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ON FAKE ES-IRREDUCIBILE COMPONENTS OF CERTAIN

STRATA OF SMOOTH PLANE SEXTICS

ESLAM BADR AND FRANCESC BARS

Abstract. We construct the first examples of what we call fake ES-irreducible

components; Definition 2.8. In our way to do so, we classify the automorphism
groups of smooth plane sextics that only have automorphisms of order ≤ 3;
Theorems 2.1, 2.4 and 2.5, Corollaries 2.9 and 2.11.

1. Introduction

Let MPl
g be the set of K-isomorphism classes of smooth plane curves C of a

fixed degree d ≥ 4. Here K is an algebraically closed field of characterisitc p = 0
or p > 2g + 1, where g = (d− 1)(d− 2)/2 ≥ 3 is the geometric genus of C.

We can associate to any [C] ∈ MPl
g infinitely many non-singular plane models,

each of them is given by a homogeneous polynomial equation C : F (X,Y, Z) = 0
of degree d in P2(K). Moreover, two such plane models for C are K-isomorphic
and their automorphism groups are PGL3(K)-conjugated via a projective change
of variables φ ∈ PGL3(K).

Now, suppose that G is a finite non-trivial group that can be embedded into
PGL3(K). We write [C] ∈ MPl

g (G) when there exists an injective representation
̺ : G →֒ PGL3(K) such that ̺(G) is a subgroup of Aut(C); the automorphism

group of C : F (X,Y, Z) = 0 inside PGL3(K). Similarly, we write [C] ∈ M̃Pl
g (G)

when ̺(G) = Aut(C), moreover, in this situation, we say that [C] belongs to the

component M̃Pl
g (̺(G)) of M̃Pl

g (G).

Clearly, if ̺i : G →֒ PGL3(k), for i = 1, 2, are PGL3(k)-conjugated, then

MPl
g (̺1(G)) = MPl

g (̺2(G)) and M̃Pl
g (̺1(G)) = M̃Pl

g (̺2(G)). Accordingly,

MPl
g (G) =

⋃

[̺]∈RG

MPl
g (̺(G)) and M̃Pl

g (G) =
⊔

[̺]∈RG

M̃Pl
g (̺(G)) .

Here RG := {̺ : G →֒ PGL3(K)} / ∼, where ̺1 ∼ ̺2 if and only if ̺1(G) and ̺2(G)
are PGL3(K)-conjugated.

Definition 1.1 (ES-irreducibility [3]). Each [̺] ∈ RG such that M̃Pl
g (̺(G)) 6= ∅ is

called an ES-irreducible component for M̃Pl
g (G). We call M̃Pl

g (G) ES-irreducible if
it has exactly one ES-irreducible component.

Clearly, if a non-empty M̃Pl
g (G) is not ES-irreducible, then it is not irreducible

and the number of its ES-irreducible components is a lower bound for the number
of its irreducible components inside the coarse moduli space Mg of K-isomorphism
classes of smooth curves of genus g.
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2 E. BADR AND F. BARS

Now, in the language of ES-irreducibility, one can interpret the results of Henn
[9] and Komiya-Kuribayashi [10] for smooth plane quartic curves, which are genus

g = 3 curves, as follows: the strata M̃Pl
3 (G) are either empty or ES-irreducible.

Thus each non-empty M̃Pl
3 (G) is described by a single normal form; a homogenous

polynomial equation F (X,Y, Z) = 0 in P2(K) equipped with parameters as its

coefficients such that any [C] ∈ M̃Pl
3 (G) can be described by a smooth plane model

through a specialization of those parameters.

Notations. Throughout the paper, Li,B denotes the generic homogeneous poly-
nomial of degree i in the variables {X,Y, Z} − {B}.

By ζn we mean a fixed primitive nth root of unity in K.
A projective linear transformation A = (ai,j) ∈ PGL3(K) is sometimes written

as

[a1,1X + a1,2Y + a1,3Z : a2,1X + a2,2Y + a2,3Z : a3,1X + a3,2Y + a3,3Z].

For example, [X : Z : Y ] represents the projective change of variablesX 7→ X, Y 7→
Z, Z 7→ Y , and diag(1, a, b) represents X 7→ X, Y 7→ aY, Z 7→ bZ with a, b ∈ K∗.

We use the formal GAP library notations “GAP(n,m)“ to refer the finite group
of order n that appears in the m-th position of the atlas for small finite groups [7].
See also GroupNames.

Fix the following subgroups in PGL3(K):

• ̺1(Z/2Z) := 〈diag(1, 1,−1)〉 and ̺1((Z/2Z)2) := 〈̺1(Z/2Z), diag(1,−1, 1)〉,
• ̺1(Z/3Z) := 〈diag(1, 1, ζ3)〉 and ̺1((Z/3Z)2) := 〈̺1(Z/3Z), diag(1, ζ3, 1)〉,
• ̺2(Z/3Z) := 〈diag(1, ζ3, ζ−1

3 )〉 and ̺2((Z/3Z)2) := 〈̺2(Z/3Z), [Y : Z :
X ]〉,

• ̺1(S3) := 〈[Y : Z : X ], [X : Z : Y ]〉 and ̺2(S3) := 〈̺2(Z/3Z), [X : Z : Y ]〉,
• ̺1(Z/3Z⋊ S3) := 〈̺1(S3), ̺2(Z/3Z)〉,
• ̺1(A4) := 〈̺1((Z/2Z)2), [Y : Z : X ]〉 and ̺2(A4) := 〈̺1((Z/2Z)2), [ζ−1

6 Y :
Z : X ]〉.

Remark 1.2. P. Henn observed that MPl
3 (Z/3Z) admits two ES-components. One

component corresponds to ̺1(Z/3Z) where any [C] ∈ MPl
3 (̺1(Z/3Z)) is given by

an equation of the form Z3Y + L4,Z = 0. The second component corresponds to
̺2(Z/3Z) such that any [C′] ∈ MPl

3 (̺2(Z/3Z)) is given by an equation of the form
X4 + X(Y 3 + Z3) + α2,1X

2Y Z + α1,2X(Y Z)2 = 0 for some α2,1, α1,2 ∈ K. In
particular, C′ has [X : Z : Y ] as an extra involution, thus C′ always has the

symmetry group S3 as a subgroup of automorphisms. Therefore, M̃Pl
3 (̺2(Z/3Z)) =

∅ and MPl
3 (̺2(Z/3Z)) ⊆ MPl

3 (S3).

Concerning smooth plane quintic curves, which are genus g = 6 curves, Badr-

Bars [1] showed that all the strata M̃Pl
6 (G) are either empty or ES-irreducible

except when G = Z/4Z. In this case, M̃Pl
6 (Z/4Z) has exactly two ES-irreducible

components. Moreover, we generalized this result in [3] for any odd degree d ≥ 5.

More precisely, we proved that M̃Pl
g (Z/(d − 1)Z) has at least two ES-irreducible

components for any g = (d − 1)(d − 2)/2 with d ≥ 5 odd. However, each of the

strata M̃Pl
6 (̺(G)) is described again by a single normal form.

