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p-adic heights

Goals today:
Introduce p-adic heights on Jacobians of curves.

Briefly mention local p-adic heights away from p.
Present an algorithm to compute local p-adic heights above p on
hyperelliptic curves.
Distinguish two important cases on even degree hyperelliptic curves.
Key feature: Reduce to computing Coleman integrals of basis
differentials.

Applications:
Quadratic Chabauty for rational points on hyperelliptic curves.
Quadratic Chabauty for integral points on even degree hyperelliptic
curves.
Numerically test p-adic BSD.
Other applications or ideas? Feel free to contact Steffen and me! :)
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Introduction to p-adic heights

Bilinear pairing (or quadratic form) defined on abelian varieties.

First constructions: Schneider, Mazur-Tate.

More general: Nekovář.

X/Q = nice curve curve of genus g > 0, with good reduction at p,
and J/Q = its Jacobian

Works also for number fields K/Q.

Coleman-Gross: p-adic heights on J .
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Coleman-Gross (CG) p-adic heights

p-adic height: bilinear map

h :=
∑

q finite prime
hq : J(Q)× J(Q)→ Qp.

For a prime number q, denote Xq := X ⊗Qq.

For each prime q ∈ Z, define local heights

hq(D1,D2), for D1,D2 ∈ Div0(Xq).

Distinguish hq for q 6= p and hp (∗).

hq for q 6= p: intersection multiplicities.

hp: Coleman integral of a non-holomorphic differential.
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Technicalities

p-adic height depends on (and we fix it):

(a) A continuous idèle class character ` : A∗Q/Q −→ Qp with certain
technical conditions.

* Technical conditions: For Q, `p be extended to be the Iwasawa
branch logp : Q∗p −→ Qp of the p-adic logarithm logp(p) = 0.

(b) A choice of a subspace Wp ⊆ H1
dR(Xp/Qp) complementary to the

space of holomorphic forms H1,0
dR (Xp/Qp).

* Write H1
dR(Xp/Qp) = H1,0

dR (Xp/Qp)⊕Wp.
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Heights away from p
Theorem (Local heights for q 6= p)

There exists a unique function hq(D1,D2) taking values in Qp:

(1) defined for all D1,D2 ∈ Div0(Xq) with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) for all f ∈ Qp(Xq)∗ (when defined): hq(div(f ),D2) = logp(f (D2)).

Xq/Qq = regular model of Xq with (− · −) = (Q-valued) intersection
multiplicity on Xq.

D1,D2 = extensions of D1,D2 to Xq such that (Di · V ) = 0 for all
vertical divisors V on Xq.

Construction of hq

hq(D1,D2) = logp(q) · (D1 · D2).

van Bommel-Holmes-Müller’s algorithm: Compute hq.
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Introduction to local p-adic heights at p

Construction of hp

The local height hp(D1,D2) is a Coleman integral
∫

D2
ωD1 , for a certain

differential of the third kind ωD1 depending on D1.

Third kind meromorphic differentials
ω is of the third kind if it is holomorphic except possibly at finitely many
points and it has at most simple poles with residues in Z.

Denote T (Qp) := {the third kind differentials on Xp}.

The residue divisor homomorphism T (Qp) −→ Div0(Xp) is given by

Res(ω) =
∑

P∈Xp

ResP(ω)P.

Res surjective, but not injective (Res(holomorphic differentials) = 0).
Want ωD1 to be such that Res(ωD1) = D1. This choice is not unique!
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Introduction to local p-adic heights at p

Second kind meromorphic differentials
ω is of the second kind if all of its residues are 0.

H1
dR(Xp/Qp) ' {differentials of the second kind}/{df : f ∈ Qp(X )×}.

Recall: H1
dR(Xp/Qp) = H1,0

dR (Xp/Qp)⊕Wp.

∃ homomorphism “projection” ψ

ψ : {meromorphic differentials on Xp} −→ H1
dR(Xp/Qp)

with many useful properties.

Projection: if α is of the second kind, then ψ(α) = [α].

=⇒ D ∈ Div0(Xp)  unique ωD ∈ T (Qp) such that

Res(ωD) = D and ψ(ωD) ∈Wp.

From now on, fix the notation ωD.
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Introduction to local p-adic heights at p

Definition of hp

Let D1,D2 ∈ Div0(Xp) with disjoint support. The local p-adic height
pairing at p is given by hp(D1,D2) :=

∫
D2
ωD1 .

Properties of hp:

* hp(D1,D2) is continuous and bi-additive.

