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1 Results in p-adic analytic geometry

1.1 Affinoids

Consider C,, and fix an absolute value |- | on it. Fix K C C, a complete subfield. Write
R for the maximal order of K, and p for the maximal ideal of R. Let F = R/p be the
residue field of K (FF is an algebraic extension of IF,,).

Given an affinoid X over K, denote by A(X) the algebra of rigid analytic functions
on X over K. We have that Sp A(X) = X.

For f € A(X), and = € X, write |f(x)| for the absolute value of the image of f in
A(X)/z. Set also:

def
Ifllx = sup{|f ()]}
zeX
and define Ag(X) &' {f € A(X) | |Ifllx < 1}.
We have that ||f||x is a seminorm (called the spectral norm) on A(X), and that
Ap(X) is a sub-R-algebra of A(X). The spectral norm is a norm if X is reduced, and

then A(X) is complete with respect to this norm.
Set also A(X) & Ag(X)/pAg(X), and X e Spec A(X). Then X is a scheme of
finite type over F if Ay(X) is of topological finite type over R (true if K = C,, or K a

DVR). In general, X™4 is of finite type.

Definition 1.1. We say that X has good reduction if Ap(X) is of topological finite
type over R and X is smooth over F.

Lemma 1.2. Suppose that r: Y — X is a morphism of affinoids over K, such that the
image of Y is a dense open subset of X. Let f € A(X). Then |fllx = |forly.

Definition 1.3. A Tate R-algebra is an R-algebra of the form

Ry, zn) /1
for some finitely-generated ideal I of R(xy,--- ,x,), the ring of restricted power series
in x1,---,x, (which is actually the completion of R[z1,--- ,x,] over R).

Definition 1.4. The annihilator in A of r € R is:
Anny(r) e {a € A|ra=0}

Definition 1.5. Given a homomorphism A — B of Tate R-algebras, we say that B is
R-torsion free over A if:
Annp(r) = Anny(r) - B

for all r € R.



Let any Tate R-algebra A, we set A def A/pA.

Definition 1.6. We say that B is formally smooth over A if B is smooth over A
and B is R-torsion free over A.

The proof of the following statement is ommited, as it is not needed in the sequel.
Proposition 1.7. The following are equivalent:

1. B is formally smooth over A,
2. B is smooth over A and B is flat over A,

3. B/rB is smooth over A/rA for all r € R.
The following theorem is what is needed to prove Theorem 1.12.
Theorem 1.8. Suppose that there is a commutative diagram of Tate R-algebras
D«—B

l1

C+——A

such that C — D is surjective and B is formally smooth over A. Suppose that there is
a homomorphism s: B — C making the reduction of the diagram commutative. Then
there is a lifting s: B — C of s which makes the original diagram commutative.

Proof. We will proceed by proving several lemmas that will patch together to get our
result.

Lemma 1.9. Suppose that A — B is a surjective homomorphism of Tate R-algebras.
Then its kernel is finitely generated.

Proof. First, note that WLOG can assume that A = R,, (in general, A is a quotient of
it, so there is no harm in replacing it). The hypothesis says that B is a quotient of R,
(for some n > 0), with finitely generated kernel J:

0—-J—R,—B—0
Let now h: R, — R,, be a homomorphism such that te following commutes:
Ry,
A
R,——B

Take now - - -2}, lifts (in R,,) of the images of x1,--x,, € R,, in B. Then the kernel
of R,, — B is generated by h(J), together with the set of {z; — h(2}) | 1 <i < m}, so

it’s finitely generated. O

As B is topologically of finite type over R, a fortiori it is so over A. Hence there is a
surjection A,, — B, for some n. By the previous lemma, there exist G1---, Gy € Ap,
such that

B~ A, /(Gi,--- ,Gpm) as an A-algebra.

Let G & (G1,-+ ,Gm) € A7, and let g denote the composition A,, — B — D, and 1%

the composition A, — B = C. The fact that C — D is surjective implies that C' — D,
and so D ~ C/I, for some ideal I.



Lemma 1.10. There exists a V: A, — C which lifts V, and such that V = g (mod I).

B

— SD=CJI

|

z%mv

{

Proof. As C — D, there exists a hom. ¢': A, — C such that
g =g (modI)

(just take, if X = (z1,--+,2n), ¢'(X) to be any lift of g(X), and extend to all A4, in
the natural way). In the same way, V can be lifted to V': A,, — C. Then one has:

VI(X)-gd(X)e(p+D"cCn
Now let a € p" C C™, and b € I"™ C C™ be such that:
VI(X)-¢(X)=a—b

Set then d & V’( )—a=g(X)—b,and clearly d =V, and d = ¢ mod I.
Hence we may take V' to be the unique homomorphism A,, — C such that V(X) =
d. O

The homomorphism V' is a first approximation to the lifting we are after.
We need to construct a sequence of approximations that tends to our desired lift.
As our algebra is complete, we will be then get the lift by taking the limit.

