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The class number one problem

The class number one problem

A quadratic form (primitive if gcd(a, b, c) = 1) is an element

⟨a, b, c⟩ := aX 2 + bXY + cY 2 ∈ Z[X ,Y ]

Have right SL2(Z)-action on Z[X ,Y ] by ring automorphisms, defined by(
p q
r s

)
:

{
X 7−→ pX + qY
Y 7−→ rX + sY

This action preserves the set of quadratic forms, respects primitivity, and
preserves the discriminant ∆ := b2 − 4ac of a quadratic form ⟨a, b, c⟩.

Let F∆ be the set of primitive forms of discriminant ∆ (with a > 0 if ∆ < 0).
When ∆ is a non-square discriminant of a quadratic orderO, have bijection

F∆/ SL2(Z)−→ Pic+ (O) ; ⟨a, b, c⟩ 7−→ [(a, (−b +
√
∆)/2)].

Gauß made computational study of number h(∆) of equivalence classes.
He conjectured:

For ∆ < 0 we have h(∆) = 1 for precisely 13 discriminants:

−∆ ∈ {3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163}.
For ∆ > 0 we have h(∆) = 1 for infinitely many discriminants ∆.

3 / 18



Quadratic Chabauty for modular curves

The class number one problem

The class number one problem
Heegner (1952) resolved the case ∆ < 0 using modular functions. Most important: Klein
j-function, defined in the variable q = exp(2πiτ) on |q| < 1 by

j(q) =

(
1 + 240

∑
n≥1

n3qn

1− qn

)3

÷
(
q
∏
n≥1

(1− qn)24
)

= q−1 + 744 + 196884q + 21493760q2 + . . .

Values at roots τ of forms with ∆ < 0 (singular moduli) are algebraic integers of degree h(∆):

j
(

1 +
√
−7

2

)
= −33 · 53 j

(
1 +
√
−163

2

)
= −218 · 33 · 53 · 233 · 293

Not yet enough for class number one, since Z is infinite! Heegner uses two ingredients:

Special values of the cube root γ2 = 3
√
j

γ2(q) = q−1/3 + 248q + 4124q2 + . . .

Value at quadratic τ with 3 ∤ ∆ < 0 is an
algebraic integer of degree h(∆).

Special values of the Weber functions

f(q) = q−1/48 ∏(1 + qn−1/2)

f1(q) = q−1/48 ∏(1− qn−1/2)

f2(q) =
√

2q1/24 ∏(1 + qn)

Reduces the problem to finding integral solutions of 2x(x3 + 1) = y2.
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The class number one problem

Non-split Cartan modular curves
Geometric interpretation of Heegner/Stark argument for ∆ < 0:

the function γ2 is parameter on X+
ns(3) ≃ P1

the equation y2 = 2x(x3 + 1) is a model for X+
ns(24).

Let p be prime, then points on X+
ns(p)(Q) correspond to elliptic curves E/Q with image of

ρE,p : Gal(Q/Q)−→Aut(E[p]) ≃ GL2(Fp)

contained in the normaliser of a non-split Cartan subgroup

F×p2 ⊂ GL2(Fp).

For a CM curves E equivalent to p inert inO ≃ End(E). When h(∆) = 1, this is implied by
the condition p ∤ ∆ < −4p, giving for each such ∆ an integral point on X+

ns(p).

Q: (Mazur / Serre) Are all integral/rational points obtained in this way?

Siegel (1968) parametrises X+
ns(5) ≃ P1 (two cusps) and finds points on X+

ns(15).
Kenku (1985) parametrises X+

ns(7) ≃ P1 (three cusps).
Ligozat (1976) parametrises X+

ns(11) genus 1, finds integral points.
Baran (2014) parametrises X+

ns(13) genus 3, rational points (BDMTV 2019)
Mercuri–Schoof (2018) parametrise X+

ns(17) genus 6, rational points (BDMTV 2023)
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Goal 1: Proving finiteness

Let K be a number field, and XK be a smooth projective curve, then we know:

If XK is of genus g ≥ 2, then X(K) is finite.

(1) Proved unconditionally by Faltings (1983) and Lawrence–Venkatesh (2020). Consider a
certain Parshin family C −→ X , with Cx a finite covering of X unramified away from x .
One then associates a (very structured) Galois representation

ρ : x 7−→ H1
ét(Cx ,Qp).

Then show that the association is finite to one, and has finitely many images.

(2) Proved much earlier by Chabauty (1941) conditionally on r < g.

