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1 Results in p-adic analytic geometry

1.1 Affinoids

Consider Cp, and fix an absolute value | · | on it. Fix K ⊆ Cp a complete subfield. Write
R for the maximal order of K, and p for the maximal ideal of R. Let F = R/p be the
residue field of K (F is an algebraic extension of Fp).

Given an affinoid X over K, denote by A(X) the algebra of rigid analytic functions
on X over K. We have that Sp A(X) = X.

For f ∈ A(X), and x ∈ X, write |f(x)| for the absolute value of the image of f in
A(X)/x. Set also:

‖f‖X
def= sup

x∈X
{|f(x)|}

and define A0(X) def= {f ∈ A(X) | ‖f‖X ≤ 1}.
We have that ‖f‖X is a seminorm (called the spectral norm) on A(X), and that

A0(X) is a sub-R-algebra of A(X). The spectral norm is a norm if X is reduced, and
then A(X) is complete with respect to this norm.

Set also Ã(X) def= A0(X)/pA0(X), and X̃
def= Spec Ã(X). Then X̃ is a scheme of

finite type over F if A0(X) is of topological finite type over R (true if K = Cp, or K a
DVR). In general, X̃red is of finite type.

Definition 1.1. We say that X has good reduction if A0(X) is of topological finite
type over R and X̃ is smooth over F.

Lemma 1.2. Suppose that r : Y → X is a morphism of affinoids over K, such that the
image of Ỹ is a dense open subset of X̃. Let f ∈ A(X). Then ‖f‖X = ‖f ◦ r‖Y .

Definition 1.3. A Tate R-algebra is an R-algebra of the form

R〈x1, · · · , xn〉/I

for some finitely-generated ideal I of R〈x1, · · · , xn〉, the ring of restricted power series
in x1, · · · , xn (which is actually the completion of R[x1, · · · , xn] over R).

Definition 1.4. The annihilator in A of r ∈ R is:

AnnA(r) def= {a ∈ A | ra = 0}

Definition 1.5. Given a homomorphism A → B of Tate R-algebras, we say that B is
R-torsion free over A if:

AnnB(r) = AnnA(r) ·B

for all r ∈ R.
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Let any Tate R-algebra A, we set Ã
def= A/pA.

Definition 1.6. We say that B is formally smooth over A if B̃ is smooth over Ã
and B is R-torsion free over A.

The proof of the following statement is ommited, as it is not needed in the sequel.

Proposition 1.7. The following are equivalent:

1. B is formally smooth over A,

2. B̃ is smooth over Ã and B is flat over A,

3. B/rB is smooth over A/rA for all r ∈ R.

The following theorem is what is needed to prove Theorem 1.12.

