ON THE TAMAGAWA NUMBER CONJECTURE FOR HECKE CHARACTERS

FRANCESC BARS

ABSTRACT. In this paper we prove the weakpart of the Tamagawa number conjecture
in all non-critical cases for the motives associated to Hecke characters of the-fapth
where is the Hecke character of a CM elliptic cur#edefined over an imaginary qua-
dratic field K, under certain restrictions which originate mainly from the Iwasawa theory
of imaginary quadratic fields.

1. INTRODUCTION

The Tamagawa number conjecture for a variety X over a number field of Bloch and Kato
[5], or, more precisely, for a motiv&/ of pure weightw over a number field, describes the
special values of thé-function in terms of cohomological data (see for example Kato [19]
or Fontaine and Perrin-Riou [11]) and the p-part of the conjecture describes these values
up to units in the rin@,) := {§ € Qla,b € N,b # 0, (b, p) = 1}.

Recall that the special values of dnfunction are the leading coefficient of Taylor
expansion at integer points. Suppose we have a mativef weight w such that it's
L-function has meromorphic continuation and satisfies the expected functional equation.
We say that an integen. < ¥ is non-critical if L(M,m) = 0 and that it is critical if
L(M,m) # 0. We extend this definition to the integers > ¥ + 1 by saying thatn
is critical for M if w — m + 1 is critical for M the dual motive associated ff, and
non-critical for M if w — m + 1 is non-critical forA/. The Tamagawa number conjecture
can be formulated in terms of period maps (period integralspradic periods appears)
and regulator maps ( [10], [19]), but in the non-critical situation it can be formulated for
almost all non-critical cases (using the hypothetical functional equation and good com-
patibilities) without the period maps, where by period map we mean a map between de
Rham to Betti conomology and for theadic period a map betweérale cohomology to
de Rham cohomology (see [182.3]).

There are few cases proved in the non-critical situation: for the Riemann zeta function
([5, §6]), for Dirichlet motives ( [6], [17]), for CM elliptic curves defined over the field of
the endomorphism ring ( [22]) or defined ov@r( [5, §7], [1]).

The weakp-part of the Tamagawa number conjecture for an elliptic cltweith CM
by K defined over the field of endomorphisms, proved by Kings [22], is related to the weak
p-part of the Tamagawa number conjecture for th&unction of the Hecke character,
associated td”, over the imaginary quadratic field of class number 1. More precisely,
Kings proves in [22] the conjecture for the motiv&p) (—r) with » > 0 which corresponds
to the special value (non-critical) for thefunction associated t@ at —r, whereh(®) is
the motive associated tp over K with K-coefficients. As a consequence, he obtains
the conjecture for the motivk! (E)(—r). Using the functional equation fdt and good
compatibilities one should obtain the conjecture f8(E)(r + 2). We generalize the
methods of Kings to other Hecke characters over an imaginary quadratidiéhdthe
non-critical situation.
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We consider the motive associated to the Hecke chara€tgt with a,b > 0, which
has weight + b. It is known that almost all the non-critical values for this motive are the
integers lower thamin(a, b). Our work is concentrated in this situation, but we remark
that there are results on the Tamagawa number conjecture in the critical situation (Harrison
[16], Guo [14], Kimura [23], Han [15] and in greater generality by Tsuji [27]).

The aim of this paper is to prove thepart of the Tamagawa number conjecture (under
the formulation in [19§2.2]) for all the non-critical values for the-function of the motive
associated Hecke charactefg of an imaginary quadratic fiel& with class number 1,
which under a fixed embedding correspondsta’.

The main results of this paper are Theorems 5.12,5.13 and Theorems 6.3, 6.4. These
results are the weak-part of the Tamagawa number conjecture for the geometric ob-
ject associated to the Hecke characters dvewith a # b(modulo(#07%)) with K or
Q-coefficients, under certain restrictions which originate mainly from Iwasawa theory of
imaginary quadratic fields, whet@j, means the invertible elements of the ring of integers
of K. See the last section for numerical examples.

To obtain these main results, we study in detail the image with respect to the regulator
map of a certain non-trivial submodule of sormietheory group. The basic ingredients
used in the proof of these results are Deninger’s proof of the Beilinson’s conjecture for
Hecke characters in [8], the specialization of the polylogarithm sheaf [22] and the Iwasawa
main conjecture for imaginary quadratic fields [24], as in [22]. This paper need to deal
with negative twists. This problem does not appear in [22]. For negative twists, we modify
Deninger’s elements [8] in order to apply thexdic techniques of [22].

The results of this paper generalize the results in [2, Chapter 3] which restricts to the
Hecke characterg™.

2. THE MOTIVE ASSOCIATED TOHECKE CHARACTERS

Let K be an imaginary quadratic field with class numél¢i) equal to 1 and x be its
ring of integers. LetD x be the discriminant ofC. Let E be an elliptic curve oveK with
CM by Og. In this section we describe some pure motives coming from a self product
of the motiveh! (E) and their realizations, and we prove that théunctions associated
to these motives correspond to Hecke characters. We obtain finally an analog for these
motives of a result of Deuring for CM elliptic curves.

Let p be an odd prime, fixed once and for all, such thahas good reduction for all
primes ovemp. Let S’ be the set of places that divide the conductor of the elliptic cfirve
(that are the same places whéfédnas bad reduction) and the places that digide

Lety : Ix — K™ be the CM character associated to the elliptic cutweherelx is the
ideles of K. Denote byT,, := ®g K with w a positive integer. Observe thg}, is equal to
a product of field{ [, 7, whered runs through thelut(C)-orbits of] = Hom(T,,, C),

6 C 1. Letey be the idempotent correspondingZg of T,,.

Define the CM character

Y, Ik — 1Ty

by ¢, = e - (" ¢), and denote by the conductor ofs,. Observe thafy|f sincey, is a
sub-representation @ .
Let us fix once and for all an embeddifig — C like in the last paragraph on [8, p.132].
We have a natural embeddifg

K—@"K—T,—Tp

where the first map corresponds to the diagonal map.

For any? € 6 which its orbit in] is equal tod, we have amag : T, — ¥(T3,) C C
inducing an isomorphisifiy = T,,/ker(¥) — ¥(Ty), andd(Ty,) is the field generated by
M(K) - ... Ay (K) where); € Hom(K, C), which is isomorphic tds.
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Define byfx the subset off which contains the} € 6 which orbit is equal t@ such
thatTy = T, /ker(d) — ¥(T,) C Cis in Homg(Ty,C) for the natural embedding
¥. In our casedx contains only one element. Let lle= (A1,...,\,) € 1, we set
ay = #{i|]\i € Homg(K,C)} andby = w — ay. The infinite type 0% is defined
by (ag,bg) := (ay,by) Whered is the element idx. Observe thaf only contains two
elements, the element 6fdifferent ford = (A1,..., \y) € Ok is (A1, ..., A\y) Where);
denotes the composition af with the complex conjugation.

Consider the category of Chow motiveg (K) over K with morphisms induced by
graded correspondences in Chow theory. We have then a natural covariant fufrotor
the category of smooth and projective varieties difeto M (K). Then the motivei(E)
of an elliptic curveE over K has a decomposition with respect to the zero sedt{d) =
h°E @ h'E @ h?E, whereh®E = h(Spec(K)) andh?E = h(Spec(K))(—1). We can
also consider the categosylg(K) which consist of the same objects but tensoringlby
the group of morphisms.

The motiveh! E has multiplication byOy. Consider then the motiveh!E, has
multiplication byO,, := ®% Ok. Then®“h! Eg has multiplication byr,,. Notice thate,
is not integral in general fav > 1, but is contained IOk [1/Dk]|. Let's denote by

My = eg(2"“h' (E)g ®0, Ok([1/Dk]),

considered as an motive with coefficient€ia [1/ D k], and byMjyg its image inMg (K).
As \; € {\ )} where) is the fixed embedding ok in C, and\;(O) = Ok, we
have then thaty(®h!'(E) ®0, Ok[1/Dk]) € M(K) has multiplication byQ, :=
eo(Ow ®o, Ok[1/Dk]), andMyg has multiplication byl =~ K.

Our objective in this section is to study tpeadic and Betti realizations of this motive
My, called Hecke motive, and to determineitfunction.

