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Abstract. Let Mg be the moduli space of smooth, genus g curves over an algebraically closed field K of zero

characteristic. Denote by Mg(G) the subset of Mg of curves δ such that G (as a finite non-trivial group) is

isomorphic to a subgroup of Aut(δ), the full automorphism group of δ, and let M̃g(G) be the subset of curves

δ such that G ∼= Aut(δ). Now, for an integer d ≥ 4, let MPl
g be the subset of Mg representing smooth, genus g

plane curves of degree d (in such case, g = (d − 1)(d − 2)/2) and consider the sets MPl
g (G) := MPl

g ∩ Mg(G)

and M̃Pl
g (G) := M̃g(G) ∩MPl

g .

In this paper, we study some aspects of the irreducibility of M̃Pl
g (G) and its interrelation with the existence of

“normal forms”, i.e. non-singular plane equations (depending on a set of parameters) such that a specialization

of the parameters gives a certain non-singular plane model associated to the elements of M̃Pl
g (G). In particular,

we introduce the concept of being equation strongly irreducible (ES-Irreducible) for which the locus M̃Pl
g (G) is

represented by a single “normal form”. Henn, in [11], and Komiya-Kuribayashi, in [13], observed that M̃Pl
3 (G)

is ES-Irreducible. In this paper we prove that this phenomena does not occur for any odd d > 4. More precisely,

let Z/mZ be the cyclic group of order m, we prove that, for any odd integer d ≥ 5, ˜MPl
g (Z/(d− 1)Z) is not

ES-Irreducible and the number of the irreducible components of such loci is at least two. Furthermore, we

conclude the previous result when d = 6 for the locus ˜MPl
10 (Z/3Z).

Lastly, we prove the analogy of these statements when K is any algebraically closed field of positive charac-

teristic p such that p > (d− 1)(d− 2) + 1.

1. Introduction

Let K be an algebraically closed field of zero characteristic and fix an integer d ≥ 4. We consider, up to

K-isomorphism, a projective non-singular curve δ of genus g = (d − 1)(d − 2)/2 and assume that δ has a

non-singular plane model, i.e. δ ∈ MPl
g .

It is well known that any δ ∈ MPl
g (G) corresponds to a set {Cδ} of non-singular plane models in P2(K) such

that any two of them are K-isomorphic through a projective transformation P ∈ PGL3(K) (where PGLN (K)

is the classical projective linear group of N×N invertible matrices over K), and their automorphism groups are

conjugate. More concretely, fixing C, a non-singular plane model of δ, it is defined by a homogenous equation

F (X;Y ;Z) = 0 of degree d. Then, Aut(C) is a finite subgroup of PGL3(K), and also we have ρ(G) ≼ Aut(C)

for some injective representation ρ : G ↪→ PGL3(K). Moreover, ρ(G) = Aut(C) whenever δ ∈ M̃Pl
g (G). For

another non-singular plane model C ′ of δ, there exists P ∈ PGL3(K) where C ′ is defined by F (P (X,Y, Z)) = 0

and P−1ρ(G)P ≼ Aut(C ′) (respectively, P−1ρ(G)P = Aut(C ′) if δ ∈ M̃Pl
g (G)) .

For an arbitrary, but a fixed degree d, classical and deep questions on the subject are: list the groups that

appear as the exact automorphism groups of algebraic non-singular plane curves of degree d, and for each of

such group, determine associated “normal forms”, i.e. a finite set of homogenous equations {N1,G, . . . , Nk,G} in

X,Y, Z together with some parameters (under some restrictions) such that any specialization of a certain Ni,G

in K corresponds to a unique δ ∈ M̃Pl
g (G) (is the one that it is associated to the non-singular plane model given

by the specialization of the normal form Ni,G), and given δ ∈ M̃Pl
g (G), exists a unique iδ and a specialization of

the parameters at K for Niδ,G, such that one obtains a plane non-singular model associated to δ; in particular
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any specialization of the parameters of two distinct Ni,G gives two non-singular plane models, which in turns

relate to two non-isomorphic plane non-singular curves of M̃Pl
g (G).

For d = 4, Henn in [11] and Komiya-Kuribayashi in [13], answered the above natural questions. See also

Lorenzo’s thesis [14] § 2.1 and § 2.2, in order to fix some minor details. It appears, for d = 4, the following phe-

nomena: any element of M̃Pl
3 (G) has a non-singular plane model through some specialization of the parameters

of a single normal form. If this phenomena appears for some g, we say that the locus M̃Pl
g (G) is ES-Irreducible

(see §2 for the precise definition). This is a weaker condition than the irreducibility of this locus inside of the

moduli space Mg. In particular, it follows by Henn [11] and Komiya-Kuribayashi [13], the locus M̃Pl
3 (G) is

always ES-Irreducible.

The motivation of this work is that we did not expect M̃Pl
g (G) to be ES-Irreducible in general. In order to

construct counter examples for which M̃Pl
g (G) is not ES-Irreducible: we need first, a group G such that there

exist at least two injective representations ρi : G ↪→ PGL3(K) with i = 1, 2, which are not conjugate (i.e there

is no transformation P ∈ PGL3(K) with P−1ρ1(G)P = ρ2(G), more details are included in §2), and for the

zoo of groups that could appear for non-singular plane curves [10], we consider G, a cyclic group of order m.

Secondly, one needs to prove the existence of two non-singular plane curves with automorphism groups are

conjugate to ρi(G) for each i = 1, 2.

The main results of the paper is that, for any odd degree d(≥ 5), the locus ˜MPl
g (Z/(d− 1)Z) is not ES-

irreducible, and it has at least two irreducible components (recall that for d = 5, by [2], we know that the

only group G for which M̃Pl
6 (G) is not ES-Irreducible is for Z/4Z). For d even, in section § 5, we prove that

˜MPl
10 (Z/3Z) is not ES-irreducible. It is to be noted that, by our work in [1], we may conjecture that the locus

˜MPl
g (Z/mZ) could not be ES-Irreducible only if m divides d or d− 1 (this is true at least until degree 9 by [1]).

Concerning positive characteristic, in the last section (§ 6) of this paper we prove that the above examples

of non-irreducible loci are also valid when K is an algebraically closed field of positive characteristic p > 0,

provided that the characteristic p is big enough, once we fix the degree d.

The irreducibility of the loci ˜MPl
g (Z/m) seems to be very deep problem. In §2, we give some insights that

relate the above locus with subsets in classical loci of the moduli spaces. In particular, with the loci of curves

of genus g with a prescribed cyclic Galois subcover. In this section, as an explicit example, we deal with the

question for the locus ˜MPl
6 (Z/8), which is ES-Irreducible, and is represented by a single normal form with

only one paramater. In [1], we proved that MPl
g (G) is irreducible when G has an element of order (d − 1)2,

d(d − 1), d(d − 2) or d2 − 3d + 3, since this locus has only one element. In particular, we proved in [1] that
˜MPl

g (Z/d(d− 1)) and ˜MPl
g (Z/(d− 1)2) are irreducible.

Acknowledgments. It is our pleasure to express our sincere gratitude to Xavier Xarles and Joaquim Roé for

their suggestions. We also thank Massimo Giulietti and Elisa Lorenzo for noticing us about some bibliography

on automorphism of curves. We appreciate a lot the comments and suggestions of the referee that improved

the paper to a great extent in its present form.

2. On the locus MPl
g (G) and M̃Pl

g (G).

Consider a projective non-singular curve δ of genus g := (d−1)(d−2)
2 ≥ 2 over K with G, a finite non-trivial

group, inside Aut(δ). We always assume that δ admits a non-singular plane equation, and we consider δ up to

K-isomorphism, as a point in MPl
g (G).

