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1. Introduction. A non-singular smooth curve C' over a number field K
of genus go > 1 always has a finite set C'(K) of K-rational points by a cele-
brated result of Faltings (here we fix once and for all K, an algebraic closure
of K). We denote the set of all points of degree at most d for C' by I'4(C, K) =
Uiz kj<a C(L) and of exact degree d by I(C, K) = Uy, x=q C (L), where
L C K runs over the finite extensions of K. A point P € C is said to be a
point of degree d over K if [K(P) : K| =d.

The set I'4(C, M) is infinite for a certain finite extension M/K if C
admits a degree at most d map, all defined over M, to a projective line
or an elliptic curve with positive M-rank. The converse is true for d = 2
|HaSi|, d = 3 [AbHa] and d = 4 under certain restrictions |[AbHa,|DeFa]. If
we fix the number field M in the above results (i.e. an arithmetic statement
for I'y(C, M) with M fixed), we need a precise understanding over M of
the set Wy(C) = {v € Picd(C) | h°(C, L,) > 0} where Pic? is the usual
d-Picard group and L, the line bundle of degree d on C associated to v. If
W4(C') contains no translates of abelian subvarieties with positive M-rank
of Pic?(C)) then I'}(C, M) is finite (under the assumption that C' admits no
maps of degree at most d to a projective line over M).

For d = 2 the arithmetic statement for I';(C, K') follows from |[AbHa] (for
a sketch of the proof and the precise statement see [Ba, Theorem 2.14]).

For d = 3, Daeyeol Jeon |Jeo21| introduced an arithmetic statement and
its proof following [AbHa| and |DeFa]. In particular, if g > 3 and C has
no degree 3 or 2 map to a projective line and no degree 2 map to an elliptic
curve over K then the set of exact cubic points of C over K, I;(CK), is
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infinite if and only if C' admits a degree 3 map to an elliptic curve over K
with positive K-rank.

Observe that if go < 1 (with C(K) # 0 for go = 1), then C has a
degree 3 map over K to the projective line, thus I'}(C, K) is always infinite.
Thus for curves C' with C(K) # () we restrict to go > 2 in order to study
the finiteness of I';(C, K).

Let N be an integer greater than 1 and consider the modular curve
Xo(N) whose non-cusp points correspond to isomorphism classes of isogenies
between elliptic curves ¢ : E — E’ of degree N with cyclic kernel. The
rational and quadratic points of Xo(/N) have been studied by many authors.
In particular, Jeon |Jeo21] determined the finite set of modular curves X, (V)
where I';(Xo(N), Q) is infinite.

Next, the Fricke involution wy on Xo(N) arises from taking the dual
isogeny qAﬁ : E' — E. We define the modular curve X[T(N) to be the quotient
of Xo(N) by the group of two elements generated by wy. There is a model for
Xar (N) over Q, and the study of Q-rational points and quadratic points on
those curves attracted the attention of Momose [Mo| and Galbraith |Ga02]
and many others.

In this paper, we deal with determining whether there are infinitely many
cubic points on X (N) for genus > 2. The values of N for which X (N)
has genus 0 and 1 are listed in Theorem |3| and recall that X (N)(Q) # 0,
because it has a rational cusp.

The novelty of the paper compared to previous works on degree 2 and 3
maps to an elliptic curve E with positive Q-rank is considering the cover
Q(Xo(N))/Q(F) by taking into account the action of an Atkin—Lehner in-
volution.

The main result of the article is the following.

THEOREM 1. Suppose IxF(n) 2 2. Then T'y(X; (N), Q) is infinite if and
only if IxF(N) = 2 or N is in the following list:

Ix N

N
0
3 58,76, 86,96, 97,99, 100, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239
4 88,92,93,115, 116, 129, 137, 155, 159, 215

5 122,146, 181, 185, 227

6 124,163, 164, 269

7 196,243

10 236

All computation sources used in the paper are available at https://github.
com/Tarundalalmath/X 0-N-with-infinitely-many-cubic-points except the
ones for counting points over finite fields, where we use modified versions for
X (N) of the ones already available at different links in [BaGo.
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Having the result of this paper on cubic points for C' = X (), Theo-
rem |1} or |[Jeo2l| for C' = Xy(N), one can try to determine the whole set
of cubic points for such C’s when I'}(C, Q) is finite. This problem could be
attacked if the Chabauty method given by Siksek [Si09] (or |[BoGaGo]|) could

apply.

2. General considerations. Given a complete curve C' over K, the
gonality of C' is defined as

Gon(C) := min {deg(p) | ¢ : C — P! defined over K }.
By [Jeo2l, Lemma 1.2| (and arguments there) we have

LEMMA 2. Suppose Gon(C) > 4, P € C(K) and C does not have a
degree < 2 map to an elliptic curve. If the set I'y(C, K) is infinite then C
admits a K-rational map of degree 3 to an elliptic curve with positive K -rank.