There are at least three equivalent notions of a Hecke character, see [12, p.48]. One is
the notion of CM-character used above, [12, p.48, definition 2]. For Héeckenctions
and the Galois group action on tpeadic realization associated to the Hecke motive, we
use the notion of a character which is trivial &t and with image in some &e group,
Yo : Ix/K* — It, [12, p.48, definition 3]. The associated complex Hecke character, in
order to define the Heck&-function, is constructed fronpy by taking the archimedian
places ofly, which correspond to the fixed immersion &fin C in our situation, which
we also callkyy. The character constructed fram by taking the components of the places
of I, abovep is calledyy , and is related with the Galois action on thadic realization
associated to the motive. The charaatgr, factors throughGal(K /K ) and has image
in (Ty ®Z,)*. We will use the term Hecke character when we want to consider this second
notion from now on. The third notion [12, definition 1,p.48], corresponds to certain map
Je : Iy, — Tj, whereZ;, is the ideal classes df prime tofy. So, ifp is a prime ideal
of O prime tofy, we mean forj,(p) or 1, (p) the value of the Hecke character or CM
character at the &le which has an uniformizer at the place and 1 in the other places.

We haves (p) = 1, (p) = v(p) (see [12, p.49-50]).

Thep-adic realization of the motiv&/yq(w) is, by definition, HY (Mg x x K, Q,(w))
and we denote it by, (w).

Lemma 2.1 Let p be a prime such thap t Dg. The integralp-adic realization of
Mo(w), HY (Mg xx K,Z,(w)) ®o, Ok|[1/Dk], is isomorphic to

69(®prE)

as freeey (O [1/Dk|®Z,)-modules of rank 1, wittial (K / K )-action oney (2T, E)
given by the Hecke character, ,,.



4 FRANCESC BARS

Proof. Observe first thafl,, E is isomorphic as Galois modules #.,(h'(E) x x
K,Z,(1)) = Hom(T,E,Z,(1)) by the use of Weil pairing but the isomorphism change
the action ofOk to its conjugate.

The claim thates (2T, F) is a free module of rank 1 follows becausgF is a free
Ok ®Zyp = Ok [1/Dk] ® Z,-module of rank 1 and thesy - (T, E ® ... ® T,E) is a free
eo - (" (Ok[1/Dk] ® Z,))-module of rank one.

Now, consider the natural action 6fx := Gal(K/K) on HY,(h'(E) xx K, Z,(1)).
SinceGk acts on the Tate module by the Hecke charagier Gx — (Ox ® Z,)*, so it
acts onH},(h'(E) xx K, Zy(1)) by g,. Using

HY((WM(B) xkx K)", Zy(w)) = H' (W' () xx K, Z,(1))®"
and taking our idempotent, the action is givendgy®"'p,,) = Jg’p. O

Twisting byl + 1 we get forp 1 D that the integrap-adic realization fod\/y (w+1+1)
is isomorphic taey (T, E) (I + 1) with G k-action oney (@ T, E) (I + 1) given by, ,
multiplied by thel + 1-th power of thep-adic cyclotomic character.

The Betti realization for the motiv@/yq(w + 1) namedH ¥ (Mgc, Q(w + 1)) is iso-
morphic toey(®“ Hy(E(C),Q(1)))(1), we remember that we fixed once and for all an
immersion forK C C. E(C) is the set of closed points with the analytic topology. We
have

®% (Hp(E xk C),Z(1)) ®0, O|1/Dk]
a®“Ok[1/Dk]-module of rank 1 and taking the idempoteptwe obtain
eo(@"Hg(E xx C),Z(1)) ®0, Ox[1/Dk])(1),

a Og-module of rank 1 which is the submodule B (Myc, Q(w + 1)) corresponding to
H(Moc, Z(w + 1)) ®o, Ok[1/Dk].

Now, we are going to study the-function that corresponds to theadic representation
Mg@p = H;%(MQQ XK K, Qp) of MgQ.

The Tamagawa number conjecture describes conjecturally special valueg.efithetion
for the motive and thid.-function involves the product of all Euler factors (one for every
non-arquimedian place), but for tpepart of this conjecture, Kato reformulates the conjec-
ture in terms of the partial-function avoiding a non-vanishing finite set of Euler factors,
more concretely the finite set contains the Euler factors coming from the primes @bove
and the primes where the motive has bad reduction (see [20, Proposition 7.8], or [2, Chapter
1] for an overview, and see remark 2.5 for these no-vanishing in our setting).

Let S be the set of places df that dividef, or p. Define as usual

Ls(Mgg, s) := | [ detq, (1 — FrobNT*| Mg, )~
1¢s
where F'roby means the geometric Frobenius,the inertia group at and N[ the norm

Ng gl
Our goal is to compute this determinant and to relate it to the local factors df-the
function of the Hecke charactéy, that is defined by

Latbons) = [T - 20y,
¢S

Recall that the operation of the decomposition gréypfor p { p on H}, (k' (E) x
K,Q,) is given by the operation gf —* |K;, and hencé), operates oi/yq, via %_1_ On
one hand, the inertia groufy acts non-trivially if and only ifp divides the conductoj.
On the other hand, far 1 f4, the geometric Frobeniugr, atp acts viayy(p). We obtain
hence the following result.
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Lemma 2.2 (Deninger, prop. 1.3.2.a [8]Let[ be a finite prime ofX" with [ { pfineta,
wherefy is the conductor of the Hecke charactgy. Then

detr,sq, (1 — Fr[N[_S|MGI@p) = (1 —g()NI™%).

We impose some restrictions for our motivg (w -+ + 1) once and for all. We suppose
—w — 2l < —3. Remember that, with the restriction th&tis defined overk, we have
#|0] = 2, and, in particular, we havBy = K and forp 1 D we haveDy®Z, = Ok QZ,.

The L-function for Myq can be described by using lemma 2.2 and by taking the norm
map.

Lemma 2.3 Let[ a prime of K such thatl { fy and it is prime top. We have then the
following equality

detq, (1 — FrNT | Myl ) = (1= (DNE*)(1 = Pp(ONI).

As a corollary we obtain a generalization of a result of Deuring.

Theorem 2.4 Let S be the set of the primes di dividing fg and primes dividing.
Then:

Ls(Mag,s) = Ls(vg, s)Ls(1g, s).

Remark 2.5 Thep-adic realizatiorV/,, := Mg, (w+1+1) satisfies that the local Euler
factors

Pp(vp*(]')a 0) = PP(EG? _l)
are different from O for alp € S whereV,; is the dual Galois module df,,. Hence, it
satisfies the hypothesis of [19, conjecture 2.2.7].

To show this fact, suppose first thdfg. Then the inertia group acts non-trivially &},
which is a one dimensiondby ® Q-module, and hence

Lp(ams) =1

for all p|fe, and in particular fos = —I.
If p dividesp, then the result follows from the fact that any proper smooth variety with
good reduction ap satisfies it for weight reasons, and in particular:

detq, (1 — FryNp' |[Hj(E xx K)*,Qu)) #0,

with I # p, and therefore, since the different idempotentgive a direct summand of the
cohomology grouf“ ((E xx K)*,Qp),

LP (@0? _l) 7é 0.

The motivic cohomology grou;HX’jl(MgQ, Q(w + 1 + 1)) is the K-theory group
Kouwt1)—w+1(Mag) T @ Q where theK-groups are the Quillei-groups and the
superscript denotes the Adam’s filtration on them.

We suppose recall that — 2(w + | + 1) < —3. We have a Beilinson regulator map,

rp  Hiyf (Mg, Q(w + 1+ 1)) — HE(Mpe, Q(w + 1)) ®g R,
and the Sowd regulator map:
rp s Hyg H(Mag, Q(w + 1+ 1)) — H(Ok [1/S], Mg, (w + 1 +1)).

The p-part of the Tamagawa number conjecture claims in particularthaig R and
rp, ®g Q, are isomorphisms. Deninger in [8] [7] construct®asubspaceH {5**" of
HYH (Mg, Q(w+1+1)) such thatp @ R restricted taH §5*!" @ R is an isomorphism.
The term weak in the formulation of thepart of the Tamagawa number conjecture means
that this conjecture is proved using the spakg™*'” @ R instead oﬂﬁfj(jr1 (Mpg, Q(w+
1+ 1)).
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3. THE BEILINSON CONJECTURE FORHECKE CHARACTERS

In this section we review the work on the Beilinson conjecture for the matiyg(w +
[ + 1) done by Deninger in [8], under the language of the Tamagawa number conjecture.
Theorem 3.1(Deninger, Theorem 1.4.1 [8]letw = ag+ by > 1. Consider an integer
[ such that
-1 S Min(ag, bg) Zf ag # bg

—l < ag=0by=w/2 otherwise.

