Understanding Coleman's Theory of Integration

Marc Masdeu-Sabaté

April 28, 2008

1 Results in p -adic analytic geometry

1.1 Affinoids

Consider \mathbb{C}_p , and fix an absolute value $|\cdot|$ on it. Fix $K \subseteq \mathbb{C}_p$ a complete subfield. Write R for the maximal order of K, and $\mathfrak p$ for the maximal ideal of R. Let $\mathbb F = R/\mathfrak p$ be the residue field of K ($\mathbb F$ is an algebraic extension of $\mathbb F_p$).

Given an affinoid X over K, denote by $A(X)$ the algebra of rigid analytic functions on X over K. We have that $Sp A(X) = X$.

For $f \in A(X)$, and $x \in X$, write $|f(x)|$ for the absolute value of the image of f in $A(X)/x$. Set also:

$$
||f||_X \stackrel{\text{def}}{=} \sup_{x \in X} \{ |f(x)| \}
$$

and define $A_0(X) \stackrel{\text{def}}{=} \{ f \in A(X) \mid ||f||_X \leq 1 \}.$

We have that $||f||_X$ is a seminorm (called the spectral norm) on $A(X)$, and that $A_0(X)$ is a sub-R-algebra of $A(X)$. The spectral norm is a norm if X is reduced, and then $A(X)$ is complete with respect to this norm.

Set also $\tilde{A}(X) \stackrel{\text{def}}{=} A_0(X)/\mathfrak{p}A_0(X)$, and $\tilde{X} \stackrel{\text{def}}{=} \text{Spec } \tilde{A}(X)$. Then \tilde{X} is a scheme of finite type over $\mathbb F$ if $A_0(X)$ is of topological finite type over R (true if $K = \mathbb C_p$, or K a DVR). In general, \tilde{X}^{red} is of finite type.

Definition 1.1. We say that X has **good reduction** if $A_0(X)$ is of topological finite type over R and X is smooth over \mathbb{F} .

Lemma 1.2. Suppose that $r: Y \to X$ is a morphism of affinoids over K, such that the image of Y is a dense open subset of X. Let $f \in A(X)$. Then $||f||_X = ||f \circ r||_Y$.

Definition 1.3. A Tate R -algebra is an R -algebra of the form

$$
R\langle x_1,\cdots,x_n\rangle/I
$$

for some finitely-generated ideal I of $R\langle x_1, \dots, x_n \rangle$, the ring of restricted power series in x_1, \dots, x_n (which is actually the completion of $R[x_1, \dots, x_n]$ over R).

Definition 1.4. The **annihilator** in A of $r \in R$ is:

$$
Ann_A(r) \stackrel{\text{def}}{=} \{a \in A \mid ra = 0\}
$$

Definition 1.5. Given a homomorphism $A \rightarrow B$ of Tate R-algebras, we say that B is R -torsion free over A if:

$$
Ann_B(r) = Ann_A(r) \cdot B
$$

for all $r \in R$.

Let any Tate R-algebra A, we set $\tilde{A} \stackrel{\text{def}}{=} A/\mathfrak{p}A$.

Definition 1.6. We say that B is formally smooth over A if B is smooth over \overrightarrow{A} and B is R -torsion free over A .

The proof of the following statement is ommited, as it is not needed in the sequel.

Proposition 1.7. The following are equivalent:

- 1. B is formally smooth over A,
- 2. \tilde{B} is smooth over \tilde{A} and B is flat over A ,
- 3. B/rB is smooth over A/rA for all $r \in R$.

The following theorem is what is needed to prove Theorem 1.12.

Theorem 1.8. Suppose that there is a commutative diagram of Tate R-algebras

such that $\tilde{C} \rightarrow \tilde{D}$ is surjective and B is formally smooth over A. Suppose that there is a homomorphism $s: \tilde{B} \to \tilde{C}$ making the reduction of the diagram commutative. Then there is a lifting \overline{s} : $B \to C$ of s which makes the original diagram commutative.

Proof. We will proceed by proving several lemmas that will patch together to get our result.

Lemma 1.9. Suppose that $A \rightarrow B$ is a surjective homomorphism of Tate R-algebras. Then its kernel is finitely generated.

