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Motivation

We have many examples of locally cartesian closed categories, e.g. from
topos theory:

» Set;
> [C°P, Set] for a small C;
» Sh(¢) for a small site $.
Each has a natural 2-categorical (or groupoid-enriched) analogue:
» Gpd;
» Ps(C°, Gpd) for a small 2-category C;
» Stack($) for a small site §.

In what sense are these 2-categories locally cartesian closed?



Example: Gpd

» Gpd is cartesian closed as a 2-category: for each X € Gpd, we have
a 2-adjunction
(-)xX
Gpd _ 1’ Gpd.

<
(X

» Itis not locally cartesian closed as a mere category: e.g., consider
the groupoid
u
Iso=a_—"b
-1
u

and functor
a: 1 — Iso.

The pullback functor a*: Gpd/Iso — Gpd has no right adjoint.



However it is locally cartesian closed as a bicategory.
For A € Gpd, define Gpd//A to have:

» Objects functors g: G — A;

> 1-cells pseudocommutative triangles

G%H

e

» 2-cells compatible natural isos k 2 k'.



Proposition (Street, 1980)

Foreach f: A — B in Gpd, the pullback 2-functor
f*: Gpd//B — Gpd//A

has a right biadjoint.

Very weak result!

Perhaps we can do better, using the fact that:

> If f: A — B is a groupoid fibration ( = Grothendieck fibration =
Conduché fibration = prefibration = isofibration) then
f*: Gpd/B — Gpd/A has a right 2-adjoint.

But how to formalise this?



Example: Ps(C°?, Gpd)

Let C be a small category. Ps(C°P, Gpd) is 2-category with:
» Objects being functors X: C? — Gpd;
> 1-cells being pseudo-natural transformations f: X = 1;

> 2-cells being modifications a: f = g.

St(C°P, Gpd) is sub-2-category whose 1-cells are the 2-natural
transformations X = Y.

St(C°P, Gpd) is cartesian closed as a 2-category by usual Yoneda
argument. But what about Ps(C°?, Gpd)?



Important fact: the inclusion functor
St(C°?, Gpd) — Ps(C?, Gpd)
has a right adjoint
(5)*: Ps(C°?, Gpd) — St(C°?, Gpd).

(Consequence of Blackwell-Kelly-Power, or directly by Yoneda lemma).



So forY,Z: C°? — Gpd, have that:
Ps(- X Y,Z) = St(- x Y, Z")
= St(-, [Y, 2°).

Moreover, [Y, Z*] is coflexible: i.e., have a pseudonatural equivalence

&emrm%ﬁmhmfn

satisfying pi = id. This is because:
» Each Z* is coflexible (Blackwell-Kelly-Power);
» Coflexible objects form an exponential ideal in St (check directly)



Hence for each X, Y, Z: C°? — Gpd, have an equivalence of categories

abs

Ps(X xY,Z ~ "'Ps(X,[Y,Z*
app

satisfying app.abs = id.

How can we make sense of this all?



Categorical logic

Robert Seely showed in 1984 that we have:

Extensional Martin-Lof " Locally cartesian

type theories Symar  Closed categories.

Our plan is to extend this to:

2-dimensional Martin-L6f 4™ [ ocally cartesian

type theories Symar  Closed 2-categories

by defining the notion on the left and deducing the one on the right.



Martin Hofmann pointed out in 1994 an inaccuracy in Seely’s work
arising from the failure of a certain fibration to be split.

More accurate picture is:

Extensional Martin-Lof > Locally cartesian
type theories < closed categories
S}’ﬂmXTFJ/semantics fibre over ITFJ/codomain fibration
Split comprehension inclusion Comprehension categories

categories with products, T with products, strong
strong sums and equality coherence sums and equality.



We will generalise the left-hand side of this to:

2-dimensional Martin-Lof
type theories

3)’"“”‘1\ J/semantics

Split comprehension
2-categories with products,
strong sums and equality;

But first we recall how the one-dimensional case works.



Martin-Lof type theory

Sequent calculus with four forms of judgement:
> Atype;
> a:A;
» A = Btype;
»a="b:A
Can also have judgements under hypotheses; so if A type, we can have
> x: A F B(x)type;
» x: A+ f(x):B(x);
» x: A F B(x) =C(x) type;
» x:AF f(x)=g(x): B(x).

And so on; in general can have things like

x:4A, y:B(x), z:C(x,y) F f(x,y2):D(x,y,z).



