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2.5 Čech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.6 Sheafification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.7 Sheaves on Xet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.8 Sheaf Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.8.1 Calculating cohomology: direct and inverse images . . . . . . 106
2.9 Stalks on X ét . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.10 Application: The Cohomology of Curves . . . . . . . . . . . . . . . . 114

3



4 CONTENTS

2.10.1 The Cohomology of Gm,X . . . . . . . . . . . . . . . . . . . . 114



CONTENTS 5

Disclaimer

These notes are from a course on étale cohomology by Adrian Iovita, taken by the
authors at Concordia University in the winter of 2008. We have tried our best to
present a faithful account of these lectures. Be warned that despite our efforts, many
errors likely persist. Please do not take this as an indication of the quality of the
lectures. Any errors are most likely due to carelessness while typesetting, or the
authors’ misunderstanding of the material.

Professor Iovita based this course on several courses he has taken, as well as the
standard reference books. We will eventually include a full set of references, and give
due intellectual credit to the deserving parties.

Ivan Garcia warns us that there is a high overlap between these notes and
Lenstra’s notes found in:

http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf, about which
we were unaware. You are encouraged to use the material that you find the most
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Chapter 1

Étale Coverings and Fundamental
Groups

Many classical geometric ideas have analogues in the theory of schemes. The ex-
treme coarseness of the Zariski topology often neccessitates one to reformulate the
definitions appropriately, despite the fact that schemes have an honest topological
space as their backbone. Two of the first such properties that most students en-
counter are the Hausdorff and compactness conditions for a topological space. These
have the analogues of being separated and proper, respectively, in scheme theory.
This chapter will give a useful scheme theoretic definition of a covering space. What
happens if one adopts the classical definition? Then one can show, for instance, that
Spec(C[x]) does not admit any nontrivial covering spaces. Thus, in order to describe
an interesting theory, we will need to alter our definition of a covering space of a
scheme.

1.1 Projective and separable algebras

In what follows, rings are always commutative with 1, and ring homomorphisms map
1 7→ 1. Algebras are also assumed to be commutative and unital. Let A be a ring.
In this section we introduce some of the algebraic tools that are necessary to define
étale morphisms.

Definition 1.1.1. An A-module P is said to be projective if it is a direct summand
of a free module. This means that there exists a complementary A-module M , such
that P ⊕M is free.
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8 CHAPTER 1. ÉTALE COVERINGS AND FUNDAMENTAL GROUPS

Note that all free modules are projective. There are several equivalent ways to
formulate the property of being projective:

Lemma 1.1.2. Let P be an A-module. The following are equivalent:

i) P is projective.

ii) The functor M 7→ HomA(P,M) is exact.

iii) For every surjective morphism g : M →M ′ of A-modules, and every morphism
f : P →M ′, there exists a morphism h : P →M such that f = g ◦ h.

iv) Every exact sequence 0 → M ′ → M → P → 0 splits. Recall that this means
M → P admits a right inverse, or equivalently that M ′ → M admits a left
inverse. In this case, M 'M ′ ⊕ P .

Proof. (i) implies (ii): For all modules P , the functor M 7→ HomA(P,M) is left
exact. It thus suffices to show that it preserves surjections g : M → M ′ when P
is projective. Let N be such that P ⊕ N is free with basis {pi + ni}i∈I . Note that
the pi’s generate P , albeit perhaps not freely. Let f : P → M ′; we must produce a
morphism h : P → M with f = g ◦ h. Choose mi ∈ M such that g(mi) = f(pi).
Define a map h′ : P⊕N →M⊕N by putting h′(pi+ni) = mi+ni. The composition:

P −→ P ⊕N h′−→ P ⊕M −→M

is a morphism h : P → M such that h(pi) = mi. Since the pi’s generate P , we get
f = g ◦ h.

(ii) implies (iii): This follows immediately since M 7→ HomA(P,M) preserves
surjections.

(iii) implies (iv): Apply (iii) to the given M → P and f : P → P the identity
map.

(iv) implies (i): Since every module is a quotient of a free module, there is an exact
sequence 0 → M ′ → M → P → 0 with M free. A splitting yields an isomorphism
M 'M ′ ⊕ P , so that P is a direct summand of a free module.

Corollary 1.1.3. If M is a finitely generated projective A-module, then M is a direct
summand of a finite free module.

Proof. Since M is finitely generated, it is a quotient of a finite free module N . If
N ′ is the kernel of the quotient map, then we can apply property (iv) of the lemma
above to the exact sequence:

0 −→ N ′ −→ N −→M −→ 0

and obtain a decomposition N 'M ⊕N ′.
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Examples 1.1.4.

i) If A = K is a field, then all A-modules are free and hence projective.

ii) Let A = A1 × A2 for rings A1 and A2. Then A1 and A2 are projective A-
modules, but they are not free. Let P be an A-module. Multiplication by the
idempotents (1, 0) and (0, 1) furnishes an isomorphism P ' P1×P2 where Pi is
an Ai-module. One can show that P is projective as an A-module if and only
if each Pi is projective as an Ai-module.

iii) Let A = K[G] where G is a finite abelian group and K is a field such that
char(K) | |G|. Then A is semi-simple. Although not every A-module is free, it
follows from the previous example that they are all projective.

iv) If A is a principal ideal domain, then projective A-modules are free.

v) Let A be a Dedekind domain and let P be a finitely generated A-module. Then
P is projective if and only if P is torsion free. This is equivalent to having a
decomposition P ' An ⊕ I where I ⊂ A is an ideal. Moreover, one can show
that two modules An ⊕ I and Am ⊕ J are isomorphic if and only if n = m and
I and J lie in the same ideal class of A.

vi) Let A be an integral domain and let K be the fraction field of A. Then an
A-submodule P ⊂ K is projective if and only if P is invertible.

vii) If A = K[x1, . . . , xn] for K a field, then every projective A-module is free.

viii) If A is a local ring, then every projective A-module is free. In the case of finitely
generated projective modules, this is a standard result that can be proven easily
via Nakayama’s lemma.

One can show that for finitely generated A-modules, projectivity is a local prop-
erty:

Theorem 1.1.5. Let P be an A-module. Then the following are equivalent:

i) P is projective and finite.

ii) P is of finite presentation and for every prime ideal p of A, Pp is a free Ap-
module.

iii) P is of finite presentation and For every maximal ideal m of A, Pm is a free
Am-module.



10 CHAPTER 1. ÉTALE COVERINGS AND FUNDAMENTAL GROUPS

iv) The coherent sheaf P̃ on Spec(A) is locally free and locally finite.

Proof.

We now proceed to define the rank and trace for finite and projective modules.

Definition 1.1.6. Let P be a finite, projective A-module. Define the rank function:

[P : A] : Spec(A)→ Z, p 7→ rkAp(Pp)

This function is locally constant, and hence continuous when Z is given the dis-
crete topology. This follows easily from the previous theorem. It follows that [P : A]
is constant on the connected components of X = Spec(A). In particular, if Spec(A)
is connected then [P : A] is constant. Recall that the connectedness of Spec(A) is
equivalent to the fact that A does not contain any nontrivial idempotents.

Definition 1.1.7. If P is a finite, projective A-module, we say that P is faithfully-
projective if [P : A](p) ≥ 1 for all p ∈ Spec(A).

The rank function characterises properties of the structure morphism of finite
projective A-algebras:

Proposition 1.1.8. Let B be a finite projective A-algebra, and let f : A→ B be its
structure (ring) morphism. Then:

i) f is injective ⇐⇒ [B : A] ≥ 1;

ii) f is surjective ⇐⇒ [B : A] ≤ 1 ⇐⇒ B ⊗A B → B, x ⊗ y 7→ xy is an
isomorphism; and

iii) f is an isomorphism ⇐⇒ [B : A] = 1.

Proof. First note that (3) follows from (1) and (2). Also, recall that injectivity and
surjectivity can be determined on the stalks (that is, they are local properties).

(a),⇒
Suppose that ∃p ∈ Spec(A) such that [B : A](p) = 0, that is Bp = 0. Then Ap 6= 0,
and hence fp : Ap → Bp is not injective.

(a),⇐
Let p ∈ Spec(A). Consider fp : Ap → Bp. Then, the rank of Bp is nonzero, and so in
particular Bp 6= 0.

Let I
def
= ker fp. Then I · Bp, which is by definition fp(I) · Bp, is zero. As Bp is

free, it is torsion-free in particular, and so I = 0. Hence fp is injective, as wanted.
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(b),[B : A] ≤ 1⇒ f is surjective.
We may assume that A is already local (after localizing at a prime p). So Spec(A) is
connected (because local rings do not have idempotents). Hence [B : A] is constant.
If [B : A] = 0, then B = 0, so f is surely surjective. So assume then that [B : A] = 1.
Then B is a free A-algebra of rank 1.

Consider now EndA(B), which is free of rank 1 over A, with basis IdB. The map
α : B → EndA(B), b 7→ [x 7→ bx] is A-linear. It is also injective (because α(b)(1) = b).
We can then take the compositum α ◦ f , which sends a ∈ A to the endomorphism
“multiplication by a”. So αf(a) = aIdB =⇒ α◦f is an isomorphism, which implies
(as α is injective) that f is surjective.

(b),f surjective =⇒ B ⊗A B → B is an isomorphism.

Let I
def
= ker f . As we are assuming that f is surjective, we get that B ' A/I. Then

we compute:

B ⊗A B ' B ⊗A (A/I) ' B/(IB) = B/(f(i)B) = B/0 = B

and this corresponds to the map x⊗y 7→ xy, so this is an isomorphism. (b),B⊗AB →
B iso. =⇒ [B : A] ≤ 1.
Just note that [B : A] = [B ⊗A B : A] = [B : A]2 (the last equality follows from a
homework exercise), and from that we deduce [B : A] ≤ 1.

Next we define the trace. Let M and N be A-modules. Let M∨ = HomA(M,A)
denote the dual module of M . There is a natural bilinear map:

M∨ ×N −→ HomA(M,N),

such that (φ, n) 7→ (m 7→ φ(m)n). This corresponds to a morphism:

M∨ ⊗A N −→ HomA(M,N).

