Quadratic Chabauty for modular curves

Montserrat, 28 June 2023
Jan Vonk

Outline

(1) The class number one problemGoal 1: Proving finitenessGoal 2: Determining rational pointsSome future directions

The class number one problem

A quadratic form (primitive if $\operatorname{gcd}(a, b, c)=1$) is an element

$$
\langle a, b, c\rangle:=a X^{2}+b X Y+c Y^{2} \quad \in \mathbf{Z}[X, Y]
$$

Have right $\mathrm{SL}_{2}(\mathbf{Z})$-action on $\mathbf{Z}[X, Y]$ by ring automorphisms, defined by

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right):\left\{\begin{array}{lll}
X & \longmapsto & p X+q Y \\
Y & \longmapsto & r X+s Y
\end{array}\right.
$$

This action preserves the set of quadratic forms, respects primitivity, and preserves the discriminant $\Delta:=b^{2}-4 a c$ of a quadratic form $\langle a, b, c\rangle$.

Let \mathcal{F}_{Δ} be the set of primitive forms of discriminant Δ (with $a>0$ if $\Delta<0$). When Δ is a non-square discriminant of a quadratic order \mathcal{O}, have bijection

$$
\mathcal{F}_{\Delta} / \mathrm{SL}_{2}(\mathbf{Z}) \longrightarrow \operatorname{Pic}^{+}(\mathcal{O}) ;\langle a, b, c\rangle \longmapsto[(a,(-b+\sqrt{\Delta}) / 2)] .
$$

msquistiones
ARITHMETICAE
Gauß made computational study of number $h(\Delta)$ of equivalence classes. He conjectured:

- For $\Delta<0$ we have $h(\Delta)=1$ for precisely 13 discriminants:

$$
-\Delta \in\{3,4,7,8,11,12,16,19,27,28,43,67,163\} .
$$

- For $\Delta>0$ we have $h(\Delta)=1$ for infinitely many discriminants Δ.

The class number one problem

Heegner (1952) resolved the case $\Delta<0$ using modular functions. Most important: Klein j-function, defined in the variable $q=\exp (2 \pi i \tau)$ on $|q|<1$ by

$$
\begin{aligned}
j(q) & =\left(1+240 \sum_{n \geq 1} \frac{n^{3} q^{n}}{1-q^{n}}\right)^{3} \div\left(q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}\right) \\
& =q^{-1}+744+196884 q+21493760 q^{2}+\ldots
\end{aligned}
$$

Values at roots τ of forms with $\Delta<0$ (singular moduli) are algebraic integers of degree $h(\Delta)$:

$$
j\left(\frac{1+\sqrt{-7}}{2}\right)=-3^{3} \cdot 5^{3} \quad j\left(\frac{1+\sqrt{-163}}{2}\right)=-2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3}
$$

Not yet enough for class number one, since \mathbf{Z} is infinite! Heegner uses two ingredients:

Special values of the cube root $\gamma_{2}=\sqrt[3]{j}$

$$
\gamma_{2}(q)=q^{-1 / 3}+248 q+4124 q^{2}+\ldots
$$

Value at quadratic τ with $3 \nmid \Delta<0$ is an algebraic integer of degree $h(\Delta)$.

Special values of the Weber functions

$$
\begin{aligned}
& \mathfrak{f}(q)=q^{-1 / 48} \Pi\left(1+q^{n-1 / 2}\right) \\
& \mathfrak{f}_{1}(q)=q^{-1 / 48} \Pi\left(1-q^{n-1 / 2}\right) \\
& f_{2}(q)=\sqrt{2} q^{1 / 24} \Pi\left(1+q^{n}\right)
\end{aligned}
$$

Reduces the problem to finding integral solutions of $2 x\left(x^{3}+1\right)=y^{2}$.

Non-split Cartan modular curves

Geometric interpretation of Heegner/Stark argument for $\Delta<0$:

- the function γ_{2} is parameter on $X_{\mathrm{ns}}^{+}(3) \simeq \mathbf{P}^{1}$
- the equation $y^{2}=2 x\left(x^{3}+1\right)$ is a model for $X_{\mathrm{ns}}^{+}(24)$.

