Algebraic K-theory for categorical groups

Aurora Del Río

Joint work with Antonio R. Garzón

Departamento de Álgebra, Universidad de Granada, Spain

Workshop on Categorical groups, 2008

Outline

- Introduction
 - Preliminaries
 - The aim
- The fundamental categorical crossed module of a fibration
 - Categorical group background
 - Categorical Crossed modules background
 - The result
- 3 K-theory categorical groups

The Whitehead group of a ring R

• For any ring R, if $GL_n(R)$ is the general linear group of invertible matrices $n \times n$ with entries in R, there is a sequence

$$GL_1(R) \subset GL_2(R) \subset GL_3(R) \subset \cdots$$

whose direct limit is denoted GL(R).

- The subgroup E(R) of GL(R) generated by the elementary matrices (e_{ii}^{λ}) is just the derived subgroup [GL(R), GL(R)]
- The quotient group, GL(R)/E(R), which is an abelian group, is the Whitehead group of R and is denoted by K_1R .
- Note that, K₁ is a covariant functor from the category of rings to the category of abelian groups.

Steiner groups.

- The Steiner groups $St_n(R)$ are groups given by generators x_{ij}^{λ} and relations encapsulating the key rules of the elementary matrices e_{ij}^{λ} .
- The canonical homomorphism $\Phi_n: St_n(R) \to E_n(R)$, $x_{ij}^{\lambda} \mapsto e_{ij}^{\lambda}$, induces a homomorphism in the corresponding direct limits

$$St(R) \stackrel{\Phi}{\longrightarrow} GL(R)$$
.

- $Im(\Phi) = E(R)$.
- $Ker(\Phi) = K_2(R)$, the 2-th group of algebraic K-theory.
- $St(R) \xrightarrow{\Phi} GL(R)$ is a crossed module of groups (we explain this fact soon)

Higher K-groups.

- Higher K-groups were defined by Quillen
- Given a ring R, K_iR , $i \ge 1$, is given by the composition of covariant functors,

$$K_i: R \mapsto GLR \mapsto BGLR \mapsto BGLR^+ \mapsto \pi_i BGLR^+$$

- BGL(R) is the classifying space of the group GL(R).
- *BGL*(*R*)⁺ its Quillen plus-construction.

$$\pi_1 BGL(R)^+ \cong rac{\pi_1 BGL(R)}{E(R)} = rac{GL(R)}{E(R)} = K_1 R ,$$
 $\pi_2 BGL(R)^+ \cong K_2 R .$

• Quillen K-groups K_1R and K_2R are recognized, as the cokernel and the kernel of $St(R) \stackrel{\Phi}{\longrightarrow} GL(R)$ (a crossed module of groups).

The fundamental crossed module of a fibration

For any fibration $p:(X,x_0)\to (B,b_0)$ with fiber $F=p^{-1}(b_0)$, the morphism

$$\pi_1(F, x_0) \stackrel{i}{\longrightarrow} \pi_1(X, x_0),$$

induced by the inclusion $i:(F,x_0)\hookrightarrow (X,x_0)$, is a crossed module of groups, the fundamental crossed module of the fibration p. If $[\alpha]\in\pi_1(F,x_0)$, and $[\omega]\in\pi_1(X,x_0)$, then $p(\omega\otimes\alpha\otimes\omega^{-1})$ is homotopic to the constant loop in B, through a homotopy of loops $H:I\times I\to X$.

$$\begin{array}{c|c}
I \xrightarrow{\omega \otimes \alpha \otimes \omega^{-1}} X \\
\downarrow i_0 & \overline{H} & \downarrow p \\
I \times I \xrightarrow{H} B
\end{array}$$

Then
$$[\omega][\alpha] = [\overline{H}_1] \in \pi_1(X, x_0)$$

The fundamental crossed module of a fibration

Standard procedure in homotopy theory of factoring a map of pointed spaces $f: (X, x_0) \rightarrow (Y, y_0)$:

- Homotopy equivalence $(X, x_0) \rightarrow (\overline{X}, \overline{x_0})$ $(\overline{X} = \{(x, \omega) \in X \times Y^I/\omega(1) = f(x)\})$
- Fibration $\overline{f}:(\overline{X},\overline{x_0})\to (Y,y_0)$

gives a functor $f \mapsto \overline{f}$ from maps to fibrations.

