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The modular automorphisms of quotient modular curves

Francesc Bars∗and Tarun Dalal

May 14, 2025

Abstract

We obtain the modular automorphism group of any quotient modular curve of level N , with 4, 9 ∤ N . In
particular, we obtain some non-expected automorphisms of order 3 that appear for the quotient modular
curves when the Atkin-Lehner involution w25 belongs to the quotient modular group, such automorphisms
are not necessarily defined over Q. As a consequence of the results, we obtain the full automorphism group
of the quotient modular curve X∗

0 (N
2), for sufficiently large N .

1 Introduction

A curve C with non-trivial automorphism group encodes deep arithmetic information (in particular the twists
of the curve C). The Fermat quartic or the Klein quartic are examples of curves with big automorphism groups
extensively studied in the literature.

Some of the main curves in arithmetic geometry are the classical modular curves X over Q, which are moduli
spaces classifying elliptic curves with some N -level structure. A non-trivial automorphism group would have
deep arithmetic meaning for such curves. For example, when N is prime, one expects that such a modular curve
X has no rational point except the cusps and points associated to elliptic curves with complex multiplication,
usually called CM points, (which is related with Serre’s uniformity conjecture). In [Do16], the author related
the existence (for certain X) of non-trivial automorphisms with the existence of rational points that are neither
CM nor cusp. Thus modular curves with non-trivial automorphism group are of key interest.

Let X be a modular curve (we assume that it is defined over Q), where its complex points correspond to the
completion at certain cusps of the upper half plane H modulo the action by a congruence subgroup Γ ≤ SL2(Z)
(we assume ±I ∈ Γ), and denote by Aut(X) the automorphism group over Q of the modular curve X. In
particular, the normalizer of Γ in PSL2(R) (the automorphism group of H) modulo Γ provides a subgroup of
Aut(X) which is known as the modular automorphism group of X. For a group G ≤ PSL2(R), we denote
its normalizer inside PSL2(R) by N (G). In particular, the modular automorphism group of the modular curve
associated to Γ corresponds to N (Γ)/Γ.

Let N ∈ N (where N denotes the set of all positive integers), and consider the modular group Γ0(N) :=
{
(

a b
Nc d

)
∈ SL2(Z)}. It is well known that the associated modular curve X0(N) is defined over Q. Atkin-

Lehner in [AtLeh70, Theorem 8], stated the result for N (Γ0(N)) modulo Γ0(N), (cf. [AkSi90], [Ba08] for the
correct statement and the proof of the result). Such normalizer contains the Atkin-Lehner involutions defined
by the matrices of the form wd,N = 1√

d

(
dx y
Nz dw

)
∈ SL2(R) with d > 1, d||N (i.e., d|N and (d,N/d) = 1) and

x, y, z, w ∈ Z such that xwd − yz(N/d) = 1 (we also use the notation wd to denote wd,N , the level N will be
clear from the context). We denote the group generated by all such Atkin-Lehner involutions modulo Γ0(N)
by B(N), which is an abelian group with every non-trivial element of order 2. For 4, 9 ∤ N , we known that

N (Γ0(N))/Γ0(N) = B(N),

a group of order 2ω(N), where ω(N) is the number of distinct prime divisors of N (loc.cit.). Later, Conway
[Con96] gave a characterization of the normalizer of Γ0(N) in terms of a group action on lattices, which has
deep interest and consequences in Group Theory. We emphasize here that the existence of such Atkin-Lehner
automorphisms (involutions) play a crucial role in the understanding of the modular curves X0(N) and the
theory of Hecke operators for X0(N) (cf. [AtLeh70]).
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Now consider any subgroup WN of B(N) (by abuse of notations we denote the collection of distinct repre-
sentatives of B(N) by B(N)), and the group ⟨Γ0(N),WN ⟩ (we use the notation H + G or ⟨H,G⟩ to denote
the group generated by the elements of H and G). The associated modular curve X0(N)/WN is known as
a quotient modular curve and it is defined over Q. An automorphism of X0(N)/WN is said to be mod-
ular if it is coming from an element of PSL2(R) (note that such an element belongs to N (⟨Γ0(N),WN ⟩)
and vice-versa). Since N (Γ0(N))/Γ0(N) = B(N) for 4, 9 ∤ N , it is natural to ask whether the equality
N (⟨Γ0(N),WN ⟩)/⟨Γ0(N),WN ⟩ = B(N)/WN is true or not for 4, 9 ∤ N . When N is square-free, Lang in
[Lan01] proved that the equality N (⟨Γ0(N),WN ⟩)/⟨Γ0(N),WN ⟩ = B(N)/WN is true for any subgroup WN .
The main motivation of this article is to study this question for general N with 4, 9 ∤ N . More precisely, we
completely determine the normalizer N (⟨Γ0(N),WN ⟩) and prove the following results.

Theorem 1.1. [Theorem 3.12 in text] Let N ∈ N and WN be a subgroup generated by the Atkin-Lehner
involutions such that 4, 9 ∤ N and w25 /∈ WN . Then N (⟨Γ0(N),WN ⟩) = ⟨Γ0(N), wd : d||N⟩.

Theorem 1.2. [Theorem 3.13 in text] Let N ∈ N and WN be a subgroup generated by the Atkin-Lehner
involutions such that 4, 9 ∤ N and w25 ∈ WN .

1. If there exists wd ∈ WN such that d
(25,d) ̸≡ ±1 (mod 5), then N (⟨Γ0(N),WN ⟩) = ⟨Γ0(N), wd : d||N⟩.

2. If d
(25,d) ≡ ±1 (mod 5) for all wd ∈ WN , then N (⟨Γ0(N),WN ⟩) = ⟨Γ0(N),Υ−1

5 BjC0Υ5,Υ
−1
5 B0CiΥ5, wd :

d||N⟩ where Υ5 :=
(
1 0
0 1/5

)
, Bj :=

( N
25 j+1 −j

− N
25 1

)
, Ci :=

(
1 i
0 1

)
, 0 ≤ j, i ≤ 4 such that N

25j ≡ 2 (mod 5) and

i ≡ −j (mod 5). Moreover ⟨Υ−1
5 BjC0Υ5 = (Υ−1

5 B0CiΥ5)
−1⟩ has order 3 in N (⟨Γ0(N),WN ⟩)/⟨Γ0(N),WN ⟩.

As an immediate consequence of Theorem 1.1 and Theorem 1.2, we obtain that for 4, 9 ∤ N , we have
N (⟨Γ0(N),WN ⟩)/⟨Γ0(N),WN ⟩ ⊋ B(N)/WN if and only if w25 ∈ WN and d

(25,d) ≡ ±1 (mod 5) for all wd ∈ WN .

Moreover, in such cases the group N (⟨Γ0(N),WN ⟩)/⟨Γ0(N),WN ⟩ (and hence the group Aut(X0(N)/WN ))
may be non-abelian and contains elements of order 3. In particular, this explains the new automorphisms of
order 3 that appear for the quotient curves X0(25q)/⟨w25⟩ and X0(25q)/⟨w25, wq⟩ with q prime (under some
assumptions), which is first observed in [BaDa24].

It is expected that when N is sufficiently large, the modular automorphism group of X0(N)/WN coincides
with the full automorphism group Aut(X0(N)/WN ). This statement is true for the modular curve X0(N) (cf.
[KenMom88]). Moreover, when N is either square-free (cf. [BaGo21]) or a perfect square (cf. [DLM22]), then
this statement is true for the modular curve X∗

0 (N) := X0(N)/B(N). In particular, combining Theorem 1.1
and Theorem 1.2 with [DLM22, Theorem 5.8] we get

Corollary 1.3. Let N ≥ 10400 and (6, N) = 1. Then Aut(X0(N
2)/B(N2)) ∼=

{
Z/3Z, if 5||N,

{id}, otherwise.

In the last section of this paper, under some assumption we prove that the order 3 modular automorphisms
are defined over Q(

√
5).

2 The Conway Big Picture for quotient modular groups

For N ∈ N and a subgroup WN generated by certain the Atkin-Lehner involutions, consider the group
⟨Γ0(N),WN ⟩. We denote by Γ∗

0(N), the subgroup generated by Γ0(N) and all the Atkin-Lehner involutions
wd,N with d||N . The aim of this section is to prove that N (⟨Γ0(N),WN ⟩) is a subgroup of Γ∗

0(M), for some
positive divisor M of N . In order to do this, we will follow Conway’s Big Picture introduced in [Con96].

2.1 The Big Picture

Two lattices L(1) and L(2) (commensurable with Z × Z) are equivalent to each other if there exists q ∈ Q∗

such that L(1) = qL(2). This is an equivalence relation on the set of lattices that are commensurable with
Z×Z. Each equivalence class has a representative of the form Ls,g/t := ⟨(s, g/t), (0, 1)⟩Lat = ⟨se1+ g

t e2, e2⟩Lat,
where s > 0 is a rational number and 0 ≤ g/t < 1, with g ≥ 0 and t > 0 coprime integers, e1 = (1, 0)
and e2 = (0, 1); when g = 0 we denote Ls by Ls,0. For simplicity of notations we denote the equivalence class
containing the lattice Ls,g/t by Ls,g/t. The hyperdistance between two equivalence classes Ls1,g1/t1 and Ls2,g2/t2
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is defined as follows: after a suitable base change one class corresponds to ⟨e1, e2⟩Lat and the other corresponds
to ⟨ke1, e2⟩Lat for a certain k ∈ N, the number k is the hyperdistance between Ls1,g1/t1 and Ls2,g2/t2 .

The Big Picture of Conway is a graph defined as follows: the points (or vertices) correspond to the equiv-
alence classes Ls,g/t , and two classes {Ls1,g1/t1 , Ls2,g2/t2} are connected by a non-oriented edge if and only if
the hyperdistance between such two classes is a prime number.

There is a natural action of PGL2(Q) on the Big Picture defined as follows: for A :=
(
a b
c d

)
∈ GL2(Q),

A∗Ls,g/t corresponds to the representative of the class containing the lattice ⟨s(ae1+be2)+
g
t (ce1+de2), ce1+

de2⟩Lat, i.e., in terms of basis elements, this action can be written as:

se1 +
g

t
e2 7→ s(ae1 + be2) +

g

t
(ce1 + de2), e2 7→ ce1 + de2. (2.1)

This action could be extended to PSL2(R) with the same definition. We would like to remark that wd,N ∈
PSL2(Q) when d is a perfect square, and wd,N /∈ PSL2(Q) if d is not a perfect square.

The following results are well-known (cf [Con96]).

Theorem 2.1 (Conway). The stabilizer of X = Ls,g/t in PSL2(R) is
(
s g/t
0 1

)−1
PSL2(Z)

(
s g/t
0 1

)
⊆ PSL2(Q),

and in the Big Picture literature such stabilizer is denoted Γ0(X|X)+.

Following the notation in the Big Picture, for a positive integer h with h2|N , we define the group

Γ0(N/h|h)+ :=
(
1/h 0
0 1

)
Γ∗
0(N/h2)

(
h 0
0 1

)
⊂ PGL2(Q).

Theorem 2.2 (Conway). The point Ls,g/t is fixed by Γ0(N) if and only if s is a positive integer and t|24
is the largest integer such that t2|N and 1|s|(N/t2). The collection of all such points on the Big Picture is
called the (N |1)-snake. Furthermore, σ ∈ PSL2(R) leaves the (N |1)-snake invariant as a set (not necessarily
point-wise) if and only if σ ∈ Γ0(N/h|h)+, where h is the largest positive integer such that h|24 and h2|N .
Thus N (Γ0(N)) = Γ0(N/h|h)+.

Example 2.3. If 4, 9 ∤ N , then from Theorem 2.2 the (N |1)-snake corresponds to the set of all classes Ls,0 where
s is a positive divisor of N . Furthermore, under such assumption we have N (Γ0(N)) = Γ0(N/1|1)+ = Γ∗

0(N).

2.2 The normalizer of Γ := Γ0(N) +WN with wu2,N /∈ Γ.

Let N be a positive integer. Following the ideas of [Lan01], we now study the normalizer of Γ0(N) + WN ,
where WN is a subgroup generated by Atkin-Lehner involutions such that for any Atkin-Lehner involution
wd,N ∈ Γ0(N) + WN , d is not a perfect square. Note that under such assumption wd,N /∈ PSL2(Q). For
simplicity of notations we write wd,N by wd. Let d1, . . . , dn be exact divisors of N (i.e., di||N) such that
Γ0(N) +WN = Γ0(N) + ⟨wd1

, . . . , wdn
⟩. Now consider the action of Γ0(N) +WN on the Big Picture. We use

the following notations:

• t: a (Γ0(N) + ⟨wd1
, · · · , wdn

⟩)-orbit of size 2n,

• TN : the set of all the t’s.