If M and N are finite and free, it is not difficult to show that this is an isomorphism.
One can then use this fact to give a coordinate free definition of the trace of an
endomorphism of a finite free module. We will show that this isomorphism holds
if M and N are finitely generated and projective, and hence define the trace for
endomorphisms of finitely generated projective modules.

Lemma 1.1.9. Let M and N be projective modules. Then M∨ and M ⊗A N are
projective.

Proof. Let M ′, N ′ be such that M ⊕M ′ and N ⊕ N ′ are free. The dual of a free
module is free. Thus, (M ⊕M ′)∨ 'M∨ ⊕ (M ′)∨ verifies the first claim. The tensor
product of two free modules is free. Thus, (M ⊕M ′)⊗A (N ⊕N ′) ' (M ⊗AN)⊕M ′′

verifies the second claim.
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Proposition 1.1.10. Let M and N be finitely generated projective modules. Then
the map discussed above is an isomorphism:

M∨ ⊗A N ' HomA(M,N).

Proof. Let M ′ and N ′ be such that M ⊕M ′ and N ⊕N ′ are finite free. Let:

φ : (M ⊕M ′)∨ ⊗A (N ⊕N ′) ' HomA(M ⊕M ′, N ⊕N ′)

be the isomorphism discussed above. There are canonical isomorphisms:

(M ⊕M ′)∨⊗A (N ⊕N ′) ' (M∨⊗AN)⊕ ((M ′)∨⊗AN)⊕ (M∨⊗AN ′)⊕ ((M ′)∨⊕N ′)

and:

HomA(M⊕M ′, N⊕N ′) ' HomA(M,N)⊕HomA(M ′, N)⊕HomA(M,N ′)⊕HomA(M ′, N ′).

Via these isomorphisms, φ decomposes as φ1⊕φ2⊕φ3⊕φ4. Since φ is an isomorphism,
each of the component morphisms is as well. In particular, φ1 is an isomorphism.
One checks that it is precisely the natural map M∨ ⊗A N → HomA(M,N).

Suppose that M , N and P are arbitrary modules. The universal property of the
tensor product allows one to show that tensoring and homing are adjoint functors:

HomA(M,HomA(N,P )) ' HomA(M ⊗A N,P ).

Letting N = M∨ and P = A, this says:

HomA(M,M∨∨) ' HomA(M ⊗AM∨, A).

Evaluation of functionals gives an injection M →M∨∨; let e ∈ HomA(M ⊗AM∨, A)
be the corresponding element. Then if M is finitely generated and projective, the
proposition above yields an A-linear map:

Tr: EndA(M)→M ⊗AM∨ e→ A.

called the trace. It is not difficult to verify that this map is the usual trace when
M is finite and free. If M ⊕M ′ is finite and free, then Tr is the same as the natural
injection EndA(M) → EndA(M ⊕M ′) followed by the trace in the free case. The
advantage of our definition is that it is coordinate free.

Let B be an A-algebra. We say that B is finite if it is finitely generated as an
A-module. It is similarly said to be projective. For any b ∈ B, let mb : B → B be
multiplication by b.
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Definition 1.1.11. Let B be a finite projective A-algebra. The trace from B to A
is the A-linear map:

TrB/A : B −→ A,

such that TrB/A(b) = Tr(mb).

The trace can be used to define a bilinear pairing on B:

(b, b′) 7→ TrB/A(bb′).

Definition 1.1.12. A finite projective A-algebra B is said to be separable if the
bilinear pairing above induces an isomorphism φ : B → B∨. We will sometimes drop
the adjective projective when describing a finite separable A-algebra.

Remark. In the definition of separability it is important that the dualising isomor-
phism is given by the trace map. We will see later that this map measures the
“ramification” of B/A. The map φ being an isomorphism implies that B/A be-
haves like an unramified covering. One can show that there exist finite projective
A-algebras B such that φ = 0 despite the fact that B ' B∨.

Examples 1.1.13.
Let A be a ring and let B = An, where multiplication is defined componentwise.
Then B is an A-algebra via the homomorphism A→ B given by:

a 7→ (a, . . . , a).

It is clear that B is finite and free; it is also separable.

Indeed, let ei = (0, . . . , 1, . . . , 0) have a 1 in the i-th spot and zeros elsewhere.
The ei’s form a free A-basis for B. Let x = (x1, . . . , xn) ∈ B. One uses this
basis to check that Tr(x) =

∑
xi (the matrix of mx in this basis is diagonal

with the xi’s as entries on the diagonal). The map α : B∨ → B given by:

α(f) = (f(e1), . . . , f(en))

is an isomorphism. With φ as defined above we have:

(α ◦ φ)(x) = (Tr(e1x), . . . ,Tr(enx)) = x.

Since α is an isomorphism, this shows that φ is also an isomorphism.

i)ii) All finite separable Z-algebras are of the form Zn.
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iii) If A = k is a field, then a k-algebra B is finite separable if and only if B is a
product of finite separable field extensions of k. If k is algebraically closed, we
again see that all finite separable k-algebras are of the form kn.

We will see later that pulling back an étale covering via a faithfully flat algebra
trivialises the covering. This motivates the following two results.

Lemma 1.1.14. Let A be a ring, B an A-algebra and C an A-algebra which is
faithfully flat. Then B is finite projective if and only if B ⊗A C is finite projective
as a C-algebra.

Proof. If B is finite projective, then there is an A-module Q such that Q⊕ P ' An

for some integer n. Tensoring this with C yields (Q ⊗A C) ⊕ (P ⊗A C) ' Cn as
C-modules.

Now assume that B ⊗A C is finite projective. We show first that B is a finitely
generated A-module. Note that B⊗AC is finitely generated over C, and there exists
a generating set of the type x1 ⊗ 1, . . . , xn ⊗ 1 with xi ∈ B for all i. Now define a
map f : An → B by mapping the standard generating idempotents to the xi. Since
C is faithfully flat, f is surjective if and only if the map obtained by tensoring with
C is surjective. The tensored map is surjective by construction, hence so is f . So B
is finitely generated as an A-module.

Now let Q = ker f , so that we have an exact sequence:

0 −→ Q −→ An −→ B −→ 0.

Tensor this with the flat A-module C to obtain the exact sequence:

0 −→ Q⊗A C −→ Cn −→ B ⊗A C −→ 0.

Since B ⊗A C is assumed to be finite projective, this sequence splits and Cn '
(B ⊗A C)⊕ (Q⊗A C). We deduce that Q⊗A C is a finite projective C-module. But
now, the same proof as given above for B shows that Q is finitely generated as an
A-module. We thus obtain an exact sequence:

Am −→ An −→ B −→ 0

of A-modules, which shows that B is of finite presentation. Now it is a standard
fact of commutative algebra that since B is of finite presentation and C is flat as an
A-module, there is a natural C-module isomorphism:

HomA(B,M)⊗A C → HomC(B ⊗A C,M ⊗A C)
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for any A-module M .
We can now show that B is projective. Let:

M
f−→ N −→ 0

be exact. We must show that the map f∗ : HomA(B,M)→ HomA(B,N) induced by
composition is surjective. Tensoring this with C and using the canoncial isomorphism
mentioned above yields a morphism of C-modules:

f∗ ⊗ IdC : HomC(B ⊗A C,M ⊗A C)→ HomC(B ⊗A C,N ⊗A C).

Now since B⊗AC is projective and f⊗IdC is surjective, this implies that the induced
composition map f∗ ⊗ IdC is surjective. But now we apply the faithfull flatness of
C to deduce that then f∗ must also be surjective. Thus, the functor HomA(B,−) is
exact and B is projective.

Proposition 1.1.15. Let A be a ring, B an A-algebra and C an A-algebra which
is faithfully flat. Then B is separable projective over A if and only if B ⊗A C is
separable projective over C.

Proof. If B is finite and projective, so is B ⊗A C by above. Assume that it is
furthermore separable, so that φ : B → B∨ is an isomorphism. Then so is φ ⊗ IdC
since C is flat. Since B is finite projective, it is of finite presentation. As C is flat,
we have an isomorphism ψ : HomC(B ⊗A C,C)→ HomA(B,A)⊗A C of C-modules.
One can show that:

B ⊗A C

φB⊗IdC ''OOOOOOOOOOO

φB⊗AC
// HomC(B ⊗A C,C)

HomA(B,A)⊗A C
ψ

55kkkkkkkkkkkkkk

commutes and hence φB⊗AC is an isomorphism. Thus B⊗AC is separable projective
over C.

For the converse direction, finiteness and projectivity are again covered by the
previous lemma. For separability we still have φB⊗AC = ψ ◦ (φB ⊗ IdC). This time
we are given that φB⊗AC is an isomorphism by separability. We still have ψ being
an isomorphism, as we have already argued that B is projective and hence of finite
presentation. So we deduce that φB ⊗ IdC must be an isomorphism. But then, by
faithful flatness, φB is an isomorphism of A-algebras.
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Our next results show that, thinking geometrically, separable projective algebras
behave like projections in a very strong sense.

Lemma 1.1.16. Let A be a ring and 0→ P0 → P1 → P2 → 0 an exact sequence of
A-modules, such that P1 and P2 are finite projective. Let g ∈ EndA(P1) be such that
g(P0) ⊂ P0. Let h ∈ EndA(P2) be the induced map. Then P0 is finite projective, and:

TrP1/A(g) = TrP0/A(g) + TrP2/A(h).

Proof. The proof is simple in the case that the Pi’s are free modules. One shows
that the trace behaves well with respect to localisation, and then reduces to the free
case by localising.

Lemma 1.1.17. Suppose that B is a separable projective A-algebra, and f : B → A
is an A-algebra homomorphism. Then there is an A-algebra C and an A-algebra
isomorphism g : B ' A× C such that:

B
g
//

f

��

A× C
p

��

A A

commutes, where p is the natural projection map.

Proof. Since B is separable, φ : B → B∨ is an isomorphism. Let e ∈ B be such that
φ(e) = f . We will show that e ∈ B is an idempotent that gives the correct product
decomposition. By the definition of e:

TrB/A(ex) = f(x)

for all x ∈ B. This implies, in particular, that Tr(e) = 1. Furthermore:

TrB/A(exy) = f(xy) = f(x)f(y) = f(x)TrB/A(ey) = TrB/A(ef(x)y)

for all x, y ∈ B. We deduce that φ(ex) = φ(ef(x)) for all x ∈ B, and hence
ex = ef(x) for all x ∈ B. Note that this shows that e ker f = 0.

