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Abstract

This short note is the rough draft of the material presented in the Rigid Seminar, Fall
2009. In the first part we have used as references the notes by Ghitza and Archibald ([AG03]),
notes on étale cohomology from a course given by lovita ([Iov08]), and some unreliable sources
(namely, the Wikipedia). For the second part we have used lecture notes by S. Bosch ([Bos)),
the notes of B. Conrad ([Con08]) and the paper of J. Tate ([Tat71]).

1 Grothendieck Topologies

1.1 Abstracting sheaf theory

Let X be a topological space. That is, a giving of a collection of open sets, satisfying:
1. § and X are opens.
2. The intersection of two opens is open.
3. The arbitrary union of opens is open.

Recall the definition of a presheaf on X (say, of sets). It is a rule F' which assigns to every
open set U a set F(U), and given two open sets U C V', one has a restriction map of sets
pvu: F(V) — F(U), satisfying the obvious transitivity relations (that is, pyy = Idpw), and
pvw © puyv = puw for all W C V C U. If we want to be more pedantic —and in this case we
definitely want—, we can define a presheaf as a contravariant functor F' from the category Xi,, to
Sets, where X, is the category having as objects the open sets U C X, and for U,V C X, we
have:

) ULV

Hom(U,V) = {{*} Ucv

A presheaf F is called a sheaf if it satisfies the following property: for every open U and every
open covering U = U,;U;, the following sequence of sets is exact:

PU)—S T, F(U)) % FU;NU).
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The map « is the product of the restrictions F(U) — F(U;), and the maps 3,7 are defined as
follows: 6((]01)1) = (gij)i,j: where:
(9i7)i5 = fi

U;NU; »

and v((f)i) = (hij)ij, with:
(hi)ig == J;

UiﬁUj .

By ezact we mean that:
1. The map « is injective, and
2. The image of « is the equalizer of § and .
Again in more informal terms, this means:
1. If two sections f,g € F(U) agree on U; for all i, then f = g.

2. If we are given elements f; € F(U;) such that they agree on the intersections, then there is
an element f € F(U) (which is necessarily unique, because of the previous condition) that
gives all the f; by restriction.

These two properties are together called the sheaf axiom, and can be summarized as follows: the
sections of a sheaf are determined by their restrictions to coverings.

We want to be able to do sheaf theory without necessarily having a topology, or allowing more
or less opens, and more or less coverings.

1.2 Grothendieck’s idea

The most general definition of Grothendieck topology uses the concept of sieves. Since the author
didn’t know of this definition before preparing the lecture, this is a good excuse to introduce it:

Definition 1.1. Let C be a category. A sieve S on an object X of C is a subfunctor of Hom(—, X).

In more down-to-earth words, it is a rule that selects, for every object X’ of C, a subset S(X')
of Hom(X’, X).
Let S be a sieve on X, and let f: Y — X be a morphism in C. Then we can construct a sieve
f*SonY, by:
(f*S) := S Xtom(—,x) Hom(—,Y").

That is, given an object Y,
(f*9)(Y") ={g € Hom(Y",Y) | fog € S(Y')}.
Here is the definition of Grothendieck topology:

Definition 1.2. A Grothendieck topology T consists of the following data: a category, denoted
Cat T', along with a collection of covering sieves, denoted CovT'. This means that, for each object
X of Cat T, there is a distinguished collection of sieves on X. These are subject to the following
axioms:

1. (identity): The functor Hom(—, X) is a covering sieve on X, for each object X.
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2. (base change): If S is a covering sieve on X and f:Y — X is a morphism, then f*S is a
covering sieve on Y.

3. (local character): Let S be a covering sieve on X, and let R be any sieve. If for each object
Y and each morphism f € S(Y') the pullback f*R is a covering sieve on Y, then R is a
covering sieve on X.