Then the L-serie£ (1, s) has a zero of order 1 at = —1, (i.e. ords—_;L(1p4, s) = 1).
Moreover, there exist an elemeftin H'y;™ (Myg, Q(w + 1 + 1)), such that
rp(§o) = slin_lz Tsr mod Ty

in the free rank ondy ® R-moduleH % (Mg, R(w + 1)), whereny is a Ty-generator of
HE (Moc, Q(w +1)).

Let’s recall the construction &, following the results of Deninger. We suppose once
for all that! > 0.

Fix an algebraic differential forny € H°(FE, Qg /). Since we have complex multipli-
cation, we can write the period lattice Bs= 20, where(2 € C* is the complex period.
Fix an elementy in H,(E(C), Z) such that it is arO x -generator, and satisfies

Q:/w.
¥

By Poincaé duality, we have that corresponds tg,, anO x-generator forf ! (E(C), Z(1)).
Thusn,®o0, Ok [1/Dk]is anOk[1/Dk]-generator for the modul! (E(C), Z(1))®o,
Ok [1/Dk] which by abuse of notation we call alg§g. Consider now th&y-generator

N = (27ri)leg(®“’n7)
of Hg(]\/fgc,Z(w + l)) ROk OK[l/DK].

To constructty, we will define a divisor on the torsion points of the elliptic curve; its
image by the composition of the Eisenstein ndap ( [7, §8]) with the Deninger projector
map/Crq ([8, (2.8)]) will define ourgy.

Remember thafy is the conductor of the Hecke characterassociated with\/y, and
denote byf a generator ofy (it exists since:l(K) = 1). We have that

Qf tef,'T

and that(Qf~!) gives a divisor inZ[E[fy] \ 0] defined overK (E[fy]). Sincef is the
conductor ofyy andfy|f, the divisor(Qf~!) is defined also oveK (E[f]). We will define
our divisor as
Bo = Ny, (1),
Denote bypy a finite ictle such thatpg) = §y andv, (f~* — ,o,jl) > 0forallp | fo.
If ap # by mod|O7,|, we obtain that ( [8, p.142,(2.11)])

1127 \Nijolg Mo (pe) ()

(20 + w)!Nge/q(fo) + @ (fo)
where®(m) := |(Og /m)*| for any idealm of Og.

This is an analog foMy(w + [ + 1) of [22, thm.1.2.2], which corresponds to the case
RYE)(1+141).

Theorem 3.2(Deninger,§2 [8]) Suppose thaty # by mod(#0O7.) and thatag, by, !
satisfy the hypothesis of the theorem 3.1 with0. Define, by using the previous notation,

o, =

rp(KmEm(Be)) = (—1) L' (o, —1)g,
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(21 + w)! Ly (tpg, —1) 1 ®(f5)
2= N jofbibe (pe) @ ()

whereL,(1y, s) is the product of the Euler factors for the primesfofabovep.
Then

(-t Ko &34 (Be) € Hiy (Mag, Q(w + 1 + 1)),

T'D(ge,l) = Lz’(%v _l)69(®wn’y)7
whereS are the primes of that dividefyp. Here L (1, —1) = EzmoLS(%’ s)/(s+1).

Definition 3.3 Foray # by mod #0073, ) we define
Ro := £9,10k.

Remark 3.4 Theorem 1.4.1 [8] is more general because it includes the situatien
bg mod(#07%). But in this situation, Deninger defines a diviséy instead of3y which
is not a norm of a positive divisor and moreover it contains the zero poiht athus the
techniques for constructing an Euler systeny®ican not be applied in this case (see for
example Theorem 5.1).

As a consequence of Theorem 3.2, we have that our subm&duwerifies some inte-
gral version of the Beilinson conjecture for the moti& (w + [ + 1).

Theorem 3.5 The Ok -submoduleRy of Hi ! (Mg, Q(w + [ + 1)) satisfies that

deto,(1/px)(TD(Ro ®o, Ok[1/Dk])) =

Lo, —)deto 1)py) (Hi (Mg, Z(w + 1)) @0, Ok [1/Dx])
indeto,[1/pxjer((HE (Moc, Z(w + 1)) @0, Ok[1/Dk]) @ R).
Proof. Observing thatyy is aOy-base for the fre€y-module
Hp(Mog xk C,Z(w +1)) ®o, Ok[1/Dk]
of rank one, the result follows. O
Corollary 3.6 The submodul®, defined above satisfies the Beilinson conjecture in-

side thep-part of the Tamagawa number conjecture fot Dy, that isRy satisfies the
following conditions:

(1) The mapp ® Ris aisomorphism when restricted &y ® R.
(2) dimQ(Hg’(Mgc, Q(w + l))) = O’I“dsz_lLs(MgQ, S) = 2.
(3) We have the following equality

rp(detzp/p,)(Ro ®o, Ok[1/Dk])) =
Ls(Mog, —l)detz)1/p, ) (Hp (Mo, Z(w + 1)) ®o, Ok[1/D])
whereL§ (Mpg, —1) means)liml L5(Myg, s)/(s+1)? (this makes sense by using

theorem 2.4 and theorem 3.1).

Proof. The first and the second conditions are clear for the dimensions of the spaces
involved in the Deligne regulator map, and the theorem 3.5. The third condition comes
from the previous theorem using the fact that, if we multiplfanmodule with an element
L%, —1) in Oy ® R, the determinant is multiplied by the norm

Using theorem 2.4, we obtain that this is equaltp(Mag, —{). O
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4. |[WASAWA THEORY

We suppose once and for all that # 07, andp t Nk /q(f), (in particularp { D).
To simplify the notation, we will denote in the following by

Moz, (w+1+1) = eg(@" (HY(E xx K,Zy(1)))(I + 1)

the p-adic lattice for thep-adic realization of\fy (w + 1 + 1).
Let K,, :== K(E[p™™!]) be the field of definition of the™!-torsion points ofE, O,
its ring of integers and lek, := lim K,, be its direct limit. Denote by),, the ring of

integers ofK,, (respectivelyO.,). We know thatA := Gal(K,/K) has order prime tp
andl’ := Gal(K /Ky) is isomorphic tdZ?.

Let G be the Galois groufFal(K../K); thenG = A x T.

We use now the notations on lwasawa theory for imaginary quadratic fields used in [22,
§2.1] but with a different definition of elliptic units.

Let us define the elliptic units,, 5, in K,, which are more convenient for us.

For every ideah of K prime to6 we can define a theta function
0a : E\ ker(Ja])) — C

which has divisotV (a)(e) — ker([a]) (for the precise definition see [22, Theorem 4.2.2]).
The functioné,(z) is in fact a 12-th root of the function defined in [9, 11.2.4]. Lgbe

a fixed ideal ofOk such thatO3 — (Ox/g)* is injective, and suppose thatdivides
the conductof of the elliptic curveE. Let’s denote by, a generator for thé&[g]-torsion
points asD x-module, and let be an ideal prime tég.

Definition 4.1 Let C,, 4 be the subgroup of units generated o¥éFal (K, /K)] by
1T 0a(t5 + hn),

c€Gal(K(g)/K)

wherea runs through all ideals prime pf, K(g) is the ray class field defined kyand
hy, is a primitivep™*!-torsion point (i.e. a generator of th&*!-torsion points ofE as
Ox-module). Define the group of elliptic units &f,, as

Cnag = MOO(Kn)Cn,ga

whereu, (K,,) denotes the roots of unity if;,.

Denote byC,, , the closure in the local unitg? wherel{?, is the group of local units
of K, ®x K, which are congruent to 1 modulo the primes abpweherep is a prime of
K abovep. DefineCu 4 := limCy ¢, andiff, := limu} where the limit is taken with

respect to the norm maps. Define al&g by 2/° x U¥_ if p = pp* splits, and ifp inert or
ramified byl/?,. Let Y, be thep-adic completion of K, ® Q,)* andY := liin Y.

Let us once and for all to specialize the elliptic unitgite: f.

Recall thatS denotes the set of primes &f which dividef, or p, and thatS’ denotes
the set of primes o which dividep or the conductof of the elliptic curveE. Denote
Og := 0k[1/5] and(’)p = Og ® Zp.

