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Abstract

This short note is a rough draft of the material presented in the student seminar in McGill,

Fall 2009. The main references are the paper of D. Arapura and K. Oh ([AO94]) and the preprint

of M. Bertolini, H. Darmon and K. Prasanna ([BDP09]). A good reference for generalities on

Hodge Theory is the book of C. Voisin ([Voi02]).

1 The Abel-Jacobi map on curves

Let X be a compact and connected Riemann surface. De�ne Div(X) as the free abelian group on

the points of X. That is, the elements of Div(X) are formal sums:∑
P2X

nPP;

where nP 2 Z and nP = 0 for almost all P . De�ne the degree map:

deg: Div(X)! Z

which maps
∑

nPP 7!
∑

nP . This is a group homomorphism, and we set Div(X)0 := ker deg.

Let D 2 Div(X)0. We can write then D =
∑n

i=1Qi�Pi . For each i , let 
i be a continuous path

in X joining Pi ! Qi . Consider the 1-cycle Z :=
∑n

i=1 
i . Then @Z = D. Consider a functional:

IZ =

∫
Z

: H0(X;
1)! C;

which assigns to a holomorphic 1-form ! = f (z)dz the path integral

n∑
i=1

∫

i

! =

n∑
i=1

∫

i

f (z)dz:

Of course, the choice of paths 
i is not unique, and so the functional IZ depends on that. But if

@Z = @Z 0, then Z � Z 0 is a closed 1-cycle. There is an injection:

I : H1(X;Z)! H0(X;
1)_;
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which sends closed 1-cycles C to IC, and which identi�es H1(X;Z) as a lattice inside H0(X;
1)_

which is isomorphic by Poincar�e duality to H1(X;Z). This de�nes a group homomorphism:

AJC : Div(X)0 !
H0(X;
1)_

H1(X;Z)
:

De�ne the subgroup of principal divisors as P (X) := fdiv(f ) j f 2 C(X)g, where given a

meromorphic function f 2 C(X) we de�ne div(f ) :=
∑

P2X ordP (f )P . The fact that a meromorphic

function has a �nite number of zeroes and poles makes this into a divisor. It will be of degree zero

because it is the pull-back of the degree-zero divisor (0)� (1) of P1C via the map f : X ! P1C.

Theorem 1.1 (Abel-Jacobi). The map AJC is surjective and ker AJC is the group P (X) of principal

divisors.

In this way, we get a canonical isomorphism

Div(X)0=P (X) �=
H0(X;
1)_

H1(X;Z)
:

The left-hand side is called Pic0(X), the degree-0 Picard group of X, and the right-hand side is

called the Jacobian of X. It has the structure of a complex Lie group. In fact, it is isomorphic to

Cg=�, where g is the genus of X, and � = H1(X;Z) is a rank-2g Z-lattice inside Cg.

The goal of these lectures is to generalize the Abel-Jacobi map in many ways. First recall the

Hodge �ltration:

0! H0(X;
1)! H1
dR(X)! H1(X;OX)! 0:

Serre duality gives a perfect pairing

H1(X;OX)�H0(X;
1)! C

de�ned as hf ; !i :=
∑

P2X resP (f g!;P ), where g!;P is a local primitive of ! around P . This induces

an isomorphism H0(X;
1)_ �= H1(X;OX) �= H1
dR(X)=H

0(X;
1). Hence we can see AJC as a map:

AJC : Div(X)0 ! J0(X) :=
H1

dR(X)

H1(X;Z) +H0(X;
1)
:

In the next section we will see how to deal with objects like the one appearing in the right-hand

side of the previous display.

2 Hodge Structures

We construct an abstract category that will be suitable to deal with the previous problem.

De�nition 2.1. A pure Hodge structure of weight k is a pair (HZ; F
�), where:

1. HZ is a �nitely-generated abelian group,

2



2 HODGE STRUCTURES

2. F � is an exhaustive and separated decreasing �ltration on HC := HZ 
Z C, satisfying for all

p 2 Z:

HC = F pHC � F k+1�pHC:

Example. 1. The kth Betti cohomology H := Hk
B(X) of a smooth proper variety over C, to-

gether with the Hodge �ltration given by the de Rham theorem, is a pure Hodge structure of

weight k .

2. The Hodge structure of Tate Z(�1) is de�ned as follows: HZ :=
1
2�i
Z � C, and F � is:

F pHC =

{
C p � 1;

0 p � 2:

Note that it is of weight k = 2. In general, Z(�t) := Z(�1)
� � � 
Z(�1) is a pure Hodge

structure of weight 2t.

De�nition 2.2. A mixed Hodge structure (MHS) is a triple (HZ;W�; F
�), where:

1. HZ is a �nitely-generated abelian group,

2. W� is an increasing �ltration on HQ = HZ 
Z Q, called the weight �ltration, and

3. F � is a decreasing �ltration on HC, called the Hodge �ltration,

such that F � induces a pure Hodge structure of weight m on the graded piece grW�
m := Wm=Wm�1.