The modular curves X (N) to which Lemmais not applicable are listed
in the next result, corresponding to the works [FuHayJeo18 HaSh99b| (the list
with g X4 (V) < 1 is well-known and follows easily from [BaGol, Appendix]).

THEOREM 3.

(i) The modular curve Xy (N) has Ix:n) =0 if and only if N is one of
the following:
121, 23 27, 29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59, 71.

(ii) Xg (N) is an elliptic curve (equivalently IxFn) = 1) if and only if N
s one of the following:
99. 98, 30, 33, 34, 37, 38, 40, 43, 44, 45, 48, 51, 53-56, 61, 6365, 75,
79, 81, 83, 89, 95, 101, 119, 131.

(iii) (Furumoto-Hasegawa) X (N) is hyperelliptic if and only if N is one
of the following:
42, 46, 52, 57, 60, 62, 6669, 72 74, 77, 80, 85, 87, 91, 92, 94, 98, 103,
104, 107, 111, 121, 125, 143, 167, 191.

(iv) (Jeon) X (N) is bielliptic,i.e. has a degree 2 map to an elliptic curve,
if and only if N is one of the following:

42, 52, 57, 58, 60, 66, 68, 70, 72, 74, 76-78, 80, 82, 84-86, 88, 90, 91,
96, 98-100, 104, 105, 108, 110, 111, 117, 118, 120, 121, 123, 124, 128,
135, 136, 141-145, 155, 159, 171, 176, 188.

(v) (Hasegawa-Shimura) Gon(Xy (N)) = 3 if and only if N is one of the
following:



4 F. Bars and T. Dalal

58, 70, 76, 82, 84, 86, 88, 90, 93, 96, 97, 99, 100, 108, 109, 113, 115, 116,
117,122, 127, 128, 129, 135, 137, 139, 146, 147, 149, 151, 155, 159, 161,
162, 164, 169, 173, 179, 181, 199, 215, 227, 239, 251, 311.

We say that a pair (N, E), where N is a natural number and E is an
elliptic curve over Q with positive Q-rank, is admissible if there is a degree 3
map over Q of the form X (N) — E. The following lemma gives a criterion
to rule out the pairs which are not admissible.

LEMMA 4. If (N, E) is an admissible pair, then:

(i) E has conductor M with M | N and for any prime pt N we have
[Xo (N) ()| < B[E(Fpn)| and [Xo(N)(Fpn)| < 6|E(Fpn)|, Yn € N;
(ii) if the conductor of E is N, then the degree of the strong Weil paramet-
rization of E divides 6;
(iii) for any prime pt N we have
p—1
12
where w(N) is the number of prime divisors of N and @ =
N Iy N, qprime(1 +1/q) is the ¢-Dedekind function;
(iv) for any Atkin—Lehner involution w, of Xo(N) with r # N we have

B(N) + 2™ < 6(p+1)2,

IxF () S 32 9xk (vyjw, T2

Proof. Let (N, E) be admissible. Then there is a Q-rational degree 3
mapping f : Xar (N) — E and consequently we have a Q-rational degree 6
mapping g : Xo(N) — E. Hence cond(E) | N.

(i) Let p { N be a prime. Since p t N, the curves X (N), Xo(N) and
E have good reduction at p and the mappings f,g induce the F,-rational
mappings f : YJ(N) — FE and § : Xo(N) — E, where YSF(N),YO(N)
and E denote the mod p reductions of X (N), Xo(IN) and E respectively.
Hence we have [Xg (N)(Fyn)| < 3|E(Fyn)] and [Xo(N)(Fpn)| < 6[E(F,n)],
for all n € N.

(ii) If cond(E)=N, and E’ denotes the strong Weil curve with strong
Weil parametrization ¢: Xo(N)— E’, then there exists an isogeny ¢: E' — E
such that g=1) o ¢, hence the degree of the strong Weil parametrization
divides 6.

(iii) For any prime p { N we know that [Xo(N)(F,2)| > % (N) +
2¢(N) (cf. [HaSh99a, Lemma 3.1]) and |E(F,2)| < (p+ 1) Hence we have
ELy(N) + 29N < 6(p + 1)2.

(iv) We know f : X (N) — E is a degree 3 mapping. If w, is an Atkin—
Lehner involution on Xo(N) with r # N, then we have a degree 2 mapping
X (N) = X (N)/w,. The result follows from Castelnuovo’s inequality.
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As an immediate application of Lemma [4(iii)| we obtain the following:

COROLLARY 5. For N > 623, the pair (N, E) is not admissible.

