Formes modulaires et fonctions zeta p-adiques (proof-free)

Marc Masdeu-Sabaté (copying from Serre's paper)

April 28, 2008

Contents

1	p -adic Modular Forms1.1Notation1.2The Algebra of mod- p Modular Forms1.3Congruences mod- p^m between Modular Forms1.4 p -adic Modular Forms1.5First Properties of the p -adic Modular Forms1.6An Example: p -adic Eisenstein series	2 2 3 3 4 4
2	Hecke Operators2.1Action of T_l , U , V , θ on the p -adic Modular Forms2.2A Contraction Property2.3Application: Computing the Constant Term of a p -adic Modular Form	5 5 6
3	Modular forms on $\Gamma_0(p)$ 3.1 Review of Classical Definitions3.2 Passing from $\Gamma_0(p)$ to $SL_2(\mathbb{Z})$ 3.3 Reduction (mod- p) of weight-2 forms on $\Gamma_0(p)$ 3.4 Forms on $\Gamma_0(p)$ with Nebentypus	7 7 8 8
4	Analytic Families of p-adic Modular Forms4.1The Iwasawa Algebra (for $p \neq 2$)4.2The Iwasawa Algebra (for $p = 2$)4.3Char'n of elements in Λ by their expansions4.4Char'n of elements in Λ by interpolation properties4.5Example: Coefficients of the p-adic Eisenstein Series4.6Families of p-adic Modular Forms (weight not divisible by $p - 1$)4.7Families of p-adic Modular Forms (weight divisible by $p - 1$)	9 9 10 11 11 12 12
5	p-adic zeta-functions15.1 Notation15.2 Modular Forms attached to K 15.3 The p-adic Zeta Function of the Field K 15.4 Computing $\zeta_K^*(1-k, 1-u)$ for $k \ge 1$ integer15.5 A periodicity property of ζ_K^* 1	. 2 12 13 13 14

1 *p*-adic Modular Forms

1.1 Notation

Let p be a prime. Consider the field p-adic numbers \mathbb{Q}_p , with its non-archimedean valuation v_p , normalized such that $v_p(p) = 1$. We say $x \in \mathbb{Q}_p$ is p-integral if $v_p(x) \ge 0$.

If $f = \sum a_n q^n \in \mathbb{Q}_p[[q]]$ is a formal power series, we define $v_p(f) \stackrel{\text{def}}{=} \inf v_p(a_n)$. If $v_p(f) \ge m$ we write as well $f \equiv 0 \pmod{p^m}$.

Let (f_i) be a sequence of elements in $\mathbb{Q}_p[[q]]$. We say that $f_i \to f$ if the coefficients of f_i tend uniformly to those of f (that is, if $v_p(f - f_i) \to +\infty$.

For $k \geq 2$ an even integer, we set:

$$G_k \stackrel{\text{def}}{=} -\frac{b_k}{2k} + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$
$$E_k \stackrel{\text{def}}{=} -\frac{2k}{b_k}G_k = 1 - \frac{2k}{b_k}\sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$

where b_k is the k^{th} Bernoulli number, and $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$. Note that, for $k \ge 4$, the series G_k and E_k are modular forms of weight k (and level 1).

Write also:

$$P \stackrel{\text{def}}{=} E_2 = 1 - 24 \sum \sigma_1(n)q^n$$
$$Q \stackrel{\text{def}}{=} E_2 = 1 + 240 \sum \sigma_3(n)q^n$$
$$R \stackrel{\text{def}}{=} E_2 = 1 - 504 \sum \sigma_5(n)q^n$$

The algebra of modular forms on $SL_2(\mathbb{Z})$ is precisely $\mathbb{C}[Q, R]$.

Lemma 1.1.

- If $k' \equiv k \not\equiv 0 \pmod{p-1}$, then $G_k \equiv G_{k'} \pmod{p}$.
- If p-1|k, then $E_k \equiv 1 \pmod{p-1}$. In fact, we have:
 - If $p \neq 2$: $E_k \equiv 1 \pmod{p^m}$ if, and only if, $k \equiv 0 \pmod{(p-1)p^{m-1}}$. - If p = 2: $E_k \equiv 1 \pmod{2^m}$ if, and only if, $k \equiv 0 \pmod{2^{m-2}}$.

1.2 The Algebra of mod-*p* Modular Forms

For $k \in \mathbb{Z}$, write M_k for the sect of modular forms of weight k, with coefficients in $\mathbb{Z}_{(p)} = \mathbb{Q} \cap \mathbb{Z}_p$. One can reduce these forms modulo p, and we write $\tilde{M}_k \subseteq \mathbb{F}_p[[q]]$ for the reduction of M_k . Write as well $\tilde{M} \stackrel{\text{def}}{=} \sum_{k \in \mathbb{Z}} \tilde{M}_k$.

Theorem 1.2 $(p \ge 5)$. Define, for $\alpha \in \mathbb{Z}/(p-1)\mathbb{Z}$:

$$\tilde{M}^{\alpha} \stackrel{def}{=} \cup_{k \in \alpha} \tilde{M}_k$$

where one sends M_k to M_{k+p-1} by multiplying by E_{p-1} . Then:

$$\tilde{M} = \bigoplus_{\alpha} \tilde{M}$$

Theorem 1.3 (p = 2, 3). One then has:

$$\tilde{M} = \mathbb{F}_p[\tilde{\Delta}]$$

where $\hat{\Delta}$ is the mod-p reduction of the weight-12 cusp form Δ .