We are going to define a map in the spirit of Saul

(Soul), : Coojy ®z, Moz, (w+1) — H' (Og, Moz, (w + 1 + 1)),

observe thab/yy, (w + 1) is unramified outsidé, thusH* (O, Mgz, (w + 1 + 1)) makes
sense.
Using the definition ofVyz (w)(l + 1), we have that

H'(Os, Mgz, (w+1+1)) = lim H'(Os, (ep " E[p"])(1 +1)).
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Define (Soul), in the following way. Given(é,), a norm compatible system of elliptic
units and an elemerft,.),. of lim(eg(®@* E[p" 1)) (1), we define

(SOUl)p((GT ® tr)r) = (NKT-/K(QT 02y tr))r-

Itis well defined:d, ® t, is an element in
055 /(O5) @ (ea(@“E[p ™)) (1) € HY(Oy5, (eo(@“ E[p"1)))(1 + 1))

whereO,. s is O,.[1/5] the ring of integers of<,. inverting the primes abovs, N, /x
denotes the norm map in cohomology and by 8@ulemma 1.4 [26] one gets an element
in H'(Og, Mgz, (w+ 1+ 1)). The map(Soul), factors thought the coinvariants, denoted

by (C:X),fe (29 Mgzp (U) + l))g
Definition 4.2 The Soué elliptic elements are the elements in the image of the map
(Soul), : (Cos,i, ® Moz, (w+1))g — H'(Os, Mpz, (w+1+1))
whereG = Gal(K (E[p™])/K).
We consider in the following the representatipof the groupA given by the action of
A'in Home, (Moz, (w +1),0,).

We are only able to apply the techniques on lwasawa theory of [22] for certain repre-
sentations that we call good representation.

Definition 4.3 We say that such representatigrof the groupA is a good representa-
tion if it satisfies two conditions in Iwasawa theory about isomorphism between some con-
crete lwasawa modules: (A) the lwasawa main conjecture of Rubin [22, Theorem 2.1.3]
but replacing the elliptic units module there with the elliptic module Lﬁﬁ§f9 and (B)
from the inclusiori/,, C V. we getthat/X = VX as lwasawa modules for the lwasawa
ring liian[[Gal(Kn/K)]]X.

We observe that the elliptic units, ;, which are the ones that appear in [25] and [22],
satisfies the theorem of lwasawa main conjecture of [24] for amgpresentation under
the hypothesis of the theorem in [24] (personal communication of Rubin).

WhenS = S’ we haveC. s, = Coo s [9, Proposition 11.2.5], therefore the lwasawa
main conjecture (condition (A)) is true from Rubin’s theorem [24] [25]#@plits and for
p inert wheny is non trivial on the decomposition group, of p in A.

Condition (B) is always true ip splits [22, Lemma 2.1.6]. Ip is inert or ramified,
the representatioy satisfies condition (B) iZ,[A/A, X = 0 (see [22, lemma 2.1.6]),
moreover becauseis a prime over whichZ has good reduction we have, = A [22,
Lemma 2.2.9], thus condition (B) is trueyfis non-trivial.

Remark 4.4 We guess that the lwasawa main conjecture [22, Theorem 2.1.3] is also
true without the conditiors = S’ for our elliptic units and our character, so such a
character should be good if it just verify condition (B). In the next section we prove that
@fovfe is a rank 1 lwasawa module and we construct an Euler system there. Using this

and [9, Lemma 111.1.10], it should be possible to prove the lwasawa main conjectuye for
using the techniques in [25].

Lemma 4.5 Suppose thapy has infinite typdag, bg) with ap #Z by mod@#O%,). Sup-
pose also thap splits, and that{ay — byp,p — 1) = 1. ThenS = 5.

Proof. Let v be a prime ofK dividing f. Letvy be a prime ofK, dividing v. Denote
by A,, the stabilizer ofyy in K,. We have then that,, C A,, C A acts non-trivially
in the Tate moduld, F via the Hecke character,. Hence,l,,, acts oney(®"1,E) via
Yop L, = <pg"*b9, asl,, lies in the kernel of the-adic cyclotomic character s prime
to p). Sincep splits, we have thagt A = (p — 1)2, and sinc€ay — bg,p — 1) = 1, @5949
acts non-trivial ort,,, . O
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Lemma 4.6 Suppose thap splits in K and suppose that — 1 { ag + 1+ 10r p —
1tbg+1+10orp—11ag— by. Theny, asA-representation, is not the cyclotomic
representation.

Proof. The characte is equal to(v,«') ~! wheres is the cyclotomic character. Since
p is split in K, we have thap = pp*, with p # p*. Let A, be the Galois group
Gal(K(E[p])/K); it is a subgroup of the decomposition group simces totally ram-
ified in A,. Observe thatVyz, has multiplication isomorphic t®x ® Z, and, asp
splits, it decomposes in two idempotents. These idempotents decompose the Hecke char-
acteryy, = o, ® vo,, see [12] for more details. It is known that, [», = "

(see for example [1%2.5]), so we get that our character is different franas long as
#A, =p—11bg+ 1+ 1, sincex is a generator for the character groupf.

Using the same kind of argument fpt instead ofp we obtain a similar divisibility
result but withay instead ofby. Thus, we obtain the cyclotomic character only in the case
thatp —1|ap+1+1andp—1]|byp+1+ 1.

Similar argument fo@m, we obtain the same simultaneous arithmetic conditions, i.e.
p—1|l+bg + 1 andp — 1]ag + 1 + 1 in order to obtain the cyclotomic character. We refer
to [13, p.220,pp.223-234] for more details on the charaatersandyq, . O

Next theorem is the analog of [22, Theorem 2.2.12] in our situation.

Theorem 4.7 Suppose thap is an odd prime, prime t&Vg of and to#07.. Let the
A-representationy on Homo, (Myz,(w + 1), 0,) be a good representation. Then the
map(Soul), induces an isomorphism 61,-modules

detop((é);o)fe ®OP MQZP (w + l)) ®Eé)p[[r]] Op) = detop (RF(OS, M@Zp (w + l =+ 1)))_1

Proof. In order to prove the theorem one can follow the same steps as in the proof
of [22, Theorem 2.2.12], but witlVyz, (w) instead ofl,, E. The only results that need
some work are [22, Proposition 2.2.13] and [22, Lemma 2.2.16] (s¢§8 /) for a detailed
proof). We will show next the necessary steps to prove these two results.

Let us prove the analog of [22, Proposition 2.2.13]:

deto, (RT(G, H* (Ko ® Qp, Moz, (w+1+1)"))*) 2 O,
and
deto, (RI(G, H*(Ou,s,, Moz, (w + 1+ 1)))*) = O,

whereM' denotes{omo, (M, O, ® Q,/Z,(1)) andM* = Homo, (M, 0, @ Q,/Z,).

It follows from [12, prop. 2.4.6], that the action Gfon Mz, (w+1) is via the character

@0,1) : g - (09 ®Zp)*v

multiplied by thel-th power of thep-adic cyclotomic character.

Then it induces a surjection @?,-modulesp : O,[[I']] — Mz, (w + I) by the action
described above. Thug:r(p) is an ideal of height 2 becaufex Z;i. We know thatlet g
is determined by the ideals of height 1 for the riRg(cf. [19, 2.1.4]). We are going to
show that this implies that
(1)  deto,(Moz,(w+1) @6 161 Op) = Op.
In fact, sinceA is finite andG = T" x A, we have the isomorphism

MQZP(’LU + l) ®Hép[[g]] 0, = (_]\49217 (U) + l))A ®]I(‘9p[[p]] Op.

Since we know thaker(p) has height 2, we have thdtte iy ((Mez, (w +1))a) =
O,[[I'] and sadeto, ((Myz, (w +1))a ®L0p[[F]] 0,) = O,. This shows (1). We conclude
by using [22, Lemma 2.2.6].

Now, we show the analog of [22, Lemma 2.2.16]: the restriction map induces isomor-
phisms

deto, (H*(A, RT(Oq,s,, Moz, (w + 1 4 1))) =
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deto, (H°(A, RT(Og,s, Moz, (w + 1 +1)))) = deto, (RT(Os, Maz, (w + 1+ 1))).
To show this consider the exact triangle

RF(OO,SPa M(;ZP (w + 1+ 1)) — RF(Ooys, M(’Zp (w +1+ 1))

— Buges\S, Bl k() (Ov, Moz, (w +1))[1]
whereO,, is the local ring aty and.S,, is the set of places that divide Sincel,E is

unramified at the places df, in S \ S, the same is true fotg(T,E)(I + 1). By the
purity theorems iretale cohomology we have that

Rk (v0) (Ouy, Moz, (w + 1+ 1)) = RT(k(vo), Moz, (w + 1))[-2].
It remains to prove only that
H°(A, ®yyes\s, BT (k(vo), Moz, (w + 1)) = 0.
To show this result, observe that

.[‘I1 (k(UQ), MQZP (w + Z)) = MQZP (’LU + l)Gal(m/k(vo))

andH° (k(vg), Myz, (w + 1)) = 0 because-w — 21 < —3.

