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1 p-adic Modular Forms

1.1 Notation

Let p be a prime. Consider the field p-adic numbers Q,, with its non-archimedean valuation v,,
normalized such that v,(p) = 1. We say = € Q, is p-integral if v,(z) > 0.

If f=> a,q" € Q,¢]] is a formal power series, we define v,(f) L ing vp(an). If v,(f) > m we
write as well f =0 (mod p™).

Let (fi) be a sequence of elements in Q,[[g]]. We say that f; — f if the coefficients of f; tend
uniformly to those of f (that is, if v,(f — fi) — +o0.

For k > 2 an even integer, we set:

def  Dp
Gk = —% 1;:1 O'kfl('n)q
dof 2k 2k —
F.=—G,=1—-— E _ "
F by F by, p— 7k-1(n)q

where by is the k" Bernoulli number, and oy_1(n) = > din d*=!. Note that, for k > 4, the series
G} and Ej, are modular forms of weight & (and level 1).
Write also:

PEE=1-24Y o(n)q"
QX Fy =1+ 240 Z as(n)q"
RYE,=1- 5042 os(n)q"
The algebra of modular forms on SLy(Z) is precisely C[Q, R].
Lemma 1.1.
o Ifk/ =k#0 (mod p—1), then G, = G (mod p).
o Ifp— 1|k, then By =1 (mod p —1). In fact, we have:

— Ifp#2: E, =1 (mod p™) if, and only if, k =0 (mod (p — 1)p™1).
— Ifp=2: B, =1 (mod 2™) if, and only if, k =0 (mod 2™ 2%).

1.2 The Algebra of mod-p Modular Forms

For k € Z, write M, for the seet of modular forms of weight k, with coefficients in Z¢,) = Q N Z,,.

One can reduce these forms modulo p, and we write M; C F,[[¢]] for the reduction of Mj. Write

as well M & Y ke M.

Theorem 1.2 (p > 5). Define, for o € Z/(p — 1)Z:

e Usea Mj,

where one sends My, to My,—1 by multiplying by E,_1. Then:
M = @ M



Theorem 1.3 (p = 2,3). One then has:
M = FP[A]

where A is the mod-p reduction of the weight-12 cusp form A.

1.3 Congruences mod-p” between Modular Forms

Theorem 1.4. Let f and [’ be two modular forms with rational coefficients, of respective weights
k and k'. Assume also that f # 0 and that:

vp(f — ) = v,(f) +m for some integer m > 0
Then:
K=k (mod (p—1)p™") ifp>3
K =k (mod 2" ?) if p=2

1.4 p-adic Modular Forms
Definition 1.5. Let X,, be defined, for m > 1, as:

at JZ/(p—1)p" 'L ifp#2
" 7./2m 27, ifp=2

The group of weights is defined as:

Ly xZ)](p—1)Z ifp#2

o

X “im X, = {

%
Note that Z can be viewed as a dense subgroup of X.

Definition 1.6. A p-adic modular form is a formal series with coefficients in @, which is the
limit of classical modular forms of weights ;.

Theorem 1.7. Let f be a nonzero p-adic modular form. If (f;) is a sequence of rational modular
forms of weight k; tending to f, then the k; tend to an element k € X, which is even.

Example. If p=>5 (or p=2,3), then @ =1 (mod p), so that:

1 m
— = lim Q"""

Q m—oo

and hence % is p-adic modular, as well as 1/j = A/Q3.



1.5 First Properties of the p-adic Modular Forms

Theorem 1.8 (generalizes Theorem 1.4). Let f and f' be two p-adic modular forms, of re-
spective weights k and k'. Assume also that f # 0 and that:

vp(f — ) > v,(f) +m for some integer m > 0
Then k and k' have the same image in X,,.

Corollary 1.9. Let f = ag+ a1q+ -+ a,q" + - -+ be a p-adic modular form of weight k € X.
Let m > 0 be an integer such that the image of k in X,,41 is nonzero. Then:

0,(a0) +m > inf v,(ay)
(in particular, if the a,, are p-integral for all n > 1, then the same holds for p™aq (interesting case:
p—11k. Thenm=0).

Corollary 1.10. Let %9 be a sequence of p-adic modular forms, of weights k¥, such that the
a'? tend uniformly to a, € Q, for alln > 1, and k@) tends (in X) to a limit k # 0. Then the

coefficients a(()l) tend to some ag € Q,, and the limit series is a p-adic modular form of weight k.

