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1. Introduction. A non-singular smooth curve C over a number field K
of genus gC > 1 always has a finite set C(K) of K-rational points by a cele-
brated result of Faltings (here we fix once and for all K, an algebraic closure
ofK). We denote the set of all points of degree at most d for C by Γd(C,K) =⋃

[L:K]≤dC(L) and of exact degree d by Γ ′
d(C,K) =

⋃
[L:K]=dC(L), where

L ⊆ K runs over the finite extensions of K. A point P ∈ C is said to be a
point of degree d over K if [K(P ) : K] = d.

The set Γd(C,M) is infinite for a certain finite extension M/K if C
admits a degree at most d map, all defined over M , to a projective line
or an elliptic curve with positive M -rank. The converse is true for d = 2
[HaSi], d = 3 [AbHa] and d = 4 under certain restrictions [AbHa,DeFa]. If
we fix the number field M in the above results (i.e. an arithmetic statement
for Γd(C,M) with M fixed), we need a precise understanding over M of
the set Wd(C) = {v ∈ Picd(C) | h0(C,Lv) > 0} where Picd is the usual
d-Picard group and Lv the line bundle of degree d on C associated to v. If
Wd(C) contains no translates of abelian subvarieties with positive M -rank
of Picd(C) then Γ ′

d(C,M) is finite (under the assumption that C admits no
maps of degree at most d to a projective line over M).

For d = 2 the arithmetic statement for Γd(C,K) follows from [AbHa] (for
a sketch of the proof and the precise statement see [Ba, Theorem 2.14]).

For d = 3, Daeyeol Jeon [Jeo21] introduced an arithmetic statement and
its proof following [AbHa] and [DeFa]. In particular, if gC ≥ 3 and C has
no degree 3 or 2 map to a projective line and no degree 2 map to an elliptic
curve over K then the set of exact cubic points of C over K, Γ ′

3(C,K), is
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infinite if and only if C admits a degree 3 map to an elliptic curve over K
with positive K-rank.

Observe that if gC ≤ 1 (with C(K) ̸= ∅ for gC = 1), then C has a
degree 3 map over K to the projective line, thus Γ ′

3(C,K) is always infinite.
Thus for curves C with C(K) ̸= ∅ we restrict to gC ≥ 2 in order to study
the finiteness of Γ ′

3(C,K).
Let N be an integer greater than 1 and consider the modular curve

X0(N) whose non-cusp points correspond to isomorphism classes of isogenies
between elliptic curves ϕ : E → E′ of degree N with cyclic kernel. The
rational and quadratic points of X0(N) have been studied by many authors.
In particular, Jeon [Jeo21] determined the finite set of modular curvesX0(N)
where Γ ′

3(X0(N),Q) is infinite.
Next, the Fricke involution wN on X0(N) arises from taking the dual

isogeny ϕ̂ : E′ → E. We define the modular curve X+
0 (N) to be the quotient

ofX0(N) by the group of two elements generated by wN . There is a model for
X+

0 (N) over Q, and the study of Q-rational points and quadratic points on
those curves attracted the attention of Momose [Mo] and Galbraith [Ga02]
and many others.

In this paper, we deal with determining whether there are infinitely many
cubic points on X+

0 (N) for genus ≥ 2. The values of N for which X+
0 (N)

has genus 0 and 1 are listed in Theorem 3 and recall that X+
0 (N)(Q) ̸= ∅,

because it has a rational cusp.
The novelty of the paper compared to previous works on degree 2 and 3

maps to an elliptic curve E with positive Q-rank is considering the cover
Q(X0(N))/Q(E) by taking into account the action of an Atkin–Lehner in-
volution.

The main result of the article is the following.

Theorem 1. Suppose gX+
0 (N) ≥ 2. Then Γ ′

3(X
+
0 (N),Q) is infinite if and

only if gX+
0 (N) = 2 or N is in the following list:

g
X+

0 (N)
N

3 58, 76, 86, 96, 97, 99, 100, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239

4 88, 92, 93, 115, 116, 129, 137, 155, 159, 215

5 122, 146, 181, 185, 227

6 124, 163, 164, 269

7 196, 243

10 236

All computation sources used in the paper are available at https://github.
com/Tarundalalmath/X_0-N-with-infinitely-many-cubic-points except the
ones for counting points over finite fields, where we use modified versions for
X+

0 (N) of the ones already available at different links in [BaGo].

https://github.com/Tarundalalmath/X_0-N-with-infinitely-many-cubic-points
https://github.com/Tarundalalmath/X_0-N-with-infinitely-many-cubic-points
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Having the result of this paper on cubic points for C = X+
0 (N), Theo-

rem 1, or [Jeo21] for C = X0(N), one can try to determine the whole set
of cubic points for such C’s when Γ ′

3(C,Q) is finite. This problem could be
attacked if the Chabauty method given by Siksek [Si09] (or [BoGaGo]) could
apply.

2. General considerations. Given a complete curve C over K, the
gonality of C is defined as

Gon(C) := min {deg(φ) | φ : C → P1 defined over K}.

By [Jeo21, Lemma 1.2] (and arguments there) we have

Lemma 2. Suppose Gon(C) ≥ 4, P ∈ C(K) and C does not have a
degree ≤ 2 map to an elliptic curve. If the set Γ ′

3(C,K) is infinite then C
admits a K-rational map of degree 3 to an elliptic curve with positive K-rank.