Proof. The proof is similar to that of [HaSh99a, Lemma 3.2]. We will
show that for N > 623, there exists a prime pt N such that

VV) > =6+ 1) = 27,

If 2¢ N and N > 623, then choosing p = 2 we have
Y(N)>N+1>624=12(6-(2+1)2—2) > 12(6- (24 1)% — 2v),
If 2| N, 31N and N > 376, then choosing p = 3 we have
H(N) > 3N > 564 = 12(6.16 — 2) > 12(6.16 — 2@ M),
If2-3|N, 54N and N > 321, then choosing p = 5 we have

3 4 12
N)>N-—--->—(6.36 —2).
YN) 2 N2> 2636 - 9)
If2-3-5|N,7¢N and N > 319, choosing p = 7 we have
Y(N)>N-3-2.8>12(6.64 —2).

If 2-3-5-7| N, choose p to be the smallest prime not dividing N. =

After applying Lemma {| (see Appendix B for a list of N’s that we can
discard in each item), we are reduced to a finite set of N’s. To deal with the
remaining admissible pairs, the next two lemmas will be helpful.

LEMMA 6. Let E/Q be an elliptic curve of conductor N and let ¢ :
Xo(N) — E be the strong Weil parametrization of degree k defined over Q.
Suppose that wy acts as +1 on the modular form fg associated to E. Then
¢ factors through X (N) (and k is even).

Proof. Consider the mapping ¢ : Xo(N) — E. Following |[CaEm, p. 424|
(or |De, §2]), the fact that wyfr = fg implies p o wy = ¢ + P, where
P is a torsion point of E given by P = ¢(0) — ¢(00), where 0,00 are the
corresponding cusps on Xo(N) with ¢(c0) = Op (recall that O denotes
the zero point of E). Because the sign of the functional equation of fg is
—1, the Q-rank of E is odd (cf. [MaSD)| §3.1]); this implies that P = Op
(see |[CaEm)), so ¢ factors through the quotient Xo(N)/(wy) and wy acts
as the identity on F. m

LEMMA 7. Consider a degree k map ¢ : X — FE defined over Q where
X is a quotient modular curve Xo(N)/Wn with Wy a proper subgroup of
B(N) (B(N) is the subgroup of Aut(Xo(N)) generated by all Atkin—Lehner
involutions). Assume that cond(E) = M (M |N). Let d € N with d|| M,
(d,N/d) =1 and wq ¢ Wi be such that wq acts as +1 on the modular form
fE associated to E.
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(i) If E has no non-trivial 2-torsion over Q, then ¢ factors through X /{wgq)
and k is even.

(ii) If E has non-trivial 2-torsion over Q and k is odd, then we obtain a
degree k map @' : X/(wg) — E' by taking the wq-invariant to @, where
E' is an elliptic curve isogenous to E.

Proof. Let E(C) = C/A. The mapping ¢ can be considered as a mapping
in the complex field, ¢ : I'\H — C/A, defined by 7+ {_ const - f(7') dr’,
where I' := (I3(N),Wy) and f € @y Qfelq?) € So(Io(N))MWn)
(cf. |Go|). Since wq acts on fg as +1, it also acts on f as +1. Moreover,
P(wgt) — @(1) = P is independent of 7. Thus ¢ o wy = ¢ + P. Since wy is
an involution, we obtain 2P € A, and P is a 2-torsion point of E(C) (which
could be the trivial zero point of E, i.e. belonging to A). Therefore we have
the following commutative diagram (proj is the usual projection map):

X(C) —Z— /A

prOjl lprOj

X/(wa)(C) £ €/(4, P)

Thus if E has no non-trivial 2-torsion over Q, then P is the trivial zero of £
and ¢ factors through X/(wg).

On the other hand, if £ has non-trivial 2-torsion over QQ and k is odd, then
from the above commutative diagram we see that P is a non-trivial 2-torsion
point of E and ¢ induces a Q-rational degree k mapping ¢’ : X/(wq) — E’
where E'(C) =2 C/(A, P) and E’ is isogenous to E. m

As an immediate corollary of Lemma [7] we obtain

COROLLARY 8. Let N be natural number which is not a power of a prime
number. Take a pair (N, E) with conductor of E equal to M with M | N and
M # N. Let d be a natural number with d|| M, (d, N/d) = 1 such that wy
acts as +1 on the modular form fg associated to E. Suppose that E has no
non-trivial 2-torsion over Q. Then (N, E) is not admissible.

Proof. 1If (N, FE) is admissible, then we have a degree 3 mapping ¢ :
X (N) — E. Since wy acts as +1 on fg and E has no non-trivial 2-torsion
over Q, by Lemma [7| the map ¢ factors through X (N)/(wg). This is a
contradiction since ¢ has degree 3. u