Let p be prime, then points on $X_{\mathrm{nS}}^{+}(p)(\mathbf{Q})$ correspond to elliptic curves E / \mathbf{Q} with image of

$$
\rho_{E, p}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \longrightarrow \operatorname{Aut}(E[p]) \simeq \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)
$$

contained in the normaliser of a non-split Cartan subgroup

$$
\mathbf{F}_{p^{2}}^{\times} \subset \mathrm{GL}_{2}\left(\mathbf{F}_{p}\right) .
$$

For a $C M$ curves E equivalent to p inert in $\mathcal{O} \simeq \operatorname{End}(E)$. When $h(\Delta)=1$, this is implied by the condition $p \nmid \Delta<-4 p$, giving for each such Δ an integral point on $X_{\mathrm{ns}}^{+}(p)$.

Q: (Mazur / Serre) Are all integral/rational points obtained in this way?

- Siegel (1968) parametrises $X_{\mathrm{ns}}^{+}(5) \simeq \mathbf{P}^{1}$ (two cusps) and finds points on $X_{\mathrm{ns}}^{+}(15)$.
- Kenku (1985) parametrises $X_{\text {ns }}^{+}(7) \simeq \mathbf{P}^{1}$ (three cusps).
- Ligozat (1976) parametrises $X_{\mathrm{ns}}^{+}(11)$ genus 1, finds integral points.
- Baran (2014) parametrises $X_{\text {ns }}^{+}$(13) genus 3, rational points (BDMTV 2019)
- Mercuri-Schoof (2018) parametrise X_{ns}^{+}(17) genus 6, rational points (BDMTV 2023)

Outline

(1) The class number one problem

2 Goal 1: Proving finitenessGoal 2: Determining rational pointsSome future directions

Let K be a number field, and X_{K} be a smooth projective curve, then we know:

If X_{K} is of genus $g \geq 2$, then $X(K)$ is finite.
(1) Proved unconditionally by Faltings (1983) and Lawrence-Venkatesh (2020). Consider a certain Parshin family $\mathcal{C} \longrightarrow X$, with $\mathcal{C}_{\bar{x}}$ a finite covering of X unramified away from \boldsymbol{x}.
One then associates a (very structured) Galois representation

$$
\rho: x \longmapsto \mathrm{H}_{\mathrm{et}}^{1}\left(\mathcal{C}_{\bar{x}}, \mathbf{Q}_{p}\right) .
$$

Then show that the association is finite to one, and has finitely many images.
(2) Proved much earlier by Chabauty (1941) conditionally on $r<g$.

Method of Chabauty proceeds as follows: Choose $b \in X(K)$, get Abel-Jacobi map

$$
\mathrm{AJ}_{b}: X_{K} \longrightarrow J_{K}
$$

For \mathfrak{p} prime of good reduction, consider \mathfrak{p}-adic logarithm, get commutative diagram:

Chabauty proves two statements in $\mathrm{H}^{0}\left(X_{K_{\mathfrak{p}}}, \Omega^{1}\right)^{\vee}$:

- The closure of $J(K)$ is in a proper $K_{\mathfrak{p}}$-subspace.
- The intersection $X\left(K_{\mathfrak{p}}\right) \cap \log \overline{J(K)}$ is finite.

$$
\text { What if } r \geq g ? \quad \rightarrow \text { Reinterpret Chabauty cohomologically. }
$$

Let $V:=T_{p}(J) \otimes \mathbf{z}_{p} \mathbf{Q}_{p}$ the p-adic Tate module, and define

$$
\begin{array}{lllll}
\kappa: & J(K) & \longrightarrow & \mathbf{Q}_{p} \otimes \mathbf{z}_{p} \lim _{n} J(K) / p^{n} J(K) & \xrightarrow{\longrightarrow} \\
\kappa_{\mathfrak{p}}: & J\left(K_{\mathfrak{p}}\right) & \longrightarrow & \mathbf{Q}_{p}\left(G \mathbf{z}_{p} \lim _{n} J\left(K_{\mathfrak{p}}\right) / p^{n} J\left(K_{\mathfrak{p}}\right)\right. & \xrightarrow{\longrightarrow} \\
\mathrm{H}_{f}^{1}\left(G_{\mathfrak{p}}, V\right)
\end{array}
$$

where $f=$ unramified outside bad reduction, crystalline at places above p.

