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1 Review

Recall what are modular forms of level 1: for them, we consider the group Γ = SL2(Z), acting
on the complex upper-half plane h = {τ ∈ C | =τ > 0}.

If k ∈ 2Z≥0, then f is a modular form on Γ of weight k if:

1. f : h → C is holomorphic.

2. f(aτ+b
cτ+d

) = (cτ + d)kf(τ) for all τ ∈ h and for all

(
a b
c d

)
∈ Γ = SL2(Z).

3. f is holomorphic at ∞: it has a Fourier expansion f(τ) =
∑

n≥0 anq
n, where q = e2πiτ .

We denote by Mk(C) the set of modular forms of weight k on Γ = SL2(Z). This turns
out to be a finite-dimensional C-vectorspace.

Let M(C)
def
=

⊕
k∈2Z≥0

Mk(C) ↪→ C[[q]], which is a graded ring (the grading given by k).

Example. For k ∈ 2Z≥4, define the weight-k Eisenstein series as:

Gk(τ)
def
=

∑
(m,n)∈Z2\0

(mτ + n)−k

which is a modular form of weight k. Also, Gk(∞) 6= 0 (meaning that a0(Gk) 6= 0).
Define also the normalized Eisenstein series as:

Ek(τ)
def
=

k!

2k−2πkBk

Gk(τ)

where Bk is the kth Bernoulli number, given by the formula:

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

This is done so that:

Ek(q) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn ∈ Q[[q]]

where σk−1(n) =
∑

d|n d
k−1.

In particular, we give shorter names to some of these modular forms (this notation is due
to Ramanujan):

Q
def
= E4 = 1 + 240

∑
σ3(n)qn ∈ Z[[q]]

R
def
= E6 = 1− 504

∑
σ5(n)qn ∈ Z[[q]]

Theorem 1.1.

1. The set {QiRj}4i+6j=k (where i, j are taken always to be positive) is a basis for Mk(C)
(for all k ≥ 0). In particular, M2(C) = {0} and M0(C) = C.
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2. M(C) ' C[Q,R] as graded C-algebras, where Q has degree 4 and R has degree 6.

We have a map:
Mk(C) → C f 7→ f(∞) = a0(f)

and the space of cusp forms Sk(C) is defined to be its kernel.

Example. The smallest-weight nonzero cusp form is:

∆(τ)
def
= q

∞∏
n=1

(1− qn)24 ∈ S12(C)

and one can write it in terms of Q and R as:

∆ =
Q3 −R2

1728

2 Modular Forms (mod p) of Level 1

Fix a prime p ≥ 5. Write O def
= Zp ∩Q = Z(p). The ring O is local, with maximal ideal pO.

We have a canonical map O → Fp, and the following commutes:

O

��

x 7→x̃

  
AA

AA
AA

AA

Zp
// Fp

The kernel of the reduction map O → Fp is exactly pO.

For k ≥ 0 an even integer, define Mk(O)
def
= {f ∈ Mk(C) | f =

∑
an(f)qn ∈ O[[q]]}, and

again, let M(O)
def
=

∑
k≥0Mk(O) ↪→ O[[q]]. Note that Q,R ∈M(O).

Write Mk(Fp)
def
= Mk(O)⊗O Fp, which is a finite-dimensional Fp-vectorspace.

Note also that, for each k ≥ 0, Mk(Fp) ↪→ Fp[[q]]. Again, write M(Fp) for the sum of
all Mk(Fp), seen as subrings of Fp[[q]]. This is no longer equal to

⊕
k≥0Mk(Fp), as different

modular forms (necessarily of distinct weight) may have congruent ( (mod p)) q-expansions.
However, the ring M(Fp) still has an Fp-algebra structure, and we’d like to investigate it.

We will call the elements of M(Fp) modular forms (mod p) of level 1.

2.1 The Algebra Structure of M(Fp)

First, note that we have a commutative diagram:

M(C) C[Q,R]'oo

M(O)
?�

OO

O[Q,R]
ϕ

oo
?�

OO

The map ϕ is defined by sending Q and R to their respective q-expansions (which have
coefficients in O, as we have observed earlier).
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Lemma 2.1. The map ϕ is an isomorphism of O-graded algebras.

Proof. We just need to prove surjectivity. The argument is quite standard, and we sketch it
here. We want to prove that, if f ∈Mk(O) is

f =
∑

4i+6j=k

aijQ
iRj

then aij ∈ O ∀(i, j). This is clear for k ≤ 10, and we proceed by induction to the case of

weight k. Write f =
∑

n≥0 anq
n. Then the form g

def
= f − a0Q

iRj is a cusp form, where we
pick i, j non-negative and such that 4i+ 6j = k. So g ∈ Sk(O), and so

g

∆
∈Mk−12(O)

By the induction hypothesis,

g(τ)

∆(τ)
=

∑
blsQ

lRs, bls ∈ O∀(l, s)

and then g(τ) = ∆(τ)
∑
blsQ

lRs ∈ O[Q,R] because 1728 = 123 is a unit in O. So f(τ) =
a0Q

iRj + g(τ) lies in O[Q,R] as well, as we wanted to prove.

By reducing (mod p), we get another commutative diagram:

M(O)

����

O[Q,R]

����

'oo

M(Fp) Fp[Q,R]
ψ
oooo

To determine M(Fp), it is thus enough to determine kerψ. For this, we introduce the
main tool used in its calculation.

Define, on C[[q]], the derivation θ, given by:

θ
def
=

1

2πi

d

dτ
= q

d

dq

In general, if f =
∑
anq

n ∈Mk(C), then θ(f) =
∑
nanq

n will not be a modular form.

Let P
def
= E2 (following Ramanujan), which has q-expansion given by:

P = 1− 24
∑
n≥1

σ1(q)q
n

This is not a modular form (although it transforms well with respect to τ 7→ τ + 1, which
translates into it having a q-expansion). However, the following formula holds:

P

(
−1

τ

)
= τ 2P (τ) +

12τ

2πi

Define then ∂
def
= 12θ − kP , ∂ : M(C) → C[[q]].
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Lemma 2.2.

1. If f ∈Mk(C), then ∂f ∈Mk+2(C).

2. ∂(M(O)) ⊆M(O).

3. ∂ is a derivation on M(O).

Proof. It’s a simple calculation (differentiate the transformation formula for a modular form,
and compare with how P transforms).

Again, by reducing, we get a derivation ∂ : M(Fp) → M(Fp), given by ∂(f̃) = 12θ(f̃) −
kf̃ P̃ .

We will use the classical fact that, for any prime p, Bp−1 ∈ Q has p-adic valuation −1,
so that p−1

Bp−1
≡ 0 (mod pO). This already implies that Ep−1 ≡ 1 (mod pO[[q]]), and hence

Ẽp−1 = 1 ∈M(Fp).
Write A(Q,R) ∈ O[Q,R] for the polynomial such that A(Q,R) = Ep−1. Then, if

ψ : Fp[Q,R] � M(Fp) is the previously defined map, it is clear that Ã− 1 ∈ kerψ.

Theorem 2.3 (Swinnerton-Dyer). The kernel of ψ is the principal ideal generated by
Ã− 1.

Proof. Ommitted.

Corollary 2.4. We get the structure of M(Fp):

M(Fp) ' Fp[Q,R]/(Ã(Q,R)− 1)

In particular, it is the ring of regular functions on a normal (hence smooth) curve in the
affine plane.

We have thus found a modular form “of weight p− 1” whose q-expansion is the constant
1. It is called the Hasse invariant and written A(Q,R) = Ep−1.

One can show that M(Fp) has a grading by the group Z/(p− 1)Z, by noting that A− 1
is a homogeneous polynomial with respect to this group (because degA = p− 1).

Consider now Ep+1. By Kummer’s congruences, as p+ 1 ≡ 2 (mod p− 1) we have:

Bp+1

2(p+ 1)
≡ B2

2 · 2
(mod pO)

and both of them are units in O. Hence their inverses are also congruent modulo pO.
Moreover, σp(n) ≡ σ1(n) (mod pO), as an easy argument shows, and therefore:

Ep+1 ≡ E2 (mod pO[[q]])

This implies that P̃ is actually a (mod p) modular form!
Also, 12 is invertible in O, and hence the θ operator becomes a differential operator in

M(Fp), because it can be expressed as a linear combination of ∂ and Ep+1.
In what follows, we will understand things more geometrically, as well as generalize the

(mod p) modular forms to levels N ≥ 1.
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3 Reinterpreting Classical Modular Forms (on C)

We consider again the level 1 modular group Γ = Γ(1) = SL2(Z). One can quotient out h

by Γ, and then compactify (by adding one point) both objects. We call Y (1)
def
= Γ(1)\h, and

X(1)
def
= Y (1) = Γ(1)\h. Note then that both Y (1) and X(1) are Riemann surfaces (and thus

smooth algebraic curves), and that X(1) is also compact (so a projective curve), while Y (1)
is an affine curve.

Given f : h → C a modular form of weight k, define:

ωf
def
= f(z)dz⊗

k
2 ∈

(
Ω1

h/C
)⊗k

2 (h)

If γ ∈ Γ, then we can compute:

γ∗ωf = f(γz)d(γz)⊗
k
2 = (cz + d)kf(z)

(
d

dz

az + b

cz + d

) k
2

(dz)⊗
k
2 = ωf

and hence ωf is Γ-invariant, so it can be seen as a differential on Y (1):

ωf ∈
(
Ω1
Y (1)/C

)⊗k
2 (Y (1))

This module is actually the algebra of Kähler differentials on Y (1) (recall that it’s an
affine curve!).

We now seek more ways of interpreting modular forms. For that, letR be the set of lattices
in C (that is, L ⊆ C is a lattice if it is a free Z-module of rank 2, such that L⊗Z R ' C).

If L ∈ R, then L = Zω1 ⊕ Zω2, with ω1, ω2 two R-linear-independent complex numbers.

Then C/L is a compact torus, and we can make it an elliptic curve by decreeting O def
= 0 ∈

C/L.

Let now M def
= {(α1, α2) ∈ (C×)2 | =(α1

α2
) > 0}. We have a map:

ϕ : M→R
(α1, α2) 7→ Zα1 ⊕ Zα2

Note that ϕ is surjective. We have actions of various groups on each of the previously defined
sets, as follows:

• On M, Γ acts by

(
a b
c d

)
(α1, α2)

def
= (aα1 + bα2, cα1 + dα2), and C× acts by scaling.

• On R, C acts by scaling.

• On h, the group Γ acts as described above.

Consider the map α : M → h sending (α1, α2) 7→ α1

α2
, and the map β : h → R sending

τ 7→ Lτ
def
= Zτ ⊕ Z. We have a non-commutative diagram:

M
ϕ

//

α

��
@@

@@
@@

@@
R

h

β
??��������
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One sees that α is Γ-invariant, and also that β induces an isomorphism h ' R/C×.
Define now another set E , to be the set of isomorphism classes of elliptic curves over C.

We get then maps h → E and R → E , by respectively sending τ 7→ Eτ = (C/Lτ , 0) and
L 7→ (C/L, 0).

Proposition 3.1. The map u : R → E factors through C× and induces an isomorphism
R/C× ' E.