Because linear systems g2d are unique (up to multiplication by P ∈ PGL3(K) in P2(K) [12, Lemma 11.28]),

we always take C a plane non-singular model of δ, which is given by a projective plane equation F (X;Y ;Z) = 0

and Aut(C) is a finite subgroup of PGL3(K) that fixes the equation F and is isomorphic to Aut(δ). Any other

plane model of δ is given by CP : F (P (X;Y ;Z)) = 0 with Aut(CP ) = P−1Aut(C)P for some P ∈ PGL3(K)

and CP is K-equivalent or K-isomorphic to C. In particular, for δ ∈ MPl
g (G), exists ρ : G ↪→ PGL3(K) where

ρ(G) ≤ Aut(C) and P−1ρ(G)P ≤ Aut(CP ).
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We denote by ρ(MPl
g (G)) the loci given by δ ∈ MPl

g (G) such that G acts on a certain plane model associated

to δ by P−1ρ(G)P for certain P ∈ PGL3(K), and similarly for ρ(M̃Pl
g (G)).

Denote by AG the quotient set {ρ : G ↪→ PGL3(K)}/ ∼ where ρ1 ∼ ρ2 if and only if ∃P ∈ PGL3(K) such

that ρ1(G) = P−1ρ2(G)P , as usual [ρ] denotes the class of ρ in AG.

Clearly MPl
g (G) = ∪[ρ]∈AG

ρ(MPl
g (G)).

Lemma 2.1. The loci M̃Pl
g (G) is the disjoint union of ρ(M̃Pl

g (G)) where [ρ] runs the quotient set AG.

Proof. For δ ∈ ρ1(M̃Pl
g (G)) ∩ ρ2(M̃Pl

g (G)) means that it has a plane model C where Aut(C) = P−1
1 ρ1(G)P1 =

P−1
2 ρ2(G)P2 for certain P1, P2 ∈ PGL3(K) therefore ρ1 ∼ ρ2. �

Remark 2.2. If δ ∈ ρ1(M
Pl
g (G)) ∩ ρ2(M

Pl
g (G)) with [ρ1] ̸= [ρ2] ∈ AG, and take C a plane model of δ, then

Aut(C) ≤ PGL3(K) should have two subgroups isomorphic to G which are not conjugate. A detailed study of

the work of Blichfeldt [3] would give the list of G where the decomposition MPl
g (G) = ∪[ρ]∈AG

ρ(MPl
g (G)) may

not be disjoint, if any.

Fix [ρ] ∈ AG then for δ ∈ ρ(MPl
g (G)), we can associate infinitely many non-singular plane models which are

K-isomorphic through a change of variables P ∈ PGL3(K), but we can consider only the models such that G

is identified as automorphism group for the model exactly as ρ(G) ≤ PGL3(K) for some fixed ρ in [ρ] ∈ AG.

Under this restriction, δ can be associated with a non-empty family of non-singular models of δ such that any

two models are isomorphic, through a projective transformation P satisfying P−1ρ(G)P = ρ(G).

Recall that, it is a necessary condition for a projective plane curve of degree d to be non-singular that the

defining equation of any model has degree ≥ d − 1 in each variable, and, once we fix a model, by a diagonal

change of variables P , we can assume that we can chose a model such that the monomials with the maximal

exponent have coefficients equal to 1, where for a non-zero monomial cXiY jZk we define its exponent as

max{i, j, k}. For a homogeneous polynomial F , the core of F is defined as the sum of all terms of F with

the greatest exponent. Consequently, we reduce the case to the set of K-isomorphic non-singular plane models

F (X;Y ;Z) = 0 associated to δ with ρ(G) fixes the equation (because are automorphism of such a model) and

each term of the core of F (X;Y ;Z) is monic.

Lemma 2.3. Let G be a non-trivial finite group and consider ρ : G ↪→ PGL3(K) such that ρ(MPl
g (G)) is

non-empty. There exists a single normal form, i.e. an homogenous polynomial Fρ,G(X;Y ;Z) = 0 of degree d

in the variables X,Y and Z, endowed with certain parameters on the coefficients of the lower order terms (with

some restrictions) representing the loci ρ(MPl
g (G)), more concretely, every specialization of the parameters at K

(under the restriction on the parameters) of Fρ,G gives a plane non-singular model of an element of ρ(MPl
g (G)),

and viceversa, for any element δ ∈ ρ(MPl
g (G)) exists an specialization of the parameters at K for Fρ,G such

that one obtains a plane non-singular model of δ in P2(K). A similar statement holds for ρ(M̃Pl
g (G)) in such

case we will name Fρ,G,∗ a single normal form. Moreover, such normal forms are unique up to a change of the

variables X,Y, Z by P ∈ PGL3(K).

Proof. Let σ ∈ G be an automorphism of maximal orderm > 1 and choose an element ρ in [ρ] ∈ A such that, ρ(σ)

is diagonal of the form diag(1, ξam, ξbm) with 0 ≤ a < b where ξm a primitivem-th root of unity inK. Following the

same technique in [8] or [1] (for a general discussion), we can associate to the set ρ(MPl
g (< σ >) a non-singular

plane equation Fm,(a,b)(X;Y ;Z) with a certain set of parameters (which may have some restrictions in order

to ensure the non-singularity), which is unique by construction which is a “normal form” for ρ(MPl
g (< σ >).

For example for a ̸= 0 one argue following which of the reference points {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)}
satisfy Fm,(a,b)(X;Y ;Z) = 0. In particular when all reference points satisfy the normal form, we reduce that

Fm,(a,b)(X;Y ;Z) is of the form Xd−1Y + Y d−1Z +Zd−1X +
∑⌊ d

2 ⌋
j=2

(
Xd−jLj,X + Y d−jLj,Y +Zd−jLj,Z

)
where

Lj,X is an homogenous polynomial of degree j without the variable X and with parameters in the coefficients

of the monomials. The first three factors implies that a ≡ (d − 1)a + b ≡ (d − 1)b (modm), obtaining that,

m|d2 − 3d + 3. The defining equation Fm,(a,b) in such situation, follows immediately by checking monomials’

invariance in each Lj,B . For example, rewrite Lj,X as
∑j

i=0 βj,iY
iZj−i (where βj,i are parameters) then βj,i = 0
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if m - ai + (j − i)b, since diag(1; ξam; ξbm) ∈ Aut(C). Observe that in order to obtain such Fm,(a,b) we chose

a model for any δ ∈ ρ(MPl
g (G)) satisfying ρ(σ) = diag(1, ξam, ξbm) and that the coefficients of the monomials

of the core of the model are equal 1 when we restrict to < σ >, and in such assumptions we obtain a unique

expression.

Now, in order to go from ρ(< σ >) to ρ(G), take generators uG of G which does not belong to < σ >

and impose that ρ(uG) may retain invariant Fm,(a,b) by imposing some specific algebraic relations between the

parameters of Fm,(a,b), this is done by comparing coefficients of monomials which may retain invariant. Then

Fρ,G is obtained from Fm,(a,b) imposing such algebraic relations between the coefficients of the monomials (i.e.

certain parameters) of Fm,(a,b).

We obtain Fρ,G,∗ from Fρ,G. Recall that ρ(G) ≤ PGL3(K) and for each finite group ρ(G) ≤ H ≤ PGL3(K)

which exists a plane non-singular curve of genus g with automorphism group isomorphic to H, we need to

impose that the generators of H which are not in ρ(G) may not give invariant some monomial of Fρ,G in order

to obtain Fρ,G,∗. In such case the relations that we need to impose are a complement of algebraic relations

between the coefficients of monomials of Fρ,G. �

Remark 2.4. Observe that could happen that two different specializations of Fρ,G at K will give plane non-

singular models of exactly the same curve δ ∈ ρ(MPl
g (G)), this happens if exists P that goes from one model to

another model which satisfies that P−1ρ(G)P = ρ(G) and P−1ρ(< σ >)P = ρ(< σ >). We could impose to

Fρ,G that this phenomena will not occur by imposing more restrictions to the parameters, but we did not in our

notion of “normal form”. These further restrictions are recently explicit for ρ(MPl
3 (G)) by Lorenzo [14], fixing

missing details in the tables of Henn [11]. We also make explicit such restrictions and the ones that appears

naturally during the proof of the above theorem for the particular case of ρ(MPl
6 (Z/8)) and ρ( ˜MPl

6 (Z/8)) at the
end of this section.

It is difficult to determine the groups G and [ρ] ∈ AG such that ρ(MPl
g (G)) is non-empty for some fixed g.