Assume now that the category C has fiber products. Then

Definition 1.3. A Grothendieck topology T consists of the following data: a category, denoted
Cat T, along with a collection of coverings, denoted CovT. By a collection of coverings we mean
that Cov T contains families of morphisms:

{¢z Ui — U}ie];

where U, U; are objects in CatT" and ¢; is a morphism in Catl. These families must satisfy the
following axioms:

1. (trivial covering):If V' — U is an isomorphism in Cat 7', then {V — U} € CovT.

2. (base change): If {¢;: Uy — U}ier € CovT and V' — U is any morphism in Cat T, then
U; xy V exists for each ¢ € I and:

{[]Z xpV — V}ie[ € CovT.

3. (local character): If {¢;: Uy — U}ier € CovT is such that for each i € I, there exists
{0sj: Vij = Us}jes, € CovT, then:

{¢io ¢ij: Vij = Ulier, jes, € CovT.

Definition 1.4. A presheaf of sets on 7" is a contravariant functor F': Cat T — Sets.

Definition 1.5. A sheaf of sets on T is a presheaf F of sets such that for every {¢;: U; — U}ics €
Cov T, the sequence:

B
FU) — 1ler F(Uz)ﬁ ijer F'Us xu Uy)

is exact in the sense discussed above. Note that now g and 7 are induced by F' applied to the
natural maps U; xy U; — U; and U; xpy U; — Uj.

1.3 Examples

We discuss some examples of Grothendieck topologies. In the next talk we will see the particular
examples in which we are interested.
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1. Let X be a topological space. Let Cat T be the category with objects the open subsets of X
and morphisms inclusion. Let CovT" be the collection of open coverings of open subsets of
X. Then T is a Grothendieck topology.

The first axiom of a covering corresponds to the fact that U is itself a covering of an open
subset U C X. The second says that if you have an open covering of U by U;’s, and an open
covering of each Uj;, then putting all of these together gives an open covering of U. The third
axiom says that if {U;} is a covering of U, then {V N U,} is a covering of U NV

2. Let X be aset. Let U be a collection of subsets of X, which is closed under finite intersection.
Define a Grothendieck topology as before. Note that I/ can be a proper subcollection of the
opens that make X into a topological space. The notion of Grothendieck topology still
makes sense, and this is an example of a topology which is “slightly coarser” than that of
the previous example: they will lead to the same sheaf theory.

3. Let G be a finite group. Let Cat T be the category of left G-sets. That is, finite sets with
a left-action of GG. Let Cov Ty denote the collection of surjective families of morphisms in
Cat Tz. Then T is a Grothendieck topology. Let’s work out what is a sheaf of sets on 7.
Consider G as a G-set, with left-action given by multiplication. Call this (G), to distinguish
it from the group G. Let M := F((G)). This is by definition a set, and we will describe an
action of G on it. Given ¢ € G, define f,: (G) — (G) by:

fo(g) := go.
Note that f,(hg) = hgo = h(go) = hf,(g), so that f, is G-equivariant. This gives a map
F(f;): M — M, and we define:
o-m:= F(f,)(m).
Given 0,7 € GG, note that f,, = f, o f,. Then compute:
o (T ) m) = F(fa) © F(fT)<m> = F(fT © f0>(m) = F(fm)(m) = (o7) - m.
So we have defined a left action of G on M.

Claim. The functor F is naturally isomorphic to Homg(—, M).

Proof. Let S be any G-set. Suppose that we write S as a disjoint union, S = U;S;. Then
there is a covering j;: S; — S. Applying the sheaf axiom and noticing that S; xg S is
nonempty only when ¢ = j and that in this case the two projections coincide, we obtain that
F(S) ~ [, Homg(S;, M) = Homg (S, M). Hence we can assume without loss of generality
that S is a transitive G-set.

Fix a point a € S. Then p: (G) — S, mapping g — ¢ - a, is a G-equivariant surjective map.
Consider the sheaf axiom applied to this covering. It says that the sequence:

F(S)—= M — F(S xg, 95)

is exact. In particular, F/(S) is a subset of M. Now, if h € H, then note that po f, = p.
Hence F(po fn) = F(p), and so, given z € F(S) and g € G:

g9- (F(p)(x)) = F(fy) o F(p)(z) = F(po fy)(x) = F(p)(x),
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hence the image of F'(S) under the injective map « lies in M the subset of elements of M
fixed by H.

