
ON THE TAMAGAWA NUMBER CONJECTURE FOR HECKE CHARACTERS
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ABSTRACT. In this paper we prove the weakp-part of the Tamagawa number conjecture
in all non-critical cases for the motives associated to Hecke characters of the formϕaϕb

whereϕ is the Hecke character of a CM elliptic curveE defined over an imaginary qua-
dratic fieldK, under certain restrictions which originate mainly from the Iwasawa theory
of imaginary quadratic fields.

1. INTRODUCTION

The Tamagawa number conjecture for a variety X over a number field of Bloch and Kato
[5], or, more precisely, for a motiveM of pure weightw over a number field, describes the
special values of theL-function in terms of cohomological data (see for example Kato [19]
or Fontaine and Perrin-Riou [11]) and the p-part of the conjecture describes these values
up to units in the ringZ(p) := {a

b ∈ Q|a, b ∈ N, b 6= 0, (b, p) = 1}.
Recall that the special values of anL-function are the leading coefficient of Taylor

expansion at integer points. Suppose we have a motiveM of weight w such that it’s
L-function has meromorphic continuation and satisfies the expected functional equation.
We say that an integerm < w

2 is non-critical if L(M, m) = 0 and that it is critical if
L(M, m) 6= 0. We extend this definition to the integersm > w

2 + 1 by saying thatm
is critical for M if w − m + 1 is critical for M̌ the dual motive associated toM , and
non-critical forM if w −m + 1 is non-critical forM̌ . The Tamagawa number conjecture
can be formulated in terms of period maps (period integrals norp-adic periods appears)
and regulator maps ( [10], [19]), but in the non-critical situation it can be formulated for
almost all non-critical cases (using the hypothetical functional equation and good com-
patibilities) without the period maps, where by period map we mean a map between de
Rham to Betti cohomology and for thep-adic period a map betweenétale cohomology to
de Rham cohomology (see [19,§2.3]).

There are few cases proved in the non-critical situation: for the Riemann zeta function
( [5, §6]), for Dirichlet motives ( [6], [17]), for CM elliptic curves defined over the field of
the endomorphism ring ( [22]) or defined overQ ( [5, §7], [1]).

The weakp-part of the Tamagawa number conjecture for an elliptic curveE with CM
byK defined over the field of endomorphisms, proved by Kings [22], is related to the weak
p-part of the Tamagawa number conjecture for theL-function of the Hecke characterϕ,
associated toE, over the imaginary quadratic fieldK of class number 1. More precisely,
Kings proves in [22] the conjecture for the motiveh(ϕ)(−r) with r ≥ 0 which corresponds
to the special value (non-critical) for theL function associated toϕ at−r, whereh(ϕ) is
the motive associated toϕ over K with K-coefficients. As a consequence, he obtains
the conjecture for the motiveh1(E)(−r). Using the functional equation forE and good
compatibilities one should obtain the conjecture forh1(E)(r + 2). We generalize the
methods of Kings to other Hecke characters over an imaginary quadratic fieldK in the
non-critical situation.
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We consider the motive associated to the Hecke characterϕaϕb with a, b ≥ 0, which
has weighta + b. It is known that almost all the non-critical values for this motive are the
integers lower thanmin(a, b). Our work is concentrated in this situation, but we remark
that there are results on the Tamagawa number conjecture in the critical situation (Harrison
[16], Guo [14], Kimura [23], Han [15] and in greater generality by Tsuji [27]).

The aim of this paper is to prove thep-part of the Tamagawa number conjecture (under
the formulation in [19,§2.2]) for all the non-critical values for theL-function of the motive
associated Hecke charactersψθ of an imaginary quadratic fieldK with class number 1,
which under a fixed embedding corresponds toϕaϕb.

The main results of this paper are Theorems 5.12,5.13 and Theorems 6.3, 6.4. These
results are the weakp-part of the Tamagawa number conjecture for the geometric ob-
ject associated to the Hecke characters overK with a 6≡ b(modulo(#O∗K)) with K or
Q-coefficients, under certain restrictions which originate mainly from Iwasawa theory of
imaginary quadratic fields, whereO∗K means the invertible elements of the ring of integers
of K. See the last section for numerical examples.

To obtain these main results, we study in detail the image with respect to the regulator
map of a certain non-trivial submodule of someK-theory group. The basic ingredients
used in the proof of these results are Deninger’s proof of the Beilinson’s conjecture for
Hecke characters in [8], the specialization of the polylogarithm sheaf [22] and the Iwasawa
main conjecture for imaginary quadratic fields [24], as in [22]. This paper need to deal
with negative twists. This problem does not appear in [22]. For negative twists, we modify
Deninger’s elements [8] in order to apply thep-adic techniques of [22].

The results of this paper generalize the results in [2, Chapter 3] which restricts to the
Hecke charactersϕm.

2. THE MOTIVE ASSOCIATED TOHECKE CHARACTERS

LetK be an imaginary quadratic field with class numbercl(K) equal to 1 andOK be its
ring of integers. LetDK be the discriminant ofK. Let E be an elliptic curve overK with
CM by OK . In this section we describe some pure motives coming from a self product
of the motiveh1(E) and their realizations, and we prove that theL-functions associated
to these motives correspond to Hecke characters. We obtain finally an analog for these
motives of a result of Deuring for CM elliptic curves.

Let p be an odd prime, fixed once and for all, such thatE has good reduction for all
primes overp. Let S

′
be the set of places that divide the conductor of the elliptic curvef

(that are the same places whereE has bad reduction) and the places that dividep.
Letϕ : IK → K∗ be the CM character associated to the elliptic curveE whereIK is the

idèles ofK. Denote byTw := ⊗w
QK with w a positive integer. Observe thatTw is equal to

a product of fields
∏

θ Tθ, whereθ runs through theAut(C)-orbits ofג = Hom(Tw,C),
θ ⊆ .ג Let eθ be the idempotent corresponding toTθ of Tw.

Define the CM character

ψ
θ

: IK → T ∗θ

by ψ
θ

= eθ · (⊗wϕ), and denote byfθ the conductor ofψ
θ
. Observe thatfθ|f sinceψ

θ
is a

sub-representation of⊗wϕ.
Let us fix once and for all an embeddingK → C like in the last paragraph on [8, p.132].
We have a natural embeddingU

K → ⊗wK → Tw → Tθ

where the first map corresponds to the diagonal map.
For anyϑ ∈ θ which its orbit inג is equal toθ, we have a mapϑ : Tw → ϑ(Tw) ⊆ C

inducing an isomorphismTθ = Tw/ker(ϑ) → ϑ(Tw), andϑ(Tw) is the field generated by
λ1(K) · . . . · λw(K) whereλi ∈ Hom(K,C), which is isomorphic toK.
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Define byθK the subset ofθ which contains theϑ ∈ θ which orbit is equal toθ such
that Tθ = Tw/ker(ϑ) → ϑ(Tw) ⊂ C is in HomK(Tθ,C) for the natural embedding
U. In our caseθK contains only one element. Let beϑ = (λ1, . . . , λw) ∈ ,ג we set
aϑ = #{i|λi ∈ HomK(K,C)} andbϑ = w − aϑ. The infinite type ofψ

θ
is defined

by (aθ, bθ) := (aϑ, bϑ) whereϑ is the element inθK . Observe thatθ only contains two
elements, the element ofθ different forϑ = (λ1, . . . , λw) ∈ θK is (λ1, . . . , λw) whereλi

denotes the composition ofλi with the complex conjugation.
Consider the category of Chow motivesM(K) over K with morphisms induced by

graded correspondences in Chow theory. We have then a natural covariant functorh from
the category of smooth and projective varieties overK toM(K). Then the motiveh(E)
of an elliptic curveE overK has a decomposition with respect to the zero sectionh(E) ∼=
h0E ⊕ h1E ⊕ h2E, whereh0E = h(Spec(K)) andh2E = h(Spec(K))(−1). We can
also consider the categoryMQ(K) which consist of the same objects but tensoring byQ
the group of morphisms.

The motiveh1E has multiplication byOK . Consider then the motive⊗wh1E, has
multiplication byOw := ⊗w

ZOK . Then⊗wh1EQ has multiplication byTw. Notice thateθ

is not integral in general forw > 1, but is contained inOK [1/DK ]. Let’s denote by

Mθ := eθ(⊗wh1(E)Q ⊗OK OK [1/DK ]),

considered as an motive with coefficients inOK [1/DK ], and byMθQ its image inMQ(K).
As λi ∈ {λ, λ} whereλ is the fixed embedding ofK in C, andλi(OK) = OK , we
have then thateθ(⊗h1(E) ⊗OK OK [1/DK ]) ∈ M(K) has multiplication byOθ :=
eθ(Ow ⊗OK OK [1/DK ]), andMθQ has multiplication byTθ

∼= K.
Our objective in this section is to study thep-adic and Betti realizations of this motive

Mθ, called Hecke motive, and to determine itsL function.
There are at least three equivalent notions of a Hecke character, see [12, p.48]. One is

the notion of CM-character used above, [12, p.48, definition 2]. For HeckeL-functions
and the Galois group action on thep-adic realization associated to the Hecke motive, we
use the notion of a character which is trivial onK∗ and with image in some id̀ele group,
ψθ : IK/K∗ → ITθ

[12, p.48, definition 3]. The associated complex Hecke character, in
order to define the HeckeL-function, is constructed fromψθ by taking the archimedian
places ofITθ

which correspond to the fixed immersion ofK in C in our situation, which
we also callψθ. The character constructed fromψθ by taking the components of the places
of ITθ

abovep is calledψθ,p and is related with the Galois action on thep-adic realization
associated to the motive. The characterψθ,p factors throughGal(Kab/K) and has image
in (Tθ⊗Zp)∗. We will use the term Hecke character when we want to consider this second
notion from now on. The third notion [12, definition 1,p.48], corresponds to certain map
ψ̃θ : Ifθ

→ T ∗θ , whereIfθ
is the ideal classes ofK prime tofθ. So, if p is a prime ideal

of OK prime tofθ, we mean forψθ(p) or ψ
θ
(p) the value of the Hecke character or CM

character at the id̀ele which has an uniformizerπ at the placep and 1 in the other places.
We haveψθ(p) = ψ

θ
(p) = ψ̃θ(p) (see [12, p.49-50]).

