Computing p-adic heights on hyperelliptic curves

Stevan Gajović (Charles University Prague) Joint work with Steffen Müller (University of Groningen)

Number Theory in Montserrat 2023 , Montserrat, 29/06/2023

UNIVERZITA KARLOVA

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Quadratic Chabauty for integral points on even degree hyperelliptic curves.

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Quadratic Chabauty for integral points on even degree hyperelliptic curves.
- Numerically test p-adic BSD.

p-adic heights

Goals today:

- Introduce p-adic heights on Jacobians of curves.
- Briefly mention local p-adic heights away from p.
- Present an algorithm to compute local p-adic heights above p on hyperelliptic curves.
- Distinguish two important cases on even degree hyperelliptic curves.
- Key feature: Reduce to computing Coleman integrals of basis differentials.

Applications:

- Quadratic Chabauty for rational points on hyperelliptic curves.
- Quadratic Chabauty for integral points on even degree hyperelliptic curves.
- Numerically test p-adic BSD.
- Other applications or ideas? Feel free to contact Steffen and me! :)

Introduction to p-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.

Introduction to p-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekovár.

Introduction to p-adic heights

- Bilinear pairing (or quadratic form) defined on abelian varieties.
- First constructions: Schneider, Mazur-Tate.
- More general: Nekováŕ.
- $X / \mathbb{Q}=$ nice curve curve of genus $g>0$, with good reduction at p, and $J / \mathbb{Q}=$ its Jacobian
- Works also for number fields K / \mathbb{Q}.
- Coleman-Gross: p-adic heights on J.

Coleman-Gross (CG) p-adic heights

- p-adic height: bilinear map

$$
h:=\sum_{q \text { finite prime }} h_{q}: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

Coleman-Gross (CG) p-adic heights

- p-adic height: bilinear map

$$
h:=\sum_{q \text { finite prime }} h_{q}: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

- For a prime number q, denote $X_{q}:=X \otimes \mathbb{Q}_{q}$.
- For each prime $q \in \mathbb{Z}$, define local heights

$$
h_{q}\left(D_{1}, D_{2}\right), \text { for } D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)
$$

Coleman-Gross (CG) p-adic heights

- p-adic height: bilinear map

$$
h:=\sum_{q \text { finite prime }} h_{q}: J(\mathbb{Q}) \times J(\mathbb{Q}) \rightarrow \mathbb{Q}_{p} .
$$

- For a prime number q, denote $X_{q}:=X \otimes \mathbb{Q}_{q}$.
- For each prime $q \in \mathbb{Z}$, define local heights

$$
h_{q}\left(D_{1}, D_{2}\right), \text { for } D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)
$$

- Distinguish h_{q} for $q \neq p$ and $h_{p}(*)$.
- h_{q} for $q \neq p$: intersection multiplicities.
- h_{p} : Coleman integral of a non-holomorphic differential.

Technicalities

- p-adic height depends on (and we fix it):

Technicalities

- p-adic height depends on (and we fix it):
(a) A continuous idèle class character $\ell: \mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q} \longrightarrow \mathbb{Q}_{p}$ with certain technical conditions.
* Technical conditions: For \mathbb{Q}, ℓ_{p} be extended to be the Iwasawa branch $\log _{p}: \mathbb{Q}_{p}^{*} \longrightarrow \mathbb{Q}_{p}$ of the p-adic logarithm $\log _{p}(p)=0$.

Technicalities

- p-adic height depends on (and we fix it):
(a) A continuous idèle class character $\ell: \mathbb{A}_{\mathbb{Q}}^{*} / \mathbb{Q} \longrightarrow \mathbb{Q}_{p}$ with certain technical conditions.
* Technical conditions: For \mathbb{Q}, ℓ_{p} be extended to be the Iwasawa branch $\log _{p}: \mathbb{Q}_{p}^{*} \longrightarrow \mathbb{Q}_{p}$ of the p-adic logarithm $\log _{p}(p)=0$.
(b) A choice of a subspace $W_{p} \subseteq \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$ complementary to the space of holomorphic forms $H_{d R}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right)$.
* Write $H_{d R}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)=H_{d R}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right) \oplus W_{p}$.

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} : (1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} : (1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :
(1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) for all $f \in \mathbb{Q}_{p}\left(X_{q}\right)^{*}$ (when defined): $h_{q}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :
(1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) for all $f \in \mathbb{Q}_{p}\left(X_{q}\right)^{*}$ (when defined): $h_{q}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.
- $\mathcal{X}_{q} / \mathbb{Q}_{q}=$ regular model of X_{q} with $(-\cdot-)=(\mathbb{Q}$-valued $)$ intersection multiplicity on \mathcal{X}_{q}.
- $\mathcal{D}_{1}, \mathcal{D}_{2}=$ extensions of D_{1}, D_{2} to \mathcal{X}_{q} such that $\left(\mathcal{D}_{i} \cdot V\right)=0$ for all vertical divisors V on \mathcal{X}_{q}.

Heights away from p

Theorem (Local heights for $q \neq p$)

- There exists a unique function $h_{q}\left(D_{1}, D_{2}\right)$ taking values in \mathbb{Q}_{p} :
(1) defined for all $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{q}\right)$ with disjoint support;
(2) bi-additive, continuous, and symmetric;
(3) for all $f \in \mathbb{Q}_{p}\left(X_{q}\right)^{*}$ (when defined): $h_{q}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.
- $\mathcal{X}_{q} / \mathbb{Q}_{q}=$ regular model of X_{q} with $(-\cdot-)=(\mathbb{Q}$-valued $)$ intersection multiplicity on \mathcal{X}_{q}.
- $\mathcal{D}_{1}, \mathcal{D}_{2}=$ extensions of D_{1}, D_{2} to \mathcal{X}_{q} such that $\left(\mathcal{D}_{i} \cdot V\right)=0$ for all vertical divisors V on \mathcal{X}_{q}.
Construction of h_{q}

$$
h_{q}\left(D_{1}, D_{2}\right)=\log _{p}(q) \cdot\left(\mathcal{D}_{1} \cdot \mathcal{D}_{2}\right)
$$

- van Bommel-Holmes-Müller's algorithm: Compute h_{q}.

Introduction to local p-adic heights at p

Construction of h_{p}

The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$, for a certain differential of the third kind $\omega_{D_{1}}$ depending on D_{1}.

Introduction to local p-adic heights at p

Construction of h_{p}

The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$, for a certain differential of the third kind $\omega_{D_{1}}$ depending on D_{1}.

Third kind meromorphic differentials

ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.

- Denote $T\left(\mathbb{Q}_{p}\right):=\left\{\right.$ the third kind differentials on $\left.X_{p}\right\}$.

Introduction to local p-adic heights at p

Construction of h_{p}

The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$, for a certain differential of the third kind $\omega_{D_{1}}$ depending on D_{1}.