Accordingly, we were wondering if this is the situation in general. That is to say,

there always exists a single normal form describing the elements of M̃Pl
g (̺(G)) for

each ̺ ∈ RG. In this article, we will show that this impression is not true at least
for smooth plane sextic curves, which are genus g = 10 curves. We establish two
counter examples corresponding to G = Z/3Z and A4 respectively.

https://people.maths.bris.ac.uk/~matyd/GroupNames/index500.html
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On the other hand, classifying automorphism groups of smooth curves is a long
standing problem that receives interest by many people. In the case of hyperelliptic
curve, the structure of the automorphism group is quite explicit, see [5, 6, 15, 16].
For non-hyperelliptic curves, we still have a lack of knowledge about the structure,
except for some special cases. For example, the cases of low genus and also Hurwitz
curves, see [4, 9, 11, 12, 13]. This lack motivates us to do more investigation in this
direction, especially for the case of smooth plane curves of degree d ≥ 4. In this
paper, we classify the automorphism groups of smooth plane curves C of degree 6
such that 2 and 3 are the only divisors of |Aut(C)|.

2. Main Results

Theorem 2.1. Let C be a smooth plane sextic curve that admit an automorphism
of maximal order 2. Up to K-isomorphism, C is defined by an equation of the form:

C : Z6 + Z4L2,Z + Z2L4,Z + L6,Z = 0

such that L6,Z is of degree ≥ 5 in both X and Y , and at least one of the binary
forms L2,Z and L4,Z is non-zero. Moreover, Aut(C) = ̺1(Z/2Z) unless L2,Z , L4,Z

and L6,Z belong to the ring K[X2, Y 2]. In the latter case, Aut(C) = ̺1((Z/2Z)2).

Corollary 2.2. The strata M̃Pl
10(Z/2Z) and M̃Pl

10((Z/2Z)
2) are ES-irreducible.

Definition 2.3 ([14]). An homology of period n is a projective linear transfor-
mation of the plane P2(K), which is PGL3(K)-conjugate to diag(1, 1, ζn). Such a
transformation fixes pointwise a line L (its axis) and a point P off this line (its
center). In its canonical form, L : Z = 0 and center P = (0 : 0 : 1).

Otherwise, it is called a non-homology.

Theorem 2.4. Let C be a smooth plane sextic curve that admits an homology of
period 3 as an automorphism of maximal order. Up to K-isomorphism, C is defined
by an equation of the form Z6 + Z3L3,Z + L6,Z = 0 where neither L3,Z nor L6,Z

equals 0. Moreover, Aut(C) is always ̺1 (Z/3Z)〉 except when C is K-isomorphic
to C′ of the form C′ : X6+Y 6+Z6+Z3

(
α3,0X

3 + α0,3Y
3
)
+ α3,3X

3Y 3 = 0, such
that α3,0, α0,3, α3,3 are pair-wise distinct modulo {±1}. In this case, Aut(C′) =
̺1
(
(Z/3Z)2

)
.

Theorem 2.5. Let C be a smooth plane sextic curve that admits a non-homology
of period 3 as an automorphism of maximal order. Up to K-isomorphism, C is a
member of one of the following families:

C1 : X6 + Y 6 + Z6 +XY Z
(
α4,1X

3 + α1,4Y
3 + α1,2Z

3
)
+ α2,2X

2Y 2Z2

+ α3,3X
3Y 3 + α3,0X

3Z3 + α0,3Y
3Z3 = 0

C2 : X5Y + Y 5Z +XZ5 +XY Z
(
α3,2X

2Y + α1,3Y
2Z + α2,1XZ

2
)

+ α2,4X
2Y 4 + α0,2Y

2Z4 + α4,0X
4Z2 = 0.

In either way, σ = diag(1, ζ3, ζ
−1
3 ) is an automorphism of maximal order 3.

(1) The automorphism group Aut(C1) = ̺2(Z/3Z) except when one of the following
conditions hold.
(i) If α4,1 = α1,4 = α1,2 = α2,2 = 0, then C1 reduces to

X6 + Y 6 + Z6 +X3
(
α3,3Y

3 + α3,0Z
3
)
+ α0,3Y

3Z3 = 0,

where Aut(C1) = ̺1((Z/3Z)2).
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(ii) If (a) α4,1 = ±α1,4 andα3,0 = ±α0,3, (b) α1,4 = ±α1,2 and α3,3 =
±α3,0, or (c) α4,1 = ±α1,2 and α3,3 = ±α0,3, then C1 is K-isomorphic
to

C′

1 : X6 + Y 6 + Z6 + α′

4,1X
4Y Z + α′

3,3X
3(Y 3 + Z3) + α′

2,2X
2Y 2Z2

+ α′

1,2XY Z(Y
3 + Z3) + α′

0,3Y
3Z3 = 0,

where Aut(C′

1) = ̺2(S3) if α′

4,1 6= α′

1,2 or α′

3,3 6= α′

0,3, and Aut(C′) =
̺1(Z/3Z ⋊ S3) otherwise.

Remark 2.6.
(
α′

3,3, α
′

1,2

)
6= (0, 0) or diag(1, ζ6, ζ

−1
6 ) will be an automor-

phism of order 6 > 3.

(iii) If (a) (α4,1, α1,2, α1,4), (α1,4, α4,1, α1,2) or (α1,2, α1,4, α4,1) equals
(
2
(
29− 54λ6 − 54µ6

)

27λµ
,
2
(
27µ6 − 54λ6 − 52

)

27λµ4
,
2
(
27λ6 − 54µ6 − 52

)

27λ4µ

)
,

(b) (α3,0, α3,3, α0,3), (α3,3, α0,3, α3,0) or (α0,3, α3,0, α3,3) equals
(
2
(
81λ6 − 27µ6 − 26

)

27µ3
,
2
(
81µ6 − 27λ6 − 26

)

27λ3
,
2
(
82− 27λ6 − 27µ6

)

27λ3µ3

)
,

and (c) α2,2 =
9λ6 + 9µ6 + 10

3λ2µ2
for some λ, µ ∈ K∗, then C1 is K-

isomorphic to

C1,λ,µ : X6 + Y 6 + Z6 + f1(λ, µ)X
2Y 2Z2 + f2(λ, µ)(X

4Y 2 +X2Z4 + Y 4Z2)

+ f2(µ, λ)(X
4Z2 +X2Y 4 + Y 2Z4) = 0,

where

f1(λ, µ) := 3(80 + 81λ6 + 81µ6),

f2(λ, µ) := 81
(
1 + ζ3λ

6 + ζ−1
3 µ6

)
.

In this case, Aut(C1,λ,µ) = ̺1(A4).
(2) The automorphism group Aut(C2) = 〈σ〉 = ̺2(Z/3Z) except when one of the

following conditions hold.
(i) If α0,2 = ζ−12r

21 α4,0, α2,4 = ζ3r21α4,0, α1,3 = ζ−6r
21 α3,2, α2,1 = ζ3r21α3,2,

then C2 is K-isomorphic to

C′

2 : X5Y + Y 5Z +XZ5 + α4,0ζ
4r
21

(
X4Z2 +X2Y 4 + Y 2Z4

)

+ α3,2ζ
−r
21 XY Z

(
X2Y +XZ2 + Y 2Z

)
= 0,

where Aut(C′

2) = ̺2
(
(Z/3Z)2

)
.

Remark 2.7. (α2,4, α1,3) 6= (0, 0) or diag(1, ζ21, ζ
−4
21 ) will be an automor-

phism of order 21 > 3.

