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Fixes a flaw in the proof of 1.4.39 of [1].

0.1 Theorem. By means of the relations listed, any cobordism diagram can

be brought on the following normal form: first a permutation cobordism, then

a disjoint union of connected cobordism diagrams on connected normal form,

and finally another permutation cobordism.

0.2 Theorem. The normal form is unique in the following sense: the dis-

joint union of connected-normal forms in the middle is unique up to per-

mutation of the components. The permutation cobordism diagrams can be

chosen to be shuffles, with respect to the blocks defined by the connected com-

poments of the middle part. With this proviso, the in- and out-permutations

are unique, so with a suitable choice of normal form for permutations as

generated by twists, the overall normal form is unique.

Proof of the first theorem. By Lemma 0.3 below, we reduce to the case where
there are no caps involved. The main point is then (Proposition 0.11 below)
that we can move the multiplication pieces west, and the comultiplication
pieces east (except for handles). For this we need to refine the moving-
multiplications-west and moving-comultiplication-east procedures. These
pieces cannot quite move through all twists, so we push some of them ahead.
A subtlety not met in the connected case is to show that twists cannot get
stuck in between pair-of-pants wanting to move past each other. This is
Lemma 0.8 below (which in turn depends on Lemmas 0.10).

The result of Proposition 0.11 is an in-part consisting only of multiplica-
tion pieces and twists, then a genus part with twists, and finally an out-part,
consisting only of comultiplication pieces and twists.

The genus part consists of all the multiplications and comultiplication
that could not be moved past each other. We need to show that this part
can be made free of twists: they can be moved to either side. In the end the
genus part is a disjoint union of strings of handles as in the connected case.

Finally in the in-part we can move all twists west, and in the out-part
we can move all twists east.

Details follow below. �
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0.3 Regarding caps. All birth-of-a-circle can be moved west by extend-
ing with cylinders, and by moving under any other tubes, using the caps
relations in ?? (that’s [1], 1.4.35) In this way, a first step is to move them
out of the way like that, arriving at a three-part decomposition like this

caps nocaps caps

where the first part consists only of birth-of-circles (and cylinders) and the
third part has only death-of-circles (and cylinders) while the middle part is
free from caps. If the middle part is on normal form as in the theorem, then
the caps can be moved back in again, where they will typically cancel some
pair-of-pants.

FROM NOW ON WE ASSUME THERE ARE NO CAPS.

0.4 Handles can be moved around freely. Moving a handle through
other pair-of-pants is already explained in the book, and moving through
twists causes no further problems, by the naturality.

0.5 Sailing a comultiplication west. A comulitplication can be sailed
west all the way to the boundary. Sailing through other pair-of-pants is
already explained in the book: sailing through a multiplication, by the
Frobenius relation, and through another comultiplication, using the coas-
sociativity relation.

Regarding twists, the relevant relations are:

 

 

0.6 Lemma. A multiplication M can be sailed southwest until either it

meets a comultiplication in a double handshake, forming a handle, or it

has only cylinders to the southwest of it, as in this picture:
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?
id

?

?

Proof. If to the immediate southwest (modulo cylinders) there is a handle,
sail through it as already explained. If to the immediate southwest (modulo
cylinders) there is another multiplication, pass through it by an application
of the associativity relation

 M

M

If to the immediate southwest (modulo cylinders) there is the northeast
boundary of a comultiplication, pass through it using the Frobenius relation.
If to the immediate southwest (modulo cylinders) there is the northeast
boundary of a twist, sail through it using

 

If there is a sequence of cylinders and then a southeast boundary of
either a comultiplication or a twist, then we are in the situation

S

W

where S is either a comultiplication or a twist. But then W can be brought
on the form with at most one twist in the bottom row, by Lemma 0.8
below. If there are no twists in the bottom row, then M meets either a
comultiplication in a double handshake or a twist that is eliminated by
commutativity. If there is one twist in the bottom row of W then we are in
the situation of Example ?? in the book (1.4.38), which allows us to move
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the multiplication past the comultiplication. Or we are in the situation of
the twist relation.