Thep-adic realization of the motiveMθQ(w) is, by definition,Hw
et(MθQ×K K,Qp(w))

and we denote it byMθQp(w).

Lemma 2.1 Let p be a prime such thatp - DK . The integralp-adic realization of
Mθ(w), Hw

et(Mθ ×K K,Zp(w))⊗OK
OK [1/DK ], is isomorphic to

eθ(⊗wTpE)

as freeeθ(⊗wOK [1/DK ]⊗Zp)-modules of rank 1, withGal(K/K)-action oneθ(⊗wTpE)
given by the Hecke characterψθ,p.
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Proof. Observe first thatTpE is isomorphic as Galois modules toH1
et(h1(E) ×K

K,Zp(1)) = Hom(TpE,Zp(1)) by the use of Weil pairing but the isomorphism change
the action ofOK to its conjugate.

The claim thateθ(⊗wTpE) is a free module of rank 1 follows becauseTpE is a free
OK ⊗Zp

∼= OK [1/DK ]⊗Zp-module of rank 1 and theneθ · (TpE ⊗ . . .⊗ TpE) is a free
eθ · (⊗w(OK [1/DK ]⊗ Zp))-module of rank one.

Now, consider the natural action ofGK := Gal(K/K) onH1
et(h

1(E)×K K,Zp(1)).
SinceGK acts on the Tate module by the Hecke characterϕp : GK → (OK ⊗ Zp)∗, so it
acts onH1

et(h1(E)×K K,Zp(1)) by ϕp. Using

Hw((h1(E)×K K)w,Zp(w)) = H1(h1(E)×K K,Zp(1))⊗w

and taking our idempotent, the action is given byeθ(⊗wϕp) = ψθ,p. ¤

Twisting byl+1 we get forp - DK that the integralp-adic realization forMθ(w+l+1)
is isomorphic toeθ(⊗wTpE)(l + 1) with GK-action oneθ(⊗wTpE)(l + 1) given byψθ,p

multiplied by thel + 1-th power of thep-adic cyclotomic character.
The Betti realization for the motiveMθQ(w + l) namedHw

B (MθC,Q(w + l)) is iso-
morphic toeθ(⊗wH1

B(E(C),Q(1)))(l), we remember that we fixed once and for all an
immersion forK ⊆ C. E(C) is the set of closed points with the analytic topology. We
have

⊗w
Z (H1

B(E ×K C),Z(1))⊗OK OK [1/DK ]

a⊗wOK [1/DK ]-module of rank 1 and taking the idempotenteθ we obtain

eθ(⊗wH1
B(E ×K C),Z(1))⊗OK OK [1/DK ])(l),

aOθ-module of rank 1 which is the submodule ofHw
B (MθC,Q(w + l)) corresponding to

Hw
B (MθC,Z(w + l)))⊗OK OK [1/DK ].
Now, we are going to study theL-function that corresponds to thep-adic representation

MθQp = Hw
et(MθQ ×K K,Qp) of MθQ.

The Tamagawa number conjecture describes conjecturally special values of theL-function
for the motive and thisL-function involves the product of all Euler factors (one for every
non-arquimedian place), but for thep-part of this conjecture, Kato reformulates the conjec-
ture in terms of the partialL-function avoiding a non-vanishing finite set of Euler factors,
more concretely the finite set contains the Euler factors coming from the primes abovep
and the primes where the motive has bad reduction (see [20, Proposition 7.8], or [2, Chapter
1] for an overview, and see remark 2.5 for these no-vanishing in our setting).

Let S be the set of places ofK that dividefθ or p. Define as usual

LS(MθQ, s) :=
∏

l/∈S

detQp(1− FroblN l−s|M Il

θQp
)−1

whereFrobl means the geometric Frobenius,Il the inertia group atl andN l the norm
NK/Ql.

Our goal is to compute this determinant and to relate it to the local factors of theL-
function of the Hecke characterψθ that is defined by

LS(ψθ, s) :=
∏

l/∈S

(1− ψθ(l)
N ls

)−1.

Recall that the operation of the decomposition groupDp for p - p on H1
et(h1(E) ×K

K,Qp) is given by the operation ofϕ−1|K∗
p
, and henceDp operates onMθQp via ψ−1

θ . On
one hand, the inertia groupIp acts non-trivially if and only ifp divides the conductorfθ.
On the other hand, forp - fθ, the geometric FrobeniusFrp at p acts viaψθ(p). We obtain
hence the following result.
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Lemma 2.2(Deninger, prop. 1.3.2.a [8])Let l be a finite prime ofK with l - pftheta,
wherefθ is the conductor of the Hecke characterψθ. Then

detTθ⊗Qp(1− FrlN l−s|M Il

θQp
) = (1− ψθ(l)N l−s).

We impose some restrictions for our motiveMθ(w+l+1) once and for all. We suppose
−w − 2l ≤ −3. Remember that, with the restriction thatE is defined overK, we have
#|θ| = 2, and, in particular, we haveTθ

∼= K and forp - DK we haveOθ⊗Zp
∼= OK⊗Zp.

TheL-function forMθQ can be described by using lemma 2.2 and by taking the norm
map.

Lemma 2.3 Let l a prime ofK such thatl - fθ and it is prime top. We have then the
following equality

detQp
(1− FrlN l−s|M Il

θQp
) = (1− ψθ(l)N l−s)(1− ψθ(l)N l−s).

As a corollary we obtain a generalization of a result of Deuring.

Theorem 2.4 Let S be the set of the primes onK dividing fθ and primes dividingp.
Then:

LS(MθQ, s) = LS(ψθ, s)LS(ψθ, s).

Remark 2.5 Thep-adic realizationVp := MθQp(w+ l+1) satisfies that the local Euler
factors

Pp(V ∗
p (1), 0) = Pp(ψθ,−l)

are different from 0 for allp ∈ S whereV ∗
p is the dual Galois module ofVp. Hence, it

satisfies the hypothesis of [19, conjecture 2.2.7].
To show this fact, suppose first thatp|fθ. Then the inertia group acts non-trivially onVp,

which is a one dimensionalOθ ⊗Q-module, and hence

Lp(ψθ, s) = 1

for all p|fθ, and in particular fors = −l.
If p dividesp, then the result follows from the fact that any proper smooth variety with

good reduction atp satisfies it for weight reasons, and in particular:

detQp(1− FrpNpl|Hw
et((E ×K K)w,Ql′)) 6= 0,

with l′ 6= p, and therefore, since the different idempotentseθ give a direct summand of the
cohomology groupHw((E ×K K)w,Ql′),

Lp(ψθ,−l) 6= 0.

The motivic cohomology groupHw+1
M (MθQ,Q(w + l + 1)) is the K-theory group

K2(w+l)−w+1(MθQ)(w+w+1) ⊗Q where theK-groups are the QuillenK-groups and the
superscript denotes the Adam’s filtration on them.

We suppose recall thatw − 2(w + l + 1) ≤ −3. We have a Beilinson regulator map,

rD : Hw+1
M (MθQ,Q(w + l + 1)) → Hw

B (MθC,Q(w + l))⊗Q R,

and the Souĺe regulator map:

rp : Hw+1
M (MθQ,Q(w + l + 1)) → H1

ét(OK [1/S],MθQp(w + l + 1)).

Thep-part of the Tamagawa number conjecture claims in particular thatrD ⊗Q R and
rp ⊗Q Qp are isomorphisms. Deninger in [8] [7] constructs aQ-subspaceHconstr

M of
Hw+1
M (MθQ,Q(w+l+1)) such thatrD⊗R restricted toHconstr

M ⊗QR is an isomorphism.
The term weak in the formulation of thep-part of the Tamagawa number conjecture means
that this conjecture is proved using the spaceHconstr

M ⊗QR instead ofHw+1
M (MθQ,Q(w+

l + 1)).
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3. THE BEILINSON CONJECTURE FORHECKE CHARACTERS

In this section we review the work on the Beilinson conjecture for the motiveMθQ(w +
l + 1) done by Deninger in [8], under the language of the Tamagawa number conjecture.

Theorem 3.1(Deninger, Theorem 1.4.1 [8])Letw = aθ +bθ ≥ 1. Consider an integer
l such that

−l ≤ Min(aθ, bθ) if aθ 6= bθ

−l < aθ = bθ = w/2 otherwise.

Then the L-seriesL(ψθ, s) has a zero of order 1 ats = −l, (i.e. ords=−lL(ψθ, s) = 1).
Moreover, there exist an elementξθ in Hw+1

M (MθQ,Q(w + l + 1)), such that

rD(ξθ) = lim
s→−l

L(ψθ, s)
s + l

ηθ mod T ∗θ

in the free rank oneTθ ⊗ R-moduleHw
B (MθC,R(w + l)), whereηθ is a Tθ-generator of

Hw
B (MθC,Q(w + l)).
Let’s recall the construction ofξθ, following the results of Deninger. We suppose once

for all thatl ≥ 0.
Fix an algebraic differential formω ∈ H0(E, ΩE/K). Since we have complex multipli-

cation, we can write the period lattice asΓ = ΩOK , whereΩ ∈ C∗ is the complex period.
Fix an elementγ in H1(E(C),Z) such that it is anOK-generator, and satisfies

Ω =
∫

γ

ω.