 $f:(X,x_0)\to (Y,y_0)\leadsto \text{fundamental crossed module}$

If Kf is the homotopy kernel of f (the fiber of \overline{f})

$$\pi_1(Kf, x_0) \stackrel{\pi_1(kf)}{\longrightarrow} \pi_1(X, x_0)$$

is called the fundamental crossed module of the fiber homotopy sequence $Kf \stackrel{kf}{\to} X \stackrel{f}{\to} Y$

 $\Phi: St(R) \to GL(R)$ is a crossed module arising from this general procedure.

A basic structure for Algebraic K-theory

The fiber homotopy sequence

$$F(R) \rightarrow BGL(R) \rightarrow BGL(R)^+$$

- The associated fundamental crossed module $\pi_1F(R) \stackrel{\theta}{\to} \pi_1BGL(R)$ is equivalent to $St(R) \stackrel{\Phi}{\longrightarrow} GL(R)$.
- $Coker(\theta) = K_1$ and $Ker(\theta) = K_2$

Where we go!

We'll need:

- Notion of homotopy categorical groups associated to any pointed space.
- Existence of 2-exact sequences associated to any pair of pointed spaces and to any fibration.
- Notion of crossed module in the 2-category of categorical groups.
- Existence of such structure associated to any fibration of pointed spaces (the fundamental categorical crossed module of a fibration).
- 1) and 4) allows to define notions of K-theory categorical groups of a ring R, $\mathbb{K}_i R$, $i \geq 1$, and identify the K-categorical groups $\mathbb{K}_i R$, i = 1, 2, respectively as the homotopy cokernel and the homotopy kernel of the fundamental categorical crossed module associated to the fibre homotopy sequence $F(R) \to BGL(R) \to BGL(R)^+$.

Notation.

- We will denote by G a categorical group.
- We will denote by \mathcal{CG} the 2-category of categorical groups and by \mathcal{BCG} the 2-category of braided categorical groups.
- The set of connected components of \mathbb{G} , $\pi_0(\mathbb{G})$, has a group structure (which is abelian if $\mathbb{G} \in \mathcal{BCG}$) with operation $[X] \cdot [Y] = [X \otimes Y]$.
- $\pi_1(\mathbb{G}) = Aut_{\mathbb{G}}(I)$ is an abelian group.

2-exactness.

- The kernel of a homomorphism T = (T, μ) : G → H consists of a universal triplet (K(T), j, ε), where K(T) is a categorical group, j : K(T) → G is a homomorphism and ε : Tj → 0 is a monoidal natural transformation.
- The categorical group $K(\mathbf{T})$ is also a standard homotopy kernel and is determined, up to isomorphism, by the following strict universal property:

such that $\mathbf{iF'} = \mathbf{F}$ and $\epsilon \mathbf{F'} = \tau$.

2-exactness.

Given a diagram in CG

the triple (T', β, T) is said to be 2-exact if the factorization of T' through the homotopy kernel of T is a full and essentially surjective functor.

• If (T', β, T) is 2-exact, then $\pi_i(\mathbb{H}' \xrightarrow{T'} \mathbb{H} \xrightarrow{T} \mathbb{H}'')$, i = 0, 1, is an exact sequence of groups.

Homotopy categorical groups.

- We will denote by $\wp_1(Y)$ the fundamental groupoid of a topological space Y.
- If (X, x_0) is a pointed topological space with base point $x_0 \in X$, then $\wp_2(X, x_0) = \wp_1(\Omega(X, x_0))$, the fundamental groupoid of the loop space $\Omega(X, x_0)$, is enriched with a natural categorical group structure and refer to it as the *fundamental categorical group* of (X, x_0) .
- If we define for all $n \ge 2$, $\wp_n(X, x_0) = \wp_1(\Omega^{n-1}(X, x_0))$, then $\wp_3(X, x_0)$ is a braided categorical group and $\wp_n(X, x_0)$, $n \ge 4$, are symmetric categorical groups.
- There is a categorical group action of $\wp_2(X, x_0)$ on $\wp_n(X, x_0)$.
- \wp_n , $n \ge 2$, define functors from the category of pointed topological spaces to the category of (braided or symmetric) categorical groups, with $\pi_0\wp_n(X,x_0)\cong\pi_{n-1}(X,x_0)$ and $\pi_1\wp_n(X,x_0)\cong\pi_n(X,x_0)$.

Relative Homotopy Categorical Groups.