3. The curve X, (N) with N not listed in Theorem |3, Here by
Lemma 2it is enough to determine the admissible pairs (N, E). After apply-
ing Lemma {4 (see Appendix B for a list of N’s that we can discard in each
item), we are reduced to the following finite set of candidates for admissible
pairs.
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(N,E) AL-action on E (N,E) AL-action on E
(106, 53a) ws3z = + (195,65a) w5 =+, w1z =+
(114,57a) w3 =+, w19 =+ | (196, 196a) Wie6 = +
(130,65a)  ws =+, w13 =+ | (202,101a) wio1 = +
(158,79a) Wrg = + (231,77a)  wr =4, w11 =+
(163, 163a) wie3 = + (236,118a) w2 = +,ws9 = +
(166, 83a) wss = + (236, 236a) Wass = +
(172, 43a) wis = + (237, 79a) wre = +
(174,58a) w2 =+, w29 = + | (243,243a) Wosa3 = +
(178,89a) wgg = + (249, 83a) we3 = +
(182,91a) w7 =+, w1z =+ | (258,43a) wag = +
(182,916) w7z = —,wiz = — | (258,129a) w3 = +,wa3 = +
(183,61a) we1 = + (267,89a) wsg = +
(185, 37a) wsy = + (269, 269a) Wagg = +
(185, 185¢) wigs = +

When (N, E) is in the table above with cond(E) = N, the strong Weil
parametrization Xo(N) — E has degree 6. Thus we conclude by Lemma [f]
that (N, F) is an admissible pairing. More precisely, we have

COROLLARY 9. For N = 163,185,196, 236, 243, 269 the modular curve
X (N) has infinitely many cubic points over Q.

To deal with the remaining cases we use Lemma [7}

COROLLARY 10. For N = 106,114, 158,166,172,174,178,182, 183, 202,
231, 237, 249, 258, 267, the set Fg(XJ(N),Q) is finite.

Proof. Let N be as in the statement and (N, E) be a pair appearing in
the above table. Then cond(E)| N, cond(F) # N and E has no non-trivial
2-torsion over Q. By Corollary |8, we conclude that the pair (N, E) is not
admissible (for (182,91b) use the Atkin-Lehner operator wg;). The result
follows. =

PROPOSITION 11. The modular curves Xy (130) and X (195) each have
finitely many cubic points over Q.

Proof. We need to check the pairs (130, 65a) and (195, 65a). Considering
p: Xar(130) — 65a of degree 3, we know that ws and wis act as +1. Since
the degree of Q( X, (130))/Q(X(130)) is coprime to 3 (recall that X (N) :=
Xo(N)/B(N) where B(N) is the subgroup of Aut(Xo(N)) generated by all
Atkin—Lehner involutions), by applying Lemma [7| twice with w5 and w3 we
obtain a degree 3 morphism (moreover an isogeny) X;(130) — E’ between
elliptic curves, where E’ is isogenous to 65a (note that X*(130) has genus 1
and its Cremona level is 65a). This is a contradiction since the elliptic curve
65a has no non-trivial 3-torsion over QQ, and also no 3-isogeny over Q by |Cr].
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Thus (130,65a) is not admissible. A similar argument holds for the pair
(195, 65a): recall that X (195) has genus 1 and its Cremona level is 65a. =

4. The curve X, (N) with N listed in Theorem Recall that
X (N)(Q) # 0. Thus I'}(X, (N),Q) is an infinite set when Ixtny <1
We assume, once and for all, IxF () > 2.

4.1. The levels N with X (N) hyperelliptic. We deal with the
following levels INV:

Ixgony N
9 42,46,52,57,62, 67, 68,69, 72,73, 74, 77,80, 87, 91, 98,
103, 107, 111, 121, 125, 143, 167, 191
3 60, 66, 85, 104
92, 94

For such hyperelliptic curves, we pick the model given by Hasegawa [Ha]
if IxH(N) = 2, and by Furumoto and Hasegawa |[FuHa| when Ix (V) > 3.

THEOREM 12 (|[JKS04, Lemma 2.1]). Let X be a curve of genus 2 over
a perfect field k. If X has at least three k-rational points, then there exists a
map X — P! of degree 3 which is defined over k.

As an immediate consequence of the last theorem, we have
PROPOSITION 13. X (N) has infinitely many cubic points over Q for
N € {42,46,52,57,67,68,69,72,73,74,77,80,91,

103,107,111, 121,125, 143, 167, 191}.

Proof. Using MAGMA it can be easily checked that in this case the
genus 2 hyperelliptic curve Xgr (N) has at least three Q-rational points. =

The remaining values of N with Ixf(N) = 2 are N = 62,87,98.

PROPOSITION 14. For N € {62,87}, the set I'}(X, (N),Q) is infinite.
Proof. Consider N = 62. An affine model of X (62) is given by
Y i y? =28 — 82 + 262t — 4223 4 2922 + 22 — 11.

Then Y has two Q-rational points ((1 : 1 : 0) and (1 : —1 : 0)) which
are the “points at infinity”, and the hyperelliptic involution permutes them.
Therefore, from [Jeo2l, Lemma 2.2] we conclude that there is a Q-rational
degree 3 mapping X, (62) — P!, and consequently X (62) has infinitely
many cubic points over Q. A similar argument works for N = 87 with the
model Y : 9% = 26 — 425 + 122% — 2223 + 3222 — 282 + 17. =

LEMMA 15. The genus 2 curve X(;r(98) has infinitely many cubic points
over Q.
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Proof. An (affine) model of X (98) is given by
y? = 42° — 152" 4 302 — 352° 4 242 — 8.
Suppose D is a degree 3 effective Q-rational divisor on a curve of genus 2.