By Poincaŕe duality, we have thatγ corresponds toηγ , anOK-generator forH1(E(C),Z(1)).
Thusηγ⊗OKOK [1/DK ] is anOK [1/DK ]-generator for the moduleH1(E(C),Z(1))⊗OK

OK [1/DK ] which by abuse of notation we call alsoηγ . Consider now theOθ-generator

ηθ := (2πi)leθ(⊗wηγ)

of Hw
B (MθC,Z(w + l))⊗OK OK [1/DK ].

To constructξθ, we will define a divisor on the torsion points of the elliptic curve; its
image by the composition of the Eisenstein mapEM ( [7, §8]) with the Deninger projector
mapKM ( [8, (2.8)]) will define ourξθ.

Remember thatfθ is the conductor of the Hecke characterψθ associated withMθ, and
denote byf a generator offθ (it exists sincecl(K) = 1). We have that

Ωf−1 ∈ f−1
θ Γ

and that(Ωf−1) gives a divisor inZ[E[fθ] \ 0] defined overK(E[fθ]). Sincef is the
conductor ofψ andfθ|f, the divisor(Ωf−1) is defined also overK(E[f]). We will define
our divisor as

βθ := NK(E[f])/K((Ωf−1)).

Denote byρθ a finite id̀ele such that(ρθ) = fθ andvp(f−1 − ρ−1
p ) ≥ 0 for all p | fθ.

If aθ 6≡ bθ mod|O∗K |, we obtain that ( [8, p.142,(2.11)])

rD(KMEM(βθ)) = (−1)l−1 2l−1NK/Qfw+2l
θ ψθ(ρθ)

(2l + w)!NK/Q(fθ)l+w

Φ(f)
Φ(fθ)

L′(ψθ,−l)ηθ,

whereΦ(m) := |(OK/m)∗| for any idealm of OK .
This is an analog forMθ(w + l + 1) of [22, thm.1.2.2], which corresponds to the case

h1(E)(1 + l + 1).
Theorem 3.2(Deninger,§2 [8]) Suppose thataθ 6≡ bθ mod(#O∗K) and thataθ, bθ, l

satisfy the hypothesis of the theorem 3.1 withl ≥ 0. Define, by using the previous notation,

ξθ,l :=
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(−1)l−1 (2l + w)!Lp(ψθ,−l)−1Φ(fθ)
2l−1NK/Qflθψθ(ρθ)Φ(f)

KM ◦ E2l+w
M (βθ) ∈ Hw+1

M (MθQ,Q(w + l + 1)),

whereLp(ψθ, s) is the product of the Euler factors for the primes ofK abovep.
Then

rD(ξθ,l) = L∗S(ψθ,−l)eθ(⊗wηγ),

whereS are the primes ofK that dividefθp. HereL∗S(ψθ,−l) = lim
s+l→0

LS(ψθ, s)/(s+ l).

Definition 3.3 Foraθ 6≡ bθ mod(#O∗K) we define

Rθ := ξθ,lOK .

Remark 3.4 Theorem 1.4.1 [8] is more general because it includes the situationaθ ≡
bθ mod(#O∗K). But in this situation, Deninger defines a divisorβ̃θ instead ofβθ which
is not a norm of a positive divisor and moreover it contains the zero point ofE. Thus the
techniques for constructing an Euler system of§5 can not be applied in this case (see for
example Theorem 5.1).

As a consequence of Theorem 3.2, we have that our submoduleRθ verifies some inte-
gral version of the Beilinson conjecture for the motiveMθ(w + l + 1).

Theorem 3.5 TheOK-submoduleRθ of Hw+1
M (MθQ,Q(w + l + 1)) satisfies that

detOK [1/DK ](rD(Rθ ⊗OK OK [1/DK ])) =

L∗S(ψθ,−l)detOK [1/DK ](Hw
B (Mθ,Z(w + l))⊗OK

OK [1/DK ])

in detOK [1/DK ]⊗R((Hw
B (MθC,Z(w + l))⊗OK OK [1/DK ])⊗ R).

Proof. Observing thatηθ is aOθ-base for the freeOθ-module

Hw
B (MθQ ×K C,Z(w + l))⊗OK

OK [1/DK ]

of rank one, the result follows. ¤

Corollary 3.6 The submoduleRθ defined above satisfies the Beilinson conjecture in-
side thep-part of the Tamagawa number conjecture forp - DK , that isRθ satisfies the
following conditions:

(1) The maprD ⊗ R is a isomorphism when restricted toRθ ⊗ R.
(2) dimQ(Hw

B (MθC,Q(w + l))) = ords=−lLS(MθQ, s) = 2.
(3) We have the following equality

rD(detZ[1/DK ](Rθ ⊗OK
OK [1/DK ])) =

L∗S(MθQ,−l)detZ[1/DK ](Hw
B (Mθ,Z(w + l))⊗OK OK [1/D])

whereL∗S(MθQ,−l) means lim
s→−l

L∗S(MθQ, s)/(s+ l)2 (this makes sense by using

theorem 2.4 and theorem 3.1).

Proof. The first and the second conditions are clear for the dimensions of the spaces
involved in the Deligne regulator map, and the theorem 3.5. The third condition comes
from the previous theorem using the fact that, if we multiply anOθ-module with an element
L∗S(ψθ,−l) in Oθ ⊗ R, the determinant is multiplied by the norm

NOθ⊗R/R(L∗S(ψθ,−l)) = L∗S(ψθ,−l)L∗S(ψθ,−l) = L∗S(ψθ,−l)L∗S(ψθ,−l).

Using theorem 2.4, we obtain that this is equal toL∗S(MθQ,−l). ¤
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4. IWASAWA THEORY

We suppose once and for all thatp - #O∗K andp - NK/Q(f), (in particularp - DK).
To simplify the notation, we will denote in the following by

MθZp
(w + l + 1) = eθ(⊗w(H1

et(E ×K K,Zp(1)))(l + 1)

thep-adic lattice for thep-adic realization ofMθ(w + l + 1).
Let Kn := K(E[pn+1]) be the field of definition of thepn+1-torsion points ofE, On

its ring of integers and letK∞ := lim
→

Kn be its direct limit. Denote byOn the ring of

integers ofKn (respectivelyO∞). We know that∆ := Gal(K0/K) has order prime top
andΓ := Gal(K∞/K0) is isomorphic toZ2

p.
Let G be the Galois groupGal(K∞/K); thenG ∼= ∆× Γ.
We use now the notations on Iwasawa theory for imaginary quadratic fields used in [22,

§2.1] but with a different definition of elliptic units.
Let us define the elliptic unitsCn,fθ

in Kn which are more convenient for us.

For every ideala of K prime to6 we can define a theta function

θa : E \ ker([a]) −→ C

which has divisorN(a)(e)− ker([a]) (for the precise definition see [22, Theorem 4.2.2]).
The functionθa(z) is in fact a 12-th root of the function defined in [9, II.2.4]. Letg be
a fixed ideal ofOK such thatO∗K → (OK/g)∗ is injective, and suppose thatg divides
the conductorf of the elliptic curveE. Let’s denote bytg a generator for theE[g]-torsion
points asOK-module, and leta be an ideal prime to6g.

Definition 4.1 Let Cn,g be the subgroup of units generated overZ[Gal(Kn/K)] by
∏

σ∈Gal(K(g)/K)

θa(tσg + hn),

wherea runs through all ideals prime to6pf, K(g) is the ray class field defined byg and
hn is a primitivepn+1-torsion point (i.e. a generator of thepn+1-torsion points ofE as
OK-module). Define the group of elliptic units ofKn as

Cn,g := µ∞(Kn)Cn,g,

whereµ∞(Kn) denotes the roots of unity inKn.

Denote byCn,g the closure in the local unitsUp
n whereUp

n is the group of local units
of Kn ⊗K Kp which are congruent to 1 modulo the primes abovep wherep is a prime of
K abovep. DefineC∞,g := lim

←
Cn,g, andUp

∞ := lim
←
Up

n where the limit is taken with

respect to the norm maps. Define alsoU∞ byUp
∞ ×Up∗

∞ if p = pp∗ splits, and ifp inert or
ramified byUp

∞. LetYn be thep-adic completion of(Kn ⊗Qp)∗ andY∞ := lim
←
Yn.

Let us once and for all to specialize the elliptic units tog = fθ.
Recall thatS denotes the set of primes ofK which dividefθ or p, and thatS′ denotes

the set of primes ofK which dividep or the conductorf of the elliptic curveE. Denote
OS := OK [1/S] andOp := OK ⊗ Zp.

We are going to define a map in the spirit of Soulé:

(Soul)p : C∞,fθ
⊗Zp MθZp(w + l) → H1(OS ,MθZp(w + l + 1)),

observe thatMθZp(w + l) is unramified outsideS, thusH1(OS ,MθZp(w + l + 1)) makes
sense.

Using the definition ofMθZp(w)(l + 1), we have that

H1(OS ,MθZp(w + l + 1)) = lim
←

H1(OS , (eθ ⊗w E[pr+1])(l + 1)).
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Define(Soul)p in the following way. Given(θr)r a norm compatible system of elliptic
units and an element(tr)r of lim

←
(eθ(⊗wE[pr+1]))(l), we define

(Soul)p((θr ⊗ tr)r) := (NKr/K(θr ⊗ tr))r.