- For any pointed topological pair (X, A, x_0) , the homotopy kernel of the inclusion $i: (A, x_0) \hookrightarrow (X, x_0)$ is given by the subspace $Ki = \{(a, \omega) \in A \times X^I / \omega(0) = x_0, \ \omega(1) = a\}$ and the map $ki: (Ki, x_0) \rightarrow (A, x_0)$ is given by $ki(a, \omega) = a$.
- We define:

$$\wp_2(X, A, x_0) = \wp_1(Ki, (x_0, \omega_0))$$

and, for $n \ge 3$,

$$\wp_n(X,A,x_0)=\wp_1(\Omega^{n-2}(Ki,(x_0,\omega_0))).$$

• Thus, $\wp_2(X, A, x_0)$ is a groupoid, $\wp_3(X, A, x_0)$ is a categorical group, $\wp_4(X, A, x_0)$ is a braided categorical group and $\wp_n(X, A, x_0)$, $n \ge 5$, is a symmetric categorical group. We refer to these categorical groups as the relative homotopy categorical groups of the pair (X, A, x_0) .

• For $n \ge 3$,

$$\pi_0 \wp_n(X, A, x_0) \cong \pi_{n-1}(X, A, x_0)$$
$$\pi_1 \wp_n(X, A, x_0) \cong \pi_n(X, A, x_0)$$

• For any pointed map $f:(X,x_0)\to (Y,y_0)$, the map $q:\Omega(Y,y_0)\to (Kkf,((x_0,\omega_{y_0}),\omega_{x_0}))$, given by $q(\omega)=((x_0,\omega),\omega_{x_0})$ is a homotopy equivalence. Then the sequence of iterated homotopy kernels

$$\cdots$$
 Kkkf \longrightarrow Kkf \xrightarrow{kkf} Kf \xrightarrow{kf} X \xrightarrow{f} Y

is homotopy equivalent to the sequence

$$\cdots \Omega Kf \longrightarrow \Omega X \longrightarrow \Omega Y \longrightarrow Kf \xrightarrow{kf} X \xrightarrow{f} Y$$

Proposition.*

For any pointed map $f:(X,x_0)\to (Y,y_0)$, there exists a long 2-exact sequence of categorical groups and pointed groupoids (in the last three terms)

$$\dots \to \wp_n(Kf, (x_0, \omega_{y_0})) \to \wp_n(X, x_0) \to \wp_n(Y, y_0) \to \wp_{n-1}(Kf, (x_0, \omega_{y_0})) \to \dots$$

$$\dots \to \wp_2(Kf, (x_0, \omega_{y_0})) \to \wp_2(X, x_0) \to \wp_2(Y, y_0) \to \wp_1(Kf) \to \wp_1(X) \to \wp_1(Y).$$

^{*} M. Grandis, E.M. Vitale, A higher dimensional homotopy sequence, Homology, Homotopy and Appl. 4 (1), 59-69, 2002

Corollary.(The 2-exact homotopy sequence of a pair of spaces)

For any pointed topological pair (X, A, x_0) there exists a long 2-exact sequence of categorical groups and pointed groupoids (the last three terms)

...
$$\rightarrow \wp_{n+1}(X, A, x_0) \rightarrow \wp_n(A, x_0) \rightarrow \wp_n(X, x_0) \rightarrow \wp_n(X, A, x_0) \rightarrow ...$$

... $\rightarrow \wp_3(X, A, x_0) \rightarrow \wp_2(A, x_0) \rightarrow \wp_2(X, x_0) \rightarrow \wp_2(X, A, x_0) \rightarrow \wp_1(A) \rightarrow \wp_1(X).$
that is called the *2-exact homotopy sequence* of the pair (X, A, x_0) .

• The exact homotopy sequence of the pair (X, A, *) follows, from this 2-exact sequence, by taking π_0 :

$$\pi_{n+1}(X, A, *) \to \pi_n(A, *) \to \pi_n(X, *) \to \pi_n(X, A, *) \to ...$$
 $\to \pi_2(X, A, *) \to \pi_1(A, *) \to \pi_1(X, *) \to \pi_1(X, A, *) \to \pi_0(A, *) \to \pi_0(X, *).$

Theorem.

Let $p: X \to B$ a fibration and suppose $b_0 \in B' \subset B$. Let $X' = p^{-1}(B')$ and let $x_0 \in p^{-1}(b_0)$. Then, p induces a functor $p: \wp_n(X,X',x_0) \longrightarrow \wp_n(B,B',b_0)$ which is a full and essentially surjective functor, for n=2, and a monoidal equivalence for all $n\geq 3$.