A morphism of MHS is a group homomorphism of the underlying abelian groups which preserves

the two �ltrations.

In the category of MHS there is an internal hom: given two MHS's A and B, de�ne H as follows:

HZ := Hom(AZ; BZ). The �ltrations are de�ned as follows:

WmHQ := f� j �(WrAQ) � Wr+mBQ; 8rg;

F p HomC := f� j �(F
rAC) � F r+pBC;8rg:

De�nition 2.3. A MHS B is said to be larger than a MHS A, written B > A, if there exists m0

such that WmAQ = AQ for all m � m0 and WmBQ = 0 for all m < m0.

Finally, let H be a MHS and suppose that HZ is free. De�ne in this case the pth Jacobian of H

as:

JpH :=
HC

HZ + F pHC

:

Example. Let X be a compact and connected Riemann surface. Let A be the pure Hodge structure

given by the 1st Betti cohomology of X, twisted by 1. That is, AZ = H1(X;Z). Also, AC �= H1
dR(X),

and the �ltration is:

F pAC =


H1

dR(X) p � 0;

H0(X;
1) p = 1;

0 p � 2:
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Let's compute then J0Hom(Z(�1); H1(X;Z)): as an abelian group, it is HomZ(Z; H
1(X;Z)) �=

H1(X;Z). The 0th �ltered subspace is:

F 0Hom(C; H1
dR(X)) = f� j �(F

rC) � F rH1
dR(X);8rg;

which are the homomorphisms � such that �(C) � F 1H1
dR(X) = H0(X;
1). That is:

J0Hom(Z(�1); H1(X;Z)) �= J0(Hom(Z; H1(X;Z)(1)) �=
H1

dR(X)

H1(X;Z) +H0(X;
1)
: (1)

We recover the space which is the target of the Abel-Jacobi map.

Consider the trivial Hodge structure Z. Let H be a Hodge structure of negative pure weight.

Then we have:

J0Hom(Z; H) �=
HC

HZ + F 0HC

:

Theorem 2.4 (Carlson). There is a natural isomorphism:

Ext1
MHS

(Z; H) �=
HC

HZ + F 0HC

:

Proof. We just explain the maps. Consider an extension:

0! H
i
! E

�
! Z! 0:

Choose an element shol 2 F 0EC and an element s
int 2 EZ. The di�erence s := shol�s int lies in ker�

and hence can be seen as an element of HC. This gives a well-de�ned map to the given jacobian,

since the indeterminacy in the choices of shol and s int makes s change by an element of F 0HC or

HZ, respectively.

We now describe the map in the opposite direction. Suppose given an element s 2 HC. De�ne

a MHS E as follows: as an abelian group, EZ := HZ � Z. Also WmE := WmH � WmZ. Lastly,

de�ne:

F pEC := f(h; z) 2 HC � C j z 2 F
pC , and h � zs 2 F pHCg:

One can check that this is well de�ned and gives the inverse map.

The map AJC can thus be described as a map with target Ext1MHS(Z; H
1
B(X;Z)(1)), which we

describe in the next section.

3 The Abel-Jacobi map revisited

Let U be the complement of a �nite set S � X. One can de�ne a cohomology group H1(U;Z) as

cohomology with log-singularities. Its elements can be represented by di�erential one forms which

are meromorphic on X, holomorphic on U and such that locally around each P 2 S they can be
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written as df =f for some f 2 OX;P . This group can be given the structure of a mixed Hodge

structure, as follows:

WmH
1(U;Z) =


0 m � 0;

img (H1(X;Z)! H1(U;Z)) m = 1;

H1(U;Z) m � 2:

and

F pH1(U;C) =


H1(U;C) p � 0;

img (H0(X;
1(logS))! H1(U;C)) p = 1;

0 p � 2:

This �ts in an exact sequence of mixed Hodge structures:

0! H1(X;Z)(1)! H1(U;Z)(1)!
⊕
P2S

ZP
deg
! H2(X;Z)(1)! 0: (2)

From this sequence we can de�ne the Abel-Jacobi map. Let D 2 Div(X)0 be a divisor of degree

0. Let S := fP 2 X j nP 6= 0g be the support of D, and let U := X n S. De�ne also K to be

the kernel of the degree map in the sequence of Equation (2). De�ne a morphism of pure Hodge

structures:

�D : Z!
⊕
P2S

ZP;

by mapping 1 to
∑

P2S nPP . Since D is of degree 0, the map �D factors through K. This de�nes

by pull-back a new extension:

0 // H1(X;Z)(1) // ED
//

��

Z //

�D

��

0

0 // H1(X;Z)(1) // H1(U;Z)(1) // K // 0:

The class of the extension ED can be seen as an element of Ext1(Z; H1(X;Z)(1)), and this gives

a map:

AJC : Div(X)0 ! Ext1(Z; H1(X;Z)(1)) �=
H1

dR(X)

H1(X;Z) +H0(X;
1)
'

H0(X;
1)_

H1(X;�A)
;

where the isomorphisms follows from Equation (1) and the identi�cation H1
dR(X)=H

0(X;
1) with

H0(X;
1)_.