1.3 Congruences mod- p^m between Modular Forms

Theorem 1.4. Let f and f' be two modular forms with rational coefficients, of respective weights k and k'. Assume also that $f \neq 0$ and that:

$$v_p(f - f') \ge v_p(f) + m$$
 for some integer $m \ge 0$

Then:

$$\begin{aligned} k' &\equiv k \pmod{(p-1)p^{m-1}} & \text{if } p \geq 3 \\ k' &\equiv k \pmod{2^{m-2}} & \text{if } p = 2 \end{aligned}$$

1.4 *p*-adic Modular Forms

Definition 1.5. Let X_m be defined, for $m \ge 1$, as:

$$X_m \stackrel{\text{def}}{=} \begin{cases} \mathbb{Z}/(p-1)p^{m-1}\mathbb{Z} & \text{if } p \neq 2\\ \mathbb{Z}/2^{m-2}\mathbb{Z} & \text{if } p = 2 \end{cases}$$

The group of weights is defined as:

$$X \stackrel{\text{def}}{=} \varprojlim_{m} X_{m} = \begin{cases} \mathbb{Z}_{p} \times \mathbb{Z}/(p-1)\mathbb{Z} & \text{if } p \neq 2\\ \mathbb{Z}_{2} & \text{if } p = 2 \end{cases}$$

Note that \mathbb{Z} can be viewed as a dense subgroup of X.

Definition 1.6. A *p*-adic modular form is a formal series with coefficients in \mathbb{Q}_p which is the limit of classical modular forms of weights k_i .

Theorem 1.7. Let f be a nonzero p-adic modular form. If (f_i) is a sequence of rational modular forms of weight k_i tending to f, then the k_i tend to an element $k \in X$, which is even.

Example. If p = 5 (or p = 2, 3), then $Q \equiv 1 \pmod{p}$, so that:

$$\frac{1}{Q} = \lim_{m \to \infty} Q^{p^m - 1}$$

and hence $\frac{1}{Q}$ is p-adic modular, as well as $1/j = \Delta/Q^3$.

1.5 First Properties of the *p*-adic Modular Forms

Theorem 1.8 (generalizes Theorem 1.4). Let f and f' be two p-adic modular forms, of respective weights k and k'. Assume also that $f \neq 0$ and that:

$$v_p(f - f') \ge v_p(f) + m$$
 for some integer $m \ge 0$

Then k and k' have the same image in X_m .

Corollary 1.9. Let $f = a_0 + a_1q + \cdots + a_nq^n + \cdots$ be a p-adic modular form of weight $k \in X$. Let $m \ge 0$ be an integer such that the image of k in X_{m+1} is nonzero. Then:

$$v_p(a_0) + m \ge \inf_{n \ge 1} v_p(a_n)$$

(in particular, if the a_n are p-integral for all $n \ge 1$, then the same holds for $p^m a_0$ (interesting case: $p-1 \nmid k$. Then m = 0).

Corollary 1.10. Let $f^{(i)}$ be a sequence of p-adic modular forms, of weights $k^{(i)}$, such that the $a_n^{(i)}$ tend uniformly to $a_n \in \mathbb{Q}_p$ for all $n \ge 1$, and $k^{(i)}$ tends (in X) to a limit $k \ne 0$. Then the coefficients $a_0^{(i)}$ tend to some $a_0 \in \mathbb{Q}_p$, and the limit series is a p-adic modular form of weight k.

1.6 An Example: *p*-adic Eisenstein series

Define, for $k \in X$ and $n \ge 1$:

$$\sigma_{k-1}^*(n) \stackrel{\text{def}}{=} \sum d^{k-1} \in \mathbb{Z}_p$$

where the sum is for all $d \ge 1$, $d \mid n$, such that $p \nmid d$. Then the sequence $G_{k_i} \stackrel{\text{def}}{=} -b_{k_i}/2k_i + \sum_{n>1} \sigma_{k_i-1}(n)q^n$ has a limit:

$$G_k^* = a_0 + \sum_{n \ge 1} \sigma_{k-1}^*(n) q^n$$

with $a_0 = \frac{1}{2} \lim_{i \to \infty} \zeta(1 - k_i) \stackrel{\text{def}}{=} \frac{1}{2} \zeta^*(1 - k).$

The function ζ^* is thus defined on the odd elements of $X \setminus \{1\}$, and by a Corollary 1.10 it is continuous.

Theorem 1.11.

• For $p \neq 2$, and if $(s, u) \neq 1$ is an odd element of $X = \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$, then:

$$\zeta^*(s,u) = L_p(s;\omega^{1-u})$$

where $L_p(s;\chi)$ is the p-adic L-function of a character χ , and ω is the Teichmuller character.

• If p = 2 and if $s \neq 1$ is an odd element of $X = \mathbb{Z}_2$, then:

$$\zeta^*(s,u) = L_2(s;\chi^0)$$

Note also that, if $k \ge 0$ is an even **integer**, then we have:

$$G_k^* = G_k - p^{k-1}G_k|V$$

Lastly, if $k \equiv 0 \pmod{(p-1)p^{m-1}}$, then $E_k^* \equiv 1 \pmod{p^m}$, and so we set $E_0^* \stackrel{\text{def}}{=} 1$, as this is the limit of the E_k^* when $k \to 0$.