Proof (for $n \ge 3$):

 $\wp_n(X,X',x_0)$ and $\wp_n(B,B',b_0)$ are categorical groups and $p:\pi_q(X,X',x_0)\to\pi_q(B,B',b_0)$ is a bijection for every $q\geq 1$, then we have that

$$\pi_0 \wp_n(X, X', x_0)) \cong \pi_{n-1}(X, X', x_0) \cong \pi_{n-1}(B, B', b_0) \cong \pi_0 \wp_n(B, B', b_0))$$

and

$$\pi_1 \wp_n(X, X', x_0)) \cong \pi_n(X, X', x_0) \cong \pi_n(B, B', b_0) \cong \pi_1 \wp_n(B, B', b_0))$$

Using a result given by Sinh * we conclude that

$$p: \wp_n(X, X', x_0) \longrightarrow \wp_n(B, B', b_0)$$

is a monoidal equivalence for $n \ge 3$.

Corollary.

Let $p:(X,x_0)\to (B,b_0)$ be a fibration with fibre $F=p^{-1}(b_0)$. Then, the induced functor $p:\wp_n(X,F,x_0)\to\wp_n(B,b_0)$, is a full and essentially surjective functor, for n=2, and a monoidal equivalence for $n\geq 3$.

Now, combining the 2-exact sequence of the pair (X, F, x_0) with the equivalence of this corollary:

^{*} H.X. Sinh, Gr-catégories, Université Paris 7, Thèse de doctorat, 1975

Corollary.(The 2-exact homotopy sequence of a fibration)

Let $p:(X,x_0)\to (B,b_0)$ be a fibration with fibre $F=p^{-1}(b_0)$. Then, there exists a long 2-exact sequence

...
$$\rightarrow \wp_{n+1}(B, b_0) \stackrel{\partial}{\rightarrow} \wp_n(F, x_0) \stackrel{i}{\rightarrow} \wp_n(X, x_0) \stackrel{p}{\rightarrow} \wp_n(B, b_0) \stackrel{\partial}{\rightarrow} ...$$

$$\rightarrow \wp_3(B, b_0) \stackrel{\partial}{\rightarrow} \wp_2(F, x_0) \stackrel{i}{\rightarrow} \wp_2(X, x_0) \rightarrow \wp_2(X, F, x_0) \rightarrow \wp_1(F, x_0) \rightarrow \wp_1(X, x_0)$$
that is called the *2-exact homotopy sequence* of the fibration p .

We remark that

$$\pi_0 \wp_2(X, F, x_0) \cong \pi_1(X, F, x_0) \cong \pi_1(B, b_0) \cong \pi_0 \wp_2(B, b_0)$$

and then, applying π_0 to previous sequence, we obtain the well-known group exact sequence of the fibration p:

$$\dots \to \pi_{n+1}(B,b_0) \xrightarrow{\partial} \pi_n(F,x_0) \xrightarrow{i} \pi_n(X,x_0) \xrightarrow{p} \pi_n(B,b_0) \xrightarrow{\partial} \dots$$

$$\to \pi_2(B,b_0) \xrightarrow{\partial} \pi_1(F,x_0) \xrightarrow{i} \pi_1(X,x_0) \to \pi_1(B,b_0) \to \pi_0(F,x_0) \to \pi_0(X,x_0).$$

Crossed modules of groups

 A crossed module of groups is a system L = (H, G, φ, δ), where δ: H → G is a group homomorphism and φ: G → Aut(H) is an action (so that H is a G-group) for which the following conditions are satisfied:

$$\delta(^{x}h) = x\delta(h)x^{-1} \quad , \quad ^{\delta(h)}h' = hh'h^{-1} \ .$$

- The category of crossed modules is equivalent to the following categories:
 - The category of cat¹-groups. (A cat¹-group consist of a group G with two endomorphisms $d_0, d_1 : G \to G$, such that

$$d_0d_1 = d_1$$
, $d_1d_0 = d_0$, $[Kerd_0, Kerd_1] = 0$.)

- The category of internal groupoids in Groups.
- The category of strict categorical groups.

Categorical crossed modules

• A categorical crossed module $^*\langle \mathbb{H}, \mathbb{G}, \mathcal{T}, \nu, \chi \rangle$, consists of a morphism of categorical groups $\mathcal{T} = (\mathcal{T}, \mu) : \mathbb{H} \to \mathbb{G}$ together with an action of \mathbb{G} on $\mathbb{H}, \mathbb{G} \times \mathbb{H} \longrightarrow \mathbb{H}, (X, A) \mapsto {}^{X}\!A$, and two families of natural isomorphisms in \mathbb{G} and \mathbb{H} , respectively

$$\nu = \left(\nu_{X,A} : T({}^{X}A) \otimes X \longrightarrow X \otimes T(A)\right)_{(X,A) \in \mathbb{G} \times \mathbb{H}}$$
$$\chi = \left(\chi_{A,B} : {}^{TA}B \otimes A \longrightarrow A \otimes B\right)_{(A,B) \in \mathbb{H}}$$

such that the coherence conditions hold.