Third kind meromorphic differentials

ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.

- Denote $T\left(\mathbb{Q}_{p}\right):=\left\{\right.$ the third kind differentials on $\left.X_{p}\right\}$.
- The residue divisor homomorphism $T\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Div}^{0}\left(X_{p}\right)$ is given by

$$
\operatorname{Res}(\omega)=\sum_{P \in X_{p}} \operatorname{Res}_{P}(\omega) P
$$

- Res surjective, but not injective $(\operatorname{Res}($ holomorphic differentials $)=0)$.

Introduction to local p-adic heights at p

Construction of h_{p}

The local height $h_{p}\left(D_{1}, D_{2}\right)$ is a Coleman integral $\int_{D_{2}} \omega_{D_{1}}$, for a certain differential of the third kind $\omega_{D_{1}}$ depending on D_{1}.

Third kind meromorphic differentials

ω is of the third kind if it is holomorphic except possibly at finitely many points and it has at most simple poles with residues in \mathbb{Z}.

- Denote $T\left(\mathbb{Q}_{p}\right):=\left\{\right.$ the third kind differentials on $\left.X_{p}\right\}$.
- The residue divisor homomorphism $T\left(\mathbb{Q}_{p}\right) \longrightarrow \operatorname{Div}^{0}\left(X_{p}\right)$ is given by

$$
\operatorname{Res}(\omega)=\sum_{P \in X_{p}} \operatorname{Res}_{P}(\omega) P
$$

- Res surjective, but not injective $(\operatorname{Res}($ holomorphic differentials $)=0)$.
- Want $\omega_{D_{1}}$ to be such that $\operatorname{Res}\left(\omega_{D_{1}}\right)=D_{1}$. This choice is not unique!

Introduction to local p-adic heights at p

Second kind meromorphic differentials

ω is of the second kind if all of its residues are 0 .

- $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \simeq\{$ differentials of the second kind $\} /\left\{d f: f \in \mathbb{Q}_{p}(X)^{\times}\right\}$.
- Recall: $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right) \oplus W_{p}$.

Introduction to local p-adic heights at p

Second kind meromorphic differentials

ω is of the second kind if all of its residues are 0 .

- $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \simeq\{$ differentials of the second kind $\} /\left\{d f: f \in \mathbb{Q}_{p}(X)^{\times}\right\}$.
- Recall: $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right) \oplus W_{p}$.
- \exists homomorphism "projection" ψ

$$
\psi:\left\{\text { meromorphic differentials on } X_{p}\right\} \longrightarrow \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)
$$ with many useful properties.

- Projection: if α is of the second kind, then $\psi(\alpha)=[\alpha]$.

Introduction to local p-adic heights at p

Second kind meromorphic differentials

ω is of the second kind if all of its residues are 0 .

- $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \simeq\{$ differentials of the second kind $\} /\left\{d f: f \in \mathbb{Q}_{p}(X)^{\times}\right\}$.
- Recall: $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)=\mathrm{H}_{\mathrm{dR}}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right) \oplus W_{p}$.
- \exists homomorphism "projection" ψ

$$
\psi:\left\{\text { meromorphic differentials on } X_{p}\right\} \longrightarrow \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)
$$ with many useful properties.

- Projection: if α is of the second kind, then $\psi(\alpha)=[\alpha]$.
- $\Longrightarrow D \in \operatorname{Div}^{0}\left(X_{p}\right) \rightsquigarrow$ unique $\omega_{D} \in T\left(\mathbb{Q}_{p}\right)$ such that

$$
\operatorname{Res}\left(\omega_{D}\right)=D \text { and } \psi\left(\omega_{D}\right) \in W_{p}
$$

- From now on, fix the notation ω_{D}.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.
* $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.
* $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.
* h_{p} is symmetric if and only if $W_{p} \subseteq \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$ is isotropic with respect to the cup product pairing.

Introduction to local p-adic heights at p

Definition of h_{p}

Let $D_{1}, D_{2} \in \operatorname{Div}^{0}\left(X_{p}\right)$ with disjoint support. The local p-adic height pairing at p is given by $h_{p}\left(D_{1}, D_{2}\right):=\int_{D_{2}} \omega_{D_{1}}$.

- Properties of h_{p} :
* $h_{p}\left(D_{1}, D_{2}\right)$ is continuous and bi-additive.
* $h_{p}\left(\operatorname{div}(f), D_{2}\right)=\log _{p}\left(f\left(D_{2}\right)\right)$.
* h_{p} is symmetric if and only if $W_{p} \subseteq \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right)$ is isotropic with respect to the cup product pairing.
* Independent of a model of X_{p} under reasonable technical conditions.
* Independent: $\tau: C \rightarrow C^{\prime}$

$$
h_{p}\left(\tau_{*}\left(D_{1}\right), \tau_{*}\left(D_{2}\right)\right)_{\text {on } C^{\prime}}=h_{p}\left(D_{1}, D_{2}\right)_{\text {on } C} .
$$

Introduction to local p-adic heights at p

- The cup product pairing $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \times \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$:

$$
\left(\left[\mu_{1}\right],\left[\mu_{2}\right]\right) \mapsto\left[\mu_{1}\right] \cup\left[\mu_{2}\right]:=\sum_{P \in X_{p}} \operatorname{Res}_{P}\left(\mu_{2} \int \mu_{1}\right)
$$

Introduction to local p-adic heights at p

- The cup product pairing $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \times \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$:

$$
\left(\left[\mu_{1}\right],\left[\mu_{2}\right]\right) \mapsto\left[\mu_{1}\right] \cup\left[\mu_{2}\right]:=\sum_{P \in X_{p}} \operatorname{Res} P\left(\mu_{2} \int \mu_{1}\right)
$$

- (Besser) $\psi(\omega) \cup \psi(\rho)=-\sum_{P \in X_{p}} \operatorname{Res}_{P}\left(\omega \int \rho\right)$.

Introduction to local p-adic heights at p

- The cup product pairing $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \times \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$:

$$
\left(\left[\mu_{1}\right],\left[\mu_{2}\right]\right) \mapsto\left[\mu_{1}\right] \cup\left[\mu_{2}\right]:=\sum_{P \in X_{P}} \operatorname{Res} P\left(\mu_{2} \int \mu_{1}\right)
$$

- (Besser) $\psi(\omega) \cup \psi(\rho)=-\sum_{P \in X_{p}} \operatorname{Res}_{P}\left(\omega \int \rho\right)$.
- Always \rightsquigarrow a symplectic basis $\left\langle\kappa_{0}, \ldots, \kappa_{2 g-1}\right\rangle: \kappa_{i} \cup \kappa_{j}= \pm \delta_{i, 2 g-1-j}$, where $\left\langle\kappa_{0}, \ldots, \kappa_{g-1}\right\rangle=H_{d R}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right)$.
- We can take $W_{p}=\left\langle\kappa_{g}, \ldots, \kappa_{2 g-1}\right\rangle$.