By the Riemann-Roch theorem we have dim L(D) = 2.
Observe that with y = 1 in the model we get
O:($2—$+1)($3—%$2+%x—%).
Let t1,t2,t3 be the roots of the equation z® — %1‘2 + %az — %. Then P; :=
(ti,1) € X (98)(K) for 1 < i < 3 (where K is a cubic extension of Q
defined by the polynomial 3 — %tQ + %t — %). Furthermore, the divisor
[Py + P, + P3| is a Q-rational effective divisor of degree 3. By Riemann—
Roch we have dim L([P; 4+ P> + Ps]) = 2. Therefore, there exists a Q-rational

function f with exactly three poles and consequently there is a degree 3
mapping XS' (98) — P! defined over Q. The result follows. =

Consider X (N) hyperelliptic with Ix (V) > 3. By |Jeo21, §2.3], in order
for Xy (N) to have infinitely many cubic points, W3(Xy (IV)) must contain
an elliptic curve with positive Q-rank.

Thus, by Cremona tables |Cr| we obtain (because there is no elliptic curve
with Q-rank > 1 for levels dividing N):

COROLLARY 16. For N € {60,66,85,94,104}, the set I'}(Xy (N),Q) is
finite.
PROPOSITION 17. X (92) has infinitely many cubic points over Q.

Proof. The strong Weil modular parametrization ¢ : X(92) — 92b has
degree 6 and 92b has Q-rank 1, and wgo acts as +1 on 92b; therefore, we
have a Q-rational degree 3 map X (92) — 92b by Lemma @ "

4.2. Trigonal curves X, (N). Suppose that Gon(Xy (N)) = 3. The
levels N are:

Ixiony N
3 58, 76,86,96,97,99, 100, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239
4 70,82, 84, 88, 90, 93, 108, 115, 116, 117, 129, 135
137, 147, 155, 159, 161, 173, 199, 215, 251, 311
122, 146, 181, 227
164

If Ixf(N) = 3, then the projection from a Q-rational cusp defines a

degree 3 map X, (N) — P! over Q (cf. [HaSh99a, p. 136]). On the other
hand, it is known that every curve C'/K of genus > 5 with Gon(C) = 3
has a degree 3 map X — P! over K (cf. [NS, Theorem 2.1], |[HaSh99a,
Corollary 1.7]).
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Thus, we restrict to Gon(X (N)) = 3 and IxF () = 4.

It is well known that a non-hyperelliptic curve of genus 4 lies either on a
quadratic cone or on a ruled surface (cf. [HaSh99aj p. 136]), and by Petri’s
theorem a model of the curve can be computed in P? as the intersection
of a degree 2 and a degree 3 homogeneous equations. Following |[HaSh99a,,
pp. 131, 136] it can be checked that for N = 159 the curve X (N) lies
on a quadratic cone over Q and for N = 88,93,115,116, 129, 137,155,215
the curve X (N) lies on a ruled surface over Q. On the other hand, for
N =170,82,84,90,108,117, 135,147,161, 173,199, 251, 311 the curve X (V)
lies on a ruled surface either over a quadratic extension of Q or over a bi-
quadratic extension of Q. Hence in these last levels the trigonal maps are
not defined over Q. For example, consider XJ (70); the quadratic surface is
given by 2z —y? + 8yw — 22 — 102w — 9w?, which after a suitable coordinate
change can be converted into the equation

-y =22 = (4 y) (e —y) - 2+ VTw)(z — VTw),
and this surface is isomorphic to the ruled surface uv — st over Q(v/7). See
details in Appendix A for all X (V) trigonal with Ix(N) = 4.
From the discussion so far we have

THEOREM 18. Assume that Ixg ) 2 3. Then X (N) is trigonal over
Q if and only if N is in the following list:

58, 76, 86, 88, 93, 96, 97, 99, 100, 109, 113, 115, 116, 122, 127, 128, 129, 137,
139, 146, 149, 151, 155, 159, 164, 169, 179, 181, 215, 227, 239.

In particular, for such N, the set I'y(X{ (N), Q) is infinite.

Assume now that Gon(X; (N)) = 3, but X (N) does not admit a de-
gree 3 map to the projective line P* over Q.
Hence in these cases Xar (N) contains infinitely many cubic points over Q

when W3(X (IV)) contains a translation of the elliptic curve E with positive
Q-rank |Jeo21] p. 352|.

PROPOSITION 19. For N = 70,82,84,90,108,117,135,147,161,173,199,
251,311, the curve XS'(N) has finitely many cubic points over Q.