Lemma 2.4. Let N be a positive integer, and WN be a subgroup generated by Atkin-Lehner involutions such
that for any Atkin-Lehner involution wd ∈ Γ0(N) +WN , d is not a perfect square. For each X ∈ (N |1)-snake

{σ(X) : σ ∈ (Γ0(N) + ⟨wd1
, · · · , wdn

⟩)} = {X,wd(X) : d||N,wd ∈ Γ0(N) +WN}

is a member of TN .

Proof. Let X ∈ (N |1)-snake. Then X is fixed by Γ0(N). Since wdi
∈ N (Γ0(N)), the elements of Γ0(N) +

⟨wd1
, · · · , wdn

⟩ are of the form
∏n

i=1 w
ki

di
γ for some γ ∈ Γ0(N) and ki ∈ {0, 1}. Moreover, we can write∏n

i=1 w
ki

di
γ = wk

dγ
′, for some γ′ ∈ Γ0(N), wd ∈ WN and k ∈ {0, 1}. Hence

{σ(X) : σ ∈ (Γ0(N) + ⟨wd1
, · · · , wdn

⟩)} = {X,wd(X) : d||N,wd ∈ Γ0(N) +WN}.

Let CWN
denote the representatives of distinct left cosets of Γ0(N) in Γ0(N)+WN . Since w2

d ∈ Γ0(N) for d||N ,
[Γ0(N)+WN : Γ0(N)] = 2n and Γ0(N) fixes X, the set {X,wd(X) : d||N,wd ∈ Γ0(N)+WN} = {X, δ(X) : δ ∈
CWN

\ {id}} has at most 2n elements. Recall that the stabilizer of X is of the form (Γ0(X|X)+) ⊆ PSL2(Q).
Let δ1, δ2 be two distinct elements of CWN

\ {id}. Then there exist integers dm1 , dm2 with dmi ||N such that
δi = wdmi

∈ WN for i ∈ {1, 2}. By the assumption on WN , it is easy to see that wdm1
, wdm2

, w−1
dm1

wdm2
̸∈

PSL2(Q). Thus δi(X) ̸= X and δ1(X) ̸= δ2(X). The result follows.
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Lemma 2.5. Under the assumptions of Lemma 2.4, for any t ∈ TN , t is a subset of the (N |1)-snake.

Proof. Consider an element t ∈ TN , and X = Ls,g/t ∈ t. Suppose X /∈ (N |1)-snake. Then Γ0(X|X)+ is not a
supergroup of Γ0(N) (cf. [Lan01, p.33,(8)]). Consequently, Γ0(N)∩Γ0(X|X)+ is a proper subgroup of Γ0(N).
In particular we have

[Γ0(N) : Γ0(N) ∩ Γ0(X|X)+] ≥ 2.

Recall that Γ0(X|X)+ ⊆ PSL2(Q), and (Γ0(N) + ⟨wd1
, · · · , wdn

⟩) ∩ PSL2(Q) = Γ0(N). Hence we obtain

(Γ0(N) + ⟨wd1
, · · · , wdn

⟩) ∩ Γ0(X|X)+ = Γ0(N) ∩ Γ0(X|X) + .

Therefore, [Γ0(N) + ⟨wd1
, · · · , wdn

⟩ : (Γ0(N) + ⟨wd1
, · · · , wdn

⟩) ∩ Γ0(X|X)+]

=[Γ0(N) + ⟨wd1
, · · · , wdn

⟩ : Γ0(N) ∩ Γ0(X|X)+]

=[Γ0(N) + ⟨wd1
, · · · , wdn

⟩ : Γ0(N)][Γ0(N) : Γ0(N) ∩ Γ0(X|X)+] ≥ 2n+1.

Observe that (Γ0(N) + ⟨wd1
, · · · , wdn

⟩)∩Γ0(X|X)+ is the stabilizer of X in Γ0(N) + ⟨wd1
, · · · , wdn

⟩. The last
equality shows that the (Γ0(N)+ ⟨wd1

, · · · , wdn
⟩)-orbit of X has at least 2n+1 elements, which contradicts that

X ∈ t. Therefore X ∈ (N |1)-snake.

Lemma 2.6. Let N,WN be as in lemma 2.4. Then, N (Γ0(N) + WN ) is a subgroup of Γ0(N/h|h)+, where
h|24 is the largest natural number such that h2|N .

Proof. By Lemma 2.4 and Lemma 2.5, X ∈ (N |1)-snake if and only if X ∈ t ∈ TN .
Now for each σ ∈ N (Γ0(N) + ⟨wd1

, · · · , wdn
⟩), and t ∈ TN , we have

(Γ0(N) + ⟨wd1
, · · · , wdn

⟩)σ(t) = σ(Γ0(N) + ⟨wd1
, · · · , wdn

⟩)(t) = σ(t).

Thus σ fixes the (N |1)-snake. Now the result follows from the fact that σ ∈ PSL2(R) leaves the (N |1)-snake
invariant if and only if σ ∈ Γ0(N/h|h)+, where h|24 is the largest natural number such that h2|N (cf. Theorem
2.2).

Corollary 2.7. Let N,WN be as in Lemma 2.4 with 4, 9 ∤ N . Then, N (Γ0(N)+WN ) = Γ∗
0(N). In particular

the modular automorphism group of the quotient curve X0(N)/WN is B(N)/WN .

Proof. Under the assumption 4, 9 ∤ N we have h = 1 in Lemma 2.6. Now the result follows from the facts that
Γ0(N/1|1)+ = Γ∗

0(N) and N (Γ0(N) +WN ) ⊇ Γ∗
0(N).

2.3 Towards the normalizer of Γ := Γ0(N) +WN with wu2,N ∈ Γ.

Next consider the group Γ := Γ0(N)+WN such that wu2,N ∈ Γ\{id} for some natural number u ̸= 1. Inspired
by [Con96] we try to obtain the points Ls,g/t of the Big Picture which are fixed by Γ.

Consider the conjugation by Υu =
(
1 0
0 1/u

)
of Γ0(N)+WN , where we write once and for all in this subsection

N = M · u2 with (M,u2) = 1.

Lemma 2.8. The conjugation by Υu satisfies the following properties:

• ΥuΓ0(N)Υ−1
u = {

(
a b
c d

)
∈ Γ0(Mu)|b ≡ 0 (mod u)}, and we denote such conjugate group by Γ̃u

0 (Mu),

• Υuwu2,NΓ0(N)Υ−1
u = {

(
a b

Mc d

)
∈ Γ0(M)|a ≡ d ≡ 0 (mod u)}.

• If (d, u) = 1, then Υuwd,NΥ−1
u is equal to wd,Mu or wd,M . If (d, u2) = u′, then Υuwd,NΥ−1

u is equal to
wd/u′,Mu also equal to wd/u′,M .

We write Γ̃u
uM := Υu(Γ0(N)+ ⟨wu2,N ⟩)Υ−1

u = ⟨Γ̃u(M), Γ̃u
0 (uM)⟩. We now study the lattices Ls,g/t fixed by

Γ̃u
uM . Note that Γ̃u

uM fixes the class containing the lattice Ls,g/t if and only if it fixes the lattice Ls,g/t.

Lemma 2.9. If the equivalence class Ls,g/t is fixed by Γ̃u
0 (Mu), then su ∈ Z, and sut2 is a divisor of u2M .
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Proof. An arbitrary element of Γ̃u
0 (Mu) can be written in the form

(
a ub

Muc d

)
with a, b, c, d ∈ Z such that

ad −Mu2bc = 1. Assume that the lattice Ls,g/t is fixed by Γ̃u
0 (Mu). Recall that Ls,g/t are generated by the

vectors v1 := se1 +
g
t e2 and v2 := e2, and the smallest multiple of e1 that it contains is v3 = ste1 = tv1 − gv2.

Under the action (2.1), the matrix
(
1 u
0 1

)
sends the lattice Ls,g/t to the lattice generated by v1 + suv2 and v2.

Since
(
1 u
0 1

)
fixes Ls,g/t, we must have su ∈ Z.

For the second condition, consider the matrix
(

1 0
−Mu 1

)
which sends the lattice Ls,g/t to the lattice generated

by v′1 = v1+
g
t (−Mu)e1 and v′2 = v2−Mue1. Since

(
1 0

−Mu 0

)
fixes the lattice Ls,g/t, we have Ls,g/t = ⟨v′1, v′2⟩Lat.

In particular, this implies Mue1,
g
tMue1 ∈ Ls,g/t. Since ste1 is the smallest multiple of e1 which belongs to

Ls,g/t, there exist k1, k2 ∈ Z such that gMu2 = sut2k1 and Mu2 = stuk2. Since (g, t) = 1, these relations give
sut2|Mu2 as claimed.

Lemma 2.10. Let M,u ∈ N such that (u,M) = 1 and 4, 9 ∤ N , where N = Mu2. If Γ̃u
Mu fixes the lattice Ls, gt

,
then Ls, gt

is of the form Ld,0 where d is positive divisor of M .

Proof. Suppose Γ̃u
uM fixes the lattice Ls, gt

. By Lemma 2.9 we have su ∈ Z and sut2|u2M . For simplicity of

notations, in the proof we denote the group Γ̃u
uM by Γ̃.

Since (u,M) = 1, there exist x, y ∈ Z such that u2x −My = 1, i.e.,
( ux y
M u

)
∈ Γ̃. Since

( ux y
M u

)
fixes Ls, gt

,
we must have Me1 ∈ Ls, gt

. Thus there exist c1, c2 ∈ Z such that

Me1 = c1(se1 +
g

t
e2) + c2e2. (2.2)

From (2.2), we get M = c1s and c1
g
t ∈ Z. Since (g, t) = 1, we must have t|c1 and there exists N1 ∈ Z such

that M = stN1. Recall that if t = 1, then g = 0. Now assume that g ̸= 0 equivalently t > 1.
Case I: First assume that s is an integer.
The condition M = stN1 implies that t|M , s|M , and (u, t) = (u, s) = 1 (recall that N = Mu2 and

(u,M) = 1 by assumption). Furthermore, the condition sut2|u2M implies that t2|M . Since 4, 9 ∤ N there exists
a prime ℓ ≥ 5 with ℓ|t|M . Moreover, we can choose w ∈ Z such that u2w2 ̸≡ 1 (mod ℓ) (this is possible since
(u, t) = 1 and (Z/ℓZ)× has an element of order more than 2). There exist x, y, z ∈ Z such that u2xw−Mtyz = 1
i.e.,

( ux y
Mtz uw

)
∈ Γ̃. Since

( ux y
Mtz uw

)
fixes the lattice Ls, gt

, we get

s(uxe1 + ye2) +
g

t
(Mtze1 + uwe2) ∈ Ls, gt

. (2.3)

Since s ∈ Z and e2 ∈ Ls,g/t, the last equation implies

suxe1 +
g

t
uwe2 ∈ Ls, gt

. (2.4)

Thus there exist c1, c2 ∈ Z such that

suxe1 +
g

t
uwe2 = c1(se1 +

g

t
e2) + c2e2. (2.5)

Solving the above equation we get c1 = ux ∈ Z, c2 = g
t u(w − x) ∈ Z. Since (g, t) = 1 and g

t u(w − x) ∈ Z,
we must have ux ≡ uw (mod t), in particular we have ux ≡ uw (mod ℓ). On the other hand, the relation
u2xw −Mtyz = 1 implies that u2w2 ≡ 1 (mod ℓ), which contradicts the assumption that u2w2 ̸≡ 1 (mod ℓ).
Therefore c2 ̸∈ Z. Hence s can not be an integer if t > 1.

Case II: Now suppose that s is not an integer. From the relation su ∈ Z, it is clear that s ∈ Q. Let p be
a prime such that vp(s) < 0 (for a prime p and n ∈ N, we use the notation vp(n) to denote the unique integer
np such that pnp ||n). Since su ∈ Z, we have vp(u) > 0 and vp(s) + vp(u) ≥ 0.