1.6 An Example: p-adic Eisenstein series
Define, for Kk € X and n > 1:
* def _
op1(n) = de tez,
def

where the sum is for all d > 1, d | n, such that p t d. Then the sequence Gy, = —by,/2k; +
anl ok,—1(n)g" has a limit:

Gi=ao+ Y oi(n)g"

n>1

with ap = L lim; o, C(1 — ki) = 1¢7(1 — k).

The function ¢* is thus defined on the odd elements of X \ {1}, and by a Corollary 1.10 it is
continuous.

Theorem 1.11.
o Forp#2, and if (s,u) # 1 is an odd element of X =7Z, x Z/(p — 1)Z, then:
¢ (s,u) = Lp(s;0'™)
where Ly(s; x) is the p-adic L-function of a character x, and w is the Teichmuller character.
o [fp=2andifs+#1isan odd element of X = Zs, then:
C*(s,u) = La(s;x°)
Note also that, if £ > 0 is an even integer, then we have:
Gr = G —p" G|V

Lastly, if £ =0 (mod (p — 1)p™™'), then E} =1 (mod p™), and so we set Ej €1, as this is the
limit of the E} when k& — 0.



2 Hecke Operators

2.1 Action of T, U, V, 6 on the p-adic Modular Forms

Let f =) ,a,q" be a formal power series with coefficients in Q,. Define:

flU &of Z apnq" and flvV oo Z ang™"
n=0 n=0

Also, if [ # p is a prime and k € X, define:

Flny = Zaznq + 1 1Zanq

def df Z nanq

For h € X, define:
fIRn aof Z na,q"

(n,p)=1

Theorem 2.1. The operators U, V and T} preserve the p-adic modular forms of a given weight k.
The operator 0 increases the weight by 2. The operator Ry, increases the weight by 2h (for h € X ).

One can define then the Hecke operators for any m coprime to p, through the usual formulae:

T, T, =T,T,, = Trmn if (m,n) =1
T Tin = Tjosr + 11T if [ is a prime and n > 1.

Proposition 2.2. Here there are some formulae:

(05)|U = po(f|U) fIRWU =0
0(f|V) = p(0f)|V (0F)|ke2Ti = 10(FI5TH)
fIVIR, =0 (FIR) ko Ti = I"(f15T)| R

2.2 A Contraction Property

Definition 2.3. Let p > 5. The filtration of f € M* is written w(f) and is the least k such that
f € M.

Lemma 2.4. Suppose that p > 5. Then:
w(0f) <w(f)+p+ 1, with equality if, and only if, pt w(f).
2. For alli > 1, one has w(f*) = iw(f).
w(flU) <p+ 0=

4. If w(f)=p—1, thenw(f|U) =p— 1.



Theorem 2.5.
1. Ifk>p+1, then U(M,) C My for some k' < k.

2. For k =p—1, the operator U induces a bijection on Mp_l.
Corollary 2.6. Let p > 5, and let « € Z/(p — 1)Z be even. Then:

1. The space M® can be uniquely decomposed as M = 5 @ ]\7‘1, such that U 1is biyjective on
5S¢, and locally nilpotent on N*. Also, S C M;, where j € v is such that 4 < j <p+1. In
particular, S* is finite-dimensional.

2. Fora =0, one has j =p—1, and SO — Mp,l.

If p=2 orp =23, then one can also decompose M=Sa® ]57, with S = My = F,, and N = AM.
Then U 1is the identity on S, and it is locally nilpotent on N.

2.3 Application: Computing the Constant Term of a p-adic Modular
Form

Theorem 2.7. Let f be a p-adic modular form of weight k € X. Let p be a prime such that p <7
or such that p > 11 and k = 4,6,8,10,14 (mod p — 1). Then:

() = 3¢ (1= k) lim a0 (/)
Theorem 2.8 (case p— 1| k). There exists a polynomial H € Z[U, T, : | prime] such that, for all
k € X diwisible by p — 1, one has:
1. E}|H = c(k)E}, wich c(k) € 7).
2. lim, o f|H" =0 for any cuspidal p-adic modular form of weight k.
(note that H doesn’t depend on k, but its action on f actually does).
Corollary 2.9. If f is a p-adic modular form of weight 0 # k=0 (mod p — 1) one has:

() = 5¢°(1— k) T c(k) "o (F|H")
Note that this allows to compute ao(f) in terms of the a,,(f)’s, as a;(f|H") is a Z,-linear
combination of the a,,(f), for m > 1.
Examples.
e Forp <11, take H =U and c(k) = 1.

e Forp=13, take H =U(U +5) and c¢(k) =6, or H=U(Ty — 2) and c¢(k) =21 — 1.

o Forp=17, take H =U(Ty +5) and c(k) = 2871 + 6.

