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Cubic points on X0(65)

David Zureick-Brown (DZB) and his collaborators had recently
finished proving the analogue of Mazur’s Theorem on torsion
subgroups for elliptic curves over cubic fields.

For X1(65), they had tried using the natural map X1(65) → X0(65) to
reduce the question to computing cubic points on X0(65). But they
were unable to do so!

DZB: is it possible to determine the finitely many cubic points on
X0(65)?
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How do we deal with cubic points?

We study points on X (n) the n-th symmetric power of the curve X .
Points on X (n) are unordered n-tuples P1 + . . .+ Pn with Pi ∈ X .

Example
X (2)(Q) = {P + Q|P,Q ∈ X(Q)} ∪ {P + Pσ|P ∈ X(K ), [K : Q] = 2}

There could be infinitely many points on X (n)(Q) regardless of X ’s
genus!

A hyperelliptic curve X/Q has a rational degree two map ρ : X → P1.
Thus by pulling back rational points, we get infinitely many points in
X (2)(Q).

For X : y2 = f (x), we have {(x, y) + (x,−y)|x ∈ Q} ⊆ X (2)(Q).
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Back to the cubic points on X0(65)

The jacobian J0(65)(Q) has positive rank, so we’re going to try
looking for a Chabauty method to classify the points on X0(65)(3)(Q).

What do we want from such a method?

Let P̃ ∈ X (n)(Fp). We want information on its inverse image D(P̃),
the residue class of P̃ , in X (n)(Qp).

Given Q ∈ X (n)(Q) ∩ D(P̃), we want to know

• is Q the only such point?
• If Q ∈ ρ∗C (Q), is X (n)(Q) ∩ D(P̃) ⊆ ρ∗C (Q), i.e., does it just
consist of pullbacks (via ρ).

Theorem (Siksek’s Symmetric Chabauty method), ’09
Explicit conditions, depending on p, to determine if X (n)(Q) ∩ D(P̃)

consists of just one point, or pullbacks via ρ.
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What’s the problem with X0(65)(3)(Q)?

We have a degree two map ρ : X0(65) → X+
0 (65) defined over Q

(quotient by the Atkin-Lehner involution).

The set X0(65)(Q) contains 4 rationals points (the cusps) and the
curve X+

0 (65) is a rank one elliptic curve.

In particular, X0(65)(3)(Q) ⊇ c + ρ∗X+
0 (65)(Q) where c ∈ X0(65)(Q),

is an infinite set not consisting of pullbacks!

Theorem (Box, Gajović, G. ’22)
Let d, e, f and n = f + de ≠ 0 be non-negative integers, ρ : X → C a
morphism of degree d defined over Q, and Q ∈ X (f )(Q).

Explicit conditions, depending on p, to determine if X (n)(Q) ∩ D(P̃)

is contained in Q+ ρ∗C (e)(Q).
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Cubic and quartic points on modular curves

Theorem (Box, Gajović, G. ’22)
The set of cubic points for each of the curves

X0(53), X0(57), X0(61), X0(65), X0(67) and X0(73)

is finite and listed in our paper. The quartic points on X0(65) form an
infinite set. These points consist of those coming from
ρ∗X+

0 (65)(2)(Q) and a finite set of points listed in our paper.

Our new method also plays a crucial role in Box’s result:

Theorem (Box ’22)
Let K be a totally real quartic field, not containing

√
5. Then any

elliptic curve E/K is modular.
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Symmetric Chabauty

Consider Q̃ ∈ X (n)(Fp) and its inverse image D(Q̃) ⊆ X (n)(Qp) under
the reduction map.

Fixing an Abel-Jacobi map ι : X (n) → Jac(X), we obtain a
commutative diagram:

D(Q̃)

D(Q̃) ∩ X (n)(Q) Jac(X)(Q)

Jac(X)(Qp)

ι

ι

In classical Chabauty, we look to determine ι(D(Q̃)) ∩ Jac(X)(Q).