2 Hecke Operators

2.1 Action of T_l , U, V, θ on the *p*-adic Modular Forms

Let $f = \sum_{n=0}^{\infty} a_n q^n$ be a formal power series with coefficients in \mathbb{Q}_p . Define:

$$f|U \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_{pn} q^n$$
 and $f|V \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_n q^{pn}$

Also, if $l \neq p$ is a prime and $k \in X$, define:

$$f|_k T_l \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} a_{ln} q^n + l^{k-1} \sum_{n=0}^{\infty} a_n q^{ln}$$
$$\theta f \stackrel{\text{def}}{=} q \frac{df}{dq} = \sum_{n=0}^{\infty} n a_n q^n$$

For $h \in X$, define:

$$f|R_h \stackrel{\text{def}}{=} \sum_{(n,p)=1} n^h a_n q^n$$

Theorem 2.1. The operators U, V and T_l preserve the p-adic modular forms of a given weight k. The operator θ increases the weight by 2. The operator R_h increases the weight by 2h (for $h \in X$).

One can define then the Hecke operators for any m coprime to p, through the usual formulae:

$$T_m T_n = T_n T_m = T_{mn} \qquad \text{if } (m, n) = 1$$

$$T_l T_{l^n} = T_{l^{n+1}} + l^{k-1} T_{l^{n-1}} \qquad \text{if } l \text{ is a prime and } n \ge 1.$$

Proposition 2.2. *Here there are some formulae:*

$$\begin{aligned} &(\theta f)|U = p\theta(f|U) & f|R_h|U = 0 \\ &\theta(f|V) = p(\theta f)|V & (\theta f)|_{k+2}T_l = l\theta(f|_kT_l) \\ &f|V|R_h = 0 & (f|R_h)|_{k+2h}T_l = l^h(f|_kT_l)|R_h \end{aligned}$$

2.2 A Contraction Property

Definition 2.3. Let $p \ge 5$. The filtration of $f \in \tilde{M}^{\alpha}$ is written w(f) and is the least k such that $f \in \tilde{M}_k$.

Lemma 2.4. Suppose that $p \ge 5$. Then:

- 1. $w(\theta f) \leq w(f) + p + 1$, with equality if, and only if, $p \nmid w(f)$.
- 2. For all $i \ge 1$, one has $w(f^i) = iw(f)$.
- 3. $w(f|U) \leq p + \frac{w(f)-1}{p}$.
- 4. If w(f) = p 1, then w(f|U) = p 1.

Theorem 2.5.

- 1. If k > p+1, then $U(\tilde{M}_k) \subseteq \tilde{M}_{k'}$ for some k' < k.
- 2. For k = p 1, the operator U induces a bijection on M_{p-1} .

Corollary 2.6. Let $p \ge 5$, and let $\alpha \in \mathbb{Z}/(p-1)\mathbb{Z}$ be even. Then:

- 1. The space \tilde{M}^{α} can be uniquely decomposed as $\tilde{M}^{\alpha} = \tilde{S}^{\alpha} \oplus \tilde{N}^{\alpha}$, such that U is bijective on \tilde{S}^{α} , and locally nilpotent on \tilde{N}^{α} . Also, $\tilde{S}^{\alpha} \subseteq \tilde{M}_j$, where $j \in \alpha$ is such that $4 \leq j \leq p+1$. In particular, \tilde{S}^{α} is finite-dimensional.
- 2. For $\alpha = 0$, one has j = p 1, and $\tilde{S}^0 = \tilde{M}_{p-1}$.

If p = 2 or p = 3, then one can also decompose $\tilde{M} = \tilde{S} \oplus \tilde{N}$, with $\tilde{S} = \tilde{M}_0 = \mathbb{F}_p$, and $\tilde{N} = \tilde{\Delta}\tilde{M}$. Then U is the identity on \tilde{S} , and it is locally nilpotent on \tilde{N} .

2.3 Application: Computing the Constant Term of a *p*-adic Modular Form

Theorem 2.7. Let f be a p-adic modular form of weight $k \in X$. Let p be a prime such that $p \leq 7$ or such that $p \geq 11$ and $k \equiv 4, 6, 8, 10, 14 \pmod{p-1}$. Then:

$$a_0(f) = \frac{1}{2}\zeta^*(1-k)\lim_{n \to \infty} a_{p^n}(f)$$

Theorem 2.8 (case p-1 | k). There exists a polynomial $H \in \mathbb{Z}[U, T_l : l \text{ prime}]$ such that, for all $k \in X$ divisible by p-1, one has:

- 1. $E_k^*|H = c(k)E_k^*$, with $c(k) \in \mathbb{Z}_p^{\times}$.
- 2. $\lim_{n\to\infty} f|H^n = 0$ for any cuspidal p-adic modular form of weight k.

(note that H doesn't depend on k, but its action on f actually does).

Corollary 2.9. If f is a p-adic modular form of weight $0 \neq k \equiv 0 \pmod{p-1}$ one has:

$$a_0(f) = \frac{1}{2}\zeta^*(1-k)\lim_{n \to \infty} c(k)^{-n} a_1(f|H^n)$$

Note that this allows to compute $a_0(f)$ in terms of the $a_m(f)$'s, as $a_1(f|H^n)$ is a \mathbb{Z}_p -linear combination of the $a_m(f)$, for $m \ge 1$.

Examples.