Theorem 2.10 (case p — 11 k). Let k € X be such that p — 1 1 k. Then there is a sequence
(Amn)man>1 of elements in Z, such that:

1. For each n, then A\, ,, = 0 for all m sufficiently large.
2. ao(f) = limy oo un(f), where u,(f) = 32,51 Amnan(f), for each p-adic modular form of
weight k.
(note that the coefficients Ay, DO depend on the weight k.



3 Modular forms on ['y(p)

3.1 Review of Classical Definitions

a b

Given f a holomorphic function on H, and v = (c d) € GLy(R)*, one defines f|yy, also

holomorphic on H, as:

() = det() ez + )74 ()

Consider also I'g(p), a subgroup of index p+ 1 in SLy(Z). Define also the Fricke involution W to
. det (0 —1
be the matrix W = < )

p
Definition 3.1. Given f € M;(Ly(p)), the trace of f is defined to be:
dof p+1
Te(f) = D fl;
j=1

where {7,};=1. p+1 Is a set of coset reps of I'g(p)\SL2(Z).
Lemma 3.2. If f =) a,q" and f|;W = >_b,q", then:

Te(f) = and" +p > bpug" = f +p" (W)U
Remark. If f is a modular form on SLy(Z), then:
Te(f[x W) = p' 2 i T,

and so the trace and the Hecke operator are related.

3.2 Passing from I'y(p) to SLy(Z)

Theorem 3.3. Let f = > a,q" be a modular form of weight k on T'o(p), with rational coeffi-
cients. Then f is a p-adic modular form of weight k. In fact, one needs only to require that f is
meromorphic at the cusp 0 to get the same result.

Proof. Define, for a > 4 an even integer such that p — 1 | a:

¢ ¥ B, — p"°E,|,W = E, — p"E,|V

which is a modular form of weight a on I'y(p).
Lemma 3.4. We have g =1 (mod p) and g|,W =0 (mod p't%/?).

We have that both f and f[WW have rational coefficients. For each m > 0, we have fg?"

is a modular form on T'y(p), of weight k,, = k + ap™, with rational coefficients as well. Let

fm def Tr(fg*"). We then note that k,, — k, and that f,, — f (as m — 00). O

Remark. Consider the following function:
. def — - n
FEQYA=q+) cln)g
n=0

The previous Theorem can be applied to the function f dof JlU = > c(pn)q™, which has a pole of
order p at the cusp 0.



3.3 Reduction (mod-p) of weight-2 forms on I'y(p)

Theorem 3.5. Let p > 3. Let f be a modular form of weight 2 on T'o(p), with p-integral rational
coefficients. Then:

1. flaW = —f|U, which is a modular form with p-integral coefficients as well.
2. The reduction f = f (mod p) belongs to M,

3. Conversely, any element of Mpﬂ s the mod-p reduction of some weight-2 modular form on
LCo(p) with p-integral coefficients.

In other words:
Mz(ro@); Z(p)) = Mp+1(SL2(Z); Z(p)) (mod p)

Corollary 3.6. The eigenvalues of U acting on Mp—l—l are 1.

3.4 Forms on I'y(p) with Nebentypus

Suppose that p > 3. Let € be a character mod p. Let r = ¢(p — 1), and write p = py - -+ - p,
the decomposition of p in Q(ppy—1). Fix one of these prime ideals, which defines an embedding
o: Q(ptp—1) — Q,. This in turn induces an isomorphism g, ; ~ (Z/pZ)* (and all isomorphism
are obtained in this way). Then o o ¢ is of the form x +— z* with some o € Z/(p — 1)Z. Then:

Theorem 3.7. Let f = > a,q" be a modular form of type (k,e) on L'o(p) such that a, € Q(pp—1)

for all n. Then the resulting series f" = Z agq", with coefficients in Q, is a p-adic modular form
of weight k + o (where « is identified with (0, a) €EX=Z,xZ/(p—1)Z, and k+ o = (k,k+ ).