Method of Chabauty proceeds as follows: Choose b ∈ X(K), get Abel–Jacobi map

AJb : XK −→ JK .

For p prime of good reduction, consider p-adic logarithm, get commutative diagram:

X(K) X(Kp)

J(K) J(Kp) H0(XKp ,Ω
1)∨

log

Chabauty proves two statements in H0(XKp ,Ω
1)∨:

The closure of J(K) is in a proper Kp-subspace.
The intersection X(Kp) ∩ log J(K) is finite.
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Goal 1: Proving finiteness

What if r ≥ g? → Reinterpret Chabauty cohomologically.

Let V := Tp(J)⊗Zp Qp the p-adic Tate module, and define

κ : J(K) −→ Qp⊗Zp lim←−n
J(K)/pnJ(K)

∼−→ H1
f (G,V)

κp : J(Kp) −→ Qp⊗Zp lim←−n
J(Kp)/pnJ(Kp)

∼−→ H1
f (Gp,V)

where f = unramified outside bad reduction, crystalline at places above p.

Set VdR := H1
dR(XKp )

∨, then

H1
f (Gp,V) ≃ VdR/ Fil0

≃ H0(XKp ,Ω
1)∨

isomorphism, constructed by Bloch–
Kato. Get a commutative diagram:

X(K) X(Kp)

J(K) J(Kp) H0(XKp ,Ω
1)∨

H1
f (G,V) H1

f (Gp,V) VdR/ Fil0

κ κp ≃

log

locp ≃

Cutting the middle row, we find a diagram more amenable to generalisation! Note that

πét
1 (X , b)−→H1

ét(X , Ẑ)
∨−→ Tp(J).

Can we replace the bottom row with cohomology valued in larger quotient?
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Goal 1: Proving finiteness

Grothendieck conjectured that

X(K) −→ H1(GK , π
ét
1 (X , b)

)
; x 7−→ πét

1 (X ; b, x)

is an isomorphism. Unfortunately, this cohomology set has very little structure!

X(K) −→ H1
f (GK ,V) (H1 has too much structure if r ≥ g.)

X(K) −→ H1
(
GK , πét

1 (X , b)
)

(H1 has too little structure.)

We instead work with a unipotent quotient U of πét
1 (X , b), assuring that each group H1

f is the
set of Qp-points of algebraic variety, and locp is algebraic (Selmer varieties).

Proposal of Minhyong Kim: Want a unipotent quotient U such that
1 we can prove that dimH1

f (G,U) < dimH1
f (Gp,U),

2 the quotient is “motivic”, so that we get replacement of

log : J(Kp)−→H0(XKp ,Ω
1)∨

For such a U, we get the following commutative diagram:

X(K) X(Kp)

H1
f (G,U) H1

f (Gp,U) UdR / Fil0.

jét jét
p

locp Dcris

jdR

Kim: Such a quotient exists if we assume Bloch–Kato / Fontaine–Mazur.
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Goal 2: Determining rational points

Quadratic Chabauty–Coleman
In quadratic Chabauty–Coleman, we use a suitable algebraic correspondence Z ⊂ X × X to
construct a unipotent quotient U such that

1−→Qp(1)−→U−→V −→ 1.

The example X = X+
ns(13): Baran finds the model

(2y2 + y)x2 − (y3 − y2 + 2y − 1)x + (2y2 − 3y) = x3(y + 1)

Quadratic Chabauty–Kim associates representations to points:

x ∈ X(Q) 7−→
[
ρx : Gal(Q/Q) → GL8(Qp)

]
x ∈ X(Qp) 7−→

[
ρx : Gal(Qp/Qp) → GL8(Qp)

]
with a computable condition on global representations.

Quadratic Chabauty uses the bilinearity of p-adic height pairing.

Numerical method works from the equations, only arithmetic input:

A correspondence Z ⊂ X × X , and computation of its action on
cohomology. This was the subject of Edixhoven’s thesis (1989).

Use Edixhoven (1990) to determine semi-stable model at ℓ = 13.
General: Edixhoven–Parent (2021), all max. subgroups GL2(Fp).
Use Chen, Edixhoven–de Smit (1999) to determine rank JacX (Q).
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Constructing the quotient U
Let Un be the quotient by the n-th lower central series filtration on the Qp-unipotent
completion of πét

1 (X , b). We have U1 = V and U2 is an extension

1−→Coker
(
Qp(1)

∪∗
−→ ∧2V

)
−→U2−→V −→ 1. (1)

Assume there exists a nonzero class Z ∈ NS(J) with trace zero. This element gives a cycle
class ξZ : Coker(∪∗)−→Qp(1) along which we push out the extension (1) to obtain

1−→Qp(1)−→U−→V −→ 1.