- For $p \leq 11$, take H = U and c(k) = 1.
- For p = 13, take H = U(U+5) and c(k) = 6, or $H = U(T_2 2)$ and $c(k) = 2^{k-1} 1$.
- For p = 17, take $H = U(T_2 + 5)$ and $c(k) = 2^{k-1} + 6$.

Theorem 2.10 (case $p - 1 \nmid k$). Let $k \in X$ be such that $p - 1 \nmid k$. Then there is a sequence $(\lambda_{m,n})_{m,n\geq 1}$ of elements in \mathbb{Z}_p such that:

- 1. For each n, then $\lambda_{m,n} = 0$ for all m sufficiently large.
- 2. $a_0(f) = \lim_{n \to \infty} u_n(f)$, where $u_n(f) = \sum_{m \ge 1} \lambda_{m,n} a_m(f)$, for each p-adic modular form of weight k.

(note that the coefficients $\lambda_{m,n}$ DO depend on the weight k.

3 Modular forms on $\Gamma_0(p)$

3.1 Review of Classical Definitions

Given f a holomorphic function on \mathcal{H} , and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})^+$, one defines $f|_k \gamma$, also holomorphic on \mathcal{H} , as:

$$f|_k \gamma(z) \stackrel{\text{def}}{=} \det(\gamma)^{k/2} (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right)$$

Consider also $\Gamma_0(p)$, a subgroup of index p+1 in $SL_2(\mathbb{Z})$. Define also the **Fricke** involution W to be the matrix $W \stackrel{\text{def}}{=} \begin{pmatrix} 0 & -1 \\ p & 0 \end{pmatrix}$.

Definition 3.1. Given $f \in M_k(\Gamma_0(p))$, the **trace** of f is defined to be:

$$\operatorname{Tr}(f) \stackrel{\text{def}}{=} \sum_{j=1}^{p+1} f|_k \gamma_j$$

where $\{\gamma_j\}_{j=1...p+1}$ is a set of coset reps of $\Gamma_0(p) \setminus SL_2(\mathbb{Z})$.

Lemma 3.2. If $f = \sum a_n q^n$ and $f|_k W = \sum b_n q^n$, then:

$$\operatorname{Tr}(f) = \sum a_n q^n + p^{1-k/2} \sum b_{pn} q^n = f + p^{1-k/2} (f|_k W) |U$$

Remark. If f is a modular form on $SL_2(\mathbb{Z})$, then:

$$\operatorname{Tr}(f|_k W) = p^{1-k/2} f|_k T_p$$

and so the trace and the Hecke operator are related.

3.2 Passing from $\Gamma_0(p)$ to $SL_2(\mathbb{Z})$

Theorem 3.3. Let $f = \sum a_n q^n$ be a modular form of weight k on $\Gamma_0(p)$, with rational coefficients. Then f is a p-adic modular form of weight k. In fact, one needs only to require that f is meromorphic at the cusp 0 to get the same result.

Proof. Define, for $a \ge 4$ an even integer such that $p - 1 \mid a$:

$$g \stackrel{\text{def}}{=} E_a - p^{a/2} E_a|_a W = E_a - p^a E_a|_V$$

which is a modular form of weight a on $\Gamma_0(p)$.

Lemma 3.4. We have $g \equiv 1 \pmod{p}$ and $g|_a W \equiv 0 \pmod{p^{1+a/2}}$.

We have that both f and $f|_k W$ have rational coefficients. For each $m \ge 0$, we have fg^{p^m} is a modular form on $\Gamma_0(p)$, of weight $k_m = k + ap^m$, with rational coefficients as well. Let $f_m \stackrel{\text{def}}{=} \text{Tr}(fg^{p^m})$. We then note that $k_m \to k$, and that $f_m \to f$ (as $m \to \infty$).

Remark. Consider the following function:

$$j \stackrel{\text{def}}{=} Q^3 / \Delta = q^{-1} + \sum_{n=0}^{\infty} c(n) q^n$$

The previous Theorem can be applied to the function $f \stackrel{\text{def}}{=} j | U = \sum c(pn)q^n$, which has a pole of order p at the cusp 0.

3.3 Reduction (mod-*p*) of weight-2 forms on $\Gamma_0(p)$

Theorem 3.5. Let $p \ge 3$. Let f be a modular form of weight 2 on $\Gamma_0(p)$, with p-integral rational coefficients. Then:

- 1. $f|_2W = -f|_U$, which is a modular form with p-integral coefficients as well.
- 2. The reduction $\tilde{f} = f \pmod{p}$ belongs to \tilde{M}_{p+1} .
- 3. Conversely, any element of \tilde{M}_{p+1} is the mod-p reduction of some weight-2 modular form on $\Gamma_0(p)$ with p-integral coefficients.

In other words:

$$M_2(\Gamma_0(p); \mathbb{Z}_{(p)}) \equiv M_{p+1}(SL_2(\mathbb{Z}); \mathbb{Z}_{(p)}) \pmod{p}$$

Corollary 3.6. The eigenvalues of U acting on \tilde{M}_{p+1} are ± 1 .