Claim. The image of F(S) under a equals M*.

Proof. For this, we need to analyze the map F((G) — F((G) xg, (G)).

Claim. The map ¢: (G) xs, (G) — (G) x Hy which sends (x,y) to (z,x"'y) is a G-
equivariant isomorphism (here Hy is the set H with trivial G-action).

Proof. First, note that if (z,y) is an element in the fiber product, then by hypothesis p(z) =
p(y). That is z - a = y - a, and hence ™'y fixes a. So the map is well defined. Now, let
g € G. Then:

o(gx, gy) = (92, (9x) "' gy) = (gz, 2™ 'y),

so that with the given G-actions, ¢ is G-equivariant. m

The two projections translate to the two maps f;: (G) x Hy — (G) and 7;: (G) x Hy — (G)
given by f8i(g,h) = g and v1(g,h) = gh.

We apply again the sheaf action to the surjective family {i,: (G) — (G) x Ho}pen given by
tn(g) == (g, h). This gives an exact sequence:

F((G) x Hy) = [[ FUG) = T] FUG) x,, (G)).

heH heH

The last term is what we have written because for h # h' € H, the corresponding fiber
product is the empty set. But the two projections

(@) %, (G) = (G)

Lh

are equal, since elements in the left-hand side look like pairs (z,y) such that (z,h) = (y, h).
That is, pairs in the diagonal! This makes the two maps induced when applying F' to be the
same, and hence:

F((G) x Hy) = [] FUG)).

heH

Finally, we have obtained:

F(S) = F((&) = ][ FUG)).

heH

Now, note that p; o, = Idig) and pa oy, = f,, that is multiplication by h on the right. Also,
F(p) = mp,, the projection in to the h-component. Hence:

F(p1)(m) = (m,m,...,m), F(p2)(m) = (hym, ham, ... hym). (1)

Then, the values on which F(p;) agrees with F(ps) are the elements m € M such that
hm = m for all h € H. That is, exactly M*, as claimed. O
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We have proven so far that F/(S) = M = Homg(S, M), where the last isomorphism is given
by m + [a — m]. The composition of the two identifications doesn’t depend on which point
a of S was chosen, and it is indeed functorial. O

4. Consider the previous example. Let Sh(T) be the category of abelian sheaves on Tg. Its
objects are the sheaves described in the previous example, but taking values on Ab, the
category of abelian groups. The morphisms are morphisms of the underlying presheaves
(that is, natural transformations of contravariant functors). Associated to an object F' of
Sh(7¢) one defines a G-set M as in the previous example. But since F' takes values on Ab,
the G-set M has an abelian group structure, and thus becomes a G-module. One then proves
that this defines an equivalence of categories Sh(7) ~ Modg, where Modg; is the category
of G-modules. There is a “global sections” functor I': Sh(7;) — Ab which on objects
maps F +— F({x}). Also, there is a “G-invariants” functor (—)“: Modg — Ab which to
M it associates M. We have seen that these two functors naturally isomorphic using the
equivalence above. Therefore the right derived functors of I' and of (—)¢ are also naturally
isomorphic. We conclude that the sheaf cohomology on this Grothendieck topology computes
group cohomology in the usual sense. We thus recovered using sheaf theory, another notion
which a priori has no connection to sheaf theory.

5. Let X be a Noetherian connected scheme. Let Cat Txet denote the category of schemes Y
of finite type and étale over X. Let CovTxe denote the collection of surjective families of
morphisms indexed by a finite set. Then T'xet is a Grothendieck topology.

1.4 Questions

Basic: Formulate the equivalence of the two definitions of Grothendieck topology, in the case of
having fiber products.