Lemma 1.11. There exists an n X m matric N, and m X m matrices M and Q over
A, such that:
G(X +NG)=G'MG + QG

where the coordinates of QQ are in pA,.

Let now Vy =V, and define recursively Vj by setting

Vier1 (X) € V(X)) + N (Ve(X)) G (Vi(X))

As Vi11(X) € C™, it determines a unique homomorphism Vjii1: A, — C. From
the previous lemma, Vi1 — Vi — 0. As Tate algebras are complete, the limit of these
will do. O

1.2 Lifting Morphisms

If h+ X — Y is a morphism of affinoids over K, denote by h: X — Y its reduction.
Given h, we say that h lifts h.

Theorem 1.12. Suppose K = C,, or K a DVR. Suppose that there is a commutative
diagram of reduced affinoids over K :

Vf X

Y Z

—

—



such that W — Y s a closed immersion, and X is smooth over Z. Suppose that
h:Y — X is a morphism commuting with the reduction of the given diagram. Then
there is a lifting h: Y — X of h commuting with the diagram:

W—X

|7

Y—Z

Suppose now that S is a scheme over a field F', and o: F' — F' is an automorphism of
F'. Let S be the scheme over F' obtained by base change via 0. We have a commutative
diagram:
§7 —"—— 8

I

Spec(F) —7— Spec(F)

Given a form (a function or a differential) f on S, one denotes by f7 its pullback
via ¢ to S?. The resulting map f +— f? is o-linear (but not linear, in general).

Let now X be an affinoid over F' = K, and let S = Spec(A(X)) (over Spec(K)), and
let o be a continous automorphism of K. Let then X be the affinoid characterized by
Spec(A(X7?)) = S?, as schemes over K.

Next, consider the case F' = F, and let o be the Frobenius automorphism of F.
For each n € Z7, there is a canonical morphism ¢: S — S, called the Frobenius
morphism, and characterized by the equation ¢*f°" = fP" (for f € Og(U)). If S is of
finite type over F, then there exists some positive integer n such that S ~ S°". Fix an
F-isomorphism p: S — S, and then the morphism po¢: S — S is called a Frobenius
endomorphism of S.

Now suppose that X is an affinoid over K, and @ is a continuous automorphism of
K, which restricts to the Frobenius automorphism o on F. As X is of finite type over
F, then X has Frobenius endomorphisms, and an endomorphism of X lifting one of
those is called a Frobenius endomorphism of X. Such an endomorphism is actually
K-linear (and not just o-linear). We have the following corollary:

Corollary 1.13. Suppose that X is a reduced affinoid over K with good reduction.
Then:

1. X possesses a Frobenius endomorphism.
2. There is a morphism from X to X7 lifting the robenius morphism X — X°.

3. X ~ X" for some positive integer n.

Let X be as in the previous corollary, and let ¢ be a Frobenius endomorphism of
X. In each residue class U of X there is a unique point €y such that

¢"(ev) = ev

for some positive integer m. It can be computed/defined as: think of U as a point in
X (F?) (over the algebraic closure of F). Then there is some m such that ¢™(U) = U,
because U is defined over some finite extension of I,,. Then

ey = lim ¢"™"(x)

for any x € U. This point ¢ is called a Teichmiiller point of ¢.



1.3 Differentials

Suppose that X is an affinoid over K. Let Qﬁf K be the module of rigid differentials on
X, and d: A(X) — Qﬁ(/K the natural derivation. We define Q&/K as the i-th exterior

power of Qﬁ(/}('

If W is any rigid space over K, we can make a natural complex of rigid sheaves
(QI‘/V/K,d) on W. A closed differential will then be an element w € HO(W, QII/V/K)
such that dw = 0.

Proposition 1.14. Let X be a connected reduced affinoid with good reduction over K.
Let D =red ' A, where A is the diagonal in X x X. Then D has a natural structure
of rigid analytic space, and we let A(D) be the ring of rigid analytic functions on D.
Consider p1,p2: D — X the two natural projections. Suppose that w is closed on X.
Then:

piw — piw € dA(D)

Proof. Let C be a cover of X by affine opens such that Y € C may be expressed as a
finite unramified covering of an affine open subset of A%, where d is the dimension of X.
For each Y € C, the inverse image Y =red 'Y has a natural structure of an affinoid
over K such that Y =Y.