(ii) If (a) (α2,4, α4,0, α0,2), (α0,2, α2,4, α4,0) or (α4,0, α0,2, α2,4) equals
(
λ5µ+ 4µ5

2λ4
,
λ+ 4λ5µ

2µ2
,
4λ+ µ5

2λ2µ4

)

and (b) (α1,3, α3,2, α2,1), (α2,1, α1,3, α3,2) or (α3,2, α2,1, α1,3) equals
(
2
(
2λ5µ+ 2λ+ µ5

)

λ3µ2
,
2λ5µ+ 4λ+ 4µ5

λ2µ
,
2
(
2λ5µ+ λ+ 2µ5

)

λµ3

)
,
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then C2 is K-isomorphic to

C2,λ,µ : X6 + Y 6 + Z6 + g1(λ, µ)(ζ
−1
3 X4Y 2 +X2Z4 + Y 4Z2)

+ g2(λ, µ)(X
4Z2 + ζ3X

2Y 4 + Y 2Z4) = 0,

where

g1(λ, µ) :=

√
3ζ9
(
ζ4λ

5µ+ ζ12λ+ ζ512µ
5
)

λ5µ+ λ+ µ5
,

g2(λ, µ) :=

√
3ζ18

(
ζ512λ

5µ+ ζ12λ+ ζ4µ
5
)

λ5µ+ λ+ µ5
.

In this case, Aut(C2,λ,µ) = ̺2(A4).

We now introduce the notion of fake ES-irreducible components.

Definition 2.8. An ES-irreducible component M̃Pl
g (̺(G)) is fake if it is not defined

by a single normal form.

As a consequence of Theorems 2.4 and 2.5:

Corollary 2.9. The strata M̃Pl
10(Z/3Z) and M̃Pl

10((Z/3Z)
2) are not ES-irreducible

and each of them has exactly two ES-irreducible components namely, M̃Pl
10(̺i (Z/3Z))

and M̃Pl
10(̺i

(
(Z/3Z)2

)
) respectively with i = 1 and 2.

On the other hand, M̃Pl
10(̺2 (Z/3Z)) is the first example of fake ES-irreducible

components. Any [C] ∈ M̃Pl
10(̺2 (Z/3Z)) in the family C2 has the property that its

automorphism group Aut(C) = ̺2 (Z/3Z) fixes point-wise the three reference points
P1 = (1 : 0 : 0), P2 = (0 : 1 : 0) and P2 = (0 : 0 : 1) that all lie on C. This does not
hold if C is in the family C1 in the sense that Aut(C) = ̺2 (Z/3Z) does not fix any
points on C.

Corollary 2.10. The strata M̃Pl
10(S3) and M̃Pl

10(Z/3Z ⋊ S3) are ES-irreducible.

More precisely, M̃Pl
10(S3) = M̃Pl

10(̺2(S3)) and M̃Pl
10(Z/3Z ⋊ S3) = M̃Pl

10(̺1(Z/3Z ⋊
S3)).

Corollary 2.11. The stratum M̃Pl
10(A4) is ES-irreducible determined by M̃Pl

10(̺1(A4)).
It represents the second example of fake ES-irreducible components. Indeed, C2,λ,µ
is K-isomorphic, via a change of variables φ = diag(1, s, t) such that s = t2 and
t3 = ζ6, to

φC2,λ,µ : X6 + ζ−1
3 Y 6 + ζ3Z

6+ lower order terms, where Aut(φC2,λ,µ) =
̺1(A4). Moreover, any [C] ∈ M̃Pl

10(̺1(A4)) in the family C1,λ,µ is a descendant
of the Fermat curve F6 in the sense of Theorem 3.1 via a change of variables in
the normalizer of ̺1(A4) in PGL3(K). This does not hold if [C] is in the family
φC2,λ,µ.

3. Preliminaries about automorphism groups

Based entirely on geometrical methods, H. Mitchell [14, §1-10] proved that if
G is a finite subgroups of PGL3(K), then it fixes a point, a line or a triangle
unless it is primitive and conjugate to some group in a specific list. However, as
a consequence of Maschke’s theorem in group representation theory, the first two
cases are equivalent, in the sense that if G fixes a point (respectively a line), then
it also fixes a line not passing through the point (respectively a point not lying the
line).

Notations. For a non-zero monomial cX i1Y i2Zi3 with c ∈ K∗, its exponent is
defined to be max{i1, i2, i3}. For a homogenous polynomial F (X,Y, Z), the core of
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it is defined to be the sum of all terms of F with the greatest exponent. Now, let
C0 be a non-singular plane curve over K, a pair (C,G) with G ≤ Aut(C) is said
to be a descendant of C0 if C is defined by a homogenous polynomial whose core
is a defining polynomial of C0 and G acts on C0 under a suitable change of the
coordinates system, i.e. G is PGL3(K)-conjugate to a subgroup of Aut(C0).

An element of PGL3(K) is called intransitive if it has the matrix shape



1 0 0
0 ∗ ∗
0 ∗ ∗


 .

The subgroup of PGL3(K) of all intransitive elements is denoted by PBD(2, 1).
Obviously, there is a natural map Λ : PBD(2, 1) → PGL2(K) given by




1 0 0
0 ∗ ∗
0 ∗ ∗


 ∈ PBD(2, 1) 7→

(
∗ ∗
∗ ∗

)
∈ PGL2(K).

Theorem 3.1 below is very helpful for determining the full automorphism groups
of smooth plane curves. For more details, we refer to the work of T. Harui [8,
Theroem 2.1].

Theorem 3.1. Let C be a non-singular plane curve of degree d ≥ 4 defined over an
algebraically closed field K of characteristic 0. Then, one of the following situations
holds:

1. Aut(C) fixes a point on C and then it is cyclic.
2. Aut(C) fixes a point not lying on C where we can think about Aut(C) in the fol-

lowing commutative diagram, with exact rows and vertical injective morphisms:

1 // K∗ // PBD(2, 1)
Λ

// PGL2(K) // 1

1 // N //

?�

OO

Aut(C) //

?�

OO

G′ //

?�

OO

1

Here, N is a cyclic group of order dividing the degree d and G′ is a subgroup
of PGL2(K), which is conjugate to a cyclic group Z/mZ of order m with m ≤
d− 1, a Dihedral group D2m of order 2m with |N | = 1 or m|(d− 2), one of the
alternating groups A4, A5, or the symmetry group S4.

Remark 3.2. We note that N is viewed as the part of Aut(C) acting on the
variable B ∈ {X,Y, Z} and fixing the other two variables, while G′ is the part
acting on {X,Y, Z} − {B} and fixing B. For example, if B = X, then every
automorphism in N has the shape diag(ζn, 1, 1) for some nth root of unity ζn.

3. Aut(C) is conjugate to a subgroup G of Aut(Fd), where Fd is the Fermat curve
Xd + Y d + Zd = 0. In particular, |G| divides |Aut(Fd)| = 6d2, and (C,G) is a
descendant of Fd.

4. Aut(C) is conjugate to a subgroup G of Aut(Kd), where Kd is the Klein curve
curve Xd−1Y +Y d−1Z+XZd−1 = 0. In this case, |Aut(C)| divides |Aut(Kd)| =
3(d2 − 3d+ 3), and (C,G) is a descendant of Kd.

5. Aut(C) is conjugate to one of the finite primitive subgroup of PGL3(K) namely,
the Klein group PSL(2, 7), the icosahedral group A5, the alternating group A6,
or to one of the Hessian groups Hess∗ with ∗ ∈ {36, 72, 216}.
Finally, we have:
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Proposition 3.3. The automorphism groups of the Fermat sextic curve F6 gen-
erated by [X : Z : Y ], [Y : Z : X ], diag(ζ6, 1, 1) and diag(1, ζ6, 1) of orders
2, 3, 6 and 6 respectively is isomorphic to GAP(216, 92) = (Z/6Z)2 ⋊ S3. On the
other hand, the automorphism group of the Klein sextic curve K6 generated by
diag(1, ζ21, ζ

−4
21 ) and [Y : Z : X ] of orders 21 and 3 respectively is isomorphic to

GAP(63, 3) = Z/21Z⋊ Z/3Z.