Now, let vy be a prime ofK, dividing v a prime of K with v|f, and letA,, be
the stabilizer ofv,. Sincel,, C A,, acts non trivially on the coinvariant®lyz, (w +
l)Gaz(W/k(vo)) becausey | fy, there are no fix elements. O

5. THE COMPARISON BETWEEN THE MAPr, AND (Soul)p IN THE CONSTRUCTIBLE
K-ELEMENTS

Let’s start recalling the result of Kings on the specialization of the elliptic polylogarithm
sheaf, which is an important key in his proof of the Tamagawa number conjecture.

Let £/ be an elliptic curve over a base schemend denote by : £ — T the structural
morphism, which is proper and smooth. Consitle= F \ e, wheree is the zero section
of E. Consider the elliptic polylogarithm sheBblg, onU, which is a lisse pro-sheaf (i.e.

a projective limits of lisse sheaves) [23.2].

Let Hg, := Hom,(R'T.Q,,Q,). Using Polg, one defines the-adic Eisenstein
classes associated to any integeand anyM-torsion pointt in E different frome as
some elements il (7, SymkHQp). The definition is extended by linearity to any divisor
supported on\/-torsion points ( [22, Def. 3.5.9]). The main part of the result of Kings is
the explicit computation of these Eisenstein classes.

We are going to explain this result. Considgéy, := ker[p"] as a scheme ovér. Let
us consider the map multiplication by, p,, : E, — E, whereE,, is the elliptic curve
E overT considered as &l,,-torsor overE. Consider the characteristic groufH,,] :=
ker(pn «Z — Z), which is the characteristic group of a torllg, . In this situation we
have the connecting mayfrom the Kummer exact sequence:

2  6:H°H,, Ty,) — H' (H,,Tu,[p")).
Using this connecting morphism, we can express the Eisenstein classes explicitly.

Theorem 5.1(Kings, theorem 4.2.9 in [22]Letp be a prime number, and If be an
elliptic curve over a base scherfiewherep is invertible.
Let 8 be any divisor inE of the form

5 = Z nt(t)7
te E[M](T)\e

n; an integer and considdn] : E — E any isogeny with degree prime idp.
Then, for anym > 0, thep-adic Eisenstein class

Na(a®"Na —1)(8*Polg,)™ € H'(T, Sym™Hg, (1))
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is given by
1 ~®m
£ (0 S Y bt n
teE[M](T)\e  [p"]tn=t

wheret,, is the projection of,, to E[p"] and¢ is the Sym-extension of the boundary map
H°(H,,Ty,) — H*(H,,Ty,[p"]) whereH,, := ker[p"] is considered as a scheme over
T andTy, is the torus with character group[H,,| := ker(pn «Z — Z).

The following result relates the image 8§ (3) by the Soud regulator map with the
polylogarithmic sheaf, wher€}, is the Eisenstein symbol [22]1.2.1].

Theorem 5.2 Under the same hypothesis of Theorem 5.13lée as in the previous
theorem. Then

rp(EXA(B)) = —M*™ (8" Polg, )™
in H(T, Sym™Hg, (1)).

Proof. The same proof of [22, Theorem 1.2.5] with instead of2k + 1 works. See
also [2, proof Theorem 3.5.2]. O

We are going to apply these results to the divipr= Nk () ((t)), wheret := Qf !
is afg-torsion point. TakeVl = Ng ofg, m = w + 21, T = Os andHg, = T,F ® Q),
using the notations of the theorem 5.1. het Ok be an ideal prime t6pf, and consider
the isogeny given by(a). Letd, be the classical theta function.

To simplify the notation, define for anty € E[p”]

V(B =< By SO
where<, > denotes the Weil pairing. Our objective is the computation of

Kp 0 EH(Be).

Remember that we are under the restrictigr by mod(#07% ).
We consider the following commutative diagram [8, (2.8)]

(Aca)! xid)™

]J/Q\?ruﬂrl(Sy,rnQH—u)hlE,Q(w+2l+ 1)) M) Hift+w+1(El+w,Q(2l+w+ 1))
Ko | L pr.
Hi (Mog, Q(w + 1+ 1)) S EEME)E,QU 4w+ 1),

wherepr is the projection in the last components anth¢,, : E — E x E is given by
e — (e, vdie). We obtain a map in Galois conomology given by

H'(Os, Sym™* " Hg, (1)) —
H'(Os, (esSym™Hag, )(l + 1)) = H'(Os, Myq, (w + 1 + 1))
such that
K a(pp(@) 20 Sym® 0 Hg, (1)) = eg(@“pp(a)) Na' Sym“Hg, (1 + 1).

Theorem 5.3 Letp be a prime number such that 6 N /o (f). Letd be an idempotent
with infinity type(ag, bg) whichas # by mod (#O% ). For ap” Nk q(fe)-torsion point
t,, denote by, its projection toE[p"]. Then, ift = Qf ', we have the following equality

Na (zbg,p(a)Nal“ — 1) Tp(fgyl) =

1
-1 sz " 1 -1p \ 3l+2w g, > . -
L (w;l—lzie(pe)Té/ge o) ~( ONk()/K fa(—tr) ® o (@"&) ® (&)’

prtp=t
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Proof. Using theorems 3.5, 5.1 and 5.2, we have that
(=112 + W)Ly (g, —1) " @ (fo)

_ 2l+w
) N e E )
_ (_I)Z(ZZ + w)!Lp(aea _l)_lNTe/QTgHQw‘I)(fG) ’CM (ﬁ*POZQp)w+2l.

21=14hg(pe) ()

We have that -
Km (tr ) = 69(®wtr) ® ’Y(tr)l-

Finally, applying Kings’ theorem 5.1, we obtain the desired identity. d

We want to rewrite the previous formula in terms of the norm map of the extension
K (fo)K (E[p™])/ K. We will work with § instead of since then we can use that( E[p™f]) =
K (p™f), the ray class field, becaugis the conductor of and divides the idegh™ ([9, I,

Prop.1.6]).
Fix a primep of K whereE has good reduction, and take= ¢(p). Denote by

Hf,t = {t, € E[p"f]|n"t, = t}.
Let o, be the Frobenius at in Gal(K (f)/K), we writet, = (t,,7"t) € E[p"f] =
E[p"] ® E[f], wherer—"t meang”» .
Consider the filtration off? ; defined by

Fi, = {t, € H |x" ', = 0}.

Theorem 5.4 Let p be as above and, = (t,,7"t) € F°, \ Fl,. Suppose that
O3 — (Ok/fe)* is injective. Denote the Euler factor of the Hecke charagatgrat p
evaluated at-1 by L, (19, —1). Then

Lp(ag,fl)71 (NK(]‘)/K Z F)a(sr)®eg(®wé})®fy(,§})l> =

P
sp€H) r

(Ni /i (Ba(—tr) © eg(@“t,) @ v(t,)"))s
in H'(Og, e9(T, E(1))(I) ® Q) for all a relatively prime tapf.
Proof. The identificationdomo, (1, E,0,) = T,E(—1) is via the conjugate linear
O,-action on the right side. Henegp)t, = t,_;. We have the equality
(Wo(p)/No ™) Nic(priy i (pr—11) (Ba(—tr) @ €9(2"8) @ (E,)') =

—i

Ny pr—) (Ba(—tr) ® €0(2"0(p) 1) © 7(2(p) t
(Nicpry/xpr=ip) (Oa(=tr))) © ea(@tr—i) ©y(tr—1)
Oa(—(tr—s, ™7 1)) @ €g(@"tr—3) @ (i),
where the last equality uses the distribution relatiorvfo¢ [9, 11 2.5]). '
The Galois group of< (p”~f)/ K (f) acts simply transitively or}’ , \ Fr"fgl. We get
that

) =
) =

-~ 3

(Yo (P) /NP ) Nic(oriy /i () (Ba(—tr) @ eg(@“t,) @ (t,)) =
Z O (—(tr—i, ™ 771)) ® eg (@ tr—s) @ Y(tr—s)".
tr—ieFi‘t\Frijl

We know by [9, Prop. 11.2.4.ii)] that we have the equality — (£, _;, 7~ "t)) = 0a(—(t,—s, 7~ "t))%>
with o, is the Frobenius atin the Galois group oK (f) /K. This and the fact thaVx (s /x
is the sum over all Galois translates, which act triviallyt/pﬂ, gives that

(W/Npil)iNK(pr)/K(aa(_tf) ® 69(®wt~7‘) ® 'V(t:)l) =
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Nk (s)/x Z Oa(—(tr—s, 7 "t)) ® eg(®"tr—;) @ Y(tr—i)' | |

tr— i €F N\NFIH!