These come with inference rules for:

» Weakening, contraction and exchange;
> Substitution; for example:
x:AF f(x):B y:B F C(y) type
x:A F C(f(x))type

or

x:AF f(x):B y:B F g(y):C(y) typs;
x:AF g(f(x): C(f(x)

> Logical operations as follows.




Dependent sums

A type x: A F B(x)type a:A b: B(a)
2-FORM; >-INTRO;

2x : A. B(x) type (a,b) : Zx : A. B(x)

z:2x:A. B(x) F C(z)type
x: A, y:B(x) F d(x,y): C({x, y)) s:2x: A.B(x)
E(C,d,s) : C(s)

2-ELIM;

z:Xx:A. B(x) b C(z)type
x4, y:B(x) F d(x,y): C({x, y)) a:A b: B(a)

E(C.d, (a,b)) = d(a,b) : C((a, b))

2-COMP.




Dependent products

A type x:A F B(x)type

I1T-rorM;
Ilx : A. B(x) type
x:AF f(x):B(x) M : Ilx : A. B(x) a:A
-ABS; II-app;
Ax t A. f(x) : IIx : A. B(x) M -a: B(a)

x:AF f(x):B(x) a:A
(/\x : A.f(x)) -a = f(a) : B(a)

I8,



Identity types

A type a,b: A a:A
Id-ForM; —— Id-INTRO;

Id4(a, b) type r(a) : Ids(a,a

x,y: A, z:1da(x,y) F C(x,y,2) type
x:AF d(x):C(x,x,1(x)) a,b: A p:1ds(a,b)
(a,b, p)

Jc(d,a,b,p) : C(a

Id-EL1M;

x,y: A, z:1da(x,y) F C(x,y,2) type
x:AF d(x):C(x,x,7(x)) a:A
o )

Je(d,a,a,7(a)) = d(a) :

a,a,r(a)



Intuition: to each type A we can associate an weak w-groupoid s with:

> Objects being elements x : 4;
» 1-cells f: x — ybeing elements f : Ids(x, y);
» 2-cellsa: f = g: x — ybeing elements & : Idg, (x,y) (f; £);

and so on.



Extensional Martin-Lof type theory

The above is the intensional version of Martin-Lof type theory.

The extensional version adds two inference rules:

Atype a,b: A p : Ida(a,b)
a=b:A

Id-REFL-1;

Atype a,b: A p : Ida(a,b)
p=r(a) :1ds(a,b)

Id-REFL-2;

which force the weak w-groupoid s associated to A to be discrete.



Categorical semantics

A (split) comprehension category (Jacobs 1993) consists in:
» A category C;
> A (split) fibration p: T — C;
> A full and faithful functor

T c”

X cod

C

sending cartesian morphisms in T to pullback squares in C.

GivenI € Cand A € T(I'), we write the image of A under ¢ as
ir: ra—-rT

in C, and call it a dependent projection.



Example: extensional syntactic model

We construct a category Ctxt from the syntax of extensional Martin-Lof
type theory:

> Objects are contexts of types
I= (xl 2Cry %20 Cox1), ooy Xy Cn(xl,...,xn_l));

» Morphisms f: I' — A are context morphisms given by collections of

judgements
x1:C1, ooey X i Cplxy, ooy x01) B f1(x1, .., %)t Dy
x1:Cpy ooey Xy i Cp(2y, ooy x01) F fz(xl,...,xn):Dz(fl(xl,...,xn))

which we abbreviate as

x: T F flx): A



Now obtain (split) indexed category Type: Ctxt°? — Cat.

The category Type(I') has:

> Objects being judgements
x: T F A(x) typs;
» Morphisms A — B being judgements

x: T, y:Alx) b f(x,v): B(x).

Given f: A — T, the functor f*: Type(I') — Type(A) sends:

y: ' F A(y) type to x: A F A(flx)) type.



Thus obtain a split fibration p: Type — Ctxt.

And now have a functor ¢: Type — Ctxt™ sending
x: T F A(x) type
to the context morphism
(x:T, y:A(x)) — (x: 1)

which projects away the last variable.



Sum types

A split comprehension category has sums if:

» ForeachI € Cand A € T(I), the reindexing functor
(—) Xr A= T(T[r): T(F) — T(F.A)
has a left adjoint Z4.

> These left adjoints satisfy the Beck-Chevalley condition.



Let B € T(I'.A) and consider the unit map
Hap: B — ZA(B) Xr A

of the adjunction X4 - (-) xr A. It is equivalently a map

iaB
rAB——T.2Z,B

T

in C.

Say that we have strong sums just when each i g is an isomorphism.



