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p-adic heights

Goals today:

@ Introduce p-adic heights on Jacobians of curves.

Briefly mention local p-adic heights away from p.

@ Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.

Distinguish two important cases on even degree hyperelliptic curves.
Key feature: Reduce to computing Coleman integrals of basis
differentials.

Applications:

@ Quadratic Chabauty for rational points on hyperelliptic curves.
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p-adic heights

Goals today:

@ Introduce p-adic heights on Jacobians of curves.

Briefly mention local p-adic heights away from p.

@ Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.

Distinguish two important cases on even degree hyperelliptic curves.
Key feature: Reduce to computing Coleman integrals of basis
differentials.

Applications:

@ Quadratic Chabauty for rational points on hyperelliptic curves.
@ Quadratic Chabauty for integral points on even degree hyperelliptic
curves.
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Briefly mention local p-adic heights away from p.

@ Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.

Distinguish two important cases on even degree hyperelliptic curves.
Key feature: Reduce to computing Coleman integrals of basis
differentials.

Applications:

@ Quadratic Chabauty for rational points on hyperelliptic curves.

@ Quadratic Chabauty for integral points on even degree hyperelliptic
curves.

@ Numerically test p-adic BSD.
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p-adic heights

Goals today:

@ Introduce p-adic heights on Jacobians of curves.

Briefly mention local p-adic heights away from p.

@ Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.

Distinguish two important cases on even degree hyperelliptic curves.
Key feature: Reduce to computing Coleman integrals of basis
differentials.

Applications:

@ Quadratic Chabauty for rational points on hyperelliptic curves.

@ Quadratic Chabauty for integral points on even degree hyperelliptic
curves.

@ Numerically test p-adic BSD.

e Other applications or ideas? Feel free to contact Steffen and me! :)

v
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Introduction to p-adic heights

@ Bilinear pairing (or quadratic form) defined on abelian varieties.
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Introduction to p-adic heights

@ Bilinear pairing (or quadratic form) defined on abelian varieties.
@ First constructions: Schneider, Mazur-Tate.

@ More general: Nekovar.

X /Q = nice curve curve of genus g > 0, with good reduction at p,
and J/Q = its Jacobian

e Works also for number fields K/Q.

Coleman-Gross: p-adic heights on J.
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Coleman-Gross (CG) p-adic heights

@ p-adic height: bilinear map

hi= Y hg:J(Q)xJQ)— Q.

q finite prime
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Coleman-Gross (CG) p-adic heights

@ p-adic height: bilinear map
h:i=" > hg:JQ)x JQ) = Qp.

q finite prime

e For a prime number g, denote X, := X ® Qq.

@ For each prime g € Z, define local heights

hq(D1, Dy), for Dy, Dy € DVO(X,).
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Coleman-Gross (CG) p-adic heights

@ p-adic height: bilinear map

hi= Y hg:J(Q)xJQ)— Q.

q finite prime

e For a prime number g, denote X, := X ® Qq.

For each prime g € Z, define local heights

hq(D1, Dy), for Dy, Dy € DVO(X,).

Distinguish hq for g # p and h, (x).

hq for q # p: intersection multiplicities.

@ hp: Coleman integral of a non-holomorphic differential.
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Technicalities

@ p-adic height depends on (and we fix it):
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Technicalities

@ p-adic height depends on (and we fix it):

a) A continuous idéle class character £: Af,/Q — Q, with certain
Q P
technical conditions.

* Technical conditions: For Q, ¢, be extended to be the Iwasawa
branch log,, : Q; — Q, of the p-adic logarithm log,(p) = 0.
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Technicalities

@ p-adic height depends on (and we fix it):

a) A continuous idéle class character £: Af,/Q — Q, with certain
Q P
technical conditions.

* Technical conditions: For Q, ¢, be extended to be the Iwasawa
branch log,, : Q; — Q, of the p-adic logarithm log,(p) = 0.

(b) A choice of a subspace W, C H}x(X,/Qp) complementary to the
space of holomorphic forms Hclj’F?(Xp/(@p).

* Write Hz(X,/Qp) = HX(X,/Q,) & W,.
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Heights away from p

Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:
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Heights away from p

Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:
(1) defined for all D1, Dy € DivP(X,) with disjoint support;
(2) bi-additive, continuous, and symmetric;
3)

(3) for all f € Qp(Xy)* (when defined): hq(div(f), D2) = log,(f(D2)).

o X,/Qq = regular model of X, with (— - —) = (Q-valued) intersection
multiplicity on Xj.

e Dy, Dy = extensions of Dy, D> to X such that (D; - V) = 0 for all
vertical divisors V on Aj.

Stevan Gajovié¢ 29/06/2023 6/26



Heights away from p

Theorem (Local heights for g # p)

o There exists a unique function hq(D1, D>) taking values in Qp:
(1) defined for all D1, Dy € DivP(X,) with disjoint support;
(2) bi-additive, continuous, and symmetric;
)

(3) for all f € Qp(Xy)* (when defined): hq(div(f), D2) = log,(f(D2)).

o X,/Qq = regular model of X, with (— - —) = (Q-valued) intersection
multiplicity on Xj.

e Dy, Dy = extensions of Dy, D> to X such that (D; - V) = 0 for all
vertical divisors V on Aj.