Set $V_{\mathrm{dR}}:=\mathrm{H}_{\mathrm{dR}}^{1}\left(X_{K_{\mathrm{p}}}\right)^{\vee}$, then

$$
\begin{aligned}
\mathrm{H}_{\mathrm{f}}^{1}\left(G_{\mathfrak{p}}, V\right) & \simeq V_{\mathrm{dR}} / \mathrm{Fil}^{0} \\
& \simeq \mathrm{H}^{0}\left(X_{K_{\mathfrak{p}}}, \Omega^{1}\right)^{\vee}
\end{aligned}
$$

isomorphism, constructed by BlochKato. Get a commutative diagram:

Cutting the middle row, we find a diagram more amenable to generalisation! Note that

$$
\pi_{1}^{\mathrm{ett}}(\bar{X}, b) \longrightarrow \mathrm{H}_{\mathrm{et}}^{1}(\bar{X}, \widehat{\mathbf{Z}})^{\vee} \longrightarrow T_{p}(J)
$$

Can we replace the bottom row with cohomology valued in larger quotient?

Grothendieck conjectured that

$$
X(K) \longrightarrow \mathrm{H}^{1}\left(G_{K}, \pi_{1}^{\text {et }}(\bar{X}, b)\right) ; \quad x \longmapsto \pi_{1}^{\text {et }}(\bar{X} ; b, x)
$$

is an isomorphism. Unfortunately, this cohomology set has very little structure!

$$
\begin{array}{lll}
X(K) & \longrightarrow & \mathrm{H}_{f}^{1}\left(G_{K}, V\right) \\
X(K) & \longrightarrow & \mathrm{H}^{1}\left(G_{K}, \pi_{1}^{\text {et }}(\bar{X}, b)\right)
\end{array} \quad \begin{aligned}
& \left(\mathrm{H}^{1} \text { has too much structure if } r \geq g .\right) \\
& \left(\mathrm{H}^{1}\right. \text { has too little structure.) }
\end{aligned}
$$

We instead work with a unipotent quotient U of $\pi_{1}^{\text {et }}(\bar{X}, b)$, assuring that each group $\mathrm{H}_{\mathrm{f}}^{1}$ is the set of \mathbf{Q}_{p}-points of algebraic variety, and loc ${ }_{p}$ is algebraic (Selmer varieties).

Proposal of Minhyong Kim: Want a unipotent quotient U such that
(0) we can prove that $\operatorname{dim} \mathrm{H}_{\mathrm{f}}^{1}(G, \mathrm{U})<\operatorname{dim} \mathrm{H}_{\mathrm{f}}^{1}\left(G_{\mathrm{p}}, \mathrm{U}\right)$,
(2) the quotient is "motivic", so that we get replacement of

$$
\log : J\left(K_{\mathfrak{p}}\right) \longrightarrow \mathrm{H}^{0}\left(X_{K_{\mathfrak{p}}}, \Omega^{1}\right)^{\vee}
$$

For such a U , we get the following commutative diagram:

Kim: Such a quotient exists if we assume Bloch-Kato / Fontaine-Mazur.

Outline

(1) The class number one problemGoal 1: Proving finiteness
(3) Goal 2: Determining rational pointsSome future directions

Quadratic Chabauty-Coleman

In quadratic Chabauty-Coleman, we use a suitable algebraic correspondence $Z \subset X \times X$ to construct a unipotent quotient U such that

$$
1 \longrightarrow \mathbf{Q}_{p}(1) \longrightarrow \mathrm{U} \longrightarrow V \longrightarrow 1
$$

The example $X=X_{\text {ns }}^{+}$(13): Baran finds the model

$$
\left(2 y^{2}+y\right) x^{2}-\left(y^{3}-y^{2}+2 y-1\right) x+\left(2 y^{2}-3 y\right)=x^{3}(y+1)
$$

Quadratic Chabauty-Kim associates representations to points:

$$
\begin{array}{llll}
x \in X(\mathbf{Q}) & \longmapsto & {\left[\rho_{x}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})\right.} & \left.\rightarrow \mathrm{GL}_{8}\left(\mathbf{Q}_{p}\right)\right] \\
x \in X\left(\mathbf{Q}_{p}\right) & \longmapsto & {\left[\rho_{x}: \operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / \mathbf{Q}_{p}\right) \rightarrow \mathrm{GL}_{8}\left(\mathbf{Q}_{p}\right)\right]}
\end{array}
$$

with a computable condition on global representations. Quadratic Chabauty uses the bilinearity of p-adic height pairing.

Numerical method works from the equations, only arithmetic input:

- A correspondence $Z \subset X \times X$, and computation of its action on cohomology. This was the subject of Edixhoven's thesis (1989).
- Use Edixhoven (1990) to determine semi-stable model at $\ell=13$. General: Edixhoven-Parent (2021), all max. subgroups $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$.
- Use Chen, Edixhoven-de Smit (1999) to determine rank Jac $X_{X}(\mathbf{Q})$.

