I recommend instead the papers listed here.
Table of contents:
{Preface}{iii} {Introduction}{1} {Historical remarks}{4} {PART I Polynomial functors in one variable}{9} {{0.0}Prologue: natural numbers and finite sets}{11} {{1}Basic theory of polynomials in one variable}{17} {{1.1}Definition}{19} {{1.2}Examples}{24} {{1.3}Other viewpoints}{28} {{1.4}Basic operations on polynomials}{30} {{1.5}Composition of polynomials (substitution)}{34} {{1.6}Differential calculus}{40} {{1.7}Properties of polynomial functors}{43} {{2}Categories of polynomial functors in one variable}{45} {{2.1}The category $\text {\textbf {\textsl {Set}}}[X]$ of polynomial functors}{46} {Cartesian morphisms}{48} {{2.2}Sums, products}{54} {{2.3}Algebra of polynomial functors: categorification and Burnside semirings}{56} {{2.4}Composition}{60} {{2.5}The subcategory $\text {\textbf {\textsl {Poly}}}$: only cartesian natural transformations}{60} {Products in $\text {\textbf {\textsl {Poly}}}$}{63} {Differentiation in $\text {\textbf {\textsl {Poly}}}$}{65} {{3}Aside: Polynomial functors and negative sets}{67} {{3.1}Negative sets}{67} {{3.2}The geometric series revisited}{74} {{3.3}Moduli of punctured Riemann spheres}{77} {{4}Algebras}{81} {{4.1}Initial algebras, least fixpoints}{81} {Functoriality of least fixpoints}{84} {{4.2}Natural numbers, free monoids}{84} {{4.3}Tree structures as least fixpoints}{89} {{4.4}Induction, well-founded trees}{93} {{4.5}Transfinite induction}{95} {{4.6}Free-forgetful}{99} {{5}Polynomial monads and operads}{105} {{5.1}Polynomial monads}{105} {Cartesian monads}{105} {The free monad on a polynomial endofunctor (one variable)}{110} {Examples}{112} {{5.2}Classical definition of operads}{114} {{5.3}The monoidal category of collections}{115} {{5.4}Finitary polynomial functors and collections}{118} {Equivalence of monoidal categories}{120} {{5.5}The free operad on a collection}{121} {{5.6}$P$-operads}{122} {{6}[Polynomial functors in computer science]}{125} {{6.1}Data types}{125} {Shapely types}{133} {{6.2}Program semantics}{135} {{7}[Species\relax $\mathsurround \z@ \ldotp \ldotp \ldotp $\ ]}{139} {{7.1}Introduction to species and analytical functors}{139} {{7.2}Polynomial functors and species}{140} {PART II Polynomial functors in many variables}{141} {{8}Polynomials in many variables}{143} {{8.1}Introductory discussion}{143} {{8.2}The pullback functor and its adjoints}{146} {Coherence}{155} {{8.3}Beck-Chevalley and distributivity}{156} {{8.4}Further Beck-Chevalley gymnastics}{165} {The twelve ways of a square}{165} {The six ways of a pair of squares}{167} {One more lemma}{168} {{8.5}Composition}{170} {Rewrite systems and coherence}{175} {{8.6}Basic properties}{178} {{8.7}Examples}{180} {The free-category functor on graphs with fixed object set}{182} {{9}Examples}{185} {{9.1}Linear functors (matrices)}{185} {{9.2}Finite polynomials: the Lawvere theory of comm.\ semirings}{191} {Lawvere theories}{192} {Proof of Tambara's theorem}{197} {{9.3}Differential calculus of polynomial functors}{200} {Introduction}{200} {Partial derivatives}{200} {Homogeneous functors and Euler's Lemma}{201} {{9.4}Classical combinatorics}{205} {{9.5}Polynomial functors on collections and operads}{208} {The free-operad functor}{209} {Linear differential operators are linear}{210} {{9.6}Bell polynomials}{214} {{10}Categories and bicategories of polynomial functors}{219} {{10.1}Natural transformations between polynomial functors}{219} {Basic properties of $\text {\textbf {\textsl {PolyFun}}}(I,J)$: sums and products}{228} {Misc}{228} {$\text {\textbf {\textsl {Poly}}}^{\text {c}}(I,J)$: the cartesian fragment}{229} {Sums and products in $\text {\textbf {\textsl {Poly}}}^{\text {c}}(I,J)$}{229} {{10.2}Horizontal composition and the bicategory of polynomial functors}{230} {Some preliminary exercises in the cartesian fragment}{231} {Horizontal composition of $2$-cells}{234} {{11}Double categories of polynomial functors}{241} {{11.1}Summary}{241} {Reminder on double categories}{243} {The double category of polynomial functors}{244} {Lifts}{250} {old calculations}{251} {{11.2}Horizontal composition}{257} {{11.3}Cartesian}{260} {Horizontal composition of cartesian $2$-cells}{261} {Misc issues in the cartesian fragment}{263} {Surjection-injection factorisation in $\text {\textbf {\textsl {Poly}}}$}{263} {Sums and products in the variable-type categories}{264} {Coherence problems}{265} {{12}Trees (1)}{267} {{12.1}Trees}{270} {{12.2}From trees to polynomial endofunctors}{271} {Examples of trees}{275} {{12.3}The category $\text {\textbf {\textsl {TEmb}}}$}{278} {{12.4}$\mathsf {P}$-trees}{286} {{13}Polynomial monads}{291} {{13.1}The free polynomial monad on a polynomial endofunctor}{291} {{13.2}Monads in the double category setting}{295} {relative}{299} {{13.3}Coloured operads and generalised operads}{299} {{13.4}$P$-spans, $P$-multicategories, and $P$-operads}{299} {Coloured operads}{313} {Polynomial monads and coloured operads}{314} {{14}Trees (2)}{317} {{14.1}$\mathsf {P}$-trees and free monads}{319} {Examples of polynomial monads from trees}{321} {{14.2}The category $\text {\textbf {\textsl {Tree}}}$}{323} {{14.3}Trees of trees, constellations, and the Baez-Dolan construction}{331} {PART III Categorical polynomial functors}{337} {{14.4}Introduction}{339} {{15}[Polynomial functors for slices of $\text {\textbf {\textsl {Cat}}}$]}{341} {$\text {\textbf {\textsl {Cat}}}$ is not locally cartesian closed}{341} {{15.1}Conduch\'e fibrations}{343} {{15.2}Polynomial functors in $\text {\textbf {\textsl {Cat}}}$}{351} {{15.3}The family functor}{353} {{15.4}Final functors and discrete fibrations}{356} {{16}[Polynomial functors for presheaf categories]}{357} {{16.1}Some prelims}{357} {Kan extensions}{357} {Categories of elements}{358} {Nerves}{363} {Generic morphisms}{365} {Monads with arities}{369} {{16.2}Distributors and mixed fibrations}{375} {{16.3}The free-category monad}{380} {The free-multicategory monad}{387} {The free-coloured-operad monad}{388} {{16.4}Local right adjoints}{389} {{17}[Generalised species and polynomial functors]}{393} {{18}Appendices}{395} {{A}Pullbacks}{395} {Index}{407}{chapter*.55}