Construction of h,

hq(D1, D2) = log,(q) - (D1 - D2).

@ van Bommel-Holmes-Miiller's algorithm: Compute hq.
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Introduction to local p-adic heights at p

Construction of h,

The local height hy(D1, D>) is a Coleman integral sz wp,, for a certain
differential of the third kind wp, depending on D;.
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Introduction to local p-adic heights at p

Construction of h,

The local height hy(D1, D;) is a Coleman integral sz wp,, for a certain
differential of the third kind wp, depending on D;.

| A\,

Third kind meromorphic differentials

w is of the third kind if it is holomorphic except possibly at finitely many
points and it has at most simple poles with residues in Z.

@ Denote T(Qp) := {the third kind differentials on Xp}.
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Introduction to local p-adic heights at p

Construction of h,

The local height hy(D1, D;) is a Coleman integral sz wp,, for a certain
differential of the third kind wp, depending on D;.

Third kind meromorphic differentials

| A\

w is of the third kind if it is holomorphic except possibly at finitely many
points and it has at most simple poles with residues in Z.

@ Denote T(Qp) := {the third kind differentials on Xp}.
o The residue divisor homomorphism T(Q,) — Div(Xy) is given by

Res(w) = Z Resp(w)P.
PeXp

@ Res surjective, but not injective (Res(holomorphic differentials) = 0).
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Introduction to local p-adic heights at p

Construction of h,

The local height hy(D1, D;) is a Coleman integral sz wp,, for a certain
differential of the third kind wp, depending on D;.

Third kind meromorphic differentials

| A\

w is of the third kind if it is holomorphic except possibly at finitely many
points and it has at most simple poles with residues in Z.

@ Denote T(Qp) := {the third kind differentials on Xp}.
o The residue divisor homomorphism T(Q,) — Div(Xy) is given by
Res(w) = Z Resp(w)P.

PeXp
@ Res surjective, but not injective (Res(holomorphic differentials) = 0).

e Want wp, to be such that Res(wp,) = Di. This choice is not unique!
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Introduction to local p-adic heights at p

Second kind meromorphic differentials

w is of the second kind if all of its residues are 0.

o Hlz(X,/Qp) ~ {differentials of the second kind}/{df : f € Qp(X)*}.

o Recall: Hi(Xp/Qp) = Ha (Xp/Qp) & W
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Introduction to local p-adic heights at p

Second kind meromorphic differentials

w is of the second kind if all of its residues are 0.

o Hlz(X,/Qp) ~ {differentials of the second kind}/{df : f € Qp(X)*}.
o Recall: Hig(Xp/Qp) = Har (Xo/Qp) © W

@ 3 homomorphism “projection” 1)
1 : {meromorphic differentials on X,} — Hir(X,/Qp)
with many useful properties.

@ Projection: if « is of the second kind, then ¥(«a) = [a].
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Introduction to local p-adic heights at p

Second kind meromorphic differentials

w is of the second kind if all of its residues are 0.

o Hlz(X,/Qp) ~ {differentials of the second kind}/{df : f € Qp(X)*}.
o Recall: Hir(Xp/Qp) = Hir (Xp/Qp) & W,
@ 3 homomorphism “projection” 1)
1 : {meromorphic differentials on X,} — Hir(X,/Qp)
with many useful properties.
@ Projection: if « is of the second kind, then ¥(«a) = [a].
o = D e DiV%(X,) ~ unique wp € T(Qp) such that
Res(wp) = D and ¢(wp) € Wp.

@ From now on, fix the notation wp.
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Introduction to local p-adic heights at p

Definition of h,

Let D1, D> € DivP(X,) with disjoint support. The local p-adic height
pairing at p is given by hp(D1, Do) := sz wp; -
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Definition of h,

Let D1, D> € DivP(X,) with disjoint support. The local p-adic height
pairing at p is given by hp(D1, Do) := sz wp; -

@ Properties of hp:
* hp(D1, D) is continuous and bi-additive.
* hp(div(f), D2) = log,(f(D2)).

* h, is symmetric if and only if W, C H:(X,/Q),) is isotropic with
respect to the cup product pairing.
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Introduction to local p-adic heights at p

Definition of h,

Let D1, D> € DivP(X,) with disjoint support. The local p-adic height
pairing at p is given by hy(D1, D2) := [p, wp;.

@ Properties of hp:
* hp(D1, D) is continuous and bi-additive.
* hp(div(f), D2) = log,(f(D2)).

* h, is symmetric if and only if W, C H:(X,/Q),) is isotropic with
respect to the cup product pairing.

* Independent of a model of X, under reasonable technical conditions.
* Independent: 7: C — ('
hP(T*(D1)77—*(D2))on c = hp(Dlv D2)on C-
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Introduction to local p-adic heights at p

@ The cup product pairing HéR(Xp/Qp) X HéR(Xp/Qp) — Qp:

(s bal) > ] U el = 3 Resp (12 [ ).

