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Bielliptic modular curves X∗
0 (N) with square-free levels

Francesc Bars∗and Josep González †

Abstract

Let N ≥ 1 be a square-free integer such that the modular curve X
∗
0 (N) has genus ≥ 2.

We prove that X
∗
0 (N) is bielliptic exactly for 19 values of N , and we determine the

automorphism group of these bielliptic curves. In particular, we obtain the first examples
of nontrivial Aut(X∗

0 (N)) when the genus of X∗
0 (N) is ≥ 3. Moreover, we prove that the

set of all quadratic points over Q for the modular curve X
∗
0 (N) with genus ≥ 2 and N

square-free is not finite exactly for 51 values of N .

1 Introduction

Let X be a smooth projective curve defined over a number field K of genus gX at least two.
In [9], Faltings proved the finiteness of the set of points of X defined over K, denoted by X(K).
After that, for a finite extension L/K, the natural object to consider was the set of points of
X defined over all quadratic extensions of L, i.e. the set

Γ2(X,L) := ∪[F :L]≤2X(F ).

In [13], Harris and Silverman proved that the above set is not finite for some number field L
if, and only if, X is hyperelliptic or bielliptic, i.e. the curve X ×K K admits a degree 2 map
to the projective line or to an elliptic curve over a fixed algebraic closure K of K. Moreover,
from the work of Abramovich, Harris and Silverman, in [5, Theorem 2.14] it is proved that
the set Γ2(X,L) is infinite if, and only if, X is hyperelliptic over L, i.e. there is a morphism
φ : X → P1

L of degree two defined over L, or X is bielliptic over L, i.e. there exist an elliptic
curve E over L and a morphism φ : X → E of degree two defined over L, such that the L-rank
of E is at least one.

This made the study of bielliptic curves a matter of deep interest for Arithmetic Geometry.
This was developed for the modular world, because L-points of modular curves have a moduli
interpretation on elliptic curves. The first work concerned the modular curves X0(N). The
levels N for which the set Γ2(X0(N),Q) is finite are determined in [4].

Later, different results determining the bielliptic curves among some modular curves re-
covering X0(N) can be found in [17] for X1(N), in [19] for X∆(N) and in [6] and [18] for
X(N).

Two important tools to obtain such results are the following. First, if there is a morphism of
curves X ։ X ′ such thatX is bielliptic and the genus ofX ′ is at least 2, then X ′ is hyperelliptic
or bielliptic [13, Proposition 1]. One can use results about hyperelliptic modular curves, whose
study has been widely treated in the last decades. Second, X is bielliptic if, and only if, there
exists an involution of X fixing 2gX − 2-many points, where gX denotes de genus of X .

∗First author is supported by MTM2016-75980-P and MDM-2014-0445
†The second author is partially supported by DGI grant MTM2012-34611.
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In this papr we consider the modular curves X∗
0 (N). They are defined as the quotient of

the modular curve X0(N) by the group of all Atkin-Lehner involutions, which is defined over
Q. Its K-points, which are not cuspidal, correspond to K-curves with additional data from the
level N . See [8] for further information.

Here, we restrict our attention to the case where N is square-free. Under such assumption,
the modular curve X∗

0 (N) corresponds to the quotient X0(N)/Aut(X0(N)) and, thus, it does
not have any natural automorphisms (in particular, involutions) coming from X0(N), except
for N = 37. These curves have two properties that play an important role in the development
of this article. On the one hand, all involutions of X∗

0 (N) are defined over Q. On the other
hand, the endomorphism algebra End(Jac(X∗

0 (N))⊗Q is isomorphic to the product of totally
real numbers fields (cf. [3, §2]). Any of these properties can fail when N is non square-free and
the study of this case needs additional tools.

We point out that if X∗
0 (N) is bielliptic, then a bielliptic quotient (i.e. the quotient of

X∗
0 (N) by a bielliptic involution), is an elliptic curve E defined over Q of conductor M |N with

odd analytic rank, because the attached newform is invariant under the Atkin-Lehner involution
wM . Hence, it is expected that the algebraic rank of E is odd.

In our case, the knowledge of the values of N for which X0(N) is bielliptic is not useful to
obtain bielliptic curves X∗

0 (N), because, in this case, these curves have genus at most one or are
hyperelliptic. A new approach is needed to deal with our case and, here, we use a method given
in [11] to discard automorphisms of certain order in the automorphism group of a curve defined
over a finite field. In particular, this method allows us to deduce that the automorphism group
is trivial for such values of N , when such method works. This approach behaves well for odd
square-free integers N , when N is the product of two or three primes. When it fails, we use
the usual method of reducing modulo a prime p to discard some situations. For the remaining
cases, using a Theorem of Petri [22], we implement a method to recognize whether a curve
X∗

0 (N) is bieliptic and compute equations for the elliptic quotient.
The main result of this article is the following.

Theorem 1. Let N > 1 be a square-free integer. Assume that the genus of the modular curve
X∗

0 (N) is at least 2. Then, the modular curve X∗
0 (N) is bielliptic if, and only if, N is in the

following table

genus N
2 106, 122, 129, 158, 166, 215, 390
3 178, 183, 246, 249, 258, 290, 303, 318, 430, 455, 510
4 370

For these values of N , the automorphism group of X∗
0 (N) has order 2 when its genus is greater

than two, otherwise it is the Klein group.

Concerning Aut(X∗
0 (N)), with N square-free and genus ≥ 2, it is known that it is an abelian

2-group (cf. [3]). Moreover, when N is prime this group is nontrivial if, and only if, the genus
of the curve is 2 and, in this case, the group has order 2 (cf. [3, Theorem 1.1]). In fact, it is
expected that this group is trivial for almost all square-free N .

In this paper, we can observe that the Klein group appears naturally for genus two curves
which are also bielliptic (cf. Remark 10). Moreover, we point out that a bielliptic curve could
have several involutions and also more than one bielliptic involution when its genus is ≤ 5
(cf. [5, Prop.2.10]). Nevertheless, this does not happen in our case when the genus is > 2.

As a by-product of this work, we also obtain the following result.
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Proposition 2. The automorphism group of X∗
0 (N) is trivial for the following values of N :

185, 202, 259, 262, 267, 282, 301, 305, 310, 354, 393, 394, 395, 399, 426, 427, 445,
458, 462, 546, 570, 581, 582, 602, 710, 786, 795, 903, 1001, 1015 .

Moreover, the group Aut(X∗
0 (366)) has order 2, and the quotient curve has genus 2.

For many of these values (see Propositions 11 and 21), this result is obtained by using the
method to discard the existence of involutions, which was mentioned above. A Magma code to
be applied in our case can be found in

http://mat.uab.cat/~francesc/programmesXoestrellaMagma.pdf

(this html page, also contains different codes in Magma for computing the genus of X∗
0 (N) and

its Fpk-points). For the remaining values of the above proposition (see Propositions 16, 17, 23
and 24), Theorem of Petri is the main tool.

As for quadratic points, by the work of Hasegawa and Hashimoto (cf. [15]), we know that
X∗

0 (N) is hyperelliptic with N square-free if, and only if, the curve has genus 2. When X∗
0 (N)

is bielliptic with genus > 2, the rank of the elliptic quotient turns out to be one. So we conclude

Theorem 3. Let N > 1 be a square-free integer. Assume that the genus of the modular curve
X∗

0 (N) is ≥ 2. Then, the set Γ2(X
∗
0 (N),Q) is infinite if, and only if, N lies in the set

{67, 73, 85, 93, 103, 106, 107, 115, 122, 129, 133, 134, 146, 154, 158, 161, 165, 166, 167, 170, 177, 178,
183, 186, 191, 205, 206, 209, 213, 215, 221, 230, 246, 249, 255, 258, 266, 285, 286, 287, 290, 299, 303,
318, 330, 357, 370, 390, 430, 455, 510} .