Theorem 1.8. Suppose that there is a commutative diagram of Tate R-algebras

D Boo

~~~
~

~
~

C

OO

A

OO

oo

such that C̃ → D̃ is surjective and B is formally smooth over A. Suppose that there is
a homomorphism s : B̃ → C̃ making the reduction of the diagram commutative. Then
there is a lifting s : B → C of s which makes the original diagram commutative.

Proof. We will proceed by proving several lemmas that will patch together to get our
result.

Lemma 1.9. Suppose that A → B is a surjective homomorphism of Tate R-algebras.
Then its kernel is finitely generated.

Proof. First, note that WLOG can assume that A = Rm (in general, A is a quotient of
it, so there is no harm in replacing it). The hypothesis says that B is a quotient of Rn

(for some n ≥ 0), with finitely generated kernel J :

0 → J → Rn → B → 0

Let now h : Rn → Rm be a homomorphism such that te following commutes:

Rn

h
}}{{

{{
{{

{{

��

Rm
// B

Take now x′1, · · ·x′m lifts (in Rn) of the images of x1, · · ·xm ∈ Rn in B. Then the kernel
of Rm → B is generated by h(J), together with the set of {xi − h(x′i) | 1 ≤ i ≤ m}, so
it’s finitely generated.

As B is topologically of finite type over R, a fortiori it is so over A. Hence there is a
surjection An � B, for some n. By the previous lemma, there exist G1 · · · , Gm ∈ An,
such that

B ' An/〈G1, · · · , Gm〉 as an A-algebra.

Let G
def= (G1, · · · , Gm) ∈ Am

n , and let g denote the composition An → B → D, and Ṽ
the composition Ãn → B̃

s→ C̃. The fact that C̃ � D̃ is surjective implies that C � D,
and so D ' C/I, for some ideal I.
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Lemma 1.10. There exists a V : An → C which lifts Ṽ , and such that V ≡ g (mod I).

An

g
++

//

��

B

��

// D = C/I

��

Ãn

Ṽ

66
// B̃ // D̃

Proof. As C � D, there exists a hom. g′ : An → C such that

g′ ≡ g (mod I)

(just take, if X = (x1, · · · , xn), g′(X) to be any lift of g(X), and extend to all An in
the natural way). In the same way, Ṽ can be lifted to V ′ : An → C. Then one has:

V ′(X)− g′(X) ∈ (p + I)n ⊆ Cn

Now let a ∈ pn ⊆ Cn, and b ∈ In ⊆ Cn be such that:

V ′(X)− g′(X) = a− b

Set then d
def= V ′(X)− a = g′(X)− b, and clearly d̃ = Ṽ , and d ≡ g mod I.

Hence we may take V to be the unique homomorphism An → C such that V (X) =
d.

The homomorphism V is a first approximation to the lifting we are after.
We need to construct a sequence of approximations that tends to our desired lift.

As our algebra is complete, we will be then get the lift by taking the limit.

Lemma 1.11. There exists an n ×m matrix N , and m ×m matrices M and Q over
An such that:

G (X + NG) = GtMG + QG

where the coordinates of Q are in pAn.

Let now V0 = V , and define recursively Vk by setting

Vk+1(X) def= Vk(X) + N (Vk(X))G (Vk(X))

As Vk+1(X) ∈ Cm, it determines a unique homomorphism Vk+1 : An → C. From
the previous lemma, Vk+1 − Vk → 0. As Tate algebras are complete, the limit of these
will do.

1.2 Lifting Morphisms

If h : X → Y is a morphism of affinoids over K, denote by h̃ : X̃ → Ỹ its reduction.
Given h̃, we say that h lifts h̃.

Theorem 1.12. Suppose K = Cp or K a DVR. Suppose that there is a commutative
diagram of reduced affinoids over K:

W //
� _

��

X

��

Y // Z
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such that W → Y is a closed immersion, and X̃ is smooth over Z̃. Suppose that
h : Ỹ → X̃ is a morphism commuting with the reduction of the given diagram. Then
there is a lifting h : Y → X of h commuting with the diagram:

W //
� _

��

X

��

Y //

h
>>|

|
|

|
Z

Suppose now that S is a scheme over a field F , and σ : F → F is an automorphism of
F . Let Sσ be the scheme over F obtained by base change via σ. We have a commutative
diagram:

Sσ σ //

��

S

��

Spec(F ) σ // Spec(F )

Given a form (a function or a differential) f on S, one denotes by fσ its pullback
via σ to Sσ. The resulting map f 7→ fσ is σ-linear (but not linear, in general).

Let now X be an affinoid over F = K, and let S = Spec(A(X)) (over Spec(K)), and