Fix Y € C. There exist functions Z1,---,Z, on Y, which are local parameters at
each point of Y (by how we are taking our Y). Let x1,--- ,x, be liftings to Y. Then
x1,--- , &, are also local parameters everywhere on Y. So we may write:

w= fidry + -+ fpdzy,

for some f; € A(Y).
The idea of the proof can be seen in the case n = 1. In that case, write w = f(x)dxz,

and then pjw —psw = f(x)dx — f(y)dy. We want to “integrate” this. So let h def Y,
and rewrite the previous expression as f(y+h)d(y+h)— f(y)dy. Now expand f around
y, noting that h is divisible by p (because h = x — y vanishes on the diagonal). Write

then: " "
I S () P A
plw—pQw:Z n$ )h dy+z nf)
i=1 i=0

Now, just check that if one defines F' def Yoy ! <:!1) h', then dF is the desired expression.

Following we write the general case, wich is just the same, but messier. So let now

z & (1, ,2p), and let C def pix — psx. Clearly C € T™, where T is the ideal of

Ap(X) ® Ag(X) € A(D) consisting of functions which vanish on A (the diagonal on
X x X). Set then

h"dh

1!
I
where I = (i1, ,ip) €Z", I > 0,1 #0, I' =41!---4,!, and
def dil dik—l

e
1= & dx;;—lf ‘
where £ is such that i, > 0 and i; = 0 for j > k. It is a well-known fact that, if
feAY)and J€Z" J >0, then:
’ 1 d’

j@f <|fly

Y
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Hence:
Fr

Fr max; | fjly
I

v il

and so Fy € A (D7).
Now we can compute dFy and prove that, on Y,

dFy = pjw — pow
Next, we check that the Fy glue together into a function F' € B(D) as required. [

Corollary 1.15. Suppose that fi, fo: )Nf’ — X are morphisms of reduced connected
affinoids with good reduction, such that fi = fo. Let w be a closed 1-form on X. Then:

1. ffw— fiwe dA(X')

2. Suppose that X is a function on X(C,), analytic on each residue class of X, and
such that dA = w. Then:
fix—f3x e AX')

Let now V be a proper scheme of finite type over R, and let V be its special fiber.
Let W C V be an affine open set. Consider:

W {z € Vi | z is closed and T € W}

Then W has a natural structure of affinoid over K. If V' is smooth, then W has good
reduction, and W = W. The set W is called a Zariski affinoid open set of V.

Definition 1.16. Suppose that Vi is smooth. A differential of the second kind
on Vi is an element w € Q%/K/K(U), for some dense open U of Vi, such that:

1. dw=0.
2. there exists a Zariski open covering C of Vi such that for each W € C,

Resgrw (W) € Respow (. /i (W) + dOv, (U N W)

Definition 1.17. Supppose that V' is smooth and proper over R. We say that Frobe-
nius acts properly on V if for each Frobenius endomorphism ¢ of V' there is a
polynomial Z(T') € C,[T] such that:

1. No root of Z(T') in C,, is a root of unity.

2. For each Zariski affinoid open W of V' such that oW = W, there is a lifting
¢: W — W of the restriction of ¢ to W such that

Z(¢*)w € dA(W)
for each algebraic differential of the second kind w on Vi regular on W.

Remark. If (i7) holds for one lifting ¢, then it holds for all, thanks to the previous
corollary.

Theorem 1.18. Suppose that K is a DVR and that V is a smoot projective scheme
over R. Then any Frobenius endomorphism acts properly on V.



2 p-adic Abelian Integrals

Here the integrals are constructed, following the Dwork principle.

Theorem 2.1. Let X be a smooth connected affinoid over K with good reduction X .
Let w be a closed one-form on X. Let ¢ be a Frobenius endomorphism of X, and suppose
that P(T') is a polynomial over C, such that

P(¢*)w € dA(X)

and such that no root of P(T) is a root of unity. Then there exists a locally analytic
function f, on X(Cp) unique up to an additive constant such that:

1. df, =w

2. P(¢")fu € A(X).

Proof. We copy the proof in the original paper, but for the special calse of P(T') = T'—a,
with a € C,, (the degree of P(T") is n = 1). This is (hopefully) enough to see the ideas
behind it.

So assume that ¢*w — aw € dA(X).

We first prove uniqueness: suppose that one has two solutions to the problem.
Then their difference would be a locally analytic function g satisfying dg = 0 and
¢*g—ag € A(X). We will see that g is constant. As dg = 0, g must be locally constant,
and thus ¢*g — ag is locally constant as well. As X is connected, then ¢*g — ag = C,
for some constant C' € C,. We will prove that g(z) = C/(1 — a) for all z € X.