Proof. First, note that WLOG can assume that $A = R_m$ (in general, A is a quotient of it, so there is no harm in replacing it). The hypothesis says that B is a quotient of R_n (for some $n \geq 0$), with finitely generated kernel J:

$$
0 \to J \to R_n \to B \to 0
$$

Let now $h: R_n \to R_m$ be a homomorphism such that te following commutes:

Take now x'_1, \dots, x'_m lifts (in R_n) of the images of $x_1, \dots, x_m \in R_n$ in B. Then the kernel of $R_m \to B$ is generated by $h(J)$, together with the set of $\{x_i - h(x'_i) \mid 1 \leq i \leq m\}$, so it's finitely generated. П

As B is topologically of finite type over R , a fortiori it is so over A . Hence there is a surjection $A_n \to B$, for some n. By the previous lemma, there exist $G_1 \cdots, G_m \in A_n$, such that

$$
B \simeq A_n / \langle G_1, \cdots, G_m \rangle
$$
 as an A-algebra.

Let $G \stackrel{\text{def}}{=} (G_1, \dots, G_m) \in A_m^m$, and let g denote the composition $A_n \to B \to D$, and \tilde{V} the composition $\tilde{A}_n \to \tilde{B} \stackrel{s}{\to} \tilde{C}$. The fact that $\tilde{C} \twoheadrightarrow \tilde{D}$ is surjective implies that $C \twoheadrightarrow D$, and so $D \simeq C/I$, for some ideal I.

Lemma 1.10. There exists a $V: A_n \to C$ which lifts \tilde{V} , and such that $V \equiv g \pmod{I}$.

Proof. As $C \rightarrow D$, there exists a hom. $g' : A_n \rightarrow C$ such that

$$
g' \equiv g \pmod{I}
$$

(just take, if $X = (x_1, \dots, x_n)$, $g'(X)$ to be any lift of $g(X)$, and extend to all A_n in the natural way). In the same way, \tilde{V} can be lifted to $V' : A_n \to C$. Then one has:

$$
V'(X) - g'(X) \in (\mathfrak{p} + I)^n \subseteq C^n
$$

Now let $a \in \mathfrak{p}^n \subseteq C^n$, and $b \in I^n \subseteq C^n$ be such that:

$$
V'(X) - g'(X) = a - b
$$

Set then $d \stackrel{\text{def}}{=} V'(X) - a = g'(X) - b$, and clearly $\tilde{d} = \tilde{V}$, and $d \equiv g \mod I$.

Hence we may take V to be the unique homomorphism $A_n \to C$ such that $V(X) =$ d. П

The homomorphism V is a first approximation to the lifting we are after.

We need to construct a sequence of approximations that tends to our desired lift. As our algebra is complete, we will be then get the lift by taking the limit.

Lemma 1.11. There exists an $n \times m$ matrix N, and $m \times m$ matrices M and Q over A_n such that:

$$
G\left(X + NG\right) = G^t MG + QG
$$

where the coordinates of Q are in $\mathfrak{p}A_n$.

Let now $V_0 = V$, and define recursively V_k by setting

$$
V_{k+1}(X) \stackrel{\text{def}}{=} V_k(X) + N\left(V_k(X)\right)G\left(V_k(X)\right)
$$

As $V_{k+1}(X) \in \mathbb{C}^m$, it determines a unique homomorphism $V_{k+1}: A_n \to \mathbb{C}$. From the previous lemma, $V_{k+1} - V_k \to 0$. As Tate algebras are complete, the limit of these will do. \Box

1.2 Lifting Morphisms

If $h: X \to Y$ is a morphism of affinoids over K, denote by $\tilde{h}: \tilde{X} \to \tilde{Y}$ its reduction. Given h , we say that h lifts h.