Henn [11] obtained this determination for g = 3, Badr-Bars [2] for g = 6 and for a general implementation of

any degree, we refer to [1] in which we formulate an algorithm to determine the ρ’s when G is cyclic.

Definition 2.5. Write MPl
g (G) as ∪[ρ]∈AG

ρ(MPl
g (G)), we define the number of the equation components of

MPl
g (G) to be the number of elements [ρ] ∈ AG such that ρ(MPl

g (G)) is not empty. We say that MPl
g (G) is

equation irreducible if MPl
g (G) = ρ(MPl

g (G)) for a certain [ρ] ∈ AG. For M̃Pl
g (G) = ∪[ρ]∈AG

ρ(M̃Pl
g (G)), we

define the number of the strongly equation irreducible components of M̃Pl
g (G) to be the number of the elements

[ρ] ∈ AG such that ˜ρ(MPl
g (G)) is not empty.

We say that M̃Pl
g (G) is equation strongly irreducible (or simply, ES-irreducible) if it is not empty and

M̃Pl
g (G) = ˜ρ(MPl

g (G)) for some [ρ] ∈ AG.

Of course, if M̃Pl
g (G) is not ES-irreducible then it is not irreducible and the number of the strongly irreducible

equation components of M̃Pl
g (G) is a lower bound for the number of irreducible components.

In this language, we can formulate the main result in [11] as follows

Theorem 2.6 (Henn, Komiya-Kuribayashi). If G is a non-trivial group that appears as the full automorphism

group of a non-singular plane curve of degree 4, then M̃P
3 (G) is ES-Irreducible.

Remark 2.7. Henn in [11], observed that MPl
3 (Z/3) already has two irreducible equation components, but one

of such components has a bigger automorphism group namely, S3 the symmetry group of of order 3.

To finish this section, we state some natural questions concerning the locus ρ(MPl
g (G)) (and similar questions

can be state for ρ(M̃Pl
g (G))) with different loci on moduli spaces of genus g curves:

Question 2.8. Is it true that all the elements of ρ(MPl
g (G)) the corresponding Galois covers δ → δ/G have

fixed ramification data?



ON THE LOCUS OF SMOOTH PLANE CURVES WITH A FIXED AUTOMORPHISM GROUP 5

We believe that the answer to this question for K = C (i.e. Riemann surfaces) should be always true from

the work of Breuer [4]. See Remark 4.4 for the explicit Galois subcover and the ramification data for the locus

ρ(MPl
6 (Z/4Z)) and §2.1 for the loci ρ(MPl

6 (Z/8Z)).

Question 2.9. Is ρ(MPl
g (G)) an irreducible set when G is a cyclic group?

It is to be noted that when K = C, Cornalba [7], with G cyclic of prime order, and Catanese [5], for general

order, obtained that the locus of smooth projective curves of genus g with a cyclic Galois subcover of group

isomorphic to G with a prescribed ramification is irreducible.

Concerning the irreducibility question, we prove in [1] that if G has an element of large order (d−1)2, d(d−1),

d(d− 2) or d2 − 3d+ 3 then ρ(MPl
g (G)) has at most one element therefore, is irreducible. At §2.1, we deal on

irreducibility for the ES-Irreducibility loci MPl
6 (Z/8Z) where the single “normal form” has only one parameter.

Moreover, Catanese, Lönne and Perroni in [6, §2] defines a topological invariant for the loci Mg(G) which is

trivial if it is irreducible.

Question 2.10. Consider G, a non-trivial group, where the set AG is given by one element (see next section

on groups G with AG given by a single element). Is it true that the topological invariant in [6, §2] is trivial for

Mg(G) in order to be irreducible? Is it true that MPl
g (G) are irreducible?

2.1. The loci MPl
6 (Z/8) and ˜MPl

6 (Z/8Z).

Consider in M6 an element δ which has a smooth non-singular plane model with an effective action of

the cyclic group of order 8 in particular, δ ∈ MPl
6 (Z/8Z). Following [1], [8] or the table §4 in this note,

MPl
6 (Z/8) = ρ(MPl

6 (Z/8)) with ρ(Z/8Z) =< diag(1, ξ8, ξ
4
8) > where ξ8 is a 8-th primitive root of unity in K

an such loci has a “normal form” X5 + Y 4Z +XZ4 + βX3Z2 = 0 with β a parameter taking values at K such

that always β ̸= ±2 because is non-singular. Therefore, we can associate to δ a fix plane non-singular model of

the form X5 + Y 4Z +XZ4 + βδX
3Z2 = 0 for certain βδ ∈ K (but may be βδ not unique in K).

Now, let us compute all non-singular plane models of the form X5 + Y 4Z + XZ4 + βX3Z2 = 0 that can

be associated to the fixed curve δ. This corresponds to models obtained by a change of variables through a

transformation P ∈ PGL3(K) such that P−1 < (diag(1, ξ8, ξ
4
8) > P =< diag(1, ξ8, ξ

4
8) > and the new model

has a similar form X5 + Y 4Z +XZ4 + β′X3Z2 = 0.

Without any loss of generality, we can suppose that P−1diag(1, ξ8, ξ
4
8)P = diag(1, ξ8, ξ

4
8) hence in order

to have the same eigenvalues which are pairwise distinct, we may assume that P is a diagonal matrix, say

P = diag(1, λ2, λ3). Therefore, we get an equation of the form: X5 + λ4
2λ3Y

4Z + λ4
3XZ4 + βδλ

2
3X

3Z2 = 0.

From which we must have λ4
2λ3 = λ4

3 = 1, thus λ2
3 is 1 or -1. Hence, we obtain a bijection map

φ : MPl
6 (Z/8Z) → A1(K) \ {−2, 2}/ ∼

δ 7→ [βδ] = {βδ,−βδ}
where a ∼ b ⇔ b = a or a = −b. Moreover, by the work that we did in [2], we know that X5 + Y 4Z +XZ4 +

βX3Z2 = 0 has a bigger automorphism group than Z/8Z if and only if β = 0, therefore, we have a bijection

map

φ̃ : ˜MPl
6 (Z/8Z) → A1(K) \ {−2, 0, 2}/ ∼

δ 7→ [βδ] = {βδ,−βδ}
and observe that 0 ∈ A1(K) is the only point which had no identification by the relation rule ∼. The above

sets, when K is the complex field, are irreducible.

Moreover, if we consider the Galois cyclic cover of degree 8 given by the action of the automorphism of order

8 on X5 + Y 4Z + XZ4 + βX3Z2 = 0, we obtain that it ramifies at the points (0 : 1 : 0), (0 : 0 : 1) with

ramification index 8 as well as the four points (1 : 0 : h) where 1 + h4 + βh2 = 0 with ramification index 2 if

β ̸= ±2. That is, MPl
6 (Z/8Z) is inside the locus of curves in M6 which have a cyclic Galois subcover of degree 8

to a genus zero curve and which ramifies at 6 points, 2 points with ramification index 8 and the other 4 points

with ramification index 4.
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3. Preliminaries on automorphism on plane curves

Given δ ∈ MPl
g , with Aut(δ) non-trivial, we fix C a plane non-singular model of degree d. By an abuse of

notation, once and for all, we also denote C by a non-singular projective plane curve. Then Aut(C) is a finite

subgroup of PGL3(K) and it satisfies one of the following situations (for more details, see Mitchell [15]):

(1) fixes a point P and a line L with P /∈ L in P2(K),

(2) fixes a triangle, i.e. exists 3 points S := {P1,P2,P3} of P2(K), such that is fixed as a set,

(3) Aut(C) is conjugate of a representation inside PGL3(K) of one of the finite primitive group namely,

the Klein group PSL(2, 7), the icosahedral group A5, the alternating group A6, the Hessian groups

Hess216, Hess72 or Hess36.

We recall that for a non-zero monomial cXiY jZk we define its exponent as max{i, j, k}. For a homogeneous

polynomial F , the core of F is defined as the sum of all terms of F with the greatest exponent. Let C0 be

a smooth plane curve, a pair (C,G) with G ≤ Aut(C) is said to be a descendant of C0 if C is defined by a

homogeneous polynomial whose core is a defining polynomial of C0 and G acts on C0 under a suitable coordinate

system.