PEX,

Stevan Gajovié 29/06,/2023 10 /26



Introduction to local p-adic heights at p

@ The cup product pairing HéR(Xp/Qp) X HéR(Xp/Qp) — Qp:

(s bal) > ] U el = 3 Resp (12 [ ).

PEX,

o (Besser) 1(w) Ut(p) = — Spex, Resp (w [ p).
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Introduction to local p-adic heights at p

@ The cup product pairing HéR(Xp/Qp) X HéR(Xp/Qp) — Qp:

(s bal) > ] U el = 3 Resp (12 [ ).

PEX,

o (Besser) () Uth(p) = — Ypex, Resp (w [ ).
o Always ~» a symplectic basis (Ko, ..., kog—1): ki UKj = £0j25-1—,

where (ko, ..., kg1) = Hig(Xp/Qp).

o We can take W, = (Kg, ..., K2g—1).
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Introduction to local p-adic heights at p

@ The cup product pairing HéR(Xp/Qp) X HéR(Xp/QP) — Qp:

(s bal) > ] U el = 3 Resp (12 [ ).

PEX,

(Besser) () Ut(p) = — Ypex, Resp (w [ p).
Always ~+ a symplectic basis (Ko, ..., Kkog—1): ki UKj = £0j 21—,

where (kg, ..., Kg—1) = H(lj’Fg(Xp/@p)-

o We can take W, = (Kg, ..., K2g—1).

When C := X, has good ordinary reduction, we can take
W, := the unit root subspace, assume from now on.

Both choices implemented in Sage, we talk about the second one.
The difference is just some linear algebra.
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Coleman integration in Sage and Magma

@ Sage implementation - Balakrishnan: Hyperelliptic curves
y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):
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Coleman integration in Sage and Magma

@ Sage implementation - Balakrishnan: Hyperelliptic curves
y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):

@ Monsky-Washnitzer basis differentials w; := X;% for
0<i<deg(f) ~ 2~ [§uw.

@ When we can apply the Monsky-Washnitzer reduction: w =
Z,i%(f)_z ajw; + du = fSRw = Z?i%(f)_2 a; f_f wi + u(R) — u(S).

e Tiny integrals fSR w, where S = R (mod p).
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Coleman integration in Sage and Magma

@ Sage implementation - Balakrishnan: Hyperelliptic curves
y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):

@ Monsky-Washnitzer basis differentials w; := X;% for
0<i<deg(f) ~ 2~ [§uw.

@ When we can apply the Monsky-Washnitzer reduction: w =
Z,i%(f)_z ajw; + du = fSRw = Z?i%(f)_2 a; f_f wi + u(R) — u(S).

e Tiny integrals fSR w, where S = R (mod p).
e Endpoints R, S satisfy ord, y((R)) > 0, ord,(y(S)) > 0.

@ Magma implementation Balakrishnan-Tuitman: On fairly general
curves, including plane curves.

o For w e HIz(C/Qp) ~ [&w.
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Coleman integration in Sage and Magma

@ Sage implementation - Balakrishnan: Hyperelliptic curves
y? = f(x)/Q, (WARNING: Sage sees only one point at infinity!):

@ Monsky-Washnitzer basis differentials w; := X;% for
0<i<deg(f) ~ 2~ [§uw.

@ When we can apply the Monsky-Washnitzer reduction: w =
Z,i%(f)_z ajw; + du = fSRw = Z?i%(f)_2 a; f_f wi + u(R) — u(S).

e Tiny integrals fSR w, where S = R (mod p).
e Endpoints R, S satisfy ord, y((R)) > 0, ord,(y(S)) > 0.

@ Magma implementation Balakrishnan-Tuitman: On fairly general
curves, including plane curves.

o For w e HIz(C/Qp) ~ [&w.
@ When possible, allows ord,(y(R)) < 0 or ord,(y(S)) < 0.
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational. To
compute hy(D1, Dy) ~» compute h,(P — Q, R — S) for fixed distinct
points P, Q, R, S € C(Qp).
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational. To
compute hy(D1, Dy) ~» compute h,(P — Q, R — S) for fixed distinct
points P, Q, R, S € C(Qp).

@ Assume from now on that C: y? = f(x), with f € Z,[x] monic has
good reduction.

@ Let v: C — C denote the hyperelliptic involution.
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Local heights h,(D1, Dy) setup

o Assume that Dy, D, € Div?(C) are pointwise Q,-rational. To
compute hy(D1, Dy) ~» compute h,(P — Q, R — S) for fixed distinct
points P, Q, R, S € C(Qp).

@ Assume from now on that C: y? = f(x), with f € Z,[x] monic has
good reduction.

@ Let v: C — C denote the hyperelliptic involution.

e Balakrishnan and Besser [BB]: Compute h,(P — Q, R — S) when
deg(f) odd.

@ We now recall [BB] algorithm.
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).
(2) Find one differential w’ such that Res(w’) = P — «(P).
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).
(2) Find one differential w’ such that Res(w’) = P — «(P).
(3) Compute the map %, and especially 1(w’) in Hiz(C/Q),)-basis.
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[BB] algorithm

Reduce to computing h,(P — «(P),R — S).