let σ be a continous automorphism of K. Let then Xσ be the affinoid characterized by
Spec(A(Xσ)) = Sσ, as schemes over K.

Next, consider the case F = F, and let σ be the Frobenius automorphism of F.
For each n ∈ Z+, there is a canonical morphism φ : S → Sσn

, called the Frobenius
morphism, and characterized by the equation φ∗fσn

= fpn
(for f ∈ OS(U)). If S is of

finite type over F, then there exists some positive integer n such that S ' Sσn
. Fix an

F -isomorphism ρ : Sσn → S, and then the morphism ρ◦φ : S → S is called a Frobenius
endomorphism of S.

Now suppose that X is an affinoid over K, and σ is a continuous automorphism of
K, which restricts to the Frobenius automorphism σ on F. As X̃ is of finite type over
F, then X̃ has Frobenius endomorphisms, and an endomorphism of X lifting one of
those is called a Frobenius endomorphism of X. Such an endomorphism is actually
K-linear (and not just σ-linear). We have the following corollary:

Corollary 1.13. Suppose that X is a reduced affinoid over K with good reduction.
Then:

1. X possesses a Frobenius endomorphism.

2. There is a morphism from X to Xσ lifting the robenius morphism X̃ → X̃σ.

3. X ' Xσn
for some positive integer n.

Let X be as in the previous corollary, and let φ be a Frobenius endomorphism of
X. In each residue class U of X there is a unique point εU such that

φm(εU ) = εU

for some positive integer m. It can be computed/defined as: think of U as a point in
X̃(Fa) (over the algebraic closure of F). Then there is some m such that φ̃m(U) = U ,
because U is defined over some finite extension of Fp. Then

εU = lim
n→∞

φmn(x)

for any x ∈ U . This point εU is called a Teichmüller point of φ.
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1.3 Differentials

Suppose that X is an affinoid over K. Let Ω1
X/K be the module of rigid differentials on

X, and d : A(X) → Ω1
X/K the natural derivation. We define Ωi

X/K as the i-th exterior
power of Ω1

X/K .
If W is any rigid space over K, we can make a natural complex of rigid sheaves

(Ω•W/K , d) on W . A closed differential will then be an element ω ∈ H0(W,Ω1
W/K)

such that dω = 0.

Proposition 1.14. Let X be a connected reduced affinoid with good reduction over K.
Let D = red−1 ∆̃, where ∆̃ is the diagonal in X̃ × X̃. Then D has a natural structure
of rigid analytic space, and we let A(D) be the ring of rigid analytic functions on D.
Consider p1, p2 : D → X the two natural projections. Suppose that ω is closed on X.
Then:

p∗1ω − p∗2ω ∈ dA(D)

Proof. Let C be a cover of X̃ by affine opens such that Y ∈ C may be expressed as a
finite unramified covering of an affine open subset of Ad

F, where d is the dimension of X.
For each Y ∈ C, the inverse image Y = red−1 Y has a natural structure of an affinoid
over K such that Ỹ = Y .

Fix Y ∈ C. There exist functions x̃1, · · · , x̃n on Y , which are local parameters at
each point of Y (by how we are taking our Y ). Let x1, · · · , xn be liftings to Y . Then
x1, · · · , xn are also local parameters everywhere on Y . So we may write:

ω = f1dx1 + · · ·+ fndxn

for some fi ∈ A(Y ).
The idea of the proof can be seen in the case n = 1. In that case, write ω = f(x)dx,

and then p∗1ω− p∗2ω = f(x)dx− f(y)dy. We want to “integrate” this. So let h
def= x− y,

and rewrite the previous expression as f(y+h)d(y+h)−f(y)dy. Now expand f around
y, noting that h is divisible by p (because h = x − y vanishes on the diagonal). Write
then:

p∗1ω − p∗2ω =
∞∑
i=1

f (i)(y)
n!

hndy +
∞∑
i=0

f (i)(y)
n!

hndh

Now, just check that if one defines F
def=

∑∞
i=1

f (i−1)

n! hi, then dF is the desired expression.
Following we write the general case, wich is just the same, but messier. So let now

x
def= (x1, · · · , xn), and let C

def= p∗1x − p∗2x. Clearly C ∈ Tn, where T is the ideal of
A0(X) ⊗ A0(X) ⊆ A(D) consisting of functions which vanish on ∆ (the diagonal on
X ×X). Set then

FY
def=

∑
I

1
I!

(p∗2FI)CI

where I = (i1, · · · , in) ∈ Zn, I > 0, I 6= 0, I! = i1! · · · in!, and