- Categorical crossed modules and morphisms between them form a 2-category.
- Categorical crossed modules are crossed modules of categorical groups.

^{*} P. Carrasco, A.R. Garzón, E.M. Vitale, On categorical crossed modules, TAC 16 (22), 585-618, 2006

Equivalent categories??

- Weak groupoids internal to the 2-category of categorical groups
- cat¹-categorical groups
- Certain monoidal bicategories
- Others?
- Any crossed module of groups $H \stackrel{\delta}{\to} G$ is a categorical crossed module when H and G are seen has discrete categorical groups.
- ② The zero-morphism $\mathbf{0}: \mathbb{A} \to \mathbf{0}$,with \mathbb{A} braided, is a categorical crossed module where, for any $A, B \in \mathbb{A}$, $\chi_{A,B}: {}^{I}B \otimes A \to A \otimes B$ is given by the braiding $c_{A,B}$, up to composition with a canonical isomorphism.
- **3** Consider a morphism **T** : \mathbb{H} → \mathbb{G} of categorical groups and $p_2 : \mathbb{G} \times \mathbb{H} \to \mathbb{H}$ as action of \mathbb{G} on \mathbb{H} . Then, if \mathbb{G} is braided, $\nu_{X,A} = c_{X,TA}^{-1}$ and $\chi_{A,B} = c_{B,A}$ gives a categorical crossed module structure to **T** : $\mathbb{H} \to \mathbb{G}$.

Advantages: Parallelism with the theory of groups

The category of groups (abelian) is a reflexive subcategory (coreflexive subcategory) of the category of crossed modules of groups.

Theorem *

- i) The category of categorical groups is a reflexive subcategory of the category of categorical crossed modules. The left adjoint to the inclusion functor is given by the homotopy cokernel construction.
- ii) The category of braided categorical groups is a coreflexive subcategory of the category of categorical crossed modules. The right adjoint to the inclusion functor is given by the homotopy kernel construction.

^{*} P. Carrasco, A.M. Cegarra, A.R. Garzón, The homotopy categorical crossed module of a CW-complex, Topology and its Applications 154, 834-847, 2007

The cokernel

The cokernel of a categorical crossed module $< \mathbb{H}, \mathbf{T} : \mathbb{H} \to \mathbb{G}, \nu, \chi >$, is define in the following way:

- Objects: those of G
- Premorphisms pairs: $(A, f): X \to Y$ with $A \in \mathbb{H}$ and $f: X \to T(A) \otimes Y$.
- Morphisms: classes of premorphisms [A, f], where two pairs [A, f] and [A', f'] are equivalent if there is $a : A \to A'$ in \mathbb{H} such that

• Tensor: given $[A,f]:X \longrightarrow Y$ and $[B,g]:H \longrightarrow K$, $[A,f]\otimes [B,g]$ is given by

$$[A \otimes^{\mathsf{Y}} B, X \otimes H \overset{f \otimes g}{\to} T(A) \otimes Y \otimes T(B) \otimes K \overset{1 \otimes \nu^{-1} \otimes 1}{\longrightarrow} T(A) \otimes T(\overset{\mathsf{Y}}{B}) \otimes Y \otimes K \overset{\operatorname{can}}{\to} T(A \otimes \overset{\mathsf{Y}}{B}) \otimes Y \otimes K$$

Homotopy types

- Carrasco, Garzón and Vitale, observed that if $\langle \mathbb{H}, \mathbb{G}, T, \nu, \chi \rangle$ is a categorical crossed module, then KerT, the homotopy kernel of T, is a braided categorical group and CokerT the homotopy cokernel of the categorical crossed module is a categorical group.
- $\pi_0 KerT \cong \pi_1 CokerT$,
- The homotopy groups of the categorical crossed module are defined by *:

$$\Pi_i \langle \mathbb{H}, \mathbb{G}, T, \nu, \chi \rangle = \left\{ \begin{array}{ll} \pi_0 \textit{CokerT} & \textit{for} \quad i = 1 \\ \pi_0 \textit{KerT} \cong \pi_1 \textit{CokerT} & \textit{for} \quad i = 2 \\ \pi_1 \textit{KerT} & \textit{for} \quad i = 3 \end{array} \right.$$

^{*} P. Carrasco, A.M. Cegarra, A.R. Garzón, The homotopy categorical crossed module of a CW-complex, Topology and its Applications 154, 834-847, 2007

The linkage with algebraic 3-type

- A categorical crossed module is associated with any pointed pair of spaces*
- A categorical crossed module is associated with any pointed CW-complex

If (X, *) is a pointed CW-space, the pointed topogical pair $(X, X^1, *)$ gives a categorical crossed module.

