Two-dimensional locally cartesian closed categories

Richard Garner

Uppsala University

Outline

Motivation

The one-dimensional correspondence

The two-dimensional correspondence

Motivation

We have many examples of locally cartesian closed categories, e.g. from topos theory:

- Set;
- $\left[\mathbf{C}^{\text {op }}\right.$, Set $]$ for a small \mathbf{C};
- $\mathbf{S h}(\mathscr{F})$ for a small site \mathscr{F}.

Each has a natural 2-categorical (or groupoid-enriched) analogue:

- Gpd;
- Ps($\left.\mathbf{C}^{\mathrm{OP}}, \mathbf{G p d}\right)$ for a small 2-category \mathbf{C};
- $\operatorname{Stack}(\mathscr{F})$ for a small site \mathscr{F}.

In what sense are these 2-categories locally cartesian closed?

Example: Gpd

- Gpd is cartesian closed as a 2-category: for each $X \in \mathbf{G p d}$, we have a 2-adjunction

$$
\mathbf{G p d} \underset{\underset{[X,-]}{\stackrel{(-) \times X}{\perp}}}{\stackrel{L}{L}} \text { Gd. }
$$

- It is not locally cartesian closed as a mere category: e.g., consider the groupoid

$$
\text { Iso }=a \underset{u^{-1}}{\stackrel{u}{\rightleftarrows}} b
$$

and functor

$$
a: 1 \rightarrow \text { Iso. }
$$

The pullback functor $a^{*}: \mathbf{G p d} / \mathbf{I s o} \rightarrow \mathbf{G p d}$ has no right adjoint.

However it is locally cartesian closed as a bicategory. For $\mathbf{A} \in \mathbf{G p d}$, define $\mathbf{G p d} / / \mathbf{A}$ to have:

- Objects functors $g: \mathbf{G} \rightarrow \mathbf{A}$;
- 1-cells pseudocommutative triangles

- 2-cells compatible natural isos $k \cong k^{\prime}$.

Proposition (Street, I980)

For each $f: \mathbf{A} \rightarrow \mathbf{B}$ in $\mathbf{G p d}$, the pullback 2-functor

$$
f^{*}: \mathbf{G p d} / / \mathbf{B} \rightarrow \mathbf{G p d} / / \mathbf{A}
$$

has a right biadjoint.
Very weak result!
Perhaps we can do better, using the fact that:

- If $f: \mathbf{A} \rightarrow \mathbf{B}$ is a groupoid fibration ($=$ Grothendieck fibration $=$ Conduché fibration $=$ prefibration $=$ isofibration) then $f^{*}: \mathbf{G p d} / \mathbf{B} \rightarrow \mathbf{G p d} / \mathbf{A}$ has a right 2-adjoint.

But how to formalise this?

Example: $\operatorname{Ps}\left(\mathrm{C}^{\mathrm{op}}, \mathrm{Gpd}\right)$

Let \mathbf{C} be a small category. $\mathbf{P s}\left(\mathbf{C}^{\mathrm{OP}}, \mathbf{G p d}\right)$ is 2-category with:

- Objects being functors $X: \mathbf{C}^{\mathrm{op}} \rightarrow \mathbf{G p d}$;
- 1-cells being pseudo-natural transformations $f: X \Rightarrow Y$;
- 2-cells being modifications $\alpha: f \Rightarrow g$.
$\mathbf{S t}\left(\mathbf{C}^{\mathrm{op}}, \mathbf{G p d}\right)$ is sub-2-category whose 1-cells are the 2-natural transformations $X \Rightarrow Y$.
$\mathbf{S t}\left(\mathbf{C}^{\mathrm{op}}, \mathbf{G p d}\right)$ is cartesian closed as a 2-category by usual Yoneda argument. But what about $\mathbf{P s}\left(\mathbf{C}^{\mathrm{Op}}, \mathbf{G p d}\right)$?