Introduction to local p-adic heights at p

- The cup product pairing $\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \times \mathrm{H}_{\mathrm{dR}}^{1}\left(X_{p} / \mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$:

$$
\left(\left[\mu_{1}\right],\left[\mu_{2}\right]\right) \mapsto\left[\mu_{1}\right] \cup\left[\mu_{2}\right]:=\sum_{P \in X_{P}} \operatorname{Res} P\left(\mu_{2} \int \mu_{1}\right)
$$

- (Besser) $\psi(\omega) \cup \psi(\rho)=-\sum_{P \in X_{P}} \operatorname{Res}_{P}\left(\omega \int \rho\right)$.
- Always \rightsquigarrow a symplectic basis $\left\langle\kappa_{0}, \ldots, \kappa_{2 g-1}\right\rangle: \kappa_{i} \cup \kappa_{j}= \pm \delta_{i, 2 g-1-j}$, where $\left\langle\kappa_{0}, \ldots, \kappa_{g-1}\right\rangle=H_{d R}^{1,0}\left(X_{p} / \mathbb{Q}_{p}\right)$.
- We can take $W_{p}=\left\langle\kappa_{g}, \ldots, \kappa_{2 g-1}\right\rangle$.
- When $C:=X_{p}$ has good ordinary reduction, we can take $W_{p}:=$ the unit root subspace, assume from now on.
- Both choices implemented in Sage, we talk about the second one. The difference is just some linear algebra.

Coleman integration in Sage and Magma

- Sage implementation - Balakrishnan: Hyperelliptic curves $y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):

Coleman integration in Sage and Magma

- Sage implementation - Balakrishnan: Hyperelliptic curves $y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_{i}:=\frac{x^{i} d x}{2 y}$ for

$$
0 \leq i \leq \operatorname{deg}(f)-2 \rightsquigarrow \int_{S}^{R} \omega_{i}
$$

- When we can apply the Monsky-Washnitzer reduction: $\omega=$

$$
\sum_{i=0}^{\operatorname{deg}(f)-2} \alpha_{i} \omega_{i}+d u \Longrightarrow \int_{S}^{R} \omega=\sum_{i=0}^{\operatorname{deg}(f)-2} \alpha_{i} \int_{S}^{R} \omega_{i}+u(R)-u(S)
$$

- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R(\bmod p)$.

Coleman integration in Sage and Magma

- Sage implementation - Balakrishnan: Hyperelliptic curves $y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_{i}:=\frac{x^{i} d x}{2 y}$ for

$$
0 \leq i \leq \operatorname{deg}(f)-2 \rightsquigarrow \int_{S}^{R} \omega_{i}
$$

- When we can apply the Monsky-Washnitzer reduction: $\omega=$ $\sum_{i=0}^{\operatorname{deg}(f)-2} \alpha_{i} \omega_{i}+d u \Longrightarrow \int_{S}^{R} \omega=\sum_{i=0}^{\operatorname{deg}(f)-2} \alpha_{i} \int_{S}^{R} \omega_{i}+u(R)-u(S)$.
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R(\bmod p)$.
- Endpoints R, S satisfy $\operatorname{ord}_{p} y((R)) \geq 0, \operatorname{ord}_{p}(y(S)) \geq 0$.
- Magma implementation Balakrishnan-Tuitman: On fairly general curves, including plane curves.
- For $\omega \in \mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right) \rightsquigarrow \int_{S}^{R} \omega$.

Coleman integration in Sage and Magma

- Sage implementation - Balakrishnan: Hyperelliptic curves $y^{2}=f(x) / \mathbb{Q}_{p}$ (WARNING: Sage sees only one point at infinity!):
- Monsky-Washnitzer basis differentials $\omega_{i}:=\frac{x^{i} d x}{2 y}$ for $0 \leq i \leq \operatorname{deg}(f)-2 \rightsquigarrow \int_{S}^{R} \omega_{i}$.
- When we can apply the Monsky-Washnitzer reduction: $\omega=$ $\sum_{i=0}^{\operatorname{deg}(f)-2} \alpha_{i} \omega_{i}+d u \Longrightarrow \int_{S}^{R} \omega=\sum_{i=0}^{\operatorname{deg}(f)-2} \alpha_{i} \int_{S}^{R} \omega_{i}+u(R)-u(S)$.
- Tiny integrals $\int_{S}^{R} \omega$, where $S \equiv R(\bmod p)$.
- Endpoints R, S satisfy $\operatorname{ord}_{p} y((R)) \geq 0, \operatorname{ord}_{p}(y(S)) \geq 0$.
- Magma implementation Balakrishnan-Tuitman: On fairly general curves, including plane curves.
- For $\omega \in \mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right) \rightsquigarrow \int_{S}^{R} \omega$.
- When possible, allows $\operatorname{ord}_{p}(y(R))<0$ or $\operatorname{ord}_{p}(y(S))<0$.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational. To compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational. To compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.
- Assume from now on that $C: y^{2}=f(x)$, with $f \in \mathbb{Z}_{p}[x]$ monic has good reduction.
- Let $\iota: C \rightarrow C$ denote the hyperelliptic involution.

Local heights $h_{p}\left(D_{1}, D_{2}\right)$ setup

- Assume that $D_{1}, D_{2} \in \operatorname{Div}^{0}(C)$ are pointwise \mathbb{Q}_{p}-rational. To compute $h_{p}\left(D_{1}, D_{2}\right) \rightsquigarrow$ compute $h_{p}(P-Q, R-S)$ for fixed distinct points $P, Q, R, S \in C\left(\mathbb{Q}_{p}\right)$.
- Assume from now on that $C: y^{2}=f(x)$, with $f \in \mathbb{Z}_{p}[x]$ monic has good reduction.
- Let $\iota: C \rightarrow C$ denote the hyperelliptic involution.
- Balakrishnan and Besser [BB]: Compute $h_{p}(P-Q, R-S)$ when $\operatorname{deg}(f)$ odd.
- We now recall $[B B]$ algorithm.

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute the map ψ, and especially $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute the map ψ, and especially $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute the map ψ, and especially $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.
(5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega^{\prime}$.

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute the map ψ, and especially $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.
(5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega^{\prime}$.

* Let $\alpha=\phi^{*} \omega^{\prime}-p \omega^{\prime}, \mathcal{P}=\{$ Weierstrass points $\} \cup\{$ Poles of $\alpha\}$, $\beta: \operatorname{Res}(\beta)=R-S$, and $I:=\int_{S}^{R} \omega^{\prime}$. Then

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute the $\operatorname{map} \psi$, and especially $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.
(5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega^{\prime}$.