Let U be a residue class of X, and let £ = ey be a Teichmiiller point of ¢ in U, of
period m (so that ¢ (¢) = ¢). Then one can check (by induction, for example) that:

N 1—aF
(¢")g—atg=Cr—u (1)
Take now k£ = m and evaluate at ¢, to get:
1—a™
1—a™ =C
(1—a")g(e) T—a

As 1 — a™ is invertible, this implies that g(¢) = C'/(1 — a) as we want.
Now let € U be arbitrary. As g is locally constant and ¢™*(x) — ¢, there is some
integer k such that:

9(¢™"(x)) = g(e)
Again by Equation 1, we get:

a™g(z) = a™*C/(1 - a)

So g(x) — C/(1 — a) is in the kernel of a™*  thought as acting on C,. But here
is the trick to cancel this: for each integer r, there is some element y, € U such that
¢"" (y,) = x. Using Equation 1 again, we deduce that:

g9(x) =C/(1—a) =a"(g(y;) = C/(1 = a))

so g(z) — C/(1 — a) is both in the kernel of ™" and in the image of ™" for all » > 0,
and only 0 is there:
ker(a™) N (N;20a™" (C,)) = {0}



so g is constant.

Next, we prove existence: for this, write first ¢*w = aw + dh for some h € A(X).
We can surely integrate w locally, but we need to do it in a coherent way so that the
second condition in the theorem is satisfied. Once again, the Teichmiiller points will
save the day. If U is a residue class of X and € € U is the corresponding Teichmiiller
point for ¢, write m for the minimal positive integer such that ¢ (¢) = e. Then define
fu to be the local integral to w, normalized such that:

1—am

o) = 3w (o 0)
=0

and define f by flu def fu. We can then compute (¢* f)(e) and show that it equals

af(e) + h(e) as we wanted. O
Corollary 2.2. The function f, is analytic on each residue class of X.

Corollary 2.3. The function f,, depends modulo constants only on w and not on the
choice of P.

Corollary 2.4. Let o' be a closed one-form on X such that P(¢p*)w' € dA(X). Then:
1. fotw = fo+ fur (modulo constants in C,),
2. if w is exact, then f, € A(X).

Corollary 2.5. The function f, is independent (up to constants) of the choice of ¢.

Let now o be a continuous automorphism of C,. Let w? denote the pullback of w
to X?. Let fJ be the function on X?(C,) defined by:

def

f3(2) = o fu(o™(2))

Corollary 2.6. The differential w® satisfies the hypotheses of the theorem over X%, and
f3 = fwe up to constants. In particular, if o fixres K, then f5 = f., up to constants.

Proposition 2.7. Suppose that F: X' — X is a morphism of smooth affinoids with
good reduction over K. Let w' = F*w. Then there exists a Frobenius endomorphism ¢’
of X" and a polynomial P'(T') in Cp[T| such that

P'(¢")w' € dA(X)

and such that no root of P'(T) is a root of unity. Moreover, if f. is a solution of the
Theorem with ' in place of w, then f.,, = F*f, up to constants.

Proof. The key observation to be made is that there exists Frobenius endomorphisms
¢: X — X and ¢': X’ — X’ compatible with F' on the reductions. That is, such that
the following commutes:



Then there is (by what we have seen so far) a polynomial P(T), without roots of unity,
such that:
P(¢p")w € dA(X)

From this, we deduce that:
P(¢;* )’ € dA(X')
Also, we deduce (because ¢ o F and F o ¢/ to the same morphism) that:
F*(¢") ¥ f — (¢ F*f, € A(X') forall k>0

and hence:
P(¢™)F* — F*P(¢") € A(X')

Now apply the uniqueness of f, to conclude the result. O

Next, we will describe how to integrate differentials w of the second kind on Vi,
where V' is a smooth, proper, connected scheme of finite type over R.
Let D be the collection of Zariski affinoid opens X in Vi such that, on X,

w —dgx € Qp(X)

for some gx in K (Vi) (the function field of V). Note that D is a covering, because
w is of the second kind. Let (w)s be the support of the polar divisor of w on Vi, and
write V. Ly — (W) oo-

Fix a Frobenius endomorphism ¢ of V. Write D’ for the subcollection of D consisting
of those X such that ¢X = X (note that D’ is also a covering of Vi (why??). Let Z(T)
be a polynomial associated to V' and ¢ (as in Definition 1.17).