Proof. For N = 70,84,90,108,147,161,173,199, 251, 311 there is no el-
liptic curve E of positive Q-rank with cond(F)|N. Hence in these cases,
X (N) contains finitely many cubic points over Q.

For N = 82,117 and 135, X (V) is bielliptic and there are elliptic curves
of positive Q-rank with cond(E) | N. By arguments in |Jeo21} p. 353, if there
is no Q-rational degree 3 mapping X(T (N) — E where E is an elliptic curve
of positive Q-rank and cond(E) | N, then W5(X; (N)) has no translation of
an elliptic curve with positive Q-rank.
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In these cases only the pairs (82, 82a), (117,117a) or (135, 135a) could ap-
pear. If any of these pairs (N, E) is admissible (i.e. there is a Q-rational degre 6
mapping Xo(N) — E), then the degree of the strong Weil parametrization
of E should divide 6. For 82a,117a and 135a the degrees of the strong Weil
parametrization are 4, 8 and 16 respectively. Thus no such pairs are admissible.
The result follows.

4.3. X (N) bielliptic and not hyperelliptic and not trigonal. Sup-
pose Xy (N) is bielliptic but neither hyperelliptic nor trigonal. Following
[Jeo21, p. 353|, if I'}(X(N),Q) is infinite, then W5(X (N)) contains a
translation of an elliptic curve E with positive Q-rank, equivalently (N, E)
is an admissible pair.

The levels that remain to study are

78, 105, 110, 118, 120, 123, 124, 136, 141, 142, 144, 145, 171, 176, 188.

PROPOSITION 20. Suppose XS'(N) 1s bielliptic and not hyperelliptic and
not trigonal. Then the only admissible pair is (124,124a); in particular, for
all such curves, T(X, (N),Q) is infinite if and only if N = 124.

Proof. For N = 78,105,110, 120, 144, 188 there is no possible (N, E) be-
cause there is no elliptic curve satisfying (iii) in Lemma by Cremona tables
|Cr|. For N = 118,123,124, 136, 141, 142, 145 the only possible admissible
pairs (N, E) have cond(E) = N. If they were admissible, we get a degree 6
map from Xo(N) — FE and the degree of the strong Weil parametriza-
tion of E (see Cremona tables [Cr| for such degrees) should divide 6, and
no such case happens except (124,124a), for which by Lemma @] the Weil
parametrization of degree 6 factors through X (124) because wia4 in 124a
acts as +1. Finally, take N = 171,176; the pairs to study are (171,171b),
(171,57a) and (176, 88a). The pair (171,171b) we discard as before, because
the strong Weil parametrization for 1715 is 8. We can apply Corollary |8 with
wig and wiy respectively to deduce that (171,57a) and (176,88a) are not
admissible.

Appendix A. A model for trigonal X (N) with Ix(n) = 4. For
a detailed discussion on how to construct the models we refer the reader to

[Si] and [Ga].

Curve | Petri model
XF(70) | 22w — Tzw? — y® + 3y%2 + 2y%w — 3yz? — 16yzw + 28yw? + 2° + 112%w
— 19zw? — 27w?,

zz —y* + 8yw — 2% — 10zw — 9w?
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Curve Petri model
XF(82) | z?w — 2zxyw — 5axw? — y2? + byzw + yw? + 22 — 1227w + 2320° — 9w,
zz — 3zw — y? + 2yz — 422 + 102w — 4w?
XF(84) | 2?w — 2xyw — bxw® — y?z — y?w + 3y2° + 6yzw + Syw® — 22° — 62w
+ dzw? + 4w?,
zz — zw — y> + 2yz + yw — 32% + w?
XF(88) | 2%z — 2y® — wyz — 222 4+ y® + 6y°2 — YyPw — 8y2® + 33yw? + 52°
+ 62%w — 12z2w? — 30w3,
zw — yz + yw + 2% — 2w — Sw?
XF(90) | 22w — 2zyw — 3zw? — y?z — y?w + 3y2® + 6yzw + Jyw?® — 223
— 52%w + 2w?,
7z — zw — Yy + 2yz + yw — 327
X5 93) | 222 — xy? — wyz — 202% + ° 4+ TyPz — 11y%w — 10y2° 4 Tyzw
+ 29yw? + 62° + 22%w — 162w — 21w?,
Tw —yz + yw + 22 — 2zw — 3w?
XF(108) | 2%w — 3zw? — y® + 2y%2 — Syzw + 12yw? — 22% +122%w — 222w + 5w°,
zz —y? + dyw — 62w — w?
X (115) | 222 — 2y? — zyz — 2227 + y® + 5y 2 — QyPw — dy2? — 6yzw + 29yw?
+22% + 522w — 22uw3,
Tw — yz + yw + 22 — dw?
X (116) | 222 — 2y? — 2222 + 4y° 2 + 2y%w — 6y2® — Syzw + 3yw? + 42° + 927w
— dzw? — 4wd,
zw —yz + 2% — 3w?
XF(17) | 2w — zyw — 5zw? — ¢z + yPw + y2? +yzw + yw® — 2% + 2207 4 4w,
zz —y? + yz + yw — 32% + 22w — 4w?
XF(129) | 222 — xy? — 2x2% + 5%z — Tyz? — 3yzw + 3yw? + 42° + 322w
— 3zw? — w3,
ww—yz+22—zw—w2
XF(135) | 2w — 2zyw — 3zw® — y® + 3y%2 4+ 2y7w — 3y2® + 2yw® + 22 + w?,
zz — 2xw — y? + 2yz + 3yw — 22 — 2w
XF(137) | 2%z — 2y — 22% + 392 + 2¢%w — 6yz® — yzw — 3yw? + 32° 4 227w
— zw? 4 2w3,
xw—yz—|—22 — 2w —w?
XF(147) | 2%w — zyw — 6zw? — y?2 + y2® + 2yw? — 22 + 22w + 32w + Tw?,
zz —zw — y? +yz — 222 + 2w + w?
X (155) | 2%z — 2y? — zyz — 222 + y® + 3%z — 5w — 2y2® + 2yzw + Tyw?