* Let $\alpha=\phi^{*} \omega^{\prime}-p \omega^{\prime}, \mathcal{P}=\{$ Weierstrass points $\} \cup\{$ Poles of $\alpha\}$, $\beta: \operatorname{Res}(\beta)=R-S$, and $I:=\int_{S}^{R} \omega^{\prime}$. Then
$I=\frac{1}{1-p} \cdot\left(\psi(\alpha) \cup \psi(\beta)+\sum_{P \in \mathcal{P}} \operatorname{Res}_{P}\left(\alpha \int \beta\right)-\int_{\phi(S)}^{S} \omega-\int_{R}^{\phi(R)} \omega\right)$

[BB] algorithm

(1) Reduce to computing $h_{p}(P-\iota(P), R-S)$.
(2) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
(3) Compute the map ψ, and especially $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
(4) Obtain a holomorphic differential ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.
(5) Compute the Coleman integral of the third kind differential $\int_{S}^{R} \omega^{\prime}$.

* Let $\alpha=\phi^{*} \omega^{\prime}-p \omega^{\prime}, \mathcal{P}=\{$ Weierstrass points $\} \cup\{$ Poles of $\alpha\}$, $\beta: \operatorname{Res}(\beta)=R-S$, and $I:=\int_{S}^{R} \omega^{\prime}$. Then
$I=\frac{1}{1-p} \cdot\left(\psi(\alpha) \cup \psi(\beta)+\sum_{P \in \mathcal{P}} \operatorname{Res}_{P}\left(\alpha \int \beta\right)-\int_{\phi(S)}^{S} \omega-\int_{R}^{\phi(R)} \omega\right)$
(6) Compute $h_{p}(P-Q, R-S)=\int_{S}^{R} \omega^{\prime}-\int_{S}^{R} \omega_{h}$.

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.
- We need to compute some quantities related only to the curve first:

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.
- We need to compute some quantities related only to the curve first:
* a basis for $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ or W_{p};

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.
- We need to compute some quantities related only to the curve first:
* a basis for $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ or W_{p};
* cup product matrix CPM;

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.
- We need to compute some quantities related only to the curve first:
* a basis for $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ or W_{p};
* cup product matrix CPM;
* action of Frobenius (given by $\left.\phi: x \mapsto x^{p}\right)$ on $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.
- We need to compute some quantities related only to the curve first:
* a basis for $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ or W_{p};
* cup product matrix CPM;
* action of Frobenius (given by $\left.\phi: x \mapsto x^{p}\right)$ on $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.
- We first mention these (pre)computations.
- We then proceed as explained on the previous slide.

Our algorithm

- Today: all hyperelliptic curves over \mathbb{Q}_{p} of good reduction.
- We need to compute some quantities related only to the curve first:
* a basis for $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ or W_{p};
* cup product matrix CPM;
* action of Frobenius (given by $\left.\phi: x \mapsto x^{p}\right)$ on $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.
- We first mention these (pre)computations.
- We then proceed as explained on the previous slide.
- For even degree, we have one more case - when $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
- The other steps depend on the nature of the points P and Q - if they are affine or $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
- We distinguish these two cases.

Computations depending only on C

(i) Extend $\eta_{0}:=\omega_{0}, \ldots, \eta_{g-1}:=\omega_{g-1}$ to a basis of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.

* If $\operatorname{deg}(f)$ odd, take $\eta_{i}:=\omega_{i}$ for $g \leq i \leq 2 g-1$.
* If $\operatorname{deg}(f)$ even, for $g \leq i \leq 2 g-1$, compute $c_{i} \in \mathbb{Q}_{p}$ such that, for $\eta_{i}:=\omega_{i+1}-c_{i} \omega_{g}$ has a residue $=0$ at $\infty_{ \pm}$.

Computations depending only on C

(i) Extend $\eta_{0}:=\omega_{0}, \ldots, \eta_{g-1}:=\omega_{g-1}$ to a basis of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.

* If $\operatorname{deg}(f)$ odd, take $\eta_{i}:=\omega_{i}$ for $g \leq i \leq 2 g-1$.
* If $\operatorname{deg}(f)$ even, for $g \leq i \leq 2 g-1$, compute $c_{i} \in \mathbb{Q}_{p}$ such that, for $\eta_{i}:=\omega_{i+1}-c_{i} \omega_{g}$ has a residue $=0$ at $\infty_{ \pm}$.
(ii)* Compute the cup product matrix on C.
* It is given by CPM $=\left((\operatorname{deg}(f)-2 g) \operatorname{Res}_{\infty / \infty_{+}}\left(\eta_{j} \int \eta_{i}\right)\right)_{i, j}$.

Computations depending only on C

(i) Extend $\eta_{0}:=\omega_{0}, \ldots, \eta_{g-1}:=\omega_{g-1}$ to a basis of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.

* If $\operatorname{deg}(f)$ odd, take $\eta_{i}:=\omega_{i}$ for $g \leq i \leq 2 g-1$.
* If $\operatorname{deg}(f)$ even, for $g \leq i \leq 2 g-1$, compute $c_{i} \in \mathbb{Q}_{p}$ such that, for $\eta_{i}:=\omega_{i+1}-c_{i} \omega_{g}$ has a residue $=0$ at $\infty_{ \pm}$.
(ii)* Compute the cup product matrix on C.
* It is given by $C P M=\left((\operatorname{deg}(f)-2 g) \operatorname{Res}_{\infty / \infty+}\left(\eta_{j} \int \eta_{i}\right)\right)_{i, j}$.
(iii) Compute the action of Frobenius Frob: $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right) \rightarrow \mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.
* Harrison's variant of Kedlaya's algorithm and linear algebra.

Computations depending only on C

(i) Extend $\eta_{0}:=\omega_{0}, \ldots, \eta_{g-1}:=\omega_{g-1}$ to a basis of $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.

* If $\operatorname{deg}(f)$ odd, take $\eta_{i}:=\omega_{i}$ for $g \leq i \leq 2 g-1$.
* If $\operatorname{deg}(f)$ even, for $g \leq i \leq 2 g-1$, compute $c_{i} \in \mathbb{Q}_{p}$ such that, for $\eta_{i}:=\omega_{i+1}-c_{i} \omega_{g}$ has a residue $=0$ at $\infty_{ \pm}$.
(ii)* Compute the cup product matrix on C.
* It is given by $C P M=\left((\operatorname{deg}(f)-2 g) \operatorname{Res}_{\infty / \infty+}\left(\eta_{j} \int \eta_{i}\right)\right)_{i, j}$.
(iii) Compute the action of Frobenius Frob: $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right) \rightarrow \mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$.
* Harrison's variant of Kedlaya's algorithm and linear algebra.
(iv) Compute a basis of the unit root subspace W_{p}.
* [BB]: $\operatorname{Frob}^{n}\left(\eta_{g}\right), \ldots, \operatorname{Frob}^{n}\left(\eta_{2 g-1}\right)$ form a basis of W_{p} modulo p^{n}.
** [BB] and our algorithm can work with other subspaces W_{p}.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
(v) (NEW) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=\infty_{-}-\infty_{+}$.
* We can take $\omega^{\prime}=2 \omega_{g}=\frac{x^{g} d x}{y}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
(v) (NEW) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=\infty_{-}-\infty_{+}$.
* We can take $\omega^{\prime}=2 \omega_{g}=\frac{x^{g} d x}{y}$.
(vi) (NEW) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
* Define $\alpha=\phi^{*}\left(\omega^{\prime}\right)-p \omega^{\prime}$.
* Then α is holomorphic at both $\infty_{ \pm}$and α is of the second kind.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