If we can show that f(e) = 1, then it follows by the computation above that e is
an idempotent. The identities above show that the diagram:

0 // ker f //

0
��

B
f
//

e

��

A //

f(e)

��

0

0 // ker f // B
f
// A // 0
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with exact rows is commutative. The vertical arrows indicate multiplication by the
respective elements. Applying the previous lemma to e shows that:

1 = TrB/A(e) = TrA/A(f(e)) + Trker f/A(0) = f(e).

So e2 = e. Note that 1−e ∈ ker f since f(e) = 1. One deduces that (1−e)B = ker f .
The exact sequence:

0 −→ ker f −→ B
f−→ A −→ 0

splits by projectivity. This yields an isomorphism B ' A × ker f which maps x 7→
(f(x), x (mod eB)). A priori this is a map of A-modules, but one easily checks that
it is multiplicative as well. The last point is that C = (1−e)B is a ring with identity
(1−e), so that this is a decomposition as A-algebras which makes the stated diagram
commute.

Remark. If B is separable projective over A, consider B ⊗A B as a B-algebra on the
second factor. Then B ⊗A B is separable projective over B and there is a canoncial
map f : B ⊗A B → B mapping x ⊗ y 7→ xy. This map corresponds to the diagonal
embedding. By the lemma above, there exists a B-algebra C such that:

B ⊗A B
g
//

f

��

B × C
p

��

B B

commutes. We will see the connection between C and the differentials of B/A later.

Exercises 1. i) Let A be a ring and 0 → M ′ → M → M ′′ → 0 an exact
sequence of A-modules. We say that the exact sequence is split if there is an
A-linear isomorphism ϕ : M ∼= M ′ ⊕M ′′ such that the following diagram is
commutative:

0 //M ′ //M //

ϕ

��

M ′′ // 0

0 //M ′ //M ′ ⊕M ′′ //M ′′ // 0

Prove that the following three assertions are equivalent.

(a) The exact sequence 0→M ′ →M →M ′′ → 0 is split.

(b) There is an A-linear map M ′′ → M such that the compositionM ′′ →
M →M ′′ is the identity of M ′′.
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(c) There is an A-linear map M →M ′ such that the composition M ′ →M →
M ′ is the identity of M ′.

ii) Let A be a ring, M an A-module, {Pi}i∈I a family of A-modules and P =
⊕i∈IPi. Prove that HomA(P,M) =

∏
i∈I HomA(Pi,M) and P⊗AM ∼= ⊕i∈IPi⊗A

M .

iii) Let M,N be modules over a ring A with M finitely presented and let S ⊂ A
be a multiplicatively closed subset. Prove that the obvious map

S−1 (HomA(M,N))→ HomS−1A

(
S−1M,S−1N

)
is an isomorphism of S−1A-modules.

iv) Let A be a ring, (fi)i∈I a collection of elements of A such that
∑

i∈I fiA = A
and M an A-module.

(a) Suppose that Mfi
= 0 for all i ∈ I. Prove that M = 0.

(b) Suppose that Mfi
is a finitely generated Afi

-module for every i ∈ I. Prove
that M is a finitely generated A-module.

v) Let A be a ring and P a finitely generated projective A-module.

(a) Suppose that P has constant rank n. Prove that TrP/A(IdP ) = n ·1A ∈ A.

(b) In the general case prove that TrP/A(IdP ) is the image of rP/A under
the natural map H0(A) → OX(X) ∼= A, where X = Spec(A), OX is the
structure sheaf of the scheme X and H0(A) denotes the ring of continuous
functions Spec(A)→ Z.

vi) Let A be a ring, B an A-algebra and P a finitely generated projective A-module.

Prove that the natural diagram

EndA(P )
IdB //

TrP/A

��

EndA(P ⊗A B)

Tr(P⊗B)/B

��

A // B

is commutative.
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vii) Let A be a ring, 0 → P0 → P1 → P2 → 0 an exact sequence of A-modules in
which P1, P2 are finitely generated projective. Let g : P1 → P1 be an A-linear
map such that g(P0) ⊂ P0. Denote by h the induced map P2 → P2. Prove that
P0 is finitely generated projective and that TrP1/A(g) = TrP0/A(g) + TrP2/A(h).

viii) Let P,Q be two finitely generated projective A-modules and f : P → Q and
g : Q→ P two linear maps. Prove that TrQ/A(f ◦ g) = TrP/A(g ◦ f).

ix)

(a) Let P be a finitely generated projective A-module. Prove that the map ψ :
EndA(P )→ EndA(P v) defined by ψ(f)(g) = g ◦ f is an anti-isomorphism
of rings (not necessarily commutative) and that TrP v/A(ψ(f)) = TrP/A(f).

(b) Let f : P → P and g : Q → Q be endomorphisms of the finitely
generated projective A-modules P,Q. Prove that TrP⊗Q/A(f ⊗ g) =
TrP/A(f) · TrQ/A(g).

x) Let A be a ring, B an A-algebra and P a projective A-module. Prove that
P⊗AB is a projective B-module and that if P is finitely generated the following
diagram commutes:

Spec(B) //

��

Spec(A)

��

Z Z
where the vertical maps are the ranks.

xi) Let P be a finitely generated A-module such that for each p ∈ Spec(A) the
Ap-module Pp is free of rank r(p), where r : Spec(A) → Z is a continuous
function. Prove that P is finitely generated projective.

xii) Let A be a ring and P a finitely generated A-module. Prove that the following
properties are equivalent:

(a) P is faithfully projective.

(b) The map A→ EndZ(P ) giving the A-module structure of P is injective.

(c) P is faithful, i.e. if M is an A-module we have: M ⊗A P = 0 if and only
if M = 0.

(d) P is faithfully flat.
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xiii) Let P,Q be finitely generated projective A-modules and k ≥ 0, k ∈ Z. Prove
that P⊕Q, P⊗AQ, HomA(P,Q), P v, ∧kP , P⊗k are finitely generated projective
A-modules and the ranks, r are given, as functions on Spec(A) by: r(P ⊕Q) =
r(P ) + r(Q), r(P ⊗ Q) = r(P ) · r(Q), r(HomA(P,Q)) = r(P ) · r(Q), r(P v) =
r(P ), r(∧kP )=combinations of r(P ) choose k, r(P⊗k) = r(P )k.

xiv)

(a) Let A be a ring and I, J ideals of A such that I + J = A. Prove that
there is an isomorphism of A-modules I ⊕ J ∼= (I · J)⊕ A.

(b) Prove that every ideal of a Dedekind domain A is projective and that an
A-module is projective if and only if it is a direct sum of ideals of A.

(c) Let M be a finitely generated module over a Dedekind domain A. Prove
that M is projective if and only if it is torsion free.

1.2 Finite étale coverings

This section generalises the property of being a separable projective algebra to arbi-
trary schemes. To this end we define étale morphisms, or coverings. A main theme
of these notes will be to examine how well these defintions replace the notion of a
topological covering in the category of schemes. We will also look at the connection
between separability and ramification.

Definition 1.2.1. Let X and Y be schemes, f : Y → X a morphism. We say that
f is affine if, for every open affine U ⊆ X, f−1(U) is an affine subset of Y .

Remark. A finite morphism is always affine (this is part of its definition!).

Definition 1.2.2. Let X and Y be schemes, f : Y → X a morphism. We say that
f is a finite, locally-free morphism of schemes if for every open affine subset
U ' Spec(A) of X, f−1(U) ' Spec(B) is affine in Y , and the A-algebra structure on
B induced by f makes B finite and projective.

Definition 1.2.3. Let X and Y be schemes, f : Y → X a morphism. We say that
f is a finite étale covering if for every open affine subset U ' Spec(A) of X,
f−1(U) ' Spec(B) is affine in Y , and the A-algebra structure on B induced by f
makes B finite projective and separable.

Proposition 1.2.4. Let f : Y → X be a morphism of schemes. Then f is affine if
and only if there is a cover {Ui} of X by affine opens, say Ui ' Spec(Ai), such that
f−1(Ui) ' Spec(Bi) is affine for each i.
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Proof.

Proposition 1.2.5. Let f : Y → X be a morphism of schemes. Then f is a finite
and locally-free morphism if and only if there is a cover {Ui} of X by affine opens, say
Ui ' Spec(Ai), such that f−1(Ui) ' Spec(Bi) is affine for each i, and the Ai-algebra
structure on Bi induced by f makes Bi finite and free.

Proof.

Proposition 1.2.6. Let f : Y → X be a morphism of schemes. Then f is a
finite étale covering if and only if there is a cover {Ui} of X by affine opens, say
Ui ' Spec(Ai), such that f−1(Ui) ' Spec(Bi) is affine for each i, and the Ai-algebra
structure on Bi induced by f makes Bi finite projective and separable.

Proof. If f is a finite étale covering, then f is finite and locally-free. We can reduce
to the case of X = Spec(A) affine. In that case, as f is finite, Y = Spec(B) is
also affine. By hypothesis, B is a finite separable projective A-algebra. So write
A =

∑
fiA, such that Bfi

is a separable free Afi
-algebra (because if B is separable

over A, then Bfi
is separable over Afi

.
Conversely, let U = Spec(A) ⊆ X be any affine open subset of X. Then f−1(U)

is affine, f−1(U) = Spec(B), where B is a finite projective A-algebra.
Consider the morphism φB : B → HomA(B,A). We need to show that φB is an

isomorphism. Let f1, . . . fn ∈ A be such that A =
∑
fiA and Bfi

is free over Afi
. In

that case,
φBfi

: Bfi

'−→ HomAfi
(Bfi

, Afi
)

is an isomorphism for each i, and hence φB is a local isomorphism, which implies
that it is an isomorphism, as we wanted to show.

Remark. When we take p ∈ Spec(A) and consider Bp, note that this is not the stalk
of Spec(B) at any point, as p is not a prime ideal of B (Bp = S−1B, where S = A\p).