There exist a, c, d ∈ Z such that u2ad−Mc = 1, i.e.,
(

ua 1
Mc ud

)
∈ Γ̃. Since Ls, gt

is fixed by
(

ua 1
Mc ud

)
∈ Γ̃, we

have s(uae1 + e2) +
g
t (Mce1 + ude2) ∈ Ls, gt

. Hence there exist c11, c12 ∈ Z such that

s(uae1 + e2) +
g

t
(Mce1 + ude2) = c11(se1 +

g

t
e2) + c12e2. (2.6)

Solving the last equation we get

c11 = ua+ gN1c ∈ Z, c12 = s+
g

t
(ud− ua− gN1c) ∈ Z. (2.7)
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If vp(t) < −vp(s), then from (2.7) it is easy to see that vp(c12) = vp(s) < 0. Hence vp(t) ≥ −vp(s), consequently
from the relations M = stN1 and (M,u) = 1 we get vp(t) = −vp(s) and vp(N1) = 0.

Since vp(u) > 0, the assumption 4, 9 ∤ N forces that p ≥ 5. In this case, there exists y ∈ Z such that
(u, y) = 1 and y2 ̸≡ 1 (mod p−vp(s)) i.e., vp(y

2 − 1) < −vp(s). By the choice of y, there exist x, z, w ∈ Z such

that u2xw − Mzy = 1, i.e.,
( ux y
Mz uw

)
,
(

ux 1
Mzy uw

)
∈ Γ̃. Since Ls, gt

fixed by the matrices
( ux y
Mz uw

)
,
(

ux 1
Mzy uw

)
,

we must have s(uxe1 + ye2) +
g
t (Mze1 + uwe2), s(uxe1 + e2) +

g
t (Mzye1 + uwe2) ∈ Ls, gt

. Thus there exist
c1, c2, d1, d2 ∈ Z such that

s(uxe1 + ye2) +
g

t
(Mze1 + uwe2) = c1(se1 +

g

t
e2) + c2e2, and (2.8)

s(uxe1 + e2) +
g

t
(Mzye1 + uwe2) = d1(se1 +

g

t
e2) + d2e2. (2.9)

Solving the previous equations we get

c1 = ux+ gN1z ∈ Z, c2 = sy +
g

t
(uw − ux− gN1z) ∈ Z and (2.10)

d1 = ux+ gN1zy ∈ Z, d2 = s+
g

t
(uw − ux− gN1zy) ∈ Z. (2.11)

From (2.10) and (2.11) we get

g

t
uw(1− y)− g

t
ux(1− y)− g

t
gN1z(1− y2) ∈ Z. (2.12)

This is a contradiction since vp(
g
t uw(1 − y)) ≥ 0, vp(

g
t ux(1 − y)) ≥ 0 but vp(

g
t gN1z(1 − y2)) < 0 (it follows

from the assumption on y). Therefore we must have vp(t) = 0 i.e., vp(s) = 0 which is not possible. Hence we
conclude that t = 1. Therefore the lattice Ls,g/t is of the form Ls,0.

Any matrix γ =
( ux yz
M uw

)
∈ Γ̃ acts on Ls,0 as follows: γ · Ls,0 = ⟨s(uxe1 + yze2),Me1 + uwe2⟩Lat. If γ fixes

Ls,0, then we must have
s(uxe1 + yze2) = d1se1 + d2e2 and (2.13)

Me1 + uwe2 = d′1se1 + d′2e2, (2.14)

for some d1, d2, d
′
1, d

′
2 ∈ Z. From the above equations we have d1 = ux and d2 = syz. Recall that d2, su ∈ Z.

If s ̸∈ Z (observe that s ∈ Q), then there exists a prime p such that vp(s) < 0 but vp(u) > 0 and vp(yz) > 0.
This contradicts that u2xw −Mzy = 1. Hence s ∈ Z. On other hand from equation (2.14) we have M = d′1s.
Since d′1, s ∈ Z, we must have s|M . This completes the proof.

Corollary 2.11. Let u,M,N be as in Lemma 2.10. The normalizer of Γ := ⟨Γ0(N), wu2,N ⟩ is a subgroup of
Γ∗
0(M) conjugated by the matrix Υ−1

u .

Proof. The conjugation of Γ by Υu is Γ̃ := Γ̃u
Mu. Recall that by Lemma 2.10, the lattices fixed under Γ̃ forms

a (M |1)-snake. For X ∈ (M |1)-snake and σ ∈ N(Γ̃), we have

σ−1Γ̃σ(X) = X, i.e., Γ̃σ(X) = σ(X).

Thus Γ̃ fixes σ(X), consequently σ(X) ∈ (M |1)-snake. Therefore we obtain that σ set-wise fixes the (M |1)-
snake. By Theorem 2.2, we conclude that the normalizer of Γ̃ is contained in the group Γ0(M/1|1)+ = Γ∗

0(M).
The result follows.

Let us study the general situation. For certain Atkin-Lehner involutions wd1 , . . . , wdn , we write |⟨wd1 , . . . , wdn⟩|
for |⟨Γ0(N), wd1

, . . . , wdn
⟩/Γ0(N)|.

Theorem 2.12. Let N ∈ N such that 4, 9 ∤ N and u2
1, . . . , u

2
k be divisors of N such that u2

i ||N for i = 1, . . . , k
and |⟨wu2

1
, . . . , wu2

k
⟩| = 2k. Then the normalizer of ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩ is a subgroup of Γ∗

0(
N

lcm(u2
1,u

2
2,...,u

2
k)
)

conjugated by Υ−1, where Υ := Υlcm(u1,...,uk).

Moreover, if WN = ⟨wu2
1
, . . . , wu2

k
, wvk+1

, . . . , wvn⟩ ≤ B(N) such that |⟨wvk+1
, . . . , wvn⟩| = 2n−k and for

any Atkin-Lehner involution wd ∈ ⟨Γ0(N), wvk+1
, . . . , wvn⟩, d is not a perfect square, then the normalizer of

Γ0(N) +WN is a subgroup of Γ∗
0(M) conjugated by Υ−1 where M = N

lcm(u2
1,u

2
2,...,u

2
k)
. In general, we have

N (⟨Γ0(N),WN ⟩) ≤ N (⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩).
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Proof. We first prove the statement regarding the normalizer of ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩. The case k = 1 follows

from Corollary 2.11. Consider the group ⟨Γ0(N), wu2
1
, wu2

2
⟩.

Taking conjugation by Υu1
, we get the group ⟨Γ̃u1

Mu1
,Υu1

wu2
2
Υ−1

u1
⟩, where M = N

u2
1
. Recall that by Lemma

2.10, the lattices fixed by Γ̃u1

Mu1
forms a (M |1)-snake.

Now taking conjugation by Υu2/(u1,u2), we obtain the group W̃u1,u2
:= ⟨Υu2/(u1,u2)Γ̃

u1

Mu1
Υ−1

u2/(u1,u2)
,Υ u1u2

(u1,u2)
wu2

2
Υ−1

u1u2
(u1,u2)

⟩.

If W̃u1,u2 fixes the lattice Ls,g/t, then the group Γ̃u1

Mu1
fixes the lattice

( 1 0

0
(u1,u2)

u2

)
· Ls,g/t = ⟨se1 +

(u1, u2)

u2

g

t
e2,

(u1, u2)

u2
e2⟩Lat = ⟨s u2

(u1, u2)
e1 +

g

t
e2, e2⟩Lat = Ls

u2
(u1,u2)

,g/t.

By Lemma 2.10, we have t = 1 and 1|s u2

(u1,u2)
|M . Hence the lattice Ls,g/t is of the form Ls,0, where 1|s u2

(u1,u2)
|M .

Let x, y, w ∈ Z such that u2
2xw− N

u2
2
y = 1, then

( u2x
yu1

(u1,u2)

N
u2

(u1,u2)
u1u2

u2w

)
∈ W̃u1,u2

. If W̃u1,u2
fixes the lattice Ls,0,

then the matrix
( u2x

yu1
(u1,u2)

N
u2

(u1,u2)
u1u2

u2w

)
fixes the lattice Ls,0. Hence there exist d1, d2, d3, d4 ∈ Z such that

s(u2xe1 +
u1y

(u1, u2)
e2) = d1se1 + d2e2, (2.15)

N

u2

(u1, u2)

u1u2
e1 + u2we2 = d3se1 + d4e2. (2.16)

From (2.15), we have d1 = u2x and d2 = s u1y
(u1,u2)

. Recall that s u2

(u1,u2)
∈ Z. If s /∈ Z, then there exists a prime

p such that vp(s) < 0 but vp(
u2

(u1,u2)
) > 0 such that vp(s) + vp(

u2

(u1,u2)
) ≥ 0. In particular we have vp(u2) > 0.

Since s u1

(u1,u2)
y ∈ Z and u1

(u1,u2)
, u2

(u1,u2)
has no common factor, we must have vp(y) > 0. This contradict the

assumption that u2
2xw − N

u2
2
y = 1. Hence s ∈ Z.

From (2.16), we have d3s = N
u2

(u1,u2)
u1u2

, i.e., s|N(u1,u2)
u1u2

2
. On the other hand we also have s|N(u1,u2)

u2
1u2

. Since(N(u1,u2)
u1u2

2
, N(u1,u2)

u2
1,u2

)
= N

lcm(u2
1,u

2
2)
, we conclude that s| N

lcm(u2
1,u

2
2)
. This completes the proof for the case k = 2.

For the general case assume that wu2
t

/∈ ⟨Γ0(N), wu2
1
, . . . , wu2

t−1
⟩. Now the result follows by applying

induction on Υ utlcm(u1,...,ut−1)

(ut,lcm(u1,...,ut−1))

⟨Γ0(N), wu2
1
, . . . , wu2

t−1
, wu2

t
⟩Υ−1

utlcm(u1,...,ut−1)

(ut,lcm(u1,...,ut−1))

and proceeding similarly as in

the case k = 2.
We now prove the statement regarding the normalizer of ⟨Γ0(N),WN ⟩, which is inspired from ideas of

[Lan01], and follows from the arguments introduced in §1.2.
Consider the group Γ̃ := Υ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩Υ−1, and denote by δvt = Υwvt,NΥ−1 for t ∈ {k+1, . . . , n},

and write M = N/lcm(u2
1, . . . , u

2
k). Observe that the assumptions on WN imply δvt /∈ PGL2(Q) and δ−1

vt1
δvt2 /∈

PGL2(Q) for t1 ̸= t2, and δ2vt ∈ Γ̃.

Now consider the action of ⟨Γ̃, δvk+1
, . . . , δvn⟩ on the Big Picture. We use the following notations:

• t̃ : ⟨Γ̃, δvk+1
, . . . , δvn⟩ orbit of size 2n−k, • T̃N : The set of all such t̃, orbits of size 2n−k,

• C̃WN
denotes the representatives of distinct left cosets of Γ̃ in ⟨Γ̃, δvk+1

, . . . , δvn⟩.

Following the argument described in §2.2 we obtain:

• For X ∈ (M |1)-snake, {σ(X) : σ ∈ ⟨Γ̃, δvk+1
, . . . , δvn⟩} = {X, δ(X) : δ ∈ C̃WN

\ {id}} is a member of T̃N .

• If t̃ ∈ T̃N , then t̃ is a subset of the (M |1)-snake.

Using these properties and arguing similarly as in the proofs of Lemma 2.4 and Lemma 2.5, we obtain
X ∈ (M |1)-snake if and only if X ∈ t̃ ∈ T̃N .

Now for each σ ∈ N (⟨Γ̃, δvk+1
, . . . , δvn⟩), and t̃ ∈ T̃N , we have

(⟨Γ̃, δvk+1
, . . . , δvn⟩)σ(t̃) = σ(⟨Γ̃, δvk+1

, . . . , δvn⟩)(t̃) = σ(t̃).

Therefore (M |1)-snake is fixed by σ. Since 4, 9 ∤ N , using Theorem 2.2 we conclude that σ ∈ Γ0(M |1)+. This
proves the second statement.
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For the last statement, write Γ1 := ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩ and Γ2 := ⟨Γ1, wvk+1

, · · · , wvn⟩.
Any element of Γ2 can be written in the form wn0

u2

∏n
i=k+1 w

ni
vi γ, where n0, ni ∈ {0, 1}, u2||lcm(u2

1, . . . , u
2
k), wu2 ∈

Γ1 and γ ∈ Γ0(N). Any element of Γ1 is of the form wm0

u′2γ
′, where m0 ∈ {0, 1}, u′2||lcm(u2

1, . . . , u
2
k), wu′2 ∈ Γ1

and γ′ ∈ Γ0(N). Note that wu2 , γ ∈ PSL2(Q) for γ ∈ Γ0(N) and u2||lcm(u2
1, . . . , u

2
k). By the assumptions on

vi’s, we have
∏n

i=k+1 w
ni
vi ̸∈ PSL2(Q) for ni ∈ {0, 1} with at least one of ni’s is non-zero.