- We first consider $\{P, Q\}=\left\{\infty_{-}, \infty_{+}\right\}$.
(v) (NEW) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=\infty_{-}-\infty_{+}$.
* We can take $\omega^{\prime}=2 \omega_{g}=\frac{x^{g} d x}{y}$.
(vi) (NEW) Compute $\psi\left(\omega^{\prime}\right)$ in $\mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$-basis.
* Define $\alpha=\phi^{*}\left(\omega^{\prime}\right)-p \omega^{\prime}$.
* Then α is holomorphic at both $\infty_{ \pm}$and α is of the second kind.
* Let $[\alpha] \in \mathrm{H}_{\mathrm{dR}}^{1}\left(C / \mathbb{Q}_{p}\right)$ be the class of α.
* Using Harrison's algorithm, write $\phi^{*} \omega_{g}=\sum_{i=0}^{2 g} f_{0, i} \omega_{i}$ modulo exact differentials.
$* \Longrightarrow[\alpha]=\left(\begin{array}{llllll}2 f_{0, g} & \cdots & 2 f_{0, g-1} & 2 f_{0, g+1} \cdots & 2 f_{0,2 g}\end{array}\right)^{t}$.
* We compute $\psi\left(\omega^{\prime}\right)=(\text { Frob }-p l)^{-1}[\alpha]$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

* Rewrite

$$
\psi\left(\omega^{\prime}\right)=u_{0} \eta_{0}+\cdots+u_{g-1} \eta_{g-1}+u_{g} \operatorname{Frob}^{n}\left(\eta_{g}\right)+\cdots+u_{2 g-1} \operatorname{Frob}^{n}\left(\eta_{2 g-1}\right)
$$

* Then $\omega_{h}:=u_{0} \eta_{0}+\cdots+u_{g-1} \eta_{g-1}$.
* If $\omega:=\omega^{\prime}-\omega_{h}$, recall that $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)=\int_{S}^{R} \omega$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

* Rewrite

$$
\psi\left(\omega^{\prime}\right)=u_{0} \eta_{0}+\cdots+u_{g-1} \eta_{g-1}+u_{g} \operatorname{Frob}^{n}\left(\eta_{g}\right)+\cdots+u_{2 g-1} \operatorname{Frob}^{n}\left(\eta_{2 g-1}\right)
$$

* Then $\omega_{h}:=u_{0} \eta_{0}+\cdots+u_{g-1} \eta_{g-1}$.
* If $\omega:=\omega^{\prime}-\omega_{h}$, recall that $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)=\int_{S}^{R} \omega$.
(viii) Compute the third kind integral $\int_{S}^{R} \omega^{\prime}$ and holomorphic integrals.
* Using Balakrishnan's algorithm for Coleman integration, we compute $\int_{S}^{R} \omega_{g}, u_{0} \int_{S}^{R} \omega_{0}+\cdots+u_{g-1} \int_{S}^{R} \omega_{g-1}$.

Computation of $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)$

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$.

* Rewrite
$\psi\left(\omega^{\prime}\right)=u_{0} \eta_{0}+\cdots+u_{g-1} \eta_{g-1}+u_{g} \operatorname{Frob}^{n}\left(\eta_{g}\right)+\cdots+u_{2 g-1} \operatorname{Frob}^{n}\left(\eta_{2 g-1}\right)$.
* Then $\omega_{h}:=u_{0} \eta_{0}+\cdots+u_{g-1} \eta_{g-1}$.
* If $\omega:=\omega^{\prime}-\omega_{h}$, recall that $h_{p}\left(\infty_{-}-\infty_{+}, R-S\right)=\int_{S}^{R} \omega$.
(viii) Compute the third kind integral $\int_{S}^{R} \omega^{\prime}$ and holomorphic integrals.
* Using Balakrishnan's algorithm for Coleman integration, we compute $\int_{S}^{R} \omega_{g}, u_{0} \int_{S}^{R} \omega_{0}+\cdots+u_{g-1} \int_{S}^{R} \omega_{g-1}$.
- We require that R and S are points in affine residue discs.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.
- Note $\operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)=P+\iota(P)-Q-\iota(Q)$.
- Rewrite $P-Q=\frac{1}{2} \operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)+\frac{1}{2}(P-\iota(P))-\frac{1}{2}(Q-\iota(Q))$.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.
- Note $\operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)=P+\iota(P)-Q-\iota(Q)$.
- Rewrite $P-Q=\frac{1}{2} \operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)+\frac{1}{2}(P-\iota(P))-\frac{1}{2}(Q-\iota(Q))$.
- $\Longrightarrow h_{p}(P-Q, R-S)=\frac{1}{2} \log _{p}\left(\frac{x(R)-x(P)}{x(R)-x(Q)} \frac{x(S)-x(Q)}{x(S)-x(R)}\right)+$
$\frac{1}{2} h_{p}(P-\iota(P), R-S)-\frac{1}{2} h_{p}(Q-\iota(Q), R-S)$.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.
- Note $\operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)=P+\iota(P)-Q-\iota(Q)$.
- Rewrite $P-Q=\frac{1}{2} \operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)+\frac{1}{2}(P-\iota(P))-\frac{1}{2}(Q-\iota(Q))$.
$0 \Longrightarrow h_{p}(P-Q, R-S)=\frac{1}{2} \log _{p}\left(\frac{x(R)-x(P)}{x(R)-x(Q)} \frac{x(S)-x(Q)}{x(S)-x(R)}\right)+$
$\frac{1}{2} h_{p}(P-\iota(P), R-S)-\frac{1}{2} h_{p}(Q-\iota(Q), R-S)$.
- From now on, we compute $h_{p}(P-\iota(P), R-S)$.