Theorem 3 holds when we replace Γ2(X
∗
0 (N),Q) with Γ2(X

∗
0 (N), K), whereK is any number

field. This is due to the fact that if X∗
0 (N) is hyperelliptic or bielliptic over K, then it is

hyperelliptic or biellitic over Q (cf. Lemma 4)

2 Preliminary results

Let N > 1 be an integer. We fix once and for all the following notation. We denote by gN
and g∗N the genus of X0(N) and X∗

0 (N), respectively, and n is the number of primes dividing
N . For any 1 ≤ d|N with (d,N/d) = 1 we have an involution wd ∈ Aut(X0(N)), called the
Atkin-Lehner involution attached to d, and we denote by B(N) the group of all Atkin-Lehner
involutions. We denote by NewN the set of normalized newforms in S2(Γ0(N)), and New∗

N is
the subset of NewN consisting of the newforms invariant under the action of the group B(N).
For an integer m ≥ 1 and a newform f ∈ NewN , am(f) is the m-th Fourier coefficient of f .
For an eigenform g ∈ S2(Γ0(N)), Ag denotes the abelian variety defined over Q attached by
Shimura to g. As usual, ψ is the Dedekind psi function.

In the sequel, N is square-free. We recall the following result of Baker and Hasegawa.

Lemma 4 (Corollary 2.6 in [3]). The group AutX∗
0 (N) is elementary 2-abelian and every

automorphism of X∗
0 (N) is defined over Q.

From now on, we assume that X∗
0 (N) has a bielliptic involution u. Let us denote by E the

elliptic quotient X∗
0 (N)/〈u〉 and by π the nonconstant morphism X0(N) → X∗

0 (N) → E, which
has degree 2n+1 and is defined over Q. LetM be the conductor of E. It is well-known thatM |N
and there exist a morphism πM : X∗

0 (M) ։ E and a normalized newform fE ∈ New∗
M such

that π∗
M(Ω1

E/Q) = Q(fE(q)d q/q). Moreover, π∗(Ω1
E/Q) = Q(g(q)d q/q), where g is the eigenform

3
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∑
1≤d|N/M w∗

d(f) ∈ S2(Γ0(N))B(N) and wd stands for the Atkin-Lehner involution attached to

d. More precisely, g(q) =
∑

1≤d|N/M d fE(q
d).

Since the gonality of X∗
0 (N) is ≤ 4, by applying Proposition 4.4 in [2], we obtain g∗N ≤ 35.

Nevertheless, this fact is not very useful in order to determine a finite set of possible values
for N . The following lemma helps us to achieve this goal. Note that for a prime p ∤ M ,
|E(Fp2)| ≤ (p+1)2, but |E(Fp2)| = (p+1)2−a2p(fE) due to the congruence of Eichler-Shimura.

Lemma 5. The following inequalities hold:

(i) If p ∤ N , then

(a)
ψ(N)

2n
≤ 12 ·

2|E(Fp2)| − 1

p− 1
, (b) g∗N ≤ 2

|E(Fp2)|

p− 1
, (c) gN ≤ 2n+1 |E(Fp2)|

p− 1
.

(ii) If p | N , then g∗N/p ≤ 1 or

ψ(N/p)

2n−1
≤ 12

2 |E(Fp2)| − 1

p− 1
, g∗N/p ≤ 2

|E(Fp2)|

p− 1
, gN/p ≤ 2n

|E(Fp2)|

p− 1
, if p ∤M ,

ψ(N/p)

2n−1
≤ 12

2p2 + 1

p− 1
, g∗N/p ≤ 2

p2 + 1

p− 1
, gN/p ≤ 2n

p2 + 1

p− 1
, if p|M .

Proof. Assume p ∤ N . We generalize the argument used by Ogg in [21]. Indeed, X0(N)(Fp2)

contains 2n cusps and at least (p− 1)ψ(N)
12

many supersingular points (cf. [2, Lemma 3.20 and
3.21]). Since there is a nonconstant morphism defined over Q from X0(N) to an elliptic quotient
E of X∗

0 (N) which has degree 2n+1, |X0(N)(Fp2)| ≤ 2n+1|E(Fp2)|. Parts (b) and (c) in (i) are
obtained applying [2, Lemma 3.25].

If p|N , then X0(N)/Fp is the copy of two curves X0(N/p)/Fp , and the normalization of
X∗

0 (N)/Fp is the curve X
∗
0 (N/p)/Fp (cf. [10]). If the reduction of the involution u is the identity,

then g∗N/p is the genus of E/Fp. Otherwise, |X∗
0 (N/p)(Fp2)| is at most 2(p2 + 1) or |E(Fp2)|,

depending on whether p |M or not. �

Remark 6. The above conditions imply n ≤ 4, when N is odd, and n ≤ 5 in the even case.
The values N for which g∗N ≤ 1 can be found in [12, Proposition 3.1 and 3.2], and those for
which g∗N = 2 can be found in [14, Theorem 2 ].

Keeping the above notation, we present the following lemma, which will used to discard
some elliptic curves E for a value N .

Lemma 7. Let E ′ be the elliptic curve in the Q-isogeny class of E that is an optimal quotient
of the jacobian of X∗

0 (M). If M = N , then the degree D of the modular parametrization
πN : X0(N) → E ′ divides 2n+1.

Proof. The statement follows from the optimality of πN and the fact that the degree of π is
2n+1. �

Remark 8. The degree D can be found in [7, Table 5].
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3 Odd case

If N is odd, applying Lemma 5 for p = 2, we have ψ(N)/2n ≤ 204. This fact implies n ≤ 3,
except for the values N ∈ {3 · 5 · 7 · 11, 3 · 5 · 7 · 13}. The case n = 1 can be discarded, since
Aut(X∗

0 (p)) is trivial for all p except for g∗p = 2 and, in this particular hyperelliptic case, the
automorphism group has order two (cf. [3, Theorem 1.1]). We assume also that g∗N ≥ 2 and
apply Lemma 5 for the values gcd(N, 3) = 1 for which ψ(N)/2n ≤ 186. There are exactly 146
values for odd N such that n > 1, ψ(N) ≤ 204 · 2n (or ≤ 186 · 2n if 6 ∤ N ) and all these cases
satisfy 1 < gN ≤ 9 · 2n+1. More precisely, we have 100 cases for n = 2, 44 for n = 3 and 2 for
n = 4.

We can reduce this list by considering the pairs (N,E), where E is the Q-isogeny class
of the elliptic curves of conductor M |N such that its attached newform fE lies in New∗

M .
From [7, Table 5,Table 3], we obtain the degree D of πN , when M = N , and a2(fE), a3(fE)
and a5(fE). In particular, we know |E(F4)|, |E(F9)| when 3 ∤ M , and |E(F25)| when 5 ∤ M .
For n > 1, we can discard the pairs (N,E) that do not satisfy the conditions in Lemmas 5 and
7. When g∗N = 2, if an elliptic quotient of X∗

0 (N) is not bielliptic, then we can discard N (cf.
Remark 10). In particular, we discard N = 285 because the elliptic quotient of X∗

0 (285) with
conductor 285 does not satisfy Lemma 7. In Table 1, we present the remaining possibilities,
where the label of the elliptic curve E is the one in Cremona tables.