Theorem 1.12. Suppose $K = \mathbb{C}_p$ or K a DVR. Suppose that there is a commutative diagram of **reduced** affinoids over K :

such that $W \to Y$ is a closed immersion, and \tilde{X} is smooth over \tilde{Z} . Suppose that h: $\tilde{Y} \rightarrow \tilde{X}$ is a morphism commuting with the reduction of the given diagram. Then there is a lifting $\overline{h}: Y \to X$ of h commuting with the diagram:

Suppose now that S is a scheme over a field F, and $\sigma: F \to F$ is an automorphism of F. Let S^{σ} be the scheme over F obtained by base change via σ . We have a commutative diagram:

$$
S^{\sigma} \xrightarrow{\sigma} S
$$

\n
$$
\downarrow \qquad \qquad S
$$

\n
$$
\text{Spec}(F) \xrightarrow{\sigma} \text{Spec}(F)
$$

Given a form (a function or a differential) f on S, one denotes by f^{σ} its pullback via σ to S^{σ} . The resulting map $f \mapsto f^{\sigma}$ is σ -linear (but not linear, in general).

Let now X be an affinoid over $F = K$, and let $S = Spec(A(X))$ (over $Spec(K)$), and let σ be a continous automorphism of K. Let then X^{σ} be the affinoid characterized by $Spec(A(X^{\sigma})) = S^{\sigma}$, as schemes over K.

Next, consider the case $F = \mathbb{F}$, and let σ be the Frobenius automorphism of \mathbb{F} . For each $n \in \mathbb{Z}^+$, there is a canonical morphism $\phi \colon S \to S^{\sigma^n}$, called the Frobenius morphism, and characterized by the equation $\phi^* f^{\sigma^n} = f^{p^n}$ (for $f \in \mathcal{O}_S(U)$). If S is of finite type over \mathbb{F} , then there exists some positive integer n such that $S \simeq S^{\sigma^n}$. Fix an F-isomorphism $\rho: S^{\sigma^n} \to S$, and then the morphism $\rho \circ \phi: S \to S$ is called a **Frobenius** endomorphism of S.

Now suppose that X is an affinoid over K, and $\overline{\sigma}$ is a continuous automorphism of K, which restricts to the Frobenius automorphism σ on \mathbb{F} . As X is of finite type over $\mathbb F$, then X has Frobenius endomorphisms, and an endomorphism of X lifting one of those is called a **Frobenius endomorphism** of X . Such an endomorphism is actually K-linear (and not just σ -linear). We have the following corollary:

Corollary 1.13. Suppose that X is a reduced affinoid over K with good reduction. Then:

- 1. X possesses a Frobenius endomorphism.
- 2. There is a morphism from X to $X^{\overline{\sigma}}$ lifting the robenius morphism $\tilde{X} \to \tilde{X}^{\sigma}$.
- 3. $X \simeq X^{\overline{\sigma}^n}$ for some positive integer n.

Let X be as in the previous corollary, and let ϕ be a Frobenius endomorphism of X. In each residue class U of X there is a unique point ε_U such that

$$
\phi^m(\varepsilon_U)=\varepsilon_U
$$

for some positive integer m. It can be computed/defined as: think of U as a point in $\tilde{X}(\mathbb{F}^a)$ (over the algebraic closure of F). Then there is some m such that $\tilde{\phi}^m(U) = U$, because U is defined over some finite extension of \mathbb{F}_p . Then

$$
\varepsilon_U = \lim_{n \to \infty} \phi^{mn}(x)
$$

for any $x \in U$. This point ε_U is called a **Teichmüller** point of ϕ .

1.3 Differentials

Suppose that X is an affinoid over K. Let $\Omega^1_{X/K}$ be the module of rigid differentials on X, and $d: A(X) \to \Omega^1_{X/K}$ the natural derivation. We define $\Omega^i_{X/K}$ as the *i*-th exterior power of $\Omega^1_{X/K}$.

If W is any rigid space over K , we can make a natural complex of rigid sheaves $(\Omega^{\bullet}_{W/K}, d)$ on W. A closed differential will then be an element $\omega \in H^0(W, \Omega^1_{W/K})$ such that $d\omega = 0$.