Theorem 3.1. The two descriptions of the Abel-Jacobi map agree.

Proof. Write D =
∑

P2S nPP , and set U = X n S. Note that:

F 0ED =
{
(�; �) 2 H0

(
X;
1(logS)

)
� C j resP (s) = �nP

}
:

Let then shol := (�D; 1), where �D 2 H0(X;
1(logS)) is a holomorphic di�erential on U which is

meromorphic on X and has simple log-singularities at P 2 S, with resP (�D) = nP for all P 2 S.
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Choose a basis f�1; : : : ; �mg for H
1(X;Z) such that they vanish in a neighborhood N(D) of S.

Let f�1; : : : ; �mg be its dual basis. For each P 2 S, let BP be a small ball centered at P and whose

closure is contained in N(D). Set B(D) := [PBP � N(D). De�ne �0D as follows:

�0D := �D �

m∑
i=1

h�D; �ii�
i :

Then one sees that �0D is an element of H1(U;Z) which satis�es resP (�
0
D) = nP for all P 2 S,

because the �i vanish at S. Then the image of Abel-Jacobi, as de�ned using extensions of MHS,

is such that it sends ! 2 H0(X;
1) to:

AJC(D)(!) = h�D � �0D; !i =
1

2�i

∫
X

(�D � �0D) ^ !:

Let � be a fundamental domain in the universal covering space of X whose boundary doesn't

intersect jSj. Let � : � ! X be the projection. Fix P0 2 X. Identify P0 with z0 := ��1(P0) 2

�.Then we can integrate ��! on �, and we call
∫
P0
! the holomorphic function on � such that

� d
∫
P0
! = ��!,

� The value of
∫
P0
! at z0 is 0.

Claim.
1

2�i

∫
X

(�D � �0D) ^ ! =
∑
P

nP

∫ P

P0

!;

where
∫ P
P0
! means the value of

∫
P0
! at pr�1(P ). Note that the right-hand side is well de�ned,

since D is of degree 0.

Proof. Write ! =
∑

i ci�i + df , where f is a meromorphic form on X and the ci are complex

constants.∫
X

(�D � �0D) ^ ! =

∫
X

(�D � �0D) ^

(∑
i

ci�i

)
(Stokes', since X is compact)

=

∫
X

�D ^
(∑

ci�i

)
(h�0D; �ji = 0;8j)

=

∫
XnB(D)

�D ^ (! � df ) (the �i vanish on B(D))

=

∫
XnB(D)

��D ^ df (since �D; ! are holomorphic on X n B(D))

=

∫
@B(D)

f �D (Stokes' Theorem, again)

=

∫
@B(D)

(∫
P0

!

)
�D (on B(D), ! = df )

= 2�i
∑
P2S

(resP �D)

∫ P

P0

! = 2�i
∑
P2S

nP

∫ P

P0

!:
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4 Exact sequences in cohomology

The purpose of this and the following sections is to generalize all the previous concepts to the

setting of algebraic varieties with semistable reduction. The price to pay is a considerably more

complicated language.

Let X be a smooth projective variety over K, and let i : Z ,! X be a closed immersion. Let

j : U ,! X be an open immersion such that X is the disjoint union of i(Z) and j(U). Let F be a

sheaf on the �etale site of X. De�ne i ! to be the right adjoint of i�. That is, for all sheaves G on Z,

we have:

HomZ(G; i
!F) = HomX(i�G;F)

One can actually construct i !F as:

i !F := i� ker(F ! j�j
�F):

One also checks that i�i
!F is the largest subsheaf of F which is zero outside Z. Since i ! has a left

adjoint, it is left-exact. Also, since i� is exact, it implies that i
! preserves injectives.

De�nition 4.1. The group

� (X; i�i
!F) = � (Z; i !F) = ker (F(X)! F(U))

is called the group of sections of F with support on Z.

The functor

F 7! � (Z; i !F)

is left-exact, and so it makes sense to consider its right-derived functors.

De�nition 4.2. The functors

Hk
jZj(X;F) := F 7! Rk� (Z; i !F)

are called the (�etale) cohomology groups of F with support on Z.