Let now f : Y → X be a finite, locally-free morphism of schemes. Let U ⊆ X
be an affine open, U = Spec(A). Then we have seen that f−1(U) = Spec(B), and
B is projective over A. Hence we have the rank function defined, [B : A] : U =
Spec(A)→ Z.

If V ⊆ U is another affine, V = Spec(A′), then [B : A]|V = [B′ : A′] : V → Z, and
so one can glue these functions and get the global rank function:

[Y : X] : X → Z

which is defined by [Y : X]|U = [B : A], if U = Spec(A) and f−1(U) = Spec(B).
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Also, note that, if x ∈ X,

[Y : X](x) = rkOX,x

(
OY,f−1(x)

)
but note that the ring OY,f−1(x) is not a stalk, but a product of stalks.

Definition 1.2.7. A morphism f : Y → X is surjective if ftop : |Y | → |X| is a
surjective map.

Proposition 1.2.8. Let f : Y → X be a finite, locally-free morphism of schemes.
Then:

i) Y = ∅ ⇐⇒ [Y : X] = 0,

ii) f : Y → X is an isomorphism ⇐⇒ [Y : X] = 1,

iii) f : Y → X is surjective ⇐⇒ [Y : X] ≥ 1, ⇐⇒ for each U ⊆ X affine,
U = Spec(A), then f−1(U) = Spec(B) with B faithfully-projective (this implies
that the structure morphism is injective).

Proof. We may assume without loss of generality that X is affine, X = Spec(A)
(because all properties are local on X). Then Y = Spec(B) is affine as well (since
f is finite, it is affine). So the hypothesis translates into B being a finite-projective
A-algebra. This makes (i) and (ii) trivial. We need to prove (iii).

The map ϕ : A→ B (corresponding to f : Spec(B)→ Spec(A) makes B a finite-
projective A-algebra.

f surjective =⇒ [B : A] ≥ 1 (⇐⇒ ϕ injective, by a previous prop.):
If q ∈ Spec(B), then f(q) = ϕ−1(q) ∈ Spec(A). If f is surjective, let then q ∈
Spec(A). There exists then q ∈ Spec(B) such that ϕ−1(q) = p. We want to prove
that [B : A](p) ≥ 1, that is, Bp is nonzero. But 0 6= Bq ' (Bp)q, hence Bp 6= 0, as
wanted.

ϕ : A→ B injective =⇒ f : Spec(B)→ Spec(A) surjective.
As B is finite over, A, it is a fortiory integral over A. By the going-up theorem,
f : Spec(B)→ Spec(A) is surjective, as wanted.

Examples 1.2.9.

Let X = Spec(A). Then Y = Xq· · ·qX is the geometric analogue of example
(i) above. It is the disjoint union of n copies of X, called the trivial finite étale
covering of X. Note that this construction works for any scheme X.
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i)ii) Let A be a Dedekind domain, let K be the fraction field of A, L a finite
unramified extension of K and let B be the integral closure of A in L. The
inclusion A → B corresponds to a map of schemes Spec(B) → Spec(A). The
assumption that L/K is unramified implies that, this map is a finite étale
covering. Since Q does not admit any unramified extensions, this gives an
indication of why finite étale coverings of Z are uninteresting.

Given a scheme X, let FEtX denote the category with objects all finite étale
coverings Y → X of X. For two coverings Y → X, Z → X, a morphism of finite
étale coverings is a morphism of schemes Y → Z such that:

Y

  
AA

AA
AA

A
// Z

~~~~
~~

~~
~

X

commutes.

Definition 1.2.10. Two categories C and D are said to be equivalent (resp. anti-
equivalent) if there exist covariant (resp. contravariant) functors F : C → D,
G : D → C and invertible morphisms of functors φ : FG → IdC, ψ : GF → IdD.
In this case we will write C ' D.

The goal of this chapter is to prove the following:

Theorem 1.2.11. Suppose that X is a connected scheme. Then there is a profinite
group π, uniquely determined up to isomorphism, such that there is an equivalence
of categories:

FEtX ' π-Sets.

(In what follows, the category of π-sets has finite sets S as objects, such that π acts
continuously on S when S is given the discrete topology and π the profinite topology.)

The profinite group π is called the fundamental group of X. The fundamen-
tal group of a path-connected topological space is only defined up to isomorphism.
Choosing different basepoints produces isomorphic groups. In the following section
we treat the case of the spectrum of a field K. In this case, fixing an algebraic closure
of K is the analogue of choosing a basepoint.
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1.3 Example: Fundamental group of a field

Our goal in this section is to prove Theorem 1.2.11 above in the case that X =
Spec(K), where K is a field. Note that X is connected since it is a single point.

Let f : Y → X be a finite étale covering. Since X is affine, we deduce that
Y must be affine as well, say Y = Spec(B). The morphism f corresponds to a
ring homomorphism f ∗ : K → B that makes B into a K-algebra. Proposition 1.2.6
above (or the fact that X is a single point) implies that B is a finite separable K-
algebra (it is in fact free, not just projective, since K is a field). These remarks show
that classifying finite étale coverings of X is equivalent to classifying finite separable
K-algebras. More precisely, letting SAlgK denote the category of finite separable
K-algebras, then we have shown that there is a natural anti-equivalence:

FEtK ' SAlgK .

It hence suffices to produce a profinite group π and an anti-equivalence SAlgK '
π − sets.

Recall of Galois Theory.

Let K be a field and fix an algebraic closure K. We assume that the reader is familiar
with the definition of normal and separable algebraic extensions (even in the infinite
case). An algebraic extension L/K is said to be Galois if it is normal and separable.
Put:

IL = {E | K ⊂ E ⊂ L , [E : K] <∞ , E/K is Galois}.

Note that:
L =

⋃
E∈IL

E ' lim−→
E∈IL

E.

Suppose that L/K is Galois and let:

Gal(L/K) = {φ : L→ K | φ|K = Id}.

One can show that:
Gal(L/K) ' lim←−

E∈IL

Gal(E/K).

In fact, taking all subgroups Gal(L/E) for E ∈ IL as a basis of neighbourhoods of the
identity in Gal(L/K), and endowing the projective limit with the profinite topology,
then one can show that the isomorphism above is a topological isomorphism. Viewed
in this way, Galois groups are compact Hausdorff spaces (exercise).
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Definition 1.3.1. Let Ks ⊂ K denote the set of elements that are separable over
K. This is called the separable closure of K in K. One can show that it is a
Galois extension of K. The absolute Galois group of K is:

GK : = Gal(Ks/K).

Let E/K be Galois. Then every embedding E → K in fact lands in Ks. It follows
that:

GK ' lim←−
E∈IK

Gal(E/K).

As above, this is a toplogical isomorphism. If K ⊂ L ⊂ Ks, then there is a natural
inclusion:

Gal(Ks/L)→ GK .

Since Gal(Ks/L) is compact and GK is Hausdorff, we deduce that Gal(Ks/L) is a
closed subgroup of GK . Note that the fundamental theorem of Galois theory extends
to the case that L/K is infinite Galois; however, the statement must be modified so
that intermediate fields correspond bijectively to the closed subgroups of Gal(L/K)
in the profinite topology.

To prove Theorem 1.2.11 in the case X = Spec(K), we will take π = GK . In
light of the first remarks in this section, we will first prove some results concerning
finite separable K-algebras.

Lemma 1.3.2. Let B be a finite K-algebra. Then B '
∏t

i=1Bi where Bi is a local
K-algebra with a nilpotent maximal ideal.

Proof. The proof is broken up into two cases. First suppose that B is an integral
domain. For any nonzero b ∈ B, the multiplication map mb is a K-algebra endo-
morphism of B. Since B is an integral domain, it is actually an isomorphism. This
implies that there exists a ∈ B with ab = 1. We deduce that B is a field, hence a
finite extension of K.

Now let B be a general finite K-algebra. Let p ∈ Spec(B). By the case just
treated, B/p is a field. Hence p is maximal. Let m1, . . . ,ms be distinct primes of B.
There is a natural map:

B →
s∏
i=1

(B/mi).

The Chinese remainder theorem implies that this map is surjective (since distinct
maximal ideals are relatively prime). We deduce that:

s∑
i=1

dimK(B/mi) ≤ dimK(B).
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This implies that B has a finite number of distinct maximal ideals, say m1, . . . ,mt.
The kernel of

B →
t∏
i=1

(B/mi).

is the nilradical N of B. Note that B is Noetherian, and hence N is generated by a
finite number of elements. This implies that there exists a single integer N > 0 such
that NN = 0. If i 6= j then (mi,mj) = B implies that also (mN

i ,m
N
j ) = B. So we

also have a natural surjective map:

B →
t∏
i=1

(B/mN
i ).

The kernel of this is
∏

i(m
N
i ) = NN = 0. It is hence an isomorphism. Note that each

B/mN
i is a local ring with nilpotent maximal ideal.

Theorem 1.3.3. Let B be a finite K-algebra, K an algebraic closure of K, B =
B ⊗K K. Then the following are equivalent:

i) B is separable as a K-algebra,

ii) B is separable as a K-algebra,

iii) B ' K
n

as K-algebras,

iv) B '
∏t

i=1Bi, where the Bi are finite separable field extensions of K.

Proof. i) is equivalent to ii): If B is a separable A-algebra, then φ as defined above
via the trace is an isomorphism. Let {ωi} be a free basis for B and let {fi} be the
corresponding dual basis for B∨. The map ψ : B∨ → B mapping fi 7→ ωi is an
isomorphism. Hence so is ψ ◦φ; let M be the matrix of this morphism in the basis of
ωi’s. Then M is an invertible matrix. Since the determinant is a homomorphism, we
deduce that det(M) is invertible. One can easily show that the converse also holds.
This result will be applied to both B and B: one checks that the matrices obtained
for both algebras are equal. The equivalence follows.

ii) implies (iii): By the previous exercise we can write:

B '
t∏
i=1

Bi
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where Bi is a local K-algebra with maximal ideal mi where mN
i = 0 (the same N for

all i). Then we have:

B '
t∏
i=1

Bi.

Each Bi is a local free K-algebra with nilpotent maximal ideal; we will show that
each is a field. Fix an i and let m be the maximal ideal. Let c ∈ m, so that for all
x ∈ Bi we have (cx)N = 0. Then the multiplication by cx map mcx satisfies mN

cx = 0.
The minimal polynomial of this endomorphism is hence xm for some m. We deduce
that Tr(mcx) = Tr(cx) = φ(c)(x) = 0 for all x ∈ Bi. But this means φ(c) = 0 if
c ∈ m. Since B is a separable K-algebra, φ is an isomorphism. Hence c = 0. So
m = 0 and Bi is a field. It is a finite extension of K and is hence isomorphic to K.

(iii) implies (ii) is obvious.
(iii) implies (iv): We still have a decomposition of B as above. By assumption,

the nilradical of B is zero. It is the product of the nilradical of each Bi (which is∏
(mi ⊗K)). One deduces that mi ⊗K = 0 for each i, hence also mi = 0 for each i.

We deduce that each Bi is a field. It remains to argue that they are separable.
Let b ∈ Bi, so that K[b] ⊂ Bi. Note that K[b] ' K[x]/(f) where f is the minimal

polynomial for b over K. Then:

K[b]⊗K K ⊂ Bi

since tensoring with K preserves injections. But:

K[b]⊗K K ' K[b] ' K[x]/(f) '
∏
j

(
K[x]/(x− bj)rj

)
where the bj are the distinct roots of f . Since Bi does not contain any nilpotent
elements, we must have rj = 1 for all j. This implies that f has distinct roots in
K and is hence separable over K. Since b ∈ Bi was arbitrary we deduce that Bi is
separable.

(iv) implies (iii): It suffices to show that if B is a finite separable field extension
of K then B ' K

n
for some n. By the primitive element theorem, there exists

α ∈ B such that B = K[α]. Let f be the minimal polynomial of α over K, and let
α1, . . . , αn be the distinct roots of f . Then:

B ' K[x]/(f) '
n∏
i=1

(
K[x]/(x− αj)

)
' K

n
.

as we wanted to prove.
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Theorem 1.2.11 will follow from the following theorem and the first remark of
this section:

Theorem 1.3.4. Let K be a field; fix an algebraic closure K and separable closure
Ks. Let π = Gal(Ks/K) be the absolute group of K. Then there is a natural anti-
equivalence of categories:

SAlgK ' π−Sets.

Proof. The desired functors F : SAlgK → π−Sets, G : π−Sets → SAlgK will be
almost representable. The minor technicality is that the object that represents them,
Ks, is a limit of objects in the respective categories and not necessarily itself an object
in them. Let:

F (−)
def
= HomK−alg(−, Ks)

G(−)
def
= Homπ−sets(−, Ks).

We break the proof up into several steps.
F is well-defined. Let B be a finite separable K-algebra. It is not clear that F (B)

is a π-set. We must show that it is finite and that it is supplied with a π-action. The
π-action is easy; since π acts on Ks, π acts on F (B) by composition on the left.

Write B =
∏
Bi where the Bi are finite separable field extensions of K (by

Theorem 1.3.3). Note that each Bi injects into Ks. Fix an embedding fi : Bi → Ks

for each i. Put πi = Gal(Ks/Bi). Note that this is an open subgroup of π since
Bi/K is finite. We have Bi = Kπi

s and

φ : π/πi ' HomK−alg(Bi, Ks).

If [τ ] ∈ π/πi then φ([τ ]) = τ ◦ fi. Since πi is open, π/πi is finite, and hence so is
HomK−alg(Bi, Ks). We can let π act on π/πi via composition on the left, σ · [τ ] 7→
[σ ◦ τ ]. This corresponds to the composition action on HomK−alg(Bi, Ks) via φ: let
σ ∈ π, [τ ] ∈ π/πi so that:

φ(σ · [τ ]) = φ([σ ◦ τ ]) = (σ ◦ τ) ◦ fi = σ ◦ (τ ◦ fi) = σ · φ([τ ]).

One checks that:

F (B) = HomK−alg

(∏
Bi, Ks

)
'
∐

HomK−alg(Bi, Ks).

Hence F (B) is a finite π-set.
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Now let B, B′ be two finite separable K-algebras with φ : B → B′ a map of
K-algebras. We must show that F (φ) is a map of π-sets. Let σ ∈ π and f ∈ F (B).
Then:

F (φ)(σ · f) = (σ · f) ◦ φ = σ ◦ f ◦ φ = σ ◦ (F (φ)(f)) = σ · (F (φ)(f)).

So F (φ) is a morphism of π-sets. The axioms for a functor hold since they are
satisfied quite generally by functors defined by forming Hom-sets.

G is well-defined. Let E be a finite π-set. Since Ks is a K-algebra, we can define
a K-algebra structure on G(E) = Homπ−sets(E,Ks) pointwise. We must show that
G(E) is a finite separable K-algebra. Write E as a disjoint union of orbits:

E =
∐

πe =
∐

π/stabπ(e)

Since E has the discrete topology and we have assumed the π-action on E to be
continuous, the stabiliser of each orbit representative e is an open subgroup of E. So
we have a decomposition:

E '
∐
i

π/πi

with the πi open subgroups of π. Then:

G(E) = Homπ−sets(E,Ks) '
∏
i

Homπ−sets(π/πi, Ks).

It suffices to show that each factor is a finite separable field extension of K.
We claim that there is a natural isomorphism α : Homπ−sets(π/πi, Ks) ' Kπi

s .
Note that since πi is open, Kπi

s is a finite separable field extension of K. Let:

α(f) = f([Id]).

This certainly maps to Ks and is a map of K-algebras. Furthermore, if σ ∈ πi then
[σ] = [Id] and:

f([Id]) = f([σ]) = f(σ · [Id]) = σ · f([Id]).

So f([Id]) ∈ Kπi
s .

To see that α is an isomorphism, we will define the inverse K-algebra map
β : Kπi

s → Homπ−sets(π/πi, Ks). Given a ∈ Kπi
s define β(a) : π/πi → Ks by putting:

β(a)([σ]) = σ · a.



30 CHAPTER 1. ÉTALE COVERINGS AND FUNDAMENTAL GROUPS

This map is well-defined since a is fixed by πi. We must next check that β(a) is a
map of π-sets:

β(a)(σ · [τ ]) = β(a)([σ ◦ τ ]) = (σ ◦ τ)(a) = σ · (τ(a)) = σ · (β(a)([τ ])).

We let the reader verify that β is a map ofK-algebras, and that α◦β = Id, β◦α = Id.
We thus have:

G(E) = Homπ−sets(E,Ks) '
∏

Kπi
s ,

so it is a finite separable K-algebra. This verifies that G is well-defined on objects.
Now let E, E ′ be finite π-sets with φ : E → E ′ a morphism of π-sets. Since the

K-algebra structures on G(E), G(E ′) are defined pointwise, G(φ) is a K-algebra
map.

It remains to argue that there invertible natural transformations:

θ : IdSAlgK
→ G ◦ F

η : Idπ−sets → F ◦G

Such natural transformations are called natural ismorphisms. We leave it as an