Proposition 1.14. Let X be a connected reduced affinoid with good reduction over K . Let $D = \text{red}^{-1} \tilde{\Delta}$, where $\tilde{\Delta}$ is the diagonal in $\tilde{X} \times \tilde{X}$. Then D has a natural structure of rigid analytic space, and we let $A(D)$ be the ring of rigid analytic functions on D . Consider $p_1, p_2 \colon D \to X$ the two natural projections. Suppose that ω is closed on X. Then:

$$
p_1^*\omega-p_2^*\omega\in dA(D)
$$

Proof. Let C be a cover of \tilde{X} by affine opens such that $Y \in \mathcal{C}$ may be expressed as a finite unramified covering of an affine open subset of $\mathbb{A}^d_{\mathbb{F}}$, where d is the dimension of X. For each $Y \in \mathcal{C}$, the inverse image $\overline{Y} = \text{red}^{-1} Y$ has a natural structure of an affinoid over K such that $\tilde{\overline{Y}} = Y$.

Fix $Y \in \mathcal{C}$. There exist functions $\tilde{x}_1, \dots, \tilde{x}_n$ on Y, which are local parameters at each point of Y (by how we are taking our Y). Let x_1, \dots, x_n be liftings to \overline{Y} . Then x_1, \dots, x_n are also local parameters everywhere on \overline{Y} . So we may write:

$$
\omega = f_1 dx_1 + \dots + f_n dx_n
$$

for some $f_i \in A(Y)$.

The idea of the proof can be seen in the case $n = 1$. In that case, write $\omega = f(x)dx$, and then $p_1^*\omega - p_2^*\omega = f(x)dx - f(y)dy$. We want to "integrate" this. So let $h \stackrel{\text{def}}{=} x - y$, and rewrite the previous expression as $f(y+h)d(y+h)-f(y)dy$. Now expand f around y, noting that h is divisible by p (because $h = x - y$ vanishes on the diagonal). Write then:

$$
p_1^*\omega - p_2^*\omega = \sum_{i=1}^{\infty} \frac{f^{(i)}(y)}{n!} h^n dy + \sum_{i=0}^{\infty} \frac{f^{(i)}(y)}{n!} h^n dh
$$

Now, just check that if one defines $F \stackrel{\text{def}}{=} \sum_{i=1}^{\infty}$ $f^{(i-1)}$ $\frac{n^{(n-1)}}{n!}h^i$, then dF is the desired expression.

Following we write the general case, wich is just the same, but messier. So let now $x \stackrel{\text{def}}{=} (x_1, \dots, x_n)$, and let $C \stackrel{\text{def}}{=} p_1^* x - p_2^* x$. Clearly $C \in T^n$, where T is the ideal of $A_0(X) \otimes A_0(X) \subseteq A(D)$ consisting of functions which vanish on Δ (the diagonal on $X \times X$). Set then

$$
F_Y \stackrel{\text{def}}{=} \sum_I \frac{1}{I!} (p_2^* F_I) C^I
$$

where $I = (i_1, \dots, i_n) \in \mathbb{Z}^n$, $I > 0, I \neq 0, I! = i_1! \dots i_n!$, and

$$
F_I \stackrel{\text{def}}{=} \frac{d^{i_1}}{dx_1^{x_1}} \cdots \frac{d^{i_k-1}}{dx_k^{i_k-1}} f_k
$$

where k is such that $i_k > 0$ and $i_j = 0$ for $j > k$. It is a well-known fact that, if $f \in A(Y)$ and $J \in \mathbb{Z}^n$, $J \geq 0$, then:

$$
\left| \frac{1}{J!} \frac{d^J}{dx^J} f \right|_{\overline{Y}} \le |f|_{\overline{Y}}
$$

Hence:

$$
\left|\frac{F_I}{I!}\right|_{\overline{Y}} \le \frac{\max_j |f_j|_{\overline{Y}}}{|i_k|}
$$

and so $F_Y \in A(D_{\overline{Y}})$.

Now we can compute dF_Y and prove that, on \overline{Y} ,

 $dF_Y = p_1^*\omega - p_2^*\omega$

Next, we check that the F_Y glue together into a function $F \in B(D)$ as required. \Box

Corollary 1.15. Suppose that $f_1, f_2 \colon X' \to X$ are morphisms of reduced connected affinoids with good reduction, such that $\tilde{f}_1 = \tilde{f}_2$. Let ω be a closed 1-form on X. Then:

- 1. $f_1^*\omega f_2^*\omega \in dA(X')$
- 2. Suppose that λ is a function on $X(\mathbb{C}_p)$, analytic on each residue class of X, and such that $d\lambda = \omega$. Then:

$$
f_1^*\lambda - f_2^*\lambda \in A(X')
$$

Let now V be a proper scheme of finite type over R, and let \tilde{V} be its special fiber. Let $W \subset \tilde{V}$ be an affine open set. Consider:

$$
\overline{W} \stackrel{\text{def}}{=} \{ x \in V_K \mid x \text{ is closed and } \tilde{x} \in W \}
$$

Then \overline{W} has a natural structure of affinoid over K. If V is smooth, then \overline{W} has good reduction, and $\tilde{\overline{W}} = W$. The set \overline{W} is called a **Zariski affinoid open set** of V.

Definition 1.16. Suppose that V_K is smooth. A differential of the second kind on V_K is an element $\omega \in \Omega^1_{V_K/K}(U)$, for some dense open U of V_K , such that:

1. $d\omega = 0$.

.

2. there exists a Zariski open covering C of V_K such that for each $W \in \mathcal{C}$,

$$
Res^U_{U\cap W}(W)\in Res^W_{U\cap W}(\Omega^1_{V_K/K}(W))+d\mathcal{O}_{V_K}(U\cap W)
$$

Definition 1.17. Supppose that V is smooth and proper over R . We say that **Frobe**nius acts properly on V if for each Frobenius endomorphism ϕ of \tilde{V} there is a polynomial $Z(T) \in \mathbb{C}_p[T]$ such that:

- 1. No root of $Z(T)$ in \mathbb{C}_p is a root of unity.
- 2. For each Zariski affinoid open W of V such that $\phi \tilde{W} = \tilde{W}$, there is a lifting $\overline{\phi}$: $W \to W$ of the restriction of ϕ to \tilde{W} such that

$$
Z(\overline{\phi^*})\omega \in dA(W)
$$

for each algebraic differential of the second kind ω on V_K regular on W.

Remark. If (ii) holds for one lifting $\overline{\phi}$, then it holds for all, thanks to the previous corollary.

Theorem 1.18. Suppose that K is a DVR and that V is a smoot projective scheme over R. Then any Frobenius endomorphism acts properly on V .

2 p-adic Abelian Integrals

Here the integrals are constructed, following the Dwork principle.

Theorem 2.1. Let X be a smooth connected affinoid over K with good reduction X. Let ω be a closed one-form on X. Let ϕ be a Frobenius endomorphism of X, and suppose that $P(T)$ is a polynomial over \mathbb{C}_p such that

$$
P(\phi^*)\omega \in dA(X)
$$

and such that no root of $P(T)$ is a root of unity. Then there exists a locally analytic function f_{ω} on $X(\mathbb{C}_p)$ unique up to an additive constant such that:

- 1. $df_{\omega} = \omega$
- 2. $P(\phi^*) f_\omega \in A(X)$.

Proof. We copy the proof in the original paper, but for the special calse of $P(T) = T - a$, with $a \in \mathbb{C}_p$ (the degree of $P(T)$ is $n = 1$). This is (hopefully) enough to see the ideas behind it.

So assume that $\phi^*\omega - a\omega \in dA(X)$.

We first prove uniqueness: suppose that one has two solutions to the problem. Then their difference would be a locally analytic function g satisfying $dq = 0$ and $\phi^*g - ag \in A(X)$. We will see that g is constant. As $dg = 0$, g must be locally constant, and thus $\phi^*g - ag$ is locally constant as well. As X is connected, then $\phi^*g - ag = C$, for some constant $C \in \mathbb{C}_p$. We will prove that $g(x) = C/(1-a)$ for all $x \in X$.

Let U be a residue class of X, and let $\varepsilon = \varepsilon_U$ be a Teichmüller point of ϕ in U, of period m (so that $\phi^m(\varepsilon) = \varepsilon$). Then one can check (by induction, for example) that:

$$
(\phi^*)^k g - a^k g = C \frac{1 - a^k}{1 - a} \tag{1}
$$

Take now $k = m$ and evaluate at ε , to get:

$$
(1 - am)g(\varepsilon) = C\frac{1 - am}{1 - a}
$$

As $1 - a^m$ is invertible, this implies that $g(\varepsilon) = C/(1 - a)$ as we want.