Important fact: the inclusion functor

$$
\operatorname{St}\left(\mathbf{C}^{\mathrm{op}}, \mathbf{G p d}\right) \hookrightarrow \operatorname{Ps}\left(\mathbf{C}^{\mathrm{op}}, \mathbf{G p d}\right)
$$

has a right adjoint

$$
(-)^{*}: \operatorname{Ps}\left(\mathbf{C}^{\mathrm{op}}, \mathbf{G p d}\right) \rightarrow \mathbf{S t}\left(\mathbf{C}^{\mathrm{op}}, \mathbf{G p d}\right) .
$$

(Consequence of Blackwell-Kelly-Power, or directly by Yoneda lemma).

So for $Y, Z: \mathbf{C}^{\mathrm{op}} \rightarrow \mathbf{G p d}$, have that:

$$
\begin{aligned}
\mathbf{P s}(-\times Y, Z) & \cong \mathbf{S t}\left(-\times Y, Z^{*}\right) \\
& \cong \mathbf{S t}\left(-,\left[Y, Z^{*}\right]\right) .
\end{aligned}
$$

Moreover, $\left[Y, Z^{*}\right]$ is coflexible: i.e., have a pseudonatural equivalence

$$
\mathbf{S t}\left(-,\left[Y, Z^{*}\right]\right) \underset{p}{\underset{\sim}{\leftrightarrows}} \mathbf{P s}\left(-,\left[Y, Z^{*}\right]\right)
$$

satisfying $p i=\mathrm{id}$. This is because:

- Each Z* is coflexible (Blackwell-Kelly-Power);
- Coflexible objects form an exponential ideal in $\mathbf{S t}$ (check directly).

Hence for each $X, Y, Z: \mathbf{C}^{\mathrm{op}} \rightarrow \mathbf{G p d}$, have an equivalence of categories

$$
\operatorname{Ps}(X \times Y, Z) \underset{\mathrm{app}}{\stackrel{\text { abs }}{\simeq}} \mathbf{P s}\left(X,\left[Y, Z^{*}\right]\right)
$$

satisfying app.abs $=\mathrm{id}$.

How can we make sense of this all?

Categorical logic

Robert Seely showed in 1984 that we have:

Our plan is to extend this to:

by defining the notion on the left and deducing the one on the right.

Martin Hofmann pointed out in 1994 an inaccuracy in Seely's work arising from the failure of a certain fibration to be split.

More accurate picture is:

We will generalise the left-hand side of this to:

> 2-dimensional Martin-Löf type theories syntax $\left.\uparrow\right|_{\text {semantics }}$
> Split comprehension 2-categories with products, strong sums and equality;

But first we recall how the one-dimensional case works.

Martin-Löf type theory

Sequent calculus with four forms of judgement:

- A type;
- $a: A$;
- $A=B$ type;
- $a=b: A$.

Can also have judgements under hypotheses; so if A type, we can have

- $x: A \vdash B(x)$ type;
- $x: A \vdash f(x): B(x)$;
- $x: A \vdash B(x)=C(x)$ type;
- $x: A \vdash f(x)=g(x): B(x)$.

And so on; in general can have things like

$$
x: A, y: B(x), z: C(x, y) \vdash f(x, y, z): D(x, y, z) .
$$

These come with inference rules for:

- Weakening, contraction and exchange;
- Substitution; for example:

$$
\frac{x: A \vdash f(x): B \quad y: B \vdash C(y) \text { type }}{x: A \vdash C(f(x)) \text { type }}
$$

Or

$$
\frac{x: A \vdash f(x): B \quad y: B \vdash g(y): C(y) \text { type; }}{x: A \vdash g(f(x)): C(f(x))}
$$

- Logical operations as follows.