3.4 Forms on $\Gamma_0(p)$ with Nebentypus

Suppose that $p \geq 3$. Let ε be a character mod p. Let $r = \phi(p-1)$, and write $p = \mathfrak{p}_1 \cdots \mathfrak{p}_r$ the decomposition of p in $\mathbb{Q}(\mu_{p-1})$. Fix one of these prime ideals, which defines an embedding $\sigma: \mathbb{Q}(\mu_{p-1}) \hookrightarrow \mathbb{Q}_p$. This in turn induces an isomorphism $\mu_{p-1} \simeq (\mathbb{Z}/p\mathbb{Z})^{\times}$ (and all isomorphism are obtained in this way). Then $\sigma \circ \varepsilon$ is of the form $x \mapsto x^{\alpha}$ with some $\alpha \in \mathbb{Z}/(p-1)\mathbb{Z}$. Then:

Theorem 3.7. Let $f = \sum a_n q^n$ be a modular form of type (k, ε) on $\Gamma_0(p)$ such that $a_n \in \mathbb{Q}(\mu_{p-1})$ for all n. Then the resulting series $f^{\sigma} \stackrel{\text{def}}{=} \sum a_n^{\sigma} q^n$, with coefficients in \mathbb{Q}_p is a p-adic modular form of weight $k + \alpha$ (where α is identified with $(0, \alpha) \in X = \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$, and $k + \alpha = (k, k + \alpha)$.

Proof. For $\varepsilon = 1$ the result has been proven before. So assume $\varepsilon \neq 1$.

Lemma 3.8. Let $k \ge 1$, and assume that $\varepsilon(-1) = (-1)^k$. Then the series:

$$G_k(\varepsilon) \stackrel{def}{=} \frac{1}{2}L(1-k,\varepsilon) + \sum_{n=1}^{\infty} \left(\sum_{d|n} \varepsilon(d) d^{k-1}\right) q^n$$

is a modular form of type (k, ε) on $\Gamma_0(p)$, with coefficients on $\mathbb{Q}(\mu_{p-1})$, and one has:

$$G_k(\varepsilon)^{\sigma} = G_h^*$$

with $h = k + \alpha$.

Remark. One can show that, with the hypotheses of the previous Theorem, $f|_k W$ is of type (k, ε^{-1}) , and that $f|_k W^2 = \varepsilon(-1)f$.

4 Analytic Families of *p*-adic Modular Forms

4.1 The Iwasawa Algebra (for $p \neq 2$)

4.1.1 Notation

For $n \ge 1$, define $U_n \stackrel{\text{def}}{=} \{u \in \mathbb{Z}_p^{\times} \mid u \equiv 1 \pmod{p^n}\}$, as a subgroup of \mathbb{Z}_p^{\times} . Note that:

$$U_1 \simeq \underline{\lim}(U_1/U_n) \simeq \mathbb{Z}_p$$

For $u = 1 + pt \in U_1$ and $s \in \mathbb{Z}_p$, one can define $u^s \in \mathbb{Z}_p^{\times}$ as:

$$u^s = (1+pt)^s = \sum_{n \ge 0} \binom{s}{n} t^n p^n$$

Definition 4.1. Let F be the \mathbb{Z}_p -algebra of functions $\mathbb{Z}_p \to \mathbb{Z}_p$, and let $L \subseteq F$ be the subalgebra generated by all the $f_u \stackrel{\text{def}}{=} s \mapsto u^s$ $(u \in U_1)$. By independence of characters, the f_u form a basis for L.

Lemma 4.2. The algebra L is isomorphic to $\mathbb{Z}_p[U_1]$. So any $f \in L$ can be uniquely written as $s \mapsto f(s) = \sum_{u \in U_1} \lambda_u u^s$ with $\lambda_u \in \mathbb{Z}_p$, and almost all of them being 0.

4.1.2 The algebra L

Definition 4.3. Let \overline{L} be the adherence of L in F, with respect to the topology given by uniform convergence.

Remark. The elements of L are equicontinuous:

 $s \equiv s' \pmod{p^n} \implies f(s) \equiv f(s') \pmod{p^{n+1}}$

So the same property holds for \overline{L} . Note also that \overline{L} is compact.

4.1.3 The algebra Λ

Definition 4.4. The Iwasawa algebra is $\Lambda \stackrel{\text{def}}{=} \mathbb{Z}_p[[U_1]] = \lim_{t \to \infty} \mathbb{Z}_p[U_1/U_n].$

Claim. The algebra $\Lambda \simeq \mathbb{Z}_p[[T]]$, through sending $f_u \mapsto 1+T$, if $u = 1+\pi$ is a topological generator of U_1 with $v_p(\pi) = 1$.

4.1.4 $\overline{L} = \Lambda$

Note that $L = \mathbb{Z}_p[U_1]$ is contained in both \overline{L} and Λ .

Lemma 4.5. There is a unique isomorphism of topological algebras:

$$\varepsilon \colon \Lambda \to L$$

such that it is the identity on $\mathbb{Z}_p[U_1]$. The isomorphism ε maps $f = \sum a_n T^n$ to:

$$\varepsilon(f): s \mapsto f(u^s - 1) = \sum a_n (u^s - 1)^n$$

(note that $u^s - 1 \equiv 0 \pmod{p}$).

Remark. In this way, we will go from a power series in T to a function of s, using the "change of variables":

 $T = u^s - 1 = vs + \dots + v^n s^n / n! + \dots$ where $v = \log(u)$

4.1.5 Zeros of an element of Λ

Lemma 4.6. Let $f \neq 0$ be an element of $\Lambda = \mathbb{Z}_p[[T]]$. Then f can be uniquely written (Weierstrass decomposition) as:

$$f = p^{\mu}(T^{\lambda} + a_1 T^{\lambda - 1} + \dots + a_{\lambda})u(T)$$

with $\lambda, \mu \ge 0$, $v_p(a_i) \ge 1$ and $u \in \Lambda^{\times}$.