Proof. For € = 1 the result has been proven before. So assume ¢ # 1.

Lemma 3.8. Let k > 1, and assume that e(—1) = (—1)F. Then the series:
of 1
G(e )d:f—Ll—kza Z S e(@yd ) ¢
n=1 dln
is a modular form of type (k,e) on Lo(p), with coefficients on Q(u,—1), and one has:
Gr(e)” = Gy,

with h = k + a.
OJ

Remark. One can show that, with the hypotheses of the previous Theorem, f|,W is of type (k,e™!),
and that f|,W? =¢(-1)f.



4 Analytic Families of p-adic Modular Forms

4.1 The Iwasawa Algebra (for p # 2)
4.1.1 Notation
For n > 1, define U,, & {u€Zy |u=1 (mod p")}, as a subgroup of Z. Note that:
U1 ~ hLD(Ul/Un) >~ Zp
For uw =1+ pt € Uy and s € Z,, one can define u* € Z, as:

u' = (1+pt) =) <Z) "

n>0

Definition 4.1. Let I’ be the Z,-algebra of functions Z, — Z,, and let L C I be the subalgebra

generated by all the f, O s (u € Uy). By independence of characters, the f, form a basis
for L.

Lemma 4.2. The algebra L is isomorphic to Z,[Ui]. So any f € L can be uniquely written as
s+ f(s) = > yep, M’ With A, € Zyy, and almost all of them being 0.
4.1.2 The algebra L

Definition 4.3. Let L be the adherence of L in F, with respect to the topology given by uniform
convergence.

Remark. The elements of L are equicontinuous:
s=s (modp") = f(s)=f(s') (mod p"*?")

So the same property holds for L. Note also that L is compact.

4.1.3 The algebra A
Definition 4.4. The Iwasawa algebra is A & Zy|[Uh]] = im Z,[U1 /U]
Claim. The algebra A ~ Z,[[T], through sending f, — 1+T, if u = 147 is a topological generator
of Uy with v,(m) = 1.
414 L=A
Note that L = Z,[U;] is contained in both L and A.
Lemma 4.5. There is a unique isomorphism of topological algebras:
e:N— 1L

such that it is the identity on Z,[U;]. The isomorphism ¢ maps f =Y a,T™ to:

e(f) s flut—1) =) an(u’ —1)"

(note that v>* — 1 =0 (mod p)).



Remark. In this way, we will go from a power series in 1" to a function of s, using the “change of
variables”:
T=u"—1=vs+---4+0"s"/nl+--- where v = log(u)

4.1.5 Zeros of an element of A

Lemma 4.6. Let f # 0 be an element of A = Z,[[T]]. Then f can be uniquely written (Weierstrass
decomposition) as:
f=p"(T*"+a T+ + a)u(T)

with A\, ;0 > 0, vy(a;) > 1 and v € A*.
In particular, f(s) has a finite number (< \) of zeros.

Corollary 4.7. Let fi,..., fa,... be a sequence in A, converging pointwise for all s € S, where
S C Z, is infinite. Then the sequence f, converges uniformly on Z,, to a function f € A.

4.2 The Iwasawa Algebra (for p = 2)

Basically everything extends, with minor changes. Define U,, in the same way as before. Then:
Z; = U1 = {:l:l} X U2

and Uy ~ Zy. For u € Uy, let w(u) denote his sign (the component in {£1}, and let < u > his
component in U;. We will define L and A using U, instead of Uj.
Let then L the algebra generated by the functions f,, with u € U;. Then again:

The remaining is the same.