Theorem 3.1 (Harui). (see [10] §2) Let G be a subgroup of Aut(C). Then G satisfies one of the following

statements:

(1) G fixes a point on C and then it is cyclic.

(2) G fixes a point not lying on C and it satisfies a short exact sequence of the form

1 → N → G → G′ → 1,

with N a cyclic group of order dividing d and G′ is isomorph to a cyclic group Cm of order m, a Dihedral

group D2m, A4 , A5 or S4, where m is an integer ≤ d− 1. Moreover, if G′ ∼= D2m, then m|(d− 2) or

N is trivial.

(3) G is conjugate (by certain P ∈ PGL3(K)) to a subgroup of Aut(Fd) where Fd is the Fermat curve

Xd + Y d + Zd and (G,C) is a descendant of Fd. In particular, |G| | 6d2.
(4) G is conjugate to a subgroup of Aut(Kd) where Kd is the Klein curve curve Xd−1Y + Y d−1Z +Zd−1X

and (G,C) is a descendant of Kd. Therefore |G| | 3(d2 − 3d+ 3).

(5) G is conjugate to a finite primitive subgroup PGL3(K) namely, the Klein group PSL(2, 7), the icosa-

hedral group A5, the alternating group A6, or the Hessian groups Hess216, Hess72, Hess36.

The Hessian group: A representation of the Hessian group of order 216 inside PGL3(K) is given by

Hess216 =< S, T, U, V > with,

S =

 1 0 0

0 ω 0

0 0 ω2

 ; U =

 1 0 0

0 1 0

0 0 ω

 ; V =
1

ω − ω2

 1 1 1

1 ω ω2

1 ω2 ω

 ; T =

 0 1 0

0 0 1

1 0 0

 ;

always ω means a primitive 3rd root of unity. Also, we consider the primitive subgroups of order 36 Hess36,

one of them is < S, T, V > and the primitive subgroup of order 72, Hess72 =< S, T, V, UV U−1 >. Recall that

there are exactly 3 primitive subgroups of order 36 for the above fixed representation, see [9]. It should be noted

that, representations of Hess216 inside PGL3(K) forms a unique set up to conjugation (see Mitchell [15] page

217). Grove in [9, §23, p.25], proved that the any representation of a Hessian group of order 36 or 72 is given by

matrices fixing certain fix triangle and another matrices with a particular movement in the triangle permuting

the vertices. One can extend these groups in a bigger one of 216 matrices, corresponding to a representation of

Hess216 in PGL3(K), by allowing more movements permuting the vertices of the fix triangle. Moreover two of

the Hessian groups of order 36, in a fixed representation of Hess216 in PGL3(K), are related by a change of

variables involving certain permutation of the vertices of the triangle, therefore any of the exactly 3 primitive

subgroups of order 36 of a fix representation of the Hess216 in PGL3(K) are always conjugate. Therefore, given

an injective representation of Hess72 or Hess36 inside PGL3(K), it extends to an injective representation of

Hess216 in PGL3(K), (and because the three Hess36 are conjugate), their representations inside PGL3(K) are

unique up to conjugation.
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Remark 3.2. In particular, for the Hessian groups Hess216, Hess72 and Hess36, the locus ˜MPl
g (Hess∗) is

ES-Irreducible as long as is not empty (where ∗ ∈ {36, 72, 216}) because the set AHess∗ is trivial (with the

notation of §2).

With the interest to answer when M̃Pl
g (G), is ES-irreducible or not, and the classical result of Klein on the

uniqueness up to conjugation on finite subgroups inside PGL2(K), one could ask the following question in group

theory,

Question 3.3. Let G be a non-trivial and non-cyclic finite subgroup of PGL3(K). Is it true that exists G such

that the set AG has at least two elements?

4. Cyclic groups in smooth plane curves of degree 5 and ˜MPl
6 (Z/mZ).

Note that, we study non-singular plane curves C : F (X;Y ;Z) = 0 of degree d ≥ 4 such that Aut(C) is

non-trivial, up to K-isomorphism (that is, two of them are K-isomorphic if one transforms to the other by a

change of variables P ∈ PGL3(K)) and we denote by CP the plane curve F (P (X;Y ;Z)) = 0.

By a change of variables, we can suppose that the cyclic group of exact order m acting on a smooth plane

curve of degree 5 is given in PGL3(K) by a diagonal matrix diag(1; ξam; ξbm), where ξm is an m-th primitive

root of unity, and 0 ≤ a < b < m are positive integers. We call this element by Type m, (a, b). Following the

same proof of [8, §6.5] (or see [1], for a general treatment with an algorithm of computation for any degree

d), we obtain a “normal form” associated to type m, (a, b) corresponding to the loci ρ(MPl
6 (Z/mZ)) with

ρ(Z/m) =< diag(1; ξam; ξbm) >:

Type: m, (a, b) Fm,(a,b)(X;Y ;Z)

20, (4, 5) X5 + Y 5 +XZ4

16, (1, 12) X5 + Y 4Z +XZ4

15, (1, 11) X5 + Y 4Z + Y Z4

13, (1, 10) X4Y + Y 4Z + Z4X

10, (2, 5) X5 + Y 5 +XZ4 + β2,0X
3Z2

8, (1, 4) X5 + Y 4Z +XZ4 + β2,0X
3Z2

5, (1, 2) X5 + Y 5 + Z5 + β3,1X
2Y Z2 + β4,3XY 3Z

5, (0, 1) Z5 + L5,Z

4, (1, 3) X5 +X
(
Z4 + Y 4 + β4,2Y

2Z2
)
+ β2,1X

3Y Z

4, (1, 2) X5 +X
(
Z4 + Y 4

)
+ β2,0X

3Z2 + β3,2X
2Y 2Z + β5,2Y

2Z3

4, (0, 1) Z4L1,Z + L5,Z

3, (1, 2) X5 + Y 4Z + Y Z4 + β2,1X
3Y Z +X2

(
β3,0Z

3 + β3,3Y
3
)
+ β4,2XY 2Z2

2, (0, 1) Z4L1,Z + Z2L3,Z + L5,Z

where Li,U means a homogeneous polynomial of degree i that does not contain the variable U with param-

eters in the coefficients in the monomials, and βi,j are parameters taking values in K. (It remains to intro-

duce the algebraic restrictions that should be imposed on the parameters βi,j so that the defining equation

Fm,(a,b)(X;Y ;Z) = 0 is non-singular, which will be omitted).

By the above table, we find that the locus MPl
6 (Z/mZ) is not empty, only for the values m which are

included in the previous list. Moreover, for m ̸= 4, 5, we have MPl
6 (Z/mZ) = ρ(MPl

6 (Z/mZ)), where ρ is

obtained such that ρ(Z/mZ) =< diag(1, ξam, ξbm) >. Thus, the corresponding loci ˜MPl
6 (Z/mZ), where m ̸= 4, 5,

are ES-Irreducible provided that they are non-empty.

Now, we consider the remaining cases of the loci ˜MPl
6 (Z/mZ) with m = 4 or 5:

Obviously, the plane model of type 5, (1, 2) have always a bigger automorphism group by permuting X and

Z. Therefore, there is at most one “normal form” that defines curves of degree 5 whose full automorphism

group is isomorphic to Z/5Z, (observe that the number of the conjugacy classes of representations of Z/5Z in

PGL3(K) is three). In particular, ˜MPl
6 (Z/5Z) is ES-Irreducible if it is non-empty. More precisely, ˜MPl

6 (Z/5Z) =
ρ(MPl

6 (Z/5Z)), where ρ(Z/5Z) =< diag(1, 1, ξ5) > in this case.
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On the other hand, for the cyclic groups of order 4, we have: Type 4, (1, 3) is not irreducible, since it is of

the form X · G(X;Y ;Z). Hence, it is singular, and will be out of the scope of this note. Therefore, we have

MPl
6 (Z/4Z) = ρ1(M

Pl
6 (Z/4Z))∪ρ2(M

Pl
6 (Z/4Z)), where ρ1 corresponds to Type 4, (0, 1) and ρ2 to Type 4, (1, 2).