Proof. Regarding the generators of Aut(F6) and Aut(K6), we refer the reader to
[8, Propositions 3.3, 3.5]. Now, for the Fermat curve F6, take a = [X : Z : Y ], b =
[Y : Z : X ], c = diag(ζ6, 1, 1) and d = diag(1, ζ6, 1). One verifies that

(ab)2 = (ac)(ca)−1 = (cd)(dc)−1 = ada(cd)−5 = bcb−1(cd)−5 = 1.

These relations give us the 4th semidirect product of (Z/6Z)2 and S3 acting faith-
fully, see semidirect products of (Z/6Z)2 and S3 for more details.

For the Klein curve K6, the two generators a = diag(1, ζ21, ζ
−4
21 ) and b = [Y :

Z : X ] of orders 21 and 3 respectively produce GAP(63, 3) = Z/21Z ⋊ Z/3Z as
ba = (ab)−5. �

4. Proof of Theorem 2.4

In this case, C : F (X,Y, Z) = 0 has an homology σ of period 3 in its automor-
phism group. The results in [2] allows us to assume that σ acts as

(X : Y : Z) 7→ (X : Y : ζ3Z)

up to K-isomorphism, where ζ3 is a fixed primitive 3rd root of unity in K. In
particular, C is defined over K by a non-singular plane equation of the form:

C : Z6 + Z3L3,Z + L6,Z = 0,

where σ = diag(1, 1, ζ3) is an automorphism of maximal order 3. By non-singularity,
L6,Z should be of degree at least 5 in both variables X and Y . Also, L3,Z 6= 0 or
diag(1, 1, ζ6) would be an automorphism of order 6 > 3.

In the sense of Theorem 3.1, we have the following:

• First, Aut(C) is not conjugate to any of the finite primitive subgroups of
PGL3(K) since each of them contains elements of order > 3. Also, C is not
a descendant of the Klein sextic curve K6 because Aut(K6) by Proposition
3.3 equals Z/21Z ⋊ Z/3Z and it does not contains homologies of order 3
similar to σ.

• Secondly, suppose that C is a descendant of the Fermat curve F6. So there
is a φ ∈ PGL3(K) such that φ−1 Aut(C)φ ≤ Aut(F6) and the transformed
equation φC is X6+Y 6+Z6+ lower order terms in X,Y, Z = 0. There is
no loss of generality to impose φ−1〈σ〉φ = 〈σ〉 since homologies of period
3 inside Aut(F6) form two conjugacy classes represented by σ and σ−1.
Hence φC reduces to

φC : X6 + Y 6 + Z6 + Z3L3,Z + lower order terms inX,Y = 0

Furthermore, by assumption, the automorphisms of C have orders ≤ 3,
then the group structure of Aut(F6) = (Z/6Z)2⋊S3 assures that Aut(φC)
would be one of the following groups inside Aut(F6):

Z/3Z, (Z/3Z)2, S3, A4, Z/3Z⋊ S3, He3 .

For more details, check the subgroups lattice of Aut(F6).
Now we tackle each of the above situations.
- Any copy of S3 (respectively A4) inside Aut(F6) is Aut(F6)-conjugate

to either ̺i(S3) (respectively ̺i(A4)) with i = 1 or 2. But non of these

https://people.maths.bris.ac.uk/~matyd/GroupNames/193/e15/S3byC6%5E2.html#s4
https://people.maths.bris.ac.uk/~matyd/GroupNames/193/C6%5E2sS3.html
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subgroups has homologies of period 3 similar to σ. So Aut(φC) can not
be an S3 or A4 inside Aut(F6).

- If Aut(φC) equals a (Z/3Z)2, Z/3Z ⋊ S3 or He3 in Aut(F6), then
there must be σ′ ∈ Aut(F6) ∩ Aut(φC) of order 3 that commutes with

σ as in any of these groups Z/3Z is always contained in a (Z/3Z)2. By
Proposition 3.3, the elements of order 3 in Aut(F6) are diag(1, s, t) with
s3 = t3 = 1, [sY : tZ : X ] and [tZ : X : sY ] with s6 = t6 = 1. One easily
verifies that only the diagonal shapes satisfies the description, equivalently,
σ′ ∈ 〈σ, diag(1, ζ3, 1)〉. In any case, we can reduce C up to K-isomorphism
to

φC : X6 + Y 6 + Z6 + Z3
(
α3,0X

3 + α0,3Y
3
)
+ α3,3X

3Y 3 = 0,

where ̺1
(
(Z/3Z)2

)
≤ Aut(φC).

Remark 4.1. In this scenario, the parameters α3,0, α0,3, α3,3 must be pair-
wise distinct modulo {±1} or φC will admit automorphisms of order > 3.
For example, [ζ3Y : X : Z] ∈ Aut(φC) has order 6 if α3,0 = α0,3 and
[ζ3Y : X : −Z] ∈ Aut(φC) has order 6 if α3,0 = −α0,3.

A similar discussion shows that any σ′′ ∈ Aut(F6) that commutes with
σ or σ′ belongs to 〈σ, σ′〉. Therefore, Aut(φC) can not be the Heisenberg
group He3 because this requires another automorphism σ′′ /∈ 〈σ, σ′〉 that
commutes with either σ or σ′.

Finally, for Aut(φC) to be Z/3Z ⋊ S3, it is necessary that Aut(F6) ∩
Aut(φC) has involutions in it. Proposition 3.3 tells us that the involutions
of F6 are diag(−1, 1, 1), diag(1,−1, 1), diag(1, 1,−1), [X : sZ : s−1Y ],
[s−1Y : sX : Z] and [sZ : Y : s−1X ] with s6 = 1. If any of these involu-
tions lies in Aut(φC), then two of the parameters are equal modulo {±1},
which is absurd by Remark 4.1. For example, diag(−1, 1, 1) ∈ Aut(φC)
only if α3,0 = α3,3 = 0, [sY : s−1X : Z] ∈ Aut(φC) only if α3,0 = ±α0,3,
and so on.

• Third, if Aut(C) fixes a line L and a point P not lying on L, then by
Theorem 3.1 we can think about Aut(C) in a short exact sequence

1 → N = 〈σ〉 → Aut(C) → Λ(Aut(C)) → 1,

where Λ(Aut(C)) ≃ Z/3Z, D4 or A4.
- Any group of order 36 (respectively 12) that has a normal subgroup iso-

morphic to Z/3Z contains elements of order 6 > 3, see Groups of order 12
and Groups of order 36 for more details. This allows us to exclude that
Λ(Aut(C)) equals A4 or D4.

- On the other hand, if Λ(Aut)(C) equals Z/3Z in PGL2(K), then
Aut(C) equals (Z/3Z)2 in PBD(2, 1). In particular, C : Z6 + Z3L3,Z +
L6,Z = 0 admits an automorphism σ′ ∈ PBD(2, 1) − 〈σ〉 of order 3 that
commutes with σ. Depending on whether σ′ is an homology or a non-
homology, it is conjugate via a change of variables φ ∈ PBD(2, 1), the
normalizer of 〈σ〉, to diag(1, ζ3, 1) or diag(1, ζ3, ζ

−1
3 ) respectively. In either

way, Aut(φC) = ̺1
(
(Z/3Z)2

)
which appeared earlier.