N gN g∗N M Label E
129 = 3 · 43 13 2 N a

43 a
183 = 3 · 61 19 3 61 a
185 = 5 · 37 17 3 37 a
215 = 5 · 43 21 2 N a

43 a
237 = 3 · 79 25 5 79 a
249 = 3 · 83 27 3 N b

83 a
259 = 7 · 37 23 4 37 a
267 = 3 · 89 29 4 89 a
301 = 7 · 43 27 6 43 a
303 = 3 · 101 33 3 101 a
305 = 5 · 61 29 4 61 a
393 = 3 · 131 43 5 131 a
395 = 5 · 79 39 4 79 a
415 = 5 · 83 41 8 83 a
427 = 7 · 61 39 8 61 a
445 = 5 · 89 43 7 89 a
581 = 7 · 83 55 8 83 a

N gN g∗N M Label E

273 = 3 · 7 · 13 33 4 91 a
385 = 5 · 7 · 11 45 4 77 a
399 = 3 · 7 · 19 49 4 57 a
429 = 3 · 11 · 13 53 3 143 a
435 = 3 · 5 · 29 57 5 145 a
455 = 5 · 7 · 13 53 3 65 a

91 a
465 = 3 · 5 · 31 61 5 155 c
555 = 3 · 5 · 37 73 5 185 c
615 = 3 · 5 · 41 81 6 123 b
645 = 3 · 5 · 43 85 5 215 a

129 a
705 = 3 · 5 · 47 88 8 141 d
715 = 5 · 11 · 13 81 8 143 a

65 a
795 = 3 · 5 · 53 105 10 265 a

53 a
861 = 3 · 7 · 41 109 7 123 b
903 = 3 · 7 · 43 113 11 129 a
987 = 3 · 7 · 47 125 9 141 d
1001 = 7 · 11 · 13 109 8 143 a
1015 = 5 · 7 · 29 117 11 145 a

1155 = 3 · 5 · 7 · 11 185 8 77 a
1365 = 3 · 5 · 7 · 13 237 9 455 a

65 a

Table 1
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First, we examine the hyperelliptic cases in Table 1, which correspond to those such that
g∗N = 2 (cf. [10, Theorem 2]).

Proposition 9. The curves of genus two X∗
0 (129) and X

∗
0 (215) are bielliptic.

Proof. For N = 129 and N = 215, the jacobian of X∗
0 (N) is isogenous over Q to the product of

two elliptic curves E1 ×E2, where E1 has conductor N and E2 has conductor M = 43. Hence,
there exist two normalized newforms f1 ∈ New∗

N and f2 ∈ New∗
M such that the elliptic curves

Af1 and Af2 are isogenous over Q to E1 and E2 respectively. The set of the regular differentials

ω1 = f1(q)d q/q , ω2 = (f2(q) + ℓf2(q
ℓ))d q/q , with ℓ = N/M ,

is a basis of Ω1
X∗

0 (N)/Q. The functions x =
ω2

ω1
and y =

d x

ω1
on X∗

0 (N) satisfy the equations

N equations
129 4 y2 = x6 − 11 x4 + 35 x2 − 9

215 4 y2 = −x6 − 5 x4 − 3 x2 + 25

For N = 129 and 215, it is clear that the curves have two bielliptic involutions (x, y) 7→
(−x,±y). �

Remark 10. Assume that X∗
0 (N) has genus two and has an elliptic quotient. Then, Jac(X∗

0 (N))
is isogenous over Q to the product of two non isogenous elliptic curves E1 and E2. If X∗

0 (N) has
a bielliptic involution u, then u∗(Ei) = Ei and their regular differentials ω1 and ω2 are eigenvec-
tors of u. Hence, u∗(ω1) must be ±ω1 and u∗(ω2) = ∓ω2. Therefore u∗(x) = u∗(ω1/ω2) = −x
and u∗(y) is y or −y depending on whether u∗(ω2) is −ω2 or not. In any case, y2 = P (x2)
for a degree three polynomial P ∈ Q[x], and the automorphism group of the curve is the Klein
group generated by u and the hyperelliptic involution w. Moreover, X∗

0 (N) has two bielliptic
involutions u and u · w and both elliptic curves are bielliptic quotients.

Now, we will apply two sieves to discard some values of N . Both are based on the values of
|X∗

0 (N)(Fpn)| for a prime p ∤ N . The first of them uses [11, Theorem 2.1], which allows us to
detect some curves X/Q without involutions defined over Q, because AutQ(X) →֒ AutFp

(X/Fp)
for a prime p of good reduction for X (see [20, Prop.10.3.38]). More precisely, for such a prime
p and an integer n ≥ 1, consider the sequence

Pp(n) := mod [(
∑

d|n

µ(n/d)|X(Fpn)|)/n, 2]

where mod [r, 2] denotes 0 or 1 depending on whether r is even or not, and µ is the Moebius
function. Set Qp(2k + 1) =

∑k
n≥0(2n+ 1)Pp(2n+ 1). If X∗

0 (N) has an involution defined over
Q, then

Qp(2k + 1) ≤ 2g∗N + 2 for all k ≥ 0 .

Proposition 11. The curve X∗
0 (N) is not bielliptic and, moreover, Aut(X∗

0 (N)) is the trivial
group for the following values of N :

259, 267, 301, 305, 393, 395, 427, 445, 581, 795, 903, 1001, 1015 .
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Proof. For f ∈ NewM , denote by K the number field Q({an(f)}n≥1). Let p be a prime not
dividing M . By the Eichler-Shimura congruence, the characteristic polynomial of Frobp acting
on the Tate module of Af is ∏

σ : K →֒Q

(x2 − ap(f
σ) + p) ,

where σ runs over the set of all Q-embeddings of K into a fixed algebraic closure of Q. The
jacobian of X∗

0 (N) is isogenous over Q to the product
∏

1≤M |N

∏
f∈New∗

M /GQ
Af , where GQ

denotes the absolute Galois group Gal(Q/Q).
To compute |X∗

0 (N)(Fpn)|, we proceed as follows. By using Magma, we determine New∗
M

for all M |N and, then, the characteristic polynomial Rp(x) of Frobp acting on the Tate module
of Jac(X∗

0 (N)) is obtained as follows

Rp(x) =
∏

M |N

∏

f∈NewM
∗

(x2 − ap(f) x+ p) =

2 g∗
N∏

i=1

(x− αi) .

Finally,

|X∗
0 (N)(Fpn)| = pn + 1−

2 g∗N∑

i=1

αni .

The statement follows from these computations:

N Qp(2k + 1) 2g∗N + 2

259 = 7 · 37 Q2(9) = 17 10
267 = 3 · 89 Q2(7) = 15 10
301 = 7 · 43 Q2(11) = 22 14
305 = 5 · 61 Q2(7) = 15 10
393 = 3 · 131 Q2(11) = 23 12
395 = 5 · 79 Q2(7) = 15 10
427 = 7 · 61 Q2(11) = 27 18
445 = 5 · 89 Q3(9) = 22 16
581 = 7 · 83 Q2(13) = 20 18

N Qp(2k + 1) 2g∗N + 2

795 = 3 · 5 · 53 Q2(13) = 27 22
903 = 3 · 7 · 43 Q2(13) = 31 24
1001 = 7 · 11 · 13 Q2(11) = 22 18
1015 = 5 · 7 · 29 Q2(13) = 30 24

�

The second sieve is based on the following fact. For a degree two morphism of curves X → Y
defined over Q and a prime p of good reduction for X , one has

|X(Fpk)| − 2|Y (Fpk)| ≤ 0 , for all k > 0 .

Proposition 12. The pairs (N,E) in the set

{(273, 91a), (385, 77a), (415, 83a), (429, 143a), (435, 145a), (455, 91a),
(465, 155c), (555, 185c), (615, 123b), (705, 141d), (715, 65a), (715, 143a),

(861, 123b), (987, 141d), (1155, 77a), (1365, 65a), (1365, 455a)}

are not bielliptic. In particular, the curve X∗
0 (N) is not bielliptic for the following values of N :

273, 385, 415, 429, 435, 465, 555, 615, 705, 715, 861, 987, 1155, 1365 .