Proof. Surjectivity follows from the fact that, if E/C is any elliptic curve, then E(C) ' C/L
for some lattice L, which can be computed by fixing an invariant differential ω on E, and
then:

L =

{∫
γ

ω | γ ∈ H1(E,Z)

}
⊆ C

For injectivity, if L1, L2 ∈ R are two lattices such that

C/L1

ψ
' C/L2

then C is the universal covering space for C/Li, so ψ can be lifted to a holomorphic map
ψ : C → C, such that ψ(0) = 0. We get then that, for each z ∈ C and l1 ∈ L1,

ψ(z + l1)− ψ(z) ∈ L2

and, as L2 is discrete, this implies:

ψ(z + l1)− ψ(z) = c (a constant).

Taking its derivative, we see that ψ
′
is invariant under L1 and that it is holomorphic, and

so ψ
′
= b ∈ C is a constant. Hence ψ(z) = bz + c for some c ∈ C and, as ψ(0) = 0 we must

have c = 0. So ψ(z) = bz, and L2 = bL1, as we wanted to show.

Also, the map β induces an isomorphism R/C× ' Γ\h, because two lattices Lτ and Lτ ′

are homotethic if, and only if τ ′ = aτ+b
cτ+d

for some

(
a b
c d

)
∈ SL2(Z).

Consider now the set h×C, with its canonical projection p1 onto h. Then Γ and Z2 both
act on h× C, the actions on (τ, v) ∈ h× C given by:

(τ, v) · (a, b) def
= (τ, v + aτ + b)(

a b
c d

)
(τ, v)

def
= (

(
a b
c d

)
τ, (cτ + d)−1v)

With these actions, the projection p1 is Γ-equivariant. Consider then the quotient E def
=

(h×C)/Z2, together with the induced map p : E → h. Then, if τ ∈ h, we have that the fiber
above it, p−1(τ) is isomorphic to Eτ .

If, further, we divide by Γ on the left, we get E(1), which comes with a map to Y (1), and
which maps [Eτ ] 7→ [τ ].

Consider now a function F : R→ C such that

F (λL) = λ−kF (L) ∀λ ∈ C×,∀L ∈ R
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Given such a “homogeneous” function, define f : h → C by

f(τ)
def
= F (Lτ ) = F (τZ⊕ Z)

Note then, that if γ =

(
a b
c d

)
∈ Γ, we have:

f(γτ) = F (Lγτ ) =

(
aτ + b

cτ + d
Z⊕ Z

)
=

= F

(
1

cτ + d
((aτ + b)Z⊕ (cτ + d)Z)

)
= F ((cτ + d)−1Lτ ) =

= (cτ + d)kF (Lτ ) = (cτ + d)kf(τ)

so that if, in addition, f satisfies holomorphicity on h and at ∞, then f is a weight-k modular
form for Γ.

Note that the set R is a fibration over R/C×, and we would like to work instead on a
fibration over E , say E ′, such that:

R //____

��

E ′

��

R/C× // E

For this, define E ′ to be the set of isomorphism classes of pairs (E, ω), where E/C is an
elliptic curve, and ω is a basis for H0(E,Ω1

E/C) (note that this has dimension 1, so ω is just

any nonzero element of H0. The isomorphism is defined by:

(E, ω) ' (E ′, ω′) ⇐⇒ ∃ϕ : E
'→ E ′ an isomorphism such that ϕ∗ω′ = ω

We have an obvious map E ′ → E which forgets ω, and also there is a map R→ E ′, which
to L associates the pair (C/L, dz) (z is the coordinate function on C). Note that, under this
map, if λ ∈ C×, then λL is mapped to:

[(C/(λL), dz)] = [(C/L, λdz)]

We thus can let C× act on E ′ compatibly, by setting

λ[(E, ω)]
def
= [(E, λω)]

Again, for k an even integer, consider a function G : E ′ → C such that G(E, λω) =
λ−kG(E, ω) for all λ ∈ C×. A similar computation as before yields that the function g : h → C
defined by

g(τ)
def
= G([(C/Lτ , dz)])

satisfies a modular transformation, and so it is (provided also the right holomorphicity con-
ditions) a weight-k modular form.

This is the right concept to generalize, and this is what we will do in the next section.
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4 Geometric Modular Forms “à la Katz”

We start right away with a definition that we will take as a basis for a vast generalization:

Definition 4.1 (due to N.Katz). Fix an integer k, and let R0 be a (commutative, unital)
ring. A modular form of weight k and level 1, defined over R0 is a rule, f , which assigns
to every pair (E/R, ω) (where R is an R0-algebra, E/R is an elliptic curve over R, and ω is
a basis for H0(E,Ω1

E/R)) an element f(E, ω) ∈ R, such that:

1. f(E/R, ω) depends only on the isomorphism class of (E, ω).

2. f(E/R, λω) = λ−kf(E/R, ω) for all λ ∈ R×.

3. f commutes with arbitrary base change. That is, if ϕ : R → R′ is an R0-algebra

homomorphism, and (E/R, ω) is a pair over R, then we can consider the pair E ′/R′ def
=

E ×Spec(R) Spec(R′)
p→ E and ω′

def
= p∗ω. We require then that:

f(E ′/R′, ω′) = ϕ (f(E/R, ω))

Remark. The last condition deals in some way with holomorphicity. For now, we still don’t
deal with the cusp at ∞, but we will do it shortly (actually, the last condition ensures
meromorphicity at ∞, at least).

Here is the goals that we set ourselves for this course:

• Generalize this definition for N ≥ 1.

• What about holomorphicity at ∞?

• Relate these notions to the classical definition (R0 = C).

5 Higher Levels (level-N Structures)

Fix now N ≥ 1. We consider the congruence groups

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z)

Suppose that E/C is an elliptic curve. Its N -torsion is

E[N ]
def
= {P ∈ E(C) | NP = 0}

If E ' C/L, then E[N ] ' 1
N
L/L ' L/(NL) ' (Z/NZ)2, and so E[N ] is a free Z-module

of rank 2.
An isomorphism α : Z/NZ2 → E[N ] is the same as fixing an (ordered) basis of E[N ], and

such an isomorphism will be called a level-N structure on E.

Definition 5.1. The set E(N) is defined to be the set of isomorphism classes of pairs (E,α),
where E/C is an elliptic curve, and α is a level-N structure on E. Isomorphisms of such pairs
are defined to be those isomorphisms of elliptic curves that preserve the level-N structure,
as one expects.
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We have a natural map:

h → E(N)

τ 7→ (Eτ , (τ/N, 1/N))

Note that, if γ ∈ Γ(N), then γτ is sent to the same as τ . We thus get a map Γ(N)\h → E(N).
This map is injective (but not surjective!). We will see that its image is. For this, recall

the Weil pairing:
〈·, ·〉Weil : E[N ]× E[N ] → µN

If ζ is a primitive N th root of 1, define the ζ-component of E(N) as:

E(N)ζ
def
= { iso classes (E, (e1, e2)) | 〈e1, e2〉 = ζ}

One can then see that
E(N) =

∐
ζ∈µN

E(N)ζ

(where we only consider those ζ’s which are primitive). In some sense (very imprecise, because
we don’t have a topology on it so far), E(N) is “disconnected”.

Also, note that GL2(Z/NZ) acts on E(N) by

σ · (E,α)
def
= (E,α ◦ σ)

This action induces an isomorphism:

E(N)ζ
'→ E(N)ζdet σ

Claim. The map τ 7→ (Eτ , (τ/N, 1/N)) defined above induces an isomorphism

Γ(N)\h ' E(N)ζN

(where we take ζN
def
= e2πi/N , and note that 〈τ/N, 1/N〉Weil = ζN).

Remark also that, as all the components of E(N) are isomorphic, then E(N) can be
thought of as a union of (φ(N) copies) of Γ(N)\h.

Next, define E(N)′ to be the set of isomorphism classes (E, ω, α), where E/C is an elliptic
curve, ω ∈ H0(E,Ω1

E/C)) is a basis, and α is a level-N structure. Again, we have an obvious

map E(N)′ → E(N).
Now, we may consider functions F : E(N)′ → C such that, for all λ ∈ C×,

F (E, λω, α) = λ−kF (E, ω, α)

and again, the function f : h → C defined by

f(τ)
def
= F (Eτ , dz, (τ/N, 1/N))

is Γ(N)-modular of weight k.
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Definition 5.2. Fix N ≥ 1, and k ∈ Z. Let R0 be a Z[1/N ]-algebra (this means exactly
that N ∈ R×

0 ). A modular form of weight k and level N defined over R0 is a rule
which assigns, to every triple (E/R, ω, α) as before (we take α to be an isomorphism of
group schemes, between the constant group scheme (Z/NZ)2 and E[N ], and note that such
an isomorphism may not exist for all R), an element f(E/R, ω, α) ∈ R such that:

1. f depends only on the isomorphism class of the triple.

2. f(E/R, λω, α) = λ−kf(E/R, ω, α) for all λ ∈ R×.

3. Compatible with base change.

Remarks. • Let E/R be an elliptic curve over R (so it comes with a morphism ϕ : E →
Spec(R)). On E, we have the sheaf Ω1

E/R, and we can push it forward to ωE/R
def
=

ϕ∗Ω
1
E/R. Then ωE/R is a coherent, locally-free sheaf of rank 1 on SpecR. Hence it is the

sheaf associated to a certain projective, rank-1 module over R, which is H0(E,Ω1
E/R).

In fact, one can prove that, if R is noetherian, then H0(E,Ω1
E/R) is actually free.

• Suppose that f is a modular form of weight k and level N over R0. Let R be an
R0-algebra such that there exists a triple (E/R, ω, α) (as we have remarked above, we
may have to change R in order to be able to even consider a triple like that!). Define
then:

f(E/R, ω, α)ω⊗k ∈ H0(SpecR,ω⊗kE/R)

If ω′ is another basis for H0(E,Ω1
E/R), then ω′ = λω for some λ ∈ R×, and we can

compute:

f(E/R, ω′, α)ω′⊗k = f(E/R, λω, α)(λω)⊗k = f(E/R, ω, α)ω⊗k

and so it doesn’t depend on the choice of ω. We call this element g(E/R, α)
def
=

f(E/R, ω, α)ω⊗k, which is a global section of ω⊗kE/R.

It is easy to see that the giving of such a g is equivalent to the giving of the previous f .

We have another apparently more restrictive definition, which would admit any scheme
S as the basis (and not only affine schemes). However, this new definition is equivalent to
the one we have. This is proven using the base change property, which allows one to glue the
sections on affines into a global section.

In the following sections, we will study in more detail the families of elliptic curves (that
is, elliptic curves over an arbitrary scheme), so to make these concepts more clear.

6 Families of Elliptic Curves

Let S be a noetherian scheme. Recall that a geometric point of S is a morphism s → S,
where s = Spec(k) for some algebraically-closed field k. It is the same as the giving of a point
x ∈ S, together with the choice of an embedding of the residue field κ(x) into an algebraic
closure.
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Definition 6.1. An elliptic curve over S is a pair (E, e) where E
f→ S is a smooth, proper

morphism of schemes and e : S → E is a section (f ◦ e = IdS) such that for all geometric

points s → S, the fiber Es
def
= E ×S s is a (smooth, proper) connected curve of genus 1 over

κ(s).