* hp(div(f ),D2) = logp(f (D2)).

* hp is symmetric if and only if Wp ⊆ H1
dR(Xp/Qp) is isotropic with

respect to the cup product pairing.

* Independent of a model of Xp under reasonable technical conditions.

* Independent: τ : C → C ′

hp(τ∗(D1), τ∗(D2))on C ′ = hp(D1,D2)on C .
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Introduction to local p-adic heights at p

The cup product pairing H1
dR(Xp/Qp)× H1

dR(Xp/Qp) −→ Qp:

([µ1], [µ2]) 7→ [µ1] ∪ [µ2] :=
∑

P∈Xp

ResP

(
µ2

∫
µ1

)
.

(Besser) ψ(ω) ∪ ψ(ρ) = −
∑

P∈Xp ResP (ω
∫
ρ).

Always  a symplectic basis 〈κ0, . . . , κ2g−1〉: κi ∪ κj = ±δi ,2g−1−j ,
where 〈κ0, . . . , κg−1〉 = H1,0

dR (Xp/Qp).

We can take Wp = 〈κg , . . . , κ2g−1〉.

When C := Xp has good ordinary reduction, we can take
Wp := the unit root subspace, assume from now on.

Both choices implemented in Sage, we talk about the second one.
The difference is just some linear algebra.

Stevan Gajović 29/06/2023 10 / 26
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Coleman integration in Sage and Magma

Sage implementation - Balakrishnan: Hyperelliptic curves
y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
2y for

0 ≤ i ≤ deg(f )− 2  
∫ R

S ωi .

When we can apply the Monsky-Washnitzer reduction: ω =∑deg(f )−2
i=0 αiωi + du =⇒

∫ R
S ω =

∑deg(f )−2
i=0 αi

∫ R
S ωi + u(R)− u(S).

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Endpoints R,S satisfy ordp y((R)) ≥ 0, ordp(y(S)) ≥ 0.

Magma implementation Balakrishnan-Tuitman: On fairly general
curves, including plane curves.

For ω ∈ H1
dR(C/Qp)  

∫ R
S ω.

When possible, allows ordp(y(R)) < 0 or ordp(y(S)) < 0.

Stevan Gajović 29/06/2023 11 / 26



Coleman integration in Sage and Magma

Sage implementation - Balakrishnan: Hyperelliptic curves
y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
2y for

0 ≤ i ≤ deg(f )− 2  
∫ R

S ωi .

When we can apply the Monsky-Washnitzer reduction: ω =∑deg(f )−2
i=0 αiωi + du =⇒

∫ R
S ω =

∑deg(f )−2
i=0 αi

∫ R
S ωi + u(R)− u(S).

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Endpoints R,S satisfy ordp y((R)) ≥ 0, ordp(y(S)) ≥ 0.

Magma implementation Balakrishnan-Tuitman: On fairly general
curves, including plane curves.

For ω ∈ H1
dR(C/Qp)  

∫ R
S ω.

When possible, allows ordp(y(R)) < 0 or ordp(y(S)) < 0.

Stevan Gajović 29/06/2023 11 / 26



Coleman integration in Sage and Magma

Sage implementation - Balakrishnan: Hyperelliptic curves
y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
2y for

0 ≤ i ≤ deg(f )− 2  
∫ R

S ωi .

When we can apply the Monsky-Washnitzer reduction: ω =∑deg(f )−2
i=0 αiωi + du =⇒

∫ R
S ω =

∑deg(f )−2
i=0 αi

∫ R
S ωi + u(R)− u(S).

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Endpoints R,S satisfy ordp y((R)) ≥ 0, ordp(y(S)) ≥ 0.

Magma implementation Balakrishnan-Tuitman: On fairly general
curves, including plane curves.

For ω ∈ H1
dR(C/Qp)  

∫ R
S ω.

When possible, allows ordp(y(R)) < 0 or ordp(y(S)) < 0.

Stevan Gajović 29/06/2023 11 / 26



Coleman integration in Sage and Magma

Sage implementation - Balakrishnan: Hyperelliptic curves
y2 = f (x)/Qp (WARNING: Sage sees only one point at infinity!):

Monsky-Washnitzer basis differentials ωi := x i dx
2y for

0 ≤ i ≤ deg(f )− 2  
∫ R

S ωi .

When we can apply the Monsky-Washnitzer reduction: ω =∑deg(f )−2
i=0 αiωi + du =⇒

∫ R
S ω =

∑deg(f )−2
i=0 αi

∫ R
S ωi + u(R)− u(S).