.
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Proof.
N pk E |X∗

0(Fpk)| − 2|E(Fpk)|
273 8 91a 3
385 9 77a 3
415 9 83a 4
429 16 143a 5
455 4 91a 1
435 8 145a 2
465 7 155c 2
555 2 185c 1
615 11 123b 4
705 4 141d 1
715 9 65a 7
715 9 143a 1
861 4 123b 1
987 25 141d 10
1155 2 77a 1
1365 4 65a 1
1365 2 455a 3

�

After applying the two sieves, the following possibilities for the pairs (N,E), ordered by the
genus, remain.

N g∗N E
183 3 61a
185 3 37a
249 3 83a

249b
303 3 101a
455 3 65a

N g∗N E

399 4 57a

237 5 79a
645 5 129a

215a

Table 2

Finally, in order to decide which values N in Table 2 correspond to bielliptic curves, we
shall use equations.

We recall that, for a nonhyperelliptic curve X defined over C with genus g > 2, the image
of the canonical map X → Pg−1 is the common zero locus of a set of homogeneous polynomials
of degree 2 and 3, when g > 3, or of a homogenous polynomial of degree 4, if g = 3.

More precisely, assume that X is defined over Q and choose a basis ω1, · · ·ωg of Ω1
X/Q.

For any integer i ≥ 2, let us denote by Li the Q-vector space of homogeneous polynomials
Q ∈ Q[x1, · · · , xg] of degree i that satisfy Q(ω1, · · · , ωg) = 0. Of course, dimLi ≤ dimLi+1

because one has xj ·Q ∈ Li+1 for all Q ∈ Li and for 1 ≤ j ≤ g.
If g = 3, then dimL2 = dimL3 = 0 and dimL4 = 1. Any generator of L4 provides an

equation for X . For g > 3, dimL2 = (g − 2)(g − 3)/2 > 0 and a basis of L2

⊕
L′

3 provides a
system of equations for X , where L′

3 is any complement of the vector subspace of L3 consisting
of all polynomials that are multiples of a polynomial in L2. When X is neither trigonal nor a
smooth plane quintic (g = 6), it suffices to take a basis of L2.

For the curve X∗
0 (N) there exists a set of normalized eigenforms g1, · · · , gk ∈ S2(Γ0(N))B(N)

such that Jac(X∗
0 (N))

Q
∼ Ag1 × · · · ×Agk , where the symbol

Q
∼ means isogenous over Q. These

8



abelian varieties are simple and pairwise nonisogenous over Q. Hence, any involution u of the
curve leaves stable Agi and acts on Ω1

Agi
as the product by −1 or the identity, because the

endomorphism algebra EndQAgi ⊗Q is isomorphic to a (totally real) number field.
We choose a basis {ω1, · · · , ωg∗

N
} of Ω1

X∗
0 (N)/Q obtained as the union of bases of all Ω1

Agi
/Q.

An involution u ofX∗
0 (N) induces a linear map u∗ : Ω1

X∗
0 (N)/Q → Ω1

X∗
0 (N)/Q sending (ω1, · · · , ωg∗

N
)

to (ε1ω1, · · · , εnωg∗
N
) with εi = ±1 for all i ≤ g∗N and satisfying

Q(ε1x1, · · · , εg∗
N
xg∗

N
) ∈ Li for all Q ∈ Li and for all i . (3.1)

Conversely, for a linear map u∗ as above satisfying condition (3.1), only one of the two maps
±u∗ comes from an involution of the curve, because we are assuming that X is nonhyperelliptic.

We particularize this fact to our case.

Lemma 13. Assume X∗
0 (N) is nonhyperelliptic. Let ω1, · · · , ωg∗

N
be a basis of Ω1

X∗
0 (N)/Q as

above, such that ω1 is the differential attached to an elliptic curve E. Then, the pair (N,E) is
bielliptic if, and only, if

Q(−x1, x2, · · · , xg∗
N
−1, xg∗

N
) ∈ Li for all Q ∈ Li and for all i . (3.2)

Proof. If u is an involution of X∗
0 (N) such that E is Q-isogenous to X∗

0 (N)/〈u〉, then u∗(ω1) =
ω1 and u∗(ωi) = −ωi for i > 1. Hence, condition (3.2) is satisfied. Conversely, since the curve
is nonhyperelliptic the condition (3.2) implies that only one of the two linear maps

(ω1, ω2, · · · , ωg∗
N
−1, ωg∗

N
) 7→ ±(−ω1, ω2, · · · , ωg∗

N
−1, ωg∗

N
)

comes from an involution u of the curve. The genus gu of the curve X∗
0 (N)/〈u〉 agrees with

the number of differentials ωi invariant under the action of u. When g∗N > 3, it follows that gu
must be 1 because it cannot be g∗N−1 due to Riemann-Hurwitz formula. For g∗N = 3, the genus
gu must be different from 2, since otherwise the curve would be hyperelliptic (cf. [1, Lemma
5.10]). �

Remark 14. When g∗N > 4, dimL2 > 1. If ωj is the differential attached to an elliptic curve,
we need to check that the vector space

L2,j := {Q ∈ L2 : Q(x1, · · · ,−xj , · · · , xg∗
N
) ∈ L2}

is L2. Note that

L2,j = {Q ∈ L2 : Q(x1, · · · , xj , · · · , xg∗
N
) = Q(x1, · · · ,−xj , · · · , xg∗

N
)}

Indeed, if Q ∈ L2,j, then H := Q(x1, · · · , xj , · · · , xg∗
N
) − Q(x1, · · · ,−xj , · · ·xg∗

N
) ∈ L2. There-

fore, H = xjP for an homogenous polynomial P ∈ Q[x1, · · · , xg∗
N
] of degree at most 1. Hence,

P must be 0, otherwise P (ω1, · · · , ωg∗
N
) = 0.

Remark 15. Recall that, for each one of the normalized eigenforms gi ∈ S2(Γ0(N))B(N), there

is fi ∈ New∗
M such that gi =

∑
d|N/M d fi(q

d) and Agi
Q
∼ Afi. To get a basis of Ω1

Agi
/Q we can

proceed as follows. If dimAfi = 1, we take as basis gi(q) dq/q. When dimAfi = r > 1, the
endomorphism algebra EndQ(Afi)⊗Q is generated by Hecke operators and is isomorphic to the
totally real number field Ki := Q({an(fi)}n>0) of degree r. Let I be the set of Q-embeddings of
Ki into a fixed algebraic closure of Q. For every a ∈ Ki there is a Hecke operator T such that
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T (fσi ) = aσfσi for all σ ∈ I. The two cusp-form h =
∑

σ∈I f
σ
i is nonzero because the coefficient

of q is g. Hence, taking T such that a is a primitive element of Ki, the set

f ′
j = T j(h) =

∑

σ∈I

(aj)σfσi ∈ Q[[q]], 0 ≤ j ≤ r − 1 ,

is a basis of the vector space spanned by fσi . Therefore,

ω′
j = (

∑

d|N/M

d f ′
i(q

d)) dq/q 0 ≤ j ≤ r − 1

is a basis of Ω1
Agi

/Q. One can take a as the value provided by Magma in the q-expansion of fi
and, in this case, f ′

j ∈ Z[[q]]. The curve X∗
0 (N) is determined by the first Fourier coefficients

of the chosen basis for Ω1
X∗

0 (N)/Q (cf [2, Proposition 2.8]). In order to get shorter equations, it

is suitable to replace the basis f ′
j with a basis of the Z-module (

⊕g
i=1Qf

′
i) ∩ Z[[q]].

Proposition 16. Among the curves of genus three X∗
0 (183), X

∗
0 (185), X

∗
0 (249), X

∗
0 (303), and

X∗
0 (455), only X

∗
0 (183), X

∗
0 (249), X

∗
0 (303) and X

∗
0 (455) are bielliptic. The corresponding ellip-

tic quotients are labeled as E61a1, E249b1, E101a1 and E65a1, respectively. In all these cases,
the automorphism group has order 2. The automorphism groups of the remaining curves are
trivial.