Dependent sums

$$
\begin{aligned}
& \frac{A \text { type } \quad x: A \vdash B(x) \text { type }}{\Sigma x: A . B(x) \text { type }} \Sigma \text {-form; } \quad \frac{a: A \quad b: B(a)}{\langle a, b\rangle: \Sigma x: A . B(x)} \Sigma \text {-intro; } \\
& z: \Sigma x: A . B(x) \vdash C(z) \text { type } \\
& \frac{x: A, y: B(x) \vdash d(x, y): C(\langle x, y\rangle) \quad s: \Sigma x: A . B(x)}{E(C, d, s): C(s)} \Sigma \text {-elim; } \\
& z: \Sigma x: A \cdot B(x) \vdash C(z) \text { type } \\
& \frac{x: A, y: B(x) \vdash d(x, y): C(\langle x, y\rangle) \quad a: A \quad b: B(a)}{E(C, d,\langle a, b\rangle)=d(a, b): C(\langle a, b\rangle)} \Sigma \text {-comp. }
\end{aligned}
$$

Dependent products

$$
\begin{gathered}
\frac{A \text { type } \quad x: A \vdash B(x) \text { type }}{\Pi x: A \cdot B(x) \text { type }} \text { П-form; } \\
\frac{x: A \vdash f(x): B(x)}{\lambda x: A \cdot f(x): \Pi x: A \cdot B(x)} \text { П-Авs; } \quad \frac{M: \Pi x: A \cdot B(x) \quad a: A}{M \cdot a: B(a)} \text { П-АРp; } \\
\frac{x: A \vdash f(x): B(x) \quad a: A}{(\lambda x: A \cdot f(x)) \cdot a=f(a): B(a)} \text { П- } \beta .
\end{gathered}
$$

Identity types

$$
\begin{aligned}
& \text { A type } \quad a, b: A \\
& \operatorname{Id}_{A}(a, b) \text { type } \\
& \frac{a: A}{r(a): \operatorname{Id}_{A}(a, a)} \text { Id-INTRO; } \\
& x, y: A, z: \operatorname{Id}_{A}(x, y) \vdash C(x, y, z) \text { type } \\
& \frac{x: A \vdash d(x): C(x, x, r(x)) \quad a, b: A \quad p: \operatorname{Id}_{A}(a, b)}{J_{C}(d, a, b, p): C(a, b, p)} \text { Id-eLim; } \\
& x, y: A, z: \operatorname{Id}_{A}(x, y) \vdash C(x, y, z) \text { type } \\
& \frac{x: A \vdash d(x): C(x, x, r(x)) \quad a: A}{J_{C}(d, a, a, r(a))=d(a): C(a, a, r(a))} \text { Id-сомр. }
\end{aligned}
$$

Intuition: to each type A we can associate an weak ω-groupoid \mathscr{A} with:

- Objects being elements $x: A$;
- 1-cells $f: x \rightarrow y$ being elements $f: \operatorname{Id}_{A}(x, y)$;
- 2-cells $\alpha: f \Rightarrow g: x \rightarrow y$ being elements $\alpha: \operatorname{Id}_{\mathrm{Id}_{A}(x, y)}(f, g)$; and so on.

Extensional Martin-Löf type theory

The above is the intensional version of Martin-Löf type theory.

The extensional version adds two inference rules:

$$
\begin{aligned}
& \frac{A \text { type }}{} \quad a, b: A \quad p: \operatorname{Id}_{A}(a, b) \\
& \\
& \text { Id-REFL-1; } \\
& \frac{A \text { type } \quad a, b: A \quad p: \operatorname{Id}_{A}(a, b)}{p=r(a): \operatorname{Id}_{A}(a, b)} \text { Id-REFL-2; }
\end{aligned}
$$

which force the weak ω-groupoid \mathscr{A} associated to A to be discrete.

Categorical semantics

A (split) comprehension category (Jacobs 1993) consists in:

- A category C;
- A (split) fibration $p: \mathbf{T} \rightarrow \mathbf{C}$;
- A full and faithful functor

sending cartesian morphisms in \mathbf{T} to pullback squares in \mathbf{C}.
Given $\Gamma \in \mathbf{C}$ and $A \in \mathbf{T}(\Gamma)$, we write the image of A under c as

$$
\pi_{\Gamma}: \Gamma . A \rightarrow \Gamma
$$

in \mathbf{C}, and call it a dependent projection.

