (with N,,|25M) such that w5 acts as +1 on f,, if 25/N,,. Since
Aut(X((25M)/(was)) has an automorphism defined over Q(+/5) but not over Q, there exist f;,, 1, (in (£1))
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such that Ay, —~q 5 Ap, with fi, = fi, ® x5 (where x5 is the quadratic Dirichlet character associated to
Q(v/5)). Tt is well-known that the abelian variety A; is simple over Q if and only if f does not have any inner
twist, i.e. there is no quadratic Dirichlet character x such that f® x is a Galois conjugated of f. This condition
amounts to say that Endg(Ay) = Endg(Af). Assume that f;, and fi, (appearing in ([#1))) do not have any
inner twist (in particular i1 # lz). If Ay, and Ay, are isogenous over Q but not over Q, then there exists
a Dirichlet character x such that Ay = Ay ® x (cf. [GaJiUl2, Proposition 4.2]), and if x is the quadratic
Dirichlet character attached to the quadratic number field Q(v/5), then there is an isogeny (defined over Q(v/5))
between the abelian varieties Ay, and Ay, .

Therefore assuming that all the f,,’s appearing in have no inner twist, we have that the modular
automorphisms of order 3 in Corollary are coming from matrices (acting on the canonical model obtained
using the cusp forms appearing in ) defined over Q(v/5) (such matrices consist of blocks corresponding to
the Q(v/5)-isogeny factors A;Llll X A;L;:' ~0(vE) A;Lllll M2 where fi. = fi, ® x5 and fi, # fi,)-

In order that the modular automorphism o s of order 3 of X¢(25M)/(was) descends to an order 3 automor-
phism of X¢(25M)/{was, Wy,, - .., W, ), a sufficient condition is that for any quadratic twist f;, ® x5 = fi, (in
[@1))) where the action of o/ is non-trivial on the Q(v/5)-isogeny factor A;L;ll ™2 the Atkin-Lehner involution
wy, should act with the same sign on Ay, and Ay, (cf. [BaDa24, Lemma 18] for more detail).

We recall the following result of Atkin-Lehner in [AtLeh70, p.156] concerning quadratic twists:

Lemma 4.3. Let p be a prime, M’ € N with (p, M) =1, and x,, be the quadratic Dirichlet character associated
to Q(y/p). If f is a newform for To(M') or To(pM’), then f @ x, is a newform for To(p*M’). Furthermore

o for d||M'" we have f & xplwag = (%) ea(f)(f ® xp), where flwg = eq(f)f, and (%) denotes the Kronecker
symbol.

o foxslue = () fox

If f is a newform for To(p>M’) and f ® x, is also a newform for To(p>M’), then for any d||M’ we have
f @ xplwa = (%) ca(f)f & xp-

We recall that (cf. [Ogg73]) if fm, ® xp = fm, where f,, and f,,, are newforms of levels M; and M>
respectively, both dividing p> M with (M, p) = 1, then M; = p>* M’ or My = p?> M’ for a natural number M'|M.
Therefore, the level of the other quadratic twisted modular form involved is M’, pM' or p*>M’.

Corollary 4.4. Consider N = 52M , where M is a square-free positive integer with (5, M) = 1. Assume that
the Jacobian of Xo(N)/{was) has no inner twist, and for each quadratic twist fi,, ® X5 = fm, with my # may
(where Ay, —and Ay, — are distinct Q-isogeny factors of Jac(Xo(N)/(was))) the conductor of fm, or fm, is
equal to N. Then, an Atkin-Lehner involution wq (with d||M ) acts exactly by the same sign on Ay,  —and Ay,

iff (¢) =1 iff d=+1( mod 5).

Recall that any non-trivial wy € B(p?M)/W2ar (p =1 (mod 4) is a prime and p f M) acts by +id on each
Q-isogeny factor of the Jacobian of X(p?M)/W,z2ps. Furthermore, if it acts exactly with the same sign on
all distinct Q-isogeny factors that become isogenous over Q(y/p), then any w € Autg( p) (Xo(P* M) /Wyans) \
(B(p*M)/Wy2pr) induces a non-trivial automorphism of Xo(p®M)/(Wyzar, wa) over Q(y/p). (cf. [BaDa24
Lemma 18]).

Corollary 4.5. Consider N = 52M, where M is a square-free positive integer with (5, M) = 1. Assume that
the Jacobian of Xo(N)/(was) has no inner twist, and for each quadratic twist f,,, ® X5 = fm, with my # mo
(where Ay, and Ay, are distinct Q-isogeny factors of Jac(Xo(N)/{(was))) the conductor of fm, or fm, is equal
to N. Let opr an element of order 8 in N'(To(IN)+ (was))/(To(N)+ (was)). Then for positive integers va, . .., vy
with vi||M and v = £1 (mod 5), o induces an automorphism of order 3 on Xo(25M)/(was, Wyyy ..., Wy, ).

Remark 4.6. By Lemma [£.3]it is easy to see that when M is a prime, the assumption that the conductor of
fm, O fm, is equal to N = 52M is always true.
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