Now let $x \in U$ be arbitrary. As g is locally constant and $\phi^{mk}(x) \to \varepsilon$, there is some integer k such that:

$$
g(\phi^{mk}(x)) = g(\varepsilon)
$$

Again by Equation 1, we get:

$$
a^{mk}g(x) = a^{mk}C/(1-a)
$$

So $g(x) - C/(1 - a)$ is in the kernel of a^{mk} , thought as acting on \mathbb{C}_p . But here is the trick to cancel this: for each integer r, there is some element $y_r \in U$ such that $\phi^{mr}(y_r) = x$. Using Equation 1 again, we deduce that:

$$
g(x) - C/(1 - a) = a^{r} (g(y_r) - C/(1 - a))
$$

so $g(x) - C/(1 - a)$ is both in the kernel of a^{mk} and in the image of a^{mr} for all $r \ge 0$, and only 0 is there:

$$
\ker(a^{mk}) \cap (\cap_{r \ge 0} a^{mr}(\mathbb{C}_p)) = \{0\}
$$

so g is constant.

Next, we prove existence: for this, write first $\phi^*\omega = a\omega + dh$ for some $h \in A(X)$. We can surely integrate ω locally, but we need to do it in a coherent way so that the second condition in the theorem is satisfied. Once again, the Teichmüller points will save the day. If U is a residue class of X and $\varepsilon \in U$ is the corresponding Teichmüller point for ϕ , write m for the minimal positive integer such that $\phi^m(\varepsilon) = \varepsilon$. Then define f_U to be the local integral to ω , normalized such that:

$$
f_U(\varepsilon) = \frac{1}{1 - a^m} \sum_{i=0}^{m-1} a^i h\left(\phi^{m - (i+1)}(\varepsilon)\right)
$$

and define f by $f|_U \stackrel{\text{def}}{=} f_U$. We can then compute $(\phi^* f)(\varepsilon)$ and show that it equals $af(\varepsilon) + h(\varepsilon)$ as we wanted. \Box

Corollary 2.2. The function f_{ω} is analytic on each residue class of X.

Corollary 2.3. The function f_{ω} depends modulo constants only on ω and not on the choice of P.

Corollary 2.4. Let ω' be a closed one-form on X such that $P(\phi^*)\omega' \in dA(X)$. Then:

- 1. $f_{\omega+\omega'}=f_{\omega}+f_{\omega'}$ (modulo constants in \mathbb{C}_p),
- 2. if ω is exact, then $f_{\omega} \in A(X)$.

Corollary 2.5. The function f_{ω} is independent (up to constants) of the choice of ϕ .

Let now σ be a continuous automorphism of \mathbb{C}_p . Let ω^{σ} denote the pullback of ω to X^{σ} . Let f^{σ}_{ω} be the function on $X^{\sigma}(\mathbb{C}_p)$ defined by:

$$
f^{\sigma}_{\omega}(x) \stackrel{\text{def}}{=} \sigma f_{\omega}(\sigma^{-1}(x))
$$

Corollary 2.6. The differential ω^{σ} satisfies the hypotheses of the theorem over X^{σ} , and $f^{\sigma}_{\omega} = f_{\omega^{\sigma}}$ up to constants. In particular, if σ fixes K, then $f^{\sigma}_{\omega} = f_{\omega}$ up to constants.

Proposition 2.7. Suppose that $F: X' \to X$ is a morphism of smooth affinoids with good reduction over K. Let $\omega' = F^* \omega$. Then there exists a Frobenius endomorphism ϕ' of X' and a polynomial $P'(T)$ in $\mathbb{C}_p[T]$ such that

$$
P'(\phi'^*)\omega' \in dA(X')
$$

and such that no root of $P'(T)$ is a root of unity. Moreover, if $f_{\omega'}$ is a solution of the Theorem with ω' in place of ω , then $f_{\omega'} = F^* f_{\omega}$ up to constants.