It is well defined:θr ⊗ tr is an element in

O∗r,S/(O∗r,S)pr+1 ⊗ (eθ(⊗wE[pr+1]))(l) ⊂ H1(Or,S , (eθ(⊗wE[pr+1]))(l + 1))

whereOr,S is Or[1/S] the ring of integers ofKr inverting the primes aboveS, NKr/K

denotes the norm map in cohomology and by Soulé’s Lemma 1.4 [26] one gets an element
in H1(OS ,MθZp

(w + l + 1)). The map(Soul)p factors thought the coinvariants, denoted
by (C∞,fθ

⊗MθZp(w + l))G .

Definition 4.2 The Souĺe elliptic elements are the elements in the image of the map

(Soul)p : (C∞,fθ
⊗MθZp

(w + l))G → H1(OS ,MθZp
(w + l + 1))

whereG = Gal(K(E[p∞])/K).

We consider in the following the representationχ of the group∆ given by the action of
∆ in HomOp(MθZp(w + l),Op).

We are only able to apply the techniques on Iwasawa theory of [22] for certain repre-
sentations that we call good representation.

Definition 4.3 We say that such representationχ of the group∆ is a good representa-
tion if it satisfies two conditions in Iwasawa theory about isomorphism between some con-
crete Iwasawa modules: (A) the Iwasawa main conjecture of Rubin [22, Theorem 2.1.3]
but replacing the elliptic units module there with the elliptic module unitsCχ

∞,fθ
and (B)

from the inclusionU∞ ⊆ Y∞ we get thatUχ
∞ ∼= Yχ

∞ as Iwasawa modules for the Iwasawa
ring lim

←
Zp[[Gal(Kn/K)]]χ.

We observe that the elliptic unitsC∞,f, which are the ones that appear in [25] and [22],
satisfies the theorem of Iwasawa main conjecture of [24] for any∆-representation under
the hypothesis of the theorem in [24] (personal communication of Rubin).

WhenS = S′ we haveC∞,fθ
= C∞,f [9, Proposition II.2.5], therefore the Iwasawa

main conjecture (condition (A)) is true from Rubin’s theorem [24] [25] forp splits and for
p inert whenχ is non trivial on the decomposition group∆p of p in ∆.

Condition (B) is always true ifp splits [22, Lemma 2.1.6]. Ifp is inert or ramified,
the representationχ satisfies condition (B) ifZp[∆/∆p]χ = 0 (see [22, lemma 2.1.6]),
moreover becausep is a prime over whichE has good reduction we have∆p = ∆ [22,
Lemma 2.2.9], thus condition (B) is true ifχ is non-trivial.

Remark 4.4 We guess that the Iwasawa main conjecture [22, Theorem 2.1.3] is also
true without the conditionS = S′ for our elliptic units and our characterχ, so such a
character should be good if it just verify condition (B). In the next section we prove that
Cχ

∞,fθ
is a rank 1 Iwasawa module and we construct an Euler system there. Using this

and [9, Lemma III.1.10], it should be possible to prove the Iwasawa main conjecture forχ
using the techniques in [25].

Lemma 4.5 Suppose thatψθ has infinite type(aθ, bθ) with aθ 6≡ bθ mod(#O∗K). Sup-
pose also thatp splits, and that(aθ − bθ, p− 1) = 1. ThenS = S′.

Proof. Let v be a prime ofK dividing f. Let v0 be a prime ofK0 dividing v. Denote
by ∆v0 the stabilizer ofv0 in K0. We have then thatIv0 ⊂ ∆v0 ⊂ ∆ acts non-trivially
in the Tate moduleTpE via the Hecke characterϕp. Hence,Iv0 acts oneθ(⊗wTpE) via
ψθ,p|Iv0

= ϕaθ−bθ
p , asIv0 lies in the kernel of thep-adic cyclotomic character (v is prime

to p). Sincep splits, we have that#∆ = (p− 1)2, and since(aθ − bθ, p− 1) = 1, ϕaθ−bθ
p

acts non-trivial onIv0 . ¤
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Lemma 4.6 Suppose thatp splits in K and suppose thatp − 1 - aθ + l + 1 or p −
1 - bθ + l + 1 or p − 1 - aθ − bθ. Thenχ, as∆-representation, is not the cyclotomic
representation.

Proof. The characterχ is equal to(ψθκ
l)−1 whereκ is the cyclotomic character. Since

p is split in K, we have thatp = pp∗, with p 6= p∗. Let ∆p be the Galois group
Gal(K(E[p])/K); it is a subgroup of the decomposition group sincep is totally ram-
ified in ∆p. Observe thatMθZp has multiplication isomorphic toOK ⊗ Zp and, asp
splits, it decomposes in two idempotents. These idempotents decompose the Hecke char-
acterψθ,p = ψΩ1 ⊕ ψΩ2 , see [12] for more details. It is known thatψΩ1

|∆p = κbθ

(see for example [12,§2.5]), so we get that our character is different fromκ as long as
#∆p = p− 1 - bθ + l + 1, sinceκ is a generator for the character group of∆p.

Using the same kind of argument forp∗ instead ofp we obtain a similar divisibility
result but withaθ instead ofbθ. Thus, we obtain the cyclotomic character only in the case
thatp− 1 | aθ + l + 1 andp− 1 | bθ + l + 1.

Similar argument forψΩ2
, we obtain the same simultaneous arithmetic conditions, i.e.

p− 1|l + bθ + 1 andp− 1|aθ + l + 1 in order to obtain the cyclotomic character. We refer
to [13, p.220,pp.223-234] for more details on the charactersψΩ1 andψΩ2 . ¤

Next theorem is the analog of [22, Theorem 2.2.12] in our situation.

Theorem 4.7 Suppose thatp is an odd prime, prime toNK/Qf and to#O∗K . Let the
∆-representationχ on HomOp(MθZp(w + l),Op) be a good representation. Then the
map(Soul)p induces an isomorphism ofOp-modules

detOp((Cχ

∞,fθ
⊗Op MθZp(w + l))⊗LOp[[Γ]] Op) ∼= detOp(RΓ(OS ,MθZp(w + l + 1)))−1.

Proof. In order to prove the theorem one can follow the same steps as in the proof
of [22, Theorem 2.2.12], but withMθZp(w) instead ofTpE. The only results that need
some work are [22, Proposition 2.2.13] and [22, Lemma 2.2.16] (see [2,§3.4] for a detailed
proof). We will show next the necessary steps to prove these two results.

Let us prove the analog of [22, Proposition 2.2.13]:

detOp(RΓ(G,H0(K∞ ⊗Qp,MθZp(w + l + 1)′))∗) ∼= Op

and
detOp(RΓ(G,H0(O∞,Sp ,MθZp(w + l + 1)′))∗) ∼= Op,

whereM ′ denotesHomOp(M,Op ⊗Qp/Zp(1)) andM∗ = HomOp(M,Op ⊗Qp/Zp).
It follows from [12, prop. 2.4.6], that the action ofG onMθZp(w+l) is via the character

ψθ,p : G → (Oθ ⊗ Zp)∗,

multiplied by thel-th power of thep-adic cyclotomic character.
Then it induces a surjection ofOp-modulesρ : Op[[Γ]] → MθZp(w + l) by the action

described above. Thusker(ρ) is an ideal of height 2 becauseΓ ∼= Z2
p. We know thatdetR

is determined by the ideals of height 1 for the ringR (cf. [19, 2.1.4]). We are going to
show that this implies that

(1) detOp(MθZp(w + l)⊗LOp[[G]] Op) ∼= Op.

In fact, since∆ is finite andG ∼= Γ×∆, we have the isomorphism

MθZp(w + l)⊗LOp[[G]] Op
∼= (MθZp(w + l))∆ ⊗LOp[[Γ]] Op.

Since we know thatker(ρ) has height 2, we have thatdetOp[[Γ]]((MθZp(w + l))∆) ∼=
Op[[Γ]] and sodetOp((MθZp(w + l))∆ ⊗LOp[[Γ]] Op) ∼= Op. This shows (1). We conclude
by using [22, Lemma 2.2.6].

Now, we show the analog of [22, Lemma 2.2.16]: the restriction map induces isomor-
phisms

detOp(H0(∆, RΓ(O0,Sp ,MθZp(w + l + 1))) ∼=
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detOp
(H0(∆, RΓ(O0,S ,MθZp

(w + l + 1)))) ∼= detOp
(RΓ(OS ,MθZp

(w + l + 1))).

To show this consider the exact triangle

RΓ(O0,Sp ,MθZp(w + l + 1)) → RΓ(O0,S , MθZp(w + l + 1))

→ ⊕v0∈S\Sp
RΓk(v0)(Ov,MθZp(w + l))[1]

whereOv0 is the local ring atv0 andSp is the set of places that dividep. SinceTpE is
unramified at the places ofK0 in S \ Sp, the same is true foreθ(⊗TpE)(l + 1). By the
purity theorems ińetale cohomology we have that

RΓk(v0)(Ov0 ,MθZp
(w + l + 1)) ∼= RΓ(k(v0), MθZp

(w + l))[−2].

It remains to prove only that

H0(∆,⊕v0∈S\Sp
RΓ(k(v0),MθZp

(w + l)) = 0.

To show this result, observe that

H1(k(v0),MθZp
(w + l)) ∼= MθZp

(w + l)
Gal(k(v0)/k(v0))

andH0(k(v0),MθZp
(w + l)) = 0 because−w − 2l ≤ −3.