Challenge: In Grothendieck topologies there is a notion of slightly finer topology. Find its defi-
nition, and understand why this notion doesn’t appear in classical topology.
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2 Rigid topology

2.1 Recall of some definitions

Let K be a nonarchimedean valued field which is complete for a nontrivial valuation, and write Ok
for the valuation ring. If the residue field of K is of characteristic p, we suppose that |p| = 1/p.
Let A be a K-affinoid algebra, and let X = M(A) be the max-spectrum of A. Recall that Xander
defined the canonical topology on X. We'd like to recall the definitions of some important subsets
of M(A) which are open in the canonical topology.

Definition 2.1. Let fi,..., f. € Aand let ¢1,...,9; € A. A Laurent domain in X is a subset of
the form

X(froooifrogrtogs) ={z € X ¢ |fil@)] <1, |gj(2)] > Lfor all i, j}.

This notation does not reflect particularly well that we allow no g;’s to appear in a Laurent domain.
In such cases, the set is also called a Weierstrass domain and denoted

X(fi,...n fr)={x e X : |fi(zr)] <1 for all i}.

Finally let fo, f1,..., fr € A generated the unit ideal of A. Then the set

XN/ for-- s o/ fo) ={w € X+ |fi(2)] < |fo(2)]}

is called a rational domain in X.

These sets can be shown to be open in the canonical topology, and in fact, they are admissible
open subsets. We'll recall the definition of admissibility in a moment, but we’d first like to give
some examples.

Example. For simplicity suppose that K = C,. Take A = K(X) and consider the functions
f = (X —a)/p" for some a € Og and n > 0. Let g; = (X — b;)/p™ for some by,...,bs € Ox
and m > 0. Then if we identify X with the unit ball in K, which we are free to do thanks to the
assumption K = K, then

X(fagl_la"'ags_l>:{Z€OK : |Z_a|§1/pn? |Z_bj|21/pm for au.]}

If m > n and the points b; are inside the ball |z — a| < p™, then this set looks like a closed ball
with disks removed about each b;.

Example. This example shows why the assumption that fy,..., f, € A are relatively prime is
necessary to ensure that the corresponding rational domain is open in the canonical topology.
Take K to be algebraically closed and A = K(X), and put fo = X and f; = X2 These are not

relatively prime in A. Note that
{z€0k : |2 <|z|} ={0}11{z € Ok : |z| =1}

If this were an open subset, it would imply that {0} is open, hence that the topology on K is
discrete. This is contrary to our assumptions on K.
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We now wish to recall the important notion of an affinoid subdomain of X.

Definition 2.2. A subset U C X is called an affinoid subdomain if there exists a morphism of
affinoid K-spaces ¢: X’ — X such that «(X’) C U and such that the following universal prop-
erty holds: every morphism of affinoid K- spaces ¢: Y — X which lands in U admits a unique
factorization through ¢: X' — X.

It turns out that if U is an affinoid subdomain, and ¢: X’ — X is the corresponding map
of affinoid K-spaces, then ¢ identifies X’ with U. This identification is a homeomorphism with
respect to the canonical topologies on X and X’'. If B is the affinoid algebra of X', so that
X' = M(B), then B is uniquely determined up to unique isomorphism, thanks to the universal
property defining U. We will thus identify U with X’ and, following Conrad, let Ay denote the
affinoid algebra defining U. We thus have an association U — Ay which is in fact a sheaf on the
“weak Grothendieck topology” of X; the next section will make this discussion precise.

One can show that Laurent and rational domains are examples of affinoid subdomains. Last
time Xander wrote down the affinoid algebra of a Laurent or rational domain. It turns out that
every affinoid subdomain is open in the canonical topology.

The following result is sometimes useful, but is not easy to prove. For details see section 1.8 of
the Bosch notes on rigid geometry.

Theorem 2.3 (Gerritzen-Grauert). If X is an affinoid K-space, then every affinoid subdomain of
X can be expressed as a finite union of rational subdomains.