+ 2% — 2zw? — 3w?,

Tw — yz + yw — 2w?
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Curve Petri model
XF(159) | 2?2 — 2y + zyz — 3x2® + 22 + y?w — Syzw + 3yw? + 722w
— zw? — 2w3,
zw — yw — 22 + 22w — 2w?
XF(161) | 2®w — bzw? — y*z 4+ y2® 4 2yw? — 327w + 9zw? — 4w?,
zz — zw — y> + 3yw — 22 + 2w — 3w?
XF(73) | 22w — zyw + 6zw? — 2y%w — y2® + dyzw + byw? + 427w — 17zw? — 6w?,
zz 4 2zw — y? + yz + 3yw — 62w — 3w?
XF(199) | 2%w + 2zyw 4+ zw?® — y* — y?2 + 22w + y2® — Syzw + 3zw? — 5w,
zz + 22w — y? — 2yz + 3yw — dw?
X (215) | 2?2 — xy? — zyz — 222 + ¥ + 2y%2 — 37w — 2yzw + Syw? + 2° — 22w
+ zw? — 2w?,
Tw — Yz + yw + 2w — 2w?
X (251) | 2%w — 5zw? — y?2 — yPw + y2? + yw? + 22w — 2w® + 4w?,
zz — 2zw — y? + yw + w?
X(T (311) 22w — zyw — v + 22 + 292w — y2? — 2yzw — yw? + 22w,
zz —azw — y? + yz + 2yw — 2% — 2zw
Curve Quadratic surface
X (70) | Diagonal form: x® — y* — 2% + Tw?, lies on a ruled surface over Q(+/7)
XF(82) | Diagonal form: 322 — 12y — 42* — w?,
lies on a ruled surface over Q(yv/—1)
X7 (84) | Diagonal form: 22% — 6y* — 322 + w?, lies on a ruled surface over Q(+/3)
X (88) | Diagonal form: 522 + 5y? — 522 — 5w?, lies on a ruled surface over Q
X (90) | Diagonal form: 222 — 6y* — 32% — 3w?,
lies on a ruled surface over Q(v/3, v/—1)
X (93) | Diagonal form: 4a® + 3y? — 42% — 3w?, lies on a ruled surface over Q
X (108) | Diagonal form: —2? — 32 4 2% + 3w?, lies on a ruled surface over Q(v/3)
X (115) | Diagonal form: 322 4 4y — 32% — 4w?, lies on a ruled surface over Q
X (116) | Diagonal form: 3z? — y* + 2% — 3w?, lies on a ruled surface over Q
XF(117) | Diagonal form: 11z* — 33y — 32% — 15w?,
lies on a ruled surface over Q(v/3,/—=5)
X (129) | Diagonal form: 2> — 5y* + 522 — w?, lies on a ruled surface over Q

Diagonal form: 22 — 2y® — 22% + 9w?, lies on a ruled surface over Q(v/2)

Diagonal form: 2% — 5y? 4 522 — w?, lies on a ruled surface over Q

Diagonal form: 7z? — 14y* — 222 + w?, lies on a ruled surface over Q(y/2)

Diagonal form: 2z2 + 2% — 222 — 2w?, lies on a ruled surface over Q

Diagonal form: 2y% — 2% — 2w?, lies on a quadratic cone over Q
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Curve Quadratic surface
X (161) | Diagonal form: 2% — y* — 22 — 3w?, lies on a ruled surface over Q(v/—3)
XF(173) | Diagonal form: —z? — 3y? + 327 + 37w?,
lies on a ruled surface over Q(v/37)

XF(199) | Diagonal form: —2? — ¢? 4 22 + 33w?, lies on a ruled surface over Q(v/33)
XS' (215) | Diagonal form: 2 + 2y* — 2% — 2w?, lies on a ruled surface over Q

X (251) | Diagonal form: —2® — y? + 22 + 5w?, lies on a ruled surface over Q(v/5)
X (311) | Diagonal form: 3z® — 3y — 2% — 3w?,

lies on a ruled surface over Q(v/—3)

Appendix B. The sieves to reduce to a finite set of NV to consider.
Here we consider the levels N that do not appear in Theorem [3] Using Ogg’s
classical argument as in the proof of [HaSh99b|, Lemma 3.2| one finds that if
N > 624, there is no Q-rational degree 6 mapping Xo(N) — E for any F,
and consequently no degree 3 map X, (N) — E over Q for N > 624.