Example: extensional syntactic model

We construct a category Ctxt from the syntax of extensional Martin-Löf type theory:

- Objects are contexts of types

$$
\Gamma=\left(x_{1}: C_{1}, x_{2}: C_{2}\left(x_{1}\right), \ldots, x_{n}: C_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right)
$$

- Morphisms $f: \Gamma \rightarrow \Delta$ are context morphisms given by collections of judgements

$$
\begin{aligned}
& x_{1}: C_{1}, \ldots, x_{n}: C_{n}\left(x_{1}, \ldots, x_{n-1}\right) \vdash f_{1}\left(x_{1}, \ldots, x_{n}\right): D_{1} \\
& x_{1}: C_{1}, \ldots, x_{n}: C_{n}\left(x_{1}, \ldots, x_{n-1}\right) \vdash f_{2}\left(x_{1}, \ldots, x_{n}\right): D_{2}\left(f_{1}\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

which we abbreviate as

$$
x: \Gamma \vdash f(x): \Delta
$$

Now obtain (split) indexed category Type: Ctxt ${ }^{\text {op }} \rightarrow$ Cat.
The category Type (Γ) has:

- Objects being judgements

$$
x: \Gamma \vdash A(x) \text { type; }
$$

- Morphisms $A \rightarrow B$ being judgements

$$
x: \Gamma, y: A(x) \vdash f(x, y): B(x) .
$$

Given $f: \Delta \rightarrow \Gamma$, the functor $f^{*}: \operatorname{Type}(\Gamma) \rightarrow \operatorname{Type}(\Delta)$ sends:

$$
y: \Gamma \vdash A(y) \text { type } \quad \text { to } \quad x: \Delta \vdash A(f(x)) \text { type. }
$$

Thus obtain a split fibration p : Type \rightarrow Ctxt.

And now have a functor c : Type $\rightarrow \mathbf{C t x t}^{\boldsymbol{\rightarrow}}$ sending

$$
x: \Gamma \vdash A(x) \text { type }
$$

to the context morphism

$$
(x: \Gamma, y: A(x)) \rightarrow(x: \Gamma)
$$

which projects away the last variable.

Sum types

A split comprehension category has sums if:

- For each $\Gamma \in \mathbf{C}$ and $A \in \mathbf{T}(\Gamma)$, the reindexing functor

$$
(-) \times_{\Gamma} A:=\mathbf{T}\left(\pi_{\Gamma}\right): \mathbf{T}(\Gamma) \rightarrow \mathbf{T}(\Gamma . A)
$$

has a left adjoint Σ_{A}.

- These left adjoints satisfy the Beck-Chevalley condition.

Let $B \in \mathbf{T}(\Gamma . A)$ and consider the unit map

$$
\eta_{A, B}: B \rightarrow \Sigma_{A}(B) \times_{\Gamma} A
$$

of the adjunction $\Sigma_{A} \dashv(-) \times_{\Gamma} A$. It is equivalently a map

in \mathbf{C}.
Say that we have strong sums just when each $i_{A, B}$ is an isomorphism.

Example: extensional syntactic model

Let $\Gamma \in \operatorname{Ctxt}$ and $A \in \operatorname{Type}(\Gamma)$; then the functor

$$
\Sigma_{A}: \operatorname{Type}(x: \Gamma, y: A(x)) \rightarrow \operatorname{Type}(x: \Gamma)
$$

sending

$$
x: \Gamma, y: A(x) \vdash B(x, y) \text { type }
$$

to

$$
x: \Gamma \vdash \Sigma y: A(x) . B(x, y)
$$

equips the syntactic comprehension category with strong sums.

Product types

A split comprehension category has products if:

- For each $\Gamma \in \mathbf{C}$ and $A \in \mathbf{T}(\Gamma)$, the reindexing functor

$$
(-) \times_{\Gamma} A:=\mathbf{T}\left(\pi_{\Gamma}\right): \mathbf{T}(\Gamma) \rightarrow \mathbf{T}(\Gamma . A)
$$

has a right adjoint Π_{A}.

- These right adjoints satisfy the Beck-Chevalley condition.