We want to study these objects. In particular, we want to find a cubic equation which
they satisfy, study their deRham cohomology, and see the connection they have with modular
forms.

7 Cohomology of Sheaves

Let A,B be abelian categories, and suppose that A has enough injectives (e.g. A = Ab, A−
Mod,Sh(X), . . .).

Let F : A → B be a (covariant) functor, which is left-exact. We can then consider the
sequence of right-derived functors {RnF}n≥0

RnF : A → B
For the definition of these functors, one can refer to any book on categories.

Examples.

• Let X be a topological space, A = Sh(X) (the category of sheaves of abelian groups on
X), and B = Ab (the category of abelian groups). As F : A → B we take the global

sections functor F
def
= Γ(X,−). One can check that F is left exact. In this way we

obtain the sheaf cohomology:

Hn(X,F)
def
= RnΓ(X,F)

• Let X be a topological space, let Z ↪→ X be a closed subspace. Let A,B be as before,

and consider the functor F : A → B defined by F
def
= ΓZ(X,−), where for any sheaf F

on X,

ΓZ(X,F)
def
= {s ∈ Γ(X,F) | Supp s ⊆ Z}

where Supp s = {x ∈ X | sx 6= 0}. The group ΓZ(X,F) is called sections with
support on Z. Again, one can check that F is left-exact, and we obtain the local
cohomology with support on Z:

Hn
Z(X,F)

def
= RnΓZ(X,F)

• Let X be a locally-compact topological space, and let A,B be as before. Define in this
case

F (F)
def
= Γc(X,F)

def
= {s ∈ Γ(X,F) | Supp s is compact }

This leads to cohomology with compact support, written Hn
c (X,F).

• Let X, Y be topological spaces, and let f : X → Y be a continuous map. Let A =

Sh(X),B = Sh(Y ). Consider the functor F
def
= f∗ : A → B, defined by (f∗F)(V )

def
=

F(f−1(V )). Its right derived functors will be important in the sequel, but we will simply
denote them by Rnf∗.

13



7.1 Relationship between Hn(X,F) and Rnf∗

First, suppose that S = {s} is a one-point space. Then the category Sh(S) is canonically
identified with Ab, by taking global sections. There is also a unique map f : X → S,
and f∗F corresponds, under the mentioned identification, to Γ(X,F). Moreover, the
right derived functors are just the sheaf cohology of F on X: (Rnf∗)(F) ↔ Hn(X,F).

Next, suppose that X and S are noetherian schemes, and let f : X → S be a proper
morphism. Let F be a coherent sheaf of OX-modules on X. We have then:

Theorem 7.1 (Serre). For each n ≥ 1, the right derived functor Rnf∗F is a coherent
sheaf of OS-modules on S.

Theorem 7.2 (Mumford). Suppose further that S is connected and reduced. Fix
i ≥ 1, and let α : S → Z be defined by:

α(s)
def
= dimκ(s)H

i(Xs,Fs) ∈ Z

(the sheaf Fs on Xs is defined to be the pullback of F along the canonical projection
Xs = X ×s S → X). Assume that α is constant, say with value di. Then Rif∗F is
locally-free of rank di, and both Rif∗F and Ri−1f∗F commute with base change.

Proof. Look it up in [Mum70].

Remark. If α is constant, then for each s ∈ S we can consider the fiber (Rif∗F)s '
H i(Xs,Fs). Hence we can think of the sheaf Rif∗F as “putting together” all the
cohomology groups {H i(Xs,Fs)}s∈S.

8 Equations For Elliptic Curves

In this section we find the equation of an elliptic curve. We will start with the simplest case,
and move up to the relative case (that is, the case of families of elliptic curves). Do they
have a “global” equation? Wait and see!

8.1 Complex case

Let S = Spec(C), and consider an elliptic curve (E/C,∞). Then E(C) is a Riemann surface
of genus 1, E(C) ' T = C/Λ for some lattice Λ ⊆ C, with ∞ corresponding to the class
of 0. Define the Weierstrass ℘-function (which depends on Λ, although we don’t write it
explicitly):

℘(z)
def
=

1

z2
+

∑ ′

λ∈Λ

1

(z − λ)2
− 1

λ2

(the notation
∑ ′

is rather standard, and it means summing over all values of λ that actually
make sense. Here we mean that we ommit λ = 0).
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The function ℘(z) is absolutely convergent, and so we can differentiate term by term, and
obtain ℘′(z), which has a formula:

℘′(z) =
d

dz
℘(z) = − 2

z3
− 2

∑ ′

λ∈Λ

1

(z − λ)3

It becomes then obvious that ℘′(z) is Λ-periodic, and one deduces then that so is ℘(z). So
we have two meromorphic functions on the torus T = C/Λ.

One can then show that ℘ and ℘′ satisfy the following equation:

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ)

with

g2(Λ) = 60
∑ ′

λ∈Λ

λ−4 g3(Λ) = 140
∑ ′

λ∈Λ

λ−6

Moreover, this is the only relation that ℘ and ℘′ satisfy: if we note M(T ) as the field of
meromorphic functions on T , we have:

M(T ) =
C[X, Y ]

(Y 2 − 4X3 + g2(Λ)X + g3(Λ))

and we get an analytic isomorphism T \ {0} → {(x, y) ∈ C2 | y2 = 4x3 − g2x − g3}, which
extends to T after projectivizing the right hand side. So we obtain:

T ' Proj

(
C[X,Y, Z]

(Y 2Z − 4X3 + g2(Λ)XZ2 + g3(Λ)Z3)

)

8.2 Absolute case

Let now S = Spec(k) where k = k is an algebraically-closed field, with char k 6= 2, 3. Recall
that we have a section e : S → E, so that in this situation it gives a point ∞ ∈ E(k). Also,
by hypothesis, E/k is a smooth, proper curve of genus 1.

8.2.1 Riemann-Roch

In general, if C is a smooth proper connected curve of genus g ≥ 0, we can consider the
divisor group Div(C), which is the free abelian group generated by C(k) (the closed points
of C). There is the degree map:

deg : Div(C) � Z∑
niPi 7→

∑
ni

Let also Div0(C)
def
= ker(deg) ⊆ Div(C) be the group of degree-0 divisors.
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Let k(C) be the function field of C (k(C) = OC,η where η is the generic point of C). We
have a group homomorphism:

div : k(C)× → Div(C)

f 7→
∑

P∈C(k)

ordP (f)P

where ordP (f) is the order of the image of f in the stalk OC,P (which is a DVR). One shows
that ordP (f) is nonzero for finitely-many points, so that the map is well defined. Also, if
nP = ordP (f) > 0 we say that f has a zero of order nP at P , and if np < 0 we say that f
has a pole of order −nP at P .

One shows, furthermore, that deg(div f) = 0, so that the divisor map has image inside
Div0(C). If we denote by P (C) the image of the divisor map ÷ (this is the group of prin-

cipal divisors) we can then define the Picard group and the 0-Picard group as Pic(C)
def
=

Div(C)/P (C), and Pic0(C)
def
= Div0(C)/P (C).

We develop now another point of view from which these objects can be studied, that
allows for a better generalization.

Let P ∈ C(k) be a closed point, so that P
ip
↪→ C is a closed immersion. It has a

corresponding sheaf of OC-ideals, I(P ). This fits in a short exact sequence:

0 → I(P ) → OC → OP → 0

where OP = (iP )∗(k) is the push-forward of the constant sheaf with value k, on the scheme
{P}. Note also that I(P ) is an invertible sheaf (by definition, this means a coherent, locally-

free sheaf of rank 1). Denote also by L(P )
def
= I(P )−1 def

= HomOC
(I(P ),OC) (this is the sheaf-

Hom, see [Har77] for some more details). For us, it is enough to know that L(P )⊗OC
I(P ) '

OC , and that, if U ⊆ C is any open, then the sections of L(P ) on U can be thought of as the
“meromorphic” functions f ∈ k(C) such that ordQ(f) ≥ 0 for all Q 6= P , and ordP (f) ≥ −1.

To a divisor D =
∑

i niPi we can associate an invertible sheaf on C,

L(D)
def
= L(P1)

⊗n1 ⊗· · · ⊗L(Ps)
⊗ns

Claim. The previous map induces an isomorphism between Pic(C) and the set of isomor-
phism classes of invertible sheaves.

Proof. First, note that, if f ∈ k(C)×, then L(div(f)) ' f−1OC ' OC , so the given map
factors through P (C). We need to prove bijectivity, and for this one can see [Har77].

Recall that, if C/k is a smooth, proper, connected curve, then its genus g can be defined
as the dimension of H1(C,OC) (as a k-vectorspace) (this gives all the information we need,
as H0(C,OC) ' k, and the higher cohomology vanishes (actually, it does so for any coherent
sheaf, not only for OC).

Consider the sheaf of regular differentials Ω1
C/K , which comes from sheafifying the module

of Kähler differentials on a ring.
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Example. Say somebody stops us asking for how many functions are there with a pole of
order 3 at P , and a zero of order 2 at Q (P 6= Q ∈ C(k)), and such that it is regular
everywhere else. We would –very slowly– pull out our Riemann-Roch machinery (which we
will introduce in the following) and try to use it to find the dimension of H0(C,L(D)), with

D
def
= 3P − 2Q. This would give us how many functions are there with at worst a pole of

order 3 at P , and a zero at least of order 2 at Q. We would have to consider other spaces to
get equalities instead of inequalities, but this would at least be a first step to save our day!

Consider again the invertible sheaf Ω1
C/k. There is a canonical map (called the trace map):

Tr : H1(C,Ω1
C/k)

'→ k

So for any invertible sheaf L, we get a pairing:

H0(C,L)×H1(C,L−1 ⊗Ω1
C/k) → H1(C,Ω1

C/k) ' k

By Serre duality (a nontrivial result), this is a perfect pairing, and so we get an identifi-
cation:

H0(C,Ω1
C/k) ' H1(C,OC)∨

For L = Ω1
C/k, this already implies that H0(C,Ω1

C/k) has dimension g (this is another

possible definition of the genus of C).
As Ω1

C is an invertible sheaf, then by the previous theory there has to exist some divisor
K such that Ω1

C ' L(K). Then degK = 2g − 2, as we will see in the following important
theorem.