Computation of $h_{p}(P-Q, R-S)$ - affine points

- Now, P and Q are affine points.
- Note $\operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)=P+\iota(P)-Q-\iota(Q)$.
- Rewrite $P-Q=\frac{1}{2} \operatorname{div}\left(\frac{x-x(P)}{x-x(Q)}\right)+\frac{1}{2}(P-\iota(P))-\frac{1}{2}(Q-\iota(Q))$.
- $\Longrightarrow h_{p}(P-Q, R-S)=\frac{1}{2} \log _{p}\left(\frac{x(R)-x(P)}{x(R)-x(Q)} \frac{x(S)-x(Q)}{x(S)-x(R)}\right)+$
$\frac{1}{2} h_{p}(P-\iota(P), R-S)-\frac{1}{2} h_{p}(Q-\iota(Q), R-S)$.
- From now on, we compute $h_{p}(P-\iota(P), R-S)$.
(v) Find one differential ω^{\prime} such that $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.
- For $\omega^{\prime}=\frac{y(P)}{x-x(P)} \frac{d x}{y}$, we have $\operatorname{Res}\left(\omega^{\prime}\right)=P-\iota(P)$.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(vi) Compute $\psi\left(\omega^{\prime}\right)=\sum_{i=0}^{2 g-1} u_{i} \eta_{i}$ - use the cup product and Besser's formula

$$
\psi\left(\omega^{\prime}\right) \cup\left[\eta_{j}\right]=-\int_{\iota(P)}^{P} \eta_{j}-(\operatorname{deg}(f)-2 g) \operatorname{Res}_{\infty / \infty_{+}}\left(\omega^{\prime} \int \eta_{j}\right)
$$

- Here we use, if η is holomorphic at poles of ω

$$
\sum_{P \in \operatorname{Res}(\omega)} \operatorname{Res}_{P}\left(\omega \int \eta\right)=\int_{\operatorname{Res}(\omega)} \eta .
$$

- This is a way how $[\mathrm{BB}]$ compute integrals of differentials in $T\left(\mathbb{Q}_{p}\right)$.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(vi) Compute $\psi\left(\omega^{\prime}\right)=\sum_{i=0}^{2 g-1} u_{i} \eta_{i}$ - use the cup product and Besser's formula

$$
\psi\left(\omega^{\prime}\right) \cup\left[\eta_{j}\right]=-\int_{\iota(P)}^{P} \eta_{j}-(\operatorname{deg}(f)-2 g) \operatorname{Res}_{\infty / \infty_{+}}\left(\omega^{\prime} \int \eta_{j}\right)
$$

- Here we use, if η is holomorphic at poles of ω

$$
\sum_{P \in \operatorname{Res}(\omega)} \operatorname{Res}_{P}\left(\omega \int \eta\right)=\int_{\operatorname{Res}(\omega)} \eta
$$

- This is a way how $[\mathrm{BB}]$ compute integrals of differentials in $T\left(\mathbb{Q}_{p}\right)$.
- (NEW) In both even and odd case: $\operatorname{Res}_{\infty / \infty_{+}}\left(\omega^{\prime} \int \eta_{j}\right)=0$!
- This is also a computational improvement w.r.t. [BB].
$\Longrightarrow\left(\begin{array}{llll}u_{0} & u_{1} & \cdots & u_{2 g-1}\end{array}\right)^{t}=$
$-C P M^{-1}\left(\begin{array}{llll}-\int_{\iota(P)}^{P} \eta_{0} & -\int_{\iota(P)}^{P} \eta_{1} & \cdots & \left.-\int_{\iota(P)}^{P} \eta_{2 g-1}\right)^{t} .\end{array}\right.$

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$ - as before.

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$ - as before.
(viii) (NEW) Compute $\int_{S}^{R} \omega^{\prime}=\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}$.

- Use a change of variables

$$
\begin{aligned}
& \tau: C \rightarrow C^{\prime}: y^{\prime 2}=\frac{1}{y(P)^{2}} x^{2 g+2} f\left(x(P)+\frac{1}{x^{\prime}}\right) \\
& (x, y) \mapsto\left(x^{\prime}, y^{\prime}\right):=\left(\frac{1}{x-x(P)}, \frac{-y}{y(P)(x-x(P))^{g+1}}\right) .
\end{aligned}
$$

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$ - as before.
(viii) (NEW) Compute $\int_{S}^{R} \omega^{\prime}=\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}$.

- Use a change of variables

$$
\begin{aligned}
& \tau: C \rightarrow C^{\prime}: y^{\prime 2}=\frac{1}{y(P)^{2}} x^{\prime 2 g+2} f\left(x(P)+\frac{1}{x^{\prime}}\right) \\
&(x, y) \mapsto\left(x^{\prime}, y^{\prime}\right):=\left(\frac{1}{x-x(P)}, \frac{-y}{y(P)(x-x(P))^{g+1}}\right) \\
& \Longrightarrow \int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}=\int_{\tau(S)}^{\tau(R)} \frac{x^{\prime g} d x^{\prime}}{y^{\prime}}
\end{aligned}
$$

Computation of $h_{p}(P-\iota(P), R-S)$ - affine points

(vii) Find holomorphic ω_{h} such that $\psi\left(\omega^{\prime}-\omega_{h}\right) \in W_{p}$ - as before.
(viii) (NEW) Compute $\int_{S}^{R} \omega^{\prime}=\int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}$.

- Use a change of variables

$$
\begin{aligned}
& \tau: C \rightarrow C^{\prime}: y^{\prime 2}=\frac{1}{y(P)^{2}} x^{\prime 2 g+2} f\left(x(P)+\frac{1}{x^{\prime}}\right) \\
&(x, y) \mapsto\left(x^{\prime}, y^{\prime}\right):=\left(\frac{1}{x-x(P)}, \frac{-y}{y(P)(x-x(P))^{g+1}}\right) \\
& \Longrightarrow \int_{S}^{R} \frac{y(P)}{x-x(P)} \frac{d x}{y}=\int_{\tau(S)}^{\tau(R)} \frac{x^{\prime g} d x^{\prime}}{y^{\prime}}
\end{aligned}
$$

- $\frac{x^{\prime g} d x^{\prime}}{y^{\prime}}$ is a basis MW-differential on $C^{\prime} \Longrightarrow \int_{\tau(S)}^{\tau(R)} \frac{x^{\prime g} d x^{\prime}}{y^{\prime}}$ computed directly (and quickly) by Balakrishnan's algorithm.

Computation of $h_{p}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have

$$
h_{p}(P-\iota(P), R-S)=h_{p}\left(\infty_{-}-\infty_{+}, \tau(R)-\tau(S)\right)
$$

- \Longrightarrow It suffices to compute heights of the type $h_{p}\left(\infty_{-} \infty_{+}, R-S\right)$!

Computation of $h_{p}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have $h_{p}(P-\iota(P), R-S)=h_{p}\left(\infty_{-}-\infty_{+}, \tau(R)-\tau(S)\right)$.
- \Longrightarrow It suffices to compute heights of the type $h_{p}\left(\infty_{-} \infty_{+}, R-S\right)$!
- If $\operatorname{ord}_{p}(y(R))<0$ or $\operatorname{ord}_{p}(y(S))<0$, we cannot compute $\int_{S}^{R} \frac{x^{g} d x}{y}$ in Sage, neither any of $\int_{S}^{R} \omega_{i}$.
- General condition for our algorithm in Sage: $p \nmid(x(P)-x(R))(x(P)-x(S))(x(Q)-x(R))(x(Q)-x(S))$.