Find one differential w’ such that Res(w’) = P — «(P).

1
2

3

(1)
(2)
(3) Compute the map %, and especially 1(w’) in Hiz(C/Q),)-basis.
(4)

4) Obtain a holomorphic differential wy, such that ¢(w' — wp) € Wp.
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).

(2) Find one differential w’ such that Res(w’) = P — «(P).

(3) Compute the map %, and especially 1(w’) in Hiz(C/Q),)-basis.
(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
(5)

5) Compute the Coleman integral of the third kind differential f_f W'
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).

(2) Find one differential w’ such that Res(w’) = P — «(P).

(3) Compute the map %, and especially 1(w’) in Hiz(C/Q),)-basis.
(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
(5) Compute the Coleman integral of the third kind differential f_f W'

* Let a = ¢*w' — pw', P = {Weierstrass points} U {Poles of a},
B:Res(B)=R—S, and I := [/ Then
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).

(2) Find one differential w’ such that Res(w’) = P — «(P).

(3) Compute the map %, and especially 1(w’) in Hiz(C/Q),)-basis.
(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
(5) Compute the Coleman integral of the third kind differential f_f W'

* Let a = ¢*w' — pw', P = {Weierstrass points} U {Poles of a},
B:Res(B)=R—S, and I := [/ Then

| = ﬁ-(w(a)uw(ﬁ)—l— > Resp (oa/ﬂ) —/;S)w—/:m)w)

PeP
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[BB] algorithm

(1) Reduce to computing hy(P — ¢(P),R —S).

(2) Find one differential w’ such that Res(w’) = P — «(P).

(3) Compute the map %, and especially 1(w’) in Hiz(C/Q),)-basis.
(4) Obtain a holomorphic differential wy, such that ¢ (w — wp) € W,
(5) Compute the Coleman integral of the third kind differential f_f W'

* Let a = ¢*w' — pw', P = {Weierstrass points} U {Poles of a},
B:Res(B)=R—S, and I := [/ Then

| = ﬁ-(w(a)uw(ﬁ)—l— > Resp (oa/ﬂ) —/;S)w—/:m)w)

PeP

(6) Compute hy(P — Q,R—5) = fé? w' — st Wh-
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Our algorithm

@ Today: all hyperelliptic curves over Q, of good reduction.
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Our algorithm

@ Today: all hyperelliptic curves over Q, of good reduction.
@ We need to compute some quantities related only to the curve first:

* a basis for Hig(C/Qp) or Wp;
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Our algorithm

@ Today: all hyperelliptic curves over Q, of good reduction.
@ We need to compute some quantities related only to the curve first:
* a basis for Hig(C/Qp) or Wp;

* cup product matrix CPM;
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Our algorithm

@ Today: all hyperelliptic curves over Q, of good reduction.

@ We need to compute some quantities related only to the curve first:
* a basis for Hig(C/Qp) or Wp;

* cup product matrix CPM;

* action of Frobenius (given by ¢ : x = xP) on Hiz(C/Qp).
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Our algorithm

Today: all hyperelliptic curves over Q, of good reduction.

We need to compute some quantities related only to the curve first:

a basis for Hiz(C/Qp) or Wp;

*

* cup product matrix CPM;

*

action of Frobenius (given by ¢ : x — xP) on Hz(C/Qp).

We first mention these (pre)computations.

We then proceed as explained on the previous slide.
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Our algorithm

Today: all hyperelliptic curves over Q, of good reduction.

We need to compute some quantities related only to the curve first:

a basis for Hiz(C/Qp) or Wp;

cup product matrix CPM,

action of Frobenius (given by ¢ : x — xP) on Hz(C/Qp).

We first mention these (pre)computations.

We then proceed as explained on the previous slide.

For even degree, we have one more case - when {P, Q} = {oco_, 00, }.

The other steps depend on the nature of the points P and Q - if they
are affine or {P, Q} = {oo_, 00, }.

We distinguish these two cases.
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Computations depending only on C

(i) Extend 1o := wo,...,Ng—1 := wg—1 to a basis of Hiz(C/Qp).
* If deg(f) odd, take n; := w; for g < i <2g—1.

* If deg(f) even, for g < i <2g—1, compute ¢; € Q, such that, for
i = wit1 — CGiwg has a residue = 0 at co4.
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Computations depending only on C

(i) Extend 1o := wo,...,Ng—1 := wg—1 to a basis of Hiz(C/Qp).
* If deg(f) odd, take n; := w; for g < i <2g—1.

* If deg(f) even, for g < i <2g—1, compute ¢; € Q, such that, for
i = wit1 — CGiwg has a residue = 0 at co4.

(ii)* Compute the cup product matrix on C.

* It is given by CPM = ((deg(f) —2g) Res /oo, (njfn,-)>i’j.
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Computations depending only on C

(i) Extend 1o := wo,...,Ng—1 := wg—1 to a basis of Hiz(C/Qp).
* If deg(f) odd, take n; := w; for g < i <2g—1.

* If deg(f) even, for g < i <2g—1, compute ¢; € Q, such that, for
i = wit1 — CGiwg has a residue = 0 at co4.