Now by Lemma [4](i) we can discard the existence of such a degree 3 map
for the following N:

252, 260, 264, 272, 276, 280, 288, 290, 294, 296, 300, 304, 306, 308, 310, 312, 315, 316
318, 320, 322, 324, 328, 330, 332, 336, 340, 342, 344, 345, 348, 350, 352, 354, 356, 357
360, 364, 366, 368, 370, 372, 374-376, 378, 380, 382, 384, 385, 386, 388, 390, 392, 394, 396,
398-400, 402, 404-406, 408, 410, 412, 414, 416, 418, 420, 422-426, 428-430, 432, 434-436,
438, 440-442, 444, 446, 448, 450, 452-456, 458-460, 462, 464-466, 468, 470472, 474478,
480, 482-486, 488490, 492, 494-498, 500-502, 504-508, 510-520, 522, 524528, 530540,
542-546, 548-556, 558-562, 564-623.

By Lemma [4](iii) we can discard all pairs (N, E) for the following N:

126, 132, 133, 134, 140, 150, 157, 165, 168, 177, 180, 186, 187, 193, 194, 206, 211, 213
217, 221, 223, 230, 233, 240, 241, 247, 250, 253, 255, 257, 261, 263, 266, 268, 271, 279
281, 283, 287, 292, 293, 295, 299, 307, 313, 317, 319, 321, 323, 329, 334, 337, 341, 343
349, 353, 355, 358, 365, 367, 379, 383, 391, 397, 401, 403, 409, 411, 413, 417, 419, 421,
439, 447, 449, 457, 461, 463, 479, 487, 491, 499, 509, 521, 523, 529, 541, 547.

By the use of (iii) and (v) in Lemma {4 we can discard N in the list:

102, 112, 138, 152, 153, 156, 160, 170, 175, 189, 190, 192, 197, 200, 201, 203, 205, 207
208, 209, 210, 214, 216, 218, 219, 220, 225, 226, 229, 235, 238, 245, 254, 274, 275, 277
278, 289, 291, 298, 302, 309, 314, 327, 331, 335, 338, 339, 346, 347, 359, 361, 362, 373
377, 381, 389, 431, 433, 437, 443, 451, 467, 469, 493, 503, 557, 563

For N in the table below, using Lemma [#(v) we can eliminate all (N, E)
with cond(E) = N; the remaining pairs (NN, E) where cond(E)|N and
cond(E) # N (rankg(E) > 1) can be eliminated by Lemma [(ii), i.e. by
computing Fp--points on Xo(N) with p { N in the first two columns and the
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last one for X (N) instead of Xo(N). Thus we can discard all the levels N
appearing in the table below.

N FE p" N FE p" N FE p"
148 | 37a | 32 || 297 | 99a | 5% || 244 | 6la | 3?
154 | 77a | 3% || 301 | 43a | 52 || 244 | 1224 | 32
184 | 92b | 32 || 325 | 65a | 3% || 248 | 124a | 5°
198 | 99a | 5% || 326 | 163a | 3% || 273 | 9la | 2
204 | 102a | 5% || 333 | 37a | 5% || 273 | 91b | 22
212 | 53a | 3% || 351 | 117a | 22 || 282 | 141a | 52
212 | 106a | 52 || 363 | 121a | 52 || 282 | 141d | 72
224 | 112a | 32 || 369 | 123a | 22 || 305 | 6la | 7
228 | 57a | 5% || 369 | 123b | 72 || 395 | 79a | 22
232 | 58a | 32 || 371 | 53a | 32
234 | 117a | 5% || 387 | 43a | 22
242 | 121b | 5% || 387 | 129a | 24
246 | 82a | 7% || 393 | 131a | 52
246 | 123a | 5% || 407 | 37a | 32
246 | 123b | 7% || 415 | 83a | 32
256 | 128a | 3% || 427 | 6la | 32
259 | 37a | 3% || 445 | 89a | 22
265 | 53a | 3% || 473 | 43a | 22
270 | 135a | 7% || 481 | 37a | 2°
285 | 57a | 22
286 | 143a | 32

By Lemma [4(iv) we can discard N = 222, 262,284, 303.
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Abstract (will appear on the journal’s web site only)

We determine all modular curves X (N) that admit infinitely many
cubic points over the rational field Q.
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