4.1. On type 4, (0, 1). Consider the non-singular plane curve which is defined by the equation

C̃ : X5 + Y 5 + Z4X + βX3Y 2,

where β ̸= 0. This curve admits an automorphism of order 4 namely, σ := [X;Y ; ξ4Z] that fixes pointwise the

line Z = 0 (its axis) and the point [0 : 0 : 1] off this line (its center). We call the elements of PGL3(K) that fix

similar geometric constructions, homologies (for the element diag(1; ξam; ξbm) ∈ PGL3(K) with 0 ≤ a < b < m,

is an homology when a = 0). It follows, by Mitchell [15] §5, that Aut(C̃) should fix a point, a line or a triangle.

If Aut(C̃) fixes a triangle and neither a line nor a point is leaved invariant then, C̃ is a descendant of the

Fermat curve F5 or the Klein curve K5 (Harui [10], §5). But this is impossible, because 4 - |Aut(F5)|(= 150),

and 4 - |Aut(K5)|(= 39). Therefore, Aut(C̃) should fix a line and a point off that line.

Now, the point (0 : 0 : 1) is an inner Galois point of C̃, by Lemma 3.7 in [10]. Also, it is unique, by

Yoshihara [17], §2, Theorem 4. Therefore, this point must be fixed by Aut(C̃). Moreover, the axis Z = 0 is also

leaved invariant by Mitchell [15], §4. In particular, Aut(C̃) is cyclic by Lemma 11.44 in [12], and automorphisms

of C̃ are all diagonal of the form [X; vY ; tZ]. This in turns implies that v5 = v2 = t4 = 1. Hence, v = 1 and t

is a 4-th root of unity. This shows that Aut(C̃) is cyclic of order 4.

Therefore, with the above argument we conclude the following result.

Proposition 4.1. The locus set ˜ρ1(MPl
6 (Z/4Z)) is non-empty.

4.2. On type 4, (1, 2). Consider the non-singular plane curve defined by the equation

˜̃C : X5 +X(Z4 + Y 4) + βY 2Z3,

where β ̸= 0. This curve admits a cyclic subgroup of automorphisms generated by τ := [X; ξ4Y ; ξ24Z]. For

the same reason as above (i.e 4 - |Aut(K5)|, |Aut(F5)|), ˜̃C is not a descendant of the Fermat curve F5 or the

Klein curve K5. Moreover, Aut( ˜̃C) is not conjugate to an icosahedral group A5 (no elements of order 4), the

Klein group PSL(2, 7), the Hessian group Hess216 or the alternating group A6 (since by [10], Theorem 2.3,

|Aut( ˜̃C)| ≤ 150).

Now, we claim to prove that Aut( ˜̃C) is also not conjugate to any of the Hessian subgroups namely, Hess36 or

Hess72, and therefore it should fix a line and a point off that line: Let C be a non-singular plane curve of degree

5 such that Aut(C) is conjugate, through P ∈ PGL3(K), to Hess∗ with ∗ ∈ {36, 72, 216}. Then Aut(CP ) is

given by the usual presentation inside PGL3(K) of the above Hessian groups. In particular, Aut(CP ) always has

the following five elements: [Z;Y ;X], [X;Z;Y ], [Y ;X;Z], [Y ;Z;X] and [X;ωY ;ω2Z], where ω is a primitive

3-rd root of unity. Because CP is invariant by [Z;Y ;X], [X;Z;Y ], [Y ;X;Z] and [Y ;Z;X], then CP must be

of the form: u(X5 + Y 5 + Z5) + a(X4Z +X4Y + Y 4X + Y 4Z + Z4X + Z4Y ) +G(X;Y ;Z), where u, a ∈ K,

and G(X;Y ;Z) is a homogenous polynomial of degree at most three in each variable. Now, imposing that

[X;ωY ;ω2Z] ∈ Aut(CP ), we obtain that u = 0 and a = 0, a contradiction to non-singularity. Therefore, there

is no non-singular, degree 5 plane curve whose automorphism group is conjugate to one of the Hessian groups.

This proves our claim.

It follows, by the previous discussion, that Aut( ˜̃C) should fix a line and a point off that line. Moreover,

τ ∈ Aut( ˜̃C) is of the form diag(1; a; b) such that 1, a, b (resp. 1, a3, b3) are pairwise distinct then, automorphisms

of ˜̃C are of the forms τ1 := [X; vY +wZ; sY + tZ], τ2 := [vX+wZ;Y ; sX+ tZ] or τ3 := [vX+wY ; sX+ tY ;Z]

(because the fixed point is one of the reference points [1 : 0 : 0], [0 : 1 : 0] or [0 : 0 : 1], and the fixed line is one

of the reference lines X = 0, Y = 0 or Z = 0).

If τ1 ∈ Aut( ˜̃C) then s = 0 = w (Coefficient of Y 5 and Z5), and we have the same conclusion, if τ2 (resp.

τ3) ∈ Aut( ˜̃C) from the coefficients of X3Y 2 and Y 4Z (resp. Z3X and Y Z4). Hence, automorphisms of
˜̃C are all diagonal of the form [X; vY ; sZ]. Moreover, v4 = s4 = v2s3 = 1, hence v = ξr4 , s = ξr

′

4 with

(r, r′) ∈ {(0, 0), (2, 0), (1, 2), (3, 2)}. That is, Aut( ˜̃C) is cyclic of order 4.
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Consequently, the following results follow.

Proposition 4.2. The locus set ˜ρ2(MPl
6 (Z/4Z)) is non-empty.

Corollary 4.3. The locus set ˜MPl
6 (Z/mZ) is ES-Irreducible if and only if m ̸= 4. If m = 4 then ˜MPl

6 (Z/mZ)
has exactly two irreducible equation components, and hence the number of its irreducible components is at least

two.

Remark 4.4. Observe that for any element of ρ1(M
Pl
6 (Z/4Z)), the Galois cover of degree 4 corresponding to

ρ1(M
Pl
6 (Z/4Z)):

C1 := Z4L1,Z + L5,Z = 0 → C1/ < [X;Y ; ξ4Z] >

is ramified exactly at six points with ramification index 4. Indeed, the fixed points of σi for i = 1, 2, 3, 4 in P2(K)

are all the same set where σ = diag(1, 1, ξ4), therefore, we only need to consider the ramification points of σ, in

particular, the ramification index is always 4. Now, by the Hurwitz formula we get 10 = 4(2g0 − 2) + 3k where

g0 is the genus of C1/ < [X,Y, ξ4Z] > hence we are forced to g0 = 0 and k = 6. On the other hand, for any

element of ρ2(M
Pl
6 (Z/4Z)), the Galois cover

C2 := X5 +X(Z4 + Y 4) + β2,0X
3Z2 + β3,2X

2Y 2Z + β5,2Y
2Z3 = 0 → C2/ < [X; ξ4Y ; ξ24Z]

is ramified at the points (0 : 1 : 0), (0 : 0 : 1) with ramification index 4 and at the 4 points namely, (1 : 0 : h)

where 1 + h4 + β2,0h
2 = 0 with ramification index 2 provided that β2,0 ̸= ±2. The situation with β2,0 = ±2 is

that the equation is singular or non-geometrically irreducible, which is not of our concern in this work.

Remark 4.5. Given G, a non-trivial finite group, such that M̃Pl
6 (G) is non-empty. By a tedious work, one can

show that M̃Pl
6 (G) is ES-Irreducible, except for the case G ∼= Z/4Z (for more details, we refer to [2]).

Theorem 4.6. Let d ≥ 5 be an odd integer, and consider g = (d−1)(d−2)/2 as usual. Then ˜MPl
g (Z/(d− 1)Z)

is not ES-Irreducible, and it has at least two irreducible components.