Example: extensional syntactic model

LetI' € Ctxtand A € Type(I); then the functor
X4 Type(x: I, y: A(x)) — Type(x : I)

sending
x:T, y: A(x) F B(x,y) type

to
x: T F Zy: A(x). B(x,y)

equips the syntactic comprehension category with strong sums.



Product types

A split comprehension category has products if:

» ForeachI € Cand A € T(I), the reindexing functor
(—) Xr A= T(T[r): T(F) — T(F.A)
has a right adjoint I1y.

> These right adjoints satisfy the Beck-Chevalley condition.



Example: extensional syntactic model

LetI' € Ctxtand A € Type(I); then the functor
II4: Type(x: T, y: A(x)) — Type(x: )

sending
x:T, y: A(x) F B(x,y) type

to
x: T F Ily: A(x). B(x, y)

equips the syntactic comprehension category with products.



2-dimensional Martin-Lof type theory

Let us say that a type A is discrete just when the Id-reflection rules

Atype a,b: A p : Ida(a,b)
a=b:A

Id-REFL-1;

Atype a,b: A p : Ida(a,b)
p=r(a) : Ids(a,b)

Id-REFL-2;

obtain at the type A.

» So the intensional theory says that no types need be discrete;
» The extensional theory says that all types are discrete;

» Our 2-dimensional theory will say that all identity types are discrete.



Explicitly, we augment the intensional theory with the rules:

Atype  a,b: A p,q:1lds(a,b) s Idig,a0) (P, 9)
p=q:1ds(a,b)

Id-p1sc-1;

A type a,b: A p,q : Ida(a,b) s Idud,(ap) (P, 9)
s =71(p) : Idig,ap) (P, )

Id-pisc-2.

These force the weak w-groupoid s associated to A to be a
common-or-garden groupoid.



2-categorical semantics

A (split) comprehension 2-category consists in:
> A 2-category C;
> A (split) 2-fibration p: T — C;
» A 2-fully faithful 2-functor

sending 2-cartesian morphisms in T to 2-pullback squares in C.



Revision of 2-fibrations

A 2-functor p: T — Cis a (split) 2-fibration (Hermida, 1999) just when:

» The underlying ordinary functor p: T — Cis a (split) fibration;

» Each cartesian morphism of T has an obvious 2-dimensional
universal property (say it is 2-cartesian);

» Each p,.: T(y, z) — C(py, pz) is a fibration;

» Forall f: x — yin T the whiskering functor

() o f: Iy z) = L(x,2)

sends cartesian 2-cells to cartesian 2-cells.



Example: 2-dimensional syntactic model

First we must extend the category of contexts Ctxt to a 2-category Ctxt.
What are the 2-cells?

» Easy for 2-cells into a context of length 1. Given f, g: I' — (y : B)
in Ctxt, a 2-cella: f = g1is given by

x: T F p(x) : 1dp(f (%), g(x))-

For longer contexts, need more theory. Given A type and
x: A F C(x) type, we can define “substitution” operations

a,b: A c:C(a) p :1ds(a,b)

by Id-elimination.



So now:
» Given f,¢g: I' = (y : B, z: C(y)) in Ctxt looking like
x:T F fi(x):B, x: T F folx): C(f1(x))

and
x:T F g(x):B, x:T F g(x): C(g:1(x))

a2-cella: f = g will be given by

x: T F pi(x) : 1dp(f1(x), g1(x))
x: T+ pa(x) 1 dor, ) (21 (0):(f2(%)), g2(x)).

And so on.



Now extend the split indexed category Type: Ctxt°® — Cat to a split
indexed 2-category; which amounts to a trihomomorphism

Type: Ctxt®® — Gray

which is strictly functorial on 1-cells. Thus we must:
» Extend each fibre category Type(T') to a 2-category
Type(I') — straightforward,;

» Extend each substitution functor f*: Type(I') — Type(A) to a
2-functor - straightforward;

> Give a pseudo-natural transformation

a: f*= ¢": Type(l') — Type(A)

foreacha: f = ¢g: A — I'in Ctxt.



Eg:leta: f = ¢: (x: A) — (v : B) in Ctxt be given by

x:AF f(x):B, x:AF g(x):B,
x:AF a(x):Idg(f(x), g(x)).

To give
a: f* = ¢": Type(B) — Type(A)
we must give, for each C € Type(B), a component 1-cell
ac: C(f()) — C(g()
in Type(A); which we take to be

x: A, y:C(f(x) B ax)(y) : C(g(x))-



Thus obtain a split 2-fibration p: Type — Ctxt.

And may now extend the functor c: Type — Ctxt™ to a (2-fully faithful)
2-functor Type — Ctxt .



