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Abstract

These are notes that the authors wrote during the Fall semester of 2008, to complement
several lectures given as part of the graduate student seminar at McGill. The authors
wish to thank Bruno Joyal for pointing out some mistakes in a previous version of the
notes.

Contents

1 Hypercohomology 2
1.1 First approach: double complexes . . . . . . . . . . . . . . . . . . . . . 2
1.2 Another approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Algebraic de Rham cohomology 7
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1 HYPERCOHOMOLOGY

1 Hypercohomology

1.1 First approach: double complexes

We begin by recalling the definition of a (first quadrant cohomological) double com-
plex. Let A be an abelian category with enough injectives. A double complex is a
collection of objects Epq in A indexed by N × N, along with horizontal and vertical
differentials dh and dv. More precisely, these are collections of morphisms in A:

dpqh : Epq → Ep+1,q,

and
dpqv : Epq → Ep,q+1.

We will typically omit the superscripts. The differentials are required to satisfy:

dh ◦ dh = dv ◦ dv = dh ◦ dv + dv ◦ dh = 0.

All of this information can be arranged in a diagram:

...
...

...

E02 //

OO

E12 //

OO

E22 //

OO

· · ·

E01 //

OO

E11 //

OO

E21 //

OO

· · ·

E00 //

OO

E10 //

OO

E20 //

OO

· · ·

The rows and columns form complexes, and each square is anti -commutative. It be-
comes commutative if one replaces dv by (−1)pdv. We will often write E•• to denote a
double complex, Ep• for the complex formed by the p-th column of E••, and E•q for
the complex formed by the p-th row of E••.

A morphism of double complexes f : E•• → F •• is defined naturally to be a collection
of morphisms in A

fpq : Epq → F pq

such that the obvious anti-commutation relations hold.
Given a double complex E••, we define the associated total complex by summing

along diagonals:

Tot(E)n =
⊕
p+q=n

Epq

Define a differential D on Tot(E)• by putting D = dh + dv. One easily checks that this
does in fact make Tot(E)• into a complex:

D2 = dh ◦ dh + (dh ◦ dv + dv ◦ dh) + dv ◦ dv = 0.
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1.1 First approach: double complexes 1 HYPERCOHOMOLOGY

Let C(A) denote the category of (cohomological) complexes of objects in A indexed
by N. Given an object A ∈ A, associating the complex:

A→ 0→ 0→ · · ·

yields an embedding A ↪→ C(A). Let F : A → Ab be a left exact additive functor,
and let A be an object in A. Since A has enough injectives, there exists an injective
resolution:

0→ A→ I0 → I1 → I2 → · · · .

The n-th right derived functor of F , denoted RnF , associates to A the n-th cohomology
group of the complex:

F (I0)→ F (I1)→ F (I2)→ · · ·

Hypercohomology extends this construction to C(A). Towards this end we introduce
the notion of resolution in C(A).

Let A• be a complex in C(A). A Cartan-Eilenberg (injective) resolution of
A• is a double complex I•• of injective objects, along with a chain map ε : A• → I•0,
satisfying the following two axioms:

1. If Ap = 0, then the corresponding column Ip• is the zero complex.

2. Let Zp(I, dh) denote the subcomplex of Ip• consisting of the kernel of the hor-
izontal differential dh. Then ε induces an augmentation Zp(A) → Zp(I, dh);
this is assumed to be an injective resolution. Similarly for the subcomplex
Bp(I, dh) of coboundaries, and for the complex formed by the horizontal coho-
mology Hp(I, dh).

Remark. In condition two above, it suffices to assume that two of the three assumptions
hold. The third is then a consequence of the other two.

A key result is that, since A has enough injectives, every complex in C(A) has a
Cartan-Eilenberg resolution. To prove this, we recall the Horseshoe lemma of homo-
logical algebra:

Lemma 1.1. Suppose that

0→ A′ → A→ A′′ → 0

is an exact sequence in A. Let A′ → (I ′)• and A′′ → (I ′′)• be injective resolutions.
Then I• = (I ′)• ⊕ (I ′′)• yields an injective resolution A → I• of A and natural chain
maps such that:

0→ (I ′)• → I• → (I ′′)• → 0

is exact.
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1.1 First approach: double complexes 1 HYPERCOHOMOLOGY

Proof. We first show how to define the augmentation A → I0. We begin with the
following diagram:

0 // (I ′)0 // I0 // (I ′′)0 // 0

0 // A′ //

f

OO

A // A′′ //

g

OO

0

0

OO

0

OO

Composition thus yields a natural map A → A′′ → (I ′′)0; injectivity of (I ′)0 yields an
extension of f to a map A→ (I ′)0. The direct sum of these two maps gives h : A→ I0

making the following diagram commute:

0 // (I ′)0 // I0 // (I ′′)0 // 0

0 // A′ //

f

OO

A //

h

OO

A′′ //

g

OO

0

0

OO

0

OO

Since f and g are injective, the snake lemma (or the 5-lemma) implies that h is also
injective. One continues this process inductively.

Lemma 1.2. Every object A• ∈ C(A) admits a Cartan-Eilenberg resolution.

Proof. The proof is taken from [Wei94] (Lemma 5.7.2). For each p, let Bp(A), Zp(A)
and Hp(A) denote the p-th coboundaries, cocycles and cohomology of A•. There is thus
an exact sequence for each p:

0→ Bp(A)→ Zp(A)→ Hp(A)→ 0.

Choose injective resolutions Ip•B and Ip•H of Bp(A) and Hp(A), respectively. By the
previous lemma, there exists an injective resolution Ip•Z of Zp(A) such that:

0→ Ip•B → Ip•Z → Ip•H → 0,

is an exact sequence of complexes that sits under the previous exact sequence. If Ap = 0
then we take the trivial resolutions. In this case, also Bp+1(A) = 0 and we can take
Ip+1,•
B to be trivial.

Now consider the exact sequence:

0→ Zp(A)→ Ap → Bp+1(A)→ 0

for each p. Apply the previous lemma a second time to obtain a resolution Ip•A of Ap

for each p such that:
0→ Ip•Z → Ip•A → Ip+1,•

B → 0,
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1.1 First approach: double complexes 1 HYPERCOHOMOLOGY

is an exact sequence of complexes that sits over the previous exact sequence. Note that
if Ap = 0, then the last remarks above show that Ip•A is the zero complex.

Define a double complex I•• by putting Ip• = Ip•A , but with dv defined as the vertical
differential of Ip•A , rescaled by a factor of (−1)p (so that we have an anti-commutative
relation rather than a commutative one). Note that d2

v = 0 since Ip•A is a complex. The
horizontal differential dh is defined as the composition:

Ip•A
dh→ Ip+1,•

B ↪→ Ip+1,•
Z ↪→ Ip+1,•

A .

From the exactness of the two resolutions sequences above one deduces that d2
h =

dh◦dv+dv ◦dh = 0. We leave the verification of the second axiom of a Cartan-Eilenberg
resolution to the reader.

Let I•• be a Cartan-Eilenberg resolution of a complex A• ∈ C(A). The augmenta-
tion morphisms Ap → I0p form a chain map A• → I0• which in turn defines a natural
chain map:

ε : A• → I0• ↪→ Tot(I)•.

One can show that this is a quasi-isomorphism, meaning that it induces an isomorphism
of cohomology:

H(ε) : H•(A) ' H•(Tot(I)).

This observation lies at the heart of a second definition of hypercohomology.
Any given morphism of chain complexes f : A• → B• extends to a map of double

complexes between the chosen Cartan-Eilenberg resolutions. Moreover, one can define
the notion of chain homotopy between two maps of double complexes in such a way
that homotopic maps of complexes extend to homotopic maps of the chosen Cartan-
Eilenberg resolutions:

Definition 1.3. Let f, g : E•• → F •• denote two maps between double complexes. A
chain homotopy between f and g consists of maps cpqh : Epq → F p+1,q and cpqv : Epq →
Ep,q+1 such that

g − f = (dhch + chdh) + (dvcv + cvdv).

A map f : E•• → F •• is said to be a chain homotopy equivalence if there exists a
map g : F •• → E•• such that fg and gf are both chain homotopic to the respective
identity maps.

As in homology, one can show that chain homotopic maps of double complexes
f, g : E•• → F •• induce the same map in cohomology:

H(f) = H(g) : H•(Tot(E))→ H•(Tot(F )).

It turns out that any two Cartan-Eilenberg resolutions of a complex are chain homotopy
equivalent (the identity map of the complex lifts to a chain homotopy equivalence
between the resolutions). These observations imply that the following is well-defined:
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1.2 Another approach 1 HYPERCOHOMOLOGY

Definition 1.4. Let A be an abelian category with enough injectives. Let F : A → Ab
be a left exact additive functor. Given a complex A• ∈ C(A), let I•• be a Cartan-
Eilenberg resolution and put:

(RnF )(A•) = Hn(Tot(F (I))).

Then RnF : C(A)→ Ab is a functor, called the n-th right hyperderived functor of
F .