There is a functor $\mathcal{W}: \mathsf{CW}\text{-}\mathsf{complexes}_* \to \mathsf{Categorical}$ crossed module and

$$\Pi_1(\mathcal{W}(X,*)) \cong \pi_1(X,*)$$

$$\Pi_2(\mathcal{W}(X,*)) \cong \pi_2(X,*)$$

$$\Pi_3(\mathcal{W}(X,*)) \cong \pi_3(X,*)$$

W(X,*) represents the homotopy 3-type of (X,*).

^{*} P. Carrasco, A.M. Cegarra, A.R. Garzón, The classifying space of a categorical crossed module to appear in Math. Nachr.

The linkage with algebraic 3-type

There is a functor

B: Categorical crossed module \longrightarrow CW-complexes

$$\mathcal{L} = < \mathbb{H}, \mathbb{G}, T, \nu, \chi > \longmapsto \mathcal{B}(\mathcal{L}),$$

where $B\mathcal{L}$ is the classifying space of \mathcal{L} .

The only homotopy groups of this space are just $\pi_1 B \mathcal{L}$, $\pi_2 B \mathcal{L}$ and $\pi_3 B \mathcal{L}$.

Composing both functors, there is a continuos map $X \mapsto BWX$, inducing and isomorphism of the homotopy groups

$$\pi_i X \cong \pi_i BWX$$
, for $i = 1, 2, 3$.

The linkage with algebraic 3-type

- Crossed squares correspond, up to isomorphisms, to strict categorical crossed modules ($\mathbb H$ and $\mathbb G$ are strict categorical groups, the action of $\mathbb G$ on $\mathbb H$ is strict and $\mathcal T$ is strictly equivariant and χ is an identity)
- 2-crossed modules correspond, up to isomorphisms, to special semistrict categorical crossed modules ($\mathbb H$ is a strict categorical groups and $\mathbb G$ is a discrete categorical group acting strictly on $\mathbb H$)
- Every reduced Gray groupoid has associated a special semistrict categorical crossed module
- Associated to any semistrict categorical crossed module there is a reduced Gray groupoid ($\mathbb H$ and $\mathbb G$ are strict categorical groups, the action of $\mathbb G$ on $\mathbb H$ is strict and $\mathcal T$ is strictly equivariant)

Theorem

Let $p:(X,*) \to (B,*)$ be a fibration with fibre $F=p^{-1}(*)$ and consider the induced categorical group homomorphism $\wp_2(F,*) \stackrel{i}{\longrightarrow} \wp_2(X,*)$ given in the 2-exact homotopy sequence of the fibration p. Then the homotopy categorical group $\wp_2(F,*)$ is a $\wp_2(X,*)$ -categorical group and, for any $\omega \in \wp_2(X,*)$ and $\alpha,\alpha' \in \wp_2(F,*)$, there are natural isomorphisms

$$\nu = \nu_{\omega,\alpha} : i(^{\omega}\alpha) \otimes \omega \to \omega \otimes \alpha \quad , \quad \chi = \chi_{\alpha,\alpha'} : {}^{i(\alpha)}\alpha' \otimes \alpha \to \alpha \otimes \alpha'$$

such that $\langle \wp_2(F,*), \wp_2(X,*), i, \nu, \chi \rangle$ is a categorical crossed module which we call the fundamental categorical crossed module of the fibration p.

Proof:

To define a categorical group action of $\wp_2(X, x_0)$ on $\wp_2(F, x_0)$

$$\wp_2(X, x_0) \times \wp_2(F, x_0) \stackrel{ac}{\longrightarrow} \wp_2(F, x_0)$$

we consider the continuous map

$$\Omega(X, x_0) \times \Omega(F, x_0) \longrightarrow \Omega(F, x_0) , (\omega, \alpha) \mapsto {}^{\omega}\alpha$$

where ${}^{\omega}\alpha$ is defined as follows.

Let $\omega \otimes \alpha \otimes \omega^{-1} \in \Omega(X, x_0)$ and consider the projection $p(\omega \otimes \alpha \otimes \omega^{-1}) \in \Omega(B, b_0)$ which is homotopic, to the constant loop in B at b_0 through a homotopy of loops $H: I \times I \to B$.