Digression on two-dimensional adjoints

To talk about sums and products, we need a suitably weak notion of
adjoint.

» Let H: A — B be a functor. A right strict pseudoinverse for H is:
» K: B — A with HK = idg; and
> ¢ ldA =~ KH with ¢K = ldK and H¢ = ldH
> H has a right strict pseudoinverse only if fully faithful and
surjective on objects;

» Then right strict pseudoinverses for H «— sections for
obH: obA — obB.



A right strict left biadjoint for G: C — D is:
» Foreachd € D,some Fd € Cand#;: d — GFdin D;

> A right strict pseudoinverse for each functor

C(Fd, ) & D(GF, Ge) 2™, p(a, Ge).

A right strict right biadjoint for G: C — D is:
» Foreachd € D, some Hd € Cand ¢;: GHd — d in D;

> A right strict pseudoinverse for each functor

Cle, Hd) S D(Ge, GHA) 2, D(Ge, ).



Sum types

A split comprehension 2-category has sums if:

» ForeachI € Cand A € T(I'), the reindexing 2-functor
(=) xr A:=T(mr): T(I) — T(T.A)
has a right strict left biadjoint X4.

> These left biadjoints satisfy some kind of Beck-Chevalley condition
(not sure what).



Explicitly:
» For each B € T(I'.A), an object Z4(B) € T(I');

» ForeachB € T(I.A), aunitmap#,p: B — Z4(B) xr Ain T(I'.A);
which is a map i4 p as in:

iAB

T

» For each D € T(I), a right strict pseudoinverse for the functor
C/T(T.Z4(B), D) — C/T(T.A.B, D)

induced by precomposition with iy p.

Say we have strong sums just when each i4  has a chosen left strict
pseudoinverse which induces the right strict pseudoinverses above.



Example: 2-dimensional syntactic model

This has strong sums:

» For each B € Type(I'.A), we take 24(B) = (I' + Zx : A. B(x));
» For each B € Type(I'.A), we take ig g: I"A.B. —» I".Z4B to be

I, x:A, y:B(x) - (x,y) : Zx : A. B(x)
» By 2-elimination we can provide judgements

I, z:Zx:A.B(x) - m(z): A
I, z:2Zx:A.B(x) + m,(z) : B(m,(2))

with 77; ((x, y)) = x and m,({x, y)) = ¥, and judgements
I, z:Zx:A.B(x) - ¢(z) : Ids, 5 (z, (m (z),ﬂz(z)));

these provide a left strict pseudoinverse for iy p.



Product types

A split comprehension 2-category has products if:

» ForeachI € Cand A € T(I), the reindexing functor
(=) xr A:=T(mr): T(I) — T(T.A)
has a right strict right biadjoint I14.

» These right adjoints satisfy some kind of Beck-Chevalley condition.



Explicitly:
» For each B € T(I'.A), an object IT4(B) € T(I);
» ForeachB € T(I.A),amapevyp: [I4(B) xr A — Bin T(I'.A);

» Foreachmap f: D xr A — Bin T(I.A),amap As: D — II4(B) in
T(T) fitting into:

AerA
D xp A————TI4(B) xr A

B
Such that:
» Foreach D € T(I') and B € T(I'.A), the functor

T(T)(D, M4(B)) — T(T.A)(D xr 4, B)

induced by composition with ev, p is full and faithful.



Example: 2-dimensional syntactic model

» For each B € Type(I'.A), we take I14(B) = (I' + Ilx : A. B(x));
» For each B € Type(I'.A), we take evy 5: II4(B) xr A — Btobe

I M:IIx:A.B(x), x: A F M- x:B(x);
» Foreachmap f: D xr A — Bin Type(I'.A), i.e.
I w:D, x:AF f(wx):B(x),
we take A¢: D — II4(B) in Type(T) to be

I, w:DF Ax: A. f(w,x) : IIx : A. B(x);



However, that the functor
Type(T)(D, T14(B)) — Type(I.A)(D xr 4, B)
induced by composition with ev, p to be full and faithful says that given
I w:DF M(w):Ilx: A.B(x) and I, w:D F N(w):Ilx: A. B(x)
we have a bijection between judgements
[, w:D F a(w) : Idmea. px) (M(w), N(w))
and judgements
[, w:D, x:AF B(x,w) : Idp)(M(w) - x, N(w) - x)

which is the principle of function extensionality.



Thus we have shown that

Martin-Lof . . . function
+  2-dimensionality . .
type theory extensionality
may be modelled by:
Comprehension
+ strong sums + products
2-category

(Still need to formulate equality in a satisfactory way)
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