Now, let v0 be a prime ofK0 dividing v a prime ofK with v|fθ and let∆v0 be
the stabilizer ofv0. SinceIv0 ⊂ ∆v0 acts non trivially on the coinvariantsMθZp(w +
l)

Gal(k(v0)/k(v0))
becausev0 | fθ, there are no fix elements. ¤

5. THE COMPARISON BETWEEN THE MAPrp AND (Soul)p IN THE CONSTRUCTIBLE

K-ELEMENTS

Let’s start recalling the result of Kings on the specialization of the elliptic polylogarithm
sheaf, which is an important key in his proof of the Tamagawa number conjecture.

LetE be an elliptic curve over a base schemeT , and denote byπ : E → T the structural
morphism, which is proper and smooth. ConsiderU = E \ e, wheree is the zero section
of E. Consider the elliptic polylogarithm sheafPolQp onU , which is a lisse pro-sheaf (i.e.
a projective limits of lisse sheaves) [22,§3.2].

Let HQp := HomT (R1π∗Qp,Qp). UsingPolQp one defines thep-adic Eisenstein
classes associated to any integerk and anyM -torsion pointt in E different from e as
some elements inH1(T, SymkHQp). The definition is extended by linearity to any divisor
supported onM -torsion points ( [22, Def. 3.5.9]). The main part of the result of Kings is
the explicit computation of these Eisenstein classes.

We are going to explain this result. ConsiderHn := ker[pn] as a scheme overT . Let
us consider the map multiplication bypn, pn : En → E, whereEn is the elliptic curve
E overT considered as aHn-torsor overE. Consider the characteristic groupI[Hn] :=
ker(pn,∗Z → Z), which is the characteristic group of a torusTHn . In this situation we
have the connecting mapδ from the Kummer exact sequence:

(2) δ : H0(Hn, THn) → H1(Hn, THn [pr]).

Using this connecting morphism, we can express the Eisenstein classes explicitly.

Theorem 5.1(Kings, theorem 4.2.9 in [22])Letp be a prime number, and letE be an
elliptic curve over a base schemeT wherep is invertible.

Letβ be any divisor inE of the form

β :=
∑

t∈E[M ](T )\e
nt(t),

nt an integer and consider[a] : E → E any isogeny with degree prime toMp.
Then, for anym > 0, thep-adic Eisenstein class

Na(a⊗mNa− 1)(β∗PolQp)m ∈ H1(T, SymmHQp(1))
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is given by

± 1
m!

(δ
∑

t∈E[M ](T )\e
nt

∑

[pn]tn=t

θa(−tn)t̃n
⊗m

)n

wheret̃n is the projection oftn to E[pn] andδ is the Sym-extension of the boundary map
H0(Hn, THn

) → H1(Hn, THn
[pr]) whereHn := ker[pn] is considered as a scheme over

T andTHn
is the torus with character groupI[Hn] := ker(pn,∗Z→ Z).

The following result relates the image ofEm
M(β) by the Souĺe regulator map with the

polylogarithmic sheaf, whereEm
M is the Eisenstein symbol [22,§1.2.1].

Theorem 5.2 Under the same hypothesis of Theorem 5.1, letβ be as in the previous
theorem. Then

rp(Em
M(β)) = −M2m(β∗PolQp)m

in H1(T, SymmHQp(1)).

Proof. The same proof of [22, Theorem 1.2.5] withm instead of2k + 1 works. See
also [2, proof Theorem 3.5.2]. ¤

We are going to apply these results to the divisorβθ = NK(f)/K((t)), wheret := Ωf−1

is a fθ-torsion point. TakeM = NK/Qfθ, m = w + 2l, T = OS andHQp = TpE ⊗ Qp,
using the notations of the theorem 5.1. Leta ⊂ OK be an ideal prime to6pf, and consider
the isogeny given byϕ(a). Let θa be the classical theta function.

To simplify the notation, define for anỹtr ∈ E[pr]

γ(t̃r)m :=< t̃r,
√

dK t̃r >⊗m

where<,> denotes the Weil pairing. Our objective is the computation of

KM ◦ Ew+2l
M (βθ).

Remember that we are under the restrictionaθ 6≡ bθ mod(#O∗K).
We consider the following commutative diagram [8, (2.8)]

H2l+w+1
M (Sym2l+wh1E,Q(w + 2l + 1))

((∆CM )l×id)∗−→ H2l+w+1
M (El+w,Q(2l + w + 1))

KM ↓ ↓ pr∗
Hw+1
M (MθQ,Q(w + l + 1))

eθ←− Hw+1
M (h1(E)⊗w,Q(l + w + 1)),

wherepr is the projection in the lastw components and∆CM : E → E × E is given by
e 7→ (e,

√
dKe). We obtain a map in Galois cohomology given by

H1(OS , Sym2l+wHQp(1)) →

H1(OS , (eθSymwHQp)(l + 1)) = H1(OS ,MθQp(w + l + 1))

such that

KM(ϕp(a)⊗2l+wSym2l+wHQp(1)) = eθ(⊗wϕp(a))NalSymwHQp(l + 1).

Theorem 5.3 Letp be a prime number such thatp - 6NK/Q(f). Letθ be an idempotent
with infinity type(aθ, bθ) whichaθ 6≡ bθ mod (#O∗K). For a prNK/Q(fθ)-torsion point
tr, denote bỹtr its projection toE[pr]. Then, ift = Ωf−1, we have the following equality

Na
(
ψθ,p(a)Nal+1 − 1

)
rp(ξθ,l) =

(−1)lLp(ψθ,−l)−1NTθ/Qf
3l+2w
θ Φ(fθ)

2l−1ψθ(ρθ)Φ(f)
· (
 

δNK(f)/K

X
prtr=t

θa(−tr)⊗ eθ(⊗w etr)⊗ γ(etr)
l

!

r
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Proof. Using theorems 3.5, 5.1 and 5.2, we have that

rp(ξθ,l) =
(−1)l−1(2l + w)!Lp(ψθ,−l)−1Φ(fθ)

2l−1NTθ/Qflθψθ(ρθ)Φ(f)
KM(E2l+w

M (β))

=
(−1)l(2l + w)!Lp(ψθ,−l)−1NTθ/Qf3l+2w

θ Φ(fθ)
2l−1ψθ(ρθ)Φ(f)

KM(β∗PolQp)w+2l.

We have that
KM(t̃r

⊗2l+w
) = eθ(⊗w t̃r)⊗ γ(t̃r)l.

Finally, applying Kings’ theorem 5.1, we obtain the desired identity. ¤

We want to rewrite the previous formula in terms of the norm map of the extension
K(fθ)K(E[pn])/K. We will work with f instead offθ since then we can use thatK(E[pnf]) =
K(pnf), the ray class field, becausef is the conductor ofE and divides the idealfpn ( [9, II,
Prop.1.6]).

Fix a primep of K whereE has good reduction, and takeπ = ϕ(p). Denote by

Hp
r,t := {tr ∈ E[prf]|πrtr = t}.

Let σp be the Frobenius atp in Gal(K(f)/K), we write tr = (t̃r, π−rt) ∈ E[prf] =
E[pr]⊕ E[f], whereπ−rt meanstσ

−r
p .

Consider the filtration ofHp
r,s defined by

F i
r,t := {tr ∈ Hp

r,s|πr−it̃r = 0}.
Theorem 5.4 Let p be as above andtr = (t̃r, π−rt) ∈ F 0

r,s \ F 1
s,t. Suppose that

O∗K → (OK/fθ)∗ is injective. Denote the Euler factor of the Hecke characterψθ at p

evaluated at−l byLp(ψθ,−l). Then

Lp(ψθ,−l)−1


NK(f)/K

∑

sr∈Hp
r,t

θa(−sr)⊗ eθ(⊗ws̃r)⊗ γ(s̃r)l




r

=

(NK(prf)/K

(
θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l

)
)r

in H1(OS , eθ(TpE(1))(l)⊗Qp) for all a relatively prime topf.

Proof. The identificationHomOp(TpE,Op) ∼= TpE(−1) is via the conjugate linear

Op-action on the right side. Henceϕ(p)tr = tr−1. We have the equality

(ψθ(p)/Np−l)iNK(prf)/K(pr−if)(θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l) =

NK(prf)/K(pr−if)(θa(−tr)⊗ eθ(⊗wϕ(p)
i
t̃r)⊗ γ(ϕ(p)

i
t̃r)l) =

(NK(prf)/K(pr−if)(θa(−tr)))⊗ eθ(⊗w t̃r−i)⊗ γ(t̃r−1)l) =

θa(−(t̃r−i, π
i−rt))⊗ eθ(⊗w t̃r−i)⊗ γ(t̃r−i)l,

where the last equality uses the distribution relation forθa ( [9, II 2.5]).
The Galois group ofK(pr−if)/K(f) acts simply transitively onF i

r,t \ F i+1
r,t . We get

that
(ψθ(p)/Np−l)iNK(prf)/K(f)(θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l) =∑

tr−i∈F i
r,t\F i+1

r,t

θa(−(t̃r−i, π
i−rt))⊗ eθ(⊗w t̃r−i)⊗ γ(t̃r−i)l.

We know by [9, Prop. II.2.4.ii)] that we have the equalityθa(−(t̃r−i, π
i−rt)) = θa(−(t̃r−i, π

−rt))σi
p

with σp is the Frobenius atp in the Galois group ofK(f)/K. This and the fact thatNK(f)/K

is the sum over all Galois translates, which act trivially oñtr−i, gives that

(ψθ(p)/Np−l)iNK(prf)/K(θa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l) =
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NK(f)/K




∑

tr−i∈F i
r,t\F i+1

r,t

θa(−(t̃r−i, π
−rt))⊗ eθ(⊗w t̃r−i)⊗ γ(t̃r−i)l


 ,

Adding these equalities with respect toi and increasingr if necessary we get the result.¤

Lemma 5.5 Suppose thatθ has infinity type(w, 0) or (0, w) and(#O∗K , w) = 1. Then

O∗K → (OK/fθ)∗

is injective.