Inductively then, we can sail M southwest until it reaches the boundary
(except for some cylinders). �

Similarly:

0.7 Lemma. A comultiplication can be sailed southeast to the boundary,

except for some cylinders.

0.8 Lemma. Any cobordism diagram W with at least one input and at least

one output is equivalent to one in which the bottom row contains at most

one twist.

Proof. By induction on the number of pair-of-pants. If there are none, then
W is a permutation diagram, handled by Lemma 0.10 below. For the general
case, without loss of generality, assume there is a comultiplication in W , sail
it west (0.5). Eventually it will be adjacent to the west boundary, and
modulo some cylinders, we are in the situation

id

W ′

?

(where the id-block may be empty). Now W ′ has fewer pair-of-pants than
W , so by induction, it can be brought on the desired form, and therefore W
can be brought on the desired form. �

0.9 Remark. The proof uses sailing a comultiplication west. This is
counter intuitive, as in the end we actually want to sail them east. The
aim is just to get a pair-of-pants out to the boundary so as to use induction.
We could also try to sail a multiplication west; this is possible by Lemma 0.6,
which however depends on Lemma 0.8. The argumentation could be made
non-circular by proving both lemmas inside a common induction and not-
ing that Lemma 0.6 calls Lemma 0.8 only with strictly fewer pair-of-pants.
The chosen solution is simpler logically, although more expensive in terms
of total moves.
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0.10 Lemma. Any nonempty permutation diagram W is equivalent to one

in which the bottom row has at most one twist. Precisely, either of the form

?

or of the form

?
id

?

Proof. By induction on the number of twists, the case of zero or one twist
being obvious. If there are two or more twists in the bottom row, locally at
two adjacent twists A and B in the bottom row the situation is

id
T

id

Now by induction, T can be brought on the form with at most one twist
on the bottom line. If there are zero, then the A and B cancel out, and we
have reduced the number of twists in the bottom row of W . If there is one
twist in the bottom line of T , then we are in the situation

id T ′ T ′′ id
id

which, give and take some cylinders, is the same as
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T ′ id id T ′′
id

and now we can apply the ‘symmetric-group relation’ to reduce the number
of twists in the bottom row of W by one. �

0.11 Proposition. A cobordism diagram without caps can be brought on a

form AB where, except for handles, there are no comultiplications in A and

no multiplications in B.

Proof. Induction on the number of pair-of-pants (modulo handles). If there
are no pair-of-pants, any decomposition will do. If there is a multiplication
M , Lemma 0.6 says we can sail it southwest until the boundary like this:

?
id

?

?M

By induction we can now assume that ? is of the pseudo-normal form, and
from here we sail its comultiplications southeast one by one: either they go
above M , and then into the east, or they meet M , then necessarily as

and by the Frobenius relation we can move it past M and argue now with
a smaller cobordism diagram than the question mark. In any case, all the
comultiplications in ? can be sent to the east, so in the end then we can
slide the bottom block to the east, and the red line separates at least one
multiplication (namely M) and no comultiplications to the west, and hence
we can deal with the right-hand side of it by induction, and we are done. �
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Now we can finish the proof of the Theorem: we already have the pseudo-
normal form. Now inside the part A, move the twists west and the handles
east, and inside the part B, move the twists east and the handles west.

Finally, whenever the two tubes of some twist in the west part belong to
the same connected component, use the symmetric-group relations to move
that twist east until it is adjacent to the in-part of the normal form, where it
will be eliminated by commutativity, after a suitable use of the associativity
relation.

0.12 Corollary. If the cobordism diagram is connected, there will be no

twists left in the end.

0.13 Remarks. The Corollary shows that the connected-normal-form the-
orem in the book is a consequence of the more general normal-form theorem.
Furthermore, the proof of the general normal-form theorem is a refinement of
the connected-normal-form proof in the book, not a refinement of the twist-
elimination strategy outlined there. (I now think that the twist-elimination
strategy is misguided.)
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