The modular curvesX+
0 (N) to which Lemma 2 is not applicable are listed

in the next result, corresponding to the works [FuHa,Jeo18,HaSh99b] (the list
with gX+

0 (N) ≤ 1 is well-known and follows easily from [BaGo, Appendix]).

Theorem 3.

(i) The modular curve X+
0 (N) has gX+

0 (N) = 0 if and only if N is one of
the following:

1–21, 23–27, 29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59, 71.

(ii) X+
0 (N) is an elliptic curve (equivalently gX+

0 (N) = 1) if and only if N
is one of the following:

22, 28, 30, 33, 34, 37, 38, 40, 43, 44, 45, 48, 51, 53–56, 61, 63–65, 75,
79, 81, 83, 89, 95, 101, 119, 131.

(iii) (Furumoto–Hasegawa) X+
0 (N) is hyperelliptic if and only if N is one

of the following:

42, 46, 52, 57, 60, 62, 66–69, 72–74, 77, 80, 85, 87, 91, 92, 94, 98, 103,
104, 107, 111, 121, 125, 143, 167, 191.

(iv) (Jeon) X+
0 (N) is bielliptic,i.e. has a degree 2 map to an elliptic curve,

if and only if N is one of the following:

42, 52, 57, 58, 60, 66, 68, 70, 72, 74, 76–78, 80, 82, 84–86, 88, 90, 91,
96, 98–100, 104, 105, 108, 110, 111, 117, 118, 120, 121, 123, 124, 128,
135, 136, 141–145, 155, 159, 171, 176, 188.

(v) (Hasegawa–Shimura) Gon(X+
0 (N)) = 3 if and only if N is one of the

following:



4 F. Bars and T. Dalal

58, 70, 76, 82, 84, 86, 88, 90, 93, 96, 97, 99, 100, 108, 109, 113, 115, 116,
117,122, 127, 128, 129, 135, 137, 139, 146, 147, 149, 151, 155, 159, 161,
162, 164, 169, 173, 179, 181, 199, 215, 227, 239, 251, 311.

We say that a pair (N,E), where N is a natural number and E is an
elliptic curve over Q with positive Q-rank, is admissible if there is a degree 3
map over Q of the form X+

0 (N) → E. The following lemma gives a criterion
to rule out the pairs which are not admissible.

Lemma 4. If (N,E) is an admissible pair, then:

(i) E has conductor M with M |N and for any prime p ∤ N we have

|X+
0 (N)(Fpn)| ≤ 3|E(Fpn)| and |X0(N)(Fpn)| ≤ 6|E(Fpn)|, ∀n ∈ N;

(ii) if the conductor of E is N , then the degree of the strong Weil paramet-
rization of E divides 6;

(iii) for any prime p ∤ N we have
p− 1

12
ψ(N) + 2ω(N) ≤ 6(p+ 1)2,

where ω(N) is the number of prime divisors of N and ψ =
N

∏
q|N, q prime(1 + 1/q) is the ψ-Dedekind function;

(iv) for any Atkin–Lehner involution wr of X0(N) with r ̸= N we have

gX+
0 (N) ≤ 3 + 2 · gX+

0 (N)/wr
+ 2.

Proof. Let (N,E) be admissible. Then there is a Q-rational degree 3
mapping f : X+

0 (N) → E and consequently we have a Q-rational degree 6
mapping g : X0(N) → E. Hence cond(E) |N .

(i) Let p ∤ N be a prime. Since p ∤ N , the curves X+
0 (N), X0(N) and

E have good reduction at p and the mappings f, g induce the Fp-rational
mappings f : X

+
0 (N) → E and g : X0(N) → E, where X+

0 (N), X0(N)
and E denote the mod p reductions of X+

0 (N), X0(N) and E respectively.
Hence we have |X+

0 (N)(Fpn)| ≤ 3|E(Fpn)| and |X0(N)(Fpn)| ≤ 6|E(Fpn)|,
for all n ∈ N.

(ii) If cond(E)=N , and E′ denotes the strong Weil curve with strong
Weil parametrization φ :X0(N)→E′, then there exists an isogeny ψ :E′→E
such that g=ψ ◦ φ, hence the degree of the strong Weil parametrization
divides 6.

(iii) For any prime p ∤ N we know that |X0(N)(Fp2)| ≥ p−1
12 ψ(N) +

2ω(N) (cf. [HaSh99a, Lemma 3.1]) and |E(Fp2)| ≤ (p + 1)2. Hence we have
p−1
12 ψ(N) + 2ω(N) ≤ 6(p+ 1)2.

(iv) We know f : X+
0 (N) → E is a degree 3 mapping. If wr is an Atkin–

Lehner involution on X0(N) with r ̸= N , then we have a degree 2 mapping
X+

0 (N) → X+
0 (N)/wr. The result follows from Castelnuovo’s inequality.
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As an immediate application of Lemma 4(iii) we obtain the following:

Corollary 5. For N > 623, the pair (N,E) is not admissible.

Proof. The proof is similar to that of [HaSh99a, Lemma 3.2]. We will
show that for N ≥ 623, there exists a prime p ∤ N such that

ψ(N) >
12

p− 1
(6(p+ 1)2 − 2w(N)).