4.3 Char’n of elements in A by their expansions

Define the integers ¢;,, for 1 < ¢ < n, through the identity:
- : Y
Y =YY —1)(Y =2)- (Y —n+1) :n!< )
n
i=1

Theorem 4.8. A function f € F belongs to A if, and only if, there exists a sequence of p-adic
integers (by)n>0 such that:

1. f(8) = 2 50 bup™s™ /! for all s € Z,.
2. 0,370 cinbi) > vp(n!) for alln > 1.
(if p =2, one has to replace p" by 4" ).
Corollary 4.9. Let f € A, and let b, the corresponding coefficients. Then, for all n > 1:

bn = bryp1 (mod p)

10



4.4 Char’n of elements in A by interpolation properties

Let sg,s1 € Zy, and let f € F (that is, a function Z, — Z,). Define the coefficients a,, = a,(f) =
f(so + ns1), and let dg,d1,... be the successive differences of the sequence (a,) (starting with
do = ap). Let also:

pdet J 1+ v(s1) p#2
2+wa(s1) p=2

We have:
Theorem 4.10. If f € A, then:
1. 6, =0 (mod p"™) for alln > 0.
2. vy (D1, cindip™™) > wp(nl) for alln > 1.
Corollary 4.11. Let e, ) Sup ™. Then e, = enyp1 (mod p) for alln > 1.

In fact, there is a converse to the previous theorem. Let s = 0 and s; = 1, so that a,, = f(n).
One can then write (Mahler criterion) for all s € Z,:

=)

Theorem 4.12. Let f: Z, — Q, be a continuous function, and let 6, i S(=1)(7) f(n — i) be
its interpolation coeﬁiczents Then f € A if, and only if:

1. 6, =0 (mod p™) for alln > 0.
2. vy (D20 Cinbip™?) > vp(nl) for alln > 1.

(if p = 2, one needs to replace p™ by 4™, and p~* by 47°).

4.5 Example: Coefficients of the p-adic Eisenstein Series
Write k = (s,u) € Z, x Z/(p — 1)Z = X, for k even and nonzero.
Claim. The form Gy = G5, has coefficients:

1
w(@1) = 51— 51— w)
an(G%.) Zd w(d)" <d>*

Theorem 4.13. Consider the function (s,u) — Gj. Fiz u and n, and consider the function
s+ a,(G%,). Then:

1. For n > 1, this belongs to L (and hence to A = L).
2. Forn =0 and u # 0 even, this function belongs to A.

8. Forn =0 and u = 0, this function is of the form T g(T), with g(T) invertible in A.

11



4.6 Families of p-adic Modular Forms (weight not divisible by p — 1)

Let fs be a p-adic modular form, depending on a parameter s € Z,, of weight k(s) € 2X. Assume
that k(s) = (rs,u) with r € Z,u € Z/(p — 1)Z independents of s. Suppose further that u # 0.

Theorem 4.14. Suppose that, for all n > 1, the function s — a,(fs) belongs to the Iwasawa
algebra A. Then so does the function s — ag(fs).

4.7 Families of p-adic Modular Forms (weight divisible by p — 1)

Let fs be a p-adic modular form, depending on a parameter s € Z,, of weight k(s) € 2X. Assume
that k(s) = (rs,0) with r € Z \ {0}. Say that a function on Z, \ {0} (resp. on 2Z, \ {0}) belongs
to A if it the restriction of a function of A.

Theorem 4.15. Suppose that, for all n > 1, the function s — a,(fs) belongs to the Iwasawa
algebra A. Then so does the function

S — QC*(I —TSs, 1)_1a0(fs)

Corollary 4.16. The function s — ao(fs) belongs to the fraction field of A. Moreover, it can be
written as ¢(T)/((L+T)" — 1), with ¢ € A.

5 p-adic zeta-functions

5.1 Notation

Write K for a totally real number field of degree r. Its ring of integers is written Ok, and its
different ideal by 2. We will write d = disc(K) for its discriminant (so that d = N9?) (we write
N for both the absolute norm on ideals and on elements). The trace of an element x is written
Tr(z) € Q. We say that an element x € K is totally positive if o(z) > 0 for each embedding
o0: K — R. We write then z > 0. Note that in this case, Tr(z) > 0.

Definition 5.1. The zeta function associtated to K is:

() =Y Na =1 - Np~)7', R(s) > 1

where a runs on the set of nonzero ideals of O, and p runs on the set of nonzero prime ideals of
Ok.

This can be meromorphically extended to all C, with a single simple pole at s = 1.

Claim. The function
ds/zﬂ'im/QF(gng(S)

is invariant under s — 1—s (functional equation). This implies some vanishing (or non-vanishing)
at points of the form 1 —n, for n > 1, which in any case are rational nombers (Hecke-Siegel’s
theorem,).

