Computing *p*-adic heights on hyperelliptic curves

Stevan Gajović (Charles University Prague) Joint work with Steffen Müller (University of Groningen)

> Number Theory in Montserrat 2023 , Montserrat, 29/06/2023

Goals today:

• Introduce *p*-adic heights on Jacobians of curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

• Quadratic Chabauty for rational points on hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Quadratic Chabauty for integral points on even degree hyperelliptic curves.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Quadratic Chabauty for integral points on even degree hyperelliptic curves.
- Numerically test *p*-adic BSD.

Goals today:

- Introduce *p*-adic heights on Jacobians of curves.
- Briefly mention local *p*-adic heights away from *p*.
- Present an algorithm to compute local *p*-adic heights above *p* on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Quadratic Chabauty for integral points on even degree hyperelliptic curves.
- Numerically test *p*-adic BSD.
- Other applications or ideas? Feel free to contact Steffen and me! :)

Introduction to *p*-adic heights

• Bilinear pairing (or quadratic form) defined on abelian varieties.

Introduction to *p*-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovář.

Introduction to *p*-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovář.
- X/ℚ = nice curve curve of genus g > 0, with good reduction at p, and J/ℚ = its Jacobian
- Works also for number fields K/\mathbb{Q} .
- Coleman-Gross: *p*-adic heights on *J*.

Coleman-Gross (CG) *p*-adic heights

• *p*-adic height: bilinear map

$$h:=\sum_{q \text{ finite name}} h_q: J(\mathbb{Q}) \times J(\mathbb{Q}) \to \mathbb{Q}_p.$$

q finite prime

Coleman-Gross (CG) p-adic heights

• *p*-adic height: bilinear map

$$h:=\sum_{q ext{ finite prime}} h_q: J(\mathbb{Q}) imes J(\mathbb{Q}) o \mathbb{Q}_p.$$

- For a prime number q, denote $X_q := X \otimes \mathbb{Q}_q$.
- For each prime $q \in \mathbb{Z}$, define local heights

 $h_q(D_1, D_2)$, for $D_1, D_2 \in \mathsf{Div}^0(X_q)$.

Coleman-Gross (CG) p-adic heights

• *p*-adic height: bilinear map

$$h:=\sum_{q ext{ finite prime}} h_q: J(\mathbb{Q}) imes J(\mathbb{Q}) o \mathbb{Q}_p.$$

- For a prime number q, denote $X_q := X \otimes \mathbb{Q}_q$.
- For each prime $q \in \mathbb{Z}$, define local heights

 $h_q(D_1, D_2)$, for $D_1, D_2 \in \mathsf{Div}^0(X_q)$.

- Distinguish h_q for $q \neq p$ and h_p (*).
- h_q for $q \neq p$: intersection multiplicities.
- h_p : Coleman integral of a non-holomorphic differential.

Technicalities

• *p*-adic height depends on (and we fix it):

Technicalities

- *p*-adic height depends on (and we fix it):
- (a) A continuous idèle class character $\ell \colon \mathbb{A}^*_{\mathbb{Q}}/\mathbb{Q} \longrightarrow \mathbb{Q}_p$ with certain technical conditions.
 - * Technical conditions: For \mathbb{Q} , ℓ_p be extended to be the Iwasawa branch $\log_p : \mathbb{Q}_p^* \longrightarrow \mathbb{Q}_p$ of the *p*-adic logarithm $\log_p(p) = 0$.

Technicalities

- *p*-adic height depends on (and we fix it):
- (a) A continuous idèle class character $\ell \colon \mathbb{A}^*_{\mathbb{Q}}/\mathbb{Q} \longrightarrow \mathbb{Q}_p$ with certain technical conditions.
 - * Technical conditions: For \mathbb{Q} , ℓ_p be extended to be the Iwasawa branch $\log_p : \mathbb{Q}_p^* \longrightarrow \mathbb{Q}_p$ of the *p*-adic logarithm $\log_p(p) = 0$.
- (b) A choice of a subspace W_p ⊆ H¹_{dR}(X_p/Q_p) complementary to the space of holomorphic forms H^{1,0}_{dR}(X_p/Q_p).

* Write
$$\mathrm{H}^{1}_{\mathrm{dR}}(X_{\rho}/\mathbb{Q}_{\rho}) = \mathrm{H}^{1,0}_{\mathrm{dR}}(X_{\rho}/\mathbb{Q}_{\rho}) \oplus W_{\rho}.$$

Theorem (Local heights for $q \neq p$)

• There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :

Theorem (Local heights for $q \neq p$)

• There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p : (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;
- (3) for all $f \in \mathbb{Q}_p(X_q)^*$ (when defined): $h_q(\operatorname{div}(f), D_2) = \log_p(f(D_2))$.

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;
- (3) for all $f \in \mathbb{Q}_p(X_q)^*$ (when defined): $h_q(\operatorname{div}(f), D_2) = \log_p(f(D_2))$.
 - $\mathcal{X}_q/\mathbb{Q}_q$ = regular model of X_q with $(-\cdot -) = (\mathbb{Q}$ -valued) intersection multiplicity on \mathcal{X}_q .
 - $\mathcal{D}_1, \mathcal{D}_2 = \text{extensions of } D_1, D_2 \text{ to } \mathcal{X}_q \text{ such that } (\mathcal{D}_i \cdot V) = 0 \text{ for all vertical divisors } V \text{ on } \mathcal{X}_q.$

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_q(D_1, D_2)$ taking values in \mathbb{Q}_p :
- (1) defined for all $D_1, D_2 \in \text{Div}^0(X_q)$ with disjoint support;
- (2) bi-additive, continuous, and symmetric;
- (3) for all $f \in \mathbb{Q}_p(X_q)^*$ (when defined): $h_q(\operatorname{div}(f), D_2) = \log_p(f(D_2))$.
 - $\mathcal{X}_q/\mathbb{Q}_q$ = regular model of X_q with $(-\cdot -) = (\mathbb{Q}$ -valued) intersection multiplicity on \mathcal{X}_q .
 - D₁, D₂ = extensions of D₁, D₂ to X_q such that (D_i ⋅ V) = 0 for all vertical divisors V on X_q.

Construction of h_q

$$h_q(D_1, D_2) = \log_p(q) \cdot (\mathcal{D}_1 \cdot \mathcal{D}_2).$$

• van Bommel-Holmes-Müller's algorithm: Compute h_q.

Construction of h_p

The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$, for a certain differential of the third kind ω_{D_1} depending on D_1 .