Adding these equalities with respecttand increasing if necessary we get the result]

Lemma 5.5 Suppose that has infinity typgw, 0) or (0, w) and (#0%,w) = 1. Then

Ok — (O /fo)"

is injective.

Proof. Let u be and element i@}, u # 1 and consider the &le defined byr,, = 1
andz, = wu at all finite places of K. Then as complex Hecke charactgf (z) =
e¥(umlz) = u¥ # 1if (w, #0%) = 1. So, by definition of the conductor af, we

obtain thatu # 1(mod fy), hence the result for the tydev, 0). For the type(0, w) the
proof is similar but withp instead ofp. d

Corollary 5.6 Suppose { 6Nk o (f), Ok — (Ok/fe)* is injective and the hypothesis
of theorem 5.3. Then

Na(vop(a)Na' T — 1)ry(8o) =
Nk o(fa)? T2 ®(fg)
2114y (pe) ()

Ni (f9)3l+2w wi g
7231%(/)9) -8 (N (mpr K (50)/K0a(—tr) @ eo(@) @ 7(E:)"),

wheret,. is a primitivep”fy-torsion point withp”t,. = ¢ anda is relative prime topf.

8 (Nk (e /Kba(—t) @ ep(2) @ y(8)"), =

Proof. If pis inert or prime the first equality is deduced from the previous theorem. If
p split, it decomposes in@part and g* part. Putting together the previous result with
and withp*, we have the first equality.

To show the second equality, consider

Nk (B ) K()/K(Ep)K (o) a(—tr) =

11 Oa(—t,)°
o€Gal(K(H)K(E[p]) K (p7)/ K (fo) K (E[pT) K(p7))
becauseX () is disjoint with K (p") over K sinceK = K(1), andK(f) = K(E[f]) is
disjoint with K(E[p"]) over K. Moreover, sincd,(—t,) € K(f)K(p") = K(fp") and
(f,p) = 1, we have that the norm is equal to

H ea(_tr)T'

TEGal(K (fp")/K (fop™))

Butf,(—t.) € K(fop") because-t, is a point offyp”-torsion. To obtain the second equal-

ity we need to show thaf ) # (Gal (K () / K (1)) is one. We havé\le) 4(Gal(K (f)/ K (fs))) =

B(fo) [K(D:K ()] i i i ) K@) _ o) 2D
o) [K(/,)R() We arein Galois extensions. Observet%% RUSED] = 20 @(fe)%

wherewg are the roots of unity ofX and w,, are the roots of unit of0} congru-
ent to 1 modulom, by class field theory (see [9, p.36]). And is equal to one because
0O* — (Og/m)* is injective form = f, by hypothesis, and fom = f (Lemma 5.5
or [25, Corollary 5.9]). O

Now we want to show that the elements
(N K (o) Ka(tr) @ eg(@E:) @ v(tr)")s

generatgC, ® Myz, (w + 1))r, wherea is prime to6pf andy is the representation ak
on Homo, (Myz, (w + 1), 0,), that we suppose a good representation.
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We suppose from now on that the natural ni&jp — (O /fg)* is injective, assumption
also needed to define our elliptic units.

Proposition 5.7 Considerp { 6N o(f) anda an ideal inO,, which is prime ta6pf
and such thaty ,(a) Na*! # 1(mod p). Then theD,[[I']]-module
Che i, ®0, Moz, (w+1)

is generated byf, (t,) ® es(@™t,) @ y(t,)!),, wheret, is a primitivep”f-division point.

Remark 5.8 The existence of an idealsatisfying the conditions of the proposition 5.7
is equivalent to the condition that tlie-representatiory is not the cyclotomic representa-
tion.

Proof. Observe first thaty (t,) @~(t,.) generateddyz, (w+1), becausédlyz, (w) is one
dimensional and concerning how it generdg$l) use the same proof did in [22, p.623].
Remember that we have an inclusiorﬁ{)f&m in U, the local units Iwasawa module,

which is torsion free [25, Prop.11.4], thﬁéo’fs is atorsion free), [[T']]-module. Is enough
to show that is one dimensional. Liebe another ideal prime &f. Takeo, = [a, K,/ K]
ando, = [b, K,,/K]. Then, by the properties of the theta function, we have that

(O'a - ¢0,p(a)Nal+l)(9b (fn) ® 69(®wt~n) ® 7({{”)1) =
Yo.p(@)Na! (G (tn)7 N © eg(@1n) ©7(tn)") =

Yo.p(@)Na' (0a(tn) ™™V @ eg(2"1n) @ 7(tn)").

Then, itis enough show thét, — 1y ,(a) Na! 1) is invertible inO, [[T']]. But the element
o, corresponds to 1 0@, /p and thuso, — 1 (a) Na!t1 is invertible inO,[[I']] because
1 # g(a)Na*t mod p. O

Corollary 5.9 Assume that { 6N qf. Then the image d® by, in the cohomology
group H'(Os, Mgz, (w + 1 + 1)) ® Q, coincides with

(Soul)p(@:c% ® Moz, (w +1))r).
Proof. As

N3+ /21 g (py)
is prime top, it follows from the definition of Soul),, and Corollary 5.6. O

Lemma 5.10 The canonical map
(éoo,fg ®MOZP (w+l))®ﬂép[[g” Op — (600_}9 ®Mgzp <w+l))g = (@§07f9 ®M92p (w+l))p
is an isomorphism and moreov@fo,fe ® Mpz,(w +1))r = O,.

Proof. We observe that the proof of proposition 5.7 shows@igtfe = Op[[I'] isafree

O,[[I']]-module of rank 1. This implies, as in [22, lemma 5.2.3], tﬁ}é:g,fe ® Moz, (w +
1))r = O,. The claim follows since the previous module is induced and hence the higher
Tor-terms vanish. O

Corollary 5.11 The map
Ry ® L, — RI'(Os, Mgz, (w+1+1) @ Q,)[1]
induced by, gives an isomorphism

deto, Ry = deto, RT'(Os, Moz, (w+1+ 1))
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Before stating the next theorem, let us recall all the hypothesis we used during the paper
and that we will need:
(0 0 ©) Let p be a fix prime such that { 6Nk qf (hence, in particulap { (#07%), and
p 1 D). Considerl a non-negative integer. Létig, by) be the infinite type of)y, with
ag, bg non-negative integers with = ay + by > 1 such thatay # by mod(#O3)
and—w — 2l < —3. Assume tha;, — (Ok/fg)* is injective. Suppose moreover
that the representation of A in Homo, (H%(My x g K,Z,(w + 1)),0,) is a good
representation (see the definition in 4.3) which is not equahagpresentation to the
cyclotomic representation.

Theorem 5.12 Under the hypothesi® ¢ ¢) above, there is a0 i -submoduleRy C
HYH (Mg, Q(w + 1 + 1)) of rank 1 such that:

(1) detoy(1/py)(rp(Ro ®o, Ok[1/Dk])) =
L5y, —l)deto, 1 /p ) (Hp (Moc, Z(w + 1)) ®o, Ox[1/Dk])
indeto,.1/pxer(Hp (Moc, Z(w + 1)) ®o, Ok[1/Dk] @ R).
(2) The mapr, induces an isomorphism
detOK@)Zp (Rg) = detoK®Zp (RF(OK[:[/SL M@Zp (U) + 1+ 1))_1.

Here

* (T I T LS(%O"S)
L5, 1) = lim =240,

and S is the set of primes ok dividing p and the ones dividing.
Moreover, ifr, is injective orRy, the second part can be written as

deto,cgz, (H' (Ok([1/S], Moz, (w + 1+ 1)) /rp(Re)) =
detOK®ZpH2(OK[1/S]> Mgzp(w +1+ 1))
Proof. Itis a direct consequence of the theorem 3.5 and the above corollary 5.11.

After taking the normV q, we obtain the following result.