12



5.2 Modular Forms attached to K

Define, for £ > 2 an even integer,

def n
gk = Z an(gk)q

n>0
where:

ao(gr) & 27 ¢ (1 — k)

Theorem 5.2 (Hecke-Siegel). Exzcept for (r = 1,k = 2), the series g is a modular form on
SLy(Z) of weight rk.

Corollary 5.3.
1. Ifrk 20 (mod p — 1), then Cx(1 — k) is p-integral.
2. Ifrk=0 (mod p — 1), then:
Up(Cre(1 = k) > =1 — wy(rk) (p # 2)
0p(Cu (1 = k) =1 =2 —v,(rk) (r=2)

Define, for £ > 2 an even integer,

def n
Q;c = Z an(g;c>q

n>0

where:

an(gh) = 27 Cres(1 — k) = 277Ce(1 = k) [ (1 = Nyt
pesS

an(gy,) « Z(Na)k_l forn>1

z,a

Theorem 5.4. The series g, is a modular form on I'y(p) of weight rk.

5.3 The p-adic Zeta Function of the Field K
One defines the p-adic series gj, of weight 7k # 0 (for k and element of X):

ao(gr) = 27" Ce(1 = k) = 27" lim (e (1 — ky)

anlgi) = Y Y, (Na)!
Tr(z) =n alxd
red ™l (a,p) =1
x>0

The function ( is called the p-adic zeta function of K, and takes values on Q,.

13



Theorem 5.5. Let k > 2 be an even integer. Then:
Giel = ) = Gies(1 = ) = Gie(1 = ) [[ (1 = Np*)
pesS
where S is the set of primes p lying over p.

Note that the theorem implies (because (j; is continuous) the uniqueness of (j;, and character-
izes it. In fact, (. is actually analytic: write k = (s,u) € X, so that the condition rk # 0 means
s#0orru#0. Write (j.(1 — k) = (1 —s,1 —u).

Theorem 5.6. Let uw € Z/(p — 1)Z be even. Then:

o [fp#2:
1. If ru # 0, then the function s — (5 (1 — s,1 — u) belongs to the Iwasawa algebra
A =Z,[[T]].
2. If ru = 0, then the function s — (5 (1 — s,1 —u) is of the form h(T)/((1 +T)" — 1)
with h € A.
o [fp=2:

The function s — (5 (1 — s) is of the form 2"h(T)/((1 +T)" — 1), with h € A.
Corollary 5.7. If ru # 0 and p # 2, the function s — (j(1 — s,1 — u) is holomorphic in a disk
strictly larger than the unit disk.

Corollary 5.8. If ru = 0, the function s — (5 (1 — s,1 —w) is meromorphic in a disk strictly
containing the unit disk, and it’s holomorphic except for possibly a simple pole at s = 0.
Corollary 5.9. Let a,b > 0 be positive integers. Suppose that a > 2 is even, ra Z 0 (mod p — 1)

and b =0 (mod p — 1). Then the successive differences 0,, of the sequence a,, o Cks(l —a—nb)
satisfy the congruences:

9, =0 (mod p") and Zcméip_i =0 (mod nlZ,)
i=1

5.4 Computing (- (1 —k,1 —u) for £ > 1 integer

Assume here that u is even and that p # 2. Note that, if £ = v (mod p — 1), then Theorem 5.5
gives us (5 (1 —k,1 —u) = (x s(1 — k). We want an analogous result for the general case.
Let e: (Z/pZ)* — C* be a character such that e(—1) = (—1)*. For a any ideal coprime to p,

let ek (a) oo £(Na), which gives a character on K, which ramifies on a set S. C S.
Definition 5.10. Define the twisted L-function supported outside S as:
Ls(s,ex) S [[(1 = ex(p)Np™) ™" = L(s.ex) [ (1 —ex(p)Np™)
pES peS\Se

Fix an embedding o: Q(pp—1) — Q,, so that € becomes x — 2%, for some a € Z/(p —1)Z. We
have then:

Theorem 5.11.
C}}(l — k‘,l — U) = L5<1 — k?,fSK)U
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5.5 A periodicity property of (-
Suppose here that p # 2. Consider K (j,), the extension of K obtained by adjoining the p™ roots
of unity, and let b & [K(pp) : K. As K is real, we have that b is even and b | p — 1.

Theorem 5.12. If ' = u (mod b), then:

Gr(1—s,1—u)=(p(l—s,1—1)
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