Now consider σ̃ ∈ N (Γ2) and wm0

u′2γ
′ ∈ Γ1, where m0 ∈ {0, 1}, u′2||lcm(u2

1, . . . , u
2
k) and γ′ ∈ Γ0(N). Since

N (Γ2) ⊆ Υ−1Γ∗
0(M)Υ, we have σ̃wm0

u′2γ
′σ̃−1 ∈ PSL2(Q), σ̃wm0

u′2γ
′σ̃−1 ∈ Γ2. Thus we can write

σ̃wm0

u′2γ
′σ̃−1 = wn0

u2

n∏
i=k+1

wni
vi γ ∈ Γ2, where n0, ni ∈ {0, 1}, wu2 ∈ Γ1 and γ ∈ Γ0(N). (2.17)

If ni > 0 for some i, then from (2.17), we have σ̃wm0

u′2γ
′σ̃−1 ∈ PSL2(Q) but wn0

u2

∏n
i=k+1 w

ni
vi γ ̸∈ PSL2(Q),

which is a contradiction. Hence ni = 0 for k + 1 ≤ i ≤ n. Therefore we conclude that σ̃wm0

u′2γ
′σ̃−1 ∈ Γ1, i.e.

σ̃ ∈ N (Γ1). The result follows.

3 Exact normalizer of ⟨Γ0(N),W ⟩
In this section we completely determine the normalizer of ⟨Γ0(N),W ⟩ where 4, 9 ∤ N and W is a subgroup
generated by certain Atkin-Lehner involutions. We compute it in two steps. First we compute the exact
normalizer of ⟨Γ0(N), wu2

1
, wu2

2
, . . . , wu2

k
⟩. Then with the help of this result we compute the exact normalizer

of ⟨Γ0(N),W ⟩ for any arbitrary subgroup W .
Throughout the section we assume that 4, 9 ∤ N . We introduce the following notations:
For a matrix A =

( α0,0 α0,1
α1,0 α1,1

)
, we write A[i, j] := αi,j for i, j ∈ {0, 1}. For a prime p and n ∈ N, we use the

notation vp(n) to denote the unique integer np such that pnp ||n. Consider the group ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩,

where u2
i ||N . Since lcm(u2

1, . . . , u
2
k)||N , we have M := N

lcm(u2
1,...,u

2
k)

∈ Z. We define

Γu :=
{( ux y· lcm(u1,...,uk)

u

M · lcm(u1,...,uk)

u ·z uw

)
∈ Γ0(M) : x, y, z, w ∈ Z

}
for any u||lcm(u1, . . . , uk), u > 1, and

Γ(u1,...,uk) :=
{( x y·lcm(u1,...,uk)

M ·lcm(u1,...,uk)·z w

)
∈ Γ0(M) : x, y, z, w ∈ Z

}
.

Observe that any element of ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩\Γ0(N) can be written in the form wu′2γ′, for some

u′||lcm(u1, . . . , uk) and γ′ ∈ Γ0(N). Furthermore, for any wu′2γ′ ∈ ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩\Γ0(N) it is easy

to check that Υlcm(u1,...,uk)wu′2Γ0(N)Υ−1
lcm(u1,...,uk)

= Γu′ and Γ(u1,...,uk) = Υlcm(u1,...,uk)Γ0(N)Υ−1
lcm(u1,...,uk)

.

Therefore
Υlcm(u1,...,uk)⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩Υ−1

lcm(u1,...,uk)
= ⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩.

Furthermore if δ ∈ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩\Γ(u1,...,uk), then δ ∈ Γu′ for some u′||lcm(u1, u2, . . . , uk). In
particular we have ⟨Γ(u1,...,uk),Γu′⟩\Γ(u1,...,uk) = Γu′ . We mention some basic facts about wu2

i
’s and Γui

’s.

• If vp(lcm(u1, u2, . . . , uk)) > 0 for some prime p, then 2vp(lcm(u1, u2, . . . , uk)) = vp(N).

• For i ̸= j, wu2
i
wu2

j
∈ wu2Γ0(N) with u||lcm(ui, uj), in particular u := uiuj/(u1, u2)

2.

• If vp(ui), vp(uj) > 0, then vp(ui) = vp(uj) = vp(lcm(u1, u2, . . . , uk)).

• If δ ∈ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩\Γ(u1,...,uk), then δ ∈ Γu′ for some u′||lcm(u1, u2, . . . , uk). In particular we
have ⟨Γ(u1,...,uk),Γu′⟩\Γ(u1,...,uk) = Γu′ .

• Furthermore, if (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩\Γ(u1,...,uk)) ∩ Γu′ is non-empty and vp(u

′) > 0, then

vp(lcm(u1, u2, . . . , uk)) = vp(u
′).

We recall the following result from Theorem 2.12.
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Lemma 3.1. Let N, ui ∈ N such that 4, 9 ∤ N and u2
i ||N for i ∈ {1, . . . , k}. Then N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk

⟩)
is a subgroup of Γ∗

0(M) (recall that M := N
lcm(u2

1,...,u
2
k)
). Suppose {h1, h2, . . . , hn} is a complete set of coset

representatives of Γ∗
0(M)/⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩, and consider the set

∆ = {hi : hiγh
−1
i ∈ ⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk

⟩ for every γ ∈ ⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩}.

Then N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩) is generated by {γ, hi : γ ∈ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩, hi ∈ ∆}.

Consider the set

S′
(u1,...,uk),M

:=
{(

a b
c d

)
∈ Γ0(M)\⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩ : ac ≡ bd ≡ 0 (mod lcm(u1, . . . , uk))

}
.

Observe that for
(
a b
c d

)
∈ S′

(u1,...,uk),M
, if u′ = (a, lcm(u1, . . . , uk)) and u′′ = (c, lcm(u1, . . . , uk)), then

lcm(u1, . . . , uk) = u′u′′, (b, lcm(u1, . . . , uk)) = u′′ and (d, lcm(u1, . . . , uk)) = u′.

Let g :=
(
a b
c d

)
∈ S′

(u1,...,uk),M
and u′ = (a, lcm(u1, . . . , uk)) (note that this implies u′||lcm(u1, . . . , uk) and

u′2||N). It is easy to check that Υ−1
lcm(u1,...,uk)

gΥlcm(u1,...,uk) ∈ wu′2,NΓ0(N). Since wu′2,N ∈ N (⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩),

we have g ∈ N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩). Therefore we obtain

Lemma 3.2. S′
(u1,...,uk),M

⊆ N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩).

For e||M , we fix x(e,M,k), y(e,M,k) ∈ Z such that ey(e,M,k) − M
e lcm(u1, . . . , uk)

2x(e,M,k) = 1 i.e.,

δ(e,M,k) :=
1√
e

( e lcm(u1,...,uk)·x(e,M,k)

M ·lcm(u1,...,uk) e·y(e,M,k)

)
∈ we,MΓ0(M).

Note that the set {id, δ(e,M,k) : e||M} forms a complete set of representatives for the left cosets of Γ0(M) in
Γ∗
0(M). If the set SM

(u1,...,uk)
:= {gi : 1 ≤ i ≤ [Γ0(M) : ⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk

⟩]} forms a complete set of

representatives for the left cosets of ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩ in Γ0(M), then the set

SM,+
(u1,...,uk)

:= {δj(e,M,k)gi : 0 ≤ j ≤ 1, e||M, 1 ≤ i ≤ [Γ0(M) : ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩]}

forms a complete set of representatives for the left cosets of ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩ in Γ∗
0(M).

Since Υ−1
lcm(u1,...,uk)

δ(e,M,k)Υlcm(u1,...,uk) ∈ we,NΓ0(N) (with e||M) and we,N ∈ N (⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩),

we have δ(e,M,k) ∈ N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩). Therefore by Lemma 3.1 it suffices to compute the gi’s such
that gi ∈ N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk

⟩), i.e., we need to compute the set N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩)∩Γ0(M).

Proposition 3.3. Let N, u1, u2 . . . , uk ∈ N such that 4, 9 ∤ N and u2
i ||N for i ∈ {1, 2, . . . , k}. If

(
a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩) ∩ Γ0(M), then ac ≡ bd ≡ 0 (mod

lcm(u1, . . . , uk)

5v5(lcm(u1,...,uk))
).

Proof. Let σ :=
(
a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩)∩Γ0(M) and p1 > 5 be a prime such that p1|lcm(u1, u2, . . . , uk).

Without loss of generality we assume that vp1
(u1) = vp1

(lcm(u1, u2, . . . , uk)), and write n1 := vp1
(u1).

For l ∈ {1, 2, 3}, there exist ru1,l, ku1,l ∈ Z such that

u2
1ku1,l + lM

lcm(u1, . . . , uk)
2

u2
1

ru1,l = 1, (3.1)

i.e., γu1,l :=
( u1 −l

lcm(u1,...,uk)

u1

M
lcm(u1,...,uk)

u1
ru1,l u1ku1,l

)
∈ ⟨Γ(u1,...,uk),Γu1

⟩ ⊆ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩. Consequently,

σγu1,lσ
−1 ∈ ⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩. In particular, σγu1,lσ

−1 ∈ ⟨Γ(u1,...,uk),Γvl⟩ for some vl||lcm(u1, u2, . . . , uk).
Suppose there exist l1, l2 ∈ {1, 2, 3} (with l1 ̸= l2) such that σγu1,l1σ

−1 ∈ ⟨Γ(u1,...,uk),Γu′
1
⟩ and σγu1,l2σ

−1 ∈
⟨Γ(u1,...,uk),Γu′

2
⟩ for some u′

1, u
′
2 with p1 ∤ u′

1u
′
2. Then from the constructions of Γ(u1,...,uk),Γu′

i
we have (see the

discussions before Lemma 3.1)

σγu1,liσ
−1[0, 1] ≡ σγu1,liσ

−1[1, 0] ≡ 0 (mod
lcm(u1, . . . , uk)

u′
i

), for i ∈ {1, 2}. (3.2)

9



Since p1 ∤ u′
1u

′
2, we have pn1

1 | lcm(u1,...,uk)
u′
1

and pn1
1 | lcm(u1,...,uk)

u′
2

. From (3.2) we have

σγu1,liσ
−1[0, 1] ≡ σγu1,liσ

−1[1, 0] ≡ 0 (mod pn1
1 ), for i ∈ {1, 2}. (3.3)

Combining (3.1) with (3.3), we get

a2
lcm(u1, . . . , uk)

2

u2
1

l2i + b2 ≡ c2
lcm(u1, . . . , uk)

2

u2
1

l2i + d2 ≡ 0 (mod pn1
1 ), for i ∈ {1, 2}. (3.4)

From (3.4) we obtain

a2
lcm(u1, . . . , uk)

2

u2
1

(l21 − l22) ≡ c2
lcm(u1, . . . , uk)

2

u2
1

(l21 − l22) ≡ 0 (mod pn1
1 ). (3.5)

Recall that p ∤ (l21 − l22) for any prime p > 5 and u1||lcm{u1, . . . , uk}. Since pn1
1 > 5 and p1 ∤ lcm(u1,...,uk)

2

u2
1

, (3.5)

implies that (a, c) > 1. Which contradicts that
(
a b
c d

)
∈ Γ0(M). Therefore, for any two distinct elements i1, i2 ∈

{1, 2, 3} we must have {σγu1,i1σ
−1, σγu1,i2σ

−1} ̸⊂ Γ(u1,...,uk), σγu1,i1σ
−1 ∈ ⟨Γ(u1,...,uk),Γv′

1
⟩ and σγu1,i2σ

−1 ∈
⟨Γ(u1,...,uk),Γv′

2
⟩ for some v′1, v

′
2 with p1|v′1v′2 i.e., either p|v1 or p|v2. Hence there exist l1, l2 ∈ {1, 2, 3} (with

l1 ̸= l2) such that σγu1,l1σ
−1 ∈ Γu′

3
and σγu1,l2σ

−1 ∈ Γu′
4
for some u′

3, u
′
4 with p1|(u′

3, u
′
4) (for example suppose

that i1 ∈ {1, 2, 3} such that σγu1,i1σ
−1 ∈ ⟨Γ(u1,...,uk),Γv′

1
⟩ with p ∤ v′1, then for the two remaining elements

i2, i3 ∈ {1, 2, 3}\{i1} we must have σγu1,i2σ
−1 ∈ Γv′

2
and σγu1,i3σ

−1 ∈ Γv′
3
for some v′2, v

′
3 with p1|v′2 and p|v′3).

