Cubic points on modular curves via Chabauty
Joint work with Josha Box and Stevan Gajović

Pip Goodman

Cubic points on $X_{0}(65)$

David Zureick-Brown (DZB) and his collaborators had recently finished proving the analogue of Mazur's Theorem on torsion subgroups for elliptic curves over cubic fields.

For $X_{1}(65)$, they had tried using the natural map $X_{1}(65) \rightarrow X_{0}(65)$ to reduce the question to computing cubic points on $X_{0}(65)$. But they were unable to do so!

DZB: is it possible to determine the finitely many cubic points on $X_{0}(65)$?

How do we deal with cubic points?

We study points on $X^{(n)}$ the n-th symmetric power of the curve X. Points on $X^{(n)}$ are unordered n-tuples $P_{1}+\ldots+P_{n}$ with $P_{i} \in X$.

Example
$X^{(2)}(\mathbb{Q})=\{P+Q \mid P, Q \in X(\mathbb{Q})\} \cup\left\{P+P^{\sigma} \mid P \in X(K),[K: \mathbb{Q}]=2\right\}$
There could be infinitely many points on $X^{(n)}(\mathbb{Q})$ regardless of X^{\prime} s genus!

A hyperelliptic curve X / \mathbb{Q} has a rational degree two map $\rho: X \rightarrow \mathbb{P}^{1}$. Thus by pulling back rational points, we get infinitely many points in $X^{(2)}(\mathbb{Q})$.
For $X: y^{2}=f(x)$, we have $\{(x, y)+(x,-y) \mid x \in \mathbb{Q}\} \subseteq X^{(2)}(\mathbb{Q})$.

Back to the cubic points on $X_{0}(65)$

The jacobian $J_{0}(65)(\mathbb{Q})$ has positive rank, so we're going to try looking for a Chabauty method to classify the points on $X_{0}(65)^{(3)}(\mathbb{Q})$.

What do we want from such a method?
Let $\tilde{\mathcal{P}} \in X^{(n)}\left(\mathbb{F}_{p}\right)$. We want information on its inverse image $D(\tilde{\mathcal{P}})$, the residue class of $\tilde{\mathcal{P}}$, in $X^{(n)}\left(\mathbb{Q}_{p}\right)$.
Given $\mathcal{Q} \in X^{(n)}(\mathbb{Q}) \cap D(\tilde{\mathcal{P}})$, we want to know

- is \mathcal{Q} the only such point?
- If $\mathcal{Q} \in \rho^{*} C(\mathbb{Q})$, is $X^{(n)}(\mathbb{Q}) \cap D(\tilde{\mathcal{P}}) \subseteq \rho^{*} C(\mathbb{Q})$, i.e., does it just consist of pullbacks (via ρ).

Theorem (Siksek's Symmetric Chabauty method), '09

Explicit conditions, depending on p, to determine if $X^{(n)}(\mathbb{Q}) \cap D(\tilde{\mathcal{P}})$
consists of just one point, or pullbacks via ρ.

What's the problem with $X_{0}(65)^{(3)}(\mathbb{Q}) ?$

We have a degree two map $\rho: X_{0}(65) \rightarrow X_{0}^{+}(65)$ defined over \mathbb{Q} (quotient by the Atkin-Lehner involution).

The set $X_{0}(65)(\mathbb{Q})$ contains 4 rationals points (the cusps) and the curve $X_{0}^{+}(65)$ is a rank one elliptic curve.
In particular, $X_{0}(65)^{(3)}(\mathbb{Q}) \supseteq c+\rho^{*} X_{0}^{+}(65)(\mathbb{Q})$ where $c \in X_{0}(65)(\mathbb{Q})$, is an infinite set not consisting of pullbacks!

Theorem (Box, Gajović, G. '22)
Let d, e, f and $n=f+d e \neq 0$ be non-negative integers, $\rho: X \rightarrow C$ a morphism of degree d defined over \mathbb{Q}, and $\mathcal{Q} \in X^{(f)}(\mathbb{Q})$.

Explicit conditions, depending on p, to determine if $X^{(n)}(\mathbb{Q}) \cap D(\tilde{\mathcal{P}})$ is contained in $\mathcal{Q}+\rho^{*} C^{(e)}(\mathbb{Q})$.

Cubic and quartic points on modular curves

Theorem (Box, Gajović, G. '22)
The set of cubic points for each of the curves

$$
X_{0}(53), X_{0}(57), X_{0}(61), X_{0}(65), \quad X_{0}(67) \text { and } X_{0}(73)
$$

is finite and listed in our paper. The quartic points on $X_{0}(65)$ form an infinite set. These points consist of those coming from $\rho^{*} X_{0}^{+}(65)^{(2)}(\mathbb{Q})$ and a finite set of points listed in our paper.
Our new method also plays a crucial role in Box's result:
Theorem (Box '22)
Let K be a totally real quartic field, not containing $\sqrt{5}$. Then any elliptic curve E / K is modular.

Symmetric Chabauty

Consider $\widetilde{\mathcal{Q}} \in X^{(n)}\left(\mathbb{F}_{p}\right)$ and its inverse image $D(\widetilde{\mathcal{Q}}) \subseteq X^{(n)}\left(\mathbb{Q}_{p}\right)$ under the reduction map.
Fixing an Abel-Jacobi map $\iota: X^{(n)} \rightarrow \operatorname{Jac}(X)$, we obtain a commutative diagram:

In classical Chabauty, we look to determine $\iota(D(\widetilde{\mathcal{Q}})) \cap \overline{\mathrm{Jac}(X)(\mathbb{Q})}$.
The problem is that even if the analogous Chabauty condition $r_{X}<g_{X}-(n-1)$ is satisfied, this set might not be finite.