In particular, f(s) has a finite number ($\leq \lambda$) of zeros.

Corollary 4.7. Let f_1, \ldots, f_n, \ldots be a sequence in Λ , converging pointwise for all $s \in S$, where $S \subseteq \mathbb{Z}_p$ is infinite. Then the sequence f_n converges uniformly on \mathbb{Z}_p , to a function $f \in \Lambda$.

4.2 The Iwasawa Algebra (for p = 2)

Basically everything extends, with minor changes. Define U_n in the same way as before. Then:

$$\mathbb{Z}_p^{\times} = U_1 = \{\pm 1\} \times U_2$$

and $U_2 \simeq \mathbb{Z}_2$. For $u \in U_1$, let $\omega(u)$ denote his sign (the component in $\{\pm 1\}$, and let $\langle u \rangle$ his component in U_2 . We will define L and Λ using U_2 instead of U_1 .

Let then L the algebra generated by the functions f_u , with $u \in U_2$. Then again:

$$\overline{L} \simeq \Lambda \stackrel{\text{def}}{=} \mathbb{Z}_2[[U_2]] = \varprojlim \mathbb{Z}_2[U_2/U_n] \simeq \mathbb{Z}_2[[T]]$$

The remaining is the same.

4.3 Char'n of elements in Λ by their expansions

Define the integers c_{in} , for $1 \leq i \leq n$, through the identity:

$$\sum_{i=1}^{n} c_{in} Y^{i} = Y(Y-1)(Y-2) \cdots (Y-n+1) = n! \binom{Y}{n}$$

Theorem 4.8. A function $f \in F$ belongs to Λ if, and only if, there exists a sequence of p-adic integers $(b_n)_{n>0}$ such that:

- 1. $f(s) = \sum_{n \ge 0} b_n p^n s^n / n!$ for all $s \in \mathbb{Z}_p$.
- 2. $v_p(\sum_{i=1}^n c_{in}b_i) \ge v_p(n!)$ for all $n \ge 1$.

(if p = 2, one has to replace p^n by 4^n).

Corollary 4.9. Let $f \in \Lambda$, and let b_n the corresponding coefficients. Then, for all $n \ge 1$:

$$b_n \equiv b_{n+p-1} \pmod{p}$$

4.4 Char'n of elements in Λ by interpolation properties

Let $s_0, s_1 \in \mathbb{Z}_p$, and let $f \in F$ (that is, a function $\mathbb{Z}_p \to \mathbb{Z}_p$). Define the coefficients $a_n = a_n(f) = f(s_0 + ns_1)$, and let $\delta_0, \delta_1, \ldots$ be the successive differences of the sequence (a_n) (starting with $\delta_0 = a_0$). Let also:

$$h \stackrel{\text{def}}{=} \begin{cases} 1 + v_p(s_1) & p \neq 2\\ 2 + v_2(s_1) & p = 2 \end{cases}$$

We have:

Theorem 4.10. If $f \in \Lambda$, then:

1. $\delta_n \equiv 0 \pmod{p^{nh}}$ for all $n \ge 0$. 2. $v_p\left(\sum_{i=1}^n c_{in}\delta_i p^{-ih}\right) \ge v_p(n!)$ for all $n \ge 1$.

Corollary 4.11. Let $e_n \stackrel{def}{=} \delta_n p^{-nh}$. Then $e_n \equiv e_{n+p-1} \pmod{p}$ for all $n \ge 1$.

In fact, there is a converse to the previous theorem. Let $s_0 = 0$ and $s_1 = 1$, so that $a_n = f(n)$. One can then write (Mahler criterion) for all $s \in \mathbb{Z}_p$:

$$f(s) = \sum_{n \ge 0} \delta_n \binom{s}{n}$$

Theorem 4.12. Let $f: \mathbb{Z}_p \to \mathbb{Q}_p$ be a continuous function, and let $\delta_n \stackrel{\text{def}}{=} \sum (-1)^i \binom{n}{i} f(n-i)$ be its interpolation coefficients. Then $f \in \Lambda$ if, and only if:

- 1. $\delta_n \equiv 0 \pmod{p^n}$ for all $n \ge 0$.
- 2. $v_p(\sum_{i=1}^{n} c_{in} \delta_i p^{-i}) \ge v_p(n!)$ for all $n \ge 1$.

(if p = 2, one needs to replace p^n by 4^n , and p^{-i} by 4^{-i}).

4.5 Example: Coefficients of the *p*-adic Eisenstein Series

Write $k = (s, u) \in \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z} = X$, for k even and nonzero.

Claim. The form $G_k^* = G_{s,u}^*$ has coefficients:

$$a_0(G_{s,u}^*) = \frac{1}{2}\zeta^*(1-s, 1-u)$$
$$a_n(G_{s,u}^*) = \sum d^{-1}\omega(d)^u < d >^s$$

Theorem 4.13. Consider the function $(s, u) \mapsto G_k^*$. Fix u and n, and consider the function $s \mapsto a_n(G_{s,u}^*)$. Then:

- 1. For $n \ge 1$, this belongs to L (and hence to $\Lambda = \overline{L}$).
- 2. For n = 0 and $u \neq 0$ even, this function belongs to Λ .
- 3. For n = 0 and u = 0, this function is of the form $T^{-1}g(T)$, with g(T) invertible in Λ .