Theorem 5.13 Under the assumptiofe ¢ ¢) above, there is &-submoduleRy in
HYH (Mg, Q(w + 1 + 1)) of rank 2 such that:

(1) The mapp ® R is an isomorphism restricted 8y ® R.
(2) dimQ(Hg(Mgc, Q(w + l))) = OT‘dS:,lLs(M()Q, 8) = 2.
(3) We have the equality
rp(detzp/p,(Ro ®o, Ok[1/Dk])) =
Ls(Meq, —l)detzp p, (HE (Moc, Z(w + 1)) ®o, Ok[1/Dk])

where Le(M )
* I AT S 0Q, S
L5(Mog, =1) = lim ===
andS is the set of places df that dividesg and the places dividing the conductor
fo-

(4) We have that
detzp (Ra (%9 Zp) = deth (RF(OK[l/S], Mgzp (w +1+ 1)))71.
If r, is injective onRy, thenr,(detz,(Ry ® Z,)) is a basis of theZ.,-lattice
detz, (RT(OkI1/5], Moz, (w+1+ 1)))71
C detg, (RT'(Ok[1/S], Mgz, (w + 1 + 1) ® Q)[-1]).
Remark 5.14 Theorems 5.12 and 5.13 imply the weapart of the Tamagawa number
conjecture for Hecke characters [19] far or Q coefficients respectively, up to the finite-

ness ofH? := H?*(O[1/5], Mgz, (w + 1 + 1)) and the bijectively of the Soélregulator
mapr,. Concerning these requirements, we have the following.



TAMAGAWA NUMBER CONJECTURE FOR HECKE CHARACTERS 17

(1) If pis a regular prime for the field<(E[p]), then H_ is finite [3]. Moreover
without any assumption, one obtains that for almost #iis Galois cohomology
group is finite [21, Theorem 12.4] or [4].

(2) About the bijectively of the So@élregulator map observe Hg is finite, similar
arguments as in [225.2.2] implies the injectivity fof.Soul),, and therefore:,, is
injective onRy @ Q, by corollary 5.9. Therefore, restricted toRy ® Q,, is an
isomorphism [18, cor. 1].

Therefore for regular primes, we obtain in full generality the weghkpart of the Tama-
gawa number conjecture for Hecke characters of imaginary quadratic fields.

6. THE REMAINING TATE TWISTS

6.1. The remaining non-critical twists. The value of the_-function at zero folMy (w +
[+ 1) with —w — 2l < —2 is related with the first non-zero coefficient of the Taylor
development at-1 of the L-function associated tg, by the use of the functional equation
of L-functions. The non-critical values associated to the Hecke charagt@ve restrict

to the situatioruy # bg(mod|O7x|)) are the integergsuch that-I < min(ag, bg) where
ag, by are associated to the Hecke charagtg(see [8, Theorem 1.4.1])

The general formulation of the Tamagawa number conjecture at the non-critical values
following [19] assumesy + [ + 1 > w [19, Conjecture 2.2.7] because then one avoids the
poles in the bad Euler factors, and therefore the assumptiod. But, for My(w +1+1),
there are no poles in the bad Euler factors, see Remark 2.5. Thus, we can expect to study
the Tamagawa number conjecture fer 0 by using only the regulators maps.

In this section we construct elementshitheory for My(w + 1 + 1) with 0 < —1 <
min(ag, bg) and we study the image of these elements by the Beilinson regulator map and
the Soué regulator map, obtaining the wepdpart of the Tamagawa number conjecture.

Deninger [8, pp.142-144] already constructed element& itheory for the motive
My(w + 1 + 1) with I < 0 non-critical and obtains their image by the Beilinson regu-
lator map, proving the Beilinson conjecture. He constructed these elemektghiaory
by use of a projector mag ,, without using complex multiplication. The problem of his
construction is that the Weil pairing appearingito aE[p"]-torsion pointt,., y(t,) =<
t,,t, > is trivial and the arguments through does not generalize in order to construct
an Euler system to control the image by the 8awlgulator map. We modify Deninger’s
projector map byC'y , (we use now complex multiplication), and we construct the elements
in K-theory usingC’, ; and we reobtain Beilinson’s conjecture. With this modification the
arguments in the-part of the weak Tamagawa number conjecture, i.e. the image by the
Souk regulator map of thed&-theory element§4,85, apply straightforward obtaining the
weakp-part of the Tamagawa number conjectureifer 0, Theorems 6.3, 6.4.

6.2. Modification of Deninger’s projector map. Beilinson conjecture revisited. Let us
fix w > 1 andl < 0 such that-w — 21 < =3 with 0 < —I < min(ag,by) and let us
consider the motiva{y (w+1+1). With the fixed embedding we have= (A1, ..., \y) €
Ok and setly = {i|\; € Homg(K,C)} andI; = {i|\; ¢ Homg(K,C)} and we have
now that0 < |I| < #I, = ap and0 < |l| < #I, = by, where]l| is the absolute
value. Denote byA = id' x id?> : E — E x E the diagonal map and by =
idbCM % id>M . EB — E x E given bye — (e, (v/dg)e) where we understand
Vdx € End(E). Let us choose exacth|l| elements in the set§ and/,, denote their
in increasing ordety, ..., i, € Iy andjy,...,j; € I2. Let us define the projector map
pr: Evtl — Ewt2l py the projection of the first + 2/-components of£*+! and define
(id x Ally . gv+l — Ev (which it depends of the choice in the sdtsand I,) by
(€15 -y Cwtals Coot2it1s-- s Cuwtl) — (€ays---,€a, ) Wheree, is defined as follows:
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o if a, appears in one component of the set of tugles= { (i1, j1), ..., (i, 33) }
then
L { id* (ew+2l+m) Zf Qs =i
Ca, = . 9 . S,
° id (€w+2l+’m) Zf Qs = Im
e in the other case, then it is defined by, := e; with 1 < 72 < w + 2[ such that
as =1+ Y 1 where the sum runs the naturals that appear in some component of
the elements of. and which are lower than,.
We define the mapid x Al'l,,) similar as(id x Al'l) but replacingid’ by id"-CM.
The projector magC’, , is defined by the commutative diagram

H2FoH (Sym2 T B, Quw + 21 + 1)) 2 HELFe L (B2l Q21+ w + 1))

K | 1 (id x Al ).
HH (Mg, Q(w + 1+ 1)) s HYPH RN E)®™, QU +w + 1)).

Deninger defines a projector map, , with a similar diagram as for ouc’, , but replac-
ing the map(id x Al ). by the map(id x Alll),.
Let us choose the elementHiy," ' (Myg, Q(w + 1 + 1))

Yo := K& (N x (F 7)),

Wheregféﬁ“’ is the Eisenstein symbof, a generator ofy, 2 the period ofE and(Qf~1)
means the divisor iZ[E[f] \ 0].

The next result is a modification of Deninger’s result [8, pp.143-145].

Theorem 6.1 Supposey # bg mod(#O};) withag, by > 0,1 < 0, w = ag + by, With
—w — 2l < =3 and—I < min(ag, by). Define, up to sign,

(V) (20 + w)' Ly (P9, —1) "' ®(fo)
27 N jofgte(pe) @(f)

which belongs td7 ;" (Mpg, Q(w + I + 1)) whereL,, (g, —1) means the product of the

Euler factors of the primes aboyeof K at —! (is well defined by Remark 2.5), apgl is

the ickle of K" such that,(p;* — f~') > 0for q | fo andvg(pq) = 0 in the other primes
g. Then

o, =

0

ro(€o,1) = L5 (o, ~1)i,
whereS are the set of primes df that dividefgp, 19 is anO [1/ D k]-basis forH % (Myc, Z(w+

1)) @0y Ox[1/Drc] and Ly (g, —1) = lim, o L5822,

Proof. We will follow closely Deninger’'s papers [7] and [8], we follow also in this
proof his notation where his is our w + 2{. Deninger defines the elemegy; from

&M(Sf\ﬂfw(NK(E[f])/K((Qf‘l))) instead ofYy. We modify only the calculation in [8,
(2.13)Lemma] forlC’y , instead ofC , ;. One obtains (up to sign)

1 -
/ (&) —
Gy Jp PO N2
1
i n nt |
B, dr < n+ |l| _ |§| ) A(F) Cn4|l|—e|

see the calculation at the top of [7, p.63]. To precise the sgn we should control the chosen
order of the factors of the mapd x A'C”M), but for our interest is unnecessary. Then the

argument [8, p.143-144] applies in our situation obtaining,
rp(To) = toL* (Yg, —1)ne

PR 27 Ny gfh e (pe)®(F) : :
wherety is given by VT i )@ (fe) (up to sign). By Remark 2.5 we can introduce the

Euler factors abovg in the constant factar, obtaining the statement. O
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6.3. The weak Tamagawa number conjecture forl < 0. Following §3 we define for
l < 0 the constructible module by

Ro = £0,0kK,

whereéy ; is defined in theorem 6.1. Let us observe that with this notation we can follow
straightforward all the results and proofs§& and§4. In §5 we need to computg’, , o
EFH (N ey x (1)) We remember that we suppose once and for allffabD .
Denote bye = (tN,.),,A and element of the Tate modulg £ wheret, € E[p"] ap”-torsion
point for E.