Recall the embedding A ↪→ C(A). A Cartan-Eilenberg resolution of A ∈ A is just
an injective resolution, and one easily sees that the definition above yields the usual
derived functor cohomology of F . So the notion of a hyperderived functor really is
a generalisation of the notion of derived functor. One can show that RnF is the n-th
derived functor of the left exact functor H0F = H0◦F , where F is extended naturally to
all of C(A). Thus, the long exact sequence of cohomology yields a long exact sequence
for hypercohomology:

Lemma 1.5. Let A and F be as above. Let 0→ A• → B• → C• → 0 be a short exact
sequence in C(A). Then there is a long exact sequence of hypercohomology:

0→ R0F (A)→ R0F (B)→ R0F (C)
δ→ R1F (A)→ R1F (B)→ R1F (C)

δ→ · · · .

1.2 Another approach

Let A ∈ A. The data of an injective resolution I• of A is equivalent to the existence of
a quasi-isomorphism of chains:

0 // A

��

// 0

��

// 0

��

// · · ·

0 // I0 // I1 // I2 // · · ·

Given a chain A• ∈ A, one can show that there always exists a quasi-isomorphism:

0 // A0

��

// A1

��

// A2

��

// · · ·

0 // I0 // I1 // I2 // · · ·

with the In’s injective. This can be proved directly, but we instead appeal to the
existence of a Cartan-Eilenberg resolution J•• for A•. Then by our work in the previous
section, one can take:

In = Tot(J)n.

Given such a quasi-isomorphism, one simply puts RnF (A) = Hn(F (I)•). Taking the
particular quasi-isomorphism induced by a Cartan-Eilenberg resolution shows that this
definition agrees with that from the previous section. This definition is closer to the
derived category approach to hypercohomology.

6



2 ALGEBRAIC DE RHAM COHOMOLOGY

2 Algebraic de Rham cohomology

2.1 Definition

We begin by recalling the definition of the de Rham complex of a scheme. For simplicity
we assume that X/R is a smooth separated scheme of finite type over a noetherian ring
R. In our applications, R will typically be a field, or a ring of Witt vectors.

Recall the definition of the sheaf of Kahler differentials Ω1
X/R of X. For i ≥ 2 put

Ωi
X/R = ΛiΩ1

X/R. The differential d : OX → Ω1
X/R induces maps:

d : Ωi
X/R → Ωi+1

X/R

for each i. For instance, let U ⊂ X be affine, say U = Spec(A). Elements of Ωi
X/R(U)

are of the form: ∑
j

fjda1j ∧ da2j ∧ · · · ∧ daij

where fk, amn ∈ A for all k,m, n. The differential d is defined locally by putting:

d

(∑
j

fjda1j ∧ · · · ∧ daij

)
=
∑
j

dfj ∧ da1j ∧ · · · ∧ daij.

The same proof as in the case of the usual de Rham complex shows that these local
maps can be glued to give a well-defined map d of R-modules, which satisfies the Leibniz
rule. That d2 = 0 follows since it holds locally. This defines the de Rham complex
Ω•X/R of X/R:

Ω•X/R : 0→ OX → Ω1
X/R → Ω2

X/R → Ω3
X/R → · · ·

Let Γ = Γ(X,−) be the global section functor for sheaves on X. The de Rham
cohomology groups of X/R are simply the hypercohomology of Γ evaluated on the
de Rham complex:

H i
dR(X/R) = (RiΓ)(Ω•X/R).

Since the global sections of the sheaves in the de Rham complex are all R-modules, it
follows that the de Rham cohomology groups are R-modules as well.

Remark (Relative de Rham cohomology). More generally, let f : X → Y be a mor-
phism of schemes. We can then compute the right hyperderived functors of f∗ on the
relative de Rham complex:

Hi
dR(X/Y )

def
= Rif∗(Ω

•
X/Y )

The sheaf that we obtain is called the relative de Rham cohomology. If U ⊆ Y is an
affine open, say U = SpecR, then it is easy to see that:

Hi
dR(X/Y )(U) = H i

dR(X/R)

so that this construction really generalises the previously given one.
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2.2 The Čech resolution 2 ALGEBRAIC DE RHAM COHOMOLOGY

2.2 The Čech resolution

The derived functor approach to cohomology is often poorly suited for computations.
Thus, for practical applications, other cohomology theories are frequently used. In this
section we will define the Čech resolution of a complex of sheaves. It is a fact that,
under our hypotheses, the Čech complex can be used in place of a Cartan-Eilenberg
resolution to compute the hypercohomology groups.

Assume that X is a separated noetherian scheme. Take an open affine covering
{Ui}i∈I of X and impose a well-ordering on I. For indices i1, . . . , in ∈ I put:

Ui1,...,in = Ui1 ∩ · · · ∩ Uin .

Given a complex of sheaves:

F0 d→ F1 d→ F2 d→ · · ·

let:
Ep,q =

∏
i0<···<iq

Fp(Ui0,...,iq) =
∏

i0<···<iq

Γ
(
Ui0,...,iq ,Fp

)
The differentials of the sheaf complex induce obvious maps:

d : Ep,q → Ep+1,q.

These satisfy d2 = 0 since F• is a complex. The classical Čech construction yields
vertical differentials:

δ : Ep,q → Ep,q+1

where for s ∈
∏

i0<···<iq F
p(Ui0,...,iq), the i0 < · · · < iq+1 component of δ(s) is defined

via the formula:

δ(s)i0<···<iq+1 =

q+1∑
k=0

(−1)k+psi0,...,ik−1,ik+1,...,iq+1 .

Then δ2 = 0, and one can easily check that d ◦ δ + δ ◦ d = 0. Thus E•• forms a double
complex with the d’s as horizontal differentials and the δ’s as vertical differentials.
Analogously to classical sheaf cohomology, one has the following important comparison
theorem:

Theorem 2.1. Let X be a noetherian separated scheme, and let F• be a complex of co-
herent sheaves. Then the sheaf hypercohomology of F• is isomorphic to the cohomology
of the total complex of E••:

(RiΓ)(F•) ' H i(Tot(E)•).

In particular, if X/R is as above, the de Rham cohomology can be computed via the
Čech resolution:

H i
dR(X/R) ' H i(Tot(E)•).

where here E•• is obtained from the de Rham complex.
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2.3 Hodge filtration for a curve 2 ALGEBRAIC DE RHAM COHOMOLOGY

For later computations, we describe the first two de Rham cohomology groups ex-
plicitely using the Čech resolution. Our initial work with hypercohomology shows that
H0
dR(X/R) is just the kernel of the map between sheaf cohomology groups:

H0
dR(X/R) = ker(d : OX(X)→ Ω1

X(X)).

To see this via the Čech complex, we must consider the diagram:

E01

E00

δ

OO

d // E10

since H0
dR(X/R) = ker(d + δ) = ker(d) ∩ ker(δ). An element of E00 =

∏
i∈I OX(Ui),

where {Ui}i∈I is an affine covering of X, is in the kernel of δ if and only if it comes
from a global section of OX . This follows from the sheaf axiom for OX . Under the
identification ker δ = OX(X), restricting d to ker δ gives the map d : OX(X)→ Ω1

X(X).
We thus see again that H0

dR(X/R) = ker(d : OX(X)→ Ω1
X(X)).

A similar analysis allows one to express H1
dR(X/R) as Z1/B1, where Z1 and B1 are

the 1-hypercocycles and 1-hypercoboundaries, respectively:

Z1 =

{
(ωi, fij) ∈

(∏
i

Ω1
X(Ui)

)
×

(∏
i<j

OX(Uij)

)
| dωi = 0, ωi|Uij

− ωj|Uij
= dfij,

and the following cocycle condition holds: fij|Uijk
− fik|Uijk

+ fjk|Uijk
= 0

}
,

B1 =

{(
dxi, xi|Uij

− xj|Uij

)
∈

(∏
i

Ω1
X(Ui)

)
×

(∏
i<j

OX(Uij)

)
| (xi) ∈

∏
i

OX(Ui)

}
.

2.3 Hodge filtration for a curve

Let now C/R be a curve over a noetherian ring R; this means that C is smooth, con-
nected, integral, proper and of relative dimension 1 over R. For curves it is always
possible to find a covering by two open affines, say {U, V }. The Čech complex associ-
ated to such a covering is considerably simplified, as Ω2

C/R = 0 and there is only one
intersection U ∩ V to consider. Thus Epq = 0 whenever p > 1 or q > 1. We immedi-
ately deduce that H i

dR(C/R) = 0 whenever i > 2. Note that even when C is of relative
dimension 1 over R, it is not true that H2

dR(C/R) = 0. This phenomenon should not
come as a surprise, however, if one is familiar with the analytic de Rham cohomology
of a Riemann surface.

The hypercocycles and hypercoboundaries are much simplified in the case of a curve:

Z1 = {(ωU , ωV , f) ∈ Ω1
C/R(U)× Ω1

C/R(V )×OC(U ∩ V ) | ωU − ωV = df on U ∩ V },
B1 = {(dxU , dxV , xU |U∩V − xV |U∩V ) ∈ Ω1

C/R(U)× Ω1
C/R(V )×OC(U ∩ V ) | xU ∈ OC(U), xV ∈ OC(V )}.
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2.3 Hodge filtration for a curve 2 ALGEBRAIC DE RHAM COHOMOLOGY

There is a natural map:

H0(C,Ω1
C/R)→ H1

dR(C/R)

which takes a global section ω ∈ Ω1
C/R(C) to the (class of) the triple (ω|U , ω|V , 0) in

H1
dR(C/R). If this is a 1-hypercoboundary, say (ω|U , ω|V , 0) = (dxU , dxV , xU − xV ),

then xU and xV agree on U ∩V and so can be glued to give a global section x ∈ OC(C).
However, since C/R is connected, OC(C) ' R. We see that ω = dx = 0, which shows
that the map above is injective.