4.6 Families of *p*-adic Modular Forms (weight not divisible by p-1)

Let f_s be a *p*-adic modular form, depending on a parameter $s \in \mathbb{Z}_p$, of weight $k(s) \in 2X$. Assume that k(s) = (rs, u) with $r \in \mathbb{Z}, u \in \mathbb{Z}/(p-1)\mathbb{Z}$ independents of *s*. Suppose further that $u \neq 0$.

Theorem 4.14. Suppose that, for all $n \ge 1$, the function $s \mapsto a_n(f_s)$ belongs to the Iwasawa algebra Λ . Then so does the function $s \mapsto a_0(f_s)$.

4.7 Families of *p*-adic Modular Forms (weight divisible by p-1)

Let f_s be a *p*-adic modular form, depending on a parameter $s \in \mathbb{Z}_p$, of weight $k(s) \in 2X$. Assume that k(s) = (rs, 0) with $r \in \mathbb{Z} \setminus \{0\}$. Say that a function on $\mathbb{Z}_p \setminus \{0\}$ (resp. on $2\mathbb{Z}_2 \setminus \{0\}$) belongs to Λ if it the restriction of a function of Λ .

Theorem 4.15. Suppose that, for all $n \ge 1$, the function $s \mapsto a_n(f_s)$ belongs to the Iwasawa algebra Λ . Then so does the function

$$s \mapsto 2\zeta^* (1 - rs, 1)^{-1} a_0(f_s)$$

Corollary 4.16. The function $s \mapsto a_0(f_s)$ belongs to the fraction field of Λ . Moreover, it can be written as $c(T)/((1+T)^r - 1)$, with $c \in \Lambda$.

5 *p*-adic zeta-functions

5.1 Notation

Write K for a totally real number field of degree r. Its ring of integers is written \mathcal{O}_K , and its different ideal by \mathfrak{d} . We will write $d = \operatorname{disc}(K)$ for its discriminant (so that $d = N\mathfrak{d}$) (we write N for both the absolute norm on ideals and on elements). The trace of an element x is written $\operatorname{Tr}(x) \in \mathbb{Q}$. We say that an element $x \in K$ is **totally positive** if $\sigma(x) > 0$ for each embedding $\sigma: K \hookrightarrow \mathbb{R}$. We write then $x \gg 0$. Note that in this case, $\operatorname{Tr}(x) > 0$.

Definition 5.1. The zeta function associtated to K is:

$$\zeta_K(s) \stackrel{\text{def}}{=} \sum N \mathfrak{a}^{-s} = \prod (1 - N \mathfrak{p}^{-s})^{-1}, \quad \Re(s) > 1$$

where \mathfrak{a} runs on the set of nonzero ideals of \mathcal{O}_K , and \mathfrak{p} runs on the set of nonzero prime ideals of \mathcal{O}_K .

This can be meromorphically extended to all \mathbb{C} , with a single simple pole at s = 1.

Claim. The function

$$d^{s/2}\pi^{-rs/2}\Gamma(\frac{s}{2})^r\zeta_K(s)$$

is invariant under $s \mapsto 1-s$ (functional equation). This implies some vanishing (or non-vanishing) at points of the form 1-n, for $n \ge 1$, which in any case are rational nombers (Hecke-Siegel's theorem).

5.2 Modular Forms attached to K

Define, for $k \ge 2$ an even integer,

$$g_k \stackrel{\text{def}}{=} \sum_{n \ge 0} a_n(g_k) q^n$$

where:

$$a_0(g_k) \stackrel{\text{def}}{=} 2^{-r} \zeta_K (1-k)$$
$$a_n(g_k) \stackrel{\text{def}}{=} \sum_{\substack{x \in \mathfrak{d}^{-1} \\ \operatorname{Tr}(x) = n \\ x \gg 0}} \sum_{\mathfrak{a} \mid x \mathfrak{d}} (N \mathfrak{a})^{k-1}$$

Theorem 5.2 (Hecke-Siegel). Except for (r = 1, k = 2), the series g_k is a modular form on $SL_2(\mathbb{Z})$ of weight rk.

Corollary 5.3.

- 1. If $rk \not\equiv 0 \pmod{p-1}$, then $\zeta_K(1-k)$ is p-integral.
- 2. If $rk \equiv 0 \pmod{p-1}$, then:

$$v_p(\zeta_K(1-k)) \ge -1 - v_p(rk)$$
 ($p \ne 2$)
 $v_p(\zeta_K(1-k)) \ge r - 2 - v_p(rk)$ ($p = 2$)

Define, for $k \ge 2$ an even integer,

$$g'_k \stackrel{\text{def}}{=} \sum_{n \ge 0} a_n(g'_k) q^n$$

where:

$$a_0(g'_k) \stackrel{\text{def}}{=} 2^{-r} \zeta_{K,S}(1-k) = 2^{-r} \zeta_K(1-k) \prod_{\mathfrak{p} \in S} (1-N\mathfrak{p}^{k-1})$$
$$a_n(g'_k) \stackrel{\text{def}}{=} \sum_{x,\mathfrak{a}} (N\mathfrak{a})^{k-1} \qquad \text{for } n \ge 1$$

Theorem 5.4. The series g'_k is a modular form on $\Gamma_0(p)$ of weight rk.