Computation of $h_{p}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have

$$
h_{p}(P-\iota(P), R-S)=h_{p}\left(\infty_{-}-\infty_{+}, \tau(R)-\tau(S)\right)
$$

- \Longrightarrow It suffices to compute heights of the type $h_{p}\left(\infty_{-} \infty_{+}, R-S\right)$!
- If $\operatorname{ord}_{p}(y(R))<0$ or $\operatorname{ord}_{p}(y(S))<0$, we cannot compute $\int_{S}^{R} \frac{x^{g} d x}{y}$ in Sage, neither any of $\int_{S}^{R} \omega_{i}$.
- General condition for our algorithm in Sage:

$$
p \nmid(x(P)-x(R))(x(P)-x(S))(x(Q)-x(R))(x(Q)-x(S)) .
$$

- We can try in Magma: Let $\alpha=\phi^{*}\left(\frac{x^{g} d x}{y}\right)-p \frac{x^{g} d x}{y}$.

$$
\Longrightarrow \int_{S}^{R} \frac{x^{g} d x}{y}=\frac{1}{1-p}\left(\int_{S}^{R} \alpha-\int_{\phi(S)}^{S} \frac{x^{g} d x}{y}-\int_{R}^{\phi(R)} \frac{x^{g} d x}{y}\right) .
$$

Computation of $h_{p}(P-Q, R-S)$ - comments

- By the independence of a model of local heights, we have

$$
h_{p}(P-\iota(P), R-S)=h_{p}\left(\infty_{-}-\infty_{+}, \tau(R)-\tau(S)\right)
$$

- \Longrightarrow It suffices to compute heights of the type $h_{p}\left(\infty_{-} \infty_{+}, R-S\right)$!
- If $\operatorname{ord}_{p}(y(R))<0$ or $\operatorname{ord}_{p}(y(S))<0$, we cannot compute $\int_{S}^{R} \frac{x^{g} d x}{y}$ in Sage, neither any of $\int_{S}^{R} \omega_{i}$.
- General condition for our algorithm in Sage:

$$
p \nmid(x(P)-x(R))(x(P)-x(S))(x(Q)-x(R))(x(Q)-x(S)) .
$$

- We can try in Magma: Let $\alpha=\phi^{*}\left(\frac{x^{g} d x}{y}\right)-p \frac{x^{g} d x}{y}$.

$$
\Longrightarrow \int_{S}^{R} \frac{x^{g} d x}{y}=\frac{1}{1-p}\left(\int_{S}^{R} \alpha-\int_{\phi(S)}^{S} \frac{x^{g} d x}{y}-\int_{R}^{\phi(R)} \frac{x^{g} d x}{y}\right) .
$$

- Maximal condition (still theoretic): $\{P, Q\} \cap\{R, \iota(R), S, \iota(S)\}=\emptyset$.

Summary for the local p-adic height above p

- Our algorithm is significantly simpler and faster than [BB].

Summary for the local p-adic height above p

- Our algorithm is significantly simpler and faster than [BB].
- It is slightly more restrictive, but in practice causes no problems.

Summary for the local p-adic height above p

- Our algorithm is significantly simpler and faster than [BB].
- It is slightly more restrictive, but in practice causes no problems.
- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.

Summary for the local p-adic height above p

- Our algorithm is significantly simpler and faster than [BB].
- It is slightly more restrictive, but in practice causes no problems.
- The main difference between [BB] and our algorithm is in computing Coleman integrals of differentials of the third kind and residues.
- We compare the timings and success of our and [BB] algorithm in several examples.

Genus of a curve	p	Precision	Our time	[BB] time
2	7	10	2 s	9 s
2	7	300	14 min	infeasible
2	503	10	5 min	infeasible
3	11	10	7 s	37 s
4	23	20	3 min	64 min
17	11	7	18 min	infeasible

Quadratic Chabauty applications

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee}$.

Quadratic Chabauty applications

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee}$.
- Idea: Write $h(E, D)=\sum_{1 \leq i, j \leq g} \alpha_{i, j} \int_{D} \omega_{i} \int_{E} \omega_{j}$.

Quadratic Chabauty applications

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee}$.
- Idea: Write $h(E, D)=\sum_{1 \leq i, j \leq g} \alpha_{i, j} \int_{D} \omega_{i} \int_{E} \omega_{j}$.
- Idea: Use these relations and "bound" the heights away from p to extract rational or integral points on curves.

Quadratic Chabauty applications

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee}$.
- Idea: Write $h(E, D)=\sum_{1 \leq i, j \leq g} \alpha_{i, j} \int_{D} \omega_{i} \int_{E} \omega_{j}$.
- Idea: Use these relations and "bound" the heights away from p to extract rational or integral points on curves.

Quadratic Chabauty for rational points example

- Consider $X_{0}^{+}(107): y^{2}=x^{6}+2 x^{5}+5 x^{4}+2 x^{3}-2 x^{2}-4 x-3$.
- Balakrishnan, Dogra, Müller, Tuitman, Vonk computed $X_{0}^{+}(107)(\mathbb{Q})$ using $p=61 \rightsquigarrow 40$ minutes.
- They needed an odd model over \mathbb{Q}_{p} and certain conditions on p.

Quadratic Chabauty applications

- $X / \mathbb{Q}=$ nice curve of genus $g \geq 2$, with good reduction at $p, J=$ its Jacobian whose rank over \mathbb{Q} is $r=g$.
- Assume that $\int_{D} \omega_{0}, \ldots, \int_{D} \omega_{g-1}: J(\mathbb{Q}) \otimes \mathbb{Q}_{p} \longrightarrow \mathbb{Q}_{p}$ form a basis of $\left(J(\mathbb{Q}) \otimes \mathbb{Q}_{p}\right)^{\vee}$.
- Idea: Write $h(E, D)=\sum_{1 \leq i, j \leq g} \alpha_{i, j} \int_{D} \omega_{i} \int_{E} \omega_{j}$.
- Idea: Use these relations and "bound" the heights away from p to extract rational or integral points on curves.

Quadratic Chabauty for rational points example

- Consider $X_{0}^{+}(107): y^{2}=x^{6}+2 x^{5}+5 x^{4}+2 x^{3}-2 x^{2}-4 x-3$.
- Balakrishnan, Dogra, Müller, Tuitman, Vonk computed $X_{0}^{+}(107)(\mathbb{Q})$ using $p=61 \rightsquigarrow 40$ minutes.
- They needed an odd model over \mathbb{Q}_{p} and certain conditions on p.
- Now, one can use $p=7 \rightsquigarrow 47$ seconds.