Construction of h_p

The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$, for a certain differential of the third kind ω_{D_1} depending on D_1 .

Third kind meromorphic differentials

 ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z} .

Denote T(Q_p) := {the third kind differentials on X_p}.

Construction of h_p

The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$, for a certain differential of the third kind ω_{D_1} depending on D_1 .

Third kind meromorphic differentials

 ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z} .

- Denote T(Q_p) := {the third kind differentials on X_p}.
- The residue divisor homomorphism $T(\mathbb{Q}_p) \longrightarrow \text{Div}^0(X_p)$ is given by

$$\operatorname{Res}(\omega) = \sum_{P \in X_p} \operatorname{Res}_P(\omega) P.$$

• Res surjective, but not injective (Res(holomorphic differentials) = 0).

Construction of h_p

The local height $h_p(D_1, D_2)$ is a Coleman integral $\int_{D_2} \omega_{D_1}$, for a certain differential of the third kind ω_{D_1} depending on D_1 .

Third kind meromorphic differentials

 ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z} .

- Denote T(Q_p) := {the third kind differentials on X_p}.
- The residue divisor homomorphism $T(\mathbb{Q}_p) \longrightarrow \text{Div}^0(X_p)$ is given by

$$\operatorname{Res}(\omega) = \sum_{P \in X_p} \operatorname{Res}_P(\omega) P.$$

- Res surjective, but not injective (Res(holomorphic differentials) = 0).
- Want ω_{D_1} to be such that $\operatorname{Res}(\omega_{D_1}) = D_1$. This choice is not unique! Stevan Gajović 29/06/2023 7/26

Second kind meromorphic differentials

 ω is of the second kind if all of its residues are 0.

- $\mathrm{H}^{1}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) \simeq \{ \text{differentials of the second kind} \} / \{ df : f \in \mathbb{Q}_{p}(X)^{\times} \}.$
- Recall: $\mathrm{H}^{1}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) = \mathrm{H}^{1,0}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) \oplus W_{p}.$

Second kind meromorphic differentials

 ω is of the second kind if all of its residues are 0.

- H¹_{dR}(X_p/ℚ_p) ≃ {differentials of the second kind}/{df : f ∈ ℚ_p(X)[×]}.
- Recall: $\mathrm{H}^{1}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) = \mathrm{H}^{1,0}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) \oplus W_{p}.$
- \exists homomorphism "projection" ψ

 $\psi : \{\text{meromorphic differentials on } X_p\} \longrightarrow H^1_{dR}(X_p/\mathbb{Q}_p)$ with many useful properties.

• Projection: if α is of the second kind, then $\psi(\alpha) = [\alpha]$.

Second kind meromorphic differentials

 ω is of the second kind if all of its residues are 0.

- $\mathrm{H}^{1}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) \simeq \{ \text{differentials of the second kind} \} / \{ df : f \in \mathbb{Q}_{p}(X)^{\times} \}.$
- Recall: $\mathrm{H}^{1}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) = \mathrm{H}^{1,0}_{\mathrm{dR}}(X_{p}/\mathbb{Q}_{p}) \oplus W_{p}.$
- \exists homomorphism "projection" ψ

 $\psi : \{\text{meromorphic differentials on } X_p\} \longrightarrow H^1_{dR}(X_p/\mathbb{Q}_p)$ with many useful properties.

• Projection: if α is of the second kind, then $\psi(\alpha) = [\alpha]$.

•
$$\implies D \in \text{Div}^0(X_p) \rightsquigarrow \text{unique } \omega_D \in T(\mathbb{Q}_p) \text{ such that}$$

$$\operatorname{Res}(\omega_D) = D \text{ and } \psi(\omega_D) \in W_p.$$

• From now on, fix the notation ω_D .

Definition of h_p

Definition of h_p

Let $D_1, D_2 \in \text{Div}^0(X_p)$ with disjoint support. The local *p*-adic height pairing at *p* is given by $h_p(D_1, D_2) := \int_{D_2} \omega_{D_1}$.

• Properties of h_p :

Definition of h_p

- Properties of *h_p*:
- * $h_p(D_1, D_2)$ is continuous and bi-additive.

Definition of h_p

- Properties of h_p :
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
- * $h_p(\operatorname{div}(f), D_2) = \log_p(f(D_2)).$

Definition of h_p

- Properties of h_p :
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
- * $h_p(\operatorname{div}(f), D_2) = \log_p(f(D_2)).$
- * h_p is symmetric if and only if $W_p \subseteq H^1_{dR}(X_p/\mathbb{Q}_p)$ is isotropic with respect to the cup product pairing.

Definition of h_p

- Properties of h_p :
- * $h_p(D_1, D_2)$ is continuous and bi-additive.
- * $h_p(\operatorname{div}(f), D_2) = \log_p(f(D_2)).$
- * h_p is symmetric if and only if $W_p \subseteq H^1_{dR}(X_p/\mathbb{Q}_p)$ is isotropic with respect to the cup product pairing.
- * Independent of a model of X_p under reasonable technical conditions.
- * Independent: $au : extsf{C} o extsf{C}'$

$$h_p(\tau_*(D_1), \tau_*(D_2))_{\text{on }C'} = h_p(D_1, D_2)_{\text{on }C}$$
 .

• The cup product pairing $\mathrm{H}^{1}_{\mathrm{dR}}(X_{\rho}/\mathbb{Q}_{\rho}) \times \mathrm{H}^{1}_{\mathrm{dR}}(X_{\rho}/\mathbb{Q}_{\rho}) \longrightarrow \mathbb{Q}_{\rho}$:

$$([\mu_1], [\mu_2]) \mapsto [\mu_1] \cup [\mu_2] := \sum_{P \in X_P} \operatorname{Res}_P \left(\mu_2 \int \mu_1 \right).$$

• The cup product pairing $H^1_{dR}(X_p/\mathbb{Q}_p) \times H^1_{dR}(X_p/\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$:

$$([\mu_1], [\mu_2]) \mapsto [\mu_1] \cup [\mu_2] := \sum_{P \in X_P} \operatorname{Res}_P \left(\mu_2 \int \mu_1 \right).$$

• (Besser)
$$\psi(\omega) \cup \psi(\rho) = -\sum_{P \in X_{\rho}} \operatorname{Res}_{P} (\omega \int \rho).$$

• The cup product pairing $H^1_{dR}(X_p/\mathbb{Q}_p) \times H^1_{dR}(X_p/\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$:

$$([\mu_1], [\mu_2]) \mapsto [\mu_1] \cup [\mu_2] := \sum_{P \in X_P} \operatorname{Res}_P \left(\mu_2 \int \mu_1 \right).$$

• (Besser)
$$\psi(\omega) \cup \psi(\rho) = -\sum_{P \in X_p} \operatorname{Res}_P (\omega \int \rho).$$

• Always \rightsquigarrow a symplectic basis $\langle \kappa_0, \ldots, \kappa_{2g-1} \rangle$: $\kappa_i \cup \kappa_j = \pm \delta_{i,2g-1-j}$, where $\langle \kappa_0, \ldots, \kappa_{g-1} \rangle = H^{1,0}_{dR}(X_p/\mathbb{Q}_p)$.