FI
def=

di1

dxx1
1

· · · dik−1

dxik−1
k

fk

where k is such that ik > 0 and ij = 0 for j > k. It is a well-known fact that, if
f ∈ A(Y ) and J ∈ Zn, J ≥ 0, then:∣∣∣∣ 1

J !
dJ

dxJ
f

∣∣∣∣
Y

≤ |f |Y
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Hence: ∣∣∣∣FI

I!

∣∣∣∣
Y

≤
maxj |fj |Y

|ik|

and so FY ∈ A
(
DY

)
.

Now we can compute dFY and prove that, on Y ,

dFY = p∗1ω − p∗2ω

Next, we check that the FY glue together into a function F ∈ B(D) as required.

Corollary 1.15. Suppose that f1, f2 : X ′ → X are morphisms of reduced connected
affinoids with good reduction, such that f̃1 = f̃2. Let ω be a closed 1-form on X. Then:

1. f∗1 ω − f∗2 ω ∈ dA(X ′)

2. Suppose that λ is a function on X(Cp), analytic on each residue class of X, and
such that dλ = ω. Then:

f∗1 λ− f∗2 λ ∈ A(X ′)

Let now V be a proper scheme of finite type over R, and let Ṽ be its special fiber.
Let W ⊆ Ṽ be an affine open set. Consider:

W
def= {x ∈ VK | x is closed and x̃ ∈ W}

Then W has a natural structure of affinoid over K. If V is smooth, then W has good
reduction, and W̃ = W . The set W is called a Zariski affinoid open set of V .

Definition 1.16. Suppose that VK is smooth. A differential of the second kind
on VK is an element ω ∈ Ω1

VK/K(U), for some dense open U of VK , such that:

1. dω = 0.

2. there exists a Zariski open covering C of VK such that for each W ∈ C,

ResU
U∩W (W ) ∈ ResW

U∩W (Ω1
VK/K(W )) + dOVK

(U ∩W )

.

Definition 1.17. Supppose that V is smooth and proper over R. We say that Frobe-
nius acts properly on V if for each Frobenius endomorphism φ of Ṽ there is a
polynomial Z(T ) ∈ Cp[T ] such that:

1. No root of Z(T ) in Cp is a root of unity.

2. For each Zariski affinoid open W of V such that φW̃ = W̃ , there is a lifting
φ : W → W of the restriction of φ to W̃ such that

Z(φ∗)ω ∈ dA(W )

for each algebraic differential of the second kind ω on VK regular on W .

Remark. If (ii) holds for one lifting φ, then it holds for all, thanks to the previous
corollary.

Theorem 1.18. Suppose that K is a DVR and that V is a smoot projective scheme
over R. Then any Frobenius endomorphism acts properly on V .
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2 p-adic Abelian Integrals

Here the integrals are constructed, following the Dwork principle.

Theorem 2.1. Let X be a smooth connected affinoid over K with good reduction X̃.
Let ω be a closed one-form on X. Let φ be a Frobenius endomorphism of X, and suppose
that P (T ) is a polynomial over Cp such that

P (φ∗)ω ∈ dA(X)

and such that no root of P (T ) is a root of unity. Then there exists a locally analytic
function fω on X(Cp) unique up to an additive constant such that:

1. dfω = ω

2. P (φ∗)fω ∈ A(X).

Proof. We copy the proof in the original paper, but for the special calse of P (T ) = T−a,
with a ∈ Cp (the degree of P (T ) is n = 1). This is (hopefully) enough to see the ideas
behind it.

So assume that φ∗ω − aω ∈ dA(X).
We first prove uniqueness: suppose that one has two solutions to the problem.

Then their difference would be a locally analytic function g satisfying dg = 0 and
φ∗g−ag ∈ A(X). We will see that g is constant. As dg = 0, g must be locally constant,
and thus φ∗g − ag is locally constant as well. As X is connected, then φ∗g − ag = C,
for some constant C ∈ Cp. We will prove that g(x) = C/(1− a) for all x ∈ X.

Let U be a residue class of X, and let ε = εU be a Teichmüller point of φ in U , of
period m (so that φm(ε) = ε). Then one can check (by induction, for example) that:

(φ∗)kg − akg = C
1− ak

1− a
(1)

Take now k = m and evaluate at ε, to get:

(1− am)g(ε) = C
1− am

1− a

As 1− am is invertible, this implies that g(ε) = C/(1− a) as we want.
Now let x ∈ U be arbitrary. As g is locally constant and φmk(x) → ε, there is some

integer k such that:
g(φmk(x)) = g(ε)

Again by Equation 1, we get:

amkg(x) = amkC/(1− a)

So g(x) − C/(1 − a) is in the kernel of amk, thought as acting on Cp. But here