Example: extensional syntactic model

Let $\Gamma \in \operatorname{Ctxt}$ and $A \in \operatorname{Type}(\Gamma)$; then the functor

$$
\Pi_{A}: \operatorname{Type}(x: \Gamma, y: A(x)) \rightarrow \operatorname{Type}(x: \Gamma)
$$

sending

$$
x: \Gamma, y: A(x) \vdash B(x, y) \text { type }
$$

to

$$
x: \Gamma \vdash \Pi y: A(x) \cdot B(x, y)
$$

equips the syntactic comprehension category with products.

2-dimensional Martin-Löf type theory

Let us say that a type A is discrete just when the Id-reflection rules

$$
\begin{aligned}
& \frac{A \text { type }}{} \quad a, b: A \quad p: \operatorname{Id}_{A}(a, b) \\
& \text { Id-REFL-1; } \\
& \frac{A \text { type } \quad a, b: A \quad p: \operatorname{Id}_{A}(a, b)}{p=r(a): \operatorname{Id}_{A}(a, b)} \text { Id-REFL-2; }
\end{aligned}
$$

obtain at the type A.

- So the intensional theory says that no types need be discrete;
- The extensional theory says that all types are discrete;
- Our 2-dimensional theory will say that all identity types are discrete.

Explicitly, we augment the intensional theory with the rules:

\[

\]

These force the weak ω-groupoid \mathscr{A} associated to A to be a common-or-garden groupoid.

2-categorical semantics

A (split) comprehension 2-category consists in:

- A 2-category \mathbf{C};
- A (split) 2-fibration $p: \underline{\mathbf{T}} \rightarrow \underline{\mathbf{C}}$;
- A 2-fully faithful 2 -functor

sending 2-cartesian morphisms in $\underline{\mathbf{T}}$ to 2-pullback squares in $\underline{\mathbf{C}}$.

Revision of 2-fibrations

A 2-functor $p: \underline{\mathbf{T}} \rightarrow \underline{\mathbf{C}}$ is a (split) 2-fibration (Hermida, 1999) just when:

- The underlying ordinary functor $p: \mathbf{T} \rightarrow \mathbf{C}$ is a (split) fibration;
- Each cartesian morphism of $\underline{\mathbf{T}}$ has an obvious 2-dimensional universal property (say it is 2-cartesian);
- Each $p_{y, z}: \underline{\mathbf{T}}(y, z) \rightarrow \underline{\mathbf{C}}(p y, p z)$ is a fibration;
- For all $f: x \rightarrow y$ in $\underline{\mathbf{T}}$ the whiskering functor

$$
(-) \circ f: \underline{\mathbf{T}}(y, z) \rightarrow \mathbf{T}(x, z)
$$

sends cartesian 2-cells to cartesian 2-cells.

Example: 2-dimensional syntactic model

First we must extend the category of contexts Ctxt to a 2-category Ctxt. What are the 2 -cells?

- Easy for 2-cells into a context of length 1 . Given $f, g: \Gamma \rightarrow(y: B)$ in Ctxt, a 2-cell $\alpha: f \Rightarrow g$ is given by

$$
x: \Gamma \vdash p(x): \operatorname{Id}_{B}(f(x), g(x)) .
$$

For longer contexts, need more theory. Given A type and $x: A \vdash C(x)$ type, we can define "substitution" operations

$$
\begin{array}{ll}
a, b: A \quad c: C(a) \quad p: \operatorname{Id}_{A}(a, b) \\
p_{*}(c): C(b)
\end{array}
$$

by Id-elimination.

So now:

- Given $f, g: \Gamma \rightarrow(y: B, z: C(y))$ in Ctxt looking like

$$
x: \Gamma \vdash f_{1}(x): B, \quad x: \Gamma \vdash f_{2}(x): C\left(f_{1}(x)\right)
$$

and

$$
x: \Gamma \vdash g_{1}(x): B, \quad x: \Gamma \vdash g_{2}(x): C\left(g_{1}(x)\right)
$$

a 2-cell $\alpha: f \Rightarrow g$ will be given by

$$
\begin{gathered}
x: \Gamma \vdash p_{1}(x): \operatorname{Id}_{B}\left(f_{1}(x), g_{1}(x)\right) \\
x: \Gamma \vdash p_{2}(x): \operatorname{Id}_{C\left(f_{1}(x)\right)}\left(p_{1}(x)_{*}\left(f_{2}(x)\right), g_{2}(x)\right) .
\end{gathered}
$$

And so on.