Theorem 8.1 (Riemann-Roch). Let D ∈ Div(C). Then:

dimkH
0(C,L(D))− dimkH

1(C,L(D)) = degD + 1− g

Note also that, by Serre duality,

dimkH
1 (C,L(D)) = dimkH

0
(
C,L(−D)⊗Ω1

C

)
Remark. Suppose that degD > 2g−2. Then deg(K−D) < 0, and so H0(C,L(−D)⊗Ω1

C) =
{0}. Hence in this case,

dimkH
0 (C,L(D)) = degD + 1− g

8.2.2 Application to our situation

Suppose now that E/k is an elliptic curve over an algebraically-closed field k. Let ∞ ∈ E(k)
be the image of the section e : Spec(k) → E and consider, for each n ≥ 1, the divisor

Dn
def
= n · ∞. Then (recall g = 1), degDn = n > 0 = 2g − 2, and so we can use the previous

remark to conclude that, if we denote Hn
def
= H0(E,L(n · ∞)) (not to be confused with any

kind of homology!) and ln
def
= dimkHn, then ln = n. This will allow us to find an equation

for the elliptic curve.
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For n = 1, ln = 1, then Hn ' k, and a basis for it is given by 1 ∈ k. For n = 2, as ln = 2
there is a nonconstant element x ∈ H2 such that {1, x} form a basis for H2. We want to
choose x in a “canonical way”. For this, note that dimkH

0(e,Ω1
E) = 1, and so fix once and

for all a basis ω for it.
Consider now the formal group of E at ∞,

Ê = Spf k[[T ]]

and the restriction of ω to Ê:

ω|Ê = (a0 + a1T + · · · )dT a0 6= 0

Choose the local parameter T such that a0 is 1. This will allow us to normalize the choice
of x, by imposing that x|Ê has a Laurent expansion of the form:

x|Ê =
1

T 2
(1 + b1T + · · · )

We continue now with n = 3, l3 = 3. Then we can choose some y ∈ H3 \H2, such that:

y|Ê =
1

T 3
(1 + c1T + · · · )

(we could take −1 or 2, instead of 1, and in other instances this is important).
We now consider n = 4, 5, and note that y2−x3 ∈ H5, which was spanned by {1, x, y, x2, xy},

and so we get an equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

By making a change of variables y 7→ y − a1

2
x− a3

2
, we get another equation:

y2 = x3 + b2x
2 + b4x+ b6

Finally, a change x 7→ x− b2
3
, y 7→ y/2 leaves us with the equation:

y2 = 4x3 − g2x− g3 g2, g3 ∈ k

One can prove then that

E ' Proj

(
k[x, y, z]

(y2z − 4x3 + g2xz2 + g3z3)

)
8.3 Relative case

Consider now S any noetherian scheme, and assume that 6 is invertible in S (what we
really mean is that S is a scheme over Spec(Z[1/6]), or that all the residue fields of S have
characteristic not dividing 6). Consider E/S an elliptic curve, that is:

E

f
��

S

e

VV
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where f is the structure map, and e is the section that is part of the definition. Also, recall
that, by definition, for any geometric point s → S, the fiber Es/κ(s) is a smooth, proper,
connected curve of genus 1. Together with the image of s under e, we obtain an elliptic
curve over κ(s), and κ(s) has characteristic not dividing 6. By the absolute case, Es has an
equation:

Es ' Proj

(
κ(s)[x, y, z]

(y2z − 4x3 + g2,sxz2 + g3,sz3)

)
We would like to put all these equations into a single one, given by global sections g2, g3 ∈

OS(S). For this, we will need a relative version of the Riemann-Roch theorem.

8.3.1 Relative Riemann-Roch

Let C be a family of curves defined over a scheme S, say f : C → S, where C/S has genus g
(that is, f is smooth and proper, and for each geometric point s→ S, the fiber Cs = C ×S s
is a curve of genus g over κ(s)).

Definition 8.2. An effective cartier divisor on C is a closed subscheme D ⊆ C,

D
i //

g
��

44
44

44
C

f
��










S

such that g : D → S is finite-flat.

Remark. This readily implies that the push-forward of the structure sheaf of D, g∗OD, is a
locally-free OS-module of finite rank (if M is a finitely-generated module over a noetherian
ring A, then M is A-flat if, and only if, M is projective over A).

Example. The divisors D that we allow should look like families of hypersurfaces over S,
and we don’t allow crossings. This statement is probably quite wrong, and will have to be
corrected eventually, and maybe some pictures will have to be drawn.

Let now I(D) be the ideal sheaf defined by the inclusion D ⊆ C (again, it is a locally-free
rank 1 sheaf of ideals of OC). So we have an exact sequence:

0 → I(D) → OC → i∗OD → 0

As before, let L(D)
def
= I(D)−1 def

= HomOC
(I(D),OC). As L(D) is flat, we get an exact

sequence:
0 → I(D)⊗L(D) → OC ⊗L(D) → i∗OD ⊗L(D) → 0

which is isomorphic to:

0 → OC → L(D) → i∗OD ⊗L(D) → 0

The map OC ↪→ L(D) is given by a global section l of L(D) (the image of 1 ∈ OC). Then
multiplication by l induces an exact sequence:

0 → OC
·l→ L(D) → L(D)/(lOC) → 0

and so L(D)/(lOC) ' i∗OD ⊗L(D). This sheaf is supported on D, and it is flat over OS.
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Claim. The pair (L(D), l) determines D.

Proof. Given a pair (L, l), then we can let I def
= L−1, which is a sheaf of ideals of OC . Then

D = Supp (L/lOC), and OD = OC/I(D).

We want to define also the degree of the divisor D. Note that f∗ (L(D)/lOC) is locally-free
over OS, and the degree of D will be defined as its rank.

Theorem 8.3 (Relative Riemann-Roch). With the given setup, assume that f∗L(D) and
R1f∗L(D) are locally-free of finite rank. Then,

rkOS
f∗L(D)− rkOS

R1f∗L(D) = degD + 1− g

Proof. Starting from the exact sequence

0 → OC
·l→ L(D) → L(D)/(lOC) → 0

we get, by aplying the functor f∗, a long exact sequence:

0 → f∗OC
·l→ f∗L(D) → f∗ (L(D)/(lOC))

δ→ R1f∗OC → R1f∗L(D) → R1f∗ (L(D)/lOC)
δ→ R2f∗OC → · · ·

We will study the terms in this sequence and then look at the ranks.
First, note that R2f∗OC = 0: if s → S is a geometric point, then Cs is smooth, proper

of dimension 1 over κ(s), so that H2(Cs,OCs)− 0. Then, by Mumford’s theorem, R2f∗OC is
locally free of rank 0, so it is zero.

Next, by definition f∗(L(D)/lOC) is locally free of rank degD.
As D has relative dimension 0 over S, and L(D)/lOC is supported on D, its first right-

derived functor is 0: R1f∗(L(D)/lOC) = 0.
If s → S is a geometric point, then H0(Cs, κ(s)) ' κ(s), so f∗OC is locally-free of rank

1. Also, H1(Cs,OCs) has dimension g(Cs) = g, so that R1f∗OC is locally-free of rank g.
Now as f∗L(D) and R1f∗L(D) are locally-free of finite rank, then we can look at the

alternating sum of the rank of the terms in the exact sequence, and it has to be 0, thus
giving the result.

8.3.2 Application to our situation

Let now E/S be a family of elliptic curves.

E

f
��

S

e

VV

Let ∞ def
= e(S) ↪→ E. As f ◦ e = IdS, then the structure sheaf O∞ satisfies f∗O∞ = OS, so

that deg∞ = 1.
We consider, as in the absolute case, the divisors n ·∞, which are associated to Ln = ∞⊗n

and to global sections ln. To calculat the rank of f∗Ln we could use the relative Riemann-
Roch.
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Consider now the sheaf ωE/S
def
= f∗Ω

1
E/S, which is locally-free of rank 1 (we check this on

the stalks, as usual). Fix a trivializing affine cover {Ui}i∈I for both ωE/S and f∗L1 (that is,
so that Ui = Spec(Ai), and both ωE/S|Ui

and f∗L1|Ui
are free of rank 1. As Ln is a power of

L1, it follows that the cover {Ui} trivializes all the Ln as well.
Fix one of the opens in the cover, say U = Spec(A). Choose a basis ω ∈ ωE/S(U), and

consider the formal completion of EU along ∞U , denoted ÊU
def
= Spf(A[[T ]]). We choose T as

before, using the restriction of ω to ÊU .
For n = 1, the sheaf f∗L1(U) is free of rank 1, so choose a basis and call it 1. Note now

that, for any n ≥ 1, if α ∈ (f∗Ln)(U), then we can think of it in f∗Ln+1(U) by mapping
α 7→ α ⊗ 1. As these sections are free, this map is injective. This allows us to repeat the
same argument as before, to get an equation:

y2 = 4x3 − g2,Ux− g3,U

where gi,U ∈ A, and they are uniquely determined by f∗L(∞). So if U,U ′ are two affines in
the covering, the corresponding restrictions to the intersections agree, and hence they glue
to a global section gi ∈ OS(S), such that:

E/S ' Proj

(
OS[x, y, z]

(y2z − 4x3 + g2xz2 + g3z3)

)
Remark. Let R be a reduced, noetherian ring without idempotents, and such that 6 ∈ R×.
We can then consider E/R an elliptic curve, given by an equation

y2 = 4x3 − g2x− g3

The sheaf ωE/R = f∗Ω
1
E/R is locally-free, so it corresponds to a projective rank-1 module.

This is actually free. In other words, there is a globally-defined nowhere vanishing section of
ωE/R. To see it, define:

ω
def
=
dx

2y

which is defined for y 6= 0. But as

2ydy = (12x2 − g2)dx

we can see that ω can also be given, in an open neighborhood of {y = 0}, by:

ω − dy

12x2 − g2

9 Explicit Description of the Sheaf Cohomology Groups

Let X be a noetherian scheme. Let F be any coherent sheaf on X (we could do it for
quasicoherent).

Theorem 9.1. If X is affine, then the sheaf cohomology vanishes:

H i(X,F) = 0 ∀i > 0
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9.1 The Čech cohomology

Assume now that X is separated (that is, the diagonal is a closed subscheme of X × X).
This implies, in particular, that the intersection of a finite collection of affine opens of X is
again affine.

We define the Čech complex, which will allow us to explicitly compute the cohomology
of general noetherian separated schemes. First, fix an affine open cover U = {Ui}i∈I of X.
Give I a well-ordering (we will usually deal with finite covers, so this won’t be a problem)
and, for every finite subset J ⊆ I, denote by UJ :

UJ
def
= ∩j∈JUj

(which is an affine open, because X is separated). The Čech complex is then:

Č•(U ,F) : Č0(U ,F)
d0→ Č1(U ,F)

d1→ Č2(U ,F) → · · ·

where:
Čp(U ,F)

def
=

∏
J⊆I

|J |=p+1

F(UJ)

and dp : Č
p(U ,F) → Čp+1(U ,F) is defined by:

dp ((xJ)J) = (dp(xJ))K

where, if K ⊆ I and |K| = p + 2, then one can order K = {k0 < k1 < · · · < kp+1}, let

Kh
def
= {k0 < · · · < k̂h < · · · < kp+1} be the ordered set obtained by removing the hth term,

and:

(dp(xJ))K =

p+1∑
h=0

(−1)hxKh
|UK

∈ F(UK)

As an exercise, one can check that dp+1 ◦ dp = 0, so that this is a complex. Also, note
that, as F is a sheaf,

H0
(
Č•(U ,F)

)
= ker d0 = H0(X,F)

Theorem 9.2. If X is noetherian and separated, F is a coherent sheaf, and U is an open
affine cover, then:

H i
(
Č•(U ,F)

)
' H i(X,F)

Example (Computation of H1(X,F) using Čech cohomology). If we follow the defi-
nitions, we get that:

H1 (C•(U ,F)) =
Z1

B1

where, if we denote Uij
def
= Ui ∩ Uj and Uijk

def
= Ui ∩ Uj ∩ Uk,

Z1 =
{
(fij)i<j | fij ∈ F(Uij) and fij|Uijk

− fik|Uijk
− fjk|Uijk

= 0∀i < j < k
}

B1 =
{
(gi|Uij

− gj|Uij
)i<j | (gi)i∈I with gi ∈ F(Ui)

}
The elements in Z1 are called 1-cocycles, and those in B1 are called 1-coboundaries.
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Example (For the case of Curves). Supppose that C = X is a curve (smooth, proper,
connected) over k, of genus g (for simplicity, assume k is an algebraically closed field). let

P,Q be two closed points. Consider the cover given by UP
def
= C \ {P} and UQ

def
= C \ {Q},

and denote by UPQ
def
= UP ∩ UQ their intersection. The Čech complex, which has only two

terms, fits then in an exact sequence:

0 // H0(X,F) // F(UP )⊕F(UQ)
d0 // F(UPQ) // H1(X,F) → 0

x � // (x|UP
, x|UQ

)

(a, b) � // a|UPQ
− b|UPQ

This is precisely the Mayer-Vietoris sequence for the cover {UP , UQ}.
Example (Cohomology of an elliptic curve). Let now E/k be an elliptic curve. We
follow the previous example, and choose P = ∞, and Q 6= P any other point. Then:

H1(E,OE) ' OE(U∞,Q)

image of (OE(U∞)⊕OE(UQ))

Consider the divisor D
def
= ∞+Q. By Riemann-Roch,

dimkH
0(E,L(D)) = 2

So there is some z ∈ H0(E,L(D)) which is nonconstant. Note that, as there are no functions
with only one simple pole, the function z must have simple poles at both ∞ and Q (and is
regular everywhere else). It is a fun and easy exercise now to check that [z] is a generator
for H1(E,OE).