• We can take
$$W_p = \langle \kappa_g, \dots, \kappa_{2g-1} \rangle$$
.

• The cup product pairing $H^1_{dR}(X_p/\mathbb{Q}_p) \times H^1_{dR}(X_p/\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$:

$$([\mu_1], [\mu_2]) \mapsto [\mu_1] \cup [\mu_2] := \sum_{P \in X_P} \operatorname{Res}_P \left(\mu_2 \int \mu_1 \right).$$

- (Besser) $\psi(\omega) \cup \psi(\rho) = -\sum_{P \in X_{\rho}} \operatorname{Res}_{P}(\omega \int \rho).$
- Always \rightsquigarrow a symplectic basis $\langle \kappa_0, \ldots, \kappa_{2g-1} \rangle$: $\kappa_i \cup \kappa_j = \pm \delta_{i,2g-1-j}$, where $\langle \kappa_0, \ldots, \kappa_{g-1} \rangle = H^{1,0}_{dR}(X_p/\mathbb{Q}_p)$.
- We can take $W_p = \langle \kappa_g, \dots, \kappa_{2g-1} \rangle$.
- When C := X_p has good ordinary reduction, we can take W_p := the unit root subspace, assume from now on.
- Both choices implemented in Sage, we talk about the second one. The difference is just some linear algebra.

• Sage implementation - Balakrishnan: Hyperelliptic curves $y^2 = f(x)/\mathbb{Q}_p$ (WARNING: Sage sees only one point at infinity!):

- Sage implementation Balakrishnan: Hyperelliptic curves $y^2 = f(x)/\mathbb{Q}_p$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_i := \frac{x^i dx}{2y}$ for $0 \le i \le \deg(f) - 2 \rightsquigarrow \int_S^R \omega_i.$
- When we can apply the Monsky-Washnitzer reduction: $\omega = \sum_{i=0}^{\deg(f)-2} \alpha_i \omega_i + du \implies \int_S^R \omega = \sum_{i=0}^{\deg(f)-2} \alpha_i \int_S^R \omega_i + u(R) u(S).$
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R \pmod{p}$.

- Sage implementation Balakrishnan: Hyperelliptic curves $y^2 = f(x)/\mathbb{Q}_p$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_i := \frac{x^i dx}{2y}$ for $0 \le i \le \deg(f) - 2 \rightsquigarrow \int_S^R \omega_i.$
- When we can apply the Monsky-Washnitzer reduction: $\omega = \sum_{i=0}^{\deg(f)-2} \alpha_i \omega_i + du \implies \int_S^R \omega = \sum_{i=0}^{\deg(f)-2} \alpha_i \int_S^R \omega_i + u(R) u(S).$
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R \pmod{p}$.
- Endpoints R, S satisfy $\operatorname{ord}_{\rho} y((R)) \ge 0$, $\operatorname{ord}_{\rho}(y(S)) \ge 0$.
- Magma implementation Balakrishnan-Tuitman: On fairly general curves, including plane curves.
- For $\omega \in H^1_{dR}(C/\mathbb{Q}_p) \rightsquigarrow \int_S^R \omega$.

- Sage implementation Balakrishnan: Hyperelliptic curves $y^2 = f(x)/\mathbb{Q}_p$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_i := \frac{x^i dx}{2y}$ for $0 \le i \le \deg(f) - 2 \rightsquigarrow \int_S^R \omega_i.$
- When we can apply the Monsky-Washnitzer reduction: $\omega = \sum_{i=0}^{\deg(f)-2} \alpha_i \omega_i + du \implies \int_S^R \omega = \sum_{i=0}^{\deg(f)-2} \alpha_i \int_S^R \omega_i + u(R) u(S).$
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R \pmod{p}$.
- Endpoints R, S satisfy $\operatorname{ord}_p y((R)) \ge 0$, $\operatorname{ord}_p(y(S)) \ge 0$.
- Magma implementation Balakrishnan-Tuitman: On fairly general curves, including plane curves.
- For $\omega \in \mathrm{H}^{1}_{\mathrm{dR}}(C/\mathbb{Q}_{p}) \rightsquigarrow \int_{S}^{R} \omega$.
- When possible, allows $\operatorname{ord}_{\rho}(y(R)) < 0$ or $\operatorname{ord}_{\rho}(y(S)) < 0$.

Local heights $h_p(D_1, D_2)$ setup

Assume that D₁, D₂ ∈ Div⁰(C) are pointwise Q_p-rational. To compute h_p(D₁, D₂) → compute h_p(P − Q, R − S) for fixed distinct points P, Q, R, S ∈ C(Q_p).

Local heights $h_p(D_1, D_2)$ setup

- Assume that D₁, D₂ ∈ Div⁰(C) are pointwise Q_p-rational. To compute h_p(D₁, D₂) → compute h_p(P − Q, R − S) for fixed distinct points P, Q, R, S ∈ C(Q_p).
- Assume from now on that $C: y^2 = f(x)$, with $f \in \mathbb{Z}_p[x]$ monic has good reduction.
- Let $\iota: C \to C$ denote the hyperelliptic involution.

Local heights $h_p(D_1, D_2)$ setup

- Assume that D₁, D₂ ∈ Div⁰(C) are pointwise Q_p-rational. To compute h_p(D₁, D₂) → compute h_p(P − Q, R − S) for fixed distinct points P, Q, R, S ∈ C(Q_p).
- Assume from now on that $C: y^2 = f(x)$, with $f \in \mathbb{Z}_p[x]$ monic has good reduction.
- Let $\iota: C \to C$ denote the hyperelliptic involution.
- Balakrishnan and Besser [BB]: Compute $h_p(P Q, R S)$ when $\deg(f)$ odd.
- We now recall [BB] algorithm.

(1) Reduce to computing $h_p(P - \iota(P), R - S)$.

(1) Reduce to computing $h_p(P - \iota(P), R - S)$.

(2) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute the map ψ , and especially $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute the map ψ , and especially $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute the map ψ , and especially $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.
- (5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega'$.