• If 2 ∤ N and N > 623, then choosing p = 2 we have

ψ(N) ≥ N + 1 > 624 = 12(6 · (2 + 1)2 − 2) ≥ 12(6 · (2 + 1)2 − 2w(n)).

• If 2 |N , 3 ∤ N and N > 376, then choosing p = 3 we have

ψ(N) ≥ 3N
2 > 564 = 12

2 (6.16− 2) > 12
2 (6.16− 2w(N)).

• If 2 · 3 |N , 5 ∤ N and N > 321, then choosing p = 5 we have

ψ(N) ≥ N · 3
2
· 4
3
>

12

4
(6.36− 2).

• If 2 · 3 · 5 |N , 7 ∤ N and N > 319, choosing p = 7 we have

ψ(N) ≥ N · 3
2 · 4

3 · 6
5 >

12
6 (6.64− 2).

• If 2 · 3 · 5 · 7 |N , choose p to be the smallest prime not dividing N .

After applying Lemma 4 (see Appendix B for a list of N ’s that we can
discard in each item), we are reduced to a finite set of N ’s. To deal with the
remaining admissible pairs, the next two lemmas will be helpful.

Lemma 6. Let E/Q be an elliptic curve of conductor N and let φ :
X0(N) → E be the strong Weil parametrization of degree k defined over Q.
Suppose that wN acts as +1 on the modular form fE associated to E. Then
φ factors through X+

0 (N) (and k is even).

Proof. Consider the mapping φ : X0(N) → E. Following [CaEm, p. 424]
(or [De, §2]), the fact that wNfE = fE implies φ ◦ wN = φ + P , where
P is a torsion point of E given by P = φ(0) − φ(∞), where 0,∞ are the
corresponding cusps on X0(N) with φ(∞) = OE (recall that OE denotes
the zero point of E). Because the sign of the functional equation of fE is
−1, the Q-rank of E is odd (cf. [MaSD, §3.1]); this implies that P = OE

(see [CaEm]), so φ factors through the quotient X0(N)/⟨wN ⟩ and wN acts
as the identity on E.

Lemma 7. Consider a degree k map φ : X → E defined over Q where
X is a quotient modular curve X0(N)/WN with WN a proper subgroup of
B(N) (B(N) is the subgroup of Aut(X0(N)) generated by all Atkin–Lehner
involutions). Assume that cond(E) = M (M |N). Let d ∈ N with d ||M ,
(d,N/d) = 1 and wd /∈WN be such that wd acts as +1 on the modular form
fE associated to E.
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(i) If E has no non-trivial 2-torsion over Q, then φ factors through X/⟨wd⟩
and k is even.

(ii) If E has non-trivial 2-torsion over Q and k is odd, then we obtain a
degree k map φ′ : X/⟨wd⟩ → E′ by taking the wd-invariant to φ, where
E′ is an elliptic curve isogenous to E.

Proof. Let E(C) ∼= C/Λ. The mapping φ can be considered as a mapping
in the complex field, φ̃ : Γ\H → C/Λ, defined by τ 7→

	τ
i∞ const · f(τ ′) dτ ′,

where Γ := ⟨Γ0(N),WN ⟩ and f ∈
⊕

d|N/M QfE(qd) ∈ S2(Γ0(N))⟨WN ⟩

(cf. [Go]). Since wd acts on fE as +1, it also acts on f as +1. Moreover,
φ̃(wdτ) − φ̃(τ) = P is independent of τ . Thus φ ◦ wd = φ + P . Since wd is
an involution, we obtain 2P ∈ Λ, and P is a 2-torsion point of E(C) (which
could be the trivial zero point of E, i.e. belonging to Λ). Therefore we have
the following commutative diagram (proj is the usual projection map):

X(C) C/Λ

X/⟨wd⟩(C) C/⟨Λ,P ⟩

proj

φ

proj

φwd

Thus if E has no non-trivial 2-torsion over Q, then P is the trivial zero of E
and φ factors through X/⟨wd⟩.

On the other hand, if E has non-trivial 2-torsion over Q and k is odd, then
from the above commutative diagram we see that P is a non-trivial 2-torsion
point of E and φ induces a Q-rational degree k mapping φ′ : X/⟨wd⟩ → E′

where E′(C) ∼= C/⟨Λ,P ⟩ and E′ is isogenous to E.

As an immediate corollary of Lemma 7 we obtain

Corollary 8. Let N be natural number which is not a power of a prime
number. Take a pair (N,E) with conductor of E equal to M with M |N and
M ̸= N . Let d be a natural number with d ||M , (d,N/d) = 1 such that wd

acts as +1 on the modular form fE associated to E. Suppose that E has no
non-trivial 2-torsion over Q. Then (N,E) is not admissible.

Proof. If (N,E) is admissible, then we have a degree 3 mapping φ :
X+

0 (N) → E. Since wd acts as +1 on fE and E has no non-trivial 2-torsion
over Q, by Lemma 7 the map φ factors through X+

0 (N)/⟨wd⟩. This is a
contradiction since φ has degree 3.