The cokernel of this map can be naturally identified with the sheaf cohomology
group H1(C,OC). In order to do this, we first give an explicit description of H1(C,OC)
using Čech cohomology relative to the cover {U, V } of C. In this case the Čech complex
takes the form:

0→ OC(U)×OC(V )→ OC(U ∩ V )→ 0,

where the nontrivial map takes (f, g) 7→ f |U∩V − g|U∩V . Thus:

H1(C,OC) ' OC(U ∩ V )

{f |U∩V − g|U∩V | f ∈ OC(U), g ∈ OC(V )}
.

There is hence an obvious map Z1 → H1(C,OC) taking (ωU , ωV , f) to the class of
f ∈ OC(U ∩ V ). The explicit descriptions of H1(C,OC) and B1 show that this map
vanishes on B1 and induces a map:

H1
dR(C/R)→ H1(C,OC).

In order to show that this map is surjective, we will in fact show that the map:

Z1 → OC(U ∩ V )

is surjective. We must show that if f is a regular function on U ∩V , then df = ωU −ωV
where ωU is regular on U and ωV is regular on V . In order to simplify the combinatorics
of this problem, we will suppose that U = C − {P} and V = C − {Q}. Removing a
point from a curve yields an affine scheme, and so this assumption does not actually
limit us. We will apply the Riemann-Roch theorem to solve this problem.

Recall that a (Weil) divisor on a curve is a finite formal sum of closed points of the
curve. If D is a divisor, then deg(D) is the sum of the coefficients of D. Functions and
differentials define divisors via their orders at each point. Thus, if f is an element of
the function field K(C) of a curve C, then we write:

Div(f) =
∑
P∈C

ordP (f)P.

Such a divisor is called principal. Similarly for differentials. Since curves are one
dimensional and, for us, smooth, the sheaf of regular differentials Ω1

C/R is a line bundle.
This means that it is a locally free OC-module of rank 1. There exists a global regular
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2.3 Hodge filtration for a curve 2 ALGEBRAIC DE RHAM COHOMOLOGY

differential ω on C. All other regular differentials are of the form ω′ = fω for some f
in the function field of C (note that not all f ’s will yield a regular differential!). Thus
Div(ω′) differs from Div(ω) by a principal divisor (namely Div(f)).

Given a divisor D on C, we let:

L(D) = {f ∈ K(C) | Div(f) +D ≥ 0} ∪ {0}.

The inequality means that each coefficient of the divisor Div(f) + D is non-negative.
Multiplication by g ∈ K(C) induces an isomorphism:

L(D) ' L (D + Div(g)) .

Thus if we write K = Div(ω), then L(K) is independent of the choice of regular
differential ω.

Scaling a function by an element of R does not change the order of the function;
there is hence an action of R on L(D). In fact, L(D) is an R-module. It is a fact (?)
that L(D) is a finitely generated projective module of finite rank. We will be working
over nice rings (fields or PIDs), and so L(D) is a free R-module of finite rank in this
case. Let l(D) denote the R-rank of L(D). The Riemann-Roch theorem implies that:

l(D)− l(K −D) = deg(D) + 1− g,

where g is the genus of C.
We return to our problem; so U = C −{P}, V = C −{Q} and f ∈ K(C) is regular

on U ∩ V . We must find differentials ωU and ωV regular on U and V , resp., such that
df = ωU − ωV on U ∩ V . If C is of genus zero, then it has functions with a single pole
of order 1 at any specified point, and regular otherwise (apply Riemann-Roch). One
can hence take ωU = d(f − g) and ωV = d(g) for some appropriately chosen function g.
We may thus suppose that g ≥ 1.

Consider the divisor D = K +nP , where K is the canonical divisor of C associated
to some regular differential ω. The Riemann-Roch theorem gives:

l(K + nP )− l(−nP ) = deg(D) + 1− g.

Now, if deg(D) = 0 then l(D) = 0. Also, the Riemann-Roch theorem shows that
deg(K) = 2g − 2. The above becomes:

l(K + nP ) = 2g − 2 + n+ 1− g = n+ g − 1.

Thus, since g ≥ 1, l(K + nP ) is positive. As n increases, l(K + nP ) increases by 1 at
each step. Taking n to be the order of the pole of df at Q, it follows that there exists a
function g ∈ K(C) such that df + gω is regular on U and gω is regular on V . We may
hence take ωU = df + gω and ωV = gω and:

(ωU , ωV , f) 7→ f.

11



3 THE POINCARÉ PAIRING

This shows that the natural map H1
dR(C/R)→ H1(C,OC) is surjective.

The resulting sequence:

0→ H0(C,Ω1
C/R)→ H1

dR(C/R)→ H1(C,OC)→ 0

is exact. It is called the Hodge filtration for C/R. We have shown that the first map is
injective, and that the second is surjective. From the explicit descriptions given for these
groups, one immediately sees that the composition of the maps is zero. To conclude
the proof of exactness, let us take an element in the kernel of the second map. It can
be represented by a 1-hypercocycle of the form (ωU , ωV , fU − fV ), where fU is regular
on U and fV is regular on V . This hypercocycle differs from (ωU −d(fU), ωV −d(fV ), 0)
by a 1-hypercoboundary. Now simply note that on U ∩ V :

ωU − d(fU)− (ωV − d(fV )) = ωU − ωV − d(fU − fV ) = 0.

By the sheaf axiom, there is thus a global regular differential ω that restricts to ωU +
d(fU) on U and ωV + d(fV ) on V . This ω maps to the class of (ωU , ωV , fU − fV ) in
H1
dR(C/R), which concludes the proof of the exactness of the Hodge filtration.

By Serre duality, the outer terms of the Hodge filtration are dual. The R-rank of
H0(C,Ω1

C/R) is g, the genus of C/R. Hence H1
dR(C/R) is a free R-module of rank 2g.

3 The Poincaré Pairing

Let C/k be a smooth proper curve. We assume, for simplicity, that k is algebraically
closed (otherwise, just minor modifications need to be done). We will define a perfect,
alternating pairing:

〈·, ·〉Poinc : H1
dR(C/k)×H1

dR(C/k)→ k

Let K = k(C) be the function field of C, and let ΩK
def
= Ω1

K/k be the K-vectorspace

of global meromorphic differentials on C. Consider also the sheaves OC and Ω1
C/k.

For each closed point P ∈ C(k), we have a discrete valuation:

ordP : K× → Z

Let KP be the completion of K at ordP , and OP be the completion of OC,P (the

stalk at P , which is seen as a subring of K). Define also ΩKP

def
= Ω1

KP /k
, and ΩP the

completion of the stalk ΩC,P .

Example. If t is a uniformizer at P (that is, ordP (t) = 1), then:

K ' k(t) =

{
p(t)

q(t)
| p(t), q(t) ∈ k[t], q(t) 6= 0

}
ΩK ' k(t) · dt

OC,P ' k[t](t) =

{
p(t)

q(t)
∈ k(t) | q(0) 6= 0

}
⊆ K

OP ' k[[t]] KP ' k((t))

ΩP ' OP · dt ΩKP
' KP · dt

12



3 THE POINCARÉ PAIRING

We have also, for each P ∈ C(k), the residue map:

resP : ΩK → k

defined as follows: if ω ∈ ΩK , let ωP be its image in ΩKP
(= k((t)) ·dt). Then resP (ω)

def
=

resP (ωP )
def
= a−1 (if ω = (a−n

tn
+ · · · + a−1

t
+ a0 + a1 + · · · )dt). One needs to check that

this is actually well defined (independent of the choice of uniformizer t), and we ommit
the tedious proof, specially when in positive characteristic (see [Har77], III.7, pg. 247ff
for details, and [Ser59] for a proof).

Denote by ΩII
K the k-vectorspace of meromorphic differential forms of the second

kind:
ΩII
K

def
= {ω ∈ ΩK | resP ω = 0∀P ∈ C(k)}

Remark. If ω ∈ ΩII
K , then we can locally integrate it: for each P ∈ C(k), there exists

some γP ∈ KP ( = k((t)) ) such that dγP = ωP .

In order to define the Poincaré pairing on H1
dR(C/k), we need to represent its ele-

ments as differentials of the second kind:

Proposition 3.1. The deRham cohomology of C can be computed as:

H1
dR(C/k) ' ΩII

K

dK

Proof. We work, as usual, with an open affine covering given by the two open sets

U
def
= C \ {P}

V
def
= C \ {Q}

First, we define a map ϕ from the de Rham cohomology H1
dR(C/k) to ΩII

K . To a
1-hypercocycle (ωU , ωV , fUV ), the map φ associates ωU , thought now as a meromorphic
differential, which is actually regular U . It is of the second kind, as around the point
P it can be written as ωV + dfUV (ωV is regular at P , and an exact differential has no
residue). Note that if instead we had chosen the second component ωV , its image in
ΩII

K

dK
wouldn’t change, as they differ by an element in dK.
For the well-definedness of the map, just note that hypercoboundaries are mapped

to exact forms (that is, in dK).
Let (ωU , ωV , fUV ) be a hypercocycle representing a class in H1

dR(C/k), and suppose
that ωU ∈ dK. That is ωU = dg, for some g ∈ K, and note that then g is regular on
U . We also have the equality:

ωV = ωU − dfUV = d(g − fUV ) on U ∩ V

As U ∩ V is Zariski-dense in V , this equality actually holds on V , and hence the
hypercocycle we started is actually a hypercoboundary. This implies that ϕ is injective.