10 The deRham Cohomology

Let X be a smooth, separated scheme over a noetherian ring k. We have already introduced
the k-derivation:

d : OX → Ω1
X/k

We can then define, for each i ≥ 2,

Ωi def
= Ωi−1 ∧ Ω1

and the derivation d can be extended to:

d : Ωi
X/k → Ωi+1

X/k

by sheafifying the Kähler construction. That is, locally, and for i = 1, if ω =
∑
fidai, then

dω =
∑
dfi ∧ dai. In this way, we get a complex of sheaves, called the deRham complex.

Its cohomology groups (that is, the hypercohomology) is the deRham cohomology (which
are k-modules):

H1
dR(X/k)

def
= Hi(X,Ω•

X/k)

(this can be defined in terms of injective resolutions. Here we will just see how to compute
them, and will leave out the theorems that allow this to be done).
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10.1 How to calculate hypercohomology

In general, let

F• : F0 d→ F1 d→ F2 d→ · · ·

be a complex of coherent, locally-free sheaves on X (a smooth, separated scheme over a
noetherian ring k). Let U = {Ui}i∈I be an open affine cover of X, with I well-ordered. We
define then a double complex of k-modules (C•,•, d, δ):

...
...

...

C2,0 =
∏

i<j<k F0(Uijk)
d //

δ=δ̌

OO

C2,1 =
∏

i<j<k F1(Uijk)
d //

δ=−δ̌

OO

C2,2 =
∏

i<j<k F2(Uijk)
d //

δ=δ̌

OO

· · ·

C1,0 =
∏

i<j F0(Uij)
d //

δ=δ̌

OO

C1,1 =
∏

i<j F1(Uij)
d //

δ=−δ̌

OO

C1,2 =
∏

i<j F2(Uij)
d //

δ=δ̌

OO

· · ·

C0,0 =
∏

iF0(Ui)
d //

δ=δ̌

OO

C0,1 =
∏

iF1(Ui)
d //

δ=−δ̌

OO

C0,2 =
∏

iF2(Ui)
d //

δ=δ̌

OO

· · ·

Note that, in the odd columns, we take −δ̌ instead of δ̌. Note also that d2 = δ2 = dδ+δd =
0 (the last is an anticommutativity relation).

We can then make a single complex of this double complex, which we will call (K•, D),
where

Kn def
= ⊕p+q=nC

p,q D
def
= d+ δ : Kn → Kn+1

(note that D2 = (d+ δ) ◦ (d+ δ) = d2 + (dδ + δd) + δ2 = 0 + 0 + 0 = 0).

Theorem 10.1. With the previous notation,

Hi(X,F•) = H i(K•)

Theorem 10.2. If 0 → F• → G• → h• → 0 is a short exact sequence of complexes of
coherent, locally free sheaves, then we get a long exact sequence in hypercohomology:

0 → H0(X,F•) → H0(X,G•) → H0(X, h•) → H1(X,F•) → H1(X,G•) → · · ·

Example. Consider the deRham complex:

Ω•
X/k : OX

d→ Ω1
X/k

d→ Ω2
X/k → · · ·

Let U = {Ui}i∈I be an open affine covering of X. We will write explicitly the first two
deRham cohomology groups. Again, it’s a matter of tracing the definitions, to get:

1. H0
dR(X/k) = kerD0 = ker (d : H0(X,OX) → H0(X,Ω1

X)).
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2. For H1
dR, we will write again as Z1/B1, where Z1 are hypercocycles, and B1 are hyper-

coboundaries:

Z1 =
{
(ωi, fij) | ωi ∈ ΩX(Ui), fij ∈ OX(Uij) | dωi = 0, ωi|Uij

− ωj|Uij
= dfij, fij| − fik + fjk| = 0

}
B1 =

{
(dxi, xi|Uij

− xj|Uij
) | (xi)i ∈

∏
i

OX(Ui)

}

Example (Curves). Let C/k be a curve. Then, we can take a covering with only two
opens: U = {U, V }, and the previous example is simplified (Ω2 = 0, and there is only one
intersection). We can write then:

H1
dR(C/k) =

{(ωU , ωV , fUV ) | ωU | − ωV | = dfUV }
{(dxU , dxV , xU | − xV |) | xU ∈ OX(U), xV ∈ OX(V )}

We can fit this group in an exact sequence:

0 // H0(C,Ω1
X/k) // H1

dR(C/k) // H1(C,OC) // 0

ω � // [(ωU , ωV , 0)]

[(ωU , ωV , fUV )] � // [fUV ]

which is called the Hodge filtration exact sequence.

Remark. IfX is a smooth, projective, algebraic variety over C, and we consier its analyfication
Xan, then there is the Hodge-deRham spectral sequence:

Ep,q
1 = Hq(Xan,Ωp

X/C) =⇒ Hp+q
dR (X/k)

which collapses already at E1 (for instance, using the theory of harmonic forms), and thus
gives the so-called Hodge decomposition:

Hn
dR(X/k) = ⊕p+q=nH

q(X,Ωp
X)

Hence then name for the previous exact sequence. However, in the algebraic realm we
don’t get a decomposition, just an exact sequence (or, in higher dimension, a spectral se-
quence) and hence just a filtration. So the splitting (which exists if we work over k a field)
is not canonical (although there are good choices that one can make, in some instances). At
least, we can compute the dimension:

dimkH
1
dR(C/k) = 2g

because the two spaces in the extremes of the s.e.s. are dual to each other (thanks to Serre
duality).

Also, for X proper and connected, we know the dimensions of the other deRham coho-
mology groups:

dimkH
0
dR(C/k) = 1 = dimkH

2
dR(C/k)

The dimension of H2
dR can be computed explicitly (by using its definition, which is simple

because we only have two open sets in the covering). Alternatively, we can wait and this will
follow from Poincaré duality.
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11 Relative deRham Cohomology

Let f : X → Y be a smooth, proper morphism. We consider then the relative deRham
complex:

Ω•
X/Y : OX

d→ Ω1
X/Y

d→ Ω2
X/Y → · · ·

We want to compute the right-derived functors of the push-forward f∗, which will be sheaves
on Y :

Rif∗(Ω
•
X/Y )

def
= H i(X/Y )

Let U = SpecR ⊆ Y be an open affine. Let XU
def
= X ×Y U . For each i ≥ 0, we can

compute H i
dR(XU/R), which is an R-module. The mapping that sends an affine open U to

H i
dR(XU/R) gives a presheaf on Y , and one can show that H i(X/Y ) is the sheafification of

this presheaf.
Let’s now look at a more particular setting: assume that S is noetherian, reduced, and

connected, and that f : C → S is a proper family of curves of genus g. If s→ S is a geometric
point, we have seen that:

dimκ(s)H
i
dR (Cs/κ(s)) =


1 if i = 0, 2

2g if i = 1

0 if i > 2

(in particular, the dimensions do not depend on s).
By Mumford’s theorem, it follows that H i

dR(C/S) are coherent, locally-free OS-modules
(of ranks 1, 2g, 0, respectively).

Moreover, we have an exact sequence of sheaves on S:

0 → f∗Ω
1
C/S → H1

dR(C/S) → R1f∗OC → 0

such that, if s→ S is a geometric point, and we look at the fibers on s (that is, we pull-back
the sheaves along the map s → S, which is not exactly the same as looking at the stalks of
the image point s ∈ S) we recover the Hodge filtration.

12 Application to Elliptic Curves

Let now (E/k,∞) be an elliptic curve over a noetherian ring k. We will see that, provided
that 6 ∈ k×, we get canonical bases for the deRham cohomology.

Let O(∞)
def
= L(∞) denote the sections with at most a simple pole at ∞, and by

Ω1(2∞)
def
= Ω1

E/k ⊗OE
L(2∞)

We have a differential d : O(∞) → Ω1(2∞), which induces an inclusion of complexes:

Ω•(2∞) : O(∞) d // Ω1(2∞)

Ω•
E/k :

?�

OO

OE
d //

?�

OO

Ω1
E/k

?�

OO
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Let k be the constant sheaf on ∞, and consider the skyscrapper sheaf supported on ∞,

K
def
= j∗k (where j : ∞ ↪→ E is the inclusion).
We can define a morphism

res∞ : Ω1(2∞) � K

given by, if U ⊆ E is an open and ∞ ∈ U , then given ω ∈ Ω1(2∞)(U), we can write it as:

ω∞ =
a−2

t2
+
a−1

t
+ ω′

(with t a local parameter at ∞, and ω′ without poles), and we define res∞(ω)
def
= a−1 (one

needs to check that this is indeed well defined).
Next, we define the differentials of the second kind:

ΩII
def
= ker res∞

We get an exact sequence of complexes (because d : O(∞) → ΩII is a well defined differential):

0 → Ω•
II → Ω•(2∞)

res∞→ K• → 0

which yields a long exact sequence in hypercohomology:

· · · → H0(E,K•) → H1(E,Ω•
II) → H1(E,Ω•(2∞)) → H1(E,K•) → H2(E,Ω•

II) → · · ·

Note that H0(E,K•) = 0, and that H1(E,K•) ' K. Moreover, H2(E,Ω•
II) = H2

dR(E/k) '
K, and the map is an isomorphism. This implies then that:

H1(E,Ω•
II) ' H1(E,Ω•(2∞))

Next, note that the following is a commutative diagram (with exact rows, by definition):

0 // ker d // O(∞) d // ΩII
// coker d // 0

0 // ker dE //

'

OO�
�
�

OE
dE //

?�

OO

Ω1
E/k

//
?�

OO

coker dE //

'

OO�
�
�

0

The induced maps on the kernel and cokernel are isomorphisms, as can be checked directly
on the stalks (and use that 1

t2
is integrable). This implies that the two complexes have the

same cohomology, and so we conclude finally that (this is what we will use to calculate the
deRham cohomology of E):

H1
dR(E/k) ' H1(E,Ω•(2∞))

Recall now that H1(E,O(∞)) = 0 = H1(E,Ω1(2∞), and so:

H1(E,Ω•(2∞)) = coker
(
O(∞)(E) → Ω1(2∞)(E)

)
but the map is the 0 map (because O(∞) contains only the constants, which are killed by
d), so that:

H1
dR(E/k) ' H0(E,Ω1(2∞))
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By Riemann-Roch, dimkH
0(E,Ω1(2∞)) = 2, and we will find a basis for this (again,

provided that 6 ∈ k×).
We have an equation:

E : y2 = 4x3 − g2x− g3

and a regular differential ω = dx/y ∈ H0(E,Ω1
E/k), which we fixed a priory. This is of course

in H0(E,Ω1(2∞)) and is nonzero there, so it’s an element of a basis. The other element will
be:

η
def
=
xdx

y
∈ H0

(
E,Ω1(2∞)

)
\H0

(
E,Ω1

E/k

)
(note that, as η is not regular, it can’t be proportional to ω). So we get a “canonical” basis
{ω, η} (canonical in the sense that it is uniquely determined, once we fix a regular differencial
ω!).