Summing up, we deduce that Aut(C) is always cyclic of order 3 generated by σ
except when C is projectively equivalent to C′ of the form

C′ : X6 + Y 6 + Z6 + Z3
(
α3,0X

3 + α0,3Y
3
)
+ α3,3X

3Y 3 = 0,

such that α3,0, α0,3, α3,3 are pair-wise distinct modulo {±1}. In this case, Aut(C)
is conjugate to (Z/3Z)2 generated by diag(1, ζ3, 1) and diag(1, ζ3, 1).

This proves Theorem 2.4.

https://people.maths.bris.ac.uk/~matyd/GroupNames/1/Dic3.html
https://people.maths.bris.ac.uk/~matyd/GroupNames/1/C36.html
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5. Proof of Theorem 2.1

In this case, C : F (X,Y, Z) = 0 has an homology σ of period 2 in its automor-
phism group. By [2], there is no loss of generality to assume that σ acts as

(X : Y : Z) 7→ (X : Y : −Z)
up to K-isomorphism. In particular, C is defined over K by a non-singular plane
equation of the form:

C : Z6 + Z4L2,Z + Z2L4,Z + L6,Z = 0

where σ = diag(1, 1,−1) is an automorphism of maximal order 2. Again L6,Z is of
degree ≥ 5 in X and Y by non-singularity. Also, L3,Z or L4,Z does not vanish or
diag(1, 1, ζ4) will be an automorphism of order 4 > 3 otherwise.

• Obviously, Aut(C) is not conjugate to any of the finite primitive subgroups
of PGL3(K) as each of them contains elements of order > 2. Also, C can
not be a descendant of the Klein sextic curve K6 since 2 ∤ |Aut(K6)|, recall
that |Aut(K6)| = 63 by Proposition 3.3.

• Secondly, if Aut(C) fixes a line L and a point P off L, then, by Theorem
3.1, Aut(C) is inside PBD(2, 1) and satisfies a short exact sequence

1 → N = 〈σ〉 → Aut(C) → Λ(Aut(C)) → 1.

Our assumptions that any automorphism of C has order ≤ 2 implies
that Λ(Aut(C)) is either Z/2Z or D4 inside PGL2(K), so Aut(C) is con-
jugate to either (Z/2Z)2 or (Z/2Z)3. In both situations Aut(C) has
another involution σ′ that commutes with σ. Up to projective equiv-
alence via a change of variables φ ∈ PBD(2, 1), the normalizer of 〈σ〉
in PGL3(K), we can assume that σ′ = diag(1,−1, 1). Consequently, C
is K-isomorphic to C′ : Z6 + Z4L2,Z + Z2L4,Z + L6,Z = 0 for some
Li,Z ∈ K[X2, Y 2]. Moreover, Aut(C) equals (Z/2Z)3 only if there is an
involution σ′′ /∈ PBD(2, 1)− 〈σ, σ′〉 that commutes with both σ and σ′. It
is straightforward to check that such σ′′ does not exist, hence Aut(C) is
not (Z/2Z)3 in this case.

• If C is a descendant of the Fermat curve F6 via a change of variables
φ ∈ PGL3(K) with bigger automorphism group than 〈σ〉, then Aut(φC) is
a copy of (Z/2Z)2 inside Aut(F6). Indeed any other subgroup of Aut(F6)
has elements of order > 2, see subgroups lattice of Aut(F6).

Up to Aut(F6)-conjugation, there are two copies of (Z/2Z)2 inside
Aut(F6) namely, 〈σ, σ′〉 and 〈σ, τ〉 with σ′ = diag(1,−1, 1) and τ = [Y :
X : Z]. However, both groups are PGL3(K)-conjugated via a transforma-
tion in PBD(2, 1), the normalizer of 〈σ〉 in PGL3(K). Thus there is no loss
of generality to assume that Aut(C) is conjugate to ̺1

(
(Z/2Z)2

)
, which

was treated earlier.

Summing up, we deduce that Aut(C) is always cyclic of order 2 generated by
σ except when Li,Z ∈ K[X2, Y 2] for i = 2, 4, 6. In the latter case, Aut(C) equals
̺1
(
(Z/2Z)2

)
, which shows Theorem 2.1.

6. Proof of Theorem 2.5

In this case, C : F (X,Y, Z) = 0 has a non-homology σ of period 3 in its auto-
morphism group. By [2], one can assume that σ acts as

(X : Y : Z) 7→ (X : ζ3Y : ζ−1
3 Z)

up to K-isomorphism, where ζ3 is a fixed primitive 3rd root of unity in K. In
particular, C is a K-isomorphic to a non-singular plane modelin one of the following

https://people.maths.bris.ac.uk/~matyd/GroupNames/193/C6%5E2sS3.html
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families:

C1 : X6 + Y 6 + Z6 +XY Z
(
α4,1X

3 + α1,4Y
3 + α1,2Z

3
)
+ α2,2X

2Y 2Z2

+ α3,3X
3Y 3 + α3,0X

3Z3 + α0,3Y
3Z3 = 0

C2 : X5Y + Y 5Z +XZ5 +XY Z
(
α3,2X

2Y + α1,3Y
2Z + α2,1XZ

2
)

+ α2,4X
2Y 4 + α0,2Y

2Z4 + α4,0X
4Z2 = 0.

where σ := diag(1, ζ3, ζ
−1
3 ) is an automorphism of maximal order 3.

• Again Aut(Ci) for i = 1 and 2 is not conjugate to any of the finite primitive
subgroups of PGL3(K).

• Suppose that Aut(Ci) fixes a line L and a point P not lying on this line.
Since σ is a non-homology inside Aut(Ci) in its canonical form, L must
be one of the reference lines; B = 0 with B = X,Y or Z and P is the
reference point (1 : 0 : 0), (0 : 1 : 0) or (0 : 0 : 1) respectively.

- For C2, the point P belongs to C : F (X,Y, Z) = 0. Hence Aut(C2) is
cyclic, generated by 〈σ〉.

- For C1, we can further impose L : X = 0 and P = (1 : 0 : 0) (in
the worst case scenario, one just needs to permute two of the variables
and to fix the third one, which preserves the property that σ remains an
automorphism). In particular, by Theorem 3.1, Aut(C1) ⊆ PBD(2, 1) and
lives in a short exact sequence: 1 → N → Aut(C1) → Λ(Aut(C1)) → 1,
where N = 〈τ〉 has order 1, 2 or 3 and Λ(Aut(C)) is either Z/3Z, S3
with |N | = 1 or A4 in PGL2(K). First, we easily exclude the case when
τ has order 2 because στ would be an automorphism of order 6 > 3, a
contradiction.

Secondly, we handle each of the remaining cases:
(i) If Λ(Aut(C1)) = Z/3Z and N = 1, then Aut(C1) = Z/3Z generated

by σ.
(ii) If Λ(Aut(C1)) = Z/3Z and N = Z/3Z, then Aut(C1) = ̺1((Z/3Z)2)

generated by σ and τ = diag(ζ3, 1, 1). In particular, α4,1 = α2,2 =
α1,2 = α1,4 = 0, and C1 reduces to

X6 + Y 6 + Z6 + Z3
(
α3,0X

3 + α0,3Y
3
)
+ α3,3X

3Y 3 = 0,

which happened before in Theorem 2.4.
This shows Theorem 2.5, (1)-(i).