Then,
$$H_0(s) = H(s, 0) = p(\omega \otimes \alpha \otimes \omega^{-1})(s)$$
 and $H_1(s) = H(s, 1) = b_0$.

Since p is a fibration, using the homotopy lifting property in the diagram

$$\begin{array}{c|c}
I \xrightarrow{\omega \otimes \alpha \otimes \omega^{-1}} X \\
\downarrow i_0 & \overline{H} & \downarrow p \\
I \times I \xrightarrow{H} B
\end{array}$$

$$\overline{H}_{\alpha,\omega} = \overline{H}: I \times I \to X$$
 such that

$$\overline{H}_0(s) = \overline{H}(s,0) = \omega \otimes \alpha \otimes \omega^{-1}$$

and

$$p\overline{H} = H$$

$$p\overline{H}_1(s) = p\overline{H}(s,1) = H(s,1) = b_0$$

$$Im\overline{H}_1 \subseteq F$$
, that is, $\overline{H}_1 \in \Omega(F, x_0)$

The fundamental groupoid functor \wp_1 preserves products,

$$ac(\omega,\alpha) = \alpha$$

on arrows
$$(\omega, \alpha) \xrightarrow{([h], [\bar{h}])} (\omega', \alpha')$$
,

$$[h][\bar{h}] = [h\bar{h}] : {}^{\omega}\alpha \rightarrow {}^{\omega'}\alpha'$$

where
$$({}^{h}\overline{h})(s,u) = (\overline{H}_{\overline{h}_{u},h_{u}})_{1}(s) = \overline{H}_{\overline{h}_{u},h_{u}}(s,1)$$

For any $\omega, \omega' \in \wp_2(X, x_0)$ and $\alpha \in \wp_2(F, x_0)$, we define a natural isomorphism $\Phi = \Phi_{\omega, \omega', \alpha} : {}^{\omega \otimes \omega'} \alpha \longrightarrow {}^{\omega} ({}^{\omega'} \alpha)$. We define $\Phi_{\omega, \omega', \alpha} = [\varphi]$

For any $\omega \in \Omega(X,*)$ and $\alpha, \alpha' \in \Omega(F,*)$ the natural isomorphism $\Psi = \Psi_{\omega,\alpha,\alpha'}: \ ^{\omega}(\alpha \otimes \alpha') \longrightarrow \ ^{\omega}\alpha \otimes \ ^{\omega}\alpha'$

is defined as the class of the front face of the following cube

For any $\omega \in \wp_2(X, x_0)$ and $\alpha \in \wp_2(F, b_0)$, the natural isomorphism

$$\nu = \nu_{\omega,\alpha} : {}^{\omega} \alpha \otimes \omega \to \omega \otimes \alpha,$$

is the class of the front face of the cube

For any $\alpha, \alpha' \in \wp_2(F, b_0)$, the natural isomorphism

$$\chi = \chi_{\alpha,\alpha'} : {}^{\alpha}\alpha' \otimes \alpha \to \alpha \otimes \alpha',$$

we define

$$\chi_{\alpha,\alpha'} = \nu_{\alpha,\alpha'}$$

With all this natural isomorphisms we prove that $< \wp_2(F, x_0), \wp_2(X, x_0), i, \nu, \chi >$ is a categorical crossed module.

The projection by π_0 ,

$$\pi_0(\wp_2(F,x_0) \stackrel{i}{\rightarrow} \wp_2(X,x_0))$$

gives the fundamental crossed module

$$\pi_1(F,x_0) \stackrel{i}{\rightarrow} \pi_1(X,x_0)$$

of the fibration p.

If $((Kf, (x_0, \omega_0), kf))$ is the homotopy kernel of f (the fiber of \overline{f})

$$\cdots \to \pi_2(Y, y_0) \xrightarrow{\partial} \pi_1(Kf, (x_0, \omega_{y_0})) \xrightarrow{\pi_1(Kf)} \pi_1(X, x_0) \to \pi_1(Y, y_0) \to \cdots$$

and

$$\pi_1(Kf,(x_0,\omega_{y_0})) \xrightarrow{\pi_1(Kf)} \pi_1(X,x_0)$$

is called the fundamental crossed module of the fibre homotopy sequence

$$(Kf, (x_0, \omega_{y_0})) \xrightarrow{kf} (X, x_0) \xrightarrow{f} (Y, y_0)$$

There is also the 2-exact sequence

$$\rightarrow \wp_3(Y,y_0) \stackrel{\partial}{\rightarrow} \wp_2(\mathit{Kf},(x_0,\omega_{y_0})) \stackrel{\wp_2(\mathit{kf})}{\longrightarrow} \wp_2(X,x_0) \rightarrow \wp_2(\overline{X},F,x_0) \rightarrow \wp_1(F,x_0) \rightarrow \wp_1(X,x_0)$$