Proof. Let u be and element inO∗K , u 6= 1 and consider the id̀ele defined byx∞ = 1
and xp = u at all finite placesp of K. Then as complex Hecke characterϕw(x) =
ϕw(u−1x) = uw 6= 1 if (w, #O∗K) = 1. So, by definition of the conductor ofψθ, we
obtain thatu 6≡ 1(mod fθ), hence the result for the type(w, 0). For the type(0, w) the
proof is similar but withϕ instead ofϕ. ¤

Corollary 5.6 Supposep - 6NK/Q(f),O∗K → (OK/fθ)∗ is injective and the hypothesis
of theorem 5.3. Then

Na(ψθ,p(a)Nal+1 − 1)rp(ξθ,l) =

±NK/Q(fθ)3l+2wΦ(fθ)
2l−1ψθ(ρθ)Φ(f)

δ
(
NK(E[pr])K(f)/Kθa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l

)
r

=

±NKQ(fθ)3l+2w

2l−1ψθ(ρθ)
· δ (

NK(E[pr])K(fθ)/Kθa(−tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l
)
r

wheretr is a primitiveprfθ-torsion point withprtr = t anda is relative prime topf.

Proof. If p is inert or prime the first equality is deduced from the previous theorem. If
p split, it decomposes in ap part and ap∗ part. Putting together the previous result withp
and withp∗, we have the first equality.

To show the second equality, consider

NK(E[pr])K(f)/K(E[pr])K(fθ)θa(−tr) =
∏

σ∈Gal(K(f)K(E[pr ])K(pr)/K(fθ)K(E[pr ])K(pr))

θa(−tr)σ

becauseK(f) is disjoint with K(pr) over K sinceK = K(1), andK(f) = K(E[f]) is
disjoint with K(E[pr]) overK. Moreover, sinceθa(−tr) ∈ K(f)K(pr) = K(fpr) and
(f, p) = 1, we have that the norm is equal to

∏

τ∈Gal(K(fpr)/K(fθpr))

θa(−tr)τ .

But θa(−tr) ∈ K(fθpr) because−tr is a point offθpr-torsion. To obtain the second equal-
ity we need to show thatΦ(fθ)

Φ(f) #(Gal(K(f)/K(fθ))) is one. We haveΦ(fθ)
Φ(f) #(Gal(K(f)/K(fθ))) =

Φ(fθ)
Φ(f)

[K(f):K(1)]
[K(fθ):K(1)] , we are in Galois extensions. Observe thatΦ(fθ)

Φ(f)
[K(f):K(1)]
[K(fθ):K(1)] = Φ(fθ)

Φ(f)

Φ(f)
wf
wK

Φ(fθ)
wfθ
wK

where wK are the roots of unity ofK and wm are the roots of unit ofO∗K congru-
ent to 1 modulom, by class field theory (see [9, p.36]). And is equal to one because
O∗ → (OK/m)∗ is injective for m = fθ by hypothesis, and form = f (Lemma 5.5
or [25, Corollary 5.9]). ¤

Now we want to show that the elements

(NK(E[pr ])K(fθ)/Kθa(tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l)r

generate(Cχ

∞ ⊗MθZp(w + l))Γ, wherea is prime to6pf andχ is the representation of∆
onHomOp(MθZp(w + l),Op), that we suppose a good representation.



TAMAGAWA NUMBER CONJECTURE FOR HECKE CHARACTERS 15

We suppose from now on that the natural mapO∗K → (OK/fθ)∗ is injective, assumption
also needed to define our elliptic units.

Proposition 5.7 Considerp - 6NK/Q(f) anda an ideal inOp, which is prime to6pf

and such thatψθ,p(a)Nal+1 6≡ 1(mod p). Then theOp[[Γ]]-module

Cχ

∞,fθ
⊗Op MθZp(w + l)

is generated by(θa(tr)⊗ eθ(⊗w t̃r)⊗ γ(t̃r)l)r, wheretr is a primitiveprfθ-division point.

Remark 5.8 The existence of an ideala satisfying the conditions of the proposition 5.7
is equivalent to the condition that the∆-representationχ is not the cyclotomic representa-
tion.

Proof. Observe first thateθ(t̃r)⊗γ(t̃r) generatesMθZp
(w+l), becauseMθZp

(w) is one
dimensional and concerning how it generatesZp(l) use the same proof did in [22, p.623].

Remember that we have an inclusion ofCχ

∞,fθ
in U∞ the local units Iwasawa module,

which is torsion free [25, Prop.11.4], thusCχ

∞,fθ
is a torsion freeOp[[Γ]]-module. Is enough

to show that is one dimensional. Letb be another ideal prime to6pf. Takeσa = [a,Kn/K]
andσb = [b,Kn/K]. Then, by the properties of the theta function, we have that

(σa − ψθ,p(a)Nal+1)(θb(tn)⊗ eθ(⊗w t̃n)⊗ γ(t̃n)l) =

ψθ,p(a)Nal(θb(tn)σa−Na ⊗ eθ(⊗w t̃n)⊗ γ(t̃n)l) =

ψθ,p(a)Nal(θa(tn)σb−Nb ⊗ eθ(⊗w t̃n)⊗ γ(t̃n)l).

Then, it is enough show that(σa−ψθ,p(a)Nal+1) is invertible inOp[[Γ]]. But the element
σa corresponds to 1 onOp/p and thusσa − ψθ(a)Nal+1 is invertible inOp[[Γ]] because
1 6≡ ψθ(a)Nal+1 mod p. ¤

Corollary 5.9 Assume thatp - 6NK/Qf. Then the image ofRθ byrp in the cohomology
groupH1(OS ,MθZp(w + l + 1))⊗Qp coincides with

(Soul)p((Cχ

∞,fθ
⊗MθZp(w + l))Γ).

Proof. As

N f3l+2w
θ /2l−1ψθ(ρθ)

is prime top, it follows from the definition of(Soul)p and Corollary 5.6. ¤

Lemma 5.10 The canonical map

(C∞,fθ
⊗MθZp(w+l))⊗LOp[[G]]Op → (C∞,fθ

⊗MθZp(w+l))G ∼= (Cχ

∞,fθ
⊗MθZp(w+l))Γ

is an isomorphism and moreover(Cχ

∞,fθ
⊗MθZp(w + l))Γ ∼= Op.

Proof. We observe that the proof of proposition 5.7 shows thatCχ

∞,fθ
∼= Op[[Γ]] is a free

Op[[Γ]]-module of rank 1. This implies, as in [22, lemma 5.2.3], that(Cχ

∞,fθ
⊗MθZp(w +

l))Γ ∼= Op. The claim follows since the previous module is induced and hence the higher
Tor-terms vanish. ¤

Corollary 5.11 The map

Rθ ⊗ Zp → RΓ(OS ,MθZp(w + l + 1)⊗Qp)[1]

induced byrp, gives an isomorphism

detOpRθ
∼= detOpRΓ(OS ,MθZp(w + l + 1))−1
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Before stating the next theorem, let us recall all the hypothesis we used during the paper
and that we will need:
(¦ ¦ ¦) Let p be a fix prime such thatp - 6NK/Qf (hence, in particularp - (#O∗K), and
p - DK). Considerl a non-negative integer. Let(aθ, bθ) be the infinite type ofψθ, with
aθ, bθ non-negative integers withw = aθ + bθ ≥ 1 such thataθ 6≡ bθ mod(#O∗K)
and−w − 2l ≤ −3. Assume thatO∗K → (OK/fθ)∗ is injective. Suppose moreover
that the representationχ of ∆ in HomOp

(Hw
ét(Mθ ×K K,Zp(w + l)),Op) is a good

representation (see the definition in 4.3) which is not equal as∆-representation to the
cyclotomic representation.

Theorem 5.12 Under the hypothesis(¦ ¦ ¦) above, there is anOK-submoduleRθ ⊂
Hw+1
M (MθQ,Q(w + l + 1)) of rank 1 such that:

(1) detOK [1/DK ](rD(Rθ ⊗OK
OK [1/DK ])) ∼=

L∗S(ψθ,−l)detOK [1/DK ](Hw
B (MθC,Z(w + l))⊗OK

OK [1/DK ])

in detOK [1/DK ]⊗R(Hw
B (MθC,Z(w + l))⊗OK

OK [1/DK ]⊗ R).
(2) The maprp induces an isomorphism

detOK⊗Zp(Rθ) ∼= detOK⊗Zp
(RΓ(OK [1/S],MθZp

(w + l + 1))−1.

Here

L∗S(ψθ,−l) = lim
s→−l

LS(ψθ, s)
s + l

,

andS is the set of primes ofK dividingp and the ones dividingfθ.
Moreover, ifrp is injective onRθ, the second part can be written as

detOK⊗Zp(H1(OK [1/S],MθZp(w + l + 1))/rp(Rθ)) ∼=
detOK⊗ZpH2(OK [1/S],MθZp(w + l + 1)).

Proof. It is a direct consequence of the theorem 3.5 and the above corollary 5.11.¤
After taking the normNK/Q, we obtain the following result.