(iii) If Λ(Aut(C1)) = S3 and N = 1, then C should have an involution
τ such that τστ = σ−1. So τ = [X : sZ : s−1Y ], [sY : s−1X : Z]
or [sZ : Y : s−1X ] with s6 = 1. This holds if we are in one of
the situations: α3,3 = ±α3,0 and α1,2 = ±α1,4,α0,3 = ±α3,0 and
α4,1 = ±α1,4, or α3,3 = ±α0,3 and α1,2 = ±α4,1. Moreover, in all
scenarios we can reduce to τ = [X : Z : Y ] via a change of variables φ
in the normalizer of 〈σ〉, more precisely, via φ = diag(1, λ, sλ) modulo
〈[X : Z : Y ], [Y : Z : X ]〉 with λ6 = 1. That is, C1 is K-isomorphic to

C′

1 : X6 + Y 6 + Z6 + α′

4,1X
4Y Z + α′

3,3X
3(Y 3 + Z3) + α′

2,2X
2Y 2Z2

+ α′

1,2XY Z(Y
3 + Z3) + α′

0,3Y
3Z3 = 0.

Here Aut(C′

1) = 〈σ, τ〉 = ̺1 (S3). In particular, we should impose
α′

4,1 6= α′

1,2 or α
′

3,3 6= α′

0,3 to avoid having [Y : Z : X ] as an extra auto-

morphism. Also,
(
α′

3,3, α
′

1,2

)
6= (0, 0) to avoid having diag(1, ζ6, ζ

−1
6 )

as an extra automorphism of order 6 > 3.
This shows part of Theorem 2.5, (1)-(ii).
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(iv) If Λ(Aut(C)) = A4, then the Group Structure of A4 assures that
Λ(Aut(C)) contains Λ(τ) and Λ(τ ′) both of order 2 such that

Λ(σ)Λ(τ)Λ(σ)−1 = Λ(τ ′), Λ(σ)Λ(τ ′)Λ(σ)−1 = Λ(τ ′)Λ(τ) = Λ(τ)Λ(τ ′).

We aim to show that such τ and τ ′ do not exist. Write Λ(τ) =(
a b
c d

)
, then being of order 2 yields (a + d)b = (a + d)c = 0 and

a = ±d. So Λ(τ) =

(
0 b
c 0

)
or

(
a b
c −a

)
.

- If Λ(τ) =

(
0 b
c 0

)
, then

Λ(τ ′) = Λ(σ)Λ(τ)Λ(σ)−1 =

(
0 ζ−1

3 b
ζ−1
3 c 0

)
= Λ(τ) in PGL2(K),

a contradiction.

- If Λ(τ) =

(
a b
c −a

)
, then Λ(τ ′) = Λ(σ)Λ(τ)Λ(σ)−1 =

(
a ζ−1

3 b
ζ−1
3 c −a

)

such that Λ(τ)Λ(τ ′) = Λ(τ ′)Λ(τ). That is,
(

a2 + ζ3bc (ζ−1
3 − 1)ab

(1− ζ3)ac a2 + ζ−1
3 bc

)
=

(
a2 + ζ−1

3 bc −(ζ−1
3 − 1)ab

−(1− ζ3)ac a2 + ζ3bc

)
in PGL2(K).

For this to be true, either ab = ac = 0 or a2 + ζ3bc = −(a2 +

ζ−1
3 bc). Assuming ab = ac = 0 yields Λ(τ ′) =

(
0 ζ−1

3 b
ζ−1
3 c 0

)
=

Λ(τ) in PGL2(K) or Λ(τ ′) =

(
a 0
0 −a

)
= Λ(τ) in PGL2(K), which

is again a contradiction. Assuming a2 + ζ3bc = −(a2 + ζ−1
3 bc) yields

c = 2a2/b with ab 6= 0. Moreover, Λ(σ)Λ(τ ′)Λ(σ)−1 = Λ(τ)Λ(τ ′),
hence

(
a ζ3b

2a2/b −a

)
=

(
a(ζ3 − ζ−1

3 ) (ζ−1
3 − 1)b

2a2(1− ζ3)/b −a(ζ3 − ζ−1
3 )

)
in PGL2(K).

This is valid only if (ζ3 − ζ−1
3 )ζ3 = (ζ−1

3 − 1) and (ζ3 − ζ−1
3 ) =

(1 − ζ3), however, the second equation is never valid. This means
that Λ(Aut(C)) 6= A4.

• Thirdly, assume that Ci is a descendant of the Klein sextic curve K6.

Claim 1. For C1, Aut(C1) = ̺2(Z/3Z).

Proof. (of Claim 1) If C1 is a descendant of K6 with bigger automor-
phism group than 〈σ〉, then, from the Group Structure of Z/21Z⋊ Z/3Z
and since the automorphisms of C have orders ≤ 3, Aut(C1) should be

conjugate to a (Z/3Z)2 in Aut(K6). Thus C1 has another automorphism
σ′ /∈ 〈σ〉 of order 3 that commutes with σ. Direct calculations show that
we can take σ′ = diag(1, s, t) with s3 = t3 = 1 or [sY : tZ : X ] with
s, t ∈ K∗.

In the first case, σ′ reduces to an homology as σ′ /∈ 〈σ〉. This is absurd
because Aut(K6) does not contain any homologies of period 3. Regarding
the second case, any descendant C′ of the Klein curve C′ : X5Y + Y 5Z +
Z5X+ lower terms in X,Y, Z satisfies the property that its automorphism
group fixes the triangle ∆ whose vertices are the three reference points
(1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1), moreover, those points all lie on C′.
Because ∆ is the only triangle fixed by 〈σ, [sY : tZ : X ]〉 for any s, t and

https://people.maths.bris.ac.uk/~matyd/GroupNames/index500.html
https://people.maths.bris.ac.uk/~matyd/GroupNames/1/C7sC3.html
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because non of its vertices lies on C1, we conclude that Aut(C1) can not
equal 〈σ, [sY : tZ : X ]〉. This proves the claim for C1. �

Claim 2. For C2, Aut(C2) is either conjugate to ̺2(Z/3Z) or ̺2
(
(Z/3Z)2

)
.

Proof. (of Claim 2) Similarly if C2 is a descendant of K6 with bigger au-
tomorphism group than 〈σ〉, then Aut(C2) = 〈σ, [sY : tZ : X ]〉 for some
s, t ∈ K∗. For σ′ ∈ Aut(C2), s = ζr21, t = ζ−4r

21 , α0,2 = ζ−12r
21 α4,0,

α2,4 = ζ3r21α4,0, α1,3 = ζ−6r
21 α3,2, α2,1 = ζ3r21α3,2, and C2 reduces to

X5Y + Y 5Z +XZ5 + α4,0

(
X4Z2 + ζ3r21X

2Y 4 + ζ−12r
21 Y 2Z4

)

+ α3,2XY Z
(
X2Y + ζ3r21XZ

2 + ζ−6r
21 Y 2Z

)
= 0.

In any situation, there exists a change of variables φ = diag(1, ζr
′

21, ζ
17r′

21 ) ∈
Aut(K6) such that 21 | 18r′ + r, 12r′ − 4r for some r′ ∈ {0, 1, ..., 20} that
transforms C2 up to K-isomorphism to

C′

2 : X5Y + Y 5Z +XZ5 + α4,0ζ
4r
21

(
X4Z2 +X2Y 4 + Y 2Z4

)

+ α3,2ζ
−r
21 XY Z

(
X2Y +XZ2 + Y 2Z

)
= 0,

where Aut(C′

2) = ̺2
(
(Z/3Z)2

)
= 〈σ, [Y : Z : X ]〉. In particular, we must

have (α2,4, α1,3) 6= (0, 0) or diag(1, ζ21, ζ
−4
21 ) ∈ Aut(C′

2) of order 21 > 3.
This completes the proof, which in turns shows Theorem 2.5, (2)-(i). �

• Now, assume that Ci is a descendant of the Fermat curve F6. From the
Group structure of Aut(F6), one sees that if Ci is a descendant of F6 with
bigger automorphism group than 〈σ〉, then Aut(Ci) is conjugate to one of
the following groups inside Aut(F6):

(Z/3Z)2 , S3, A4, Z/3Z⋊ S3, He3 .