Fix now X € D’. Write for short g = gx, and set v = vx = w — dg. Let ¢ = ¢x be
a lifting of the restriction of ¢ to X. Hence:

Z(¢ v € dA(X)

By Theorem 2.1, there exists f = fx, locally analytic on X and unique up to an
additive constant such that df = v, and Z(¢')f € A(X).

Now, set hx & f+g, as a function on X — (w)ec.

Claim. The function hx s independent of the choices of f and g, up to an additive
constant.

Proof. Suppose that ¢’ € K(Vk) is such that w — dg’ = v/ € QL(X). It follows then
that v/ = v+ d(g — ¢’), and so in particular g — ¢’ € A(X). If now f’ is a solution of
df' =/, and Z(¢")f' € A(X), then f' = f + (g — ¢'), from a previous corollary (up to
constants). This finishes the proof. O]

Finally, we need to patch together the local integrals hx:
Lemma 2.8. Let X, X' € D'. Then hx — hx' is constant on X N X'.

Proof. Note first that X N X’ € D, so it suffices to prove it in the case X’ C X. In this
case, we may take gy = gx/. Then vy is the restriction of vy to X', and if we restrict
fx to X’ we get a solution for our problem, hence hx, = hx|, as we wanted. O



This makes the map (X, X’) — hx — hxs into a 1-cocycle wrt the covering D’ and
the constant sheaf C,. It is actually a coboundary, since any finite subcollection of D’
has non-empty intersection.

We have proved:

Theorem 2.9. There exists a function f,, on V}-(Cp), unique up to an additive constant,
such that:

1. df, = w,

2. For each X € D', there exists a g € K(Vk) such that f, — g extends to ta locally
analytic function on X, and

Z(dx)(fo — 9) € AX)

Definition 2.10. Given w and f,, as above, and given two points P, Q € V/(C,), the
integral of w from P to @ is defined as:

Q
/ w o fu(Q) = fu(P)

P

Proposition 2.11. Let w and ' be two differentials of the second kind on Vi . Then:
e If P,Q ¢ (w)oo U (W)oo, we have:

AfW+w5:Afw+Zfd

o If w=dg for a meromorphic function g on Vi, then:

Q
/ w=g(Q) - g(P)

P

o Let g: W — V be a morphism of smooth proper schemes over R, on which Frobe-
nius acts properly. Then, if g(Q), g(P) ¢ (w)so, we have:

Q 9(Q)
/ g'w = / w
P g(P)
Q \°¢ a(Q)
(L) =L«
P o(P)

where the second integral is taken on V7

o If P,Q ¢ (W), then:

The following theorem, whose proof ommit for now, is a strenghtening of the change
of variable formula from the previous proposition:

Theorem 2.12 (Change of Variablles). Suppose that V' and W are smooth proper
schemes of finite type over a ring R on which Frobenius acts properly. Suppose f: Vi —
Wik is a rational map. Let w be a differential of the second kind on Wy,. Then:

Q f(Q)
Jo 7= f
for any P,Q € V(C,) in the domain of reqularity of f such that f(P), f(Q) ¢ (w)co-
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Corollary 2.13. The integral fgw doesn’t depend on the model V' for Vi .

Corollary 2.14. Suppose that Vi is a variety over K which may be completed to a
smooth proper scheme V of finite type over R on which Frobenius acts properly. Let w
be a reqular differential on Vi of the second kind. Then for P,Q € Vi (C,) the integral

fgw depends only on Vi and not on its completion.

Let now G be a connected commutative group scheme over R, which is an extension
of an abelian scheme A by a vector group B:

0—-—B—-G—A—0

Let O be the origin on G.

Theorem 2.15. Let w be an invariant differential on G, and let

v | ‘.

o

where Q € Gk (Cyp). (this is well defined by a previous corollary). Then:
1. Xy is a homomorphism from Gk (C,) into C,
2. Ao 18 locally analytic, and d\, = w.

Proof. Let T,: G — G denote translation by a € Gg(Cp). Then T)w = w, and so by
the change of variables formula:

P P P+Q P+Q Q
/ w:/ Téw:/ w:/ w—/ w
O O Q O O

which implies A\(P) = AM(P + Q) — A(Q).
The second statement was known already from the previous results. O

In particular, we get the addition theorem:

Theorem 2.16. Let C be a complete curve over K with a smooth proper model over R,
on which Frobenius acts properly. Consider D1, Do, D3 three divisors on C, such that
Dy + Dy = D3+ n[P]. Then, for any differential w of the first kind on C, we have:

n b n.oorQi n. R
w + / w = / w

Proof. Just take G in the previous theorem to be the Néron model of the Jacobian of
C. O
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