Theorem 5.13 Under the assumption(¦ ¦ ¦) above, there is aZ-submoduleRθ in
Hw+1
M (MθQ,Q(w + l + 1)) of rank 2 such that:

(1) The maprD ⊗ R is an isomorphism restricted toRθ ⊗ R.
(2) dimQ(Hw

B (MθC,Q(w + l))) = ords=−lLS(MθQ, s) = 2.
(3) We have the equality

rD(detZ[1/DK ](Rθ ⊗OK OK [1/DK ])) =

L∗S(MθQ,−l)detZ[1/DK ](Hw
B (MθC,Z(w + l))⊗OK

OK [1/DK ])
where

L∗S(MθQ,−l) = lim
s→−l

LS(MθQ, s)
(s + l)2

andS is the set of places ofK that dividesp and the places dividing the conductor
fθ.

(4) We have that

detZp(Rθ ⊗ Zp) = detZp(RΓ(OK [1/S],MθZp(w + l + 1)))−1.

If rp is injective onRθ, thenrp(detZp(Rθ ⊗ Zp)) is a basis of theZp-lattice

detZp(RΓ(OK [1/S],MθZp(w + l + 1)))−1

⊂ detQp(RΓ(OK [1/S],MθZp(w + l + 1)⊗Q)[−1]).
Remark 5.14 Theorems 5.12 and 5.13 imply the weakp-part of the Tamagawa number

conjecture for Hecke characters [19] forK orQ coefficients respectively, up to the finite-
ness ofH2

p := H2(O[1/S],MθZp(w + l + 1)) and the bijectively of the Soulé regulator
maprp. Concerning these requirements, we have the following.
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(1) If p is a regular prime for the fieldK(E[p]), thenH2
p is finite [3]. Moreover

without any assumption, one obtains that for almost alll this Galois cohomology
group is finite [21, Theorem 12.4] or [4].

(2) About the bijectively of the Soulé regulator map observe ifH2
p is finite, similar

arguments as in [22,§5.2.2] implies the injectivity for(Soul)p and thereforerp is
injective onRθ ⊗ Qp by corollary 5.9. Thereforerp restricted toRθ ⊗ Qp is an
isomorphism [18, cor. 1].

Therefore for regular primesp, we obtain in full generality the weakp-part of the Tama-
gawa number conjecture for Hecke characters of imaginary quadratic fields.

6. THE REMAINING TATE TWISTS

6.1. The remaining non-critical twists. The value of theL-function at zero forMθ(w +
l + 1) with −w − 2l < −2 is related with the first non-zero coefficient of the Taylor
development at−l of theL-function associated toψθ by the use of the functional equation
of L-functions. The non-critical values associated to the Hecke characterψθ (we restrict
to the situationaθ 6≡ bθ(mod|O∗K |)) are the integersl such that−l ≤ min(aθ, bθ) where
aθ, bθ are associated to the Hecke characterψθ (see [8, Theorem 1.4.1])

The general formulation of the Tamagawa number conjecture at the non-critical values
following [19] assumesw + l + 1 > w [19, Conjecture 2.2.7] because then one avoids the
poles in the bad Euler factors, and therefore the assumptionl ≥ 0. But, forMθ(w + l +1),
there are no poles in the bad Euler factors, see Remark 2.5. Thus, we can expect to study
the Tamagawa number conjecture forl < 0 by using only the regulators maps.

In this section we construct elements inK-theory forMθ(w + l + 1) with 0 < −l ≤
min(aθ, bθ) and we study the image of these elements by the Beilinson regulator map and
the Souĺe regulator map, obtaining the weakp-part of the Tamagawa number conjecture.

Deninger [8, pp.142-144] already constructed elements inK-theory for the motive
Mθ(w + l + 1) with l < 0 non-critical and obtains their image by the Beilinson regu-
lator map, proving the Beilinson conjecture. He constructed these elements inK-theory
by use of a projector mapKM without using complex multiplication. The problem of his
construction is that the Weil pairing appearing in§5 to aE[pr]-torsion pointt̃r, γ(t̃r) =<

t̃r, t̃r > is trivial and the arguments through§5 does not generalize in order to construct
an Euler system to control the image by the Soulé regulator map. We modify Deninger’s
projector map byK′M (we use now complex multiplication), and we construct the elements
in K-theory usingK′M and we reobtain Beilinson’s conjecture. With this modification the
arguments in thep-part of the weak Tamagawa number conjecture, i.e. the image by the
Souĺe regulator map of theseK-theory elements§4,§5, apply straightforward obtaining the
weakp-part of the Tamagawa number conjecture forl < 0, Theorems 6.3, 6.4.

6.2. Modification of Deninger’s projector map. Beilinson conjecture revisited. Let us
fix w ≥ 1 and l < 0 such that−w − 2l ≤ −3 with 0 < −l ≤ min(aθ, bθ) and let us
consider the motiveMθ(w+l+1). With the fixed embedding we haveϑ = (λ1, . . . , λw) ∈
θK and setI1 = {i|λi ∈ HomK(K,C)} andI2 = {i|λi /∈ HomK(K,C)} and we have
now that0 < |l| ≤ #I1 = aθ and 0 < |l| ≤ #I2 = bθ, where|l| is the absolute
value. Denote by∆ = id1 × id2 : E → E × E the diagonal map and by∆CM =
id1,CM × id2,CM : E → E × E given by e 7→ (e, (

√
dK)e) where we understand√

dK ∈ End(E). Let us choose exactly#|l| elements in the setsI1 andI2, denote their
in increasing orderi1, . . . , i|l| ∈ I1 andj1, . . . , j|l| ∈ I2. Let us define the projector map
pr : Ew+l → Ew+2l by the projection of the firstw + 2l-components ofEw+l and define
(id × ∆|l|) : Ew+l → Ew (which it depends of the choice in the setsI1 and I2) by
(e1, . . . , ew+2l, ew+2l+1, . . . , ew+l) 7→ (eα1 , . . . , eαw) whereeαs is defined as follows:
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• if αs appears in one component of the set of tuplesL := {(i1, j1), . . . , (i|l|, j|l|)}
then

eαs :=
{

id1(ew+2l+m) if αs = im
id2(ew+2l+m) if αs = jm

,

• in the other case, then it is defined byeαs := eñ with 1 ≤ ñ ≤ w + 2l such that
αs = ñ +

∑
1 where the sum runs the naturals that appear in some component of

the elements ofL and which are lower thanαs.

We define the map(id×∆|l|
CM ) similar as(id×∆|l|) but replacingidi by idi,CM .

The projector mapK′M is defined by the commutative diagram

H2l+w+1
M (Sym2l+wh1E,Q(w + 2l + 1))

pr∗−→ H2l+w+1
M (E2l+w+|l|,Q(2l + w + 1))

K′M ↓ ↓ (id×∆
|l|
CM )∗

Hw+1
M (MθQ,Q(w + l + 1))

eθ←− Hw+1
M (h1(E)⊗w,Q(l + w + 1)).

Deninger defines a projector mapKM with a similar diagram as for ourK′M but replac-

ing the map(id×∆|l|
CM )∗ by the map(id×∆|l|)∗.

Let us choose the element inHw+1
M (MθQ,Q(w + l + 1))

Υθ := K′ME2l+w
M (NK(E[f])/K((Ωf−1))),

whereE2l+w
M is the Eisenstein symbol,f a generator offθ, Ω the period ofE and(Ωf−1)

means the divisor inZ[E[fθ] \ 0].
The next result is a modification of Deninger’s result [8, pp.143-145].

Theorem 6.1 Supposeaθ 6≡ bθ mod(#O∗K) with aθ, bθ ≥ 0, l < 0, w = aθ + bθ, with
−w − 2l ≤ −3 and−l ≤ min(aθ, bθ). Define, up to sign,

ξθ,l :=
(
√

dK)2l(2l + w)!Lp(ψθ,−l)−1Φ(fθ)
2−1NK/Qflθψθ(ρθ)Φ(f)

Υθ

which belongs toHw+1
M (MθQ,Q(w + l + 1)) whereLp(ψθ,−l) means the product of the

Euler factors of the primes abovep of K at−l (is well defined by Remark 2.5), andρθ is
the id̀ele ofK such thatvq(ρ−1

q − f−1) ≥ 0 for q | fθ andvq(ρq) = 0 in the other primes
q. Then

rD(ξθ,l) = L∗S(ψθ,−l)ηθ,

whereS are the set of primes ofK that dividefθp, ηθ is anOK [1/DK ]-basis forHw
B (MθC,Z(w+

l))⊗OK OK [1/DK ] andL∗S(ψθ,−l) = lims+l→0
LS(ψθ,s)

s+l .

Proof. We will follow closely Deninger’s papers [7] and [8], we follow also in this
proof his notation where hisn is our w + 2l. Deninger defines the elementξθ,l from
KME2l+w

M (NK(E[f])/K((Ωf−1))) instead ofΥθ. We modify only the calculation in [8,
(2.13)Lemma] forK′M instead ofKM. One obtains (up to sign)

1
(2πi)w

∫

Ew

K̃′D(ξ̃) ∧ dz(ε) =

Bε

√
dK

|l|
(

n
n + |l| − |ε|

)−1

A(Γ)n+|l|cn+|l|−|ε|

see the calculation at the top of [7, p.63]. To precise the sgn we should control the chosen
order of the factors of the map(id ×∆|l|

CM ), but for our interest is unnecessary. Then the
argument [8, p.143-144] applies in our situation obtaining,

rD(Υθ) = tθL
∗(ψθ,−l)ηθ

wheretθ is given by
2−1NK/Qfl

θψθ(ρθ)Φ(f)

(
√

dK)2l(2l+w)!Φ(fθ)
(up to sign). By Remark 2.5 we can introduce the

Euler factors abovep in the constant factortθ, obtaining the statement. ¤
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6.3. The weak Tamagawa number conjecture forl < 0. Following §3 we define for
l < 0 the constructible module by

Rθ := ξθ,lOK ,

whereξθ,l is defined in theorem 6.1. Let us observe that with this notation we can follow
straightforward all the results and proofs of§3 and§4. In §5 we need to computeK′M ◦
Ew+2l
M (NK(E[f])/K(Ωf−1)). We remember that we suppose once and for all thatp - DK .