Therefore we have

σγu1,liσ
−1[0, 0] ≡ σγu1,liσ

−1[1, 1] ≡ 0 (mod u′
2+i), for i ∈ {1, 2}, (3.6)

σγu1,liσ
−1[0, 1] ≡ σγu1,liσ

−1[1, 0] ≡ 0 (mod
lcm(u1, . . . , uk)

u′
2+i

), for i ∈ {1, 2}. (3.7)

Recall that from (3.1) we have

liM
lcm(u1, . . . , uk)

2

u2
1

ru1,li ≡ 1 (mod pn1
1 ) for i ∈ {1, 2}. (3.8)

Using this congruence, from (3.6) we have

ac
lcm(u1, . . . , uk)

2

u2
1

l21 + bd ≡ ac
lcm(u1, . . . , uk)

2

u2
1

l22 + bd ≡ 0 (mod pn1
1 ). (3.9)

Thus we obtain

ac
lcm(u1, . . . , uk)

2

u2
1

(l21 − l22) ≡ 0 (mod pn1
1 ), (3.10)

equivalently we get
ac(l21 − l22) ≡ 0 (mod pn1

1 ). (3.11)

Since (pn1
1 , |l21 − l22|) = 1, (3.11) implies that ac ≡ 0 (mod pn1

1 ). Since p1 is arbitrary, we conclude that
ac ≡ bd ≡ 0 (mod pvp(lcm(u1,u2,...,uk))) for every prime p > 5. The result follows.

In order to compute the set N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

)⟩ ∩ Γ0(M) explicitly, first we consider the case
w25 /∈ ⟨Γ0(N), wu2

1
, wu2

2
, . . . , wu2

k
⟩ and then we consider the case w25 ∈ ⟨Γ0(N), wu2

1
, wu2

2
, . . . , wu2

k
⟩.

3.1 Exact normalizer of ⟨Γ0(N), wu2
1
, wu2

2
, . . . , wu2

k
⟩ with w25 /∈ ⟨Γ0(N), wu2

1
, wu2

2
, . . . , wu2

k
⟩

The following result will be very useful for computing the normalizer when 5|ui.

Lemma 3.4. Let N, u1, u2 . . . , uk ∈ N such that 4, 9 ∤ N, u2
i ||N and w52 /∈ ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩. If(

a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩) ∩ Γ0(M), then v5(abcd) ≥ 2v5(lcm(u1, u2, . . . , uk)).
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Proof. For simplicity of notations, we write η := lcm(u1, u2, . . . , uk) and n0 := v5(η). If n0 = 0, then
the proposition is obvious, so we assume that n0 > 0. Since w52 /∈ ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩, the set Γ5 ∩

⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩ is empty. Let σ :=
(
a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩) ∩ Γ0(M). Since (2, η) = 1,

there exists a prime p such that p ≡ 2 (mod η) and p ∤ N . Since u > 5 for any Γu ⊆ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩\Γ(u1,...,uk),
we have p2 ≡ 4 ̸≡ ±1 (mod u) (because u|η and p2 ≡ 4 ̸≡ ±1 (mod η)). Moreover, there exist k′, r ∈ Z such
that pk′ − η2Mr = 1 i.e.,

( p η
ηMr k′

)
∈ Γ(u1,...,uk). Consequently, we have pk′ ≡ 2k′ ≡ 1 (mod η).

Since σ ∈ N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩), we have E := σ

( p η
ηMr k′

)
σ−1 ∈ ⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩. Therefore

E ∈ ⟨Γ(u1,...,uk),Γu⟩ for some Γu ⊆ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩\Γ(u1,...,uk). Suppose E ∈ Γu for some Γu ∈
⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩\Γ(u1,...,uk). Then E[0, 0] ≡ E[1, 1] ≡ 0 (mod u). Thus

E[0, 0] + E[1, 1] ≡ (p+ k′)(ad− bc) ≡ 2 + k′ ≡ 0 (mod u). (3.12)

The congruences 2k′ ≡ 1 (mod u) and 2+k′ ≡ 0 (mod u), imply that 22 ≡ −1 (mod u), which is not possible.
Therefore E ̸∈ Γu for any Γu ⊆ ⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩\Γ(u1,...,uk).

Now suppose that E ∈ Γ(u1,...,uk). Then E[1, 0] ≡ E[0, 1] ≡ 0 (mod η). Consequently, we have

E[1, 0] · E[0, 1] ≡ (p− k′)2abcd ≡ 0 (mod η2). (3.13)

Thus v5((p − k′)2abcd) ≥ 2v5(η) = 2n0. Since n0 > 0, we have p ≡ 2 (mod 5) and pk′ ≡ 2k′ ≡ 1 (mod 5). If
v5(p−k′) > 0, then the congruence pk′ ≡ 2k′ ≡ 1 (mod 5) implies 4 ≡ 1 (mod 5), which is not possible. Hence
v5(p− k′) = 0. Consequently, we get v5(abcd) ≥ 2n0.

Now we compute the set N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

)⟩ ∩ Γ0(M) when w52 /∈ ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩.

Proposition 3.5. Let N, u1, u2 . . . , uk ∈ N such that 4, 9 ∤ N, u2
i ||N and w52 /∈ ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩. If(

a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩ ∩ Γ0(M), then ac ≡ bd ≡ 0 (mod lcm(u1, . . . , uk)).

Proof. Let σ :=
(
a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩∩Γ0(M) and n0 := v5(lcm(u1, u2, . . . , uk)). By Proposition

3.3, we know that ac ≡ bd ≡ 0 (mod lcm(u1,u2,...,uk)
5n0

). We now prove that ac ≡ bd ≡ 0 (mod 5n0). If n0 = 0,
then this is clear. Hence we assume that n0 ≥ 1. Recall that the assumption w52 /∈ ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩

implies the set Γ5 ∩ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩ is empty.
Without loss of generality we assume that v5(u1) = n0. If n0 = 1, then there exists a prime p1 ( ̸= 5) such

that n1 := vp1
(u1) > 0 (this is possible since w25 /∈ ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩). We define η0 :=

{
pn1
1 , if n0 = 1

5n0 , otherwise
,

η1 :=

{
5n0pn1

1 , if n0 = 1

5n0 , otherwise
and η2 :=

{
p1, if n0 = 1

5, otherwise
. Then η1||u1. Recall that for any prime p if vp(u

′) > 0

for some Γu′ ⊆ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩\Γ(u1,...,uk), then vp(lcm(u1, u2, . . . , uk)) = vp(u
′).

For l ∈ {1, 2, 3}, there exist ru1,l, ku1,l ∈ Z such that

u2
1ku1,l + lM

lcm(u1, . . . , uk)
2

u2
1

ru1,l = 1, (3.14)

i.e., γu1,l :=
( u1 −l

lcm(u1,...,uk)

u1

M
lcm(u1,...,uk)

u1
ru1,l u1ku1,l

)
∈ ⟨Γ(u1,...,uk),Γu1

⟩ ⊆ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩.

Suppose there exist l1, l2 ∈ {1, 2, 3} (with l1 ̸= l2) such that σγu1,l1σ
−1 ∈ ⟨Γ(u1,...,uk),Γu′

1
⟩ and σγu1,l2σ

−1 ∈
⟨Γ(u1,...,uk),Γu′

2
⟩ for some u′

1, u
′
2 with η2 ∤ u′

1u
′
2. Therefore we must have

σγu1,liσ
−1[0, 1] ≡ σγu1,liσ

−1[1, 0] ≡ 0 (mod
lcm(u1, . . . , uk)

u′
i

), for i ∈ {1, 2}. (3.15)

Since η2 ∤ u′
1u

′
2, we have η0| lcm(u1,...,uk)

u′
1

and η0| lcm(u1,...,uk)
u′
2

. From (3.15) we have

σγu1,liσ
−1[0, 1] ≡ σγu1,liσ

−1[1, 0] ≡ 0 (mod η0), for i ∈ {1, 2}. (3.16)
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Combining (3.14) with (3.16), we get

a2
lcm(u1, . . . , uk)

2

u2
1

l2i + b2 ≡ c2
lcm(u1, . . . , uk)

2

u2
1

l2i + d2 ≡ 0 (mod η0), for i ∈ {1, 2}. (3.17)

Thus we have

a2
lcm(u1, . . . , uk)

2

u2
1

(l21 − l22) ≡ c2
lcm(u1, . . . , uk)

2

u2
1

(l21 − l22) ≡ 0 (mod η0). (3.18)

Recall that 52 ∤ (l21− l22) and p ∤ (l21− l22) for any prime p > 5. Since ηn1
0 > 5 and η0 ∤ lcm(u1,...,uk)

2

u2
1

, (3.18) implies

that (a, c) > 1. Which contradicts that
(
a b
c d

)
∈ Γ0(M). Hence there exist l1, l2 ∈ {1, 2, 3} (with l1 ̸= l2) such

that σγu1,l1σ
−1 ∈ Γu′

3
and σγu1,l2σ

−1 ∈ Γu′
4
for some u′

3, u
′
4 with η2|(u′

3, u
′
4) (which automatically implies that

η0|(u′
3, u

′
4)) and Γu′

3
,Γu′

4
⊆ ⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk

⟩\Γ(u1,...,uk). Therefore for i ∈ {1, 2} we must have

σγu1,liσ
−1[0, 0] ≡ σγu1,liσ

−1[1, 1] ≡ 0 (mod u′
2+i), and (3.19)

σγu1,liσ
−1[0, 1] ≡ σγu1,liσ

−1[1, 0] ≡ 0 (mod
lcm(u1, . . . , uk)

u′
2+i

). (3.20)

If possible let 5 ∤ (u′
3, u

′
4) and WLOG assume that 5 ∤ u′

3. Then v5(
lcm(u1,...,uk)

u′
3

) = n0. From (3.20), we get

a2
lcm(u1, . . . , uk)

2

u2
1

l21 + b2 ≡ c2
lcm(u1, . . . , uk)

2

u2
1

l21 + d2 ≡ 0 (mod 5n0), (3.21)

i.e.,
a2d2 − b2c2 ≡ 0 (mod 5n0). (3.22)

Since ad− bc = 1, from the last equation we get

ad+ bc ≡ 0 (mod 5n0). (3.23)

Therefore v5(a) = v5(b) = v5(c) = v5(d) = 0, in particular this implies v5(abcd) = 0 < n0, which contradicts
Lemma 3.4. Therefore 5|(u′

3, u
′
4). In particular we have 5n0 |(u′

3, u
′
4). Recall that from (3.14) we have

liM
lcm(u1, . . . , uk)

2

u2
1

ru1,li ≡ 1 (mod 5n0) for i ∈ {1, 2}. (3.24)

Using this congruence, from (3.19) we have

ac
lcm(u1, . . . , uk)

2

u2
1

l21 + bd ≡ ac
lcm(u1, . . . , uk)

2

u2
1

l22 + bd ≡ 0 (mod 5n0). (3.25)

Thus we obtain

ac
lcm(u1, . . . , uk)

2

u2
1

(l21 − l22) ≡ 0 (mod 5n0), (3.26)

equivalently we get
ac(l21 − l22) ≡ 0 (mod 5n0). (3.27)

Since (5n0 , |l21 − l22|) ∈ {1, 5}, (3.27) implies that 5ac ≡ 0 (mod 5n0).
Consider the case (5n0 , |l21 − l22|) = 5, 5ac ≡ 0 (mod 5n0) but ac ̸≡ 0 (mod 5n0), i.e., v5(ac) = n0 − 1. If

v5(bd) ̸= v5(ac
lcm(u1,...,uk)

2

u2
1

l21), then

v5(ac
lcm(u1, . . . , uk)

2

u2
1

l21 + bd) = min{v5(bd), v5(ac
lcm(u1, . . . , uk)

2

u2
1

l21)} < n0,

which contradicts (3.25). Thus we have

v5(bd) = v5(ac
lcm(u1, . . . , uk)

2

u2
1

l21) = v5(ac) = n0 − 1. (3.28)

Consequently we get v5(abcd) < 2n0, which contradicts Lemma 3.4. Hence we must have ac ≡ 0 (mod 5n0).
Consequently, from (3.25) we obtain ac ≡ bd ≡ 0 (mod 5n0). Thus, we obtain that if

(
a b
c d

)
∈ N (⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
⟩)∩

Γ0(M), then ac ≡ bd ≡ 0 (mod lcm(u1, u2, . . . , uk)).
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Corollary 3.6. Let N, u1, u2 . . . , uk ∈ N such that 4, 9 ∤ N, u2
i ||N and w52 /∈ ⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩. Then

N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩) = ⟨Γ(u1,...,uk),Γu1

, . . . ,Γuk
, δ(e,M,k), g : e||M, g ∈ S′

(u1,...,uk),M
∩ SM

(u1,...,uk)
⟩.