Definition

The fundamental categorical crossed module of a fibre homotopy sequence $(Kf, (x_0, \omega_{y_0})) \xrightarrow{kf} (X, x_0) \xrightarrow{f} (Y, y_0)$ is defined as the categorical crossed module

$$\wp_2(Kf,(x_0,\omega_{y_0})) \xrightarrow{\wp_2(kf)} \wp_2(X,x_0)$$

obtained from the fibration $\overline{f}:(\overline{X},\overline{x_0})\to (Y,y_0)$ according to previous Theorem.

Note that in the particular case in which we consider a pair of pointed topological spaces (X, A, x_0) , associated to the inclusion, there is the fibration $\overline{A} \to X$ where \overline{A} is the space of paths in X ending at some point of A and the maps send each path to its starting point. The fibre of this fibration is given by the subspace

 $\mathit{Ki} = \{(a,\omega) \in A \times X^I / \omega(0) = x_0, \, \omega(1) = a\}$ whose homotopy categorical groups are $\wp_n(X,A,x_0) = \wp_1(\Omega^{n-2}(\mathit{Ki},(x_0,\omega_{x_0})) \,, n \geq 3$. In this way, just we obtain the homotopy categorical crossed module

$$\partial:\wp_3(X,A,x_0)\longrightarrow\wp_2(A,x_0),$$

so that, as in the group case, the fundamental categorical crossed module of a pair of spaces can be deduced from the fundamental categorical crossed module of a fibration. Recall that given a ring R, K_iR , $i \ge 1$, is given by the composition of

$$K_i: R \mapsto GLR \mapsto BGLR \mapsto BGLR^+ \mapsto \pi_i BGLR^+$$

$$\wp_i(X, x_0) = \wp_1(\Omega^{i-1}(X, x_0))$$

Definition

For any ring R we define K-categorical groups $\mathbb{K}_i R$, $i \geq 1$, as the composition of covariants functors

$$\mathbb{K}_i: R \mapsto GLR \mapsto BGLR \mapsto BGLR^+ \mapsto \wp_{i+1}BGLR^+$$
.

- $\pi_0 \mathbb{K}_i R = \pi_0 \wp_{i+1} BGLR^+ = \pi_i BGLR^+ = K_i R$
- $\pi_1 \mathbb{K}_i R = \pi_1 \wp_{i+1} BGLR^+ = \pi_{i+1} BGLR^+ = K_{i+1} R$.

 $\mathbb{K}_i R$, $i \geq 2$, are completely determined, up to isomorphisms, by the $K_i R$ and $K_{i+1} R$ and the quadratic map $K_i R \to K_{i+1} R$.

$$F(R) \stackrel{d_R}{\to} BGL(R) \stackrel{q_R}{\to} BGL(R)^+$$
.

This has associated the crossed module

$$\pi_1 F(R) \stackrel{\pi_1(d_R)}{\longrightarrow} \pi_1 BGL(R)$$

which is equivalent to

$$St(R) \stackrel{\Phi}{\longrightarrow} GL(R)$$

whose cokernel is K_1R and its kernel K_2R . According to the previous theorem, associated to the homotopy fibration there is also the categorical crossed module

$$\wp_2(F(R)) \stackrel{\wp_2 d_R}{\longrightarrow} \wp_2(BGL(R))$$

Theorem

For any ring R, $\mathbb{K}_1 R$ and $\mathbb{K}_2 R$ are, respectively, up to monoidal equivalence, the cokernel and the kernel of the categorical crossed module $\wp_2(d_R)$, that is:

$$\mathbb{K}_1 R \simeq \textit{Coker } \wp_2(d_R) \ , \ \mathbb{K}_2(R) \simeq \textit{Ker } \wp_2(d_R) \, .$$

Corollary

For any ring R,

$$\pi_0 \operatorname{Coker} \wp_2(d_R) = K_1 R$$
,

$$\pi_1 Coker_{\wp_2}(d_R) = K_2 R \ (\cong \pi_0 Ker_{\wp_2}(d_R))$$

and

$$\pi_1 Ker \wp_2(d_R) \cong K_3 R$$
.