13



3 THE POINCARÉ PAIRING

As for surjectivity, let ω ∈ ΩII
K be given. We want to find a triple (ωU , ωV , fUV ) such

that ωU differs from ω by an exact differential. We will of course use Riemann-Roch to
do that. First, we want to modify ω by an exact differential so that the new form has
only poles at P and Q. Suppose that ω has a pole of order n+ 1 ≥ 2 at some point R.
Then there exists a function f ∈ K(C) such that:

f ∈ L (nR +mP ) \ L ((n− 1)R +mP )

for some m large enough (by Riemann-Roch). So by adding an appropriate multiple
of df to ω, we can reduce the order of the pole at R. Iterating this procedure a finite
number of times, we can assume that ω is regular on U ∩V . A similar procedure allows
us to find g and h, both of them with poles only on P and Q, such that ω+dg is regular
on U , and ω + dh is regular on V . We thus obtain the hypercocycle:

(ω + dg, ω + dh, g − h)

mapping to the given ω.

Remark. If C = E is an elliptic curve, we can consider the sheaf Ω1(2∞)
def
= Ω1 ⊗

L(2∞). This is the sheaf of forms which are regular outside ∞, and have a pole of
order at most 2 at ∞. By the residue theorem, such a form is of the second kind, and
so we get a canonical inclusion:

Ω1(2∞) ↪→ ΩII
K

One can easily check that the composition of the previous inclusion with the projection
to the quotient induces an isomorphism:

Ω1(2∞) ' ΩII
K/dK

and so for elliptic curves, we have an even more concrete description of the first de
Rham cohomology.

Representing the elements of the deRham cohomology through differentials of the
second kind, as in the previous proposition, we define 〈·, ·〉Poinc as follows: given [α], [β] ∈
H1

dR(C/k), with α, β ∈ ΩII
K , for each P ∈ C(k), let αP = dγP for some γP ∈ KP . Then:

〈[α], [β]〉Poinc
def
=

∑
P∈C(k)

resP (γPβP ) ∈ k

Proposition 3.2. The pairing 〈·, ·〉Poinc is well-defined, alternating, and non-degenerate.

Proof. We prove that it is alternating. Well-definedness is easy, and we will ommit the
proof of non-degeneracy.

Let, for each P ∈ C(k), write βP = dηP , for some ηP ∈ KP . Then, by definition,

〈[β], [α]〉Poinc + 〈[α], [β]〉Poinc =
∑

P∈C(k)

resP (γPβP ) + resP (ηPαP ) = resP (γPβP + ηPαP )

14



4 THE GAUSS-MANIN CONNECTION

But note that, if U is a neighborhood of P to which both γP and ηP can be extended,
then:

(d(γη))P = αPηP + γPβP

and so the residue at P will be 0. Hence the sum of all the residues will be 0, too, as
we wanted to show.

Example. Let E/k be an elliptic curve over a field k, char k = 0. Consider the standard
equation for E:

E : y2 = 4x3 − g2x− g3

where x, y are chosen in such a way that, if T is a parameter at ∞, then:

x∞ =
1

T 2
+ a0 + a1T + · · ·

y∞ =
2

T 3
+ b0 + b1T + · · ·

(note that the 2 in the expression for y∞ is there so that we get the 4 in the equation
for E).

Then ω = dx/y, η = xdx/y, and we will compute the Poincaré pairing. As it is
alternating, 〈ω, ω〉Poinc = 〈η, η〉Poinc = 0, and so it is enough to calculate 〈η, ω〉Poinc:

〈η, ω〉Poinc =
∑

P∈E(k)

resP (γPωP ) = res∞(γ∞ω∞)

We compute the expansions of ω and η at ∞:

ω∞ =
−2
T 3 + a1 + · · ·

2
T 3 + b0 + b1T + · · ·

= −1 + c0 + c1T + · · ·

η∞ = (
1

T 2
+ a0 + a1T + · · · )(−1 + c0 + c1T + · · · ) =

−1

T2

+ d0 + d1T + · · ·

γ∞ =
1

T
+ d0T +

d1

2
T 2 + · · ·

ω∞ · γ∞ =
−1

T
+ c1 + · · ·

So that res∞(γ∞ω∞) = −1, and hence we have found that 〈η, ω〉Poinc = −1 (which
in turn implies that 〈ω, η〉Poinc = 1).

4 The Gauss-Manin Connection

We let k be a field, and S/k a smooth curve of finite type. Let f : X → S a smooth,

proper morphism. The goal is to define a connection on the sheaf F = Hi
dR(X/S)(

def
=

Rif∗(Ω
•
X/S)), following quite closely [KO68].
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4 THE GAUSS-MANIN CONNECTION

If all the involved schemes were affine, say X = Spec(B) and S = Spec(R), then we
would get one of the fundamental exact sequences of B-modules (see [Har77], chapter
II):

Ω1
R/k ⊗R B // Ω1

B/k
// Ω1

B/R
// 0

In the global situation, we get as well the fundamental exact sequence, where we

recall that f ∗Ω1
S/k

def
= f−1Ω1

S/k ⊗f−1OS
OX :

f ∗Ω1
S/k → Ω1

X/k → Ω1
X/S → 0

Thanks to X → S being smooth, the first map is actually injective (so we get an
extra 0 on the left). On the affine level, this can be seen because in that case Ω1

B/R is

B-flat, so Tor1(Ω1
B/R, B) = 0. The terms in this exact sequence are locally-free, and so

we get a canonical filtration of the complex Ω•X/k :

Ω•X/k = F 0(Ω•X/k) ⊇ F 1(Ω•X/k) ⊇ F 2(Ω•X/k) ⊇ · · ·

with
F i = F i(Ω•X/k) = img[Ω•−iX/k ⊗OX

f ∗Ωi
S/k → Ω•X/k]

and such that:

gri = gri(Ω•X/k)
def
= F i/F i+1 = f ∗Ωi

S/k ⊗OX
Ω•−iX/S

(see [Har77], Exercise II.5.16d). We only need the first two terms in this filtration.
There is then an obvious exact sequence of complexes:

0 // gr1 // F 0/F 2 // gr0 // 0

0 // f ∗Ω1
S/k ⊗OX

Ω
(•−1)
X/S

// F 0/F 2 // Ω•X/S
// 0

which yields a long exact sequence in hypercohomology (that is, taking the hyperderived
functors of f∗). In particular.

It is enough to define the Gauss-Manin connection on arbitrarily small open affine
subsets of S, as the deRham sheaf Hi

dR(X/S) is the sheaf associated to the presheaf:

U 7→ Hi(U,Ω•X/S|U)
def
=
(
Rif∗(Ω

•
X/S)

)
(U)

So from now on we will assume that S is affine, and write Hi(Ω•X/S) instead of

Hi(S,Ω•X/S). The long exact sequence in hypercohomology yields boundary maps:

Hi
dR(X/S) = Hi(Ω•X/S)

δ→ Hi+1
(
f−1Ω1

S/k ⊗f−1OS
Ω•−1
X/S

)

16



5 GAUSS-MANIN ON LEGENDRE

Rs f−1Ω1
S/k is locally free and the differential of the complex is f−1OS-linear, the

term on the right is isomorphic to:

Ω1
S/k ⊗OS

Hi+1(Ω•−1
X/S) = Ω1

S/k ⊗OS
Hi(Ω•X/S) = Ω1

S/k ⊗OS
Hi

dR(X/S)

and so the connecting homomorphism can be seen as a morphism:

∇i : Hi
dR(X/S)→ Ω1

S/k ⊗OS
Hi

dR(X/S)

Definition 4.1. The Gauss-Manin connection is ∇i.

Example. We compute ∇1 : H1
dR(X/S)→ Ω1

S/k⊗OS
H1

dR(X/S). Let’s assume that S is

affine, S = SpecR. After localizing, we can even assume that Ω1
S/k ' R · dt, for some

t ∈ R.
Consider an affine cover of X, X = ∪Ui, with Ui = SpecBi.

Let x ∈ H1
dR(X/S), represented by ((ωi)i∈I , (fij)i<j) ∈ T 1

(
Ω•X/S

)
, with ωi ∈ Ω1

Bi/R

and fij ∈ Bij satisfying the conditions for being a 1-hypercocycle (as we have worked
out before). To compute ∇1(x), we just need to follow the definition of the connecting
homomorphism, induced by the morphism on the terms in the total complex (we denote
by Z the kernel of the differential on the corresponding complex):

Z1(Ω•X/S)
� _

��δ

		

T 1(Ω•X/k)
// //

D

��

T 1(Ω•X/S)

T 2(dt⊗Ω•−1
X/S) �

�
//

����

T 2(Ω•X/k)

C2(dt⊗Ω•−1
X/S)

That is, choose lifts ωi of ωi, apply D to the element ((ωi)i, (fij)i<j), and we will be
able to write:

D ((ωi), (fij)) = dt⊗ ((ηi), (gij)i<j)

and then
∇1(x) = dt⊗ [ ((ηi), (gij)i<j) ] ∈ Ω1

S/k ⊗OS
Hi

dR(X/S)

5 An Example: the Gauss-Manin Connection on

the Legendre family

Let k be a field. Let S = Spec(A), where A is the ring A
def
= k[t][ 1

t(t−1)
]. Note that S is

a smooth curve over k, obtained from P1 by removing the points {0, 1,∞}. Consider

17



5.1 Image of ω 5 GAUSS-MANIN ON LEGENDRE

the family of elliptic curves X over S defined by (the projectivization of) the equation:

y2 = P (x, t) = x(x− 1)(x− t)

The ring A has been defined so that X is smooth over S. So X is a smooth projective
curve over S, which is known as the Legendre family. If we see X as a scheme over
Spec k, then it is a smooth surface, what is called an elliptic surface. Another way of
thinking of X is as a family of elliptic curves: for each point t0 of S (which corresponds
to an element t0 ∈ k, t0 6= 0, 1), we obtain Xt0 , which is an elliptic curve over k, with
equation y2 = P (x, t0).