3. The curve X+
0 (N) with N not listed in Theorem 3. Here by

Lemma 2 it is enough to determine the admissible pairs (N,E). After apply-
ing Lemma 4 (see Appendix B for a list of N ’s that we can discard in each
item), we are reduced to the following finite set of candidates for admissible
pairs.
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(N,E) AL-action on E (N,E) AL-action on E

(106, 53a) w53 = + (195, 65a) w5 = +, w13 = +

(114, 57a) w3 = +, w19 = + (196, 196a) w196 = +

(130, 65a) w5 = +, w13 = + (202, 101a) w101 = +

(158, 79a) w79 = + (231, 77a) w7 = +, w11 = +

(163, 163a) w163 = + (236, 118a) w2 = +, w59 = +

(166, 83a) w83 = + (236, 236a) w236 = +

(172, 43a) w43 = + (237, 79a) w79 = +

(174, 58a) w2 = +, w29 = + (243, 243a) w243 = +

(178, 89a) w89 = + (249, 83a) w83 = +

(182, 91a) w7 = +, w13 = + (258, 43a) w43 = +

(182, 91b) w7 = −, w13 = − (258, 129a) w3 = +, w43 = +

(183, 61a) w61 = + (267, 89a) w89 = +

(185, 37a) w37 = + (269, 269a) w269 = +

(185, 185c) w185 = +

When (N,E) is in the table above with cond(E) = N , the strong Weil
parametrization X0(N) → E has degree 6. Thus we conclude by Lemma 6
that (N,E) is an admissible pairing. More precisely, we have

Corollary 9. For N = 163, 185, 196, 236, 243, 269 the modular curve
X+

0 (N) has infinitely many cubic points over Q.

To deal with the remaining cases we use Lemma 7.

Corollary 10. For N = 106, 114, 158, 166, 172, 174, 178, 182, 183, 202,
231, 237, 249, 258, 267, the set Γ ′

3(X
+
0 (N),Q) is finite.

Proof. Let N be as in the statement and (N,E) be a pair appearing in
the above table. Then cond(E) |N , cond(E) ̸= N and E has no non-trivial
2-torsion over Q. By Corollary 8, we conclude that the pair (N,E) is not
admissible (for (182, 91b) use the Atkin–Lehner operator w91). The result
follows.

Proposition 11. The modular curves X+
0 (130) and X+

0 (195) each have
finitely many cubic points over Q.

Proof. We need to check the pairs (130, 65a) and (195, 65a). Considering
φ : X+

0 (130) → 65a of degree 3, we know that w5 and w13 act as +1. Since
the degree of Q(X+

0 (130))/Q(X∗
0 (130)) is coprime to 3 (recall thatX∗

0 (N) :=
X0(N)/B(N) where B(N) is the subgroup of Aut(X0(N)) generated by all
Atkin–Lehner involutions), by applying Lemma 7 twice with w5 and w13 we
obtain a degree 3 morphism (moreover an isogeny) X∗

0 (130) → E′ between
elliptic curves, where E′ is isogenous to 65a (note that X∗(130) has genus 1
and its Cremona level is 65a). This is a contradiction since the elliptic curve
65a has no non-trivial 3-torsion over Q, and also no 3-isogeny over Q by [Cr].
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Thus (130, 65a) is not admissible. A similar argument holds for the pair
(195, 65a): recall that X∗

0 (195) has genus 1 and its Cremona level is 65a.

4. The curve X+
0 (N) with N listed in Theorem 3. Recall that

X+
0 (N)(Q) ̸= ∅. Thus Γ ′

3(X
+
0 (N),Q) is an infinite set when gX+

0 (N) ≤ 1.
We assume, once and for all, gX+

0 (N) ≥ 2.

4.1. The levels N with X+
0 (N) hyperelliptic. We deal with the

following levels N :

g
X+

0 (N)
N

2 42, 46, 52, 57, 62, 67, 68, 69, 72, 73, 74, 77, 80, 87, 91, 98,

103, 107, 111, 121, 125, 143, 167, 191
3 60, 66, 85, 104
4 92, 94

For such hyperelliptic curves, we pick the model given by Hasegawa [Ha]
if gX+

0 (N) = 2, and by Furumoto and Hasegawa [FuHa] when gX+
0 (N) ≥ 3.

Theorem 12 ([JKS04, Lemma 2.1]). Let X be a curve of genus 2 over
a perfect field k. If X has at least three k-rational points, then there exists a
map X → P1 of degree 3 which is defined over k.

As an immediate consequence of the last theorem, we have

Proposition 13. X+
0 (N) has infinitely many cubic points over Q for

N ∈ {42, 46, 52, 57, 67, 68, 69, 72, 73, 74, 77, 80, 91,
103, 107, 111, 121, 125, 143, 167, 191}.

Proof. Using MAGMA it can be easily checked that in this case the
genus 2 hyperelliptic curve X+

0 (N) has at least three Q-rational points.

The remaining values of N with gX+
0 (N) = 2 are N = 62, 87, 98.

Proposition 14. For N ∈ {62, 87}, the set Γ ′
3(X

+
0 (N),Q) is infinite.

Proof. Consider N = 62. An affine model of X+
0 (62) is given by

Y : y2 = x6 − 8x5 + 26x4 − 42x3 + 29x2 + 2x− 11.