Proof. The above argument for concrete curves of Type 4, (0, 1) and Type 4, (1, 2) is valid for any odd de-

gree d ≥ 5 and the proof is quite similar. In other words, let C̃ and ˜̃C be the non-singular plane curves

of types d − 1, (0, 1) and d − 1, (1, 2) defined by the equations Xd + Y d + Zd−1X + βXd−2Y 2 = 0, and

Xd + X(Zd−1 + Y d−1) + βY 2Zd−2 = 0, where β ̸= 0. Then, Aut(C̃) and Aut( ˜̃C) are non-conjugate cyclic

groups of order d− 1, and are generated by [X;Y ; ξd−1Z] and [X; ξd−1Y ; ξ2d−1Z] respectively. Therefore, they

belong to two different [ρ]′s.

On type d − 1, (0, 1): With a homology of order d − 1 ≥ 4 inside Aut(C̃), we conclude that Aut(C̃) fixes

a point, a line or a triangle (See [15], §5). Furthermore, the center (0 : 0 : 1) of this homology is an inner

Galois point, by Lemma 3.7 in [10]. Also, it is unique, by Theorem 4 in [17]. Therefore, it should be fixed by

Aut(C̃), and also the axis Z = 0 is leaved invariant, by Theorem 4 in [15]. Hence, Aut(C̃) is cyclic, by Lemma

11.44 in [12], and automorphisms of C̃ are of the form diag(1; v; t) such that vd = td−1 = v = 1. That is,

|Aut(C̃)| = d− 1.

On type d − 1, (1, 2): First, we prove that Aut( ˜̃C) fixes a line and a point off this line. We consider the

case d ≥ 7 (For d = 5, we refer to the previous results). The alternating group A6 has no elements of order

d − 1 ≥ 6. The Klein group PSL(2, 7), which is the only simple group of order 168, has no elements of order

≥ 8, and also there are no elements of order 6 inside (for more details, we refer to [16]). Therefore, the primitive

groups A5, A6, and PSL(2, 7) do not appear as the full automorphism group. Moreover, elements inside the

Hessian group Hess216 ∼= SmallGroup(216, 153) have orders 1, 2, 3, 4 and 6. Then Hess∗ with ∗ ∈ {36, 72, 216}
do not appear as the full automorphism group, except possibly for d = 7. On the other hand, d−1 - 3(d2−3d+3)

hence ˜̃C is not a descendant of the Klein curve Kd. Furthermore, ˜̃C is not a descendant of the Fermat curve

Fd, because d− 1 - 6d2 (except for d = 7).
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Finally, it remains to deal with the case d = 7 for the Hessian groups or for being a Fermat’s descen-

dant. By the same line of argument as for the claim of Type 4, (1, 2), we can show that non of the Hessian

groups could appear for a non-singular, degree 7, plane curve. Also, the automorphisms of the Fermat curve

F7 are of the forms [X; ξa7Y ; ξb7Z], [ξb7Z; ξa7Y ;X], [X; ξb7Z; ξa7Y ], [ξa7Y ;X; ξb7Z], [ξa7Y ; ξb7Z;X], [ξb7Z;X; ξa7Y ]. One

can easily verify that non of them has order 6. Consequently, we exclude the possibility of being a Fermat’s

descendant.

Now, the full automorphism group should fix a line and a point off this line. Thus automorphisms of ˜̃C have

the forms [X; vY +wZ; sY + tZ], [vX +wZ;Y ; sX + tZ] or [vX +wY ; sX + tY ;Z], since [X; ξd−1Y ; ξ2d−1Z] ∈
Aut( ˜̃C).

If [X; vY + wZ; sY + tZ] ∈ Aut( ˜̃C) then s = 0 = w (Coefficient of Y d and Zd), and the same conclusion

follows if [vX + wZ;Y ; sX + tZ] (resp. [vX + wY ; sX + tY ;Z]) ∈ Aut( ˜̃C) from the coefficients of Xd−2Y 2

and Y d−1Z (resp. Zd−2X2 and Y Zd−1). Hence, automorphisms of ˜̃C are all diagonal of the form diag(1; v; s).

Moreover, vd−1 = sd−1 = v2sd−2 = 1 that is, v = ξrd−1 and s = ξr
′

d−1 such that d − 1|2r − r′. Therefore,

automorphisms of ˜̃C are [X; ξrd−1Y ; ξ2rd−1Z] with r ∈ 0, 1, ..., d− 2. Hence, Aut( ˜̃C) is cyclic of order d− 1, which

was to be shown.

�

5. On the locus ˜MPl
10 (Z/3Z).

By a similar argument as the degree 5 case, we obtain the following “normal forms” for ρ(MPl
10 (Z/3Z)), (see

the full table on degree 6 in [1]):

Type: m, (a, b) Fm,(a,b)(X;Y ;Z)

3, (0, 1) Z6 + Z3L3,Z + L6,Z

3, (1, 2) X5Y + Y 5Z + Z5X + µ1Z
2X4 + µ2X

2Y 4 + µ3Y
2Z4 + α1X

3Y 2Z + α2XY 3Z2 + α3X
2Y Z3

where µi, αi denote parameters taking values in K in order to give non-singular models for the respective loci

ρ(MPl
10 (Z/3Z)).

5.1. On type 3, (1, 2).

Proposition 5.1. Let δ ∈ MPl
10 (Z/3Z) such that δ admits a non-singular plane model C̃ of the form

X5Y + Y 5Z + Z5X + µ1Z
2X4 + µ2X

2Y 4 + µ3Y
2Z4 + α1X

3Y 2Z + α2XY 3Z2 + α3X
2Y Z3 = 0.

Then, Aut(C̃) either fixes a line and a point off that line or it fixes a triangle.

Proof. It suffices to show that Aut(C̃) is not conjugate to any of the finite primitive groups inside PGL3(K)

namely, the Klein group PSL(2, 7), the icosahedral group A5, the alternating group A6, the Hessian group

Hess216 or to any of its subgroups Hess72 or Hess36, and the result follows by Mitchell in [15].

Let τ ∈ Aut(C̃) be an element of order 2 such that τστ = σ−1, where σ := [X;ωY ;ω2Z] then τ has one of

the forms [X;βZ;β−1Y ], [βY ;β−1X;Z] or [βZ;Y ;β−1X]. But non of these transformations retains C̃, hence

Aut(C̃) does not contain an S3 as a subgroup. Consequently, Aut(C̃) is not conjugate to A5 or A6. Moreover,

it is well known that PSL(2, 7) contains an octahedral group of order 24 (but not an isocahedral group of order

60), and since all elements of order 3 in PSL(2, 7) are conjugate (for more details, we refer to [16]). Then, by the

same argument as before, we conclude that Aut(C̃) is not conjugate to PSL(2, 7). Lastly, assume that Aut(C̃)

is conjugate, through a transformation P , to one of the Hessian groups say, Hess∗. Then, we can consider

P−1SP = λS, because we did not fix the plane model for a curve whose automorphism group is Hess∗. In

particular, P should be of the form [Y ; γZ;βX], [Z; γX;βY ] or [X; γY ;βZ], but non of them transform C̃ to

C̃P with {[X;Z;Y ], [Y ;X;Z], [Z;Y ;X]} ⊆ Aut(C̃P ). Therefore, Aut(C̃) is not conjugate to any of the Hessian

groups, and we have done. �

Now, we state and prove the main result for this section:
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Theorem 5.2. Consider an element δ ∈ MPl
10 (Z/3Z) that has a non-singular plane model C̃ of the form

C̃ : X5Y + Y 5Z + Z5X + α3X
2Y Z3 with α3 ̸= 0. The full automorphism group of such δ is cyclic of order 3,

and is generated by the transformation σ : (x; y; z) 7→ (x;ωy;ω2z).

Proof. It follows, by Proposition 5.1, that Aut(C̃) either fixes a line and a point off that line or it fixes a triangle.

We treat each of these two cases.