is the trick to cancel this: for each integer r, there is some element yr ∈ U such that
φmr(yr) = x. Using Equation 1 again, we deduce that:

g(x)− C/(1− a) = ar (g(yr)− C/(1− a))

so g(x)− C/(1− a) is both in the kernel of amk and in the image of amr for all r ≥ 0,
and only 0 is there:

ker(amk) ∩ (∩r≥0a
mr(Cp)) = {0}
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so g is constant.
Next, we prove existence: for this, write first φ∗ω = aω + dh for some h ∈ A(X).

We can surely integrate ω locally, but we need to do it in a coherent way so that the
second condition in the theorem is satisfied. Once again, the Teichmüller points will
save the day. If U is a residue class of X and ε ∈ U is the corresponding Teichmüller
point for φ, write m for the minimal positive integer such that φm(ε) = ε. Then define
fU to be the local integral to ω, normalized such that:

fU (ε) =
1

1− am

m−1∑
i=0

aih
(
φm−(i+1)(ε)

)

and define f by f |U
def= fU . We can then compute (φ∗f)(ε) and show that it equals

af(ε) + h(ε) as we wanted.

Corollary 2.2. The function fω is analytic on each residue class of X.

Corollary 2.3. The function fω depends modulo constants only on ω and not on the
choice of P .

Corollary 2.4. Let ω′ be a closed one-form on X such that P (φ∗)ω′ ∈ dA(X). Then:

1. fω+ω′ = fω + fω′ (modulo constants in Cp),

2. if ω is exact, then fω ∈ A(X).

Corollary 2.5. The function fω is independent (up to constants) of the choice of φ.

Let now σ be a continuous automorphism of Cp. Let ωσ denote the pullback of ω
to Xσ. Let fσ

ω be the function on Xσ(Cp) defined by:

fσ
ω (x) def= σfω(σ−1(x))

Corollary 2.6. The differential ωσ satisfies the hypotheses of the theorem over Xσ, and
fσ

ω = fωσ up to constants. In particular, if σ fixes K, then fσ
ω = fω up to constants.

Proposition 2.7. Suppose that F : X ′ → X is a morphism of smooth affinoids with
good reduction over K. Let ω′ = F ∗ω. Then there exists a Frobenius endomorphism φ′

of X ′ and a polynomial P ′(T ) in Cp[T ] such that

P ′(φ′∗)ω′ ∈ dA(X ′)

and such that no root of P ′(T ) is a root of unity. Moreover, if fω′ is a solution of the
Theorem with ω′ in place of ω, then fω′ = F ∗fω up to constants.

Proof. The key observation to be made is that there exists Frobenius endomorphisms
φ : X → X and φ′ : X ′ → X ′ compatible with F on the reductions. That is, such that
the following commutes:

X̃ ′ F̃ //

φ̃′

��

X̃

φ̃
��

X̃ ′ F̃ // X̃
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Then there is (by what we have seen so far) a polynomial P (T ), without roots of unity,
such that:

P (φ∗)ω ∈ dA(X)

From this, we deduce that:
P (φ;∗ )ω′ ∈ dA(X ′)

Also, we deduce (because φ ◦ F and F ◦ φ′ to the same morphism) that:

F ∗(φ∗)kfω − (φ′∗)kF ∗fω ∈ A(X ′) for all k > 0

and hence:
P (φ′∗)F ∗ − F ∗P (φ∗) ∈ A(X ′)

Now apply the uniqueness of fω′ to conclude the result.

Next, we will describe how to integrate differentials ω of the second kind on VK ,
where V is a smooth, proper, connected scheme of finite type over R.

Let D be the collection of Zariski affinoid opens X in VK such that, on X,

ω − dgX ∈ Ω1
K(X)

for some gX in K(VK) (the function field of VK). Note that D is a covering, because
ω is of the second kind. Let (ω)∞ be the support of the polar divisor of ω on VK , and
write V ′

K
def= VK − (ω)∞.

Fix a Frobenius endomorphism φ of Ṽ . Write D′ for the subcollection of D consisting
of those X such that φX̃ = X̃ (note that D′ is also a covering of VK (why??). Let Z(T )
be a polynomial associated to V and φ (as in Definition 1.17).

Fix now X ∈ D′. Write for short g = gX , and set ν = νX = ω − dg. Let φ = φX be
a lifting of the restriction of φ to X̃. Hence:

Z(φ∗)ν ∈ dA(X)

By Theorem 2.1, there exists f = fX , locally analytic on X and unique up to an
additive constant such that df = ν, and Z(φ∗)f ∈ A(X).

Now, set hX
def= f + g, as a function on X − (ω)∞.

Claim. The function hX is independent of the choices of f and g, up to an additive
constant.