Fix the open cover U = {U0, U1}, where:

U0
def
= X \ {(0, 0)t0 | t0 ∈ S}

U1
def
= X \ {∞t0 | t0 ∈ S}

We choose a basis {ω, η} for the relative deRham cohomology H1
dR(X/S), repre-

sented by the Čhech hypercocycles ω and η. These are defined as:

ω = ((ω0, ω1), fω) =

((
dx

y
,
dx

y

)
, 0

)
(1)

η = ((η0, η1), fη) =

((
tdx

xy
,
xdx

y

)
,
2y

x

)
(2)

Remark. Note that

d

(
2y

x

)
=

(
2dy

x
− 2ydx

x2

)
dx =

(
3x2 − 2(t+ 1)x+ t

xy
− 2ydx

x2

)
dx =

x3 − tx
x2y

dx = η1−η0

so that η is effectively a 1-hypercocycle. Also note that η1 has the same form as we
used in a previous section. Note however that the equation that we are using now is
not the one that we used to compute the Poincaré pairing, so that these forms are not
exactly the same (they differ from them by a constant factor).

We will compute the matrix of the Gauss-Manin connection ∇, in terms of the basis
{ω, η} defined above.

5.1 Image of ω

Recall that ω is represented by the 1-hypercocycle:

ω = ((ω0, ω1), fω) =

((
dx

y
,
dx

y

)
, 0

)
∈ E0,1 ⊕ E1,0 = T 1

(
U ,Ω•X/S

)
= T 1

X/S

According to the definition of the connection, we lift this to an absolute hypercocycle

(that is, in T 1
(
U ,Ω•X/k

)
). This operation doesn’t change anything visually, so we don’t

write again the same expression.

18
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Next, we take the D operator, which acts as:

E0,1

d

{{

−ď

##

E1,0

d

{{

ď

%%

E0,2 E1,1 E2,0 = 0

Note that E2,0 = 0, because we are only considering a cover by two opens subsets,
so there are no triple intersections. Also, our element on E1,0 is 0, so the two right-most
maps don’t need to be computed. Also, as the two components on E0,1 are equal, the
map −ď has image 0 in our case.

Because of the previous argument, we just need to compute the left-most map. For
that, we compute the total differential of the two one-forms. As they have the same
expression, we just consider the 0-th component:

d(ω0) = d

(
1

y
dx

)
=
−1

y2
dy ∧ dx

This expression can be simplified by noting that the equation of the surface X/k
gives:

2ydy = Pxdx+ Ptdt =⇒ 2ydy ∧ dx = Ptdt ∧ dx

(we write Px and Pt for the corresponding partial derivatives of P (x, t) = x(x −
1)(x− t)).

So using the previous equality we obtain:

d(ω0) =
−Pt
2y3

dt ∧ dx

This is then the 2-hypercocycle that we get after applying D:((
−Pt
2y3

dt ∧ dx, −Pt
2y3

dt ∧ dx
)
, 0

)
Notice that this effectively is a 1-hypercocycle wedged by dt, as we knew a priori.

Hence we can already write the image of the Gauss-Manin connection:

∇(ω) = dt⊗
((
−Pt
2y3

dt ∧ dx, −Pt
2y3

dt ∧ dx
)
, 0

)
We need to express this hypercocycle in terms of the basis elements. It is not clear

a priori how to change the representative we have got by a 1-coboundary so to get a
visible combination, but the procedure has been worked out by Tedlaya and can be
made into an algorith. We will manage to do it in this case. For this, let A = A(x, t)
and B = B(x, t) be polynomials such that:

−Pt = AP +BPx
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(this is possible because P doesn’t have repeated roots, as we know). Then note
that:

−Pt
2y3

=
AP +BPx

2y3
=

A

2y
+
BPx
2y3

Next, note that:

d

(
B

y

)
=
Bx

y
dx+

−B
y2

dy =
Bx

y
dx+

−BPx
2y3

dx =⇒ BPx
2y3

dx ≡ Bx

y
dx

and so:
−Pt
2y3
≡ A+ 2Bx

2y
dx

Making the polynomials explicit, we see that A and B are:

A(x, t) =
1

t(t− 1)
(−3x+ 2− t) B(x, t) =

1

t(t− 1)
x(x− 1)

so we get:(
∇(ω)

)
0

=
−Pt
2y3

dx ≡ 1

t(t− 1)

x− t
2y

dx =
1

2t(t− 1)
(−tω0 + η0)

5.2 Image of η

Recall that η is represented by the 1-hypercocycle:

η =

((
tdx

xy
,
xdx

y

)
,
2y

x

)
∈ E0,1 ⊕ E1,0 = T 1

(
U ,Ω•X/S

)
= T 1

X/S

According to the definition of the connection, we lift this to an absolute hypercocycle
(that is, in T 1(U ,Ω•X/k)). This operation doesn’t change anything visually, so we don’t
write again the same expression.

Next, we take the D operator, which acts as:

E0,1

d

{{

−ď

##

E1,0

d

{{

ď

%%

E0,2 E1,1 E2,0 = 0

Again, E2,0 = 0, because we are only considering a cover by two opens subsets, so
there are no triple intersections.

We start with the left-most map. For that, we need to compute the total differential
of the two one-forms:

d(η0) = d

(
t

xy
dx

)
=

1

xy
dt ∧ dx+

−t
xy2

dy ∧ dx

d(η1) = d

(
x
dx

y

)
=
−x
y2
dy ∧ dx
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We simplify this expressions as before, using the same equation:

2ydy ∧ dx = Ptdt ∧ dx

So using the previous equality we obtain:

d(η0) =
2y2 − tPt

2xy3
dt ∧ dx

d(η1) =
−xPt
2y3

dt ∧ dx

These expressions will later be simplified, but for now let’s keep up with the com-
putation of D. It remains to do the middle maps. Note that:

dfη =
2

x
dy +

2y

x2
dx

which simplifies to:

dfη =
xPx − 2y2

x2y
dx+

Pt
xy
dt

so that, if we compute:

η0 − η1 + dfη =
Pt
xy
dt

So finally we have obtained the 2-hypercocycle represented by:((
2y2 − tPt

2xy3
dt ∧ dx, −xPt

2y3
dt ∧ dx

)
,
Pt
xy
dt

)
Notice that this effectively is 1-hypercocycle wedged by dt, as we knew a priori.

This is the image of the Gauss-Manin connection:

∇(η) = dt⊗
((

2y2 − tPt
2xy3

dx,
−xPt
2y3

dx

)
,
Pt
xy

)
We look now at the 0-th component.(

∇(η)
)

0
=

2y2 − tPt
2xy3

dx =
1

xy
dx+

−tPt
2xy3

dx

For this, we repeat the same argument, but now we find A,B such that:

−tPt = AP +BPx

and explicitly,

A(x, t) =
1

t− 1
(−3x+ 2− t) B(x, t) =

1

t− 1
x(x− 1)

21



5.2 Image of η 5 GAUSS-MANIN ON LEGENDRE

The same argument as before yields:

−tPt
2xy3

dx =
AP +BPx

2xy3
dx =

A

2xy
dx+

BPx
2xy3

dx

and again, note that:

d

(
B

xy

)
=
xBx −B
x2y

dx+
−BPx
2xy3

dx =⇒ BPx
2xy3

dx ≡ xBx −B
x2y

dx

so we have:
−tPt
2xy3

dx ≡ A+ 2Bx

2xy
dx− B

x2y
dx =

1

t− 1

−x+ 2− t
2xy

dx

Putting everything together, we get:(
∇(η)

)
0

=

(
1

xy
+
−tPt
2xy3

)
dx ≡

(
1

xy
+

1

t− 1

−x+ 2− t
2xy

)
dx =

1

2(t− 1)
(−ω0 + η0)

.
Let A = A(x, t) and B = B(x, t) be polynomials such that:

−xPt = AP +BPx

(this is possible because P doesn’t have repeated roots, as we know). Then note that:

−xPt
2y3

=
AP +BPx

2y3
=

A

2y
+
BPx
2y3

Next, note that:

d

(
B

y

)
=
Bx

y
dx+

−B
y2

dy =
Bx

y
dx+

−BPx
2y3

dx =⇒ BPx
2y3

dx ≡ Bx

y
dx

and so:
−xPt
2y3

≡ A+ 2Bx

2y
dx

Making this explicit, we see that A and B have the form:

A(x, t) =
1

t− 1
(−3x+ 1) B(x, t) =

1

t− 1
x(x− 1)

so we get:(
∇(η)

)
1

=
−xPt
2y3

dx ≡ 1

t− 1

x− 1

2y
dx =

1

2(t− 1)
(−ω1 + η1)

which agrees with the computation of the 0-th component.
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5.3 Conclusion 6 REINTERPRETING MODULAR FORMS

5.3 Conclusion

After all the previous calculations, we conclude that the matrix of ∇ with respect to
the basis given by {ω, η} is:

1

2t(t− 1)

(
−t −t
1 t

)

6 Reinterpreting Modular Forms

6.1 Classical Modular Forms

Let Γ = Γ(1) = SL2(Z) be the classical modular group, and let H be the upper half-
plane. The group Γ acts on H on the left by(

a b
c d

)
· τ def

=
aτ + b

cτ + d

One can quotient out H by Γ, and then compactify (by adding one point) both H
and its quotient by Γ. We call Y (1)

def
= Γ(1)\H, and X(1)

def
= Y (1) = Γ(1)\H. Note then

that both Y (1) and X(1) are Riemann surfaces (and thus smooth algebraic curves),
and that X(1) is also compact (so a projective curve), while Y (1) is an affine curve.