Proposition 4.3. Let F be a sheaf on the �etale site of X. There is a long exact sequence

0! (i !F)(Z)! F (X)! F (U)! � � � ! Hk
et
(X;F)! Hk

et
(U;F)! Hk+1

jZj (X;F)! � � �

Proof. Follows from applying the cohomology functor to the exact sequence of sheaves on the

�etale site of X:

0! i�i
�F ! F ! j!j

�F ! 0:
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Assume now that K is algebraically closed, and that Z is smooth over K. Let c be the codi-

mension of Z in X. That is, each of the connected components of Z is of codimension c inside

the corresponding component of X.

Let F be a locally constant torsion sheaf on X, such that its torsion is coprime to char(K). As

a special case of cohomological purity, (see [Mil80] VI.5.1), we have:

Theorem 4.4. For every k 2 Z there is a canonical isomorphism

Hk
jZj(X;F) ' Hk�2c

et
(Z; i�F(�c)):

Proof. Consider the commutative diagram of functors:

Sh(Xet)
i ! //

H0

jZj
(X;�) &&MMMMMMMMMM

Sh(Zet)

� (Z;�)

��

Ab:

Both i ! and � (Z;�) are left-exact, and i ! preserves injectives. Therefore there exists the Grothendieck

spectral sequence:

Er;s
2 = Hr

et(Z;R
s i !F) =) Hr+s

jZj (X;F):

By cohomological purity, Er;s
2 = 0 unless s = 2c . Hence the spectral sequence degenerates at the

E2-term, and:

Hk
jZj(X;F)

�= Hk�2c
et (Z;R2c i !F) �= Hk�2c

et (Z; i�F(�c)) :

Corollary 4.5. For 0 � k � 2c � 2, Hk
et
(X;F) ' Hk

et
(U;F). Moreover, if d = dim(X), there is a

long exact sequence:

0! H2c�1
et

(X;F)! H2c�1
et

(U;F)! H2c
jZj (X;F)

i�
! H2c

et
(X;F)! � � � (3)

� � � ! H2d
jZj (X;F)! H2d

et
(X;F)! H2d

et
(U;F)! 0:

Remark. In the previous corollary we could replace the groups H2c
jZj (X;F) and H2d

jZj (X;F) with

H0
et (Z; i

�F(�c)) and H
2(d�c)
et (Z; i�F(�c)), respectively.

5 The l-adic Abel-Jacobi Map

Let K be a �eld of characteristic 0, and let l be a prime number. Let X be a smooth projective

variety over K. We want to generalize the divisor group to not just cycles of codimension 1.

De�nition 5.1. The cth Chow group of X, written CHc(X) is the group consisting of codimension-c

cycles with rational coe�cients, modulo rational equivalence. That is, if Z1; Z2 are two subvarieties

of codimension c , we say Z1 � Z2 if there exists a 
at family over P1K and contained in X � P1K
such that Z1 and Z2 are two of its �bers.
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Consider the locally-constant sheaves Fn = Z=lnZ(c) in the previous section, and take projective

limits with respect to n, to get Zl -valued cohomology. Inverting p we get Ql -valued cohomology.

So by de�nition:

Hi
et(X;Ql(c)) := lim

 �
n

Hi
(
Xet;Z=l

nZ(c)
)
(1=p):

The Gysin map i� in Equation 3 induces by restriction to rational cycles the cycle class map

(see [Mil80, Chapter VI.9]):

cl : CHc(X)! H2c
et

(
X;Ql(c)

)GK
:

Let CHc(X)0 := ker cl. Given a class [Z] 2 CHc(X)0, represented by a cycle Z, consider the short

exact sequence of GK-modules:

0! H2c�1
et

(
X;Ql(c)

)
! H2c�1

et

(
X n jZj;Ql(c)

)
! H2c

jZj

(
X;Ql(c)

)
0
! 0; (4)

where

H2c
jZj

(
X;Ql(c)

)
0
:= ker

(
H2c

jZj

(
X;Ql(c)

) i�
! H2c

et

(
X;Ql(c)

))
is the kernel of the Gysin map.

Consider the map � : Ql 7! H2c
jZj

(
X;Ql(c)

)
0
which sends

1 7! clX
Z
(Z) 2 H2c

jZj

(
X;Ql(c)

)
0
:

Pulling back the exact sequence (4) by � we obtain an extension

0 // H2c�1
et

(
X;Ql(c)

)
// E //

��

Ql
//

�

��

0

0 // H2c�1
et

(
X;Ql(c)

)
// H2c�1

et

(
X n jZj;Ql(c)

)
// H2c

jZj

(
X;Ql(c)

)
0

// 0:

(5)

De�nition 5.2. The l-adic �etale Abel-Jacobi map is the map

AJetl : CH
c
0(X)! Ext1

(
Ql ; H

2c�1
et

(
X;Ql(c)

))
;

which assigns to a class [Z] the class of the extension (5).
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