Proof. Suppose that g′ ∈ K(VK) is such that ω − dg′ = ν ′ ∈ Ω1
K(X). It follows then

that ν ′ = ν + d(g − g′), and so in particular g − g′ ∈ A(X). If now f ′ is a solution of
df ′ = ν ′, and Z(φ∗)f ′ ∈ A(X), then f ′ = f + (g − g′), from a previous corollary (up to
constants). This finishes the proof.

Finally, we need to patch together the local integrals hX :

Lemma 2.8. Let X, X ′ ∈ D′. Then hX − hX′ is constant on X ∩X ′.

Proof. Note first that X ∩X ′ ∈ D, so it suffices to prove it in the case X ′ ⊆ X. In this
case, we may take gX = gX′ . Then νX′ is the restriction of νX to X ′, and if we restrict
fX to X ′ we get a solution for our problem, hence hX′ = hX |, as we wanted.
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This makes the map (X, X ′) 7→ hX − hX′ into a 1-cocycle wrt the covering D′ and
the constant sheaf Cp. It is actually a coboundary, since any finite subcollection of D′
has non-empty intersection.

We have proved:

Theorem 2.9. There exists a function fω on V ′
K(Cp), unique up to an additive constant,

such that:

1. dfω = ω,

2. For each X ∈ D′, there exists a g ∈ K(VK) such that fω − g extends to ta locally
analytic function on X, and

Z(φX
∗)(fω − g) ∈ A(X)

Definition 2.10. Given ω and fω as above, and given two points P,Q ∈ V ′
K(Cp), the

integral of ω from P to Q is defined as:∫ Q

P
ω

def= fω(Q)− fω(P )

Proposition 2.11. Let ω and ω′ be two differentials of the second kind on VK . Then:

• If P,Q /∈ (ω)∞ ∪ (ω′)∞, we have:∫ Q

P
(ω + ω′) =

∫ Q

P
ω +

∫ Q

P
ω′

• If ω = dg for a meromorphic function g on VK , then:∫ Q

P
ω = g(Q)− g(P )

• Let g : W → V be a morphism of smooth proper schemes over R, on which Frobe-
nius acts properly. Then, if g(Q), g(P ) /∈ (ω)∞, we have:∫ Q

P
g∗ω =

∫ g(Q)

g(P )
ω

• If P,Q /∈ (ω)∞, then: (∫ Q

P
ω

)σ

=
∫ σ(Q)

σ(P )
ωσ

where the second integral is taken on V σ

The following theorem, whose proof ommit for now, is a strenghtening of the change
of variable formula from the previous proposition:

Theorem 2.12 (Change of Variablles). Suppose that V and W are smooth proper
schemes of finite type over a ring R on which Frobenius acts properly. Suppose f : VK →
WK is a rational map. Let ω be a differential of the second kind on Wk. Then:∫ Q

P
f∗ω =

∫ f(Q)

f(P )
ω

for any P,Q ∈ V (Cp) in the domain of regularity of f such that f(P ), f(Q) /∈ (ω)∞.
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Corollary 2.13. The integral
∫ Q
P ω doesn’t depend on the model V for VK .

Corollary 2.14. Suppose that VK is a variety over K which may be completed to a
smooth proper scheme V of finite type over R on which Frobenius acts properly. Let ω
be a regular differential on VK of the second kind. Then for P,Q ∈ VK(Cp) the integral∫ Q
P ω depends only on VK and not on its completion.

Let now G be a connected commutative group scheme over R, which is an extension
of an abelian scheme A by a vector group B:

0 → B → G → A → 0

Let O be the origin on G.

Theorem 2.15. Let ω be an invariant differential on G, and let

λω(Q)
def
=

∫ Q

O
ω

where Q ∈ GK(Cp). (this is well defined by a previous corollary). Then:

1. λω is a homomorphism from GK(Cp) into Cp

2. λω is locally analytic, and dλω = ω.

Proof. Let Ta : G → G denote translation by a ∈ GK(Cp). Then T ∗a ω = ω, and so by
the change of variables formula:∫ P

O
ω =

∫ P

O
T ∗Qω =

∫ P+Q

Q
ω =

∫ P+Q

O
ω −

∫ Q

O
ω

which implies λ(P ) = λ(P + Q)− λ(Q).
The second statement was known already from the previous results.

In particular, we get the addition theorem:

Theorem 2.16. Let C be a complete curve over K with a smooth proper model over R,
on which Frobenius acts properly. Consider D1, D2, D3 three divisors on C, such that
D1 + D2 ≡ D3 + n[P ]. Then, for any differential ω of the first kind on C, we have:

n∑
i=1

∫ Pi

P
ω +

n∑
i=1

∫ Qi

P
ω =

n∑
i=1

∫ Ri

P
ω

Proof. Just take G in the previous theorem to be the Néron model of the Jacobian of
C.
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