Given f : H → C a modular form of even weight k, define:

ωf
def
= f(τ)dτ⊗

k
2 ∈

(
Ω1
H/C
)⊗k

2 (H)

If γ ∈ Γ, then we can compute:

γ∗ωf = f(γτ)d(γτ)⊗
k
2 = (cτ + d)kf(τ)

(
d

dτ

aτ + b

cτ + d

) k
2

(dτ)⊗
k
2 = ωf

and hence ωf is Γ-invariant, so it can be seen as a differential on Y (1):

ωf ∈
(
Ω1
Y (1)/C

)⊗k
2 (Y (1))

This module is the algebra of Kähler differentials on Y (1) (recall that it’s an affine
curve!).

This is a nice geometric interpretation of modular forms of even weight. Unfortu-
nately, one cannot make sense of modular forms of odd weight in such a simple-minded
way. Thankfully, there is a nice geometric way to interpret modular forms of all weights.
Moreover, this description makes it possible to define modular forms over rings other
than C.

We will reinterpret the classical case to motivate the upcoming definition of a geo-
metric modular form.
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6.1 Classical Modular Forms 6 REINTERPRETING MODULAR FORMS

6.1.1 Functions on lattices

Let R be the set of lattices in C (recall that a subgroup L ⊆ C is a lattice if it is a free
Z-module of rank 2, such that L⊗Z R ' C).

If L ∈ R then L = Zω1 ⊕ Zω2, with ω1, ω2 two R-linearly independent complex
numbers. Then C/L is a compact torus, and it becomes an elliptic curve over C by

taking O def
= 0 ∈ C/L as the identity element. The group law on C/L is just the natural

quotient group structure inherited from C.
Note that C× acts on R by scaling (homothety).
Consider the map β : H → R sending:

τ 7→ Lτ ,

where Lτ = Zτ ⊕ Z.
Next let E denote the set of isomorphism classes of elliptic curves over C. There are

maps u : R → E and β : H → E , which send L 7→ (C/L,O) and τ 7→ Eτ = (C/Lτ ,O).

Proposition 6.1. The map u : R → E factors through C× and induces an isomorphism
R/C× ' E.

Proof. Surjectivity follows from the fact that for each elliptic curve E/C, there is an
isomorphism E(C) ' C/L for some lattice L. This lattice can be computed by fixing
an invariant differential ω on E, and then:

L =

{∫
γ

ω | γ ∈ H1(E,Z)

}
⊆ C

For injectivity, suppose that L1, L2 ∈ R are two lattices such that

C/L1

ϕ
' C/L2

As C is the universal covering space for C/Li, the isomorphism ϕ can be lifted to a
holomorphic map φ : C→ C, such that φ(0) = 0. This lift satisfies:

φ(z + l1)− φ(z) ∈ L2,

for each z ∈ C and l1 ∈ L1. Since L2 is discrete, this implies:

φ(z + l1)− φ(z) = c (a constant).

Taking a derivative shows φ′ is invariant under L1 and that it is holomorphic; the
maximum modulus principle thus implies then that φ′ = b ∈ C is a constant. Hence
φ(z) = bz + c for some b, c ∈ C. But we know that φ(0) = 0, so we must have c = 0.
Hence φ(z) = bz, and L2 = bL1, as we wanted to show.

24
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The map β induces an isomorphism R/C× ' Γ\H, since two lattices Lτ and Lτ ′

are homothetic if and only if τ ′ = aτ+b
cτ+d

for some

(
a b
c d

)
∈ SL2(Z) = Γ. Giving the

appropriate complex-analytic structure on R/C× makes β an analytic isomorphism.
Consider now a function F : R → C such that

F (λL) = λ−kF (L)

for λ ∈ C×. Given such a “homogeneous” function, define f : H → C by

f(τ)
def
= F (Lτ ) = F (τZ⊕ Z)

Note that if γ =

(
a b
c d

)
∈ Γ we have:

f(γτ) = F (Lγτ ) = F

(
Z
(
aτ + b

cτ + d

)
⊕ Z

)
=

= F

(
1

cτ + d
(Z(aτ + b)⊕ Z(cτ + d))

)
= F ((cτ + d)−1Lτ ) =

= (cτ + d)kF (Lτ ) = (cτ + d)kf(τ)

so that if, in addition, f satisfies holomorphicity on H and at ∞, then f is a weight-k
modular form for Γ.

6.1.2 Functions on Elliptic Curves

The set of lattices R of the previous subsection is a fibration over R/C×. We would
like to describe a fibration E ′ over E , and a map R → E ′ such that:

R //

��

E ′

��

R/C× ' // E

commutes. Then we can reinterpret modular forms as functions on E ′, analogously to
viewing them as functions on R.

Let E ′ be the set of isomorphism classes of pairs (E,ω), where E/C is an elliptic
curve, and ω is a basis for H0(E,Ω1

E/C) (note that this has dimension 1, so one can

take any globally holomorphic differential for ω ). The isomorphism condition for such
pairs is:

(E,ω) ' (E ′, ω′) ⇐⇒ ∃ an isomorphism ϕ : E → E ′ such that ϕ∗ω′ = ω

There is an obvious map E ′ → E which forgets ω, and another map R → E ′ which
takes a lattice L to the pair (C/L, dz) (where z is the natural coordinate function
induced from C). Note that if λ ∈ C×, then λL is mapped to:

[(C/(λL), dz)] = [(C/L, λdz)]
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6.2 The Tate Curve 6 REINTERPRETING MODULAR FORMS

We thus can let C× act on E ′ compatibly by setting

λ[(E,ω)]
def
= [(E, λω)].

Again, for k an integer, consider a function G : E ′ → C such that G(E, λω) =
λ−kG(E,ω) for all λ ∈ C×. A similar computation as before yields that the function
g : H → C defined by

g(τ)
def
= G([(C/Lτ , dz)])

satisfies a modular transformation, and so it is a weight-k modular form (assuming it
satisfies the necessary holomorphicity conditions). This shows that we can think of
modular forms as functions of pairs (E,ω) of elliptic curves and holomorphic differen-
tials.

In the next subsection, we introduce the tool that will allow us impose holomor-
phicity conditions at ∞.

6.2 The Tate Curve

Let τ ∈ H, and consider its associated elliptic curve Eτ
def
= C/(τZ ⊕ Z). We have an

(analytic) isomorphism:

Eτ
' // C×/qZτ

def
= TateC(q)

z � // e2πiz

where qτ
def
= e2πiτ , and qZτ is defined to be the multiplicative subgroup of C× generated

by qτ .
We want to derive equations for TateC(q). For this, let

L
def
= Lτ

def
= 2πi(τZ⊕ Z)

and let X and Y be:
X

def
= ℘(2πiz, L), Y

def
= ℘′(2πiz, L)

We get the equations:

Y 2 = 4X3 − g2(L)X − g3(L) = 4X3 − E4(q)

12
X − E6(q)

216

where:

E4(q) = 12(2πi)4g4(τ) = 12g2(L) = 1 + 240
∑

σ3(n)qn

E6(q) = 216(2πi)6g6(τ) = 216g3(L) = 1− 504
∑

σ5(n)qn

(note that the q-expansions are in Z[[q]], and hence the equation for TateC(q) is defined
over Z[1/6]((q)). We want to remove also these denominators. So replace X = x+ 12,
and Y = x+ 2y, and we obtain:

y2 + xy = x3 +B(q)x+ C(q)
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where:

B(q) = −5
E4(q)− 1

240
= −5

∑
σ3(n)qn

C(q) =
1

12

(
−5

E4(q)− 1

240
− 7

E6(q)− 1

504

)
= −

∑ 5σ3(n) + 7σ5(n)

12
qn

It’s an elementary number theoretic calculation to show that C(q) has coefficients
in Z as well.

So we arrive at the definition of the Tate curve:

Definition 6.2. The Tate curve is the elliptic curve over Z((q)) given by the equation

y2 + xy = x3 +B(q)x+ C(q), together with the canonical differential ωcan
def
= dx

x+2y
.

Definition 6.3. Given any ring R, the Tate curve over R is defined as

TateR(q)
def
= Tate(q)×SpecZ R,

which is an elliptic curve over R⊗Z Z((q)).

Remark. Note that there is a canonical map R⊗Z Z((q))→ R((q)) but it need not be
surjective. For concreteness take R = Q. Then

∑
n≥0 2−nqn is not in the image of this

map.