exercise to check that a natural transformation α is a natural isomorphism if and
only if αx is an isomorphism for each object x.

Definition of θ. Given a finite separable K-algebra B, we must define an isomor-
phism of K-algebras

θB : B → GF (B).

Note that:

GF (B) = G(HomK−alg(B,Ks)) = Homπ−sets (HomK−alg(B,Ks), Ks) .

For b ∈ B let θB(b)(f) = f(b). There are several things to check. The first is that
θB(b) is a map of π-sets:

θB(b)(σ · f) = (σ · f)(b) = (σ ◦ f)(b) = σ · f(b) = σ · θB(b)(f).

One must next verify that θB is a K-algebra homomorphism. We leave this to the
reader. Thirdly, one must argue that θB is an isomorphism. To do this we will show
that θB is injective, and that the dimensions of B and GF (B) are the same.

Write B =
∏
Bi where the Bi are finite separable field extensions of K. Given

b = (b1, . . . , bn) ∈ B nonzero, there exists an index i so that bi ∈ Bi is nonzero.
Then any embedding of f : Bi → Ks corresponds to a K-algebra homomorphism
f : B → Ks that does not vanish on b ∈ B. Hence θB(b) 6= 0 and θB is injective.
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Let πi = Gal(Ks/f(Bi)). Then Kπi
s ' Bi and:

F (Bi) ' HomK−alg(K
πi
s , Ks) ' π/πi.

Thus:
GF (Bi) ' G(π/πi) = Homπ−sets(π/πi, Ks) ' Kπi

s ' Bi.

We see that the dimension of GF (Bi) is equal to the dimension of Bi for each i. But
we have:

GF (B) ' Homπ−sets

(∐
HomK−alg(Bi, Ks), Ks

)
'
∏

GF (Bi).

This shows that dimK(GF (B)) = dimK(B), hence θB is an isomorphism of K-
algebras.

It remains to show that θ is a natural transformation. If B,C are K-algebras,
φ : B → C a morphism of K-algebras, we must check that:

B

θB

��

φ
// C

θC

��

GF (B)
GF (φ)

// GF (C)

commutes. The only tricky part is unravelling what GF (φ) does to θB(b) for b ∈ B.
Quite generally, take f ∈ GF (B) and g ∈ HomK−alg(C,Ks). Then one checks that:

GF (φ)(f)(g) = f(g ◦ φ).

If we take f = θB(b) then:

GF (φ)(θB(b))(g) = θB(b)(g ◦ φ) = g(φ(b)) = θC(φ(b))(g).

This holds for every g ∈ HomK−alg(C,Ks) and b ∈ B, so that GF (φ) ◦ θB = θC ◦ φ.
Definition of η. We will simply define the natural isomorphism η; the verification

that it is a natural isomorphism is similar to the work above. Given a finite π-set E
we define ηE : E → FG(E) by putting

ηE(e)(h) : = h(e).

This concludes the proof of our theorem.

Note that by composing the this anti-equivalence with the anti-equivalence of
FEtK and SAlgK yields Theorem 1.2.11 in the case that X = Spec(K):

Corollary 1.3.5. Let K be a field, X = Spec(K) and let π be the absolute Galois
group of K. Then there is a natural equivalence of categories:

FEtX ' π − Sets.
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1.4 Totally split morphisms

In order to prove theorem 1.2.11 in full generality, we will need to study properties
of étale morphisms more closely. This section will prove a variety of results that
will hopefully convince the reader that the notion of an étale morphism is a good
algebraic analogue for the topological notion of a covering space.

Definition 1.4.1. A morphism f : Y → X is called totally split if X =
∐

n≥0Xn,
such that f−1(Xn) ' Xn

∐
· · ·
∐
Xn (n-copies), and such that the following diagram

commutes:

f−1(Xn)
' //

f

��

Xn

∐
· · ·
∐
Xn

��

Xn Xn

Remarks. If f : Y → X is totally split, then f is finite and étale. This follows since
An is a finite, separable A-algebra. If X is connected, then f : Y → X being totally
split means that Y ' Xn, for some n ≥ 0. In the analogy with covering spaces, the
totally split morphisms correspond to the trivial covers.

We will prove the following theorem:

Theorem 1.4.2. Let f : Y → X be a morphism of schemes. Then f is finite étale
if and only if there exists a finite, locally-free and surjective morphism g : W → X
such that Y ×X W → W is totally split.

To aid us in proving theorem 1.4.2, we will first show that finite étale morphisms
behave very nicely with respect to certain base changes.

Proposition 1.4.3. Let f : Y → X be an affine morphism of schemes. Let g : W →
X be surjective finite and locally free. Then f is finite étale if and only if h : Y ×X
W → W is finite étale.

Proof. First suppose that f is finite étale. Let U ⊂ X be an affine open, say U =
Spec(A). Since f is affine, we can write f−1(U) = Spec(B). Finite morphisms are
affine as well, and we can hence write V = g−1(U) = Spec(C). Note that C is a
finite A-algebra since g is finite, and that such V ’s cover W .

Now, h−1(V ) is defined via the fibre product as Spec(B⊗AC). The induced map
h : Spec(B ⊗A C) → Spec(C) corresponds to the ring homomorphism c 7→ 1 ⊗ c in
the opposite direction. Since B is finite projective over A (f is finite étale), B ⊗A C
is certainly finite and projective over C. Moreover, one can show that the morphism
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φB : B → B∨ induced by the trace behaves well with respect to tensoring with C.
So since B/A is separable, so is B⊗AC/C. Since the V ’s cover W , we conclude that
h is finite étale.

For the other direction, let U, V,A,B and C be as above. We must show that B/A
is finite projective and separable. We are assuming that B ⊗A C is finite projective
and separable over C. The crucial point is that, by a previous proposition, the
surjectivity of g implies that C is faithfully projective over A. It is not hard to
show that a finitely generated faithfully projective module is faithfully flat. So C is
faithfully flat over A. Why is B/A finite projective? For the separability of B/A,
note that φB ⊗ idC differs from φB⊗AC by a natural isomophism, and is hence an
isomorphism. Then by faithfull flatness, so is φB and B/A is separable.

We now turn to the proof of theorem 1.4.2:

Proof. First suppose that g : W → X is a surjective finite and locally free morphism
such that Y ×X W → W is totally split. Since totally split morphisms are clearly
finite étale, the previous proposition implies that f : Y → X is finite étale. The other
direction will require more work.

Let f : Y → X be finite étale. We will first treat the case that [Y : X] = n
is constant by induction on n. When n = 0, Y = ∅ and the condition of being
totally split is vacuously satisfied. So suppose n ≥ 1. Since [Y : X] ≥ 1, a previous
proposition implies that f is surjective. Note that it is finite and locally free, since
f is finite étale.

Base change by f and consider the morphism p : Y ×X Y → Y . This is finite étale
by the previous proposition. Moreover, one can show that the degree of the map is
still n. This essentially follows from the fact that tensoring a finite free A-module
with B gives a finite free B-module of the same rank. Let ∆: Y → Y ×X Y be the
diagonal morphism, so that p ◦∆ = idY .

We claim that ∆ is an open and closed immersion. This is a local question and,
since f is affine, we may as well suppose that X = Spec(A) and Y = Spec(B). In
this case Y ×X Y = Spec(B ⊗A B) and ∆ corresponds to the ring homomorphism
∆] : B ⊗A B → B given by x⊗ y 7→ xy. Since B is a finite projective and separable
A-algebra, lemma 1.1.17 yields a commutative diagram:

B ⊗A B ∼ //

∆]

��

B × C
π

��

B B
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for some B-algebra C, where π is the natural projection. This diagram corresponds
to scheme maps:

Y ×X Y ∼ // Y
∐

Spec(C)

Y

∆

OO

Y

inc

OO

We see that ∆ identifies Y with a connected component of Y ×X Y , and is hence
locally an open and closed immersion. To show that it is globally an open and
closed immersion, one covers X by affine opens and uses the affineness of f and the
argument above.

One can glue together all of the local decompositions and obtain a commutative
diagram:

Y ×X Y
p

��

Y
∐
Y ′∼oo

��

Y Y

for some scheme Y ′. Since Y ⊗X Y → Y is finite étale of degree n, so is Y
∐
Y ′ → Y .

The induced map Y → Y
∐
Y ′ → Y is the identity, and is hence of degree 1. We

claim that this implies Y ′ → Y
∐
Y ′ → Y is of degree n − 1. We may hence apply

the inductive hypothesis to obtain a g : W → Y which is surjective and locally free,
such that:

Y ′ ×Y W

��

Wq n−1· · · qW
∼oo

��

W W

commutes.

Let h = f ◦ g : W → X. Since both of f and g are surjective finite and locally
free, so is h. It remains to show that Y ×X W → W is totally split:

Y ×X W ' Y ×X (Y ×Y W )

' (Y ×X Y )×Y W
' (Y q Y ′)×Y W
' (Y ×Y W )q (Y ′ ×Y W )

' W q (Wq n−1· · · qW ),

This concludes the proof in the case that [Y : X] is constant.
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For the general case, write X =
∐

n≥0Xn where:

Xn = {x ∈ X | [Y : X](x) = n} .

Note that each Xn is an open and closed subset of X. Each is thus naturally an
open (and closed) subscheme of X. Let Yn = f−1(Xn) for each n. Then f : Yn → Xn

is finite étale of constant degree equal to n. There hence exist surjective finite and
locally free morphisms Wn → Xn for each n, such that Yn ×Xn Wn → Wn is totally
split. Putting these gn’s together yields the desired morphism:

W =
∐
n≥0

Wn → X =
∐
n≥0

Xn.

It is surjective finite and locally free since each gn is. It has the desired splitting
property by construction. This concludes the proof of the theorem.

One might ask how far our analogy between covering spaces and étale morphisms
can be pushed. Proceeding naively will lead one to disappointment. For instance, it
is not true in general that given a finite étale morphism f : Y → X, there exists a
covering {Ui} such that f |Ui

is totally split for all i. The solution to this dilemma is
to alter our notion of “open cover”, by introducing a Grothendieck topology on
X.

For instance, declare:

{f : W → X | f is surjective finite and locally free}

to be the open subsets of X. Then the theorem that we just proved says that, in this
Grothendieck topology, every finite étale morphism is “locally” totally split. Here
locally means that it is totally split after base-changing with one of the open sets
above. We will have more to say about Grothendieck topologies in chapter 2.

Proposition 1.4.4. Suppose that X, Y and Z are schemes, with finite étale mor-
phisms f : Y → X, g : Z → Y . Then h = g ◦ f : Z → X is finite étale.

Proof. First assume that f is totally split, say of constant rank n:

Y

f

��

// X1

∐
· · ·
∐
Xn

��

X X

Here each Xi ' X. Put Zi = g−1(Xi), so that Z ' Z1 q · · · q Zn and g is the union
of the n maps Zi → Xi. Since g is finite étale, so is each Zi → Xi = X. But h is just
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the map obtained by “glueing” these n maps together, and is hence finite étale. If f
is totally split, but not of constant rank, then proceed as at the end of the previous
theorem.

For the general case, take a surjective finite locally free morphism α : W → X
such that Y ×X W → W is totally split. Then Z ×X W → Y ×X W is finite étale
because it is a base-change, and Y ×X W → W is totally split. So by the previous
step it follows that the composition Z ×X W → W is finite étale. By Proposition
1.4.3, this implies that h : Z → X is finite étale (note that h is affine since it is a
composition of two affine morphisms).

We need to be more systematic when working with totally-split morphism. More
concretely, we need a way to label the distinct components of a split cover in a
functorial way. For this purpose we introduce new terminology.

Definition 1.4.5. Given a scheme X, and a finite set E = {e1, . . . , en}, define XE

to be XE def
= Xe1 q · · · qXen , with Xei

' X.

Locally, if A is a ring and E is the given finite set, define AE
def
= Hom(E,A), the

ring of functions from E to A, with pointwise addition and multiplication. Note that
the map f 7→ (f(e1), . . . , f(en)) gives an isomorphism AE ' An, if #E = n.

Moreover, Spec(AE) = Spec(A)E ' Xq n· · · qX, if X = Spec(A).
This assignment is functorial. That is, if D and E are finite sets, and φ : D → E

is a map, then it induces a map φ∗ : AE → AD, sending f 7→ φ∗f = f ◦ φ.
The natural map A→ AE, sending a ∈ A to the constant function e 7→ a∀e ∈ E

induces a morphism XE → X.
Also, the map φ∗ associated to φ : D → E induces a map φ∗ : X

D → XE.
In general, if X is any scheme and E is a finite set, we write X = ∪iUi, with

Ui = Spec(Ai) affines, and one can take the amalgamated union XE def
= qiUE

i , which
is the gluing of the UE

i , with the intersections identified.

Remark. One can prove that XE ' X ×Spec(Z) Spec(ZE). If φ : D → E is any map
of finite sets, then φ∗ : X

D → XE is finite-étale.

We want to prove an important themorem:

Theorem 1.4.6. Let f : Y → X, g : Z → X, h : Y → Z be morphisms of schemes,
such that f = g ◦ h. If f and g are finite étale, then so is h.

Y
h //

f

f.e.
  

AA
AA

AA
A Z

g

f.e.
~~~~