(ii)* Compute the cup product matrix on C.
* It is given by CPM = ((deg(f) —2g)Resy /oo, () fn,-))

(iii) Compute the action of Frobenius Frob : Hiz(C/Qp) — Hi:(C/Qp).

i

* Harrison's variant of Kedlaya's algorithm and linear algebra.
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Computations depending only on C

(i) Extend 1o := wo,...,Ng—1 := wg—1 to a basis of Hiz(C/Qp).
*If deg(f) odd, take n; == w; for g < i <2g—1.

* If deg(f) even, for g < i < 2g — 1, compute ¢; € Q, such that, for
i = wjy1 — Ciwg has a residue = 0 at co.

(ii)* Compute the cup product matrix on C.
* It is given by CPM = ((deg(f) —2g) Res /oo, (mfn,-))

(iii) Compute the action of Frobenius Frob : Hiz(C/Qp) — Hi:(C/Qp).

i

* Harrison's variant of Kedlaya's algorithm and linear algebra.
(iv) Compute a basis of the unit root subspace W,.
* [BB]: Frob™(1g), ..., Frob"(n2z—1) form a basis of W, modulo p".

** [BB] and our algorithm can work with other subspaces W,
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.

(v) (NEW) Find one differential w’ such that Res(w’) = co_ — oo

x8dx

* We can take w' = 2w, = S
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.

(v) (NEW) Find one differential w’ such that Res(w’) = co_ — oo

* We can take w' = 2w, = xEdx.
y
(vi) (NEW) Compute 1(w’) in Hiz(C/Q,)-basis.
* Define o = ¢*(w') — pw'.

* Then « is holomorphic at both oot and « is of the second kind.
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Computation of hp(co_ — ooy, R —S)

o We first consider {P, Q} = {co_, 004 }.

(v) (NEW) Find one differential w’ such that Res(w’) = co_ — oo

* We can take w' = 2w, = Xé:vﬂ_
(vi) (NEW) Compute 1(w’) in Hiz(C/Q,)-basis.
* Define o = ¢*(w') — pw'.
* Then « is holomorphic at both co4 and « is of the second kind.

Let [a] € HY:(C/Qp) be the class of a.

*

*

Using Harrison's algorithm, write ¢*wg = E,?io fo,iw; modulo exact
differentials.

t
= [o] = (2f5 -+ 2fg 1 2logr1c 2hog) -

We compute 1)(w') = (Frob —pl)~[a].

*

*

Stevan Gajovié¢ 29/06,/2023 16 / 26



Computation of hp(co_ — ooy, R —S)

vii) Find holomorphic wy, such that (w' — wp) € W,.
p
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Computation of hp(co_ — ooy, R —S)

vii) Find holomorphic wy, such that (w' — wp) € W,.
p

* Rewrite

Y(W') = ugno+ - +ug—11g—1+ug Frob" (ng)+- - -+ g1 Frob™(npg—1).

* Then wp == upno + - -+ + Ug—17g—1.

*If w = w' — wp, recall that hp(co— — o004, R—5) = f_fw.

Stevan Gajovié 29/06,/2023 17 /26



Computation of hp(co_ — ooy, R —S)

(vii) Find holomorphic wy, such that ¥ (w' — wp) € Wp.

* Rewrite

Y(W') = ugno+ - +ug—11g—1+ug Frob" (ng)+- - -+ g1 Frob™(npg—1).

* Then wp == upno + - -+ + Ug—17g—1.
*If w = w' — wp, recall that hp(co— — o004, R—5) = f_fw.
(viii) Compute the third kind integral fSR w’ and holomorphic integrals.

* Using Balakrishnan's algorithm for Coleman integration, we compute
R R R
Js wg, o [§ wo+ -+ g1 [ w1
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Computation of hp(co_ — ooy, R —S)

(vii) Find holomorphic wy, such that ¥ (w' — wp) € Wp.

* Rewrite

Y(W') = ugno+ - +ug—11g—1+ug Frob" (ng)+- - -+ g1 Frob™(npg—1).

* Then wp == upno + - -+ + Ug—17g—1.
*If w = w' — wp, recall that hp(co— — o004, R—5) = f_fw.
(viii) Compute the third kind integral fSR w’ and holomorphic integrals.

* Using Balakrishnan's algorithm for Coleman integration, we compute
R R R
Js wg, o [§ wo+ -+ g1 [ w1

@ We require that R and S are points in affine residue discs.
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Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.
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Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.

_(x—=x(P)\ _ (PO,
e Note div (x——x(Q)> =P+ P)—Q— Q).

) 1, (x—=x(P) 1 1
o Rewrite P~ Q =  div (X - X(Q)) £5(P—u(P) ~ 5(@~ Q).
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Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.

. (x—x(P) B , _0—,
e Note div (x——x(Q)> =P+ P) - Q—1(Q).
i —1 iv x = x(P) l -t ——(Q—¢
@ Rewrite P—Q—2d (x—x(Q))+2( (P)) (Q (@)
x(R) = x(P) x(5) — x(Q)
# = hlP= @R = 5ios, (a0 s W)t
%hp(P—L(P),R—S)—%hp(Q (Q).R - S).
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Computation of h,(P — Q, R — S) - affine points

Now, P and Q are affine points.