The Tate curve will be used to impose holomorphicity conditions on the modular
forms, once we reinterpret them in a more geometric way.

6.3 Geometric Modular Forms

We give now the definition of modular forms that can be found in [Kat73]. Given a
ring R and an elliptic curve E defined over Spec(R), consider the sheaf on E of regular

differentials Ω1
E/R, and let ωE/R

def
= p∗(Ω

1
E/R). This invertible sheaf is called Katz

canonical sheaf.

Definition 6.4 (due to N.Katz). Fix an integer k, and let R0 be a (commutative,
unital) ring. A (geometric) modular form of weight k and level 1, defined over R0,
is a rule f which assigns to every R0-algebra R and elliptic curve E/R defined over
Spec(R), a section

f(E/R) ∈ ω⊗kE/R,
in such a way that:

1. f(E/R) depends only on the isomorphism class of E/R.

2. f commutes with arbitrary base change. That is, if ϕ : R → R′ is an R0-algebra

homomorphism, and E/R is a pair overR, then we can consider the curve E ′/R′
def
=

E ×Spec(R) Spec(R′)
p→ E. We require then that:

f(E ′/R′) = ϕ (f(E/R))
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6.3 Geometric Modular Forms 6 REINTERPRETING MODULAR FORMS

This definition is equivalent to:

Definition 6.5. Fix an integer k, and let R0 be a (commutative, unital) ring. A
(geometric) modular form of weight k and level 1, defined over R0, is a rule g which
assigns to every pair (E/R, ω) a value

g(E/R, ω) ∈ R,

where R is an R0-algebra, E/R is an elliptic curve over R, and ω is a basis for
H0(E,Ω1

E/R), in such a way that:

1. g(E/R, ω) depends only on the isomorphism class of (E/R, ω).

2. g(E/R, λω) = λ−kf(E/R, ω) for all λ ∈ R×.

3. g commutes with arbitrary base change. That is, if ϕ : R → R′ is an R0-algebra
homomorphism, and (E/R, ω) is a pair over R, then we can consider the pair

E ′/R′
def
= E ×Spec(R) Spec(R′)

p→ E and ω′
def
= p∗ω. We require then that:

g(E ′/R′, ω′) = ϕ (g(E/R, ω))

To convert from one to the other note that given g, one can define f as in the first
definition:

f(E/R)
def
= g(E/R, ω)ωk,

where ω ∈ ωE/R is any basis. The weight-k modularity of g ensures that this definition
does not depend on the choice of ω.

Conversely, given a rule f as in the first definition, one can define g:

g(E/R, ω)
def
= f(E/R)/ωk,

where the notation means the unique element x of R× such that f(E/R) = xωk.

Remark. The last condition ensures meromorphicity at ∞, at least.

Definition 6.6. The q-expansion of f at ∞ is:

f (TateR0(q), ωcan) ∈ Z((q))⊗Z R0

Definition 6.7. We say that f is a (geometric) holomorphic modular form if its
q-expansion at ∞ actually belongs to Z[[q]] ⊗Z R0. We say that f is a (geometric)
cusp form if its q-expansion at ∞ belongs to qZ[[q]]⊗Z R0.
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6.4 Comparing Katz’s and Classical Modular Forms

Consider now the set H× C, with its canonical projection p1 onto H. Then Γ and Z2

both act on H× C via the rules:

(τ, v) · (α, β)
def
= (τ, v + ατ + β)(

a b
c d

)
(τ, v)

def
=

((
a b
c d

)
τ, (cτ + d)−1v

)
With these actions, the projection p1 is Γ-equivariant (and also Z2-equivariant, with

the trivial action on H). Consider the quotient E def
= (H × C)/Z2, together with the

induced map p : E→ H. For any τ ∈ H, the fiber p−1(τ) above it is isomorphic to Eτ .
By regarding E as a fibration over H, we are thinking of E complex analytically.

One should replace H by Y (1) = Spec(R), where R = C[j] is the j-line, in order to
work algebraically. In this light we have:

E = Proj
(
R[X, Y, Z]/(Y 2Z = 4X3 − g2(τ)XZ2 − g3(τ)Z3)

)
where g2(τ), g3(τ) ∈ R are the classical Eisenstein series. Note that the maximal

ideals of R correspond bijectively to the points of H. If τ ∈ H then the corresponding
maximal ideal is:

mτ = {f ∈ R | f(τ) = 0}.
Thus E is an elliptic curve over R.
We will now show that any geometric modular form F over R0 = C gives a classical

modular form f , by the rule

f(τ)
def
= F (Eτ , dz), τ ∈ H.

For each τ ∈ H there is a natural C-algebra map:

evτ : R→ C,

given by evaluating functions at τ . Geometrically we have the following picture:

Eτ //

��

E

��

SpecC // SpecR

This diagram is cartesian, realising Eτ as the fiber of the map E → Spec(R) over the
maximal ideal mτ of R. Thus, property (3) of a geometric modular form gives:

evτ (F (E, dz)) = F (Eτ , dz) = f(τ).

But F (E, dz) ∈ R, and so this equality says precisely that f = F (E, dz) is holomorphic
on H.
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Next we show that f is weight k-invariant. For τ ∈ H and:

γ =

(
a b
c d

)
∈ SL2(Z),

note that:
(Eγτ , dz) ' (Eτ , (cτ + d)−1dz).

Properties (1) and (2) for a geometric modular form thus give:

f(γτ) = F (Eγτ , dz) = F (Eτ , (cτ + d)−1dz) = (cτ + d)kF (Eτ , dz) = (cτ + d)kf(τ),

which is the weight k-invariance property for f .
The final thing to check is that f as defined is holomorphic at infinity. But the

Tate curve and the holomorphicity of a geometric modular form at infinity are cooked
up precisely so that this is true. Indeed, consider the map ϕ which takes a 1-periodic
function f to its associated Fourier series:

ϕ : R→ C((q))

f 7→
∑
n≥n0

anq
n, q = e2πiτ

This gives a diagram
Tate(q) //

��

E

��

SpecC((q)) // SpecR

and so, by the compatibility under base change, we have

ϕ (F (E, dz)) = F (Tate(q), dz) ∈ C[[q]],

since F is holomorphic at ∞ as a geometric modular form.
Thus, f as defined is a holomorphic modular form in the classical sense. In fact, if

one begins with a classical modular form, one can also construct a geometric holomor-
phic modular form. In this way one sees that geometric modular forms over C are the
same as classical modular forms. We will henceforth drop the appelations “geometric”
and often even “holomorphic” without confusion.

6.5 The Final Interpretation

In this section we will sacrifice some rigour in favour of ease of exposition. Basically,
we will assume that there exists a univeral elliptic curve E over Y (1), parametrising
isomorphism classes of elliptic curves over C (as a fine moduli scheme). This is true for
higher levels, but not for levels 1 or 2.
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Recall that Y (1), the j-line, is an affine scheme over Z. Consider the Katz canonical
sheaf ω on Y (1) obtained by viewing E/Y (1) as an elliptic curve. In this case, a modular
form of weight k over a Z-algebra R0 is just a global section of ω⊗k on Y (1). Also, if one
considers the compactification X(1) of Y (1), and extend ω⊗k to X(1), a holomorphic
modular form of weight k over R0 is a global section of ω⊗k on X(1).

Remark. The authors experienced some confusion distinguishing when to work with
symmetric powers and when to work with tensor powers. We have tried to keep our
notation consistent by using either Symmk(·) or (·)⊗k. Note however that, for one
dimensional locally-free sheaves or modules, the two concepts agree (they are both
still 1-dimensional). In the following section we will need to consistently work with
Symmk(·) because we will be dealing with the two-dimensional module H1

dR(E/Y (1)).

7 The Kodaira-Spencer Map

Given an elliptic curve E/R with structure morphism p (where R is a ring which is
one-dimensional and smooth over a base ring R0), we have defined so far:

• The Hodge filtration: 0 −→ H0(E,Ω1
E/R) −→ H1

dR(E/R)
β−→ H1(E,OE) −→ 0.

• The Poincaré pairing 〈·, ·〉Poinc : H1
dR(E/R)×H1

dR(E/R)→ R.

• The Gauss-Manin connection ∇ : H1
dR(E/R)→ Ω1

R/R0
⊗R H1

dR(E/R).

Consider the sheaf of regular differentials Ω1
E/R, and let

ω = ωE/R
def
= π∗Ω

1
E/R

be the Katz canonical sheaf.

Definition 7.1. The Kodaira-Spencer map is the sheaf homomorphism:

ϕKS : ω⊗2 // Ω1
R/R0

ω1 ⊗ω2
� // 〈ω1,∇ω2〉Poinc

where ω1, ω2 are differentials on some open subset U ⊆ Spec(R), and we pair ω1 with
the deRham part of ∇ω2, getting an element in Ω1

R/R0
(U)).