Tiny integrals
∫ R

S ω, where S ≡ R (mod p).

Endpoints R,S satisfy ordp y((R)) ≥ 0, ordp(y(S)) ≥ 0.

Magma implementation Balakrishnan-Tuitman: On fairly general
curves, including plane curves.

For ω ∈ H1
dR(C/Qp)  

∫ R
S ω.

When possible, allows ordp(y(R)) < 0 or ordp(y(S)) < 0.
Stevan Gajović 29/06/2023 11 / 26



Local heights hp(D1,D2) setup

Assume that D1,D2 ∈ Div0(C) are pointwise Qp-rational. To
compute hp(D1,D2)  compute hp(P − Q,R − S) for fixed distinct
points P,Q,R, S ∈ C(Qp).

Assume from now on that C : y2 = f (x), with f ∈ Zp[x ] monic has
good reduction.

Let ι : C → C denote the hyperelliptic involution.

Balakrishnan and Besser [BB]: Compute hp(P − Q,R − S) when
deg(f ) odd.

We now recall [BB] algorithm.
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[BB] algorithm

(1) Reduce to computing hp(P − ι(P),R − S).

(2) Find one differential ω′ such that Res(ω′) = P − ι(P).

(3) Compute the map ψ, and especially ψ(ω′) in H1
dR(C/Qp)-basis.

(4) Obtain a holomorphic differential ωh such that ψ(ω′ − ωh) ∈Wp.

(5) Compute the Coleman integral of the third kind differential
∫ R

S ω′.

* Let α = φ∗ω′ − pω′, P = {Weierstrass points} ∪ {Poles of α},
β : Res(β) = R − S, and I :=

∫ R
S ω′. Then

I = 1
1− p ·

ψ(α) ∪ ψ(β) +
∑
P∈P

ResP

(
α

∫
β

)
−
∫ S

φ(S)
ω −

∫ φ(R)

R
ω



(6) Compute hp(P − Q,R − S) =
∫ R

S ω′ −
∫ R

S ωh.
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Our algorithm

Today: all hyperelliptic curves over Qp of good reduction.

We need to compute some quantities related only to the curve first:

* a basis for H1
dR(C/Qp) or Wp;

* cup product matrix CPM;

* action of Frobenius (given by φ : x 7→ xp) on H1
dR(C/Qp).

We first mention these (pre)computations.

We then proceed as explained on the previous slide.

For even degree, we have one more case - when {P,Q} = {∞−,∞+}.

The other steps depend on the nature of the points P and Q - if they
are affine or {P,Q} = {∞−,∞+}.

We distinguish these two cases.
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Computations depending only on C

(i) Extend η0 := ω0, . . . , ηg−1 := ωg−1 to a basis of H1
dR(C/Qp).

* If deg(f ) odd, take ηi := ωi for g ≤ i ≤ 2g − 1.

* If deg(f ) even, for g ≤ i ≤ 2g − 1, compute ci ∈ Qp such that, for
ηi := ωi+1 − ciωg has a residue = 0 at ∞±.

(ii)* Compute the cup product matrix on C .

* It is given by CPM =
(
(deg(f )− 2g) Res∞/∞+ (ηj

∫
ηi)
)

i ,j
.

(iii) Compute the action of Frobenius Frob : H1
dR(C/Qp)→ H1

dR(C/Qp).

* Harrison’s variant of Kedlaya’s algorithm and linear algebra.

(iv) Compute a basis of the unit root subspace Wp.

* [BB]: Frobn(ηg), . . . ,Frobn(η2g−1) form a basis of Wp modulo pn.

** [BB] and our algorithm can work with other subspaces Wp.
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(
(deg(f )− 2g) Res∞/∞+ (ηj

∫
ηi)
)

i ,j
.

(iii) Compute the action of Frobenius Frob : H1
dR(C/Qp)→ H1

dR(C/Qp).

* Harrison’s variant of Kedlaya’s algorithm and linear algebra.

(iv) Compute a basis of the unit root subspace Wp.

* [BB]: Frobn(ηg), . . . ,Frobn(η2g−1) form a basis of Wp modulo pn.

** [BB] and our algorithm can work with other subspaces Wp.
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Computation of hp(∞− −∞+,R − S)

We first consider {P,Q} = {∞−,∞+}.

(v) (NEW) Find one differential ω′ such that Res(ω′) =∞− −∞+.