Proof. The key observation to be made is that there exists Frobenius endomorphisms $\phi: X \to X$ and $\phi': X' \to X'$ compatible with F on the reductions. That is, such that the following commutes:

Then there is (by what we have seen so far) a polynomial $P(T)$, without roots of unity, such that:

$$
P(\phi^*)\omega \in dA(X)
$$

From this, we deduce that:

$$
P(\phi;^*)\omega' \in dA(X')
$$

Also, we deduce (because $\phi \circ F$ and $F \circ \phi'$ to the same morphism) that:

$$
F^*(\phi^*)^k f_\omega - (\phi'^*)^k F^* f_\omega \in A(X') \quad \text{for all } k > 0
$$

and hence:

$$
P(\phi'^{*})F^{*} - F^{*}P(\phi^{*}) \in A(X')
$$

Now apply the uniqueness of $f_{\omega'}$ to conclude the result.

Next, we will describe how to integrate differentials ω of the second kind on V_K , where V is a smooth, proper, connected scheme of finite type over R .

Let $\mathcal D$ be the collection of Zariski affinoid opens X in V_K such that, on X,

$$
\omega - dg_X \in \Omega^1_K(X)
$$

for some g_X in $K(V_K)$ (the function field of V_K). Note that $\mathcal D$ is a covering, because ω is of the second kind. Let $(\omega)_{\infty}$ be the support of the polar divisor of ω on V_K , and write $V'_K \stackrel{\text{def}}{=} V_K - (\omega)_{\infty}$.

Fix a Frobenius endomorphism ϕ of \tilde{V} . Write \mathcal{D}' for the subcollection of $\mathcal D$ consisting of those X such that $\phi \tilde{X} = \tilde{X}$ (note that \mathcal{D}' is also a covering of V_K (why??). Let $Z(T)$ be a polynomial associated to V and ϕ (as in Definition 1.17).

Fix now $X \in \mathcal{D}'$. Write for short $g = g_X$, and set $\nu = \nu_X = \omega - dg$. Let $\overline{\phi} = \overline{\phi_X}$ be a lifting of the restriction of ϕ to X. Hence:

$$
Z(\overline{\phi}^*)\nu \in dA(X)
$$

By Theorem 2.1, there exists $f = f_X$, locally analytic on X and unique up to an additive constant such that $df = \nu$, and $Z(\overline{\phi}^*)f \in A(X)$.

Now, set $h_X \stackrel{\text{def}}{=} f + g$, as a function on $X - (\omega)_{\infty}$.

Claim. The function h_X is independent of the choices of f and g, up to an additive constant.

Proof. Suppose that $g' \in K(V_K)$ is such that $\omega - dg' = \nu' \in \Omega_K^1(X)$. It follows then that $\nu' = \nu + d(g - g')$, and so in particular $g - g' \in A(X)$. If now f' is a solution of $df' = \nu'$, and $Z(\phi^*)f' \in A(X)$, then $f' = f + (g - g')$, from a previous corollary (up to constants). This finishes the proof. \Box

Finally, we need to patch together the local integrals h_X :

Lemma 2.8. Let $X, X' \in \mathcal{D}'$. Then $h_X - h_{X'}$ is constant on $X \cap X'$.

Proof. Note first that $X \cap X' \in \mathcal{D}$, so it suffices to prove it in the case $X' \subseteq X$. In this case, we may take $g_X = g_{X'}$. Then $\nu_{X'}$ is the restriction of ν_X to X' , and if we restrict f_X to X' we get a solution for our problem, hence $h_{X'} = h_X|$, as we wanted. \Box

 \Box

This makes the map $(X, X') \mapsto h_X - h_{X'}$ into a 1-cocycle wrt the covering \mathcal{D}' and the constant sheaf \mathbb{C}_p . It is actually a coboundary, since any finite subcollection of \mathcal{D}' has non-empty intersection.