Now extend the split indexed category Type: $\mathbf{C t x t}{ }^{\mathrm{op}} \rightarrow$ Cat to a split indexed 2-category; which amounts to a trihomomorphism

$$
\underline{\text { Type }}: \text { Ctxt }^{\text {op }} \rightarrow \text { Gray }
$$

which is strictly functorial on 1-cells. Thus we must:

- Extend each fibre category Type(Γ) to a 2-category Type (Γ) - straightforward;
- Extend each substitution functor $f^{*}: \operatorname{Type}(\Gamma) \rightarrow \operatorname{Type}(\Delta)$ to a 2-functor - straightforward;
- Give a pseudo-natural transformation

$$
\bar{\alpha}: f^{*} \Rightarrow g^{*}: \underline{\operatorname{Type}}(\Gamma) \rightarrow \underline{\text { Type }}(\Delta)
$$

for each $\alpha: f \Rightarrow g: \Delta \rightarrow \Gamma$ in Ctxt.

Eg: let $\alpha: f \Rightarrow g:(x: A) \rightarrow(y: B)$ in Ctxt be given by

$$
\begin{gathered}
x: A \vdash f(x): B, \quad x: A \vdash g(x): B, \\
x: A \vdash \alpha(x): \operatorname{Id}_{B}(f(x), g(x)) .
\end{gathered}
$$

To give

$$
\bar{\alpha}: f^{*} \Rightarrow g^{*}: \underline{\operatorname{Type}}(B) \rightarrow \underline{\operatorname{Type}}(A)
$$

we must give, for each $C \in \operatorname{Type}(B)$, a component 1-cell

$$
\bar{\alpha}_{C}: C(f(-)) \rightarrow C(g(-))
$$

in Type (A); which we take to be

$$
x: A, y: C(f(x)) \vdash \alpha(x)_{*}(y): C(g(x)) .
$$

Thus obtain a split 2-fibration $p: \underline{\text { Type }} \rightarrow \underline{\text { Ctxt }}$.

And may now extend the functor c : Type $\rightarrow \mathbf{C t x t}^{\rightarrow}$ to a (2-fully faithful) 2-functor Type $\rightarrow \underline{\mathbf{C t x t}^{\rightarrow}}$.

Digression on two-dimensional adjoints

To talk about sums and products, we need a suitably weak notion of adjoint.

- Let $H: \mathbf{A} \rightarrow \mathbf{B}$ be a functor. A right strict pseudoinverse for H is:
- $K: \mathbf{B} \hookrightarrow \mathbf{A}$ with $H K=\mathrm{id}_{\mathbf{B}}$; and
- $\phi: \mathrm{id}_{\mathrm{A}} \cong K H$ with $\phi K=\mathrm{id}_{K}$ and $H \phi=\mathrm{id}_{H}$.
- H has a right strict pseudoinverse only if fully faithful and surjective on objects;
- Then right strict pseudoinverses for $H \longleftrightarrow$ sections for ob $H:$ ob A \rightarrow ob B.

A right strict left biadjoint for $\mathrm{G}: \underline{\mathbf{C}} \rightarrow \underline{\mathbf{D}}$ is:

- For each $d \in \underline{\mathbf{D}}$, some $F d \in \underline{\mathbf{C}}$ and $\eta_{d}: d \rightarrow G F d$ in $\underline{\mathbf{D}}$;
- A right strict pseudoinverse for each functor

$$
\underline{\mathbf{C}}(F d, c) \xrightarrow{G} \underline{\mathbf{D}}(G F d, G c) \xrightarrow{\mathbf{D}\left(\eta_{d}, G c\right)} \underline{\mathbf{D}}(d, G c) .
$$

A right strict right biadjoint for $\mathrm{G}: \underline{\mathbf{C}} \rightarrow \underline{\mathbf{D}}$ is:

- For each $d \in \underline{\mathbf{D}}$, some $H d \in \underline{\mathbf{C}}$ and $\varepsilon_{d}: G H d \rightarrow d$ in $\underline{\mathbf{D}}$;
- A right strict pseudoinverse for each functor

$$
\underline{\mathbf{C}}(c, H d) \xrightarrow{G} \underline{\mathbf{D}}(G c, G H d) \xrightarrow{\mathbf{D}\left(G c, \varepsilon_{d}\right)} \underline{\mathbf{D}}(G c, d) .
$$

Sum types

A split comprehension 2-category has sums if:

- For each $\Gamma \in \underline{\mathbf{C}}$ and $A \in \underline{\mathbf{T}}(\Gamma)$, the reindexing 2-functor

$$
(-) \times_{\Gamma} A:=\underline{\mathbf{T}}\left(\pi_{\Gamma}\right): \underline{\mathbf{T}}(\Gamma) \rightarrow \underline{\mathbf{T}}(\Gamma . A)
$$

has a right strict left biadjoint Σ_{A}.

- These left biadjoints satisfy some kind of Beck-Chevalley condition (not sure what).

Explicitly:

- For each $B \in \underline{\mathbf{T}}(\Gamma . A)$, an object $\Sigma_{A}(B) \in \underline{\mathbf{T}}(\Gamma)$;
- For each $B \in \underline{\mathbf{T}}(\Gamma . A)$, a unit map $\eta_{A, B}: B \rightarrow \Sigma_{A}(B) \times_{\Gamma} A$ in $\underline{\mathbf{T}}(\Gamma . A)$; which is a map $i_{A, B}$ as in:

- For each $D \in \underline{\mathbf{T}}(\Gamma)$, a right strict pseudoinverse for the functor

$$
\underline{\mathbf{C}} / \Gamma\left(\Gamma . \Sigma_{A}(B), D\right) \rightarrow \underline{\mathbf{C}} / \Gamma(\Gamma . A . B, D)
$$

induced by precomposition with $i_{A, B}$.
Say we have strong sums just when each $i_{A, B}$ has a chosen left strict pseudoinverse which induces the right strict pseudoinverses above.

Example: 2-dimensional syntactic model

This has strong sums:

- For each $B \in \underline{\operatorname{Type}}(\Gamma . A)$, we take $\Sigma_{A}(B)=(\Gamma \vdash \Sigma x: A . B(x))$;
- For each $B \in \underline{\operatorname{Type}}(\Gamma . A)$, we take $i_{A, B}: Г . А . В . \rightarrow \Gamma . \Sigma_{A} B$ to be

$$
\Gamma, x: A, y: B(x) \vdash\langle x, y\rangle: \Sigma x: A \cdot B(x)
$$

- By Σ-elimination we can provide judgements

$$
\begin{aligned}
& \Gamma, z: \Sigma x: A \cdot B(x) \vdash \pi_{1}(z): A \\
& \Gamma, z: \Sigma x: A \cdot B(x) \vdash \pi_{2}(z): B\left(\pi_{1}(z)\right)
\end{aligned}
$$

with $\pi_{1}(\langle x, y\rangle)=x$ and $\pi_{2}(\langle x, y\rangle)=y$, and judgements

$$
\Gamma, z: \Sigma x: A \cdot B(x) \vdash \phi(z): \operatorname{Id}_{\Sigma_{A} B}\left(z,\left\langle\pi_{1}(z), \pi_{2}(z)\right\rangle\right) ;
$$

these provide a left strict pseudoinverse for $i_{A, B}$.

Product types

A split comprehension 2-category has products if:

- For each $\Gamma \in \underline{\mathbf{C}}$ and $A \in \underline{\mathbf{T}}(\Gamma)$, the reindexing functor

$$
(-) \times_{\Gamma} A:=\underline{\mathbf{T}}\left(\pi_{\Gamma}\right): \underline{\mathbf{T}}(\Gamma) \rightarrow \underline{\mathbf{T}}(\Gamma . A)
$$

has a right strict right biadjoint Π_{A}.

- These right adjoints satisfy some kind of Beck-Chevalley condition.