Constructing the quotient U

Let U_{n} be the quotient by the n-th lower central series filtration on the \mathbf{Q}_{p}-unipotent completion of $\pi_{1}^{\text {et }}(\bar{X}, b)$. We have $\mathrm{U}_{1}=V$ and U_{2} is an extension

$$
\begin{equation*}
1 \longrightarrow \operatorname{Coker}\left(\mathbf{Q}_{p}(1) \xrightarrow{\cup^{*}} \wedge^{2} V\right) \longrightarrow \mathrm{U}_{2} \longrightarrow V \longrightarrow 1 \tag{1}
\end{equation*}
$$

Assume there exists a nonzero class $Z \in \mathrm{NS}(J)$ with trace zero. This element gives a cycle class $\xi_{z}: \operatorname{Coker}\left(\cup^{*}\right) \longrightarrow \mathbf{Q}_{p}(1)$ along which we push out the extension (1) to obtain

$$
1 \longrightarrow \mathbf{Q}_{p}(1) \longrightarrow \mathrm{U} \longrightarrow V \longrightarrow 1
$$

This quotient is very convenient for Chabauty-Kim, since it is motivic, and we have

$$
\begin{aligned}
\mathrm{H}_{\mathrm{f}}^{1}\left(G_{\mathbf{Q}}, \mathbf{Q}_{p}(1)\right) & =\mathbf{Z}^{\times} \times \widehat{\otimes} \mathbf{Q}_{p} \\
\mathrm{H}_{\mathrm{f}}^{1}\left(G_{\mathbf{Q}_{p}}, \mathbf{Q}_{p}(1)\right) & =\mathbf{Z}_{p}^{\times} \widehat{\otimes} \mathbf{Q}_{p}
\end{aligned}=\mathbf{Q}_{p} .
$$

We end up with a commutative diagram with the required dimension inequality when $r=g$.

$$
\operatorname{dim}=r
$$

$$
\operatorname{dim}=r+1
$$

Computing the de Rham realisation

The map $j_{p}^{\text {ét }}: X(k) \longrightarrow \mathrm{H}_{\mathrm{f}}^{1}\left(G_{k}, \mathrm{U}\right)$ associates to each rational point an extension

$$
1 \rightarrow \mathrm{U} \rightarrow E \rightarrow \mathbf{Q}_{p} \rightarrow 1
$$

of G_{k}-representations. Want to compute its image under $\mathrm{D}_{\text {cris }}$, a filtered ϕ-module.
These filtered ϕ-modules are the fibres of a vector bundle with connection \mathcal{V}_{Z} on X, with:

- A filtration $\mathcal{V}_{Z} \supset \mathrm{Fil}^{0}$
- A Frobenius structure $\phi^{*} \mathcal{V}_{Z} \simeq \mathcal{V}_{Z}$.

These structures on the bundle \mathcal{V}_{Z} are rigid: we know them on graded pieces, and we know them on the fibre at $b \in X(\mathbf{Q})$. This determines them uniquely (and computably).

Condition on global points

There is a continuous bilinear height pairing due to Nekovár

$$
h: \mathrm{H}_{\mathrm{f}}^{1}(G, \mathrm{U}) \longrightarrow \mathrm{H}_{\mathrm{f}}^{1}(G, V) \times \mathrm{H}_{\mathrm{f}}^{1}\left(G, V^{*}(1)\right) \longrightarrow \mathbf{Q}_{p}
$$

which has a decomposition into local components

$$
h=h_{p}+\sum_{v \neq p} h_{v}, \quad h_{v}: \mathrm{H}_{\mathrm{f}}^{1}\left(G_{v}, \mathrm{U}\right) \longrightarrow \mathbf{Q}_{p}
$$

For the cursed curve, have $h_{v}=0$. Compute h_{p} from filtered ϕ-module, and solve for $h=h_{p}$.