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute the map ψ , and especially $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.
- (5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega'$.
 - * Let $\alpha = \phi^* \omega' p\omega'$, $\mathcal{P} = \{ \text{Weierstrass points} \} \cup \{ \text{Poles of } \alpha \}$, $\beta : \text{Res}(\beta) = R - S$, and $I := \int_S^R \omega'$. Then

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute the map ψ , and especially $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.
- (5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega'$.
 - * Let $\alpha = \phi^* \omega' p\omega'$, $\mathcal{P} = \{ \text{Weierstrass points} \} \cup \{ \text{Poles of } \alpha \}$, $\beta : \text{Res}(\beta) = R - S$, and $I := \int_S^R \omega'$. Then

$$I = \frac{1}{1-p} \cdot \left(\psi(\alpha) \cup \psi(\beta) + \sum_{P \in \mathcal{P}} \operatorname{Res}_{P} \left(\alpha \int \beta \right) - \int_{\phi(S)}^{S} \omega - \int_{R}^{\phi(R)} \omega \right)$$

- (1) Reduce to computing $h_p(P \iota(P), R S)$.
- (2) Find one differential ω' such that $\operatorname{Res}(\omega') = P \iota(P)$.
- (3) Compute the map ψ , and especially $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
- (4) Obtain a holomorphic differential ω_h such that $\psi(\omega' \omega_h) \in W_p$.
- (5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega'$.
 - * Let $\alpha = \phi^* \omega' p\omega'$, $\mathcal{P} = \{ \text{Weierstrass points} \} \cup \{ \text{Poles of } \alpha \}$, $\beta : \text{Res}(\beta) = R - S$, and $I := \int_S^R \omega'$. Then

$$I = \frac{1}{1-p} \cdot \left(\psi(\alpha) \cup \psi(\beta) + \sum_{P \in \mathcal{P}} \operatorname{Res}_{P} \left(\alpha \int \beta \right) - \int_{\phi(S)}^{S} \omega - \int_{R}^{\phi(R)} \omega \right)$$

(6) Compute $h_p(P-Q, R-S) = \int_S^R \omega' - \int_S^R \omega_h$.

• Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.

- Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.
- We need to compute some quantities related only to the curve first:

- Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.
- We need to compute some quantities related only to the curve first:
- * a basis for $H^1_{dR}(C/\mathbb{Q}_p)$ or W_p ;

- Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.
- We need to compute some quantities related only to the curve first:
- * a basis for $H^1_{dR}(C/\mathbb{Q}_p)$ or W_p ;
- * cup product matrix CPM;

- Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.
- We need to compute some quantities related only to the curve first:
- * a basis for $H^1_{dR}(C/\mathbb{Q}_p)$ or W_p ;
- * cup product matrix CPM;
- * action of Frobenius (given by $\phi : x \mapsto x^p$) on $H^1_{dR}(C/\mathbb{Q}_p)$.

- Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.
- We need to compute some quantities related only to the curve first:
- * a basis for $H^1_{dR}(C/\mathbb{Q}_p)$ or W_p ;
- * cup product matrix CPM;
- * action of Frobenius (given by $\phi : x \mapsto x^p$) on $H^1_{dR}(C/\mathbb{Q}_p)$.
- We first mention these (pre)computations.
- We then proceed as explained on the previous slide.

- Today: all hyperelliptic curves over \mathbb{Q}_p of good reduction.
- We need to compute some quantities related only to the curve first:
- * a basis for $H^1_{dR}(C/\mathbb{Q}_p)$ or W_p ;
- * cup product matrix CPM;
- * action of Frobenius (given by $\phi : x \mapsto x^p$) on $H^1_{dR}(C/\mathbb{Q}_p)$.
- We first mention these (pre)computations.
- We then proceed as explained on the previous slide.
- For even degree, we have one more case when $\{P, Q\} = \{\infty_{-}, \infty_{+}\}$.
- The other steps depend on the nature of the points P and Q if they are affine or {P, Q} = {∞_-,∞_+}.
- We distinguish these two cases.

- (i) Extend $\eta_0 := \omega_0, \ldots, \eta_{g-1} := \omega_{g-1}$ to a basis of $H^1_{dR}(C/\mathbb{Q}_p)$.
 - * If deg(f) odd, take $\eta_i := \omega_i$ for $g \le i \le 2g 1$.
 - * If deg(f) even, for $g \le i \le 2g 1$, compute $c_i \in \mathbb{Q}_p$ such that, for $\eta_i := \omega_{i+1} c_i \omega_g$ has a residue = 0 at ∞_{\pm} .

- (i) Extend $\eta_0 := \omega_0, \ldots, \eta_{g-1} := \omega_{g-1}$ to a basis of $H^1_{dR}(C/\mathbb{Q}_p)$.
 - * If deg(f) odd, take $\eta_i := \omega_i$ for $g \le i \le 2g 1$.
 - * If deg(f) even, for $g \le i \le 2g 1$, compute $c_i \in \mathbb{Q}_p$ such that, for $\eta_i := \omega_{i+1} c_i \omega_g$ has a residue = 0 at ∞_{\pm} .
- (ii)* Compute the cup product matrix on C.
 - * It is given by $CPM = \left((\deg(f) 2g) \operatorname{Res}_{\infty/\infty_+} (\eta_j \int \eta_i) \right)_{i,j}$.

- (i) Extend $\eta_0 := \omega_0, \ldots, \eta_{g-1} := \omega_{g-1}$ to a basis of $H^1_{dR}(C/\mathbb{Q}_p)$.
 - * If deg(f) odd, take $\eta_i := \omega_i$ for $g \le i \le 2g 1$.
 - * If deg(f) even, for $g \le i \le 2g 1$, compute $c_i \in \mathbb{Q}_p$ such that, for $\eta_i := \omega_{i+1} c_i \omega_g$ has a residue = 0 at ∞_{\pm} .
- (ii)* Compute the cup product matrix on C.
 - * It is given by $CPM = \left((\deg(f) 2g) \operatorname{Res}_{\infty/\infty_+} (\eta_j \int \eta_i) \right)_{i,j}$.
- (iii) Compute the action of Frobenius Frob : $H^1_{dR}(C/\mathbb{Q}_p) \to H^1_{dR}(C/\mathbb{Q}_p)$.
 - * Harrison's variant of Kedlaya's algorithm and linear algebra.