In what follows, we treat each of these cases for C1 and C2 respectively,
more precisely, Claim 3 and Claim 4 below.

Claim 3. For C1, Aut(C1) is conjugate to ̺2(Z/3Z), ̺2 (S3) , ̺1 (Z/3Z⋊ S3) ,
̺1
(
(Z/3Z)2

)
or ̺1(A4).

Claim 4. For C2, Aut(C2) is conjugate to ̺2(Z/3Z), ̺2((Z/3Z)2) or
̺2(A4).

Proof. (of Claim 3) - If Aut(C1) is conjugate to S3 or Z/3Z⋊S3 inside Aut(F6), then
C1 has an involution τ such that τστ = σ−1. Similarly as before, this holds only
if α3,3 = ±α3,0 and α1,2 = ±α1,4,α0,3 = ±α3,0 and α4,1 = ±α1,4, or α3,3 = ±α0,3

and α1,2 = ±α4,1. In this scenario, C1 is K-isomorphic to

C′

1 : X6 + Y 6 + Z6 + α′

4,1X
4Y Z + α′

3,3X
3(Y 3 + Z3) + α′

2,2X
2Y 2Z2

+ α′

1,2XY Z(Y
3 + Z3) + α′

0,3Y
3Z3 = 0,

where ̺2(S3) generated by σ = diag(1, ζ3, ζ
−1
3 ) and τ = [X : Z : Y ] is a subgroup of

Aut(C′

1). Furthermore, if Aut(C′

1) equals Z/3Z ⋊ S3, then it must contain another
automorphism σ′ /∈ 〈σ, τ〉 of order 3 that commutes with σ and satisfies τσ′τ = σ′−1.
Thus σ′ = [s′Y : s′−1Z : X ] and the invariance of the defining equation for C′

1 under
the action of σ′ yields s′3 = 1,α′

4,1 = α′

1,2 and α′

3,3 = α′

0,3. Hence C′

1 becomes

X6 + Y 6 + Z6 + α′

1,2XY Z(X
3 + Y 3 + Z3) + α′

3,3(X
3Y 3 + Y 3Z3 + Z3X3)

+ α′

2,2X
2Y 2Z2 = 0

with Aut(C′

1) = ̺1(Z/3Z ⋊ S3). This shows the rest of Theorem 2.5, (1)-(ii).
- If Aut(C1) is conjugate to (Z/3Z)2 or He3 inside Aut(F6), then C1 would have

an automorphism σ′ /∈ 〈σ〉 of order 3 that commutes with σ since every copy of

https://people.maths.bris.ac.uk/~matyd/GroupNames/193/C6%5E2sS3.html
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Z/3Z in any of these groups is contained in a (Z/3Z)2. Moreover, we guarantee
that α2,2 6= 0 or [X : ζ3Z : ζ−1

3 Y ] would be an involution in Aut(C1), which is not
accepted in this case.

Similarly as before, we can take σ′ = diag(1, s′, t′) with s′3 = t′3 = 1 or [s′Y :
t′Z : X ] with s′, t′ ∈ K∗.

(i) Suppose that σ′ = diag(1, s′, t′) ∈ Aut(C1). Because σ′ /∈ 〈σ〉, we have
σ′ = diag(1, 1, ζ3), diag(ζ3, 1, 1) or diag(1, ζ3, 1). Consequently, α4,1 =
α2,2 = α1,2 = α1,4 = 0 and C1 reduces to

X6 + Y 6 + Z6 + α3,3X
3Y 3 + α3,0X

3Z3 + α0,3Y
3Z3 = 0,

with ̺1((Z/3Z)2) ⊆ Aut(C1). On the other hand, Aut(C1) equals He3 only
if it contains an extra automorphism σ′′ /∈ 〈σ, σ′〉 of order 3 that commutes
with σ and satisfies σ′′σ′σ′′−1 = σ′σ−1. This gives us σ′′ = [s′′Y : t′′Z : X ]
for some s′′, t′′ ∈ K∗. Hence s′′6 = t′′6 = 1, α3,3 = s′′3α3,0, α0,3 = t′′3α3,0,
and C1 becomes of the form:

X6 + Y 6 + Z6 + α3,0

(
±X3Y 3 +X3Z3 + t′′3Y 3Z3

)
= 0.

In particular, [Y : X : t′′Z] is an automorphism for C1 of order divisible
by 2. This is a contradiction as 2 ∤ |He3 |(= 27).

(ii) Suppose that σ′ = [s′Y : t′Z : X ] ∈ Aut(C1). Thus s′3 = t′6 = (s′t′)2 = 1,
α1,4 = ±α4,1, α1,2 = ±α4,1, α3,0 = α3,3, α0,3 = ±α3,3, and C1 is defined
by

X6 + Y 6 + Z6 + α4,1XY Z(X
3 ± Y 3 ± Z3) + α2,2X

2Y 2Z2

+ α3,3(X
3Y 3 +X3Z3 ± Y 3Z3) = 0,

Hence [X : Z : Y ] is an involution for C1, which is not true if |Aut(C1)| = 9
or 27.

- If Aut(C1) is conjugate to an A4 inside Aut(F6), then it should be ̺i(A4) with
i = 1 or 2.

(i) First, suppose that φ−1 Aut(C1)φ = ̺1(A4). As all subgroups of A4 of
order 3 are A4-conjugated, there is no loss of generality to take φ−1σφ =
[Y : Z : X ] or [Z : X : Y ] . In particular, φ has one of the following shapes:

φ1 :=




1 1 1
λ ζ−1

3 λ ζ3λ
µ ζ3µ ζ−1

3 µ


 , φ2 :=




µ ζ3µ ζ−1
3 µ

1 1 1
λ ζ−1

3 λ ζ3λ


 , φ3 :=




λ ζ−1
3 λ ζ3λ

µ ζ3µ ζ−1
3 µ

1 1 1


 ,

φ4 :=




1 1 1
λ ζ3λ ζ−1

3 λ
µ ζ−1

3 µ ζ3µ


 , φ5 :=




µ ζ−1
3 µ ζ3µ

1 1 1
λ ζ3λ ζ−1

3 λ


 , φ6 :=




λ ζ3λ ζ−1
3 λ

µ ζ−1
3 µ ζ3µ

1 1 1


 ,

for some λ, µ ∈ K∗.
Now, we handle each of these situations to determine the restrictions

on the defining equation of C1 for which this holds.
• For φ1 diag(1, 1,−1)φ−1

1 (respectively φ4 diag(1, 1,−1)φ−1
4 ) to be in

Aut(C1), we must eliminate the coefficients of X5Z, X5Y, Y 5Z, XZ5,

Y Z5, X4Y 2, X4Z2 from the transformed equation φi diag(1,1,−1)φ−1

i C1 =
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C1 with i = 1 and 4 respectively. In this way, we obtain:

α4,1 =
2
(
29− 54λ6 − 54µ6

)

27λµ
, α3,3 =

2
(
81µ6 − 27λ6 − 26

)

27λ3
,

α3,0 =
2
(
81λ6 − 27µ6 − 26

)

27µ3
, α1,4 =

2
(
27λ6 − 54µ6 − 52

)

27λ4µ
,

α1,2 =
2
(
27µ6 − 54λ6 − 52

)

27λµ4
, α0,3 =

2
(
82− 27λ6 − 27µ6

)

27λ3µ3
,

α2,2 =
9λ6 + 9µ6 + 10

3λ2µ2
.