We say that E/R is almost modular if ϕKS is an isomorphism.1

1This notation is due to N.Katz (see [Kat73, A1.3.17]). The reason for it is that in this case the
classifying map from R to the modular stack is étale. Therefore SpecR locally looks like a modular
curve, and E/R like the universal elliptic curve over it.
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Example. Consider the Tate curve (Tate(q), ωcan) over C((q)) (that is, analytically).
We compute the image of the Kodaira-Spencer map on ωcan. Recall that ωcan is dt/t,
and that ηcan is the differential of the second kind which is dual to ωcan with respect to

the Poincaré pairing. Set θ
def
= q d

dq
∈ Ω1

C((q))/C. Then we can compute the Gauss-Manin

connection on H1
dR(Tate(q),C((q))), which has matrix:

∇(θ)

(
ωcan

ηcan

)
=

( −P
12

1
P 2−12θP

144
P
12

)(
ωcan

ηcan

)
where P is defined as:

P (q)
def
= 1− 24

∑
n≥1

σ1(n)qn, σ1(n)
def
=
∑
d|n

d.

This shows that

ϕKS(ωcan ⊗ωcan)(θ) = 〈ωcan,∇(θ)(ωcan)〉Poinc = 1

because 〈ωcan, ωcan〉Poinc = 0 and 〈ωcan, ηcan〉Poinc = 1.
From this we obtain

(ϕKS(ωcan ⊗ωcan)) (θ) = 1

and hence:

ϕKS(ωcan ⊗ωcan) =
dq

q
.

8 Derivations of Modular Forms

We would like to use all this machinery to define differential operators on spaces of
modular forms. For this, assume that E/Y (1) is almost modular (this is in fact true,
although we ommit any proof). We have identified the modular forms of weight k over
R0 with

H0
(
Y (1), ωE/Y (1)

)⊗k
= H0

(
E , (Ω1

E/Y (1))
⊗k)

so let R = Γ(Y (1),OY (1)) be the j-line. Also, notice that, as Ω1
E/R is locally-free of rank

1, the symmetric power commutes with taking global sections, so that we can identify
modular forms of weight k over R0 with

H0
(
E ,Ω1

E/R
)⊗k

= SymmkH0
(
E ,Ω1

E/R
) ι
↪→ SymmkH1

dR(E/R).

The k-th tensor power of the connection ∇ is a connection

∇ : Symmk(H1
dR(E/R))→ Ω1

R/R0
⊗Symmk(H1

dR(E/R)),

and, since R is affine, we can think of ∇ as taking values actually in

R⊗Symmk(H1
dR(E/R))
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Suppose now we had a retraction

r : H1
dR(E/R)→ H0

(
E ,Ω1

E/R
)

= H0 (Y (1), ω)

to the first map in the Hodge filtration. This induces a map

r : Symmk(H1
dR(E/R))→ SymmkH0 (Y (1), ω) .

The composition

∂
def
= (ϕ−1

KS ⊗ r) ◦ ∇ ◦ ι

(where ϕ−1
KS is thought as a map on global sections) gives a map

∂ : H0(E ,Ω1
E/R)⊗k → H0(E ,Ω1

E/R)⊗(k+2)

Since the flanking maps in the definition of ∂ respect the Hodge filtration, the
Leibniz rule satisfied by ∇ makes ∂ a weight-2 derivation on

M
def
=
⊕
k∈Z

H0(E ,Ω1
E/R)⊗k.

Remark. We will require that the retraction r preserves any extra structure that the
objects in the Hodge filtration may have. In this way, the derivation ∂ will respect this
structure as well.

9 The Unit Root Splitting and Serre’s Operator

9.1 The Canonical Subgroup

Let’s assume (for simplicity) that R0 is a complete DVR, with residue characteristic

p > 3, and generic characteristic 0. Set ord(p)
def
= 1. Recall that an elliptic E/R,

where R is a R0-algebra, is said to be ordinary if its special fiber has invertible Hasse
invariant.

Theorem 9.1 (Lubin, ordinary case). There is one and only one way to attach to every
ordinary elliptic curve E/R (where R is a p-adically complete R0-algebra) a finite flat
rank-p subgroup scheme H ⊆ E (the canonical subgroup of E/R) such that:

1. H depends only on the isomorphism class of E/R;

2. The formation of H commutes with arbitrary base-change R→ R′;

3. For RN
def
= R0/p

NR0, R
def
= RN((q)), and E/R the (base change of the) Tate curve

TateRN
(q) over RN((q)), then H is the subgroup µp of TateRN

(q).

Moreover, the elliptic curve E ′
def
= E/H is also ordinary.
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Proof. Consider the Frobenius morphism

F : Ẽ → Ẽ(p),

where Ẽ(p) is obtained from Ẽ by applying the Frobenius endomorphism σp to the
equation defining Ẽ.

Let H̃ be the kernel of F . Since E is ordinary at p, the subgroup H̃ is a finite
cyclic group of order p. The dual isogeny to F , called the Verschiebung V , is separable
(see [Sil86]) and, since R is p-adically complete, we can uniquely lift V to an isogeny
V ↑ : E(p) → E. Here, E(p) is a lift to R of Ẽ(p). Finally, we let H be the kernel of the
dual isogeny to V ↑. This subgroup H is the canonical subgroup, and it lifts H̃ to R.
More details may be found in [Col05].

We need to check the case of the Tate curve. So let RN and R be as in (3), and let E
be the Tate curve over RN((q)). Reducing modulo p, the Frobenius map has kernel µp,
which is the reduction of µp as a subgroup scheme of TateRN

(q). Hence, by uniqueness,
H = µp in this case.

9.2 The action of Frobenius

Let R be a p-adically complete ring, and let E/R be an ordinary elliptic curve. Let

H ⊆ E be its canonical subgroup, and E ′
def
= E/H, with π : E → E ′ the projection. By

functoriality, we get an R-morphism:

π∗ : H1
dR(E ′/R)→ H1

dR(E/R)

.
Let now choose a power q of p such that q ≡ 1 (mod n), and choose for R the ring

of p-adic modular functions of level n, defined over W (Fq) (the Witt vectors over Fq),
which we write:

R
def
= M (W (Fq), 1, n, 0)

(the 1 in the parameter list refers to the growth 1).
Let E/R be the universal elliptic curve with level-n structure, such that it has

invertible Hasse invariant modulo p. By universality, there is a unique homomorphism
ϕ : R→ R such that

E ′ = E(ϕ)

and the morphism ϕ is precisely the Frobenius morphism on M(W (Fq), 1, n, 0) (a
lifting to char 0 called the “Deligne-Tate map”). As we mentioned above, this induces
a homomorphism

π∗ : H1
dR(E ′/R) = H1

dR(E(ϕ)/R) =
(
H1

dR(E/R)
)(ϕ) → H1

dR(E/R)

By composition, we get a ϕ-linear endomorphism on H1
dR(E/R), F (ϕ)

def
= π∗ ◦ ϕ−1.

As π∗ is induced by an R-morphism, the action F (ϕ) respects the Hodge filtration:

0→ H0(E ,Ω1
E/R)→ H1

dR(E/R)→ H1(E ,OE)→ 0
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and so it induces actions on H0(E ,Ω1
E/R) and H1(E ,OE). We want to compute these

actions, in terms of ϕ:

Lemma 9.2. On H0(E ,Ω1
E/R), F (ϕ) = pϕ and, on H1(E ,OE), F (ϕ) = ϕ.

Proof.

If we take the basis ω, η adapted to the Hodge filtration, then the matrix of F (ϕ)
is: (

p/λ 0
C λ

)
with λ ∈ R invertible, and C ∈ R.

We want to construct a splitting of the Hodge filtration. As the map H1
dR(E/R)→

H1(E ,OE) is of the form aω + bη 7→ bη, this amounts to finding f ∈ R such that
η 7→ fω + η. To make it canonical in some way, we impose that it is F (ϕ)-linear. This
is the same as imposing that:

F (ϕ)(fω + η) ∈ R · (fω + η)

Using the fact that R is closed with respect to the p-adic topology, we can find such
an f . It is given as:

f
def
=

c

λ
+
∑
n≥1

pn
ϕ

n(n−1)
2 (1/λ) · ϕn(c)

ϕ
n(n+1)

2 (λ)

Now, recall that the giving of a splitting is equivalent to the giving of a retraction
r : H1

dR(E/R) → H0(E ,Ω1
E/R). This retraction will yield, as we have seen, a weight-2

derivation on the algebra of modular forms.

9.3 Serre’s θ operator

Let now f(q) be the q-expansion of a modular form of weight k, and let f · ω⊗k be the
corresponding global section in ωk. Recall the differential operator

θ = q
d

dq
.

We compute ∂f . For that, we think of f · ω⊗k as an element of SymmkH1
dR(E/R),

and apply ∇ to it:

∇(f · ω⊗k) = df · ω⊗k + kfω⊗(k−1)∇(ω) = df · ω⊗k + kfω⊗(k−1)

(
− P

12
+ η

)
.

Next, note that

df = df
dq
dq = θ(f)dq

q

ϕKS(ω⊗2) = dq
q

}
=⇒ ϕ−1

KS(df) = θ(f) · ω⊗2
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So if we apply ϕ−1
KS to the previous expression and recall that

∇(ω) =
dq

q
⊗
(
− P

12
ω + η

)
,

we get (
(ϕ−1

KS ⊗ r) ◦ ∇ ◦ ι
)

(f) = θ(f)− kf P
12
,

so that if f is modular of weight k, then

∂(f)
def
= θ(f)− kf P

12

is modular of weight k + 2.
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[Ser59] J. P. Serre. Groupes algébriques et corps de classes (Hermann, Paris, 1959).
Actualités Sci. Indust, 1959.

[Sil86] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.

[Wei94] C. A. Weibel. An Introduction to Homological Algebra. Cambridge University
Press, 1994.

36