Quadratic Chabauty for integral points

- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$. Then (important assumption!) $\infty_{ \pm} \in X(\mathbb{Q})$. Denote $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.
- Write $h\left(D_{\infty}, D\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{D} \omega_{i}$, for some $\alpha_{i} \in \mathbb{Q}_{p}$.

Quadratic Chabauty for integral points

- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$. Then (important assumption!) $\infty_{ \pm} \in X(\mathbb{Q})$. Denote $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.
- Write $h\left(D_{\infty}, D\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{D} \omega_{i}$, for some $\alpha_{i} \in \mathbb{Q}_{p}$.
- $X(\mathbb{Z}):=$ integral points on X.
- Assume $Q \in X(\mathbb{Z})$. Consider $\rho_{Q}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{Q}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{Q}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-Q\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{Q}^{P} \omega_{i}-\int_{Q}^{P} \omega_{\infty}
$$

Quadratic Chabauty for integral points

- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$. Then (important assumption!) $\infty_{ \pm} \in X(\mathbb{Q})$. Denote $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.
- Write $h\left(D_{\infty}, D\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{D} \omega_{i}$, for some $\alpha_{i} \in \mathbb{Q}_{p}$.
- $X(\mathbb{Z}):=$ integral points on X.
- Assume $Q \in X(\mathbb{Z})$. Consider $\rho_{Q}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{Q}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{Q}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-Q\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{Q}^{P} \omega_{i}-\int_{Q}^{P} \omega_{\infty}
$$

- ρ_{Q} is a locally analytic function.
- If $P \in X(\mathbb{Q}), \rho_{Q}(P)=\sum_{q \neq p} h_{q}\left(D_{\infty}, P-Q\right)$.

Quadratic Chabauty for integral points

- Let $X / \mathbb{Q}: y^{2}=f(x)$, with $f \in \mathbb{Z}[x]$ monic, $\operatorname{deg}(f)=2 g+2$. Then (important assumption!) $\infty_{ \pm} \in X(\mathbb{Q})$. Denote $D_{\infty}:=\left[\infty_{-}-\infty_{+}\right]$.
- Write $h\left(D_{\infty}, D\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{D} \omega_{i}$, for some $\alpha_{i} \in \mathbb{Q}_{p}$.
- $X(\mathbb{Z}):=$ integral points on X.
- Assume $Q \in X(\mathbb{Z})$. Consider $\rho_{Q}: X\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q}_{p}$

$$
\rho_{Q}(P):=\sum_{i=0}^{g-1} \alpha_{i} \int_{Q}^{P} \omega_{i}-h_{p}\left(D_{\infty}, P-Q\right)=\sum_{i=0}^{g-1} \alpha_{i} \int_{Q}^{P} \omega_{i}-\int_{Q}^{P} \omega_{\infty}
$$

- ρ_{Q} is a locally analytic function.
- If $P \in X(\mathbb{Q}), \rho_{Q}(P)=\sum_{q \neq p} h_{q}\left(D_{\infty}, P-Q\right)$.
- Intersection theory $\Longrightarrow \forall P, Q \in X\left(\mathbb{Z}_{q}\right), h_{q}\left(\infty_{-}-\infty_{+}, P-Q\right) \in T$, T finite for all $q \neq p ; T=\{0\}$ for almost all (including good) primes.
- $\Longrightarrow \rho_{Q}(X(\mathbb{Z}))$ is a finite and computable set.

Testing the p-adic BSD

- Let A / \mathbb{Q} be modular abelian variety of GL_{2}-type, with good ordinary reduction at a prime p and the Mordell-Weil rank r.

Testing the p-adic BSD

- Let A / \mathbb{Q} be modular abelian variety of GL_{2}-type, with good ordinary reduction at a prime p and the Mordell-Weil rank r.
- p-adic BSD: relates rank r, values of p-adic L-functions, p-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate group, cardinality of the torsion, and regulator.

Testing the p-adic BSD

- Let A / \mathbb{Q} be modular abelian variety of GL_{2}-type, with good ordinary reduction at a prime p and the Mordell-Weil rank r.
- p-adic BSD: relates rank r, values of p-adic L-functions, p-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate group, cardinality of the torsion, and regulator.
- Example: $X_{0}^{+}(67)=X: y^{2}=x^{6}+4 x^{5}+2 x^{4}+2 x^{3}+x^{2}-2 x+1$.
- $A=$ Jacobian of X. Then $A(\mathbb{Q})=\left\langle D_{1}, D_{2}\right\rangle$, where $D_{1}=(0,1)-\infty_{-}$ and $D_{2}=(0,1)-(0,-1)$.

Testing the p-adic BSD

- Let A / \mathbb{Q} be modular abelian variety of GL_{2}-type, with good ordinary reduction at a prime p and the Mordell-Weil rank r.
- p-adic BSD: relates rank r, values of p-adic L-functions, p-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate group, cardinality of the torsion, and regulator.
- Example: $X_{0}^{+}(67)=X: y^{2}=x^{6}+4 x^{5}+2 x^{4}+2 x^{3}+x^{2}-2 x+1$.
- $A=$ Jacobian of X. Then $A(\mathbb{Q})=\left\langle D_{1}, D_{2}\right\rangle$, where $D_{1}=(0,1)-\infty_{-}$ and $D_{2}=(0,1)-(0,-1)$.
- Regulator at $p=11$:
$\operatorname{Reg}_{11}(A / \mathbb{Q})=h\left(D_{1}, D_{1}\right) h\left(D_{2}, D_{2}\right)-h\left(D_{1}, D_{2}\right)^{2}$.

Testing the p-adic BSD

- Let A / \mathbb{Q} be modular abelian variety of GL_{2}-type, with good ordinary reduction at a prime p and the Mordell-Weil rank r.
- p-adic BSD: relates rank r, values of p-adic L-functions, p-adic multiplier, Tamagawa numbers, cardinality of the Shafarevich-Tate group, cardinality of the torsion, and regulator.
- Example: $X_{0}^{+}(67)=X: y^{2}=x^{6}+4 x^{5}+2 x^{4}+2 x^{3}+x^{2}-2 x+1$.
- $A=$ Jacobian of X. Then $A(\mathbb{Q})=\left\langle D_{1}, D_{2}\right\rangle$, where $D_{1}=(0,1)-\infty_{-}$ and $D_{2}=(0,1)-(0,-1)$.
- Regulator at $p=11$:
$\operatorname{Reg}_{11}(A / \mathbb{Q})=h\left(D_{1}, D_{1}\right) h\left(D_{2}, D_{2}\right)-h\left(D_{1}, D_{2}\right)^{2}$.
- We need suitable multiples of D_{1} and D_{2} whose representatives are of the shape $P+Q-R-\iota(R)$ and disjoint, and satisfy the condition for our algorithm. Works in practice!

The end

Thank you for your attention!

Question

Any questions?