We will see an application of this theorem in the proof of Tate’s acyclicity theorem below.

2.2 Weak Grothendieck topology

Let X = M(A) be an affinoid K-space. We begin this section by using affinoid subdomains to
define a Grothendieck topology on X.

Definition 2.4. The weak Grothendieck topology on X consists of the following data: the category
underlying the weak topology has as objects all affinoid subdomains of X, and inclusions as
morphisms. The coverings are finite families (U; — U);e; of affinoid subdomains such that U =

U, Us.

This topology is sufficient for defining a sheaf of affinoid functions on an affinoid space. It is
not sufficient, however, if one wishes to glue affinoid pieces to make general rigid spaces. This is
why one calls it the weak Grothendieck topology. Below we will examine the example of the open
unit ball in K. It is not affinoid, hence not admissible open in the weak Grothendieck topology,
but it will be seen to be an admissible open in the strong Grothendieck topology. Any theory of
rigid geometry should be sufficiently flexible to handle as natural a space as the open unit ball.
This gives one concrete reason why the weak topology is not good enough for our purposes.

This begs the questions of why one would consider the weak topology at all. Conrad skirts
the issue entirely in his article. One reason is as follows: it is easy to define a presheaf of affinoid
functions on X by setting Ox(U) = Ay for every affinoid subdomain U of X. It is not clear
that this is a sheaf for the weak topology, but it turns out to be the case. This is the content of
Tate’s acyclicity theorem. One can then show, in an entirely formal manner, that since the “strong



2.3 Tate’s acyclicity theorem 2 RIGID TOPOLOGY

Grothendieck” topology on X is not too different from the weak topology. More precisely, one can
show that each sheaf on the weak topology extends uniquely to a sheaf on the strong topology.
Thus, if one were to omit discussion of the weak topology in an exposition of rigid geometry, one
would be forced to define the sheaf Ox directly on the strong topology, and then also argue that it
is indeed a sheaf. I've never seen this done directly; in most expositions, for instance [BGR84] and
[FVDPO04], one travels a detour through the weak topology to obtain the sheaf of rigid analytic
functions on an affinoid space.

This should not seem so strange. This mirrors one possible exposition of scheme theory. One
of the first challenges of that theory is to define a sheaf of regular functions on an affine scheme.
Let Y = Spec(B) be an affine scheme. Let B denote the basis for the Zariski topology consisting
of the basic open subsets of Y,

B={Y; : feB).

One can then define a “B-sheaf” on Y by putting Oy (Y;) = By. This is nothing but a sheaf in the
Grothendieck topology on Y given by the open subsets in 5. Then one can argue that such a sheaf
extends uniquely to a sheaf on Y in the full Zariski topology. This is precisely the same argument
that is used to prove that a sheaf on the weak Grothendieck topology of an affinoid space extends
uniquely to a sheaf on the strong topology.

2.3 Tate’s acyclicity theorem

The sole purpose of this section is to give an outline of the proof of the following theorem, first
proved by Tate in his paper “Rigid analytic spaces”.

Theorem 2.5 (Tate’s acyclicity theorem). Let X be an affinoid K-space. The presheaf Ox is a
sheaf for the weak Grothendieck topology.

Tate proved slightly more than what is stated above. He proved that the Cech complex of
such a covering with values in the presheaf Oy is acyclic. Since the sheaf exact sequence consists
of the first terms of the augmented Cech complex, this acyclicity implies that Oy is a sheaf. To
be precise, Tate only proved this for Laurent domains, which he called special affine subsets of
X, and finite coverings by Laurent domains. At the time he was lacking the technology of the
Gerritzen-Grauert theorem, which allows one to extend Tate’s proof to the weak Grothendieck
topology. We outline the steps involved in the proof as presented in section 1.9 of the Bosch notes.

Outline of proof. Given an affinoid subdomain of U C X and a finite covering by affinoid subdo-
mains U; — U, such that U = |J, U;, one must show that the sequence

0— Ox(U) = [[ox(U) = [] Ox(U:nU))
iel ijel
18 exact.