(1) If Aut(C̃) fixes a line L and a point P off this line, then L must be one of the reference lines B = 0,

where B ∈ {X,Y, Z}, and P is one of the reference points namely, [1 : 0 : 0], [0 : 1 : 0], or [0 : 0 : 1]

(being σ ∈ Aut(C̃)). Consequently, Aut(C̃) is cyclic, since all the reference points lie on C̃. Also,

automorphisms of C̃ are of the forms

τ1 := [X; vY + wZ; sY + tZ], τ2 := [vX + wZ;Y ; sX + tZ] or τ3 := [vX + wY ; sX + tY ;Z]

For τ1 to be in Aut(C̃), we must have w = 0 = s (coefficients of X5Z and XY 5), and similarly, for τ2
(resp. τ3) through the coefficients of Y 5X and Z6 (resp. Y Z5 and X5Z). That is, elements of Aut(C̃)

are all diagonal of the form diag(1; v; t) such that tv4 = 1 = t3 and t5 = v. Thus, t = ξa3 and v = ξ2a3 ,

where ξ3 is a primitive 3-rd root of unity, and hence, |Aut(C)| = 3.

(2) If Aut(C̃) fixes a triangle and there exist neither a line nor a point leaved invariant, then by Harui [10], C̃

is a descendant of the Fermat curve F6 : X6+Y 6+Z6 or the Klein curveK6 : X5Y+Y 5Z+Z5X. Hence,

Aut(C̃) is conjugate to a subgroup of Aut(F6) =< [ξ6X;Y ;Z], [X; ξ6Y ;Z], [Y ;Z;X], [X;Z;Y ] > or

to a subgroup of Aut(K6) =< [Z;X;Y ], [X; ξ21Y ; ξ−4
21 Z] > .

• Suppose first that Aut(C̃) is conjugate (through P ) to a subgroup of Aut(F6). Then, it suffices

to assume that P−1SP ∈ {S, [Y ;Z;X], [Y ; ξ6Z;X], [Y ; ξ26Z;X]}, since any element of order 3 in

Aut(F6), which is not a homology, is conjugate to one of those inside Aut(F6). Now, if P−1SP = S

then P ∈ PGL3(K) is of the form [Y ; γZ;βX], [Z; γX;βY ] or [X; γY ;βZ], but non of them

transforms C̃ to C̃P with core X6 + Y 6 +Z6, a contradiction. Furthermore, if P−1SP = [Y ;Z;X]

(resp. = [Y ; ξ6Z;X] or = [Y ; ξ26Z;X]), then P has the form

 λ 1 λ2

ωλβ2 β2 ω2λ2β2

ω2λβ3 β3 λ2ωβ3

, where λ3 = 1

(resp. λ3 = ξ6 or λ3 = ξ26). We thus get C̃P of the form υ1X
6 + υ2Y

6 + υ3Z
6 + lower terms such

that the system υ1 = υ3 = υ3 = 1 has no solutions in K∗2, a contradiction. Consequently, C̃ is not

a descendant of the Fermat curve F6.

• Secondly, suppose that C̃ is a descendant of the Klein curve K6. This should happen through a

change of the variables P ∈ PGL3(K) such that C̃P : X5Y +Y 5Z+Z5X+ lower terms. We claim

to show that P−1SP = λS for some λ ∈ K∗. Indeed, elements of order 3 inside Aut(K6), which

are not homologies, are S, S−1, [ξa21Y ; ξ−4a
21 Z;X] and [ξ−4a

21 Z;X; ξa21Y ], and it is enough to consider

the situation P−1SP ∈ {S, S−1, [ξa21Y ; ξ−4a
21 Z;X], [ξ−4a

21 Z;X; ξa21Y ]} with a = 0, 1, 2, because any

other value is conjugate inside Aut(K6) to one of these transformations.

If P−1SP = λS−1 then P fixes one of the variables and permutes the others. Hence, the resulting

core is different from X5Y + Y 5Z + Z5X, a contradiction.

If P−1SP = λ[ξa21Y ; ξ−4a
21 Z;X] (resp. [ξ−4a

21 Z;X; ξa21Y ]) then P has the form λξ−a
21 1 λ2ξ−a

21

λξ−a
21 ωβ2 β2 λ2ξ−a

21 ω2β2

λξ−a
21 ω2β3 β3 λ2ξ−a

21 ωβ3

 (resp.

 λ2ξ−18a
21 1 λξ−a

21

λ2ξ−18a
21 ω2β2 β2 λξ−a

21 ωβ2

λ2ξ−18a
21 ωβ3 β3 λξ−a

21 ω2β3

)

where λ3 = ξ−3a
21 . For both transformations, we must have β3β

5
2 +

(
δ3β

3
3 + 1

)
β2 + β5

3 = 0 so

that X6, Y 6, Z6 do not appear. Therefore, by imposing the condition X5Z,XY 5 and Y Z5 do

not appear as well, we get δ3 = 0, which is already excluded. Consequently, P−1SP = λS,

and we proved the claim. Now, P has one of the forms [Y ; γZ;βX], [Z; γX;βY ] or [X; γY ;βZ].

Therefore, C̃P is defined by an equation of the form λ0(X
5Y + Y 5Z + Z5X) + λ1G(X;Y ;Z),

where G(X;Y ;Z) ∈ {X2Y Z3, Y 2ZX3, Z2XY 3}. In particular, [µ1Z;X;µ2Y ] /∈ Aut(C̃P ), and
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Aut(C̃P ) ≼< τ := [X; ξ21Y ; ξ−4
21 Z] >. Moreover, τ r ∈ Aut(C̃P ) if and only if 7|r. Hence, Aut(C̃)

is cyclic of order 3.

This completes the proof. �

5.2. On type 3, (0, 1).

Proposition 5.3. If δ ∈ MPl
10 (Z/3Z) has a non-singular plane model ˜̃C of the form Z6 + Z3L3,Z + L6,Z , then

Aut( ˜̃C) is either conjugate to the Hessian group Hess216 or it leaves invariant a point, a line or a triangle.

Proof. The result is an immediate consequence, since Aut( ˜̃C) contains a homology (i.e. leaves invariant a line

pointwise and a point off this line) of period 3 namely, σ′ := [X;Y ;ωZ], and Hess216 is the only multiplicative

group that contains such homologies and does not leave invariant a point, a line or a triangle (See Theorem

9, [15]). �

Now, we can prove our main result for this section.

Theorem 5.4. The automorphisms group of an element δ ∈ MPl
10 (Z/3Z) with a non-singular plane model ˜̃C

of the form Z6 + X5Y + XY 5 + α3Z
3X3 = 0 such that α3 ̸= 0 is cyclic of order 3, and is generated by the

automorphism σ′ : (x; y; z) 7→ (x; y;ωz).

Proof. Suppose that Aut( ˜̃C) is conjugate, through a transformation P , to the Hessian group Hess216. Then, we

can assume, without loss of generality, that P−1σ′P = λσ′ for some λ ∈ K∗. Hence, P = [α1X + α2Y ;β1X +

β2Y ;Z] and clearly, {[Z;Y ;X], [X;Z;Y ]} * Aut( ˜̃CP ), a contradiction. Therefore, by Proposition 5.3, we deduce

that Aut( ˜̃C) should fix a point, a line or a triangle.

In what follows, we treat each case.

(1) If Aut( ˜̃C) fixes a line and a point off that line, and if ˜̃C admits a bigger non cyclic automorphism group,

then Aut( ˜̃C) satisfies a short exact sequence of the form 1 → C3 → Aut( ˜̃C) → G′ → 1, where G′ is

conjugate to Cm (m = 2, 3 or 4), D2m (m = 2 or 4), A4, S4 or A5.

If G′ is conjugate to C3, A4, S4 or A5, then there exists, by Sylow’s theorem, a subgroup H of

automorphisms of ˜̃C of order 9. In particular, H is conjugate to C9 or C3 × C3, but both cases do not

occur. Indeed, if H is conjugate to C9 then Aut( ˜̃C) has an element of order 9, which is not possible

because 9 - d− 1, d, (d− 1)2, d(d− 2), d(d− 1), d2 − 3d+3 with d = 6 (for more details, we refer to [1]).

Moreover, if H is conjugate to C3 × C3 then there exists τ ∈ Aut( ˜̃C) of order 3 such that τσ′ = σ′τ .

Hence, τ = [vX + wY ; sX + tY ;Z], and comparing the coefficients of Z3Y 3 and X6 in ˜̃Cτ , we get

w = 0 = s and v5t = vt5 = v3 = 1. Thus τ ∈< σ′ >, a contradiction.