Note in particular that, even if k is not a field, the first deRham cohomology of E/k is a
free k-module of rank 2 (a priori we just knew that it was projective).

Recall the Hodge filtration for an elliptic curve:

0 → ωE/k → H1
dR(E/k) → R1f∗OE → 0

and let η be the image of η in R1f∗OE. As this group is isomorphic to ω−1
E/k, we have a

canonical splitting η 7→ η which gives an isomorphism of k-modules:

H1
dR(E/k) ' ωE/k ⊕ ωE/k

−1

To understand η a little more, we will explicitly find a hypercocycle that represents it. So
consider the usual cover UP = E \P , and U∞ = E \∞ (with P 6= ∞), and UP∞ = UP ∩U∞.

Let also η∞
def
= η|U∞ (and note that η∞ ∈ Ω1

E/k(U∞)).

Consider the divisor D
def
= ∞ + P . By Riemann-Roch, dimkH

0(E,L(D)) = 2, and so
there exists f ∈ H0(E,L(D)) which is not a constant. By what we have previously seen, f
must have poles of exact order 1 at both P and ∞, and no residues there. Hence, there exists

some constant a ∈ k such that η− adf is regular at ∞. Denote then by ηP
def
= (η− adf)|UP

∈
Ω1
E/k(UP ). As f |UP∞ ∈ OE(UP∞), it follows that the triple:

(η∞, ηP , af |UP∞)

is a 1-hypercocycle corresponding to η. Hence we conclude that, under the natural map:

H1
dR(E/k)

β→ H1(E,OE) → 0

the basis element η is sent to β(η)
def
= [af |UP∞ ]

def
= η.

13 Connections

Let Y/k be a smooth scheme, and let F be a coherent sheaf of OY -modules on Y .
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Definition 13.1. A connection on F is a morpshism of sheaves of OY -modules on Y ,

∇ : F → Ω1
Y/k ⊗OY

F

such that:

• It is k-linear: for each U ⊆ Y open subset, ∇U : F(U) → Ω1
Y/k⊗OY (U)F(U) is a k-linear

map.

• If U ⊆ Y is an open subset, and s ∈ OY (U), x ∈ F(U), then it satisfies the Leibniz
rule:

∇U(sx) = (ds)⊗x+ s∇U(x)

Example. Let Y = Spec (k[x, y]/(xy − 1)) = Gm,k. Let A = k[x, y]/(xy − 1). Then Ω1
Y/k =

Ω1
A/k ' Adx

x
.

If F is a free A-module of rank 1, say F = Ae, then to give a connection ∇ : F →
Ω1
A/k ⊗F ' Ω1

A/k ⊗ e is the same as the giving of ∇(e) = ω0 ⊗ e. Once this choice is made,
then if a ∈ A,

∇(ae) = da⊗ e+ a∇(e) = (da+ aω0)⊗ e
and we can even write ω0 = a0

dx
x
, so that the previous equality becomes:

∇(ae) =

(
∂a

∂x
dx+

∂a

∂y
dy + aa0

dx

x

)
⊗ e =

(
x
∂a

∂x
− y

∂a

∂y
+ aa0

)
dx

x
⊗ e

If F is a free A-module of rank 2, then the giving of ∇ is equivalent (after choosing a
basis for F) to the giving of a 2× 2 matrix with entries in Ω1

A/k.

Once a connection ∇ is given, we can construct a map:

∇ : Ω1
Y/k ⊗F → Ω2

Y/k ⊗F

by defining (if ∇(f) =
∑
ωi ⊗ fi):

∇(ω ⊗ f)
def
=

∑
(ω ∧ ωi)⊗ fi

The compositum ∇2 = ∇ ◦∇ is to be interpreted as a curvature.

Definition 13.2. We say that ∇ is integrable if ∇2 = 0.

Note that non-integrability is the obstruction to having local solutions of the equation
∇f = 0.

If∇ is integrable, then automatically the higher iterations of∇ also behave as differentials,
so we get a complex of sheaves of OY -modules on Y :

Ω•
Y/k ⊗OY

F : F ∇→ Ω1
Y/k ⊗F

∇→ Ω2
Y/k ⊗F

∇→ Ω3
Y/k ⊗F → · · ·

and the deRham cohomology with coefficients defined to be its hypercohomology:

H i
dR (Y, (F ,∇))

def
= Hi

(
Ω•
Y/k ⊗OY

F
)
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14 The Gauss-Manin Connection

We let k be a field, and Y/k a smooth curve of finite type. Let f : X → Y a smooth
morphism. The goal is to define a connection on the sheaf F = H i

dR(X/Y ), following quite
closely [KO68].

If all the involved schemes were affine, say X = Spec(B), Y = Spec(A), then we would
get one of the fundamental exact sequences of B-modules (see [Har77], chapter II):

Ω1
A/k ⊗A B // Ω1

B/k
// Ω1

B/A
// 0

In the global situation, we get as well the fundamental exact sequence, where we recall

that f ∗Ω1
Y/k

def
= f−1Ω1

Y/k ⊗f−1OY
OX :

f ∗Ω1
Y/k → Ω1

X/k → Ω1
X/Y → 0

Thanks to X → Y being smooth, the first map is actually injective (so we get an extra
0 on the left). The terms in this exact sequence are locally-free, and so we get a canonical
filtration of the complex Ω•

X/k :

Ω•
X/k = F 0(Ω•

X/k) ⊇ F 1(Ω•
X/k) ⊇ F 2(Ω•

X/k) ⊇ · · ·

with
F i = F i(Ω•

X/k) = image[Ω•−i
X/k ⊗OX

f ∗Ωi
Y/k → Ω•

X/k]

and such that:
gri = gri(Ω•

X/k)
def
= F i/F i+1 = f ∗Ωi

Y/k ⊗OX
Ω•−i
X/Y

(see [Har77], Exercise II.5.16d).
Note that in our case F 2 = 0 because Y has dimension 1 over k, so the filtration is

equivalent to the following exact sequence of complexes:

0 → f−1Ω1
Y/k ⊗f−1OY

Ω•−1
X/Y → Ω•

X/k → Ω•
X/Y → 0

and in turn this yields a long exact sequence in hypercohomology (that is, one takes the
hyperderived functors of f∗). In particular, there exist boundary maps:

H i
dR(X/Y ) = Hi(Ω•

X/Y )
δ→ Hi+1

(
f−1Ω1

Y/k ⊗f−1OY
Ω•−1
X/Y

)
As f−1Ω1

Y/k is locally free and the differential of the complex is f−1OY -linear, the term
on the right is isomorphic to:

Ω1
Y/k ⊗OY

Hi+1(Ω•−1
X/Y ) = Ω1

Y/k ⊗OY
Hi(Ω•

X/Y ) = Ω1
Y/k ⊗OY

H i
dR(X/Y )

and so the connecting homomorphism can be seen as a morphism:

∇i : H
i
dR(X/Y ) → Ω1

Y/k ⊗OY
H i

dR(X/Y )

Definition 14.1. The Gauss-Manin connection is ∇i.
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Example. We compute ∇1 : H1
dR(X/Y ) → Ω1

Y/k ⊗OY
H1

dR(X/Y ). Let’s assume that Y is

affine, Y = SpecA. After localizing, we can assume that Ω1
Y/k ' Adt, for some t ∈ A.

Consider an affine cover of X, X = ∪Ui, with Ui = SpecBi.
Let x ∈ H1

dR(X/Y ), represented by ((ωi)i∈I , (fij)i<j) ∈ K1(Ω•
X/Y ), with ωi ∈ Ω1

Bi/A
and

fij ∈ Bij satisfying the conditions we have worked out before. To compute ∇1(x), we just need
to follow the definition of the connecting homomorphism, induced by the morphism on the
terms in the total complex (we denote by Z and C the kernel and cokernel of the differentials
on each complex):

Z1(Ω•
X/Y )
� _

��
δ

��

bdgk
o

s
x

~
�



�

�

�

�

K1(Ω•
X/k) // //

D
��

K1(Ω•
X/Y )

K2(dt⊗Ω•−1
X/Y ) � � //

����

K2(Ω•
X/k)

C2(dt⊗Ω•−1
X/Y )

That is, choose lifts ωi of ωi, apply D to the element ((ωi)i, (fij)i<j), and we will be able
to write:

D ((ωi), (fij)) = dt⊗ ((ηi), (gij)i<j)

and then
∇1(x) = dt⊗ ((ηi), (gij)i<j)

15 The Poincaré Pairing (lite)

Let C/k be a smooth proper curve. We assume char k = 0 and, for simplicity, we will also
assume that k is algebraically closed (otherwise, just minor modifications need to be done).
We will see a way to compute a perfect, alternating pairing:

〈·, ·〉Poinc : H1
dR(C/k)×H1

dR(C/k) → k

We just show to compute it, without giving the proper definition. Let K = k(C) be

the function field of C, and let ΩK
def
= Ω1

K/k be the K-vectorspace of global meromorphic

differentials on C. Consider also the sheaves OC and Ω1
C/k.

For each closed point P ∈ C(k), we have a discrete valuation:

ordP : K× → Z

Let KP be the completion of K at ordP , and OP be the completion of OC,P (the stalk at

P , which is seen as a subring of K). Define also ΩKP

def
= Ω1

KP /k
, and ΩP the completion of

the stalk ΩC,P .
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Example. If t is a uniformizer at P (that is, ordP (t) = 1), then:

OP ' k[[t]] KP ' k((t))

ΩP ' OP · dt ΩKP
' KP · dt

We have also, for each P ∈ C(k), the residue map:

resP : ΩK → k

defined as follows: if ω ∈ ΩK , let ωP be its image in ΩKP
(= k((t)) · dt). Then resP (ω)

def
=

resP (ωP )
def
= a−1 (if ω = (a−n

tn
+ · · ·+ a−1

t
+ a0 + a1 + · · · )dt). One needs to check that this is

actually well defined...
Denote by ΩII

K the k-vectorspace of meromorphic differential forms of the second kind:

ΩII
K

def
= {ω ∈ ΩK | resP ω = 0∀P ∈ C(k)}

Remark. If ω ∈ ΩII
K , then we can locally integrate it: for each P ∈ C(k), there exists some

γP ∈ KP ( = k((t)) ) such that dγP = ωP .