* We can take ω′ = 2ωg = xg dx
y .

(vi) (NEW) Compute ψ(ω′) in H1
dR(C/Qp)-basis.

* Define α = φ∗(ω′)− pω′.

* Then α is holomorphic at both ∞± and α is of the second kind.

* Let [α] ∈ H1
dR(C/Qp) be the class of α.

* Using Harrison’s algorithm, write φ∗ωg =
∑2g

i=0 f0,iωi modulo exact
differentials.

* =⇒ [α] =
(
2f0,g · · · 2f0,g−1 2f0,g+1 · · · 2f0,2g

)t
.

* We compute ψ(ω′) = (Frob−pI)−1[α].
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Computation of hp(∞− −∞+,R − S)

(vii) Find holomorphic ωh such that ψ(ω′ − ωh) ∈Wp.

* Rewrite

ψ(ω′) = u0η0+· · ·+ug−1ηg−1+ug Frobn(ηg)+· · ·+u2g−1 Frobn(η2g−1).

* Then ωh := u0η0 + · · ·+ ug−1ηg−1.

* If ω := ω′ − ωh, recall that hp(∞− −∞+,R − S) =
∫ R

S ω.

(viii) Compute the third kind integral
∫ R

S ω′ and holomorphic integrals.

* Using Balakrishnan’s algorithm for Coleman integration, we compute∫ R
S ωg , u0

∫ R
S ω0 + · · ·+ ug−1

∫ R
S ωg−1.

We require that R and S are points in affine residue discs.
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Computation of hp(P − Q,R − S) - affine points

Now, P and Q are affine points.

Note div
( x − x(P)
x − x(Q)

)
= P + ι(P)− Q − ι(Q).

Rewrite P − Q = 1
2 div

( x − x(P)
x − x(Q)

)
+ 1

2(P − ι(P))− 1
2(Q − ι(Q)).

=⇒ hp(P − Q,R − S) = 1
2 logp

( x(R)− x(P)
x(R)− x(Q)

x(S)− x(Q)
x(S)− x(R)

)
+

1
2hp(P − ι(P),R − S)− 1

2hp(Q − ι(Q),R − S).

From now on, we compute hp(P − ι(P),R − S).

(v) Find one differential ω′ such that Res(ω′) = P − ι(P).

For ω′ = y(P)
x − x(P)

dx
y , we have Res(ω′) = P − ι(P).
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Computation of hp(P − ι(P),R − S) - affine points
(vi) Compute ψ(ω′) =

∑2g−1
i=0 uiηi - use the cup product and Besser’s

formula

ψ(ω′) ∪ [ηj ] = −
∫ P

ι(P)
ηj − (deg(f )− 2g) Res∞/∞+

(
ω′
∫
ηj

)
.

Here we use, if η is holomorphic at poles of ω∑
P∈Res(ω)

ResP

(
ω

∫
η

)
=
∫

Res(ω)
η.

This is a way how [BB] compute integrals of differentials in T (Qp).

(NEW) In both even and odd case: Res∞/∞+(ω′
∫
ηj) = 0!

This is also a computational improvement w.r.t. [BB].
=⇒

(
u0 u1 · · · u2g−1

)t
=

−CPM−1
(
−
∫ P
ι(P) η0 −

∫ P
ι(P) η1 · · · −

∫ P
ι(P) η2g−1

)t
.
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Computation of hp(P − ι(P),R − S) - affine points

(vii) Find holomorphic ωh such that ψ(ω′ − ωh) ∈Wp - as before.

(viii) (NEW) Compute
∫ R

S ω′ =
∫ R

S
y(P)

x−x(P)
dx
y .

Use a change of variables

τ : C → C ′ : y ′2 = 1
y(P)2 x

′2g+2f
(
x(P) + 1

x ′
)

(x , y) 7→ (x ′, y ′) :=
( 1
x − x(P) ,

−y
y(P)(x − x(P))g+1

)
.

=⇒
∫ R

S

y(P)
x − x(P)

dx
y =

∫ τ(R)

τ(S)

x ′gdx ′
y ′ .

x ′g dx ′

y ′ is a basis MW-differential on C ′ =⇒
∫ τ(R)
τ(S)

x ′g dx ′

y ′ computed
directly (and quickly) by Balakrishnan’s algorithm.
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Computation of hp(P − Q,R − S) - comments

By the independence of a model of local heights, we have
hp(P − ι(P),R − S) = hp(∞− −∞+, τ(R)− τ(S)).