Explicitly:

- For each $B \in \underline{\mathbf{T}}(\Gamma . A)$, an object $\Pi_{A}(B) \in \underline{\mathbf{T}}(\Gamma)$;
- For each $B \in \underline{\mathbf{T}}(\Gamma . A)$, a map ev ${ }_{A, B}: \Pi_{A}(B) \times_{\Gamma} A \rightarrow B$ in $\underline{\mathbf{T}}(\Gamma . A)$;
- For each map $f: D \times_{\Gamma} A \rightarrow B$ in $\underline{\mathbf{T}}(\Gamma . A)$, a map $\lambda_{f}: D \rightarrow \Pi_{A}(B)$ in $\underline{T}(\Gamma)$ fitting into:

$$
D \times_{\Gamma} A \xrightarrow{\lambda_{f} \times_{\Gamma} A} \Pi_{A}(B) \times_{\Gamma} A
$$

Such that:

- For each $D \in \underline{\mathbf{T}}(\Gamma)$ and $B \in \underline{\mathbf{T}}(\Gamma . A)$, the functor

$$
\underline{\mathbf{T}}(\Gamma)\left(D, \Pi_{A}(B)\right) \rightarrow \mathbf{T}(\Gamma . A)\left(D \times_{\Gamma} A, B\right)
$$

induced by composition with $\mathrm{ev}_{A, B}$ is full and faithful.

Example: 2-dimensional syntactic model

- For each $B \in \underline{\operatorname{Type}}(\Gamma . A)$, we take $\Pi_{A}(B)=(\Gamma \vdash \Pi x: A . B(x))$;
- For each $B \in \operatorname{Type}(\Gamma . A)$, we take $\mathrm{ev}_{A, B}: \Pi_{A}(B) \times_{\Gamma} A \rightarrow B$ to be

$$
\Gamma, M: \Pi x: A \cdot B(x), x: A \vdash M \cdot x: B(x) ;
$$

- For each map $f: D \times_{\Gamma} A \rightarrow B$ in $\underline{\text { Type(}}$ (Г.A), i.e.

$$
\Gamma, w: D, x: A \vdash f(w, x): B(x),
$$

we take $\lambda_{f}: D \rightarrow \Pi_{A}(B)$ in Type (Γ) to be

$$
\Gamma, w: D \vdash \lambda x: A \cdot f(w, x): \Pi x: A \cdot B(x) ;
$$

However, that the functor

$$
\underline{\text { Type }}(\Gamma)\left(D, \Pi_{A}(B)\right) \rightarrow \underline{\text { Type }}(\Gamma . A)\left(D \times_{\Gamma} A, B\right)
$$

induced by composition with $\mathrm{ev}_{A, B}$ to be full and faithful says that given
$\Gamma, w: D \vdash M(w): \Pi x: A \cdot B(x)$ and $\Gamma, w: D \vdash N(w): \Pi x: A \cdot B(x)$
we have a bijection between judgements

$$
\Gamma, w: D \vdash \alpha(w): \operatorname{Id}_{\Pi x: A \cdot B(x)}(M(w), N(w))
$$

and judgements

$$
\Gamma, w: D, x: A \vdash \beta(x, w): \operatorname{Id}_{B(x)}(M(w) \cdot x, N(w) \cdot x)
$$

which is the principle of function extensionality.

Thus we have shown that

Martin-Löf
type theory
:---
extensionality

may be modelled by:
Comprehension 2-category

+ products
(Still need to formulate equality in a satisfactory way)

Bibliography

- Fibrations in bicategories
[R. Street, Cahiers de topologie... 21 (1980) 111-160]
- Locally Cartesian closed categories and type theory
[R. Seely, Math. Proc. Cambridge Philos. Soc. 95 (1984) 33-48]
- On the interpretation of type theory in lccc's
[M. Hofmann, Proc. CSL '94, LNCS 933 (1994)]
- Some properties of Fib as a fibred 2-category
[C. Hermida, JPAA 134 (1999) 83-109]
- Comprehension categories and the semantics of type dependency
[B. Jacobs, Theor. Comp. Sci. 107 (1993), 169-207]