Then Y has two Q-rational points ((1 : 1 : 0) and (1 : −1 : 0)) which
are the “points at infinity”, and the hyperelliptic involution permutes them.
Therefore, from [Jeo21, Lemma 2.2] we conclude that there is a Q-rational
degree 3 mapping X+

0 (62) → P1, and consequently X+
0 (62) has infinitely

many cubic points over Q. A similar argument works for N = 87 with the
model Y : y2 = x6 − 4x5 + 12x4 − 22x3 + 32x2 − 28x+ 17.

Lemma 15. The genus 2 curve X+
0 (98) has infinitely many cubic points

over Q.
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Proof. An (affine) model of X+
0 (98) is given by

y2 = 4x5 − 15x4 + 30x3 − 35x2 + 24x− 8.

Suppose D is a degree 3 effective Q-rational divisor on a curve of genus 2.
By the Riemann–Roch theorem we have dimL(D) = 2.

Observe that with y = 1 in the model we get

0 = (x2 − x+ 1)
(
x3 − 11

4 x
2 + 15

4 x− 9
4

)
.

Let t1, t2, t3 be the roots of the equation x3 − 11
4 x

2 + 15
4 x − 9

4 . Then Pi :=

(ti, 1) ∈ X+
0 (98)(K) for 1 ≤ i ≤ 3 (where K is a cubic extension of Q

defined by the polynomial t3 − 11
4 t

2 + 15
4 t −

9
4). Furthermore, the divisor

[P1 + P2 + P3] is a Q-rational effective divisor of degree 3. By Riemann–
Roch we have dimL([P1+P2+P3]) = 2. Therefore, there exists a Q-rational
function f with exactly three poles and consequently there is a degree 3
mapping X+

0 (98) → P1 defined over Q. The result follows.

ConsiderX+
0 (N) hyperelliptic with gX+

0 (N) ≥ 3. By [Jeo21, §2.3], in order
for X+

0 (N) to have infinitely many cubic points, W3(X
+
0 (N)) must contain

an elliptic curve with positive Q-rank.
Thus, by Cremona tables [Cr] we obtain (because there is no elliptic curve

with Q-rank ≥ 1 for levels dividing N):

Corollary 16. For N ∈ {60, 66, 85, 94, 104}, the set Γ ′
3(X

+
0 (N),Q) is

finite.

Proposition 17. X+
0 (92) has infinitely many cubic points over Q.

Proof. The strong Weil modular parametrization ϕ : X0(92) → 92b has
degree 6 and 92b has Q-rank 1, and w92 acts as +1 on 92b; therefore, we
have a Q-rational degree 3 map X+

0 (92) → 92b by Lemma 6.

4.2. Trigonal curves X+
0 (N). Suppose that Gon(X+

0 (N)) = 3. The
levels N are:

g
X+

0 (N)
N

3 58, 76, 86, 96, 97, 99, 100, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239

4 70, 82, 84, 88, 90, 93, 108, 115, 116, 117, 129, 135,
137, 147, 155, 159, 161, 173, 199, 215, 251, 311

5 122, 146, 181, 227
6 164

If gX+
0 (N) = 3, then the projection from a Q-rational cusp defines a

degree 3 map X+
0 (N) → P1 over Q (cf. [HaSh99a, p. 136]). On the other

hand, it is known that every curve C/K of genus ≥ 5 with Gon(C) = 3
has a degree 3 map X → P1 over K (cf. [NS, Theorem 2.1], [HaSh99a,
Corollary 1.7]).
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Thus, we restrict to Gon(X+
0 (N)) = 3 and gX+

0 (N) = 4.
It is well known that a non-hyperelliptic curve of genus 4 lies either on a

quadratic cone or on a ruled surface (cf. [HaSh99a, p. 136]), and by Petri’s
theorem a model of the curve can be computed in P3 as the intersection
of a degree 2 and a degree 3 homogeneous equations. Following [HaSh99a,
pp. 131, 136] it can be checked that for N = 159 the curve X+

0 (N) lies
on a quadratic cone over Q and for N = 88, 93, 115, 116, 129, 137, 155, 215
the curve X+

0 (N) lies on a ruled surface over Q. On the other hand, for
N = 70, 82, 84, 90, 108, 117, 135, 147, 161, 173, 199, 251, 311 the curve X+

0 (N)
lies on a ruled surface either over a quadratic extension of Q or over a bi-
quadratic extension of Q. Hence in these last levels the trigonal maps are
not defined over Q. For example, consider X+

0 (70); the quadratic surface is
given by xz− y2+8yw− z2− 10zw− 9w2, which after a suitable coordinate
change can be converted into the equation

x2 − y2 − z2 + 7w2 = (x+ y)(x− y)− (z +
√
7w)(z −

√
7w),

and this surface is isomorphic to the ruled surface uv − st over Q(
√
7). See

details in Appendix A for all X+
0 (N) trigonal with gX+

0 (N) = 4.
From the discussion so far we have

Theorem 18. Assume that gX+
0 (N) ≥ 3. Then X+

0 (N) is trigonal over
Q if and only if N is in the following list:

58, 76, 86, 88, 93, 96, 97, 99, 100, 109, 113, 115, 116, 122, 127, 128, 129, 137,
139, 146, 149, 151, 155, 159, 164, 169, 179, 181, 215, 227, 239.

In particular, for such N , the set Γ ′
3(X

+
0 (N),Q) is infinite.

Assume now that Gon(X+
0 (N)) = 3, but X+

0 (N) does not admit a de-
gree 3 map to the projective line P1 over Q.