Proof. For these values of N , the splitting of the jacobian of X∗
0 (N), J∗

0 (N), is as follows:

J∗
0 (183)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E61a , f2 ∈ New∗

183 , dimAf2 = 2 ,

J∗
0 (185)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E37a , Af2

Q
∼ E185a , Af3

Q
∼ E185c ,

J∗
0 (249)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E83a , Af2

Q
∼ E249a , Af3

Q
∼ E249b ,

J∗
0 (303)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E101a , f2 ∈ New∗

303 , dimAf2 = 2 ,

J∗
0 (455)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E65a , Af2

Q
∼ E91a , Af3

Q
∼ E455a .

We take a basis of Ω1
X∗

0 (N)/Q following the order exhibited in the splitting of its jacobian and
we obtain the following generators Q ∈ L4:

N Q
183 x4 − 10x2y2 + 9y4 − 24x2yz + 24y3z + 32y2z2 + 32yz3 − 16z4

185 2816x4 + 768x3y + 1728x2y2 − 243y4 − 5888x3z + 1152x2yz + 1728xy2z
+324y3z + 192x2z2 − 1152xyz2 + 918y2z2 − 2624xz3 + 852yz3 − 571z4

249 16x4 − 64x3y − 12x2y2 + 44xy3 + 97y4 − 180x2z2 + 36xyz2 − 18y2z2 + 81z4

303 x4 + 2x2y2 − 3y4 − 16y2z2 + 16yz3 − 16z4

455 81x4 − 162x2y2 − 79y4 − 324x2yz + 244y3z + 192y2z2 + 64yz3 − 16z4

By Lemma 13, only the curves corresponding to N = 183, 249, 303, 455 are bielliptic with an
only bielliptic involution u. The affine equations for the bielliptic quotients are

N X∗
0 (N)/〈u〉

183 x2 − 10x+ 9− 24xz + 24z + 32z2 + 32z3 − 16z4 = 0
249 97 + 44x− 12x2 − 64x3 + 16x4 − 18z + 36xz − 180x2z + 81z2 = 0
303 x2 + 2x− 3− 16z2 + 16z3 − 16z4 = 0
455 81x2 − 162x− 79− 324xz + 244z + 192z2 + 64z3 − 16z4 = 0

10



which have genus one and their j-invariants are −912673
61

, 357911
249

, 262144
101

and 117649
65

. They corre-
spond to the elliptic curves E61a1, E249b1, E101a1 and E65a1.

Taking into account the splitting of their jacobians and their equations, all their automor-
phism groups have order 2. The remaining curves have trivial automorphism groups. For
instance, for N = 249, the linear map (ω1, ω2, ω3) 7→ (ω1, ω2,−ω3) is the only option to be con-
sidered and Q(−x, y, z) /∈ L4. For N = 185, none of the polynomials Q(−x, y, z),Q(x,−y, z),
Q(x, y,−z) lies in L4. �

Proposition 17. The curve of genus four X∗
0 (399) is not bielliptic and its automorphism group

is trivial.

Proof. The splitting of J∗
0 (399) is:

J∗
0 (399)

Q
∼ Af1 × Af2 ×Af3 , Af1

Q
∼ E57a , Af2

Q
∼ E399a , f3 ∈ New∗

133 , dimAf3 = 2 .

In this case dimL2 = 1. As in the previous proposition, we take a basis of Ω1
X∗

0 (399)Q
following

the order exhibited in the splitting of its jacobian. Next, we show a generator Q(x, y, z, t) ∈ L2:

N Q
399 −99t2 + 90tx+ 125x2 + 189ty + 80xy − 151y2 + 306tz − 105xz + 42yz + 9z2

SinceQ(−x, y, z, t) /∈ L2, the curve is not bielliptic. The conditionsQ(x,−y, z, t),Q(−x,−y, z, t)
/∈ L2 imply that the curve does not have any nontrivial involutions. �

Proposition 18. The curves of genus five X∗
0 (237) and X

∗
0 (645) are not bielliptic.

Proof. The splitting of J∗
0 (N) is:

J∗
0 (237)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E79a , f2 ∈ New∗

237 , dimAf2 = 4 ,

J∗
0 (645)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E43a , Af2

Q
∼ E129a , Af3

Q
∼ E215a , f4 ∈ New∗

645 ,
dimAf4 = 2 .

Now, dimL2 = 3. For N = 237, dimL2,1 = 0 and for N = 645 we also have dimL2,2 =
dimL2,3 = 0. �

As a consequence, we obtain the statement of Theorem 1 for N odd.

Corollary 19. For N odd, X∗
0 (N) is bielliptic if, and only if, N ∈ {129, 183, 215, 249, 303, 455}.

For these values of N , the automorphism group has order 2 when g∗N > 2, otherwise it is the
Klein group.

4 Even case

By applying Lemma 5, we determine a finite set of possible values of N . Then, we proceed
as in the odd case and we obtain the pairs (N,E) exhibited in Table 3 together the genera of
X0(N) and X∗

0 (N). As in the odd case, for g∗N = 2 we can discard N = 154, 286 because both
curves X∗

0 (N) have an elliptic quotient of conductor N that does not satisfy Lemma 7. Table
3 is divided into 4 cases: 3 ∤ N , 6 | N and 30 ∤ N , 30 | N and 210 ∤ N and, finally, 210 | N .
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N, 3 ∤ N gN g∗
N