Consequently we have N (⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩) = Γ∗

0(N).

Proof. Recall that the set SM
(u1,...,uk)

:= {gi : 1 ≤ i ≤ [Γ0(M) : ⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩]} forms a complete set

of representatives for the left cosets of Γ0(M) in ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩, and the set

SM,+
(u1,...,uk)

:= {δj(e,M,k)gi : 0 ≤ j ≤ 1, e||M, 1 ≤ i ≤ [Γ0(M) : ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩]}

forms a complete set of representatives for the left cosets of Γ∗
0(M) in ⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk

⟩.
By previous discussions and Lemma 3.2, we know that

N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩) ⊇ ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

, δ(e,M,k), g : e||M, g ∈ S′
(u1,...,uk),M

∩ SM
(u1,...,uk)

⟩.

If gi ∈ N (⟨Γ(u1,...,uk),Γu1 , . . . ,Γuk
⟩) ∩ SM

(u1,...,uk)
, then by Proposition 3.5 we have gi ∈ S′

(u1,...,uk),M
. Since

δ(e,M,k) ∈ N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩), by Lemma 3.1 we conclude that

N (⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

⟩) = ⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

, δ(e,M,k), g : e||M, g ∈ S′
(u1,...,uk),M

∩ SM
(u1,...,uk)

⟩.

This proves the first part. For the second part, it suffices to show that

Υ−1
lcm(u1,...,uk)

⟨Γ(u1,...,uk),Γu1
, . . . ,Γuk

, δ(e,M,k), g : e||M, g ∈ S′
(u1,...,uk),M

∩ SM
(u1,...,uk)

⟩Υlcm(u1,...,uk) = Γ∗
0(N).

This follows from the facts that
• Υ−1

lcm(u1,...,uk)
δ(e,M,k)Γ(u1,...,uk)Υlcm(u1,...,uk) = we,NΓ0(N) (with e||M) and

• for any g ∈ S′
(u1,...,uk),M

, we have Υ−1
lcm(u1,...,uk)

gΥlcm(u1,...,uk) ∈ wu′2,NΓ0(N) for some u′||lcm(u1, . . . , uk).

Conversely, for any u′||lcm(u1, . . . , uk), we have Υlcm(u1,...,uk)wu′2,NΥ−1
lcm(u1,...,uk)

∈ S′
(u1,...,uk),M

.

3.2 Exact normalizer of ⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩

Now suppose that w25 ∈ ⟨Γ0(N), wu2
1
, wu2

2
, . . . , wu2

k
⟩ (note that this assumption implies 25||N). Without loss of

generality we can assume that u1 = 5 and 5 ∤
∏k

i=2 ui. We first compute the normalizer of ⟨Γ0(N), w25⟩. Then
with the help of this result and Proposition 3.3 we compute the normalizer of ⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩.

By Theorem 2.12, we know thatN (⟨Γ0(N), w25⟩) ⊆ Υ−1
5 Γ∗

0(M
′)Υ5, whereM

′ := N
25 (note that (5,M ′) = 1).

We introduce the following notations:

Γ̃5(M
′) :=

{(
5x y
M ′z 5w

)
∈ Γ0(M

′) : x, y, z, w ∈ Z
}
,

Γ̃5
0(5M

′) :=
{(

x 5y
5M ′z w

)
∈ Γ0(M

′) : x, y, z, w ∈ Z
}
, and Γ̃5

5M ′ := ⟨Γ̃5(M
′), Γ̃5

0(5M
′)⟩.

For e||M ′, we fix x(e,M ′,1), y(e,M ′,1) ∈ Z such that ey(e,M ′,1) − 25M ′

e x(e,M ′,1) = 1 i.e.,

δ(e,M ′,1) :=
1√
e

( e 5x(e,M′,1)

5M ′ e·y(e,M′,1)

)
∈ we,M ′Γ0(M

′).

The set {id, δ(e,M ′,1) : e||M ′} forms a complete set of representatives for the left cosets of Γ∗
0(M

′) in Γ0(M
′).

Let Bj :=
(
M ′j+1 −j
−M ′ 1

)
and Ci :=

(
1 i
0 1

)
. First observe that [Γ0(M

′) : Γ̃5
0(5M

′)] = [Γ0(M
′) : Γ0(25M

′)],

and the set S5,M ′ := {BjCi, Ci : 0 ≤ i, j ≤ 4} forms a complete set of representatives for the left cosets of

Γ̃5
0(5M

′) in Γ0(M
′). Let SM ′

(5) (a subset of S5,M ′) be a complete set of representatives for the left cosets of Γ̃5
5M ′

in Γ0(M
′). Consequently the set SM ′,+

(5) :=
{
δl(e,M ′,1)g : g ∈ SM ′

(5) , e||M
′, l ∈ {0, 1}

}
forms a complete set of

representatives for the left cosets of Γ̃5
5M ′ in Γ∗

0(M
′).

Proposition 3.7. We have N (Γ̃5
5M ′) =

〈
Γ̃5
5M ′ , δ(e,M ′,1), BjC0, B0Ci : e||M ′

〉
, where 0 ≤ j, i ≤ 4 such that

M ′j ≡ 2 (mod 5) and i+ j ≡ 0 (mod 5).
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Proof. It is easy to check that δ(e,M ′,1) ∈ N (Γ̃5
5M ′) and Ci /∈ N (Γ̃5

5M ′) for i ̸= 0, hence it suffices to compute the

Bj ’s and Ci’s such that BjCi ∈ SM ′

(5) ∩N (Γ̃5
5M ′) (cf. Lemma 3.1). We give a complete proof for the case M ′ ≡ 1

(mod 5), the proofs are similar for other cases. Assume that M ′ ≡ 1 (mod 5). There exist r1, k1 ∈ Z such that
γ :=

( 5 −1
M ′r1 5k1

)
∈ Γ̃5(M

′). Let BjCi /∈ Γ̃5
5M ′ . If BjCi ∈ N (Γ̃5

5M ′), then E := BjCiγ(BjCi)
−1 ∈ N (Γ̃5

5M ′), i.e.,
either E[0, 0] ≡ E[1, 1] ≡ 0 (mod 5) or E[0, 1] ≡ E[1, 0] ≡ 0 (mod 5).

Suppose E[0, 0] ≡ E[1, 1] ≡ 0 (mod 5), then

i2M ′(M ′j + 1)− i(2jM ′ + 1) + j +M ′(M ′j + 1) ≡ i2(j + 1)− i(2j + 1) + 2j + 1 ≡ 0 (mod 5). (3.29)

If (j, i) is a solution of (3.29) in Z/5Z, then it is easy to see that (j, i) ∈ {(2, 0), (4, 1), (1, 2)}. Since B4C1 ∈ Γ̃5
5M ′ ,

we get BjCi ∈ {B1C2, B2C0}. Observe that (B2C0)Γ̃
5
5M ′ = (B1C2)Γ̃

5
5M ′ .

Now suppose that E[0, 1] ≡ E[1, 0] ≡ 0 (mod 5). The condition E[1, 0] ≡ 0 (mod 5) gives

i2 − 2i+ 2 ≡ 0 (mod 5). (3.30)

The solutions of (3.30) are i ∈ {3, 4}. On the other hand, the relation E[0, 1] ≡ 0 (mod 5) gives

j2(−i2 + 2i− 2)− j(2i2 − 2i+ 2)− i2 − 1 ≡ 0 (mod 5). (3.31)

For i = 3 (resp., i = 4), from (3.31) we get j = 0 (resp., j = 3). Therefore in this case BjCi ∈ {B0C3, B3C4}. It
is easy to check that (B0C3)Γ̃

5
5M ′ = (B3C4)Γ̃

5
5M ′ . Thus we obtain thatN (Γ̃5

5M ′) ⊆
〈
Γ̃5
5M ′ , δ(e,M ′,1), B2C0, B0C3 :

e||M ′
〉
. Now to prove the equality, it suffices to show that B2C0, B0C3 ∈ N (Γ̃5

5M ′).

First consider a matrix of the form γ :=
(

5x y
M ′z 5w

)
∈ Γ̃5

5M ′ . Since M ′ ≡ 1 (mod 5), we have

(B2C0γ(B2C0)
−1)[0, 0] ≡ −2(y + z) (mod 5), (B2C0γ(B2C0)

−1)[1, 1] ≡ 2(y + z) (mod 5), and

(B2C0γ(B2C0)
−1)[0, 1] ≡ z − y (mod 5), (B2C0γ(B2C0)

−1)[1, 0] ≡ z − y (mod 5).

Since yz ≡ −1 (mod 5), either y + z ≡ 0 (mod 5) or z − y ≡ 0 (mod 5). Thus B2C0γ(B2C0)
−1 ∈ Γ̃5

5M ′ .
Now consider the matrix of the form δ :=

(
x 5y

5M ′z w

)
∈ Γ̃5

5M ′ . We have

(B2C0δ(B2C0)
−1)[0, 0] ≡ −2(x+ w) (mod 5), (B2C0δ(B2C0)

−1)[1, 1] ≡ −2(x+ w) (mod 5), and

(B2C0δ(B2C0)
−1)[0, 1] ≡ x− w (mod 5), (B2C0δ(B2C0)

−1)[1, 0] ≡ −(x− w) (mod 5).

Since xw ≡ 1 (mod 5), either x + w ≡ 0 (mod 5) or x − w ≡ 0 (mod 5). Thus B2C0δ(B2C0)
−1 ∈ Γ̃5

5M ′ .
Therefore we conclude that B2C0 ∈ N (Γ̃5

5M ′). A similar argument discussed so far shows that B0C3 ∈ N (Γ̃5
5M ′).

Thus N (Γ̃5
5M ′) ⊇

〈
Γ̃5
5M ′ , δ(e,M ′,1), B2C0, B0C3 : e||M ′

〉
. This completes the proof.

As an immediate consequence of Proposition 3.7, we obtain

Corollary 3.8. Let M ′ ∈ N such that (5,M ′) = 1 and 4, 9 ∤ M ′. Then

N (⟨Γ0(5
2M ′), w52⟩) =

〈
Γ0(5

2M ′), w52 , we,52M ′ ,Υ−1
5 BjC0Υ5,Υ

−1
5 B0CiΥ5 : e||M ′

〉
,

where 0 ≤ j, i ≤ 4 such that M ′j ≡ 2 (mod 5) and i+ j ≡ 0 (mod 5).

We now prove that N (⟨Γ0(N), w25) ⊆ N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩), and the following lemma plays a very

important role in proving such result.

Lemma 3.9. Let M ′ ∈ N such that 4, 9 ∤ M ′, (5,M ′) = 1 and W be any subgroup generated by the Atkin-Lehner
involutions such that w52,52M ′ ∈ W . Let wd := wd,52M ′ ∈ ⟨Γ0(5

2M ′),W ⟩ be an Atkin-Lehner involution and
σ ∈ {Υ−1

5 BjC0Υ5,Υ
−1
5 B0CiΥ5}, where i, j are defined as in Corollary 3.8. Then σwdσ

−1 ∈ ⟨Γ0(5
2M ′),W ⟩ if

and only if d
(52,d) ≡ ±1 (mod 5).

Proof. Note that we have (52, d) ∈ {1, 52}. Since σw52σ
−1 ∈ ⟨Γ0(5

2M ′), w52⟩, without loss of generality we can
assume that (52, d) = 1 (note that this also implies d||M ′).
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Since σ ∈ PSL2(Z[ 15 ])\PSL2(Z), it is easy to observe that σwdσ
−1 ∈ PSL2(Z[ 15 ,

1√
d
])\PSL2(Z[ 15 ]). Any

arbitrary element of ⟨Γ0(5
2M ′),W ⟩ can be written in the form wm1

d′ wm0

52 γ, where m0,m1 ∈ {0, 1}, γ ∈ Γ0(5
2M ′)

and wd′ ∈ W .
If σwdσ

−1 ∈ ⟨Γ0(5
2M ′),W ⟩, then we have σwdσ

−1 = wn
d′w

n0

52 γ i.e., w−n
d′ σwdσ

−1 = wn0

52 γ, for some n, n0 ∈
{0, 1}, wd′ ∈ W and γ ∈ Γ0(5

2M ′). If wn
d′ ̸= wd, then w−n

d′ σwdσ
−1 ̸∈ PSL2(Z[ 15 ]) but wn0

52 γ ∈ PSL2(Z[ 15 ]).
Hence we have w−1

d σwdσ
−1 = wn0

52 γ, equivalently we have E := Υ5w
−1
d σwdσ

−1Υ−1
5 ∈ Γ̃5

5M ′ .