~~
~~

~

X
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To prove this, we need a technical lemma:

Lemma 1.4.7. With notation as above, if f and g are totally split, then f ,g and h
are locally trivial. That is, if x ∈ X, there exists a neighborhood x ∈ U ⊆ X and a
map of finite sets φ : D → E such that f−1(U) ' U ×D, g−1(U) ' U × E, and the
following diagram commutes:

f−1(U)

f|

��

h //

'

%%KKKKKKKKKK
g−1(U)

'

yysssssssss

g|

��

U ×D φ∗
//

pr
xxrrrrrrrrrrr

U × E

pr
%%LLLLLLLLLLL

U U

Proof. Let x ∈ X. We can find an affine open neighborhood V of x such that
[Y : X]|U and [Z : X]|U are constant.

As f and g are totally-split, f−1(V ) ' V D for a finite set D, and similarly with
g: g−1(V ) ' V E (#D and #E are the degrees of Y above X and of Z above X,
respectively).

Writing V = Spec(A), x ∈ V corresponds to a prime ideal p ( A. Then V ×D =
Spec(AD), and V × E = Spec(AE). We get a map h : V × D → V × E, which
corresponds to a ring homomorphism ψ : AE → AD.

By localizing at x, we get ψx : (AE)p = (Ap)
E → (Ap)

D = (AD)p. As Ap is local,
it does not contain any nontrivial idempotents, so we claim that ψx = φ∗ for some
φ : D → E.

So consider the morphisms φ∗, h : V ×D → V ×E. We know that their localiza-
tions are equal: ψx = φ∗x. Think of ψ and φ∗ as elements of HomA(AE, AD) (where
we think of them as A-modules, forgetting their ring structure). Localizing at p, and
because AE is finitely-presented, we get

(
HomA(AE, AD)

)
p
' HomAp(A

E
p , A

D
p ), and

the images of ψ and phi∗ are equal in there, so that they are equal in a neighborhood
U ⊆ V of x.

We now proceed to the proof of the theorem we stated:

Proof (of theorem 1.4.6). First, note that if f and g are both totally split, then the
lemma implies that h is étale, and we are done.

In the general case, by Theorem 1.4.2 there exists surjective finite and locally free
morphisms W1 → X and W2 → X such that Y ×X W1 → W1 and Z ×X W2 → W2

are totally-split.
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Define then W = W1 ×X W2 → X. This is still surjective, finite and locally-free.
Moreover, the maps Y ×X W → W and Z ×X W → W are totally split, and so

by the lemma we deduce that:

h× IdW : Y ×X W → Z ×X W

is finite-étale. We can rewrite: Y ×X W = (Y ×Z Z)×X W = Y ×Z (Z ×X W ), and
the following diagram commutes:

Y ×X W ' //

h×IdW

��

Y ×Z (Z ×X W )

h×IdZ×XW

��

Z ×X W Z ×Z (Z ×X W )

From this, one deduces that h is étale by noting that Z×XW → W is surjective,
finite and locally-free, and invoking Proposition 1.4.3.

Exercises 2. In the problems below be very careful about how you reduce proofs to
the “affine case”.

i) Let Yi → X be morphisms of schemes for 1 ≤ i ≤ n and let Y = qni=1Yi → X
be the induced morphism. Prove that Y → X is finite and locally free if and
only if each Yi → X is finite and locally free. Prove that [Y : X] =

∑
i[Yi : X].

ii) Let {Xi}i∈I be a collection of schemes and Yi → Xi a finite and locally free
morphism for each i ∈ I. Prove that the induced morphism Y := qiYi → X :=
qiXi is finite and locally free. Prove that [Y : X]||Xi| = [Yi : Xi], for all i ∈ I.

iii) Let Y → X be a finite and locally free morphism of schemes and W → X be
any morphism of schemes.

(a) Prove that Y ×X W → W is finite and locally free.

(b) Prove that the diagram

|W |
[Y×XW ]

��

// |X|
[Y :X]

��

Z Z

is commutative.
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(c) Suppose that Y → X is surjective. Prove that Y ×X W → W is also
surjective.

iv) Suppose that Z → Y and Y → X are finite and locally free morphisms. Prove
that the composition Z → X is finite and locally free.

v) Let Y → X and Z → X be finite and locally free morphisms of schemes.

(a) Prove that Y ×X Z → X is finite and locally free.

(b) Prove that [Y ×X Z : X] = [Y : X][Z : X].

(c) If both Y → X and Z → X are surjective then Z → X is surjective.

vi) Do exercises (1)-(5) above with everywhere “finite locally free” replaced by
“finite étale”.

vii) Prove that a morphism f : Y → X is surjective, finite and locally free if and
only if for each affine open U = Spec(A) of X, the open subscheme of Y ,
f−1(U) is affine f−1(U) = Spec(B) where B is a (finite) faithfully projective
A-algebra.

viii) If E is a finite set and A a ring we write AE for the ring of functions E → A,
with pointwise addition and multiplication.

(a) For a scheme X and a finite set E prove that X×E ∼= X×Spec(Z)Spec(ZE),
where X × E was defined in class.

(b) Let X,Y be schemes and E a finite set. Prove that there is a bijection,
natural in X, Y,E, from the set of morphisms of schemes Hom(X ×E, Y )
to the set of maps E → Hom(X, Y ).

(c) Suppose that A is a ring that has no non-trivial idempotents, and let
E,D be finite sets. Prove that any A-algebra homomorphism AE → AD

is induced by a map D → E.

ix) Let Y → Z and Z → X be morphisms of schemes such that: Z → X and the
composed morphism Y → X are affine. Prove that Y → Z is affine.

x) Prove that an open immersion is a monomorphism in the category of schemes.
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1.5 Galois categories

This section follows almost verbatim the exposition given in ([4], exposé V, section
4).

In order to prove Theorem 1.2.11 in complete generality, we will give a list of
categorical axioms and prove an analogue of Theorem 1.2.11 for any category satis-
fying them. It will then be shown, in the following section, that if X is a connected
scheme, FEtX satisfies the given axioms.

Definition 1.5.1. Let C be a category. A terminal object in C is an object X of C
such that every other object Y of C has a unique morphism Y → X in C. An initial
object is the dual notion to a terminal object. Let f be a morphism of C. Then f
is a monomorphism if whenever f ◦ g = f ◦ h for morphisms g, h of C, then g = h.
Dually, f is an epimorphism if it can be canceled on the right.

1.5.1 Quotients under group actions

Let Y be an object of C and G ⊂ AutC(Y ) a finite group of automorphisms of Y .
The quotient of Y by G is an object Y/G along with a morphism ρ : Y → Y/G
satisfying ρσ = ρ for all σ ∈ G and the obvious universal property: if Z is an object
of C and f : Y → Z satisfies fσ = f for all σ ∈ G, then there is a unique morphism
g : Y/G→ Z such that f = g ◦ ρ.

Example 1.5.2. If C = f-Sets, then for Y an object of C, the group G ⊂ AutC(Y )
acts on Y , and one can check that Y/G is the set of G-orbits of Y .

1.5.2 Galois categories

Definition 1.5.3. A Galois category is a category C along with a covariant functor
F : C → FinSets satisfying the following list of axioms:

(G1) There is a terminal object in C. Fibered products (over arbitary objects)
exist in C.

(G2) Finite coproducts exist in C. In particular, an initial object OC exists in C.
Quotients by finite groups of automorphisms exist in C.

(G3) Any morphism X
u→ Y in C factors as

X
u′→ Y ′ u′′→ Y ′′

where u′ is a strict epimorphism and u′′ is a monomorphism inducing an isomorphism
of Y ′ with a direct summand of Y .
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(G4) The functor F is left-exact. That is, it preserves right-units and fibered
products. (G5) F preserves with finite direct sums, tranforms strict epimorphisms
in epimorphisms, and preserves quotients by finite groups of automorphisms.

(G6) If u is a morphism in C such that F (u) is an isomorphism, then u is an
isomorphism.

Examples 1.5.4.

i) C = FinSets and F is the identity functor.

ii) Let π be a profinite group, C = π − Sets and let F be the forgetful functor.

iii) Let K be a field, C = SAlgK and F (−) = HomK−alg(−, Ks).

If (C, F ) is a Galois category such that C is essentially small 1, then we will
define a profinite group π such that C is equivalent to the category of π − Sets.
Consider the group Aut(F ) of automorphisms of the functor F . Elements of Aut(F )
are natural isomorphisms of F with itself. Given an object X ∈ C, F (X) is a finite
set. Let SF (X) denote the permutation group of F (X). Then there is a natural
injection:

Aut(F ) −→
∏
X∈C

SF (X)

given by σ 7→ (σX)X . Give each SF (X) the discrete topology and endow the product
above with the product topology. It is then a compact Hausdorff space.

Given any φ : F (Y )→ F (Z), define a subset:

Fφ = {(sX)X ∈
∏
X∈C

SF (X) | sZ ◦ φ = φ ◦ sY }.

Since only two coordinates have been restricted above, and the sets SF (Z), SF (Y ) have
the discrete topology, Fφ is a closed subset. But then:

Aut(F ) =
⋂

g : X→Y

FF (g)

shows that Aut(F ) is closed and hence compact. One can in fact show the following:

Lemma 1.5.5. The group Aut(F ) is profinite.

1A category is said to be small if all objects and Hom sets are sets in a given universe. It is
essentially small if it is equivalent to a small category.
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Let π = Aut(F ). There is a natural action of π on F (X) for every object X ∈ C.
If σ ∈ π and u ∈ F (X) then let:

σ · u = σX(u).

Lemma 1.5.6. If F (X) is given the discrete topology and π the profinite topology,
then π acts continuously on F (X).

Proof.

Each F (X) is now a π-set. Given a morphism f : X → Y in C, F (f) is compatible
with the π-action:

F (f)(σ · u) = F (f)(σX(u)) = (F (f) ◦ σX)(u) = (σY ◦ F (f))(u) = σ · (F (f)(u)).

We may thus regard F as a functor F ′ : C → π − Sets. In this view, we have the
following fundamental:

Theorem 1.5.7. Let (C, F ) be a a Galois category. Then the functor F ′ : C →
π − Sets is an equivalence of categories:

C ' π − Sets

where π = Aut(F ).