Note div ()’::—)):ESD =P+ uP)—Q—uQ).

Rewrite P — Q = %div (i:igg;) + %(P —u(P)) — %(Q —u(Q))
1 x(R) — x(P) x(S) — x(Q)

= hp(P=Q R=5) =3 log, (xm) —x(Q) x(5) = x(R)) *

%hp(P —u(P),R—S) — %hp(Q —YQ),R-5).
(

From now on, we compute h,(P —




Computation of h,(P — Q, R — S) - affine points

@ Now, P and Q are affine points.

(x=x(P)\ _ 0,
e Note div (x——x(Q)> =P+uP)—Q—uQ).
_ 1, (x—x(P) 1 1
@ Rewrite P - Q = Edlv (x — x(Q)) + §(P —uP)) - §(Q —uQ)
1 x(R) — x(P) x(S) — x(Q)
° = hp(P=QR=5)=7log, (x(m —x(Q) x(S) x(R)) "
%hp(P —u(P),R—S) — %hp(Q —YQ),R-5).

e From now on, we compute h,(P — ¢(P),R —S).

(v) Find one differential w’ such that Res(w’) = P — «(P).

p__y(P) dx N_p_
e Foruw' = = x(P) y,we have Res(w') = P — «(P).
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Computation of h,(P — ¢(P), R — S) - affine points

(vi) Compute ¥(w') = ,2g6 u;n; - use the cup product and Besser's
formula

YU [n] = - /L(":) nj — (deg(f) — 2g) Resqg /oo (w'/nj) )

@ Here we use, if 77 is holomorphic at poles of w

2 Resp <w/n) - /Res(w) T

PERes(w)

@ This is a way how [BB] compute integrals of differentials in T(Qp).
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Computation of h,(P — ¢(P), R — S) - affine points
(vi)

Compute ¢(w') = ?gg u;in; - use the cup product and Besser’s
formula
/ P /
YW)U ]l =— /(P) nj — (deg(f) — 2g) Resg /oo, (w /771) :
L
Here we use, if 1 is holomorphic at poles of w

2 Resp <w/n) - /Res(w) T

PERes(w)

This is a way how [BB] compute integrals of differentials in T(Q)).

(NEW) In both even and odd case: Res . (w' [7;) = 0!

This is also a computational improvement w.r.t. [BB].
t
— (UO u - U2g—1) =
_ P P P t
—CPM~t (‘ Jpymo = Jupym - = Jupy 772g—1) :

Stevan Gajovié 29/06,/2023
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Computation of h,(P — ¢(P), R — S) - affine points

(vii) Find holomorphic wy such that (w’ — wy) € W, - as before.
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Computation of h,(P — ¢(P), R — S) - affine points

(vii) Find holomorphic wy such that (w’ — wy) € W, - as before.

R P Ix
(viii) (NEW) Compute f5 W= [¢ Xy(x(},)‘;,

@ Use a change of variables

7 C— C:y?= y—(lla)zx'zgﬁf (X(P) + %)

oy 1 -y
)= )= (= S )
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Computation of h,(P — ¢(P), R — S) - affine points

(vii) Find holomorphic wy such that (w’ — wy) € W, - as before.

R P Ix
(viii) (NEW) Compute f5 W= [¢ Xy(x(},)‘;,

@ Use a change of variables

7 C— C:y?= y—(lla)zx'zgﬁf (X(P) + %)

oy 1 -y
)= )= (= S )

- R y(P) dX_/T(R)X’gdx’
(s Yy

s x=x(P) y
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Computation of h,(P — ¢(P), R — S) - affine points

(vii) Find holomorphic wy such that (w’ — wy) € W, - as before.

(viii) (NEW) Compute f;w' = st x{(;?i’)%'

@ Use a change of variables

7 C— C:y?= y—(lla)zx’zgﬁf (X(P) + %)

oy 1 -y
)= )= (= S )

R y(P) dx /T(R) x'& dx’
— —_— = .
s x=x(P)y Jxs) ¥

° X,gy‘,fxl is a basis MW-differential on ' — TT((SR)) X,é;,‘/jxl

directly (and quickly) by Balakrishnan’s algorithm.

computed

Stevan Gajovié 29/06,/2023
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Computation of h,(P — Q,R — S) - comments

@ By the independence of a model of local heights, we have
hp(P — «(P),R — S) = hp(co_ — oo, 7(R) — 7(5)).

e — It suffices to compute heights of the type hy(co_ — ooy, R —S)!
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Computation of h,(P — Q,R — S) - comments

@ By the independence of a model of local heights, we have
hp(P — «(P),R — S) = hp(co_ — oo, 7(R) — 7(5)).
e — It suffices to compute heights of the type hy(co_ — ooy, R —S)!

o If ord,(y(R)) < 0 or ordy(y(S)) < 0, we cannot compute f_f % in

Sage, neither any of fSR wj.