Denote bye = (t̃r)r and element of the Tate moduleTpE wheret̃r ∈ E[pr] a pr-torsion
point forE.

Lemma 6.2 The realization on Galois cohomology of the projector mapK′M has the

property,K′M(t̃r
⊗2l+w

) = eθ(⊗w t̃r)⊗ γ(t̃r)l whereγ(t̃r) =< t̃r,
√

dK t̃r >.

Proof. Observe first that the projector mapK′M is eθ ◦ (id × ∆|l|
CM )∗ ◦ pr∗. Let us

takeδ∗ := (id × ∆|l|
CM )∗ ◦ pr∗ and observe that its transposeδ∗ = pr∗ ◦ (id × ∆|l|

CM )∗

is part of the definition ofKM = eθ ◦ δ∗ with l := |l| > 0 given at [22]. We want
only to study these projector maps on the Galois cohomology. Denote byHQp

the étale
realization ofh1(E)(1) and observe that there is an isomorphismH∗Qp

(1) ∼= HQp , since
(h1(E)(1))∗ = h1(E)(−1) ∼= h1(E)(1)(−1) = h1(E). The mapδ∗ is given by

H1(OS , Sym2l+w(HQp)(1)) → H1(OS , Symw(HQp)(l + 1)),

and because the mapδ∗ is the transpose for the mapδ∗, up to Tate twist byw + l, it is
represented by global Tate duality by,

H1(OS , Symw(HQp)∗(−l − 1)(1)) → H1(OS , Sym2l+w(HQp)∗(−1)(1)).

Is known [22] that

δ∗(lim
←−
r

(⊗2l+w t̃r)) = lim
←−
r

((⊗w t̃r)γ(t̃r)l)

write this equality also byδ∗(⊗w+2lv) = (⊗wv)γ(v)l. Take now the dual map byHom(,Zp)
and with the identificationTpE ∼= Hom(TpE,Zp(1)), we obtain

(⊗wv(−1))γ(v)−l 7→ ⊗w+2lv(−1)

twisting now byw + l we arrive to the definition forδ∗ and,

δ∗(⊗wv) 7→ (⊗w+2lv)γ(v)−l.

Now take this equality at levelr, w = w + 2l, l = −l, and apply the idempotenteθ to
finish. ¤

After the lemma 6.2 all the results of§5 and the proofs of§5 follow straightforward
up to a power of 2 andDK , (the reader could make these modifications which follow
only from our definition ofRθ). Therefore we obtain the weakp-part of the Tamagawa
number conjecture withK-coefficients andQ-coefficients, under standard hypothesis from
Iwasawa theory for imaginary quadratic fields:

(***) Let p be a fix prime such thatp - 6NK/Qf. Suppose thatψθ has infinity type
(aθ, bθ) with aθ, bθ non-negative integers, such thataθ 6≡ bθ mod(#O∗K) andw = aθ +
bθ ≥ 1 verifies−w − 2l ≤ −3 with l < 0 and−l ≤ min(aθ, bθ). Suppose thatO∗K →
(OK/fθ)∗ is injective. Suppose moreover that the representationχ of Gal(K(E[p])/K)
in HomOp(Hw(Mθ ×K K,Zp(w + l)),Op) is a good representation which is not equal
as∆-representation to the cyclotomic representation.

Theorem 6.3 Assume hypotheses(***) . Then, there is anOK-submoduleRθ ⊂ HM
of rank 1 such that:
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(1) detOK [1/DK ](rD(Rθ ⊗OK
OK [1/DK ])) ∼=

L∗S(ψθ,−l)detOK [1/DK ](Hw
B (MθC,Z(w + l))⊗OK

OK [1/DK ])

in detOK [1/DK ]⊗R(Hw
B (MθC,Z(w + l))⊗OK

OK [1/DK ]⊗ R).
(2) The maprp induces an isomorphism

detOK⊗Zp(Rθ) ∼= detOK⊗Zp(RΓ(OK [1/S],MθZp(w + l + 1))−1.

Here

L∗S(ψθ,−l) = lim
s→−l

LS(ψθ, s)
s + l

,

andS is the set of primes ofK dividingp and the ones dividingfθ.
Moreover, ifrp is injective onRθ, the second part can be written as

detOK⊗Zp
(H1(OK [1/S],MθZp

(w + l + 1))/rp(Rθ)) ∼=
detOK⊗Zp

H2(OK [1/S],MθZp
(w + l + 1)).

Theorem 6.4 Suppose hypotheses(***) .
Then, there is aZ-submoduleRθ in HM of rank 2 such that:

(1) The maprD ⊗ R is an isomorphism restricted toRθ ⊗ R.
(2) dimQ(Hw

B (MθC,Q(w + l))) = ords=−lLS(MθQ, s) = 2.
(3) We have the equality

rD(detZ[1/DK ](Rθ ⊗OK
OK [1/DK ])) =

L∗S(MθQ,−l)detZ[1/DK ](Hw
B (Mθ,Z(w + l))⊗OK

OK [1/DK ])
where

L∗S(MθQ,−l) = lim
s→−l

LS(MθQ, s)
(s + l)2

andS is the set of places ofK that dividesp and the places dividing the conductor
fθ.

(4) We have that

detZp(Rθ ⊗ Zp) = detZp(RΓ(OK [1/S],MθZp(w + l + 1)))−1.

If rp is injective onRθ, thenrp(detZp(Rθ ⊗ Zp)) is a basis of theZp-lattice

detZp(RΓ(OK [1/S],MθZp(w + l + 1)))−1

⊂ detQp(RΓ(OK [1/S],MθZp(w + l + 1)⊗Q)[−1]).

7. SOME EXPLICIT EXAMPLES

Observe first if we consider the Hecke character associated to the idempotenteθ with
infinite type(1, 0), then, Theorem 5.12 is exactly [22, Theorem 1.1.5] (hypothesis (¦ ¦ ¦)
for the infinite type(1, 0) coincides with the ones that appears in [22, Theorem 1.1.5] ,
use [22, Corollary 2.2.11] and Lemmata 4.5, 4.6, 5.5 and comments after Definition 4.3).

Let us give examples of Hecke characters of infinite type different to(1, 0). In the
following, takeE the elliptic curvey2 = 4x3 − 4x defined overK = Q(i) and the
differentseθ are defined from this fixedE. E is a CM elliptic curve with CM byZ[i], and
for p ≥ 5 we havep - 6NK/Qf.

First, consider idempotentseθ with infinite type(w, 0) or (0, w) in this casel ≥ 0. Take
w, p such thatw ≡ 1(mod 2), p − 1 > max(3, w), p splits inQ(i) and−w − 2l ≤ −3.
Suchw, p satisfy all hypothesis (¦ ¦ ¦) except the condition (A) for beχ a good represen-
tation (use Lemmata 4.6 and 5.5). We impose(w, p − 1) = 1 to ensure thatw, p satisfy
the technical hypothesis (A) (use Lemma 4.5). For suchw, p we obtain the conclusion of
theorems 5.12 and 5.13. For an explicit example take the infinite type(3, 0) andp = 5,
then all hypothesis (¦ ¦ ¦) are satisfied and moreoverp = 5 is a regular prime forQ(i)
(see [28, p.33]) therefore by theorem 5.13 (and remark 5.14) we get the weak 5-part of



TAMAGAWA NUMBER CONJECTURE FOR HECKE CHARACTERS 21

the Tamagawa number conjecture for the dual of the motiveM(3,0)(3 + l + 1) with l ≥ 0
twisted by 1 (the special value for the motiveM is the special value associated toL(M, 0),
and in our formulation we get the special valueL(ψθ,−l) = L( ˇMθ(w + l + 1)(1), 0)).
By use of the functional equation between the motive and its dual twisted by 1 (recall
that this functional equation is proved in the case of Hecke characters) and good compat-
ibilities, one should obtain the 5-part of the Tamagawa number conjecture for the motive
M(3,0)(3 + l + 1) with l ≥ 0.

Now we give a numerical example where§6 applies. Let us considereθ with infinite
type(a, b) satisfyinga 6≡ b(mod 2), a > b > 0 and−(a + b)− 2l ≤ −3. Takep such that
it splits inQ(i) andp−1 > max(3, a−b). We have thateθ andp satisfy all the hypothesis
(¦ ¦ ¦) and(∗ ∗ ∗), with the exception of the condition (A) in Definition 4.3, (use Lemma
4.6 and is easy to prove that(Z[i])∗ → (Z[i]/fθ)∗ is injective if (#O∗K , a − b) = 1 with
a similar proof done for Lemma 5.5). We impose(a − b, p− 1) = 1 to affirm thateθ and
p satisfy the condition (A) (see Lemma 4.5). For an explicit example, takeeθ with infinity
type (a, b) = (3, 2) andp = 5, then all hypotheses (¦ ¦ ¦) and (***) are satisfied and
moreoverp = 5 is a regular prime ( [28, p.33]) therefore we get some sort of weak 5-part
of the Tamagawa number conjecture forM(3,2)(3 + 2 + l + 1) for l ≥ −1 by theorems
5.13,6.4.
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http://www.tdcat.cesca.es/TDCat-1211101-102742/

[3] F. Bars: On Jannsen’s conjecture for Hecke characters of imaginary quadratic fields. Publ. Mat. vol. extra
(2007), 29-42, Proceedings of the Primera Jornadas de Teorı́a de Ńumeros.
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