Recall that if δ ∈ Γ̃5
5M ′ , then we must have either δ[0, 0] ≡ δ[1, 1] ≡ 0 (mod 5) or δ[1, 0] ≡ δ[0, 1] ≡ 0

(mod 5) (note that we always have δ[1, 0] ≡ 0 (mod M ′)). We give a complete proof for the case M ′ ≡ 1
(mod 5). The proofs are similar for the other cases.

Let M ′ ≡ 1 (mod 5). In this case, without loss of generality we can assume that σ = Υ−1
5 B2C0Υ5, and

consider a representative wd = 1√
d

( xd y

52M ′z wd

)
such that xwd2 − 52M ′yz = d. Considering the modulo 5

reductions, we get

E[0, 0] ≡ 2−2w2d+1 ≡ −2(1+w2d) ≡ −2(1±d) (mod 5), E[0, 1] ≡ 4+2−w2d ≡ 1−w2d ≡ 1−(±d) (mod 5),

E[1, 0] ≡ −x2d+1 ≡ 1−x2d ≡ 1−(±d) (mod 5), E[1, 1] ≡ −2x2d+2+1 ≡ −2(1+x2d) ≡ −2(1±d) (mod 5).

From the last relations it is easy to see that either E[0, 0] ≡ E[1, 1] ≡ 0 (mod 5) or E[1, 0] ≡ E[0, 1] ≡ 0
(mod 5) if and only if d ≡ ±1 (mod 5).

Therefore for M ′ ≡ 1 (mod 5), we have σwdσ
−1 ∈ ⟨Γ0(5

2M ′),W ⟩ if and only if d ≡ ±1 (mod 5). The
result follows.

Corollary 3.10. Let N, u2, . . . , uk ∈ N such that 4, 9 ∤ N , u2
i ||N and 5 ∤ ui for i ∈ {2, . . . , k}. Then

N (⟨Γ0(N), w25) ⊆ N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩).

Proof. Recall that w25, we,N ∈ N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩) for e||N25 . Any element of ⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩\Γ0(N)

can be written in the form w25md2γ for some γ ∈ Γ0(N), m ∈ {0, 1} and d||lcm(u2, . . . , uk). Let σ ∈
{Υ−1

5 BjC0Υ5,Υ
−1
5 B0CiΥ5}, where i, j are defined as in Corollary 3.8. Since 25md2

(25,25md2) ≡ ±1 (mod 5), by

Lemma 3.9 we get σw25md2σ−1 ∈ ⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩. Thus σ ∈ N (⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩). Now

the result follows from Corollary 3.8.

We are now ready to compute the normalizer of ⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩.

Proposition 3.11. Let N, u2, . . . , uk ∈ N such that 4, 9 ∤ N , u2
i ||N and 5 ∤ ui for i ∈ {2, . . . , k}. Then

N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩) = N (⟨Γ0(N), w25⟩).

Proof. By Corollary 3.10 we know that N (⟨Γ0(N), w25) ⊆ N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩). We now prove the

other inclusion. For simplicity of notation, we write u := lcm(u2, . . . , uk) and assume that u > 1.
Recall that (5, u) = 1. By Theorem 2.12 we know that N (⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩) ⊆ Υ−1

5u Γ
∗
0(M)Υ5u,

where M := N
25u2 . As discussed in the beginning of §3, it suffices to compute the elements Υ−1

5u σΥ5u with σ ∈
Γ0(M) such that Υ−1

5u σΥ5u ∈ N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩). Let σ :=

(
a b
c d

)
∈ Γ0(M) such that Υ−1

5u σΥ5u ∈
N (⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩). Note that for such σ, we have

σ ∈ Υ5uN (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩)Υ−1

5u = N (⟨Γ(5,u1,...,uk),Γ5,Γu2
, . . . ,Γuk

⟩).

By Proposition 3.3, we know that ac ≡ bd ≡ 0 (mod u).

Claim: We now prove that γ := Υ−1
5u σΥ5u =

(
a b

5u

5uc d

)
∈ N (⟨Γ0(N), w25⟩).

Since (a, b) = (c, d) = 1, the condition ac ≡ bd ≡ 0 (mod u) implies ab ≡ cd ≡ 0 (mod u).
Since γ ∈ N (⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩), for any γ̃ ∈ ⟨Γ0(N), w25⟩ we have γγ̃γ−1 ∈ ⟨Γ0(N), w25, wu2

2
, . . . , wu2

k
⟩.

Note that α ∈ ⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩ ∩PSL2(Z[ 15 ]) if and only if α ∈ ⟨Γ0(N), w25⟩. We prove the claim by

showing that γγ̃γ−1 ∈ PSL2(Z[ 15 ]) for any γ̃ ∈ ⟨Γ0(N), w25⟩.
First assume that γ1 ∈ w25Γ0(N), i.e., γ1 :=

( 5x y
5

N
5 z 5w

)
with x, y, x, w ∈ Z such that 25xw− N

25yz = 1. Then

E1[0, 0] := −acuy + 5adx− 5bcw + bdMuz, E1[0, 1] :=
1

5
a2y − ab

u
(x− w)− 1

5
Mb2z,

E1[1, 0] := −5c2u2y + 25cdux− 25cduw + 5Mu2d2z, E1[1, 1] := acuy + 5adw − 5bcx−Mubdz, where E1 := γγ1γ
−1.
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Since ab ≡ 0 (mod u), we get E1 ∈ PSL2(Z[ 15 ]). Therefore E1 ∈ ⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩∩PSL2(Z[ 15 ]). Thus

we obtain E1 ∈ ⟨Γ0(N), w25⟩.
Now consider γ2 :=

( x y
Nz w

)
∈ Γ0(N) and let E2 := γγ2γ

−1. Then

E2[0, 0] := −5acuy + adx− bcw + 5bdMuz, E2[0, 1] := a2y − 1

5

ab

u
(x− w)− b2Mz,

E2[1, 0] := −25c2u2y + 5cdux− 5cduw + 25d2Mu2z, E2[1, 1] := 5acuy + adw − bcx− 5bdMuz.

Since ab ≡ 0 (mod u), we get E2 ∈ PSL2(Z[ 15 ]). Therefore E2 ∈ ⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩∩PSL2(Z[ 15 ]). Thus

we obtain E2 ∈ ⟨Γ0(N), w25⟩.
Hence we conclude that γ⟨Γ0(N), w25⟩γ−1 ⊆ ⟨Γ0(N), w25⟩, i.e., γ ∈ N (⟨Γ0(N), w25⟩). Consequently, we

obtain that N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩) ⊆ N (⟨Γ0(N), w25⟩). The result follows.

3.3 Exact normalizer of ⟨Γ0(N),W ⟩ for arbitrary subgroup W

Let N ∈ N such that 4, 9 ∤ N and W be a subgroup generated by certain Atkin-Lehner involutions. Then we
can find positive integers u1, u2 . . . , uk and vk+1, . . . , vn such that

⟨Γ0(N),W ⟩ = ⟨Γ0(N), wu2
1
, . . . , wu2

k
, wvk+1

, . . . , wvn⟩, (3.32)

and for any Atkin-Lehner involution wd ∈ ⟨Γ0(N), wvk+1
, . . . , wvn⟩, d is not a perfect square1.

It is well known that N (⟨Γ0(N),W ⟩) ⊇ Γ∗
0(N). Moreover, by Theorem 2.12, we know that

N (⟨Γ0(N),W ⟩) ≤ N (⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩). (3.33)

If w25 /∈ W , then w25 /∈ ⟨Γ0(N), wu2
1
, . . . , wu2

k
⟩. Consequently, by Corollary 3.6 we haveN (⟨Γ0(N), wu2

1
, . . . , wu2

k
⟩) =

Γ∗
0(N). Therefore using (3.33) we conclude that N (⟨Γ0(N),W ⟩) = Γ∗

0(N). Thus obtain the following theorem.

Theorem 3.12. Let N ∈ N and W be a subgroup generated by certain Atkin-Lehner involutions such that
4, 9 ∤ N and w25 /∈ W . Then N (⟨Γ0(N),W ⟩) = Γ∗

0(N).

We now study the case where w25 ∈ W . More precisely, we prove the following theorem.

Theorem 3.13. Let N ∈ N and W be a subgroup generated by certain Atkin-Lehner involutions such that
4, 9 ∤ N and w25 ∈ W .

1. If there exists wd ∈ W such that d
(25,d) ̸≡ ±1 (mod 5), then N (⟨Γ0(N),W ⟩) = Γ∗

0(N).

2. If d
(25,d) ≡ ±1 (mod 5) for all wd ∈ W , then N (⟨Γ0(N),W ⟩) = ⟨Γ∗

0(N),Υ−1
5 BjC0Υ5,Υ

−1
5 B0CiΥ5⟩ where

Bj :=
( N

25 j+1 −j

− N
25 1

)
, Ci :=

(
1 i
0 1

)
, 0 ≤ j, i ≤ 4 such that N

25j ≡ 2 (mod 5) and i+j ≡ 0 (mod 5). Moreover,

the subgroup ⟨Υ−1
5 BjC0Υ5 = (Υ−1

5 B0CiΥ5)
−1⟩ has order 3 in N (⟨Γ0(N),W ⟩)/⟨Γ0(N),W ⟩.

Proof. Recall that N (⟨Γ0(N),W ⟩) ⊇ Γ∗
0(N). Since w25 ∈ W , without loss of generality in (3.32) we can assume

that u1 = 5 and 5 ∤ (
∏k

i′=2 ui′ ·
∏n

j′=k+1 vj′). By Proposition 3.11 and Corollary 3.8 we get

N (⟨Γ0(N), w25, wu2
2
, . . . , wu2

k
⟩) = ⟨Γ∗

0(N),Υ−1
5 BjC0Υ5,Υ

−1
5 B0CiΥ5⟩, (3.34)

where Bj :=
( N

25 j+1 −j

− N
25 1

)
, Ci :=

(
1 i
0 1

)
, 0 ≤ j, i ≤ 4 such that N

25j ≡ 2 (mod 5) and i+ j ≡ 0 (mod 5).

Let σ ∈ {Υ−1
5 BjC0Υ5,Υ

−1
5 B0CiΥ5}. If there exists wd ∈ W such that d

(25,d) ̸≡ ±1 (mod 5), then from

Lemma 3.9 we get σwdσ
−1 /∈ ⟨Γ0(N),W ⟩. Consequently from (3.33) and (3.34) we obtain N (⟨Γ0(N),W ⟩) =

Γ∗
0(N). This proves the first part.
On the other hand if d

(25,d) ≡ ±1 (mod 5) for all wd ∈ W , then from Lemma 3.9 we get σwdσ
−1 ∈

⟨Γ0(N),W ⟩ for all wd ∈ ⟨Γ0(N),W ⟩. Thus σ ∈ N (⟨Γ0(N),W ⟩). Moreover, it is easy to check that σ has order 3
inN (⟨Γ0(N),W ⟩)/⟨Γ0(N),W ⟩ and Υ−1

5 BjC0Υ5,Υ
−1
5 B0CiΥ5 are inverse of each other inN (⟨Γ0(N),W ⟩)/⟨Γ0(N),W ⟩.

Now the second part follows from (3.33) and (3.34).