5.3 The *p*-adic Zeta Function of the Field K

One defines the *p*-adic series g_k^* , of weight $rk \neq 0$ (for k and element of X):

$$a_0(g_k^*) = 2^{-r} \zeta_K^*(1-k) = 2^{-r} \lim_{i \to \infty} \zeta_K(1-k_i)$$
$$a_n(g_k^*) = \sum_{\substack{\text{Tr}(x) = n \\ x \in \mathfrak{d}^{-1} \\ x \gg 0}} \sum_{\substack{\mathfrak{a} \mid x \mathfrak{d} \\ \mathfrak{a}, p = 1 \\ x \gg 0}} (N\mathfrak{a})^{k-1}$$

The function ζ_K^* is called the *p*-adic zeta function of *K*, and takes values on \mathbb{Q}_p .

Theorem 5.5. Let $k \ge 2$ be an even integer. Then:

$$\zeta_K^*(1-k) = \zeta_{K,S}(1-k) = \zeta_K(1-k) \prod_{\mathfrak{p} \in S} (1-N\mathfrak{p}^{k-1})$$

where S is the set of primes p lying over p.

Note that the theorem implies (because ζ_K^* is continuous) the uniqueness of ζ_K^* , and characterizes it. In fact, ζ_K^* is actually analytic: write $k = (s, u) \in X$, so that the condition $rk \neq 0$ means $s \neq 0$ or $ru \neq 0$. Write $\zeta_K^*(1-k) = \zeta_K^*(1-s, 1-u)$.

Theorem 5.6. Let $u \in \mathbb{Z}/(p-1)\mathbb{Z}$ be even. Then:

- If $p \neq 2$:
 - 1. If $ru \neq 0$, then the function $s \mapsto \zeta_K^*(1-s, 1-u)$ belongs to the Iwasawa algebra $\Lambda = \mathbb{Z}_p[[T]].$
 - 2. If ru = 0, then the function $s \mapsto \zeta_K^*(1-s, 1-u)$ is of the form $h(T)/((1+T)^r 1)$ with $h \in \Lambda$.
- If p = 2: The function $s \mapsto \zeta_K^*(1-s)$ is of the form $2^r h(T)/((1+T)^r - 1)$, with $h \in \Lambda$.

Corollary 5.7. If $ru \neq 0$ and $p \neq 2$, the function $s \mapsto \zeta_K^*(1-s, 1-u)$ is holomorphic in a disk strictly larger than the unit disk.

Corollary 5.8. If ru = 0, the function $s \mapsto \zeta_K^*(1 - s, 1 - u)$ is meromorphic in a disk strictly containing the unit disk, and it's holomorphic except for possibly a simple pole at s = 0.

Corollary 5.9. Let a, b > 0 be positive integers. Suppose that $a \ge 2$ is even, $ra \not\equiv 0 \pmod{p-1}$ and $b \equiv 0 \pmod{p-1}$. Then the successive differences δ_n of the sequence $a_n \stackrel{\text{def}}{=} \zeta_{K,S}(1-a-nb)$ satisfy the congruences:

$$\delta_n \equiv 0 \pmod{p^n}$$
 and $\sum_{i=1}^n c_{in} \delta_i p^{-i} \equiv 0 \pmod{n! \mathbb{Z}_p}$

5.4 Computing $\zeta_K^*(1-k, 1-u)$ for $k \ge 1$ integer

Assume here that u is even and that $p \neq 2$. Note that, if $k \equiv u \pmod{p-1}$, then Theorem 5.5 gives us $\zeta_K^*(1-k, 1-u) = \zeta_{K,S}(1-k)$. We want an analogous result for the general case.

Let $\varepsilon \colon (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a character such that $\varepsilon(-1) = (-1)^k$. For \mathfrak{a} any ideal coprime to p, let $\varepsilon_K(\mathfrak{a}) \stackrel{\text{def}}{=} \varepsilon(N\mathfrak{a})$, which gives a character on K, which ramifies on a set $S_{\varepsilon} \subseteq S$.

Definition 5.10. Define the twisted L-function supported outside S as:

$$L_S(s,\varepsilon_K) \stackrel{\text{def}}{=} \prod_{\mathfrak{p}\notin S} (1-\varepsilon_K(\mathfrak{p})N\mathfrak{p}^{-s})^{-1} = L(s,\varepsilon_K) \prod_{\mathfrak{p}\in S\setminus S_{\varepsilon}} (1-\varepsilon_K(\mathfrak{p})N\mathfrak{p}^{-s})$$

Fix an embedding $\sigma : \mathbb{Q}(\mu_{p-1}) \hookrightarrow \mathbb{Q}_p$, so that ε becomes $x \mapsto x^{\alpha}$, for some $\alpha \in \mathbb{Z}/(p-1)\mathbb{Z}$. We have then:

Theorem 5.11.

$$\zeta_K^*(1-k,1-u) = L_S(1-k,\varepsilon_K)^{\sigma}$$

5.5 A periodicity property of ζ_K^*

Suppose here that $p \neq 2$. Consider $K(\mu_p)$, the extension of K obtained by adjoining the p^{th} roots of unity, and let $b \stackrel{\text{def}}{=} [K(\mu_p) : K]$. As K is real, we have that b is even and $b \mid p - 1$.

Theorem 5.12. If $u' \equiv u \pmod{b}$, then:

$$\zeta_K^*(1-s, 1-u) = \zeta_K^*(1-s, 1-u')$$