1. Bosch first defines a particular type of covering by rational subdomains, called a rational
covering. 1If fo,..., fr € Ay is a collection of functions which generate the unit ideal, then
the rational subdomains

U’L:U(f()/fl77f’l”/fl)7 iZO,...,T
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give a finite covering (U; — U)I_, of U. Then using the Gerritzen-Grauert theorem, the
problem is reduced to considering such a rational covering.

2. Reduce from considering rational coverings to considering Laurent coverings. From this point
onward, the proof follows Tate’s original argument.

3. Use induction to reduce to the case of considering a Laurent covering of the type U(f), U(f™1)
for a single f € Ay.

4. In this case, carry out the computation by brute force. This means showing that the sequence
€ _ é _
0_>AU_>AU<f>><AU<f 1>—>AU<f>f 1>a

where e(f) = (flu), flug-1) and 6(f, 9) = flur.r—1) — glucrp-1) Is exact.

2.4 Strong Grothendieck topology

In this final section we define the strong Grothendieck topology, to pave the way for the construction
of global rigid spaces by glueing.

Definition 2.6. Let X = M(A) be an affinoid K-space. Then the strong Grothendieck topology
on X consists of the following data:

1. A subset U C X is said to be admissible open if there is a covering, possibly infinite,
U= UiE ; Ui such that each U; C X is an affinoid subdomain, and the covering satisfies the
following property: for every morphism of affinoid K-spaces ¢: Z — X such that ¢(Z2) C U,
the covering (¢~1(U;))ie; admits a refinement which is a finite covering of Z by affinoid
subdomains. The underlying category of the strong Grothendieck topology is the collection
of admissible open subsets of X with inclusions as morphisms.

2. A covering V = e V; of an admissible open subset V' C X is said to be admissible if each
Vj is an admissible open subset of X and if for each morphism of affinoid K-spaces ¢: Z — X
such that ¢(Z) C V, the covering (¢(V;));es of Z admits a refinement which is a finite
covering of Z by affinoid subdomains. The coverings in the strong Grothendieck topology
are the admissible coverings.

Note that since an arbitrary union of affinoid subdomains need not itself be affinoid, admissible
subsets of X are not necessarily affinoid. The strong topology does have the property that a finite
union of affinoid subdomains is at least admissible open. We close by stating some facts about the
strong topology, and then a key example.

1. The strong Grothendieck topology is “finer” than the Zariski topology, in the sense that
every open subset in the Zariski topology is admissible open, and every covering of a Zariski
open by Zariski opens is an admissible covering.

2. Every sheaf on the weak Grothendieck topology extends uniquely to a sheaf on the strong
Grothendieck topology. In particular, there is a sheaf of regular functions Ox on the strong
Grothendieck topology such that for any affinoid subdomain of X, one has Ox(U) = Ay.
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3. The strong Grothendieck topology satisfies certain “completeness properties” which allow
one to define global rigid spaces.

Example. Take K = C, and A = K(X). Write U = {z € M(A4) : |2 =1} and V = {2z €
M(A) : |z|] < 1}. Note that U is a Laurent domain and is thus an admissible open in X = M (A).
The set V' is open in the canonical topology of X, but it is not an affinoid subdomain. Otherwise
we could write V' = M (B) and the inclusion V' < X would correspond to a morphism of affinoid
algebras ¢: A — B. Now the element ¢(X) € B does not attain its maximum on M (B), since its
norm is < 1 yet may get arbitrarily close to 1 on M(B). The set V is admissible open, though.
To see this one notes that if V,, = {z € M(A) : |z| < 1/p'/"} then V = |, Vi, expresses V as a
union of affinoid subdomains of X. Another application of the maximum modulus principle allows
one to show that this satisfies the criteria of admissibility. One final application of the maximum
modulus principle allows one to show that {U, V'} is not an admissible covering of X (Hint: apply
the definition of admissible covering with the identity map ¢: X — X).
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