- (i) Extend $\eta_0 := \omega_0, \ldots, \eta_{g-1} := \omega_{g-1}$ to a basis of $H^1_{dR}(C/\mathbb{Q}_p)$.
 - * If deg(f) odd, take $\eta_i := \omega_i$ for $g \le i \le 2g 1$.
 - * If deg(f) even, for $g \le i \le 2g 1$, compute $c_i \in \mathbb{Q}_p$ such that, for $\eta_i := \omega_{i+1} c_i \omega_g$ has a residue = 0 at ∞_{\pm} .
- (ii)* Compute the cup product matrix on C.
 - * It is given by $CPM = \left((\deg(f) 2g) \operatorname{Res}_{\infty/\infty_+} (\eta_j \int \eta_i) \right)_{i,j}$.
- (iii) Compute the action of Frobenius Frob : $H^1_{dR}(C/\mathbb{Q}_p) \to H^1_{dR}(C/\mathbb{Q}_p)$.
 - * Harrison's variant of Kedlaya's algorithm and linear algebra.
- (iv) Compute a basis of the unit root subspace W_p .
 - * [BB]: $\operatorname{Frob}^n(\eta_g), \ldots, \operatorname{Frob}^n(\eta_{2g-1})$ form a basis of W_p modulo p^n .
 - ** [BB] and our algorithm can work with other subspaces W_p .

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

(v) (NEW) Find one differential ω' such that $\operatorname{Res}(\omega') = \infty_{-} - \infty_{+}$.

* We can take $\omega' = 2\omega_g = \frac{x^g dx}{y}$.

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

(v) (NEW) Find one differential ω' such that $\operatorname{Res}(\omega') = \infty_{-} - \infty_{+}$.

- * We can take $\omega' = 2\omega_g = \frac{x^g dx}{y}$.
- (vi) (NEW) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.

* Define
$$\alpha = \phi^*(\omega') - p\omega'$$
.

* Then α is holomorphic at both ∞_{\pm} and α is of the second kind.

• We first consider $\{P, Q\} = \{\infty_{-}, \infty_{+}\}.$

(v) (NEW) Find one differential ω' such that $\operatorname{Res}(\omega') = \infty_{-} - \infty_{+}$.

- * We can take $\omega' = 2\omega_g = \frac{x^g dx}{y}$.
- (vi) (NEW) Compute $\psi(\omega')$ in $H^1_{dR}(C/\mathbb{Q}_p)$ -basis.
 - * Define $\alpha = \phi^*(\omega') p\omega'$.
 - * Then α is holomorphic at both ∞_{\pm} and α is of the second kind.
 - * Let $[\alpha] \in H^1_{dR}(C/\mathbb{Q}_p)$ be the class of α .
 - * Using Harrison's algorithm, write $\phi^* \omega_g = \sum_{i=0}^{2g} f_{0,i} \omega_i$ modulo exact differentials.

*
$$\Longrightarrow$$
 $[\alpha] = \left(2f_{0,g} \cdots 2f_{0,g-1} \quad 2f_{0,g+1} \cdots 2f_{0,2g}\right)^t$.

* We compute $\psi(\omega') = (\operatorname{Frob} - pI)^{-1}[\alpha]$.

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$.

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$.

* Rewrite

$$\psi(\omega') = u_0\eta_0 + \cdots + u_{g-1}\eta_{g-1} + u_g \operatorname{Frob}^n(\eta_g) + \cdots + u_{2g-1} \operatorname{Frob}^n(\eta_{2g-1}).$$

- * Then $\omega_h := u_0 \eta_0 + \dots + u_{g-1} \eta_{g-1}$.
- * If $\omega := \omega' \omega_h$, recall that $h_p(\infty_- \infty_+, R S) = \int_S^R \omega$.

Computation of $h_p(\infty_- - \infty_+, R - S)$

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$.

* Rewrite

 $\psi(\omega') = u_0\eta_0 + \cdots + u_{g-1}\eta_{g-1} + u_g \operatorname{Frob}^n(\eta_g) + \cdots + u_{2g-1} \operatorname{Frob}^n(\eta_{2g-1}).$

* Then
$$\omega_h := u_0 \eta_0 + \cdots + u_{g-1} \eta_{g-1}$$
.

* If
$$\omega := \omega' - \omega_h$$
, recall that $h_{\rho}(\infty_- - \infty_+, R - S) = \int_S^R \omega$.

(viii) Compute the third kind integral $\int_{S}^{R} \omega'$ and holomorphic integrals.

* Using Balakrishnan's algorithm for Coleman integration, we compute $\int_{S}^{R} \omega_{g}$, $u_{0} \int_{S}^{R} \omega_{0} + \cdots + u_{g-1} \int_{S}^{R} \omega_{g-1}$.

Computation of $h_p(\infty_- - \infty_+, R - S)$

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$.

* Rewrite

 $\psi(\omega') = u_0\eta_0 + \cdots + u_{g-1}\eta_{g-1} + u_g \operatorname{Frob}^n(\eta_g) + \cdots + u_{2g-1} \operatorname{Frob}^n(\eta_{2g-1}).$

* Then
$$\omega_h := u_0 \eta_0 + \cdots + u_{g-1} \eta_{g-1}$$
.

* If
$$\omega := \omega' - \omega_h$$
, recall that $h_{\rho}(\infty_- - \infty_+, R - S) = \int_S^R \omega$.

(viii) Compute the third kind integral $\int_{S}^{R} \omega'$ and holomorphic integrals.

- * Using Balakrishnan's algorithm for Coleman integration, we compute $\int_{S}^{R} \omega_{g}$, $u_{0} \int_{S}^{R} \omega_{0} + \cdots + u_{g-1} \int_{S}^{R} \omega_{g-1}$.
- We require that R and S are points in affine residue discs.

Computation of $h_p(P-Q, R-S)$ - affine points

• Now, P and Q are affine points.

Computation of $h_p(P-Q, R-S)$ - affine points

• Now, P and Q are affine points.

• Note div
$$\left(\frac{x-x(P)}{x-x(Q)}\right) = P + \iota(P) - Q - \iota(Q).$$

• Rewrite
$$P - Q = \frac{1}{2} \operatorname{div} \left(\frac{x - x(P)}{x - x(Q)} \right) + \frac{1}{2} (P - \iota(P)) - \frac{1}{2} (Q - \iota(Q)).$$

Computation of $h_p(P-Q, R-S)$ - affine points

• Now, P and Q are affine points.