We have seen that, for elliptic curves, the first deRham cohomology coincided with the
differential forms of the second kind. In general, a similar result is true:

Proposition 15.1. The deRham cohomology of C can be computed as:

H1
dR(C/k) ' ΩII

K

dK

(for elliptic curves, dK = 0).

Now, if we believe the previous proposition, then given [α], [β] ∈ H1
dR(C/k), with α, β ∈

ΩII
K , we proceed as follows: for each P ∈ C(k), let αP = dγP for some γP ∈ KP . Then:

〈[α], [β]〉Poinc
def
=

∑
P∈C(k)

resP (γPβP ) ∈ k

(this is actually well-defined, alternating, and non-degenerate, but we won’t prove any of
these facts here).

Example. Let E/k be an elliptic curve over a field k, char k = 0. Consider the equation for
E that we have found:

E : y2 = 4x3 − g2x− g3

and recall that x, y were chosen in such a way so that, if T is a parameter at ∞, then:

x∞ =
1

T 2
+ a0 + a1T + · · ·

y∞ =
2

T 3
+ b0 + b1T + · · ·
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(note that the 2 in the expression for y∞ is so that we get the 4 in the equation for E).
Then ω = dx/y, η = xdx/y, and we will compute the Poincaré pairing. As it is alternat-

ing, 〈ω, ω〉Poinc = 〈η, η〉Poinc = 0, and so it is enough to calculate 〈η, ω〉Poinc:

〈η, ω〉Poinc =
∑

P∈E(k)

resP (γPωP ) = res∞(γ∞ω∞)

So we compute the expansions of ω and η at ∞, and we find that 〈η, ω〉Poinc = −1 (and
hence 〈ω, η〉Poinc = 1).

16 The Gauss-Manin Connection on an family of El-

liptic Curves

Recall the set-up that we had some sections ago:

(τ, v)
_

��

E = (h× C)/Z2

��

τ h

e : τ 7→[(τ,0)]

ZZ

(where Z2 acts on h× C on the right, by (τ, v) · (a, b) def
= (τ, v + aτ + b)).

Then the fibers above τ ∈ h are precisely:

f−1(τ) = τ × (C/(τZ + Z)) = τ × Eτ ' Eτ

Let R
def
= {f : h → C holomorphic }, and we get in this way an analytic family E/R. This

can be made to be the analyfication of an algebraic family (by GAGA?, because h doesn’t
have sheaf cohomology?). We can thus write:

E/R : y2 = 4x3 − g2(τ)x− g3(τ) gi(τ) ∈ R

Recall also that, in this setting, x = ℘ = ℘(τ, z), and y = ℘′(τ, z) (the derivative taken
with respect to z). Then, as we have seen:

H1
dR(E/R) = Rω ⊕Rη

with ω = dx/y, η = xdx/y.

Remark. Note that dτ = 0 because τ ∈ R (we treat it as a constant). So d will take derivatives
with respect to z only.

The Gauss-Manin connection, becomes, by noting that Ω1
h/C ' R · dτ :

∇ : H1
dR(E/R) → dτ ⊗R H1

dR(E/R)

Write ∂
def
= d

dτ
for the dual of dτ . We can then define ∇τ

def
= ∂ ◦ ∇ by contracting:

H1
dR(E/R)

∇→ Ω1
h/C ⊗R H1

dR(E/R)
∂→ H1

dR(E/R)
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and this carries the same information (to recover ∇, we just set ∇(α)
def
= dτ ⊗∇τ (α). Note

that ∇τ satisfies:

∇τ (aα) =
∂a

∂τ
α+ a∇τ (α) ∀a ∈ R,α ∈ H1

dR(E/R)

We will now compute ∇τ . For this, we will exploit the fact that we have a lot more
structure (coming from E and h being analytic varieties). In particular, we can consider
homology (H1(E/R)).

Let γ1 be the image in E of the family of closed paths {τ × [0, τ ] | τ ∈ h}. Similarly, let
γ2 be the image in E of the family h× [0, 1]. Then, inside H1(E/h, R) = γ1R ⊕ γ2R there is
a lattice H1(E/h,Z) = γ1Z⊕ γ2Z.

Consider the pairing that gives the duality between homology and deRham cohomology
(deRham’s theorem):

(·, ·) : H1(E/h, R)×H1
dR(E/R) → R

We get a chain of isomorphisms:

H1(E/h, R) ' H1
dR(E/R)∨ ' H1

dR(E/R)

(the first one thanks to this previous pairing, the second one thanks to the Poincaré pairing)
As ∇τ acts on H1

dR(E/R), it induces an action on H1(E/h, R). The “horizontal paths”
give us the complex homology:

H1(E/h, R)∇τ=0 = H1(E/h,C)

(and note that ∇τ (γi) = 0 for i = 1, 2). So ∇τ is the dual of the connection on H1(E/R) for
which γi are the horizontal sections.

We identify as well, through this isomorphisms, the paths γi as elements in H1
dR(E/R).

They satisfy, for all ξ ∈ H1
dR(E/R),

〈ξ, γi〉Poinc =

∫
γi

ξ

It follows that:

〈γ2, γ1〉Poinc = −〈γ1, γ2〉Poinc =

∫
γ1

γ2 = 1

(note that in the integral, γ1 is seen as a path, and γ2 is seen as a 1-form!). Also, of course
〈γi, γi〉Poinc = 0 by alternancy.

In this way, we have two “natural” basis for H1
dR(E/R): one given by {ω, η}, the other

given by {γ1, γ2}. We want to relate them, so write:(
ω
η

)
= A

(
γ2

γ1

)
, A ∈M2×2(C)

Define:

ω1
def
=

∫
γ1

ω = 〈ω, γ1〉Poinc ω2
def
=

∫
γ2

ω = 〈ω, γ2〉Poinc

η1
def
=

∫
γ1

η = 〈η, γ1〉Poinc η2
def
=

∫
γ2

η = 〈η, γ2〉Poinc
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(the periods of ω and η, respectively). It is easy to show (it is logically equivalent to the
fact that 〈ω, η〉Poinc = 1) that they satisfy the Legendre relation:

η1ω2 − η2ω1 = 2πi

With these, the matrix A becomes:

A =

(
ω1 −ω2

η1 −η2

)
and, inverting it (the Legendre relation gives its determinant) we get:

2πi

(
γ2

γ1

)
=

(
−η2 ω2

−η1 ω1

) (
ω
η

)
Now, we apply ∇τ , which kills γi, as we have said. Denote by a prime ′ the derivative

with respect to τ . Then:

0 =

(
−η′2 ω′2
−η′1 ω′1

) (
ω
η

)
+

(
−η2 ω2

−η1 ω1

) (
∇τω
∇τη

)
Solving for the last term, we get:(

∇τω
∇τη

)
=
−1

2πi

(
η′1ω2 − η′2ω1 ω1ω

′
2 − ω2ω

′
1

η2η
′
1 − η1η

′
2 η1ω

′
2 − η2ω

′
1

) (
ω
η

)
Now, note that ω1 = τ and ω2 = 1, so the Legendre relation becomes η1− τη2 = 2πi. We

conclude: (
∇τω
∇τη

)
=
−1

2πi

(
η2 −1

η2
2 − 2πiη′2 −η2

) (
ω
η

)
We just have to compute η2, and this is not formal.

Lemma 16.1. We have:

η2 = −−π2

3
P

where P = E2 is the weight-2 Eisenstein series normalized so that, if q = e2πiτ ,

P (q) = 1− 24
∑
n≥1

σ1(n)qn

Proof. The function P can be expressed in terms of τ (in fact this is how it is defined) as:

P (τ) =
3

π2

∑ ′

m,n

1

mτ + n

so it is enough to prove that: η2 =
∑ ′

m,n
1

mτ+n
. For this, note that η = xdx/y = ℘(z)dz.

Define the Weierstrass ζ-function by:

ζ(z)
def
=

1

z
+

∑ ′

m,n

(
1

z −mτ − n
+

1

mτ + n
+

z

(mτ + n)2

)
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and remark that η = −dζ(z), so that:

η2 =

∫
γ2

η =

∫ 1

0

−dζ(z) =

∫ z+1

z

−dζ(z) = ζ(z)− ζ(z + 1)

and a simplifying this expression we get the result.

Remark. By changing the order of summation in the expression of ζ(z) we can also see that

η1 = ζ(z)− ζ(z + τ) = −
∑ ′

n,m

τ

(mτ + n)2

This, combined with the Legendre relation η1(τ)−τη2(τ) = 2πi yields the transformation
function for P (τ):

P

(
−1

τ

)
= τ 2P (τ)− 6iτ

π

From the previous lemma we obtain the explicit matrix for the Gauss-Manin connection:(
∇τω
∇τη

)
=

1

2πi

(
π2P

3
1

π4

9
P 2 − 12

2πi
P ′ −π2

3
P

) (
ω
η

)

17 The Kodaira-Spencer Map

Given an elliptic curve E/R, we have defined so far (assuming SpecR to be smooth and
one-dimensional):

• The hodge filtration: 0 → ωE/R → H1
dR(E/R)

β→ ω−1
E/R → 0.

• The Poincaré pairing 〈·, ·〉P : H1
dR(E/R)×H1

dR(E/R) → R, compatible with the Serre
pairing.

• The Gauss-Manin connection ∇ : H1
dR(E/R) → Ω1

R/k ⊗R H1
dR(E/R).

Definition 17.1. The Kodaira-Spencer map is the R-module homomorphism:

ϕKS : ω⊗2
E/R

// Ω1
R/k

ω1 ⊗ω2
� // 〈ω1,∇ω2〉Poinc

(we pair ω1 with the deRham part of ∇ω2, and we get an element in Ω1
Y/k).

It turns out that the Kodaira-Spencer map is an isomorphism if C is the Tate elliptic
curve over Z((q)). For that, we just need to compute:

ϕKS(ω ⊗ω) = 〈ω,∇ω〉Poinc = 〈ω, π
6i
Pdτ ⊗ω +

1

2πi
dτ ⊗ η〉Poinc =

=
π

6i
Pdτ ⊗〈ω, ω〉Poinc +

1

2πi
dτ ⊗〈ω, η〉Poinc =

1

2πi
dτ

(the last equality follows because 〈ω, ω〉Poinc = 0 and 〈ω, η〉Poinc = 1). As 1
2πi

∈ C×, the
map ϕKS is an isomorphism.
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18 Relationship between Katz’s and Classical Modular

Forms

18.1 The Moduli Problem Γ(N)

Fix an integer N ≥ 3, and let SchZ[1/N ] denote the category of schemes over Spec(Z[1/N ]).
Define a (contravariant) functor:

PN : SchZ[1/N ] → Sets

S 7→
{
(E,α) | E/S is an elliptic curve , (Z/NZ)2

S

α' E[N ]S
}
/'

(α gives a level-N structure to E). Note that PN(S) might be void (for certain schemes S
there might not be such a level-N structure).