Non finiteness of $\iota(D(\widetilde{\mathcal{Q}})) \cap \overline{\mathrm{Jac}(X)(\mathbb{Q})}$

If $\mathcal{Q}=P+\rho^{*}(Q) \in D(\widetilde{\mathcal{Q}})$ with $P \in X(\mathbb{Q}), Q \in C(\mathbb{Q})$, then the family

$$
P+\rho^{*} C(\mathbb{Q}) \subseteq X^{(n)}(\mathbb{Q})
$$

often leads to infinitely many points in $D(\widetilde{\mathcal{Q}})$.
To remedy this, we need to 'kill' the pullbacks. There is an abelian variety A such that $J(X) \sim J(C) \times A$. Let $\pi_{A}: J(X) \rightarrow A$ be the quotient map. The image

$$
\pi_{A}\left(\iota\left(P+\rho^{*} C(\mathbb{Q})\right)\right)
$$

is now a single point on A. Hence we should try determining $\iota(D(\widetilde{\mathcal{Q}})) \cap \overline{A(X)(\mathbb{Q})}$, when $r_{X}-r_{C}<g_{X}-g_{C}-(n-1)$ is satisfied.
In general, this allows to deduce information about $D(\widetilde{\mathcal{Q}}) \cap X^{(n)}(\mathbb{Q})$ relative to $C(\mathbb{Q})$.

What could possibly go wrong?

In practice, we need to use information from several primes. The relevant technique here is the Mordell-Weil sieve.

There are algorithms for computing MW groups of curves with genus at most two. But our examples have genus 4 or 5 .

Taking pullbacks, we can compute subgroups with index dividing a
known quantity (the degree of our maps) and usually this is enough. But it wasn't for the quartic points on $X_{0}(65)$.

So, we proved the following:
Theorem (Box, Gajović, G. '22)
$J_{0}(65)(\mathbb{Q})$ is generated by $\rho^{*} J_{0}^{+}(65)(\mathbb{Q})$ and $J_{0}(65)(\mathbb{Q})_{\text {tors }}$.
(Where $J_{0}^{+}(65)$ is the elliptic curve that was causing problems earlier.)

Computing the full Mordell-Weil group

Suppose for a second $J(X)(\mathbb{Q})$ is torsion. We can try using

$$
J(X)(\mathbb{Q}) \hookrightarrow J(X)\left(\mathbb{F}_{p}\right)
$$

for several primes of good reduction to bound $J(X)(\mathbb{Q})$.
But there's no guarantee this bound will be sharp.
So, instead it's reasonable to compute $J(X)(K)_{\text {tors }}$ for some extension K / \mathbb{Q} and then take Galois invariants.

Suppose $J(X)(\mathbb{Q})$ has positive rank, with $G \subseteq J(X)(\mathbb{Q})$ index dividing, say, two.

We then check if $D \in G$ is a double in $J(X)(\mathbb{Q})$ by either

- reducing mod p; or
- computing a preimage $\frac{1}{2} D \in J(X)(K)$ and looking for rational points in $\frac{1}{2} D+J(X)(K)[2]$.

Rough form of our Chabauty conditions

Given $\mathcal{Q} \in X^{(n)}(\mathbb{Q})$ we associate to it a matrix $\mathcal{A}_{\mathcal{Q}}$, built from fixing some local coordinate t and then taking the first few coefficients modulo p of the expansion of certain differentials around t.

We also assume we know integers n, d, e such that $\mathcal{Q} \in \mathcal{P}+\rho^{*} C^{(e)}(\mathbb{Q})$ for some $\mathcal{P} \in X^{(n-d e)}(\mathbb{Q})$.

From this we cook up a rank condition on $\mathcal{A}_{\mathcal{Q}}$, which if satisfied shows $X^{(n)}(\mathbb{Q}) \cap D(\tilde{\mathcal{Q}}) \subseteq \mathcal{P}+\rho^{*} C^{(e)}(\mathbb{Q})$.

Sometimes these rank conditions are not satisfied. But this is usually for a "good reason".

The problem with $X_{0}(73)$

Let c_{0}, c_{∞} denote the cusps on $X_{0}(73)$. They are exchanged by the Atkin-Lehner involution, i.e., $w\left(c_{0}\right)=c_{\infty}$.

We expect $3 c_{0}, 3 c_{\infty} \in X_{0}(73)^{(3)}(\mathbb{Q})$ to be alone in their residue classes, and thus their corresponding matrices $\mathcal{A}_{0}, \mathcal{A}_{\infty}$ would have to have full rank ($=3$ here).

The matrix corresponding to $3 c_{0}+3 c_{\infty}$ is given by $\mathcal{A}=\left(\mathcal{A}_{0} \mid \mathcal{A}_{\infty}\right)$.
Owing to the fact $w\left(c_{0}\right)=c_{\infty}$, we find $\mathcal{A}_{0}=-\mathcal{A}_{\infty}$ and thus \mathcal{A} has rank $\operatorname{rk}\left(\mathcal{A}_{0}\right)$.

However, our theorem also tells us that if \mathcal{A} had rank $=3$, then the residue class of $3 c_{0}+3 c_{\infty}$ would be contained in $\rho^{*} X_{0}^{+}(73)^{(3)}(\mathbb{Q})$. However, this is not the case as there exists $f \in L\left(3 c_{0}+3 c_{\infty}\right)$ of degree 6 such that $w^{*} f \neq f$.

We provide other Chabauty conditions to deal with such novelties.

Thank you for listening!