By a similar argument, we exclude the cases C4 and D2m, because for each SmallGroup(6m, ID),

there must be an element τ of order 2 or 4 which commutes with σ′.

Finally, if G′ is conjugate to C2 then there exists an element τ of order 2 such that τσ′τ = σ′−1 and

one can easily verify that such an element does not exists.

We conclude that Aut( ˜̃C) should be cyclic (in particular, is commutative). Hence, it can not be of order

> 3 (otherwise; there must be an element τ ∈ Aut( ˜̃C) of order > 3 which commutes with σ′, and by a

previous argument such elements do not exist).

(2) If Aut( ˜̃C) fixed a triangle and neither a point nor a line is fixed, then it follows, by Harui [10], that
˜̃C is a descendant of the Fermat curve F6 or the Klein curve K6. The last case does not happen,

because Aut(K6) does not have elements of order 3 whose Jordan form is the the same as σ′ (i.e a

homology). Now, suppose that ˜̃C is a descendant of F6 that is, ˜̃C can be transformed (through P )

into a curve ˜̃CP whose core is X6 + Y 6 + Z6. Then, P = [α1X + α2Y ; β1X + β2Y ; Z], since there

are only two sets of homologies in Aut(F6) of order 3 namely, {[ωX;Y ;Z], [X;ωY ;Z], [X;Y ;ωZ]} and

{[ω2X;Y ;Z], [X;ω2Y ;Z], [X;Y ;ω2Z]} (recall that the two sets are not conjugate in PGL3(K). Also,

elements of the first set are all conjugate inside Aut(F6) to [X;Y ;ωZ]. So it suffices to consider the
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situation P−1σP = λσ). Now, ˜̃CP has the form

µ0X
6 + µ1Y

6 + Z6 + α3(α1X + α2Y )3Z3 + µ2X
5Y + µ3X

4Y 2 + µ4X
3Y 3 + µ5X

2Y 4 + µ6XY 5,

where µ0 := α1β1

(
α4
1 + β4

1

)
(= 1) and µ1 := α2β2

(
α4
2 + β4

2

)
(= 1). In particular, (α1β1)(α2β2) ̸= 0

therefore, [X; vZ;wY ], [vZ;wY ;X], [wY ; vZ;X], and [vZ;X;wY ] /∈ Aut( ˜̃CP ), because of the monomial

XY 2Z3. Moreover, [wY ;X; vZ] ∈ Aut( ˜̃CP ) only if α1 = α2 and w = v3 = 1. Hence

˜̃CP : Z6 + α3α
3
1(X + Y )3Z3 + α1(X + Y ) (β1X + β2Y )

(
α4
1(X + Y )4 + (β1X + β2Y )

4
)
.

Consequently, β1 = β2 (because we are assuming [Y ;X; vZ] ∈ Aut( ˜̃CP )), a contradiction to invertibility

of P .

Finally, if [X, ξr6Y, ξ
r′

6 Z] ∈ Aut( ˜̃CP ) then r = 0 and 2|r′, since α1α2 ̸= 0. That is, |Aut( ˜̃CP )| = 3,

which was to be shown.

�

As a conclusion of the results that are introduced in this section, we get the following result.

Corollary 5.5. The locus ˜MPl
10 (Z/3Z) is not ES-Irreducible, and it has at least two irreducible components.

6. Positive characteristic

Now, suppose that K is an algebraically closed field of positive characteristic p > 0. Consider a non-singular

plane curve C in P2(K) of degree d and assume that the order of Aut(C) is coprime with p, p - d(d− 1), p ≥ 7

and the order of Aut(Fd) and Aut(Kd) are coprime with p where Fd : Xd+Y d+Zd = 0 is the Fermat curve and

Kd : Xd−1Y + Y d−1Z + Zd−1X = 0 is the Klein curve. Then, all the techniques that appeared in Harui [10],

can be applied: Hurwitz bound, Arakawa and Oiakawa inequalities and so on. In particular, the arguments of

all the previous sections hold.

Consider the p-torsion of the degree 0 Picard group of C, which is a finitely generated Z/(p)-module of

dimension γ(always γ ≤ g where g is the genus of C), we call γ the p-rank of C.

For a point P of C denote by Aut(C)P the subgroup of Aut(C) that fixes the place P.

Lemma 6.1. Assume that Aut(C)P is prime to p for any point P of C and the p-rank of C is trivial. Then

Aut(C) is prime to p.

Proof. Consider σ ∈ Aut(C) of order p, then the extension K(C)/K(C)σ is a finite extension of degree p and

is unramified everywhere (because if it ramifies at a place P then σ will be an element of Aut(C)P giving a

contradiction). But, if γ = 0 (i.e. the p-rank is trivial for C) then, from Deuring-Shafarevich formula [12,

Theorem11.62], we obtain that γ−1
γ′−1 = p where γ′ is the p-rank for C/ < σ > which is impossible. Therefore,

such extensions do not exist. �

Lemma 6.2. Consider C a plane non-singular curve of degree d ≥ 4. If p > (d− 1)(d− 2) + 1, then Aut(C)P
is coprime with p for any point P of the curve C.

Proof. By [12, Theorem 11.78] the maximal order of the p-subgroup of Aut(C)P is at most 4p
(p−1)2 g

2. Hence,

with g = (d−1)(d−2)
2 and assuming that p > 4p

(p−1)2 g
2, we obtain the result. �

Lemma 6.3. Let C be a non-singular curve of genus g ≥ 2 defined over an algebraic closed field K of charac-

teristic p > 0. Suppose that C has an unramified subcover of degree p, i.e. Φ : C → C ′ of degree p. Then C ′

has genus ≥ 2, g ≡ 1(mod p) and γ ≡ 1(mod p). In particular, for the existence of such subcover, one needs to

assume that p < g.

Proof. The Hurwitz formula for Φ gives the equality (2g− 2) = p(2g′ − 2) where g′ is the genus of C ′. We have

g′ ̸= 0 or 1 because g ≥ 2, therefore g′ ≥ 2 and g − 1 ≡ 0(mod p). Now, consider Deuring-Shafaravich formula,

which in such unramified extension could be read as γ − 1 = p(γ′ − 1) where γ′ the p-rank of C ′. If γ = 1 then

there is nothing to prove and if γ > 1 then the congruence is clear. Finally, if γ = 0 then this situation is not

possible. �
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Corollary 6.4. Let C be a non-singular plane curve of degree d and genus g ≥ 2 defined over an algebraic

closed field K of characteristic p > 0. Suppose that p > (d − 1)(d − 2) + 1 > g. Then the order of Aut(C) is

coprime with p.

Proof. Suppose σ ∈ Aut(C) of order p, then K(C)/K(C)σ is a separable degree p extension, and by Lemma 6.2,

it is unramified everywhere. By Lemma 6.3 we find that such extensions do not exist. �

And as a direct consequence of the above lemmas and because all techniques in the previous sections, from [10],

are applicable when Aut(C) is coprime with p, then we obtain:

Corollary 6.5. Assume p > 13. The automorphism groups of the curves C̃ : X5 + Y 5 + Z4X + βX3Y 2 and
˜̃C : X5 +X(Z4 + Y 4) + βY 2Z3 such that β ̸= 0, are cyclic of order 4. Moreover, C̃ is not isomorphic to ˜̃C

for any choice of the parameters.

Proof. Only we need to mention that the linear g2-systems for the immersion of the curve inside P2 are unique up

to conjugation in PGL3(K) see [12, Lemma 11.28] ( also the curves C̃ and ˜̃C have cyclic covers of degree 4 with

different type of the cover, from Hurwitz equation, therefore they belong to different irreducible components in

the moduli space of genus 6 curves). �

Corollary 6.6. For p > 13 we have that the locus ˜MPl
6 (Z/4Z) of the moduli space of positive characteristic,

has at least two irreducible components.

Similarly we obtain the following result from results in §4,

Corollary 6.7. For p > (d − 1)(d − 2) + 1 where d ≥ 5 is an odd integer, the locus ˜MPl
g (Z/(d− 1)Z) of

the moduli space over positive characteristic p is not ES-Irreducible and it has at least two strongly equation

components. In particular, it has at least two irreducible components.
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