M Label E

106 = 2 · 53 12 2 106 b

53 a

122 = 2 · 61 14 2 122 a

61 a

158 = 2 · 79 19 2 158 b

79 a

166 = 2 · 83 20 2 166 a

83 a

178 = 2 · 89 21 3 89 a

202 = 2 · 101 24 4 101 a

262 = 2 · 131 32 4 131 a

394 = 2 · 197 48 10 197 a

458 = 2 · 229 56 10 229 a

290 = 2 · 5 · 29 41 3 58 a

145 a

310 = 2 · 5 · 31 45 3 155 c

370 = 2 · 5 · 37 53 4 185 a

185 c

370 a

410 = 2 · 5 · 41 59 5 82 a

430 = 2 · 5 · 43 63 3 43 a

215 a

530 = 2 · 5 · 53 77 7 106 b

265 a

574 = 2 · 7 · 41 81 5 82 a

590 = 2 · 5 · 59 87 6 118 a

602 = 2 · 7 · 43 85 9 43 a

710 = 2 · 5 · 71 105 7 142 b

742 = 2 · 7 · 53 105 10 371 a

770 = 2 · 5 · 7 · 11 137 5 77 a

154 a

910 = 2 · 5 · 7 · 13 161 5 65 a

91 a

455 a

1190 = 2 · 5 · 7 · 17 209 8 238 b

6|N, 30 ∤ N gN g∗
N

M Label E

246 = 2 · 3 · 41 39 3 82 a

123 b

258 = 2 · 3 · 43 41 3 43 a

129 a

282 = 2 · 3 · 47 45 3 141 d

318 = 2 · 3 · 53 51 3 53 a

106 b

354 = 2 · 3 · 59 57 4 118 a

366 = 2 · 3 · 61 59 4 61 a

122 a

402 = 2 · 3 · 67 65 5 201 a

201 c

426 = 2 · 3 · 71 69 4 142 b

438 = 2 · 3 · 73 71 5 219 a

219 c

474 = 2 · 3 · 79 77 7 79 a

158 b

498 = 2 · 3 · 83 81 7 83 a

166 a

249 a

249 b

534 = 2 · 3 · 89 87 8 89 a

582 = 2 · 3 · 97 95 7 291 c

606 = 2 · 3 · 101 99 8 101 a

642 = 2 · 3 · 107 105 9 214 b

786 = 2 · 3 · 131 129 11 131 a

462 = 2 · 3 · 7 · 11 89 3 77 a

154 a

546 = 2 · 3 · 7 · 13 105 4 91 a

714 = 2 · 3 · 7 · 17 137 5 102 a

238 b

798 = 2 · 3 · 7 · 19 153 5 57 a

399 a

858 = 2 · 3 · 11 · 13 161 6 143 a

286 c

966 = 2 · 3 · 7 · 23 185 8 138 a

1122 = 2 · 3 · 11 · 17 209 9 374 a

1254 = 2 · 3 · 11 · 19 233 12 57 a

30|N, 210 ∤ N gN g∗
N

M Label E

390 = 2 · 3 · 5 · 13 77 2 65 a

390 a

510 = 2 · 3 · 5 · 17 101 3 102 a

570 = 2 · 3 · 5 · 19 113 4 57 a

190 b

285 b

690 = 2 · 3 · 5 · 23 137 6 138 a

870 = 2 · 3 · 5 · 29 173 7 58 a

145 a

290 a

930 = 2 · 3 · 5 · 31 185 8 155 c

1110 = 2 · 3 · 5 · 37 221 9 185 c

30|N, 210 ∤ N gN g∗
N

M Label E
1230 = 2 · 3 · 5 · 41 245 10 123 b

615 a

1290 = 2 · 3 · 5 · 43 257 10 129 a

215 a

1410 = 2 · 3 · 5 · 47 281 14 141 d

705 a

1590 = 2 · 3 · 5 · 53 317 14 53 a

265 a

795 a

210|N gN g∗
N

M Label E

2310 = 2 · 3 · 5 · 7 · 11 561 12 77 a

1155 a

2730 = 2 · 3 · 5 · 7 · 13 657 14 65 a

455 a

Table 3

As in the odd case, first we examine the hyperelliptic curves.

Proposition 20. All the curves of genus two appearing in Table 3, i.e. X∗
0 (106), X

∗
0 (122),

X∗
0 (158), X

∗
0 (166) and X

∗
0 (390), are bielliptic.

Proof. For N ∈ {106, 122, 154, 158, 166, 286, 390}, the jacobian of X∗
0 (N) is isogenous over Q

to the product of two elliptic curves E and F of conductors N and M < N , respectively. We
have that M = N/6 for N = 390 and M = N/2 otherwise. Let fE ∈ New∗

N and fF ∈ New∗
M

be the corresponding newforms attached to these elliptic curves. The functions

x :=
fE(q)∑

d|N/M d fF (qd)
, y :=

2 q d x

(
∑

d|N/M d fF (qd))d q
,

provide the following equations

X∗
0 (106) : y2 = 4x6 + 17x4 − 6x2 + 1 ,

X∗
0 (122) : y2 = 4x6 + x4 + 10x2 + 1 ,

X∗
0 (158) : y2 = −2x6 + 11x4 + 8x2 − 1 ,

X∗
0 (166) : y2 = −4x6 + 17x4 + 2x2 + 1 ,

X∗
0 (390) : y2 = −(3x2 + 1)(4x4 − 7x2 − 1) .
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In all cases, one has the involutions (x, y) 7→ ±(−x,±y). �

Next, we use the sieve based on [11, Theorem 2.1].

Proposition 21. The curve X∗
0 (N) is not bielliptic and its automorphism group is trivial for

the following values of N :
394, 458, 582, 602, 710, 786 .

Proof. For a prime p ∤ N , let Qp(2k + 1) be as in Proposition 11. After the following
computations,

N Qp(2k + 1) 2g∗N + 2
394 = 2 · 197 Q3(9) = 25 22
458 = 2 · 229 Q5(15) = 36 22
582 = 2 · 3 · 97 Q13(9) = 18 16
602 = 2 · 7 · 43 Q5(11) = 31 20
710 = 2 · 5 · 71 Q3(9) = 25 16
786 = 2 · 3 · 131 Q5(11) = 27 24

the statement follows. �

Now, we apply the sieve based on the values of |X∗
0 (N)(Fpn)|−2|E(Fpn)| and a modification

for primes p dividing the conductor N .

Proposition 22. The pairs (N,E) in the set

{(290, 58a), (370, 185a), (402, 201a), (410, 82a), (438, 219c), (474, 79a),
(474, 158b), (498, 83a), (498, 166a), (498, 249a), (498, 249b), (530, 106b),
(530, 265a), (534, 89a), (574, 82a), (590, 118a), (606, 101a), (642, 214b)
(714, 102a), (742, 371a), (770, 77a), (770, 154a), (798, 57a), (870, 58a)
(910, 65a), (930, 155c), (966, 138a), (1110, 185c), (1122, 374a), (1190, 238b),
(1230, 123b), (1230, 615a), (1254, 57a), (1290, 129a), (1290, 215a), (1410, 141d),
(1410, 705a), (1590, 53a), (1590, 265a), (1590, 795a), (2310, 77a), (2310, 1155a),
(2730, 65a), (2730, 455a)}

are not bielliptic. In particular, the curve X∗
0 (N) is not bielliptic for the following values of N :

410, 474, 498, 530, 534, 574, 590, 606, 642, 742, 770, 930, 966, 1110, 1122, 1190,
1230, 1254, 1290, 1410, 1590, 2310, 2730 .

Proof. We put n(N,E, pk) = |X∗
0 (N)(Fpk)| − 2|E(Fpk)|.

N pk E n(N,E, pk)
290 9 58a 5
370 3 185a 2
402 5 201a 2
410 13 82a 1
438 25 219c 12
474 25 79a 10

11 158b 7
498 11 83a 5

7 166a 3
7 249a 1
13 249b 5

530 25 106b 35
7 265a 8

534 5 89a 2
574 9 82a 4
590 9 118a 2

N pk E n(N,E, pk)
606 5 101a 2
642 7 214b 9
714 25 102a 6
742 9 371a 4
770 9 77a 9

3 154a 1
798 25 57a 3
870 13 58a 1
910 9 65a 3
930 7 155c 2
966 25 138a 7
1122 5 374a 5
1190 3 238b 1

N pk E n(N, E, pk)
1230 49 123b 19

11 615a 2
1254 5 57a 1
1290 49 129a 3

49 215a 3
1410 49 141d 20

7 705a 10
1590 49 53a 54

7 265a 6
7 795a 10

2310 17 77a 1
17 1155a 9

2730 11 65a 7
11 455a 3

For the pair (N,E) = (1110, 185c), we proceed as follows. Suppose that the pair (N,E) is
bielliptic. For p = 2, we know that X0(1110) modulo 2 is the copy of two curves X0(555)/F2,
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and the normalization ofX∗
0 (1110)/F2 is the curve X

∗
0 (555)/F2 (cf. [10]). Since 2 does not divide

the conductor of E, then E/F2 is an elliptic curve that is the quotient curve of X∗
0 (555)/F2 by

an involution defined over F2. Therefore, n(555, E, 2
k) ≤ 0. We get n(555, E, 2) = 1 and, thus,

the pair (1110, E) can be discarded. �

After applying the two sieves, the following possibilities for the pairs (N,E), ordered by the
genus, remain:

N g∗N E

178 3 89a
246 3 82a, 123b
258 3 43a, 129a
282 3 141d
290 3 145a
310 3 155c
318 3 53a, 106b
430 3 43a, 215a
462 3 77a, 154a
510 3 102a

N g∗N E

202 4 101a
262 4 131a
354 4 118a
366 4 61a, 122a
370 4 185c, 370a
426 4 142b
546 4 91a
570 4 57a, 190b, 285b

N g∗N E

402 5 201c
438 5 219a
714 5 238b
798 5 399a
910 5 91a, 455a

690 6 138a
858 6 143a, 286c

870 7 145a, 290a

Table 4

Proposition 23. Among the curves of genus three X∗
0 (178), X

∗
0 (246), X

∗
0 (258), X

∗
0 (282),

X∗
0 (290), X

∗
0 (310), X

∗
0 (318), X

∗
0 (430), X

∗
0 (462) and X

∗
0 (510), only X

∗
0 (178), X

∗
0 (246), X

∗
0 (258),

X∗
0 (290), X

∗
0 (318),X

∗
0 (430) and X

∗
0 (510) are bielliptic. The corresponding elliptic quotients are

labeled as E89a1, E82a1, E43a1, E145a1, E53a1, E43a1 and E102a1, respectively. In all
these cases, the automorphism group of X∗

0 (N) has order 2. The automorphism groups of the
remaining curves are trivial.