In particular, C1 is K-isomorphic via φ1 (respectively φ4 followed by
Y ↔ Z) to C1,λ,µ described in Theorem 2.5, (1)-(iii).

• For φ2 diag(1, 1,−1)φ−1
2 (respectively φ5 diag(1, 1,−1)φ−1

5 ) to be in
Aut(C1), one notices that φ2 = [Z : X : Y ]φ1 = φ1 ◦ [Z : X : Y ]
(respectively φ5 = [Z : X : Y ]φ4 = φ4 ◦ [Z : X : Y ]). This means
that we get the same conclusion as above up to a permutation of the
parameters, more precisely, after

(α4,1, α1,2, α1,4) 7→ (α1,2, α1,4, α4,1) ,

(α0,3, α3,3, α3,0) 7→ (α3,3, α3,0, α0,3) .

In other words, we have φi diag(1, 1,−1)φ−1
i with i = 2 or 5 inside

Aut(C1) only if

α1,4 =
2
(
29− 54λ6 − 54µ6

)

27λµ
, α0,3 =

2
(
81µ6 − 27λ6 − 26

)

27λ3
,

α3,3 =
2
(
81λ6 − 27µ6 − 26

)

27µ3
, α1,2 =

2
(
27λ6 − 54µ6 − 52

)

27λ4µ
,

α4,1 =
2
(
27µ6 − 54λ6 − 52

)

27λµ4
, α3,0 =

2
(
82− 27λ6 − 27µ6

)

27λ3µ3
,

α2,2 =
9λ6 + 9µ6 + 10

3λ2µ2
.

Once more C1 reduces to C1,λ,µ described in Theorem 2.5, (1)-(iii).
Similarly, φ3 = φ1 ◦ [Y : Z : X ] and φ6 = φ4 ◦ [Y : Z : X ]. So
φi diag(1, 1,−1)φ−1

i with i = 3 or 6 is an automorphism for C1 only if

α1,2 =
2
(
29− 54λ6 − 54µ6

)

27λµ
, α3,0 =

2
(
81µ6 − 27λ6 − 26

)

27λ3
,

α0,3 =
2
(
81λ6 − 27µ6 − 26

)

27µ3
, α4,1 =

2
(
27λ6 − 54µ6 − 52

)

27λ4µ
,

α1,4 =
2
(
27µ6 − 54λ6 − 52

)

27λµ4
, α3,3 =

2
(
82− 27λ6 − 27µ6

)

27λ3µ3
,

α2,2 =
9λ6 + 9µ6 + 10

3λ2µ2
,

where C1 becomes K-isomorphism to C1,λ,µ.
This shows Theorem 2.5, (1)-(iii).

(ii) Second, suppose that ψ−1 Aut(C1)ψ = ̺2(A4). Again, we can impose
ψ−1σψ = [ζ−1

6 Y : Z : X ] or [Z : ζ6X : Y ], in particular, ψ has the shape
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of ψi below.

ψ1 :=




1 ζ−2
18 ζ−1

18

λ ζ−8
18 λ ζ518λ

µ ζ418µ ζ−7
18 µ


 , ψ2 :=




µ ζ418µ ζ−7
18 µ

1 ζ−2
18 ζ−1

18

λ ζ−8
18 λ ζ518λ


 , ψ3 :=




λ ζ−8
18 λ ζ518λ

µ ζ418µ ζ−7
18 µ

1 ζ−2
18 ζ−1

18


 ,

ψ4 :=




1 ζ218 ζ18
λ ζ−4

18 λ ζ718λ
µ ζ818µ ζ−5

18 µ


 , ψ5 :=




µ ζ818µ ζ−5
18 µ

1 ζ218 ζ18
λ ζ−4

18 λ ζ718λ


 , ψ6 :=




λ ζ−4
18 λ ζ718λ

µ ζ818µ ζ−5
18 µ

1 ζ218 ζ18


 ,

for some λ, µ ∈ K∗. However, it is straightforward to check that non of
these transformation transforms C1 to C′ whose core is X6+Y 6+Z6. Con-
sequently, C1 is never a descendant of the Fermat curve F6 with Aut(C1)
conjugate to ̺2(A4).

This proves Claim 3. �

It remains to prove Claim 4 for C2 that is a descendant of the Fermat curve F6.

Proof. (of Claim 4) - We easily discard the cases when Aut(C2) equals an S3 or
Z/3Z⋊S3 inside Aut(F6) as non of the involutions [X : sZ : s−1Y ], [sY : s−1X : Z]
and [sZ : Y : s−1X ] preserves the core X5Y + Y 5Z + Z5X of C2.

- On the other hand, if Aut(C2) equals (Z/3Z)2 or He3, then the discussion we
had to show Claim 2 applies to conclude that C2 is K-isomorphic to

C′ : X5Y + Y 5Z +XZ5 + α4,0ζ
4r
21

(
X4Z2 +X2Y 4 + Y 2Z4

)

+ α3,2ζ
−r
21 XY Z

(
X2Y +XZ2 + Y 2Z

)
= 0,

where ̺2((Z/3Z)2) ⊆ Aut(C′). Next, if Aut(C′) is He3, then there must be another
automorphism σ′ /∈ ̺2((Z/3Z)2) of order 3 that commutes with σ such that σ′ [Y :
Z : X ]σ′−1 = [Y : Z : X ]σ−1. Straightforward calculations show that σ′ = [s′Y :
t′Z : X ] or [s′Z : t′X : Y ] with s′t′ = ζ3 and s′2t′−1 = ζ−1

3 . So σ′ belongs to
̺1((Z/3Z)2) modulo 〈[Y : Z : X ]〉. Obviously, none of these transformations leaves
invariant the core of C′. Therefore, Aut(C2) is never conjugate to He3 inside F6.

- Thirdly, following the notations of Claim 3, a change of variables of the form
φ = φi for i = 1, 2, ..., 6 does not transform C2 to C′

2 : X6 + Y 6 + Z6+ lower order
terms in X,Y, Z. Thus C2 is not a descendant of F6 such that φ−1 Aut(C2)φ =
̺1(A4). On the other hand, ψi diag(1, 1,−1)ψ−1

i ∈ Aut(C2) with i = 1 or 4 only if

α2,4 =
λ5µ+ 4µ5

2λ4
, α4,0 =

λ+ 4λ5µ

2µ2
, α0,2 =

4λ+ µ5

2λ2µ4

α1,3 =
2
(
2λ5µ+ 2λ+ µ5

)

λ3µ2
, α3,2 =

2λ5µ+ 4λ+ 4µ5

λ2µ
, α2,1 =

2
(
2λ5µ+ λ+ 2µ5

)

λµ3
.

The above restrictions are consequences of eliminating the coefficients ofX6, Y 6, Z6,

X5Z, Y 4Z2, X4Y 2, X4Z2 from the transformed equation ψi diag(1,1,−1)ψ−1

i C2 = C2.
Moreover, C2 is K-isomorphic via ψ1 (respectively ψ4 followed by Y ↔ Z) to
C2,λ,µ described in Theorem 2.5, (2)-(ii). The rest is obvious by noticing that
ψ2 = ψ1 ◦ [Z : X : Y ], ψ5 = φ4 ◦ [Z : X : Y ], ψ3 = ψ1 ◦ [Y : Z : X ] and
ψ6 = ψ4 ◦ [Y : Z : X ].

This proves Claim 4. �
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