This quotient is very convenient for Chabauty–Kim, since it is motivic, and we have

H1
f (GQ ,Qp(1)) = Z× ⊗̂Qp = 0,

H1
f (GQp ,Qp(1)) = Z×

p ⊗̂Qp = Qp .

We end up with a commutative diagram with the required dimension inequality when r = g.

X(K) X(Kp)

H1
f (G,U) H1

f (Gp,U) UdR / Fil0.

dim = r dim = r + 1

jét jét
p

locp Dcris

jdR
p
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Goal 2: Determining rational points

Computing the de Rham realisation

The map jét
p : X(k)−→H1

f (Gk ,U) associates to each rational point an extension

1→ U→ E → Qp → 1

of Gk -representations. Want to compute its image under Dcris, a filtered ϕ-module.

These filtered ϕ-modules are the fibres of a vector bundle with connection VZ on X , with:
A filtration VZ ⊃ Fil0

A Frobenius structure ϕ∗VZ ≃ VZ .
These structures on the bundle VZ are rigid: we know them on graded pieces, and we know
them on the fibre at b ∈ X(Q). This determines them uniquely (and computably).

Condition on global points
There is a continuous bilinear height pairing due to Nekovár̆

h : H1
f (G,U)−→H1

f (G,V)× H1
f (G,V

∗(1))−→Qp

which has a decomposition into local components

h = hp +
∑
v ̸=p

hv , hv : H1
f (Gv ,U)−→Qp .

For the cursed curve, have hv = 0. Compute hp from filtered ϕ-module, and solve for h = hp .
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“Proving” theorems

From a recent talk of Kevin Buzzard (Jan 2020, Pittsburgh):
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Some future directions

Quadratic Chabauty–Coleman (d’après Edixhoven-Lido)

Choose b in X(Q), gives X → J and

Pic0(J)

Pic0(X)

Pic(J)

Pic(X)

NS(J)

Z

0

0.

1

1

Take non-trivial Z in NS(J) which maps to zero in Z ≃ NS(X). Get unique lift LZ in Pic(J)
that is trivial on X . Working over Z, obtain X −→L ×

Z , unique up to Z× = {±1}.

Fundamental groupU of L ×
Z is an ex-

tension (Bertrand–Edixhoven 2020):

1→ Qp(1)→ U→ H1
ét(X ,Qp)

∨ → 1

Associating path torsors, get diagram:

X(Q) X(Qp)

L ×
Z (Q) L ×

Z (Qp) LieL ×
Z (Qp)

H1
f (G,U) H1

f (Gp,U) UdR / Fil0

≃

log

locp ≃

Edixhoven–Lido “puts the middle row back in”. Place geometry of Poincaré torsor central.
These ideas are being developed by Duque-Rosero, Hashimoto, Spelier.
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Some future directions

Real quadratic fields

Discriminants ∆ < 0

Finite list with h(∆) = 1.

Discriminants ∆ > 0

Infinite list with h(∆) = 1?

Constructing singular moduli must be very different for real quadratic fields!
Objection 1: There are finitely many rational points on every X+

ns(p).
Objection 2: Gross–Zagier showed that differences of singular moduli are smooth:

j
(

1 +
√
−67

2

)
− j

(
1 +

√
−163

2

)
= −215 · 33 · 53 · 113 + 218 · 33 · 53 · 233 · 293

= 215 · 37 · 53 · 72 · 13 · 139 · 331

A similar theory of singular moduli for ∆ > 0 would contradict the abc-conjecture.

Darmon–V. (2021) construct p-adic quantity Θ×
p [τ1, τ2] ∈ C×

p for RM points. Very explicit.
For example, when p = 13 and (τ1, τ2) = (2

√
2,
√

31) we find a root of

1201712(x4 + 1) − 3946488(x3 + x) + 5631681x2 = 0 (mod 13200), 1201712 = 24 · 19 · 59 · 67.

Mimics (conjecturally!) all properties of singular moduli discovered in Gross–Zagier.
A multiplicative quantity, relates (conj!) to p-adic heights of points on modular Jacobians.

17 / 18



Quadratic Chabauty for modular curves

Some future directions

Thanks for having me!
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