We have proved:

Theorem 2.9. There exists a function f_ω on $V'_K(\mathbb{C}_p)$, unique up to an additive constant, such that:

- 1. $df_{\omega} = \omega$,
- 2. For each $X \in \mathcal{D}'$, there exists a $g \in K(V_K)$ such that $f_{\omega} g$ extends to ta locally analytic function on X, and

$$
Z(\overline{\phi_X}^*)(f_\omega - g) \in A(X)
$$

Definition 2.10. Given ω and f_{ω} as above, and given two points $P, Q \in V_K'(\mathbb{C}_p)$, the integral of ω from P to Q is defined as:

$$
\int_P^Q \omega \stackrel{\text{def}}{=} f_\omega(Q) - f_\omega(P)
$$

Proposition 2.11. Let ω and ω' be two differentials of the second kind on V_K . Then:

• If $P, Q \notin (\omega)_{\infty} \cup (\omega')_{\infty}$, we have:

$$
\int_P^Q (\omega + \omega') = \int_P^Q \omega + \int_P^Q \omega'
$$

• If $\omega = dg$ for a meromorphic function g on V_K , then:

$$
\int_P^Q \omega = g(Q) - g(P)
$$

• Let $q: W \to V$ be a morphism of smooth proper schemes over R, on which Frobenius acts properly. Then, if $g(Q), g(P) \notin (\omega)_{\infty}$, we have:

$$
\int_P^Q g^*\omega = \int_{g(P)}^{g(Q)} \omega
$$

• If $P, Q \notin (\omega)_{\infty}$, then:

$$
\left(\int_P^Q \omega\right)^\sigma = \int_{\sigma(P)}^{\sigma(Q)} \omega^\sigma
$$

where the second integral is taken on V^{σ}

The following theorem, whose proof ommit for now, is a strenghtening of the change of variable formula from the previous proposition:

Theorem 2.12 (Change of Variablles). Suppose that V and W are smooth proper schemes of finite type over a ring R on which Frobenius acts properly. Suppose $f: V_K \to$ W_K is a rational map. Let ω be a differential of the second kind on W_k . Then:

$$
\int_P^Q f^* \omega = \int_{f(P)}^{f(Q)} \omega
$$

for any $P, Q \in V(\mathbb{C}_p)$ in the domain of regularity of f such that $f(P), f(Q) \notin (\omega)_{\infty}$.

Corollary 2.13. The integral $\int_{P}^{Q} \omega$ doesn't depend on the model V for V_K .

Corollary 2.14. Suppose that V_K is a variety over K which may be completed to a smooth proper scheme V of finite type over R on which Frobenius acts properly. Let ω be a regular differential on V_K of the second kind. Then for $P, Q \in V_K(\mathbb{C}_p)$ the integral $\int_P^Q \omega$ depends only on V_K and not on its completion.

Let now G be a connected commutative group scheme over R , which is an extension of an abelian scheme A by a vector group B :

$$
0\to B\to G\to A\to 0
$$

Let $\mathcal O$ be the origin on G .

Theorem 2.15. Let ω be an invariant differential on G, and let

$$
\lambda_\omega(Q) \stackrel{def}{=} \int_{\mathcal{O}}^Q \omega
$$

where $Q \in G_K(\mathbb{C}_p)$. (this is well defined by a previous corollary). Then:

- 1. λ_{ω} is a homomorphism from $G_K(\mathbb{C}_p)$ into \mathbb{C}_p
- 2. λ_{ω} is locally analytic, and $d\lambda_{\omega} = \omega$.

Proof. Let $T_a: G \to G$ denote translation by $a \in G_K(\mathbb{C}_p)$. Then $T_a^*\omega = \omega$, and so by the change of variables formula:

$$
\int_{\mathcal{O}}^{P} \omega = \int_{\mathcal{O}}^{P} T_{Q}^{*} \omega = \int_{Q}^{P+Q} \omega = \int_{\mathcal{O}}^{P+Q} \omega - \int_{\mathcal{O}}^{Q} \omega
$$

 \Box

which implies $\lambda(P) = \lambda(P + Q) - \lambda(Q)$.

The second statement was known already from the previous results.

In particular, we get the addition theorem:

Theorem 2.16. Let C be a complete curve over K with a smooth proper model over R , on which Frobenius acts properly. Consider D_1, D_2, D_3 three divisors on C, such that $D_1 + D_2 \equiv D_3 + n[P]$. Then, for any differential ω of the first kind on C, we have:

$$
\sum_{i=1}^{n} \int_{P}^{P_i} \omega + \sum_{i=1}^{n} \int_{P}^{Q_i} \omega = \sum_{i=1}^{n} \int_{P}^{R_i} \omega
$$

Proof. Just take G in the previous theorem to be the Neron model of the Jacobian of C . \Box