The problem is to prove whether or not PN is representable: that is, whether there exists
a scheme Y (N) such that:

PN ' homSchZ[1/N ]
(−, Y (N))

Theorem 18.1. Let N ≥ 3. Then PN is represented by a fine moduli scheme, called Y (N),
defined over Z[1/N ].

Proof. This is quite difficult and way beyond the scope of these notes. You can look at the
original paper [KM85].

Remark. This means that there exists a universal triple (Y (N), E(N), αN) where Y (N) is a
scheme over Z[1/N ], E(N) is an elliptic curve over Y (N), and αN : (Z/NZ)2 ' E(N)[N ]Y (N)

is a level-N structure, such that for every scheme S over Z[1/N ] and every pair (E,α) ∈
PN(S), there exists a unique morphism ϕ : S → Y (N) such that (E,α) is obtained by taking
the fiber product:

(E,α) //

��

(E(N), αN)

��

S
ϕ

// Y (N)

Remark. This is a very strong statement. In particular, if k is a field such that char k - N , and
(E,α) is a pair over k, then the theorem ensures the existence of a unique point s ∈ Y (N)(k)
(which is the image of Spec k under ϕ) such that [(E,α)] comes from it.

There exists a natural morphism

Y (N) → Spec(Z[1/N ][j])

which, on points, sends the pair [(E,α)] to the j-invariant j(E) of E. This turns out (not
obvious) to be a finite, flat morphism, and so it follows that Y (N) is affine of relative
dimension 1 over Spec(Z[1/N ]). This natural map is also smooth, so that Y (N) is actually
a curve over the j-line.

If ζ ′ is a fixed primitive N th root of 1, then:

Y (N)⊗Z[1/N ]]Z[1/N,ζ′ =
∐
ζ

Y (N)ζ
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(where ζ runs over the primitive N th roots of 1). Also, Y (N)ζ is smooth over Spec(Z[1/N, ζ]).

Over C, we can take ζN
def
= e

2πi
N , and then

(Y (N)C)ζN ' Γ(N)\h

Moreover, we have a commutative diagram:

E(N)C,ζN
' //

��

Γ(N)\E

��

Y (N)C,ζN
' // Γ(N)\h

18.2 From Katz’s to Classical

Let k ∈ 2Z≥2 and let R0
def
= C. Consider Y (N)ζN ,C, which is the ζN component of Y (N)

base-extended to C. We have explained that this will be affine, so:

Y (N)ζN ,C = Spec(R) for some C-algebra R

Given a Katz’s modular form of weight k and level N over R0 = C, we can evaluate it at the
pair:

(E(N)ζN ,C /R, αN)

and we will obtain a section of

ω⊗kE(N)ζN ,C
=

(
ω⊗2
E(N)ζN ,C

)⊗k/2
We can apply then the Kodaira-Spencer map to get a global section of(

Ω1
R/C

)⊗k/2
This will give us a classical modular form, provided that it is holomorphic at infinity. We

will deal with this issue in the next section.

18.3 From Classical to Katz’s

Let now g be a classical modular form of weight k ∈ 2Z≥2 and level N . We have seen that,

if we define ωg
def
= g(τ)(dτ)k/2, then we have

ωg ∈ H0
(
Y (N)ζN ,C, (Ω

1
Y (N)ζN ,C

)⊗k/2
)

As before, we can apply the inverse of the Kodaira-Spencer map and get an element:

ωg ∈ ω⊗kE(N)ζN ,C/Y (N)ζN ,C

which, after applying the morphism ϕ(N) yields fu (u for universal):

fu
def
= ωϕ(N)

g ∈ ω⊗kE(N)/C
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Let now R be any C-algebra, and let (E/R, α) be an elliptic curve together with a level-N
structure (over R). Then, by representability, there exists a unique morphism ϕ : S → Y (N),
defined over C, such that the following diagram is cartesian:

(E,α) //

��

(E(N), αN)

��

S = SpecR
ϕ

// Y (N)

In particular, we can pull fu back to ω⊗kE/R via the map:

ϕ∗ :
(
ωE(N)/Y (N)

)⊗k → (
ωE/R

)⊗k
to get an element:

f(E/R, α)
def
= ϕ∗(fu)

The assignment (E/R, α) 7→ f(E/R, α) ∈ ω⊗kE/R is a modular form in the sense of Katz, of

weight k and level N , and it is associated (via the previous section) to the classical modular
form g.

Remark. Note that the level-N structure has only intervened for the existence and uniqueness
of the morphism ϕ.

19 q-expansions and Holomorphicity at ∞

19.1 Tate Curves

Let τ ∈ h, and consider its associated elliptic curve Eτ
def
= C/(τZ⊕Z). We have an (analytic

isomorphism):

Eτ
' // C×/qZ

τ

z � // e2πiz

where qτ
def
= e2πiτ , and qZ

τ is defined to be the multiplicative subgroup of C× generated by qτ .
We can consider the formal spectrums:

Spf(C[[q]]) ↪→ SL2(Z)\h, and Spf(C((q))) ↪→ SL2(Z)\h

as formal neighborhoods of ∞ (the second one with ∞ itself removed). By pull-back we get
a cartesian diagram:

Tate(q) //

��

SL2(Z)\E

��

Spf(C((q))) // SL2(Z)\h

We want to derive equations for Tate(q). For this, let

L
def
= Lτ

def
= 2πi(τZ⊕ Z)
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and let X and Y be:
X

def
= ℘(2πiz, L), Y

def
= ℘′(2πiz, L)

We get the equations:

Y 2 = 4X3 − g2(L)X − g3(L) = 4X3 − E4(q)

12
X − E6(q)

216

where:

E4(q) = 12(2πi)4g4(τ) = 12g2(L) = 1 + 240
∑

σ3(n)qn

E6(q) = 216(2πi)6g6(τ) = 216g3(L) = 1− 504
∑

σ5(n)qn

(note that the q-expansions are in Z[[q]], and hence the equation for Tate(q) is defined over
Z[1/6]((q)). We want to remove also these denominators. So replace X = x + 12, and
Y = x+ 2y, and we obtain:

y2 + xy = x3 +B(q)x+ C(q)

where:

B(q) = −5
E4(q)− 1

240
= −5

∑
σ3(n)qnC(q) =

1

12

(
−5

E4(q)− 1

240
− 7

E6(q)− 1

504

)
= −

∑ 5σ3(n) + 7σ5(n)

12
qn

It’s an elementary number theoretic calculation to show that C(q) has coefficients in Z
as well (won’t do the embarrassingly easy high-school number theory exercise).

So we arrive at the definition of the Tate curve:

Definition 19.1. The Tate curve over Z((q)) is the elliptic curve given by the equation

y2 + xy = x3 +B(q)x+ C(q), together with the canonical differential ωcan
def
= dx

x+2y
.

Similarly define, for N ≥ 3:

Definition 19.2. The level-N Tate curve over Z((q)) is the elliptic curve given by the

equation y2+xy = x3+B(qN)x+C(qN), together with the canonical differential ωcan
def
= dx

x+2y
.

Note that the level-N Tate curve fits in the cartesian diagram (the lower map induced by
the mapping q 7→ qN):

(Tate(q), ωcan)

��

(
Tate(qN), ωcan

)
oo

��

Spf (Z((q))) Spf
(
Z((qN))

)
oo

Note also that the map Z((q)) → C given by mapping q 7→ e2πiτ induces a cartesian
diagram: (

C×/qZ
τ , dt/t

)
//

��

(Tate(q), ωcan)

��

Spf(C) // Spf(Z((q)))
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19.2 Tate Curves (formal-schemes-free version)

In this subsection we partly redo the previous section without mentioning formal schemes.
This wasn’t assumed initially as required background, so the previous subsection is not
necessarily understandable.

consider q
def
= e2πiτ , and qN = e2πiNτ , and Eτ = C×/(qNZ. Then its N -torsion group is:

Eτ [N ] = {ζqqb | 0 ≤ a, b ≤ N − 1}, ζ a primitive N th root of 1

A level-N structure is then an ordered basis α = (e1, e2) of Eτ [N ], as a Z/NZ-module.
Note that if e1 = ζaqb and e2 = ζcqd, then α is a basis if, and only if,

δ
def
= det

(
a b
c d

)
∈ (Z/NZ)×

Moreover, the Weil pairing is easy to compute:

〈e1, e2〉Weil = e
2πiδ

N

so that the ζN component corresponds to those bases α = (e1, e2) such that

(
a b
c d

)
∈

SL2(Z/NZ).
From all this we can deduce that there is a one-to-one correspondence between level-N

structures on Tate(qN) and cusps of X(N). More on this can be found in [Sil86].
Fix now Tate(qN)/C((q)), together with ωcan and a level-N structure α. We have just

seen that α corresponds to a cusp xα ∈ X(N)ζ (if α corresponds to the primitive N th root
of unity ζ).

We have then an embedding of Y (N)ζ = Spec(Rζ) into X(N)ζ , because Rζ is a C-algebra

of finite type, and an integral domain. So we can take its fraction field Kζ
def
= Q(Rζ) =

C(Y (N)ζ) = C(X(N)ζ).

As Rζ ⊆ Kζ , then xα will correspond to a discrete valuation vα on Kζ . Let K̂ζ be the
completion of Kζ with respect to the valuation vα, and let qα ∈ Kζ be a uniformizer.

As X(N)ζ is smooth, we have:

K̂ζ ' C((qα)) ' C((q))

Hence we have a C-algebra homomorphism Rζ → C((q)), which is given by inclusions
depending on the level-N structure. This yields a map:

Spec (C((q))) → Y (N)ζ

as we had in the previous subsection.

19.3 The q-expansion of a Modular Form

Let N ≥ 3, and k ∈ Z≥0. Let R0 be a Z[1/N ]-algebra, and assume that R0 contains a
primitive N th root of 1. Let f be a Katz’s modular form of weight k and level N defined
over R0. Fix α a level-N structure of Tate(qN) over Z((q))⊗Z R0.
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Definition 19.3. The q-expansion of f at α (we think of it as at the cusp in X(N)R0

corresponding to α) is:

f
(
Tate(qN)/Z((q))⊗R0, ωcan, α

)
∈ Z((q))⊗Z R0

Remark. Using this definition, every Katz’s modular form is automatically meromorphic at
∞ (i.e. at all cusps).

Definition 19.4. We say that f is holomorphic at ∞ if, for every level-N structure α of
Tate(qN), its q-expansion at α actually belongs to Z[[q]]⊗ZR0. We say that f is a cusp form
if it belongs to qZ[[q]]⊗Z R0 (also for all α).

19.4 The q-expansion Principle

Theorem 19.5 (The q-expansion principle). Let R0 be a Z[1/N, ζ]-algebra, and let f be
a Katz’s modular form of weight k and level N ≥ 3 defined over R0, and holomorphic at ∞.
Suppose that, for every ζ primitive N th root of 1, there exists a level-N structure αζ = (e1, e2)
of Tate(qN), with 〈e1, e2〉Weil = ζ such that the q-expansion of f at α is 0. Then f is zero as
a modular form.

Corollary 19.6. If K ⊆ R0 is a Z[1/N, ζ]-subalgebra such that all q-expansions of f are in
Z[[q]]⊗Z K, then f is in fact defined over K.

Remark. One can also define modular forms over modules, and then K in the previous
corollary needs only to be a sub-module for the result to hold.
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