1This can be done as follows: let H1 := ⟨Γ0(N),W ⟩/Γ0(N) and H2 := ⟨Γ0(N), wu2 : wu2 ∈ W ⟩/Γ0(N). Then the generators
of H2 will give the ui’s, and the non-trivial generators of H1/H2 will give the vj ’s.
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4 On the modular automorphisms of order 3 of X0(N)/WN

For N ∈ N and a subgroup WN ≤ B(N), consider the quotient curve X0(N)/WN . Clearly we have

B(N)/WN ≤ N (Γ0(N) +WN )/(Γ0(N) +WN ) ≤ Aut(X0(N)/WN )

where N (Γ0(N) +WN )/(Γ0(N) +WN ) is the modular automorphism group of X0(N)/WN .
Assuming 4, 9 ∤ N , by Theorem 3.12 and Theorem 3.13 we know that the modular automorphism group of

X0(N)/WN is exactly B(N)/WN , except for the case w25 ∈ WN and d
(25,d) ≡ ±1 (mod 5) for all wd ∈ WN ;

and in such situation we have

N (Γ0(N) +WN )/(Γ0(N) +WN ) = ⟨Γ∗
0(N),Υ−1

5 BjC0Υ5,Υ
−1
5 B0CiΥ5⟩/(Γ0(N) +WN ),

where 0 ≤ j, i ≤ 4 such that N
25j ≡ 2 (mod 5) and i+ j ≡ 0 (mod 5).

In this section we restrict to N = 25M where M is square-free, (5,M) = 1, and a subgroup WN ≤ B(N)
of the form ⟨w25, wv2 , . . . , wvn⟩ with vl||M and vl ≡ ±1 (mod 5) for all l ∈ {2, . . . , n}. Consider the order 3
element σM := Υ−1

5 BjC0Υ5 in N (Γ0(25M) +W25M )/(Γ0(25M) +W25M ).

Lemma 4.1. Under the assumptions and notations in this section, N (Γ0(25M)+W25M )/(Γ0(25M)+W25M ) =
⟨B(25M)/W25M , σM ⟩ and σM has order 3. Then σM is defined over Q(

√
5) (as an automorphism of X0(N)/WN ),

in particular Aut(X0(N)/WN ) = AutQ(
√
5)(X0(N)/WN ) (where AutK(X) denotes the group of all automor-

phisms of X defined over the field K).

Proof. Note that the elements of Aut(X0(N)/WN ) can be thought of as automorphisms on the Jacobian variety
of X0(N)/WN . Let ∞ be the cusp at infinity of X0(N)/WN . Then it is easy to check that σM (∞) is not a
rational cusp (cf. [Ogg73] for the field of definition of the cusps). Therefore σM is not defined over Q. Now
the result follows from the fact that any automorphism of the Jacobian is defined over the compositum of
the quadratic fields with discriminant D whose square divides N (cf. [KenMom88, Proposition 1.3, Lemma
1.5]).

Remark 4.2. Assume p ≡ 1 (mod 4) is a prime, M is a square-free positive integer coprime with p, and
Wp2M = ⟨wp2 , wv2 , . . . , wvn

⟩ with vl||M . Then, by [KenMom88, Lemma 1.5] and [KenMom88, Proposition 1.3]
any automorphism of X0(p

2M)/Wp2M is defined either over Q or over Q(
√
p) (the same conclusion is true if

p ≡ 3 (mod 4) and the Jacobian variety of X0(p
2M)/Wp2M does not contain any subvariety with complex

multiplication). For a prime ℓ ∤ p2M we can reduce the curve X0(p
2M)/Wp2M modulo ℓ, and denote such

curve by X0(p
2M)/Wp2M ⊗ Fℓ. Then we have an injection

Aut(X0(p
2M)/Wp2M ) ↪→ AutFℓ2

(X0(p
2M)/Wp2M ⊗ Fℓ),

and using Magma in many cases (with small genus) we can compute the automorphism group over the finite
field Fℓ2 , via the instruction

Automorphisms(ChangeRing(X0NQuotient(p^2*M,[p^2,v_2,\ldots,v_n]),GF(\ell^2))).

Consequently, we have an upper bound for the order of the automorphism group, and a lower bound is given by
the order of the modular automorphism group. For example, using Magma we obtain |AutF4(X0(275)/⟨w25⟩)| =
6, consequently we get |Aut(X0(275)/⟨w25)⟩| ≤ 6. Furthermore by Theorem 3.13, we have |Aut(X0(275)/⟨w25)⟩| ≥
6. Therefore we conclude that |Aut(X0(275)/⟨w25)⟩| = 6 = |N (Γ0(275) + ⟨w25⟩)/(Γ0(N) + ⟨w25⟩)|, i.e.,
Aut(X0(275)/⟨w25)⟩ = N (Γ0(275) + ⟨w25⟩)/(Γ0(275) + ⟨w25⟩).

Now consider σM as an element of X0(25M)/⟨w25⟩. We now give a theoretical explanation of the fact that
for positive integers v2, . . . , vn with vl||M and vl ≡ ±1 (mod 5), σM induces an automorphism of order 3 on
X0(25M)/⟨w25, wv2 , . . . , wvn⟩.

We write the Q-decomposition of the Jacobian of X0(25M)/⟨w25⟩ by:

Jac(X0(25M)/⟨w25⟩) ∼Q

s∏
m=1

Anm

fm
, (4.1)

where fm is a newform of level Nm (with Nm|25M) such that w25 acts as +1 on fm if 25|Nm. Since
Aut(X0(25M)/⟨w25⟩) has an automorphism defined over Q(

√
5) but not over Q, there exist fl1 , fl2 (in (4.1))
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such that Afl1
∼Q(

√
5) Afl2

with fl2 = fl1 ⊗ χ5 (where χ5 is the quadratic Dirichlet character associated to

Q(
√
5)). It is well-known that the abelian variety Af is simple over Q if and only if f does not have any inner

twist, i.e. there is no quadratic Dirichlet character χ such that f⊗χ is a Galois conjugated of f . This condition
amounts to say that EndQ(Af ) = EndQ(Af ). Assume that fl1 and fl2 (appearing in (4.1)) do not have any

inner twist (in particular l1 ̸= l2). If Afl1
and Afl2

are isogenous over Q but not over Q, then there exists
a Dirichlet character χ such that Afl2

= Afl1
⊗ χ (cf. [GaJiU12, Proposition 4.2]), and if χ is the quadratic

Dirichlet character attached to the quadratic number field Q(
√
5), then there is an isogeny (defined over Q(

√
5))

between the abelian varieties Afl2
and Afl1

.
Therefore assuming that all the fm’s appearing in (4.1) have no inner twist, we have that the modular

automorphisms of order 3 in Corollary 3.8 are coming from matrices (acting on the canonical model obtained
using the cusp forms appearing in (4.1)) defined over Q(

√
5) (such matrices consist of blocks corresponding to

the Q(
√
5)-isogeny factors A

nl1

fl1
×A

nl2

fl2
∼Q(

√
5) A

nl1
+nl2

fl1
where fl2 = fl1 ⊗ χ5 and fl1 ̸= fl2).

In order that the modular automorphism σM of order 3 of X0(25M)/⟨w25⟩ descends to an order 3 automor-
phism of X0(25M)/⟨w25, wv2 , . . . , wvn⟩, a sufficient condition is that for any quadratic twist fl1 ⊗ χ5 = fl2 (in

(4.1)) where the action of σM is non-trivial on the Q(
√
5)-isogeny factor A

nl1
+nl2

fl1
, the Atkin-Lehner involution

wvl should act with the same sign on Afl1
and Afl1

(cf. [BaDa24, Lemma 18] for more detail).
We recall the following result of Atkin-Lehner in [AtLeh70, p.156] concerning quadratic twists:

Lemma 4.3. Let p be a prime, M ′ ∈ N with (p,M ′) = 1, and χp be the quadratic Dirichlet character associated
to Q(

√
p). If f is a newform for Γ0(M

′) or Γ0(pM
′), then f ⊗ χp is a newform for Γ0(p

2M ′). Furthermore

• for d||M ′ we have f ⊗χp|wd =
(

d
p

)
ϵd(f)(f ⊗χp), where f |wd = ϵd(f)f , and

(
d
p

)
denotes the Kronecker

symbol.

• f ⊗ χp|wp2 =
(

−1
p

)
f ⊗ χp

If f is a newform for Γ0(p
2M ′) and f ⊗ χp is also a newform for Γ0(p

2M ′), then for any d||M ′ we have

f ⊗ χp|wd =
(

d
p

)
ϵd(f)f ⊗ χp.

We recall that (cf. [Ogg73]) if fm1 ⊗ χp = fm2 where fm1 and fm2 are newforms of levels M1 and M2

respectively, both dividing p2M with (M,p) = 1, then M1 = p2M ′ or M2 = p2M ′ for a natural number M ′|M .
Therefore, the level of the other quadratic twisted modular form involved is M ′, pM ′ or p2M ′.

Corollary 4.4. Consider N = 52M , where M is a square-free positive integer with (5,M) = 1. Assume that
the Jacobian of X0(N)/⟨w25⟩ has no inner twist, and for each quadratic twist fm1

⊗ χ5 = fm2
with m1 ̸= m2

(where Afm1
and Afm2

are distinct Q-isogeny factors of Jac(X0(N)/⟨w25⟩)) the conductor of fm1 or fm2 is
equal to N . Then, an Atkin-Lehner involution wd (with d||M) acts exactly by the same sign on Afm1

and Afm2

iff
(
d
5

)
= 1 iff d ≡ ±1( mod 5).

Recall that any non-trivial wd ∈ B(p2M)/Wp2M (p ≡ 1 (mod 4) is a prime and p ∤ M) acts by ±id on each
Q-isogeny factor of the Jacobian of X0(p

2M)/Wp2M . Furthermore, if it acts exactly with the same sign on
all distinct Q-isogeny factors that become isogenous over Q(

√
p), then any w ∈ AutQ(

√
p)(X0(p

2M)/Wp2M ) \
(B(p2M)/Wp2M ) induces a non-trivial automorphism of X0(p

2M)/⟨Wp2M , wd⟩ over Q(
√
p). (cf. [BaDa24,

Lemma 18]).

Corollary 4.5. Consider N = 52M , where M is a square-free positive integer with (5,M) = 1. Assume that
the Jacobian of X0(N)/⟨w25⟩ has no inner twist, and for each quadratic twist fm1

⊗ χ5 = fm2
with m1 ̸= m2

(where Afm1
and Afm2

are distinct Q-isogeny factors of Jac(X0(N)/⟨w25⟩)) the conductor of fm1
or fm2

is equal
to N . Let σM an element of order 3 in N (Γ0(N)+⟨w25⟩)/(Γ0(N)+⟨w25⟩). Then for positive integers v2, . . . , vn
with vl||M and vl ≡ ±1 (mod 5), σM induces an automorphism of order 3 on X0(25M)/⟨w25, wv2 , . . . , wvn⟩.

Remark 4.6. By Lemma 4.3 it is easy to see that when M is a prime, the assumption that the conductor of
fm1

or fm2
is equal to N = 52M is always true.

18



Acknowledgments

The first author’s work is supported by the Spanish State Research Agency through the Severo Ochoa and Maŕıa
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[GaJiU12] González, J.; Jiménez-Urroz, J.: The Sato-Tate distribution and the values of Fourier coefficients of
modular newforms. Exp. Math., 21(1):84–102, 2012.

[KenMom88] Kenku,M.A. ; Momose, F.:Automorphism groups of the modular curvesX0(N). Compositio Math.
65 (1988), no. 1, 51–80.

[Lan01] Lang, Mong-Lung: Normalizers of the congruence subgroups of the Hecke groupsG4 andG6. J. Number
Theory 90 (2001), no. 1, 31–43.

[Ogg73] Ogg, A.P.: Rational points on certain elliptic modular curves. Analytic number theory (Proc. Sympos.
Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 221–231, Proc. Sympos. Pure Math.,
Vol. XXIV, Amer. Math. Soc., Providence, RI, 1973.

Francesc Bars Cortina
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Centre de Recerca Matemàtica (CRM), C. dels Til.lers,
08193 Bellaterra, Catalonia, Spain
Francesc.Bars@uab.cat

Tarun Dalal
Institute of Mathematical Sciences, ShanghaiTech University
393 Middle Huaxia Road, Pudong, Shanghai 201210, China
tarun.dalal80@gmail.com

19

https://doi.org/10.1016/j.jalgebra.2025.02.037

	Introduction
	The Conway Big Picture for quotient modular groups
	The Big Picture
	The normalizer of :=0(N)+WN  with wu2,N-.25ex-.25ex-.25ex-.25ex.
	Towards the normalizer of :=0(N)+WN with wu2,N.

	Exact normalizer of 0(N),W
	Exact normalizer of 0(N), wu12, wu22, …, wuk2 with w25-.25ex-.25ex-.25ex-.25ex0(N), wu12, wu22, …, wuk2
	Exact normalizer of 0(N), w25, wu22, …, wuk2
	Exact normalizer of 0(N), W for arbitrary subgroup W

	On the modular  automorphisms of order 3 of  X0(N)/WN