@ General condition for our algorithm in Sage:

p 1 (x(P) = x(R))(x(P) = x(5))(x(Q) = x(R))(x(Q) — x(5))-
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Computation of h,(P — Q,R — S) - comments

@ By the independence of a model of local heights, we have
hp(P — «(P),R — S) = hp(co_ — oo, 7(R) — 7(5)).

e — It suffices to compute heights of the type hy(co_ — ooy, R —S)!

o If ord,(y(R)) < 0 or ordy(y(S)) < 0, we cannot compute f_f % in
Sage, neither any of fSR wj.

@ General condition for our algorithm in Sage:
p 1 (x(P) = x(R))(x(P) = x(5))(x(Q) — x(R))(x(Q) — x(5))-

@ We can try in Magma: Let a = qb*(xgdx) — pxgdx

/ ngx_ / /5 x&dx /4’( ) x8dx
sy 1— y )
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Computation of h,(P — Q,R — S) - comments

@ By the independence of a model of local heights, we have
hp(P — «(P),R — S) = hp(co_ — oo, 7(R) — 7(5)).

e — It suffices to compute heights of the type hy(co_ — ooy, R —S)!

o If ord,(y(R)) < 0 or ordy(y(S)) < 0, we cannot compute f_f % in
Sage, neither any of fSR wj.

@ General condition for our algorithm in Sage:
p 1 (x(P) = x(R))(x(P) = x(5))(x(Q) — x(R))(x(Q) — x(5))-

@ We can try in Magma: Let a = qb*(xgdx) — pxgdx

/ ngx_ / /5 x&dx /¢(R) x&dx
sy 1— y )

e Maximal condition (still theoretic): {P, Q} N{R,(R),S,c(S)} = 0.
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Summary for the local p-adic height above p

@ Our algorithm is significantly simpler and faster than [BB].
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Summary for the local p-adic height above p

@ Our algorithm is significantly simpler and faster than [BB].

o It is slightly more restrictive, but in practice causes no problems.
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Summary for the local p-adic height above p

@ Our algorithm is significantly simpler and faster than [BB].
o It is slightly more restrictive, but in practice causes no problems.

@ The main difference between [BB] and our algorithm is in computing
Coleman integrals of differentials of the third kind and residues.
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Summary for the local p-adic height above p

@ Our algorithm is significantly simpler and faster than [BB].

o It is slightly more restrictive, but in practice causes no problems.

@ The main difference between [BB] and our algorithm is in computing
Coleman integrals of differentials of the third kind and residues.

@ We compare the timings and success of our and [BB] algorithm in

several examples.

Genus of a curve | p | Precision | Our time | [BB] time
2 7 10 2s 9s

2 7 300 14min infeasible
2 503 10 5min infeasible
3 11 10 7s 37s

4 23 20 3min 64min
17 11 7 18min infeasible

Stevan Gajovié

29/06,/2023
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Quadratic Chabauty applications

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

@ Assume that [pwo,..., [pwg—1: J(Q) ® Qp — Qp form a basis of
(J(Q) ®Qp)v-
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Quadratic Chabauty applications

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

@ Assume that [pwo,..., [pwg—1: J(Q) ® Qp — Qp form a basis of
(J(Q) ®@p)v-

o Idea: Write h(E, D) = Y1 j<p iy [pwi [ wj.
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Quadratic Chabauty applications

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

@ Assume that [pwo,..., [pwg—1: J(Q) ® Qp — Qp form a basis of
(J(Q) ®@p)v-

o Idea: Write h(E, D) = Y1 j<p iy [pwi [ wj.

@ ldea: Use these relations and “bound” the heights away from p to
extract rational or integral points on curves.
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Quadratic Chabauty applications

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

o Assume that [jwo,..., [pwg—1: J(Q) ® Qy — Q, form a basis of
(J(Q) ®Qp)v-

o Idea: Write h(E, D) = 3214, j<g @iy [pwi [g wj-

@ ldea: Use these relations and “bound” the heights away from p to
extract rational or integral points on curves.

Quadratic Chabauty for rational points example
o Consider X5 (107): y? = x5 + 2x5 + 5x* + 2x3 — 2x2 — 4x — 3.
e Balakrishnan, Dogra, Miiller, Tuitman, Vonk computed X3 (107)(Q)
using p = 61 ~~» 40 minutes.
@ They needed an odd model over @, and certain conditions on p.

v
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Quadratic Chabauty applications

@ X/Q = nice curve of genus g > 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g.

o Assume that [jwo,..., [pwg—1: J(Q) ® Qy — Q, form a basis of
(J(Q) ®Qp)v-

o Idea: Write h(E, D) = 3214, j<g @iy [pwi [g wj-

@ ldea: Use these relations and “bound” the heights away from p to
extract rational or integral points on curves.

Quadratic Chabauty for rational points example

o Consider X5 (107): y? = x5 + 2x5 + 5x* + 2x3 — 2x2 — 4x — 3.

e Balakrishnan, Dogra, Miiller, Tuitman, Vonk computed X3 (107)(Q)
using p = 61 ~~» 40 minutes.

@ They needed an odd model over @, and certain conditions on p.