• Note div
$$\left(\frac{x-x(P)}{x-x(Q)}\right) = P + \iota(P) - Q - \iota(Q).$$

• Rewrite
$$P - Q = \frac{1}{2} \operatorname{div} \left(\frac{x - x(P)}{x - x(Q)} \right) + \frac{1}{2} (P - \iota(P)) - \frac{1}{2} (Q - \iota(Q)).$$

•
$$\implies h_p(P-Q,R-S) = \frac{1}{2} \log_p \left(\frac{x(R) - x(P)}{x(R) - x(Q)} \frac{x(S) - x(Q)}{x(S) - x(R)} \right) + \frac{1}{2} h_p(P-\iota(P),R-S) - \frac{1}{2} h_p(Q-\iota(Q),R-S).$$

Computation of $h_{\rho}(P-Q, R-S)$ - affine points

• Now, P and Q are affine points.

• Note div
$$\left(\frac{x-x(P)}{x-x(Q)}\right) = P + \iota(P) - Q - \iota(Q).$$

• Rewrite
$$P - Q = \frac{1}{2} \operatorname{div} \left(\frac{x - x(P)}{x - x(Q)} \right) + \frac{1}{2} (P - \iota(P)) - \frac{1}{2} (Q - \iota(Q)).$$

•
$$\implies h_p(P-Q, R-S) = \frac{1}{2} \log_p \left(\frac{x(R) - x(P)}{x(R) - x(Q)} \frac{x(S) - x(Q)}{x(S) - x(R)} \right) + \frac{1}{2} h_p(P - \iota(P), R-S) - \frac{1}{2} h_p(Q - \iota(Q), R-S).$$

• From now on, we compute $h_p(P - \iota(P), R - S)$.

Computation of $h_{\rho}(P-Q, R-S)$ - affine points

• Now, P and Q are affine points.

• Note div
$$\left(\frac{x-x(P)}{x-x(Q)}\right) = P + \iota(P) - Q - \iota(Q).$$

• Rewrite
$$P - Q = \frac{1}{2} \operatorname{div} \left(\frac{x - x(P)}{x - x(Q)} \right) + \frac{1}{2} (P - \iota(P)) - \frac{1}{2} (Q - \iota(Q)).$$

•
$$\implies h_p(P-Q, R-S) = \frac{1}{2} \log_p \left(\frac{x(R) - x(P)}{x(R) - x(Q)} \frac{x(S) - x(Q)}{x(S) - x(R)} \right) + \frac{1}{2} h_p(P - \iota(P), R - S) - \frac{1}{2} h_p(Q - \iota(Q), R - S).$$

• From now on, we compute $h_p(P - \iota(P), R - S)$.

(v) Find one differential ω' such that $\operatorname{Res}(\omega') = P - \iota(P)$.

• For
$$\omega' = \frac{y(P)}{x - x(P)} \frac{dx}{y}$$
, we have $\operatorname{Res}(\omega') = P - \iota(P)$.

(vi) Compute $\psi(\omega') = \sum_{i=0}^{2g-1} u_i \eta_i$ - use the cup product and Besser's formula

$$\psi(\omega') \cup [\eta_j] = -\int_{\iota(P)}^P \eta_j - (\operatorname{deg}(f) - 2g)\operatorname{Res}_{\infty/\infty_+}\left(\omega'\int \eta_j\right).$$

 $\bullet\,$ Here we use, if η is holomorphic at poles of ω

$$\sum_{P \in \operatorname{Res}(\omega)} \operatorname{Res}_P\left(\omega \int \eta\right) = \int_{\operatorname{Res}(\omega)} \eta$$

• This is a way how [BB] compute integrals of differentials in $T(\mathbb{Q}_p)$.

(vi) Compute $\psi(\omega') = \sum_{i=0}^{2g-1} u_i \eta_i$ - use the cup product and Besser's formula

$$\psi(\omega') \cup [\eta_j] = -\int_{\iota(P)}^P \eta_j - (\operatorname{deg}(f) - 2g)\operatorname{Res}_{\infty/\infty_+}\left(\omega'\int \eta_j\right).$$

 $\bullet\,$ Here we use, if η is holomorphic at poles of ω

$$\sum_{P \in \mathsf{Res}(\omega)} \mathsf{Res}_P\left(\omega \int \eta\right) = \int_{\mathsf{Res}(\omega)} \eta$$

- This is a way how [BB] compute integrals of differentials in $T(\mathbb{Q}_p)$.
- (NEW) In both even and odd case: $\operatorname{Res}_{\infty/\infty_+}(\omega' \int \eta_j) = 0!$
- This is also a computational improvement w.r.t. [BB]. $\implies \begin{pmatrix} u_0 & u_1 & \cdots & u_{2g-1} \end{pmatrix}^t = -CPM^{-1} \left(-\int_{\iota(P)}^{P} \eta_0 & -\int_{\iota(P)}^{P} \eta_1 & \cdots & -\int_{\iota(P)}^{P} \eta_{2g-1} \right)^t.$

Stevan Gajović

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$ - as before.

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$ - as before. (viii) (NEW) Compute $\int_S^R \omega' = \int_S^R \frac{y(P)}{x - x(P)} \frac{dx}{y}$.

• Use a change of variables

$$\tau: C \to C': y'^2 = \frac{1}{y(P)^2} x'^{2g+2} f\left(x(P) + \frac{1}{x'}\right)$$
$$(x, y) \mapsto (x', y') := \left(\frac{1}{x - x(P)}, \frac{-y}{y(P)(x - x(P))^{g+1}}\right).$$

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$ - as before. (viii) (NEW) Compute $\int_S^R \omega' = \int_S^R \frac{y(P)}{x - x(P)} \frac{dx}{y}$.

• Use a change of variables

$$\tau: C \to C': y'^2 = \frac{1}{y(P)^2} x'^{2g+2} f\left(x(P) + \frac{1}{x'}\right)$$
$$(x, y) \mapsto (x', y') := \left(\frac{1}{x - x(P)}, \frac{-y}{y(P)(x - x(P))^{g+1}}\right).$$

$$\implies \int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y} = \int_{\tau(S)}^{\tau(R)} \frac{x'^{g} dx'}{y'}$$

(vii) Find holomorphic ω_h such that $\psi(\omega' - \omega_h) \in W_p$ - as before. (viii) (NEW) Compute $\int_S^R \omega' = \int_S^R \frac{y(P)}{x - x(P)} \frac{dx}{y}$.