Proof. For these values of N , the splitting of the jacobian of X∗
0 (N), J∗

0 (N), is as follows:

J∗
0 (178)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E89a , f2 ∈ New∗

178 , dimAf2 = 2 ,

J∗
0 (246)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E82a , Af2

Q
∼ E123b , Af3

Q
∼ E246d ,

J∗
0 (258)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E43a , Af2

Q
∼ E129a , Af3

Q
∼ E258a ,

J∗
0 (282)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E141d , f2 ∈ New∗

282 , dimAf2 = 2 ,

J∗
0 (290)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E58a , Af2

Q
∼ E145a , Af3

Q
∼ E290a ,

J∗
0 (310)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E155c , f2 ∈ New∗

310 , dimAf2 = 2 .

J∗
0 (318)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E53a , Af2

Q
∼ E106b , Af3

Q
∼ E318c ,

J∗
0 (430)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E43a , Af2

Q
∼ E215a , , Af3

Q
∼ E430a ,

J∗
0 (462)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E77a , Af2

Q
∼ E154a , Af3

Q
∼ E462a ,

J∗
0 (510)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E102a , f2 ∈ New∗

85 , dimAf2 = 2 ,

We take a basis of Ω1
X∗

0 (N)Q following the order exhibited in the splitting of the jacobian, and
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we obtain the following generators Q ∈ L4:

N Q
178 x4 − 2x2y2 + y4 − 12x2yz − 4y3z − 4x2z2 + 20y2z2 + 32yz3

246 81x4 − 16y4 + 324x2yz − 32y3z − 162x2z2 + 48y2z2 − 260yz3 + 17z4

258 81x4 − 90x2y2 + 41y4 + 288x2yz − 176y3z − 36x2z2 + 84y2z2 − 128yz3 − 64z4

282 x4 − 4x3y + 6x2y2 − 4xy3 + y4 − 6x3z − 18x2yz − 27xy2z − 30y3z
−9x2z2 + 45xyz2 − 117y2z2 + 54xz3 + 108yz3

290 36x2y2 + 27y4 + 32x3z + 36xy2z + 12x2z2 − 126y2z2 − 84xz3 + 67z4

310 x4 + 2x3y − 3x2y2 − 4xy3 + 4y4 − 81xy2z − 81xyz2 − 81y2z2 − 54xz3 + 54yz3 + 81z4

318 9x4 − 10x2y2 + y4 − 28x2yz + 12y3z + 20x2z2 − 4y2z2 − 32yz3 + 32z4

430 81x4 + 54x2y2 − 7y4 − 432x2yz − 128y3z − 108x2z2 + 444y2z2 + 64yz3 + 32z4

462 128x4 − 320x3y + 264x2y2 − 44xy3 − y4 − 448x3z + 48x2yz + 492xy2z − 92y3z
+840x2z2 + 12xyz2 + 498y2z2 − 972xz3 − 972yz3 + 567z4

510 3x4 − 4x2y2 + y4 + 18x2yz − 10y3z + 14x2z2 + 18y2z2 + 40yz3 + 16z4

By Lemma 13, only the curves corresponding to N = 178, 246, 258, 290, 318, 430, 510 are biel-
liptic and only have a bielliptic involution u. The affine equations for the bielliptic quotients
are

N X∗
0 (N)/〈u〉

178 −4x+ x2 + 32y − 12xy + 20y2 − 2xy2 − 4y3 + y4 = 0
246 17− 162x+ 81x2 − 260y + 324xy + 48y2 − 32y3 − 16y4 = 0
258 −64− 36x+ 81x2 − 128y + 288xy + 84y2 − 90xy2 − 176y3 + 41y4 = 0
290 36x2y + 27y2 + 32x3 + 36xy + 12x2 − 126y − 84x+ 67 = 0
318 32 + 20x+ 9x2 − 32y − 28xy − 4y2 − 10xy2 + 12y3 + y4 = 0
430 32− 108x+ 81x2 + 64y − 432xy + 444y2 + 54xy2 − 128y3 − 7y4 = 0
510 16 + 14x+ 3x2 + 40y + 18xy + 18y2 − 4xy2 − 10y3 + y4 = 0

which have genus one and their j-invariants are −117649
89

, 389017
16

, −4096
43

, 2146689
145

, 3375
53

, −4096
43

and
1771561

612
. They correspond to the elliptic curves in the statement. By the splitting of the jacobians

and the equations of these curves, we obtain that all their automorphism groups have order 2.
It is easy to check that the automorphism groups of the remaining curves are trivial. �

Proposition 24. Among the curves of genus four X∗
0 (202), X

∗
0 (262), X

∗
0 (354), X

∗
0 (366),

X∗
0 (370), X

∗
0 (426), X

∗
0 (546) and X∗

0 (570), only X
∗
0 (370) is bielliptic. The corresponding quo-

tient curve is the elliptic curve labeled as E370a1 and the automorphism group of X∗
0 (370)

has order 2. The automorphism groups of the curves X∗
0 (202), X

∗
0 (262), X

∗
0 (354), X

∗
0 (426),

X∗
0 (546) and X∗

0 (570) are trivial. The automorphism group of X∗
0 (366) has order 2 and the

quotient curve has genus 2.

Proof. The splitting of J∗
0 (N) is:

J∗
0 (202)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E101a , f2 ∈ New∗

202 , dimAf2 = 3 ,

J∗
0 (262)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E131a , Af2

Q
∼ E262b , f3 ∈ New∗

262 , dimAf3 = 2 ,

J∗
0 (354)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E118a , Af2

Q
∼ E354b , f3 ∈ New∗

177 , dimAf3 = 2 ,

J∗
0 (366)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E61a , Af2

Q
∼ E122a , f3 ∈ New∗

183 , dimAf3 = 2 ,

J∗
0 (370)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E37a , Af2

Q
∼ E185a , Af3

Q
∼ E185c , Af4

Q
∼ E370a ,

J∗
0 (426)

Q
∼

∏3
i=1Afi , Af1

Q
∼ E142a , Af2

Q
∼ E426b , f3 ∈ New∗

243 , dimAf3 = 2 ,

J∗
0 (546)

Q
∼

∏2
i=1Afi , Af1

Q
∼ E91a , f2 ∈ New∗

273 , dimAf2 = 3 ,

J∗
0 (570)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E57a , Af2

Q
∼ E190b , Af3

Q
∼ E285b , Af4

Q
∼ E570a .
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In all cases, dimL2 = 1. Next, we show a generator Q2(x, y, z, t) ∈ L2:

N Q2

202 −9t2 + x2 + 9ty − 2xy + y2 + 9tz − xz − 8yz − 2z2

262 7t2 − tx+ x2 − 4ty − xy − 4tz − xz + yz
354 −42t2 − 5tx+ 2ty − 10xy + 22y2 + 48tz − 15xz + 6yz − 3z2

366 −4t2 + x2 + 2xy − y2 − 2z2

370 −144t2 + 27x2 − 72xy − 32y2 + 54xz + 40yz + 127z2

426 −108t2 + 165tx+ 100x2 + 78ty + 55xy − 137y2 + 27tz − 30xz + 84yz − 72z2

546 388t2 + 36tx+ x2 − 68ty − 10xy + 9y2 − 420tz − 34xz + 58yz + 125z2

570 −327t2 − 232tx+ 176x2 + 36ty + 64xy + 192y2 + 70tz − 40xz + 188yz − 127z2

Only X∗
0 (370) could be bielliptic. In this case, the curve is trigonal (see [16, Proposition 1])

and dimL3 = 5. By computing a polynomial Q3 ∈ L3 that is not multiple of Q2, we get

Q3(x, y, z, t) = 27x3 − 90x2y + 32y3 + 63x2z + 108xyz + 81xz2 − 114yz2 − 107z3 .