Hence in these cases X+
0 (N) contains infinitely many cubic points over Q

when W3(X
+
0 (N)) contains a translation of the elliptic curve E with positive

Q-rank [Jeo21, p. 352].

Proposition 19. For N = 70, 82, 84, 90, 108, 117, 135, 147, 161, 173, 199,
251, 311, the curve X+

0 (N) has finitely many cubic points over Q.

Proof. For N = 70, 84, 90, 108, 147, 161, 173, 199, 251, 311 there is no el-
liptic curve E of positive Q-rank with cond(E) |N . Hence in these cases,
X+

0 (N) contains finitely many cubic points over Q.
For N = 82, 117 and 135, X+

0 (N) is bielliptic and there are elliptic curves
of positive Q-rank with cond(E) |N . By arguments in [Jeo21, p. 353], if there
is no Q-rational degree 3 mapping X+

0 (N) → E where E is an elliptic curve
of positive Q-rank and cond(E) |N , then W3(X

+
0 (N)) has no translation of

an elliptic curve with positive Q-rank.
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In these cases only the pairs (82, 82a), (117, 117a) or (135, 135a) could ap-
pear. If any of these pairs (N,E) is admissible (i.e. there is aQ-rational degre 6
mapping X0(N) → E), then the degree of the strong Weil parametrization
of E should divide 6. For 82a, 117a and 135a the degrees of the strong Weil
parametrization are 4, 8 and 16 respectively. Thus no such pairs are admissible.
The result follows.

4.3. X+
0 (N) bielliptic and not hyperelliptic and not trigonal. Sup-

pose X+
0 (N) is bielliptic but neither hyperelliptic nor trigonal. Following

[Jeo21, p. 353], if Γ ′
3(X

+
0 (N),Q) is infinite, then W3(X

+
0 (N)) contains a

translation of an elliptic curve E with positive Q-rank, equivalently (N,E)
is an admissible pair.

The levels that remain to study are

78, 105, 110, 118, 120, 123, 124, 136, 141, 142, 144, 145, 171, 176, 188.

Proposition 20. Suppose X+
0 (N) is bielliptic and not hyperelliptic and

not trigonal. Then the only admissible pair is (124, 124a); in particular, for
all such curves, Γ ′

3(X
+
0 (N),Q) is infinite if and only if N = 124.

Proof. For N = 78, 105, 110, 120, 144, 188 there is no possible (N,E) be-
cause there is no elliptic curve satisfying (iii) in Lemma 4 by Cremona tables
[Cr]. For N = 118, 123, 124, 136, 141, 142, 145 the only possible admissible
pairs (N,E) have cond(E) = N . If they were admissible, we get a degree 6
map from X0(N) → E and the degree of the strong Weil parametriza-
tion of E (see Cremona tables [Cr] for such degrees) should divide 6, and
no such case happens except (124, 124a), for which by Lemma 6 the Weil
parametrization of degree 6 factors through X+

0 (124) because w124 in 124a
acts as +1. Finally, take N = 171, 176; the pairs to study are (171, 171b),
(171, 57a) and (176, 88a). The pair (171, 171b) we discard as before, because
the strong Weil parametrization for 171b is 8. We can apply Corollary 8 with
w19 and w11 respectively to deduce that (171, 57a) and (176, 88a) are not
admissible.

Appendix A. A model for trigonal X+
0 (N) with gX+

0 (N) = 4. For
a detailed discussion on how to construct the models we refer the reader to
[Si] and [Ga].

Curve Petri model
X+

0 (70) x2w − 7xw2 − y3 + 3y2z + 2y2w − 3yz2 − 16yzw + 28yw2 + z3 + 11z2w

− 19zw2 − 27w3,

xz − y2 + 8yw − z2 − 10zw − 9w2
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Curve Petri model
X+