The problem is that even if the analogous Chabauty condition
rX < gX − (n − 1) is satisfied, this set might not be finite.
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Non finiteness of ι(D(Q̃)) ∩ Jac(X)(Q)

If Q = P + ρ∗(Q) ∈ D(Q̃) with P ∈ X(Q), Q ∈ C (Q), then the family

P + ρ∗C (Q) ⊆ X (n)(Q)

often leads to infinitely many points in D(Q̃).

To remedy this, we need to ‘kill’ the pullbacks. There is an abelian
variety A such that J (X) ∼ J (C )× A. Let πA : J (X) → A be the
quotient map. The image

πA(ι(P + ρ∗C (Q)))

is now a single point on A. Hence we should try determining
ι(D(Q̃)) ∩ A(X)(Q), when rX − rC < gX − gC − (n − 1) is satisfied.

In general, this allows to deduce information about D(Q̃) ∩ X (n)(Q)

relative to C (Q).
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What could possibly go wrong?

In practice, we need to use information from several primes. The
relevant technique here is the Mordell–Weil sieve.

There are algorithms for computing MW groups of curves with genus
at most two. But our examples have genus 4 or 5.

Taking pullbacks, we can compute subgroups with index dividing a
known quantity (the degree of our maps) and usually this is enough.
But it wasn’t for the quartic points on X0(65).

So, we proved the following:

Theorem (Box, Gajović, G. ’22)
J0(65)(Q) is generated by ρ∗J+

0 (65)(Q) and J0(65)(Q)tors.

(Where J+
0 (65) is the elliptic curve that was causing problems

earlier.)
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Computing the full Mordell–Weil group

Suppose for a second J (X)(Q) is torsion. We can try using

J (X)(Q) ↪→ J (X)(Fp)

for several primes of good reduction to bound J (X)(Q).

But there’s no guarantee this bound will be sharp.

So, instead it’s reasonable to compute J (X)(K )tors for some
extension K/Q and then take Galois invariants.

Suppose J (X)(Q) has positive rank, with G ⊆ J (X)(Q) index
dividing, say, two.

We then check if D ∈ G is a double in J (X)(Q) by either

• reducing mod p; or
• computing a preimage 1

2 D ∈ J (X)(K ) and looking for rational
points in 1

2 D + J (X)(K )[2].
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Rough form of our Chabauty conditions

Given Q ∈ X (n)(Q) we associate to it a matrix AQ, built from fixing
some local coordinate t and then taking the first few coefficients
modulo p of the expansion of certain differentials around t .

We also assume we know integers n, d, e such that
Q ∈ P + ρ∗C (e)(Q) for some P ∈ X (n−de)(Q).

From this we cook up a rank condition on AQ, which if satisfied
shows X (n)(Q) ∩ D(Q̃) ⊆ P + ρ∗C (e)(Q).

Sometimes these rank conditions are not satisfied. But this is usually
for a “good reason”.
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The problem with X0(73)

Let c0, c∞ denote the cusps on X0(73). They are exchanged by the
Atkin-Lehner involution, i.e., w(c0) = c∞.

We expect 3c0, 3c∞ ∈ X0(73)(3)(Q) to be alone in their residue
classes, and thus their corresponding matrices A0,A∞ would have
to have full rank (= 3 here).

The matrix corresponding to 3c0 + 3c∞ is given by A = (A0|A∞).

Owing to the fact w(c0) = c∞, we find A0 = −A∞ and thus A has
rank rk(A0).

However, our theorem also tells us that if A had rank = 3, then the
residue class of 3c0 + 3c∞ would be contained in ρ∗X+

0 (73)(3)(Q).

However, this is not the case as there exists f ∈ L(3c0 + 3c∞) of
degree 6 such that w∗f ̸= f .

We provide other Chabauty conditions to deal with such novelties.
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Thank you for listening!
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