• Use a change of variables

$$\tau: C \to C': y'^2 = \frac{1}{y(P)^2} x'^{2g+2} f\left(x(P) + \frac{1}{x'}\right)$$
$$(x, y) \mapsto (x', y') := \left(\frac{1}{x - x(P)}, \frac{-y}{y(P)(x - x(P))^{g+1}}\right).$$

$$\implies \int_{S}^{R} \frac{y(P)}{x - x(P)} \frac{dx}{y} = \int_{\tau(S)}^{\tau(R)} \frac{x'^{g} dx'}{y'}$$

• $\frac{x'^{g}dx'}{y'}$ is a basis MW-differential on $C' \implies \int_{\tau(S)}^{\tau(R)} \frac{x'^{g}dx'}{y'}$ computed directly (and quickly) by Balakrishnan's algorithm.

Computation of $h_p(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have $h_p(P \iota(P), R S) = h_p(\infty_- \infty_+, \tau(R) \tau(S)).$
- \implies It suffices to compute heights of the type $h_p(\infty_- \infty_+, R S)!$

Computation of $h_{\rho}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have $h_p(P \iota(P), R S) = h_p(\infty_- \infty_+, \tau(R) \tau(S)).$
- \implies It suffices to compute heights of the type $h_p(\infty_- \infty_+, R S)!$
- If $\operatorname{ord}_p(y(R)) < 0$ or $\operatorname{ord}_p(y(S)) < 0$, we cannot compute $\int_S^R \frac{x^g dx}{y}$ in Sage, neither any of $\int_S^R \omega_i$.
- General condition for our algorithm in Sage: $p \nmid (x(P) - x(R))(x(P) - x(S))(x(Q) - x(R))(x(Q) - x(S)).$

Computation of $h_{\rho}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have $h_p(P \iota(P), R S) = h_p(\infty_- \infty_+, \tau(R) \tau(S)).$
- \implies It suffices to compute heights of the type $h_p(\infty_- \infty_+, R S)!$
- If $\operatorname{ord}_p(y(R)) < 0$ or $\operatorname{ord}_p(y(S)) < 0$, we cannot compute $\int_S^R \frac{x^{\varepsilon} dx}{y}$ in Sage, neither any of $\int_S^R \omega_i$.
- General condition for our algorithm in Sage: $p \nmid (x(P) - x(R))(x(P) - x(S))(x(Q) - x(R))(x(Q) - x(S)).$
- We can try in Magma: Let $\alpha = \phi^*(\frac{x^g dx}{y}) p \frac{x^g dx}{y}$.

$$\implies \int_{S}^{R} \frac{x^{g} dx}{y} = \frac{1}{1-p} \left(\int_{S}^{R} \alpha - \int_{\phi(S)}^{S} \frac{x^{g} dx}{y} - \int_{R}^{\phi(R)} \frac{x^{g} dx}{y} \right)$$

Computation of $h_{\rho}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have $h_p(P \iota(P), R S) = h_p(\infty_- \infty_+, \tau(R) \tau(S)).$
- \implies It suffices to compute heights of the type $h_p(\infty_- \infty_+, R S)!$
- If $\operatorname{ord}_p(y(R)) < 0$ or $\operatorname{ord}_p(y(S)) < 0$, we cannot compute $\int_S^R \frac{x^{\varepsilon} dx}{y}$ in Sage, neither any of $\int_S^R \omega_i$.
- General condition for our algorithm in Sage: $p \nmid (x(P) - x(R))(x(P) - x(S))(x(Q) - x(R))(x(Q) - x(S)).$
- We can try in Magma: Let $\alpha = \phi^*(\frac{x^g dx}{y}) p \frac{x^g dx}{y}$.

$$\implies \int_{S}^{R} \frac{x^{g} dx}{y} = \frac{1}{1-p} \left(\int_{S}^{R} \alpha - \int_{\phi(S)}^{S} \frac{x^{g} dx}{y} - \int_{R}^{\phi(R)} \frac{x^{g} dx}{y} \right)$$

• Maximal condition (still theoretic): $\{P, Q\} \cap \{R, \iota(R), S, \iota(S)\} = \emptyset$.

• Our algorithm is significantly simpler and faster than [BB].

- Our algorithm is significantly simpler and faster than [BB].
- It is slightly more restrictive, but in practice causes no problems.

- Our algorithm is significantly simpler and faster than [BB].
- It is slightly more restrictive, but in practice causes no problems.
- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.

- Our algorithm is significantly simpler and faster than [BB].
- It is slightly more restrictive, but in practice causes no problems.
- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.
- We compare the timings and success of our and [BB] algorithm in several examples.

Genus of a curve	р	Precision	Our time	[BB] time
2	7	10	2s	9s
2	7	300	14min	infeasible
2	503	10	5min	infeasible
3	11	10	7s	37s
4	23	20	3min	64min
17	11	7	18min	infeasible

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee}$.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee}$.
- Idea: Write $h(E, D) = \sum_{1 \le i, j \le g} \alpha_{i,j} \int_D \omega_i \int_E \omega_j$.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee}$.
- Idea: Write $h(E, D) = \sum_{1 \le i, j \le g} \alpha_{i,j} \int_D \omega_i \int_E \omega_j$.
- Idea: Use these relations and "bound" the heights away from *p* to extract rational or integral points on curves.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee}$.
- Idea: Write $h(E, D) = \sum_{1 \le i, j \le g} \alpha_{i,j} \int_D \omega_i \int_E \omega_j$.
- Idea: Use these relations and "bound" the heights away from *p* to extract rational or integral points on curves.

Quadratic Chabauty for rational points example

- Consider $X_0^+(107)$: $y^2 = x^6 + 2x^5 + 5x^4 + 2x^3 2x^2 4x 3$.
- Balakrishnan, Dogra, Müller, Tuitman, Vonk computed X₀⁺(107)(ℚ) using p = 61 → 40 minutes.
- They needed an odd model over \mathbb{Q}_p and certain conditions on p.

- X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its Jacobian whose rank over Q is r = g.
- Assume that $\int_D \omega_0, \ldots, \int_D \omega_{g-1} \colon J(\mathbb{Q}) \otimes \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$ form a basis of $(J(\mathbb{Q}) \otimes \mathbb{Q}_p)^{\vee}$.
- Idea: Write $h(E, D) = \sum_{1 \le i, j \le g} \alpha_{i,j} \int_D \omega_i \int_E \omega_j$.
- Idea: Use these relations and "bound" the heights away from *p* to extract rational or integral points on curves.

Quadratic Chabauty for rational points example

- Consider $X_0^+(107)$: $y^2 = x^6 + 2x^5 + 5x^4 + 2x^3 2x^2 4x 3$.
- Balakrishnan, Dogra, Müller, Tuitman, Vonk computed X₀⁺(107)(ℚ) using p = 61 → 40 minutes.
- They needed an odd model over \mathbb{Q}_p and certain conditions on p.
- Now, one can use $p = 7 \rightsquigarrow 47$ seconds.

- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$. Then (important assumption!) $\infty_{\pm} \in X(\mathbb{Q})$. Denote $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.
- Write $h(D_{\infty}, D) = \sum_{i=0}^{g-1} \alpha_i \int_D \omega_i$, for some $\alpha_i \in \mathbb{Q}_p$.

- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$. Then (important assumption!) $\infty_{\pm} \in X(\mathbb{Q})$. Denote $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.
- Write $h(D_{\infty}, D) = \sum_{i=0}^{g-1} \alpha_i \int_D \omega_i$, for some $\alpha_i \in \mathbb{Q}_p$.
- $X(\mathbb{Z}) :=$ integral points on X.
- Assume $Q \in X(\mathbb{Z})$. Consider $\rho_Q \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_Q(P) := \sum_{i=0}^{g-1} \alpha_i \int_Q^P \omega_i - h_P(D_\infty, P - Q) = \sum_{i=0}^{g-1} \alpha_i \int_Q^P \omega_i - \int_Q^P \omega_\infty,$$

- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$. Then (important assumption!) $\infty_{\pm} \in X(\mathbb{Q})$. Denote $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.
- Write $h(D_{\infty}, D) = \sum_{i=0}^{g-1} \alpha_i \int_D \omega_i$, for some $\alpha_i \in \mathbb{Q}_p$.
- $X(\mathbb{Z}) :=$ integral points on X.
- Assume $Q \in X(\mathbb{Z})$. Consider $\rho_Q \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_Q(P) := \sum_{i=0}^{g-1} \alpha_i \int_Q^P \omega_i - h_p(D_\infty, P - Q) = \sum_{i=0}^{g-1} \alpha_i \int_Q^P \omega_i - \int_Q^P \omega_\infty,$$

- ρ_Q is a locally analytic function.
- If $P \in X(\mathbb{Q})$, $\rho_Q(P) = \sum_{q \neq p} h_q(D_\infty, P Q)$.

- Let X/\mathbb{Q} : $y^2 = f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\deg(f) = 2g + 2$. Then (important assumption!) $\infty_{\pm} \in X(\mathbb{Q})$. Denote $D_{\infty} \coloneqq [\infty_{-} \infty_{+}]$.
- Write $h(D_{\infty}, D) = \sum_{i=0}^{g-1} \alpha_i \int_D \omega_i$, for some $\alpha_i \in \mathbb{Q}_p$.
- $X(\mathbb{Z}) :=$ integral points on X.
- Assume $Q \in X(\mathbb{Z})$. Consider $\rho_Q \colon X(\mathbb{Q}_p) \longrightarrow \mathbb{Q}_p$

$$\rho_Q(P) := \sum_{i=0}^{g-1} \alpha_i \int_Q^P \omega_i - h_p(D_\infty, P - Q) = \sum_{i=0}^{g-1} \alpha_i \int_Q^P \omega_i - \int_Q^P \omega_\infty,$$

- ρ_Q is a locally analytic function.
- If $P \in X(\mathbb{Q})$, $\rho_Q(P) = \sum_{q \neq p} h_q(D_\infty, P Q)$.
- Intersection theory $\implies \forall P, Q \in X(\mathbb{Z}_q), h_q(\infty_- \infty_+, P Q) \in T, T$ finite for all $q \neq p$; $T = \{0\}$ for almost all (including good) primes.

•
$$\implies \rho_Q(X(\mathbb{Z}))$$
 is a finite and computable set

 Let A/Q be modular abelian variety of GL₂-type, with good ordinary reduction at a prime p and the Mordell–Weil rank r.

- Let A/Q be modular abelian variety of GL₂-type, with good ordinary reduction at a prime p and the Mordell−Weil rank r.
- *p*-adic BSD: relates rank *r*, values of *p*-adic *L*-functions, *p*-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich–Tate group, cardinality of the torsion, and regulator.

- Let A/Q be modular abelian variety of GL₂-type, with good ordinary reduction at a prime p and the Mordell−Weil rank r.
- *p*-adic BSD: relates rank *r*, values of *p*-adic *L*-functions, *p*-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich–Tate group, cardinality of the torsion, and regulator.

• Example:
$$X_0^+(67) = X : y^2 = x^6 + 4x^5 + 2x^4 + 2x^3 + x^2 - 2x + 1.$$

• A = Jacobian of X. Then $A(\mathbb{Q}) = \langle D_1, D_2 \rangle$, where $D_1 = (0, 1) - \infty_$ and $D_2 = (0, 1) - (0, -1)$.

- Let A/Q be modular abelian variety of GL₂-type, with good ordinary reduction at a prime p and the Mordell−Weil rank r.
- *p*-adic BSD: relates rank *r*, values of *p*-adic *L*-functions, *p*-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich–Tate group, cardinality of the torsion, and regulator.

• Example:
$$X_0^+(67) = X : y^2 = x^6 + 4x^5 + 2x^4 + 2x^3 + x^2 - 2x + 1.$$

- A = Jacobian of X. Then $A(\mathbb{Q}) = \langle D_1, D_2 \rangle$, where $D_1 = (0, 1) \infty_$ and $D_2 = (0, 1) - (0, -1)$.
- Regulator at p = 11: Reg₁₁(A/\mathbb{Q}) = $h(D_1, D_1)h(D_2, D_2) - h(D_1, D_2)^2$.

- Let A/Q be modular abelian variety of GL₂-type, with good ordinary reduction at a prime p and the Mordell−Weil rank r.
- *p*-adic BSD: relates rank *r*, values of *p*-adic *L*-functions, *p*-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich–Tate group, cardinality of the torsion, and regulator.

• Example:
$$X_0^+(67) = X : y^2 = x^6 + 4x^5 + 2x^4 + 2x^3 + x^2 - 2x + 1.$$

- A = Jacobian of X. Then $A(\mathbb{Q}) = \langle D_1, D_2 \rangle$, where $D_1 = (0, 1) \infty_$ and $D_2 = (0, 1) - (0, -1)$.
- Regulator at p = 11: Reg₁₁(A/\mathbb{Q}) = $h(D_1, D_1)h(D_2, D_2) - h(D_1, D_2)^2$.
- We need suitable multiples of D_1 and D_2 whose representatives are of the shape $P + Q R \iota(R)$ and disjoint, and satisfy the condition for our algorithm. Works in practice!

The end

Thank you for your attention!

Question

Any questions?