0 (82) x2w − 2xyw − 5xw2 − yz2 + 5yzw + yw2 + 2z3 − 12z2w + 23zw2 − 9w3,

xz − 3xw − y2 + 2yz − 4z2 + 10zw − 4w2

X+
0 (84) x2w − 2xyw − 5xw2 − y2z − y2w + 3yz2 + 6yzw + 5yw2 − 2z3 − 6z2w

+ 4zw2 + 4w3,

xz − xw − y2 + 2yz + yw − 3z2 + w2

X+
0 (88) x2z − xy2 − xyz − 2xz2 + y3 + 6y2z − 9y2w − 8yz2 + 33yw2 + 5z3

+ 6z2w − 12zw2 − 30w3,

xw − yz + yw + z2 − zw − 5w2

X+
0 (90) x2w − 2xyw − 3xw2 − y2z − y2w + 3yz2 + 6yzw + 3yw2 − 2z3

− 5z2w + zw2,

xz − xw − y2 + 2yz + yw − 3z2

X+
0 (93) x2z − xy2 − xyz − 2xz2 + y3 + 7y2z − 11y2w − 10yz2 + 7yzw

+ 29yw2 + 6z3 + 2z2w − 16zw2 − 21w3,

xw − yz + yw + z2 − 2zw − 3w2

X+
0 (108) x2w − 3xw2 − y3 + 2y2z − 8yzw + 12yw2 − 2z3 + 12z2w − 22zw2 + 5w3,

xz − y2 + 4yw − 6zw − w2

X+
0 (115) x2z − xy2 − xyz − 2xz2 + y3 + 5y2z − 9y2w − 4yz2 − 6yzw + 29yw2

+ 2z3 + 5z2w − 22w3,

xw − yz + yw + z2 − 4w2

X+
0 (116) x2z − xy2 − 2xz2 + 4y2z + 2y2w − 6yz2 − 8yzw + 3yw2 + 4z3 + 9z2w

− 4zw2 − 4w3,

xw − yz + z2 − 3w2

X+
0 (117) x2w − xyw − 5xw2 − y2z + y2w + yz2 + yzw + yw2 − z3 + 2zw2 + 4w3,

xz − y2 + yz + yw − 3z2 + 2zw − 4w2

X+
0 (129) x2z − xy2 − 2xz2 + 5y2z − 7yz2 − 3yzw + 3yw2 + 4z3 + 3z2w

− 3zw2 − w3,

xw − yz + z2 − zw − w2

X+
0 (135) x2w − 2xyw − 3xw2 − y3 + 3y2z + 2y2w − 3yz2 + 2yw2 + z3 + w3,

xz − 2xw − y2 + 2yz + 3yw − 2z2 − zw

X+
0 (137) x2z − xy2 − xz2 + 3y2z + 2y2w − 6yz2 − yzw − 3yw2 + 3z3 + 2z2w

− zw2 + 2w3,

xw − yz + z2 − zw − w2

X+
0 (147) x2w − xyw − 6xw2 − y2z + yz2 + 2yw2 − z3 + z2w + 3zw2 + 7w3,

xz − xw − y2 + yz − 2z2 + zw + w2

X+
0 (155) x2z − xy2 − xyz − xz2 + y3 + 3y2z − 5y2w − 2yz2 + 2yzw + 7yw2

+ z3 − 2zw2 − 3w3,

xw − yz + yw − 2w2
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Curve Petri model
X+

0 (159) x2z − xy2 + xyz − 3xz2 + 2y2z + y2w − 8yzw + 3yw2 + 7z2w

− zw2 − 2w3,

xw − yw − z2 + 2zw − 2w2

X+
0 (161) x2w − 5xw2 − y2z + yz2 + 2yw2 − 3z2w + 9zw2 − 4w3,

xz − xw − y2 + 3yw − z2 + zw − 3w2

X+
0 (173) x2w − xyw + 6xw2 − 2y2w − yz2 + 4yzw + 6yw2 + 4z2w − 17zw2 − 6w3,

xz + 2xw − y2 + yz + 3yw − 6zw − 3w2

X+
0 (199) x2w + 2xyw + xw2 − y3 − y2z + 2y2w + yz2 − 5yzw + 3zw2 − 5w3,

xz + 2xw − y2 − 2yz + 3yw − 4w2

X+
0 (215) x2z − xy2 − xyz − xz2 + y3 + 2y2z − 3y2w − 2yzw + 5yw2 + z3 − z2w

+ zw2 − 2w3,

xw − yz + yw + zw − 2w2

X+
0 (251) x2w − 5xw2 − y2z − y2w + yz2 + yw2 + z2w − zw2 + 4w3,

xz − 2xw − y2 + yw + w2

X+
0 (311) x2w − xyw − y3 + y2z + 2y2w − yz2 − 2yzw − yw2 + z2w,

xz − xw − y2 + yz + 2yw − z2 − 2zw

Curve Quadratic surface
X+

0 (70) Diagonal form: x2 − y2 − z2 + 7w2, lies on a ruled surface over Q(
√
7)

X+
0 (82) Diagonal form: 3x2 − 12y2 − 4z2 − w2,

lies on a ruled surface over Q(
√
−1)

X+
0 (84) Diagonal form: 2x2 − 6y2 − 3z2 + w2, lies on a ruled surface over Q(

√
3)

X+
0 (88) Diagonal form: 5x2 + 5y2 − 5z2 − 5w2, lies on a ruled surface over Q

X+
0 (90) Diagonal form: 2x2 − 6y2 − 3z2 − 3w2,

lies on a ruled surface over Q(
√
3,
√
−1)

X+
0 (93) Diagonal form: 4x2 + 3y2 − 4z2 − 3w2, lies on a ruled surface over Q

X+
0 (108) Diagonal form: −x2 − y2 + z2 + 3w2, lies on a ruled surface over Q(

√
3)

X+
0 (115) Diagonal form: 3x2 + 4y2 − 3z2 − 4w2, lies on a ruled surface over Q

X+
0 (116) Diagonal form: 3x2 − y2 + z2 − 3w2, lies on a ruled surface over Q

X+
0 (117) Diagonal form: 11x2 − 33y2 − 3z2 − 15w2,

lies on a ruled surface over Q(
√
3,
√
−5)

X+
0 (129) Diagonal form: x2 − 5y2 + 5z2 − w2, lies on a ruled surface over Q

X+
0 (135) Diagonal form: x2 − 2y2 − 2z2 + 9w2, lies on a ruled surface over Q(

√
2)

X+
0 (137) Diagonal form: x2 − 5y2 + 5z2 − w2, lies on a ruled surface over Q

X+
0 (147) Diagonal form: 7x2 − 14y2 − 2z2 + w2, lies on a ruled surface over Q(

√
2)