=⇒ It suffices to compute heights of the type hp(∞−−∞+,R −S)!

If ordp(y(R)) < 0 or ordp(y(S)) < 0, we cannot compute
∫ R

S
xg dx

y in
Sage, neither any of

∫ R
S ωi .

General condition for our algorithm in Sage:
p - (x(P)− x(R))(x(P)− x(S))(x(Q)− x(R))(x(Q)− x(S)).

We can try in Magma: Let α = φ∗( xg dx
y )− p xg dx

y .

=⇒
∫ R

S

xgdx
y = 1

1− p

(∫ R

S
α−

∫ S

φ(S)

xgdx
y −

∫ φ(R)

R

xgdx
y

)
.

Maximal condition (still theoretic): {P,Q} ∩ {R, ι(R), S, ι(S)} = ∅.
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Summary for the local p-adic height above p

Our algorithm is significantly simpler and faster than [BB].

It is slightly more restrictive, but in practice causes no problems.

The main difference between [BB] and our algorithm is in computing
Coleman integrals of differentials of the third kind and residues.

We compare the timings and success of our and [BB] algorithm in
several examples.

Genus of a curve p Precision Our time [BB] time
2 7 10 2s 9s
2 7 300 14min infeasible
2 503 10 5min infeasible
3 11 10 7s 37s
4 23 20 3min 64min
17 11 7 18min infeasible
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Quadratic Chabauty applications

X/Q = nice curve of genus g ≥ 2, with good reduction at p, J = its
Jacobian whose rank over Q is r = g .

Assume that
∫

D ω0, . . . ,
∫

D ωg−1 : J(Q)⊗Qp −→ Qp form a basis of
(J(Q)⊗Qp)∨.

Idea: Write h(E ,D) =
∑

1≤i ,j≤g αi ,j
∫

D ωi
∫

E ωj .

Idea: Use these relations and “bound” the heights away from p to
extract rational or integral points on curves.

Quadratic Chabauty for rational points example
Consider X+

0 (107) : y2 = x6 + 2x5 + 5x4 + 2x3 − 2x2 − 4x − 3.
Balakrishnan, Dogra, Müller, Tuitman, Vonk computed X+

0 (107)(Q)
using p = 61  40 minutes.
They needed an odd model over Qp and certain conditions on p.
Now, one can use p = 7  47 seconds.
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Quadratic Chabauty for integral points

Let X/Q : y2 = f (x), with f ∈ Z[x ] monic, deg(f ) = 2g + 2. Then
(important assumption!) ∞± ∈ X (Q). Denote D∞ := [∞− −∞+].

Write h(D∞,D) =
∑g−1

i=0 αi
∫

D ωi , for some αi ∈ Qp.

X (Z) := integral points on X .

Assume Q ∈ X (Z). Consider ρQ : X (Qp) −→ Qp

ρQ(P) :=
g−1∑
i=0

αi

∫ P

Q
ωi − hp(D∞,P − Q) =

g−1∑
i=0

αi

∫ P

Q
ωi −

∫ P

Q
ω∞,

ρQ is a locally analytic function.

If P ∈ X (Q), ρQ(P) =
∑

q 6=p hq(D∞,P − Q).

Intersection theory =⇒ ∀P,Q ∈ X (Zq), hq(∞− −∞+,P −Q) ∈ T ,
T finite for all q 6= p; T = {0} for almost all (including good) primes.

=⇒ ρQ(X (Z)) is a finite and computable set.
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Testing the p-adic BSD

Let A/Q be modular abelian variety of GL2-type, with good ordinary
reduction at a prime p and the Mordell–Weil rank r .

p-adic BSD: relates rank r , values of p-adic L-functions, p-adic
multiplier, Tamagawa numbers, cardinality of the Shafarevich–Tate
group, cardinality of the torsion, and regulator.

Example: X+
0 (67) = X : y2 = x6 + 4x5 + 2x4 + 2x3 + x2 − 2x + 1.

A = Jacobian of X . Then A(Q) = 〈D1,D2〉, where D1 = (0, 1)−∞−
and D2 = (0, 1)− (0,−1).

Regulator at p = 11:
Reg11(A/Q) = h(D1,D1)h(D2,D2)− h(D1,D2)2.

We need suitable multiples of D1 and D2 whose representatives are of
the shape P + Q − R − ι(R) and disjoint, and satisfy the condition
for our algorithm. Works in practice!
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The end

Thank you for your attention!

Question
Any questions?
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