Quadratic Chabauty for modular curves

- Some future directions

Outline

The class number one problemGoal 1: Proving finitenessGoal 2: Determining rational pointsSome future directions
"Proving" theorems

From a recent talk of Kevin Buzzard (Jan 2020, Pittsburgh):

```
The future of
mathematics?
Kevin Buzzard
I want to move away from errors now and talk about other issues.
In 2019, Balakrishnan, Dogra, Mueller, Tuitman and Vonk found all the rational solutions to a certain important quartic curve in two variables (the modular curve \(X_{s}(13)\), a.k.a. \(y^{4}+5 x^{4}-6 x^{2} y^{2}+6 x^{3}+26 x^{2} y+10 x y^{2}-10 y^{3}-32 x^{2}-\) \(40 x y+24 y^{2}+32 x-16 y=0\) ).
This calculation had important consequences in arithmetic (new proof of class number 1 problem etc).
The proof makes essential use of calculations in magma, an unverified closed-source system using fast unrefereed algorithms.
It would be difficult, but certainly not impossible, to port everything over to an unverified open source system such as sage.
Nobody has any plans to do this. Hence part of the proof remains secret (and may well remain secret forever). Is this science?
```


Quadratic Chabauty-Coleman (d'après Edixhoven-Lido)

Choose b in $X(\mathbf{Q})$, gives $X \rightarrow J$ and

Take non-trivial Z in $\mathrm{NS}(J)$ which maps to zero in $\mathbf{Z} \simeq \operatorname{NS}(X)$. Get unique lift \mathscr{L}_{Z} in $\operatorname{Pic}(J)$ that is trivial on X. Working over \mathbf{Z}, obtain $X \longrightarrow \mathscr{L}_{Z}^{\times}$, unique up to $\mathbf{Z}^{\times}=\{ \pm 1\}$.

Fundamental group U of \mathscr{L}_{Z}^{\times}is an extension (Bertrand-Edixhoven 2020):
$1 \rightarrow \mathbf{Q}_{p}(1) \rightarrow \mathrm{U} \rightarrow \mathrm{H}_{\mathrm{et}}^{1}\left(\bar{X}, \mathbf{Q}_{p}\right)^{\vee} \rightarrow 1$
Associating path torsors, get diagram:

Edixhoven-Lido "puts the middle row back in". Place geometry of Poincaré torsor central. These ideas are being developed by Duque-Rosero, Hashimoto, Spelier.

Real quadratic fields

Discriminants $\Delta<0$

yututtupo menocess chassiox
I. $1 \ldots$ 1, 2, 3, 4, 7
I. $3, \ldots 11,19,23,27,31,43,67,163$
I. $5 \ldots, 47,79,103.127$
I. $7 \ldots .71,151,223,343,463,487$
II. $1 \ldots 5,6,8,9,10,12,13,15,16,18,22,25,28,37,58$

Finite list with $h(\Delta)=1$.

Discriminants $\Delta>0$

reliqui 145 unam classem in quovis genere. - Quaestio curiosa foret, nec geometrarum sagacitate indigna, secundum quam legem determinantes unam classem in quovis genere habentes continuo ranores fiant, investigare; hactenus nec per theoriam decidere possumus, nec per observationem satis certo coniectare, utrum tandem omnino abrumpantur (quod tamen parum probabile videtur), aut saltem infinite rari evadant, an ipsorum frequentia ad limitem fixum continuo magis acce-

Infinite list with $h(\Delta)=1$?

Constructing singular moduli must be very different for real quadratic fields!

- Objection 1: There are finitely many rational points on every $X_{\mathrm{ns}}^{+}(p)$.
- Objection 2: Gross-Zagier showed that differences of singular moduli are smooth:

$$
\begin{aligned}
j\left(\frac{1+\sqrt{-67}}{2}\right)-j\left(\frac{1+\sqrt{-163}}{2}\right) & =-2^{15} \cdot 3^{3} \cdot 5^{3} \cdot 11^{3}+2^{18} \cdot 3^{3} \cdot 5^{3} \cdot 23^{3} \cdot 29^{3} \\
& =2^{15} \cdot 3^{7} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 139 \cdot 331
\end{aligned}
$$

A similar theory of singular moduli for $\Delta>0$ would contradict the abc-conjecture.
Darmon-V. (2021) construct p-adic quantity $\Theta_{p}^{\times}\left[\tau_{1}, \tau_{2}\right] \in \mathbf{C}_{p}^{\times}$for RM points. Very explicit. For example, when $p=13$ and $\left(\tau_{1}, \tau_{2}\right)=(2 \sqrt{2}, \sqrt{31})$ we find a root of

$$
1201712\left(x^{4}+1\right)-3946488\left(x^{3}+x\right)+5631681 x^{2}=0 \quad\left(\bmod 13^{200}\right), \quad 1201712=2^{4} \cdot 19 \cdot 59 \cdot 67 .
$$

- Mimics (conjecturally!) all properties of singular moduli discovered in Gross-Zagier.
- A multiplicative quantity, relates (conj!) to p-adic heights of points on modular Jacobians.

Thanks for having me!