Since Q3(x, y, z,−t) ∈ L3, the curve X∗
0 (370) is bielliptic by Lemma 13. Let us check this

result. Set P (X, Y ) := Resultant (Q2(X, Y, 1, T ), Q3(X, Y, 1, T ), X). More precisely,

P (T, Y ) = −592 + 1944T 2 − 4860T 4 + 2916T 6 − 4752T 2Y + 3402T 4Y − 408Y 2

+729T 4Y 2 + 80Y 3 + 1620T 2Y 3 + 396Y 4 − 270T 2Y 4 − 222Y 5 + 17Y 6 .

The curve determined by the equation P (T, Y ) = 0 has genus 4. Hence, it is a plane model
for X∗

0 (370). The model admits the involution u : (T, Y ) 7→ (−T, Y ). Replacing T 2 with T , we
obtain a genus one curve, whose j-invariant is 15438249/2960. Checking [7, Table1], the elliptic
quotient has conductor 370 and label a1. The polynomials Q2 and Q3 show that u is the only
nontrivial involution of the curve. It is clear that the remaining curves, except X∗

0 (366), have
trivial automorphism group.

Looking at the polynomial Q2 for N = 366, we may ask whether one of the two linear
maps (ω1, ω2, ω3, ω4) 7→ ±(−ω1,−ω2, ω3, ω4) comes from an involution u of X∗

0 (366). After
determining L3, the answer is affirmative. Hence, Jac(X∗

0 (366)) is isogenous over Q to E61a×
E122a or Af3 . After checking which of the vector subspaces 〈ω1, ω2〉 or 〈ω3, ω4〉 provides a
hyperelliptic curve, the right answer is Af3, and an equation for the quotient curve X∗

0 (366)/〈u〉
is

Y 2 = X6 − 6X5 + 23X4 − 42X3 + 53X2 − 24X + 4 . �

Remark 25. It is expected that the automorphism group of X∗
0 (N) is trivial for a large enough

N and, thus, the genera of the quotients curves by nontrivial involutions are bounded. The
curve X∗

0 (366) shows that if this bound exists, then it is at least 2.

Proposition 26. The curvesX∗
0 (402), X

∗
0 (438), X

∗
0 (714), X

∗
0 (798), X

∗
0 (910), X

∗
0 (690), X

∗
0 (858)

and X∗
0 (870) are not bielliptic.
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Proof. The splitting of J∗
0 (N) for the curves of genus 5 in the statement is:

J∗
0 (402)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E201a , Af2

Q
∼ E201c , Af3

Q
∼ E402a , f4 ∈ New∗

67 ,
dimAf4 = 2 ,

J∗
0 (438)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E219a , Af2

Q
∼ E219c , Af3

Q
∼ E438a , f4 ∈ New∗

73 ,
dimAf4 = 2 ,

J∗
0 (714)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E102a , Af2

Q
∼ E238b , Af3

Q
∼ E714a , f4 ∈ New∗

357

dimAf4 = 2 ,

J∗
0 (798)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E57a , Af2

Q
∼ E399a , Af3

Q
∼ E798a , f4 ∈ New∗

133 ,
dimAf4 = 2 ,

J∗
0 (910)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E65a , Af2

Q
∼ E91a , Af3

Q
∼ E455a , f4 ∈ New∗

910 ,
dimAf4 = 2 .

In all cases to study (N,E), we have dimL2,i = 0, with i the one corresponding to E. More
explicitly, for N = 402, 714, 798, 910 we have dimL2,2 = 0, for N = 438, dimL2,1 = 0, and for
N = 910, also dimL2,3 = 0.

For the curves of genus 6, the splitting of J∗
0 (N) is:

J∗
0 (610)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E138a , Af2

Q
∼ E690a , f3 ∈ New∗

345 , f4 ∈ New∗
115 ,

dimAf3 = 2 dimAf4 = 2 ,

J∗
0 (858)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E143a , Af2

Q
∼ E290a , f3 ∈ New∗

429 , f4 ∈ New∗
858

dimAf3 = 2 dimAf4 = 2 ,

In all cases, dimL2,1 = 1. Hence, dimL2,1 = 1 < dimL2 = 6. For N = 898, also dimL2,1 = 1.

Finally, the splitting for the curve X∗
0 (870) of genus seven is:

J∗
0 (870)

Q
∼

∏4
i=1Afi , Af1

Q
∼ E58a , Af2

Q
∼ E145a , Af3

Q
∼ E290a , f4 ∈ New∗

435 ,
dimAf4 = 4 .

In this case, dimL2,2 = dimL2,3 = 4 < dimL2 = 10. �

As a consequence of the previous results, we obtain the statement of Theorem 1 for N even.

Corollary 27. For N even, the curve X∗
0 (N) is bielliptic exactly for the thirteen values of N

in the set
{106, 122, 158, 166, 178, 246, 258, 290, 318, 370, 390, 430, 510} .

For these values of N automorphism group has order 2 when g∗N > 2, otherwise it is the Klein
group.

5 Quadratic points

Let us now prove Theorem 2. We know by [15] that if N is square-free and X∗
0 (N) is hyper-

elliptic, then g∗N = 2. On the other hand, a genus two curve defined over a number field K is
hyperelliptic over K and, thus, all genus two curves X∗

0 (N) are hyperelliptic over Q. The set
of values of N in Theorem 2 are those for which g∗N = 2 and those such that X∗

0 (N) is bielliptic
and g∗N ≥ 3. This is due to the fact that, when g∗N ≥ 3, the quotient curve is always an elliptic
curve with rank equal to 1 (see [7, Table1]). Hence, all these values of N are exactly the values
for which Γ2(X

∗
0 (N),Q) is infinite (cf. [5, Theorem 2.14]).

17



6 Appendix

Here we list the values N such that g∗N ≤ 2. The table for genus 2 reproduces the one in [14].
The tables for genus 0 or 1 are taken from [12]. We note that the value N = 141, which does
not appear in Proposition 1.1 of [12], is included in the appendix of this paper and here.

g∗N = 0 2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,38,39,
41,42,46,47,51,55,59,62,66,69,70,71,78,87,94,95,105,110,119 .

g∗N = 1 37,43,53,57,58,61,65,74,77,79,82,83,86,89,91,101,102,111,114,118,123,
130,131,138,141,142,143,145,155,159,174,182,190,195,210,222,231,238 .

g∗N = 2 67, 73,85,93,103,106,107,115,122, 129,133,134,146,154,158,161,165, 166,167
170, 177,186,191,205,206,209,213,215,221,230,255,266,285,286,287, 299

330,357,390 .

Acknowledgements. We thank the referees for their comments, especially those that have
contributed to improve the computations of the different tables and the exposition of the paper.
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[9] G. Faltings. Diophantine approximation on abelian varieties. Ann. of Math. (2),
133(3):549–576, 1991.

[10] M. Furumoto and Y. Hasegawa. Hyperelliptic quotients of modular curves X0(N). Tokyo
J. Math., 22(1):105–125, 1999.
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