Lemma 6.2 The realization on Galois cohomology of the projector ni&lp, has the

property, iy (5,7 ") = ¢4 (@) @ 4(f,)! where(f;) =< &, dxt, >.

Proof. Observe first that the projector mag, , is eg o (id x A'é'M)* opr*. Letus
taked, = (id x A'é‘M)* o pr* and observe that its transpose= pr, o (id x A‘é'M)*
is part of the definition ofCyy = eg o §* with [ := |I|] > 0 given at [22]. We want
only to study these projector maps on the Galois cohomology. Dendtéghythe étale
realization ofh! (E)(1) and observe that there is an isomorphiaf§) (1) = Hg,, since

(hYH(E)(1))* = hi(E)(=1) =2 hY(E)(1)(—1) = h(E). The maps* is given by
H'(Os, Sym® ™t (Hg,)(1)) — H'(Os, Sym®(Hg,) (L + 1)),

and because the map is the transpose for the mayj, up to Tate twist byw + [, it is
represented by global Tate duality by,

H'(Os, Sym™(Hg,)"(—1 - 1)(1)) — H'(Os, Sym**(Hg,)*(~1)(1))-
Is known [22] that

5 (lim(@22F,)) = lim((©2F,)7(F,))
write this equality also by* (22 +2) = (®@%wv)v(v)L. Take now the dual map b om(, Z,)
and with the identificatioff, E =~ Hom(T,E, Z,(1)), we obtain

(@*v(=1))7(v) " = @4 (1)
twisting now byw + [ we arrive to the definition foé, and,

3u(@%0) = (@2 o)y (v) 7

Now take this equality at level, w = w + 2, | = —[, and apply the idempotenry to
finish. O

After the lemma 6.2 all the results §6 and the proofs o5 follow straightforward
up to a power of 2 andg, (the reader could make these modifications which follow
only from our definition ofRy). Therefore we obtain the weakpart of the Tamagawa
number conjecture withi -coefficients and)-coefficients, under standard hypothesis from
Iwasawa theory for imaginary quadratic fields:

(***) Let p be a fix prime such that { 6Nk of. Suppose that)y has infinity type
(ag, be) With ag, by NON-negative integers, such that Z by mod(#0};) andw = ay +
by > 1 verifies—w — 21 < =3 with | < 0 and—I < min(ag, bg). Suppose thadj, —
(Ok /fo)* is injective. Suppose moreover that the representatioh Gal(K (E[p])/K)
in Homo, (H" (Mg x x K, Z,(w + 1)), 0,) is a good representation which is not equal
asA-representation to the cyclotomic representation.

Theorem 6.3 Assume hypothes€s*) . Then, there is a® x-submoduleRy C H 4
of rank 1 such that:
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(1) detoy1/py)(rp(Ro ®o, Ok[1/Dk])) =
LYy, —)deto, 11p ) (HE (Mo, Z(w + 1)) ®0, Ok [1/Dk])
in detoK[l/DK]@)R(Hlé)(Mg(c,Z(w + l)) R0 OK[]./DK] X R)
(2) The mapr, induces an isomorphism
deto, ez, (Ro) = deto, z, (RT(Ok[1/S], Moz, (w+ 1+ 1)) "
Here .
LSW{% S)

L5(thg, 1) = sli>n—1l87+l’

and S is the set of primes dk dividing p and the ones dividingy.
Moreover, ifr,, is injective onRy, the second part can be written as

deto ez, (H' (Ok[1/5], Moz, (w4 1+ 1)) /rp(Ra)) =

deto, oz, H*(Ok[1/S], Moz, (w + 1 + 1)).

Theorem 6.4 Suppose hypothesgs*) .
Then, there is &-submoduleRy in H 4 of rank 2 such that:

(1) The mapp ® R is an isomorphism restricted 8y ® R.
(2) dimQ(Hg(Mgc, Q(w + l))) = O?"dS:,lLs(MgQ, S) = 2.
(3) We have the equality

rp(detzi/p,)(Re ®o, Ok[1/Dk])) =
Ly(Mog, —l)detz p o (HE (Mg, Z(w + 1)) @0, Ox[1/Dk])

where Le(M )
* I AT S 0Q, S
L5(Mog, =1) = lim ===
andS is the set of places df that dividegp and the places dividing the conductor
fo-

(4) We have that
detz, (Ro ® Zy) = detz, (RT(Ok[1/5), Moz, (w + 1+ 1))~
If r,, is injective orRy, thenr, (detz, (Ry ® Z,)) is a basis of theZ,-lattice
detz, (RT'(Ok([1/S], Moz, (w + 1 + 1)))_1
C detg, (RT'(Ok[1/S], Mgz, (w + 1+ 1) ® Q)[-1]).

7. SOME EXPLICIT EXAMPLES

Observe first if we consider the Hecke character associated to the idemgoteitih
infinite type (1, 0), then, Theorem 5.12 is exactly [22, Theorem 1.1.5] (hypothesisof
for the infinite type(1,0) coincides with the ones that appears in [22, Theorem 1.1.5],
use [22, Corollary 2.2.11] and Lemmata 4.5, 4.6, 5.5 and comments after Definition 4.3).
Let us give examples of Hecke characters of infinite type differerii{6). In the
following, take E the elliptic curvey? = 43 — 4z defined overKk = Q(i) and the
differentsey are defined from this fixe@. E is a CM elliptic curve with CM byZ[i], and
for p > 5 we havep { 6N qf.
First, consider idempotentg with infinite type(w, 0) or (0, w) in this casé > 0. Take
w, p such thatw = 1(mod 2), p — 1 > max(3,w), p splits iNQ(:) and—w — 2] < —3.
Suchw, p satisfy all hypothesisi{(¢ ¢) except the condition (A) for bg a good represen-
tation (use Lemmata 4.6 and 5.5). We imp¢sep — 1) = 1 to ensure thatv, p satisfy
the technical hypothesis (A) (use Lemma 4.5). For such we obtain the conclusion of
theorems 5.12 and 5.13. For an explicit example take the infinite B9 andp = 5,
then all hypothesis«(¢ ¢) are satisfied and moreover= 5 is a regular prime fofQ(7)
(see [28, p.33]) therefore by theorem 5.13 (and remark 5.14) we get the weak 5-part of
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the Tamagawa number conjecture for the dual of the matlyg, (3 + 7 + 1) with 1 > 0

twisted by 1 (the special value for the motiVé is the special value associateditg\/, 0),

and in our formulation we get the special valli&),, —1) = L(Mg(w + L+ 1)(1),0)).

By use of the functional equation between the motive and its dual twisted by 1 (recall
that this functional equation is proved in the case of Hecke characters) and good compat-
ibilities, one should obtain the 5-part of the Tamagawa number conjecture for the motive

Now we give a humerical example whef@ applies. Let us considep with infinite
type (a, b) satisfyinga # b(mod 2), a > b > 0 and—(a + b) — 21 < —3. Takep such that
it splits inQ(¢) andp—1 > max(3,a—0b). We have that, andp satisfy all the hypothesis
(0 ¢ ©) and(x  x), with the exception of the condition (A) in Definition 4.3, (use Lemma
4.6 and is easy to prove théf[i])* — (Z[i]/fe)* is injective if (#Oj;,a — b) = 1 with
a similar proof done for Lemma 5.5). We impage— b,p — 1) = 1 to affirm thatey and
p satisfy the condition (A) (see Lemma 4.5). For an explicit example, daketh infinity
type (a,b) = (3,2) andp = 5, then all hypotheses>(> ¢) and (***) are satisfied and
moreoverm = 5 is a regular prime ( [28, p.33]) therefore we get some sort of weak 5-part
of the Tamagawa number conjecture falis 5y(3 +2 + 1 + 1) for [ > —1 by theorems
5.13,6.4.
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