@ Now, one can use p =7 ~» 47 seconds.

v
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Quadratic Chabauty for integral points

o Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2. Then
(important assumption!) oot € X(Q). Denote Dy, = [oo_ — co4].

e Write h(Dy, D) = Z,fgz_ol aj [pwi, for some o € Qp.
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Quadratic Chabauty for integral points

o Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2. Then
(important assumption!) oot € X(Q). Denote Dy, = [oo_ — co4].

e Write h(Dy, D) = Z,fgz_ol aj [pwi, for some o € Qp.
e X(Z) := integral points on X.
e Assume Q € X(Z). Consider pg: X(Qp) — Qp

g1 P g—1 P P
pe(P) = Za,-/ wj — hp(Doo, P — Q) = Z ai/ wj —/ Woo,
=0 ’Q i—o Q@ Q
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Quadratic Chabauty for integral points

o Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2. Then
(important assumption!) oot € X(Q). Denote Dy, = [oo_ — co4].

Write h(Ds, D) = Z,fgz_ol aj [pwi, for some o € Qp.

X(Z) = integral points on X.
Assume Q € X(Z). Consider pg: X(Qp) — Qp

g1 P g—1 P P
pe(P) = Za,-/ wj — hp(Doo, P — Q) = Z ai/ wj —/ Woo,
=0 ’Q i—o Q@ Q

@ pq is a locally analytic function.

If P e X(Q), pa(P) = Xqp ha(Doo, P — Q).
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Quadratic Chabauty for integral points

o Let X/Q: y? = f(x), with f € Z[x] monic, deg(f) = 2g + 2. Then
(important assumption!) oot € X(Q). Denote Dy, = [oo_ — co4].

Write h(Ds, D) = Z,fgz_ol aj [pwi, for some o € Qp.

X(Z) = integral points on X.
Assume Q € X(Z). Consider pg: X(Qp) — Qp

g1 P g—1 P P
pa(P) = Z a,-/ wj — hp(Doo, P — Q) = Z ai/ wj —/ Woo,
=0 ’Q i—o Q@ Q

pq is a locally analytic function.

If P e X(Q), pa(P) = Xqp ha(Doo, P — Q).

Intersection theory = VP, Q € X(Zg), hg(co- —c04,P—Q) € T,
T finite for all g # p; T = {0} for almost all (including good) primes.

= p@(X(Z)) is a finite and computable set.
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Testing the p-adic BSD

o Let A/Q be modular abelian variety of GLp-type, with good ordinary
reduction at a prime p and the Mordell-Weil rank r.
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Testing the p-adic BSD

o Let A/Q be modular abelian variety of GLp-type, with good ordinary
reduction at a prime p and the Mordell-Weil rank r.

@ p-adic BSD: relates rank r, values of p-adic L-functions, p-adic
multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate
group, cardinality of the torsion, and regulator.
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Testing the p-adic BSD

o Let A/Q be modular abelian variety of GLp-type, with good ordinary
reduction at a prime p and the Mordell-Weil rank r.

@ p-adic BSD: relates rank r, values of p-adic L-functions, p-adic
multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate
group, cardinality of the torsion, and regulator.

o Example: Xy (67) = X: y? = x® 4+ 4x5 + 2x* +2x3 + x% — 2x + 1.

e A = Jacobian of X. Then A(Q) = (D1, D»), where D; = (0,1) — co_
and D, = (0,1) — (0, —1).
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Testing the p-adic BSD

o Let A/Q be modular abelian variety of GLp-type, with good ordinary
reduction at a prime p and the Mordell-Weil rank r.

@ p-adic BSD: relates rank r, values of p-adic L-functions, p-adic
multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate
group, cardinality of the torsion, and regulator.

o Example: Xy (67) = X: y? = x® 4+ 4x5 + 2x* +2x3 + x% — 2x + 1.

e A = Jacobian of X. Then A(Q) = (D1, D»), where D; = (0,1) — co_
and D, = (0,1) — (0, —1).

@ Regulator at p = 11:
Reg11(A/Q) = h(D1, D1)h(D2, Dy) — h(D1, D2)?.
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Testing the p-adic BSD

o Let A/Q be modular abelian variety of GLp-type, with good ordinary
reduction at a prime p and the Mordell-Weil rank r.

@ p-adic BSD: relates rank r, values of p-adic L-functions, p-adic
multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate
group, cardinality of the torsion, and regulator.

o Example: Xy (67) = X: y? = x® 4+ 4x5 + 2x* +2x3 + x% — 2x + 1.

e A = Jacobian of X. Then A(Q) = (Dy, D2), where D; = (0,1) — co_
and D, = (0,1) — (0, —1).

@ Regulator at p = 11:
Regq1(A/Q) = h(D1, D1)h(D2, D2) — h(D1, D5)2.

@ We need suitable multiples of D; and D> whose representatives are of
the shape P+ Q — R — «(R) and disjoint, and satisfy the condition
for our algorithm. Works in practice!

Stevan Gajovié 29/06,/2023 25/26



Thank you for your attention! J

Any questions? l
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