X+
0 (155) Diagonal form: 2x2 + 2y2 − 2z2 − 2w2, lies on a ruled surface over Q

X+
0 (159) Diagonal form: 2y2 − z2 − 2w2, lies on a quadratic cone over Q
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Curve Quadratic surface
X+

0 (161) Diagonal form: x2 − y2 − z2 − 3w2, lies on a ruled surface over Q(
√
−3)

X+
0 (173) Diagonal form: −x2 − 3y2 + 3z2 + 37w2,

lies on a ruled surface over Q(
√
37)

X+
0 (199) Diagonal form: −x2 − y2 + z2 + 33w2, lies on a ruled surface over Q(

√
33)

X+
0 (215) Diagonal form: x2 + 2y2 − z2 − 2w2, lies on a ruled surface over Q

X+
0 (251) Diagonal form: −x2 − y2 + z2 + 5w2, lies on a ruled surface over Q(

√
5)

X+
0 (311) Diagonal form: 3x2 − 3y2 − z2 − 3w2,

lies on a ruled surface over Q(
√
−3)

Appendix B. The sieves to reduce to a finite set of N to consider.
Here we consider the levels N that do not appear in Theorem 3. Using Ogg’s
classical argument as in the proof of [HaSh99b, Lemma 3.2] one finds that if
N ≥ 624, there is no Q-rational degree 6 mapping X0(N) → E for any E,
and consequently no degree 3 map X+

0 (N) → E over Q for N ≥ 624.
Now by Lemma 4(i) we can discard the existence of such a degree 3 map

for the following N :

252, 260, 264, 272, 276, 280, 288, 290, 294, 296, 300, 304, 306, 308, 310, 312, 315, 316,
318, 320, 322, 324, 328, 330, 332, 336, 340, 342, 344, 345, 348, 350, 352, 354, 356, 357,
360, 364, 366, 368, 370, 372, 374–376, 378, 380, 382, 384, 385, 386, 388, 390, 392, 394, 396,
398–400, 402, 404–406, 408, 410, 412, 414, 416, 418, 420, 422-426, 428-430, 432, 434–436,
438, 440–442, 444, 446, 448, 450, 452–456, 458–460, 462, 464–466, 468, 470–472, 474–478,
480, 482–486, 488–490, 492, 494–498, 500–502, 504–508, 510–520, 522, 524–528, 530–540,
542–546, 548–556, 558–562, 564–623.

By Lemma 4(iii) we can discard all pairs (N,E) for the following N :

126, 132, 133, 134, 140, 150, 157, 165, 168, 177, 180, 186, 187, 193, 194, 206, 211, 213,
217, 221, 223, 230, 233, 240, 241, 247, 250, 253, 255, 257, 261, 263, 266, 268, 271, 279,
281, 283, 287, 292, 293, 295, 299, 307, 313, 317, 319, 321, 323, 329, 334, 337, 341, 343,
349, 353, 355, 358, 365, 367, 379, 383, 391, 397, 401, 403, 409, 411, 413, 417, 419, 421,
439, 447, 449, 457, 461, 463, 479, 487, 491, 499, 509, 521, 523, 529, 541, 547.

By the use of (iii) and (v) in Lemma 4 we can discard N in the list:

102, 112, 138, 152, 153, 156, 160, 170, 175, 189, 190, 192, 197, 200, 201, 203, 205, 207,
208, 209, 210, 214, 216, 218, 219, 220, 225, 226, 229, 235, 238, 245, 254, 274, 275, 277,
278, 289, 291, 298, 302, 309, 314, 327, 331, 335, 338, 339, 346, 347, 359, 361, 362, 373,
377, 381, 389, 431, 433, 437, 443, 451, 467, 469, 493, 503, 557, 563.

For N in the table below, using Lemma 4(v) we can eliminate all (N,E)
with cond(E) = N ; the remaining pairs (N,E) where cond(E) |N and
cond(E) ̸= N (rankQ(E) ≥ 1) can be eliminated by Lemma 4(ii), i.e. by
computing Fpr -points on X0(N) with p ∤ N in the first two columns and the
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last one for X+
0 (N) instead of X0(N). Thus we can discard all the levels N

appearing in the table below.

N E pr

148 37a 32

154 77a 32

184 92b 32

198 99a 52

204 102a 52

212 53a 32

212 106a 52

224 112a 32

228 57a 52

232 58a 32

234 117a 52

242 121b 52

246 82a 72

246 123a 52

246 123b 72

256 128a 32

259 37a 32

265 53a 32

270 135a 72

285 57a 22

286 143a 32

N E pr

297 99a 52

301 43a 52

325 65a 32

326 163a 32

333 37a 52

351 117a 22

363 121a 52

369 123a 22

369 123b 72

371 53a 32

387 43a 22

387 129a 24

393 131a 52

407 37a 32

415 83a 32

427 61a 32

445 89a 22

473 43a 22

481 37a 22

N E pr

244 61a 32

244 122a 32

248 124a 52

273 91a 2

273 91b 22

282 141a 52

282 141d 72

305 61a 7

395 79a 22

By Lemma 4(iv) we can discard N = 222, 262, 284, 303.
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Abstract (will appear on the journal’s web site only)
We determine all modular curves X+

0 (N) that admit infinitely many
cubic points over the rational field Q.
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