Proof. We proceed in several steps.

Lemma 1.5.8. Let X
u→ Y . Then u is a monomorphism if, and only if, F (u) is a

monomorphism.

Proof. The fact that u is a monomorphism is equivalent to the first projection X×Y
X → X being an isomorphism (uses G1,G4,G6).

Lemma 1.5.9. Every object X of C is artinian.

Proof. Let X ′ → X ′′ → X be monomorphisms, such that F (X ′) and F (X ′′ have
the same image in F (X). Then, by the previous lemma, F (X ′) → F (X ′′) is an
isomorphism, and we get X ′ → X is an isomorphism, too (by G6).

Lemma 1.5.10. The functor F is strictly pro-representable.

Proof. This follows formally from the previous lemma together with G4.
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We can thus find an ordered projective system I which filters P as P = (Pi)i ∈ I,
thought of as a pro-object in C, together with a functorial isomorphism:

F (X) = HomPro-C(P,X)(
def
= lim−→

i

HomC(Pi, X))

We say that an object X in C is connected if it can’t be put as X = X1 ∪X2, with
neither of Xi ' OC.

Lemma 1.5.11. The objects Pi are connected and nontrivial ( 6' OC).

Lemma 1.5.12. Any X
u→ Y with X 6' OC, and Y connected is an epimorphism.

If X is connected, then End(X) is a division ring.

Lemma 1.5.13. The following statements are equivalent:

i) The natural injection Hom(Pi, Pi)→ Hom(P, Pi) ' F (Pi) is also surjective.

ii) The group Aut(Pi) acts transitively on F (Pi).

iii) The group Aut(Pi) acts simply transitively on F (Pi).

If these are true, we say that Pi is Galois object.

Lemma 1.5.14. For each object X in C, thre is a Galois object Pi such that, for
each morphism P

u→ X, u factors as u = u′ ◦ ϕi, where ϕi is the canonical map
P

ϕi→ Pi.
We conclude then that those Pi’s which are Galois form a cofinal system the

system of all Pi’s.

Lemma 1.5.15. We have the following chain of equalities:

Hom(P, P ) = Aut(P ) = lim←−
i

F (Pi) = lim←−
i

Aut(Pi)

where the projective limit is taken over the Galois Pi’s.

From the previous lemma, we see that Aut(P ) is the projetive limit of a projective
system of finite groups, with surjective transition morphisms. It can be endowed with
the limit topology, giving the discrete topology to each of the terms. Let then π,
the fundamental group (of the pair (C, F )), be defined as the opposite group to
Aut(P ). Note that it acts on the right on P , and it’s the projective limite of finite
groups πi which also act on the right on the Galois Pi’s (πi is the opposite group to
Aut(Pi)).
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Now, thanks to the functorial isomorphism F (X) = Hom(P,X) and from the
definition of π, we get an action of π on F (X). This action is continuous, thanks to
lemma 1.5.14, because the action factors through πi. Note now that, given a mor-
phism u : X → Y in C, the resulting morphism F (u) : F (X)→ F (Y ) is compatible
with the actions of π, and in this way we obtain a covariant functor:

F : C→ π − Sets

Now, we define an inverse functor:

G : π − Sets→ C

which sends an object E of C to P×πE, and where this is, by definition, the solution
to the universal problem:

HomC (P ×π E,X) ' Homπ (E,Hom(P,X))

We need to prove that P ×π E actually exists.

Lemma 1.5.16. Let Q be an object in C, with a right action by a finite group G.
Let E be a finite set with a left G-action. Then Q ×G E exists, and the canoncial
map F (Q)×G E → F (Q×G E) is an isomorphism.

Proof.

Lemma 1.5.17. Let E be an object of π − Sets, and let Pi be a Galois object,
such that π acts on E through πi. Then Pi ×πi

E exists, and there is a canonical
isomorphism

E
'→ F (Pi ×πi

E)

If j ≥ i is such that Pj is also Galois, then the canonical isomorphism Pj ×πj
E →

Pi ×πi
E is an isomorphism.

Proof.

Lemma 1.5.18. Under the same hypothesis as in the previous lemma, the object
P ×π E exists and is canonically isomorphic to Pi ×πi

E.

Finally, there is a functorial homomorphism α : Idπ−Sets → FG, sending E 7→
F (P ×π E). It is easy to check that this is an isomorphism, as thus concluding the
proof of the theorem.
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1.6 Fundamental group of a connected scheme

In order to prove Theorem 1.2.11, it now suffices to show that FEtX is a Galois
category whenever X is a connected scheme. We must thus describe the fibre functor
for this category, and verify the axioms (Gi).

We begin by characterising the epi and monomorphisms in FEtX .

Proposition 1.6.1. Let X be a connected scheme, and h : Y → Z a morphism in
FEtX . Then h is an epimorphism if and only if h is surjective as a morphism of
schemes.

Proof. Suppose that h is an epimorphism. Since h is finite étale, the degree [Y : Z]
is well-defined. Let Z0 be the open and closed subscheme of Z consisting of the
points of degree 0. Then the complement Z1 is also an open and closed subscheme.
Proposition 1.2.8 implies that h−1(Z0) = ∅. Thus, h in fact induces a finite étale
morphism:

h : Y → Z1

and [Y : Z1] ≥ 1. This implies that h surjects onto Z1, again by 1.2.8. We must now
show that Z0 = ∅.

Let T = Z0 qZ0 qZ1. Note that since Z → X is a finite étale, this map induces
finite étale morphisms Z0 → X and Z1 → X. So T ∈ FEtX . We would like to
define morphisms a, b : Z → T which map Z0 to the first and second copy of Z0 in
T , respectively. To be precise, the map will be defined locally.

Suppose X = Spec(A) is affine. Then both of Z0 and Z1 are affine, say Z1 =
Spec(Ci). In this case Z = Spec(C0 × C1) and T = Spec(C0 × C0 × C1). Y is also
affine if X is, say Y = Spec(B). We showed above that the morphism induced by h:

h : C0 × C1 → B

factors through C1:
h : C1 → B.

Define maps a : C0×C0×C1 → C0×C1 by (x, y, c) 7→ (x, c) and b : C0×C0×C1 →
C0 × C1 by (x, y, c) 7→ (y, c). These induce scheme maps:

Y
h // Z

//
// T

where the maps Z → T are a and b, respectively. One checks that a ◦ h = b ◦ h.
Then since h is an epimorphism, a = b. The only way that this can be true is if C0

is the zero ring. So Z0 = 0, Z = Z1 and h surjects. For the general case, cover X by
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affines and show that each part of Z0 is zero by the argument above, hence Z0 = 0
in the general case as well.

Suppose instead that h is surjective. Let p, q : Z → W be finite étale maps over
X such that p ◦ h = q ◦ h. Let {Ui} be an affine open cover of X. Then the inverse
images {g−1(Ui)} under g : Z → X give an affine open cover of Z. It suffices to show
that p = q over each g−1(Ui). We may as well suppose that X, and hence all schemes
appearing, are affine.

In the affine case, surjectivity of the map of schemes h implies that the corre-
sponding map of rings is injective. The relation p◦h = q◦h becomes h◦p = h◦q in the
category of rings, and then the injectivity of h implies p = q. So the corresponding
maps of schemes must also be equal. This concludes the proof.

Proposition 1.6.2. Let h : Y → Z be a morphism in FEtX . Then h is a monomor-
phism if and only if h is both an open and closed immersion.

Proof. One can show quite generally in the category of schemes that an open im-
mersion is a monomorphism. We leave this as a simple exercise. So suppose that h
is a monomorphism in FEtX . Note that Y ×Z Y → Z and Y ×Z Y → X are finite
étale since Y → X and Z → X are both finite étale. So Y ×Z Y → Z is a morphism
in FEtX . Let u, v be the two projections Y ×Z Y → Y . Then the commutativity
of the pullback square of the fibre product shows that h ◦ u = h ◦ v. But h is a
monomorphism, so u = v. We claim it follows that u is an isomorphism.

As above, proving this is a local property. We may hence assume that X =
Spec(A) is affine. Then so are Y = Spec(B) and Z = Spec(C). The scheme maps
u, v correspond to maps:

B → B ⊗C B

given by b 7→ b⊗ 1 and b 7→ 1⊗ b, respectively. So since u = v, we have b⊗ 1 = 1⊗ b
for all b ∈ B. One easily checks that the tensored map:

Id⊗ h : B ⊗C C → B ⊗C B

is an isomorphism, since b ⊗ 1 = 1 ⊗ b. But B ⊗C C ' B, and one checks that the
map above is just u under this identification. So u is an isomorphism, B ' B ⊗C B.
We hence have on the one hand:

[B : C] = [B ⊗C B : C]

due to this isomorphism. On the other hand, one can show generally that:

[B ⊗C B : C] = [B : C]2.
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We deduce that [B : C] ≤ 1. This extends globally, so that we can write:

Z = Z0 q Z1

with notation as in the previous proposition. Again we have h−1(Z0) = ∅, so that h
induces a morphism h : Y → Z1. Since the degree is 1 above Z1, proposition 1.2.8
implies that h identifies Y with a component of Z, h : Y ' Z1. Hence, h is an open
and closed immersion.

Recall that Galois categories come equipped with a fibre functor, and that the
group of automorphisms of the functor plays the role of the fundamental group. We
turn now to the topic of defining a fibre functor for FEtX . Let X be a nonempty
connected scheme. A geometric point of X is a morphism:

x : Spec(Ω)→ X

where Ω is an algebraically closed field. We usually identify the morphism x with
its image in X. If a ∈ X is any point, let Ω be an algebraic closure of k(a). Then
performing a base-change yields a geometric point corresponding to a. This shows
that nonempty schemes have plenty of geometric points.

Definition 1.6.3. Let X be a nonempty connected scheme. Fix a geometric point
x ∈ X over an algebraically closed field Ω. Base-changing yields a functor:

Hx : FEtX → FEtSpec(Ω).

We have already seen that FEtSpec(Ω) ' Gal(Ω)− sets. Composing with the forget-
ful functor Gal(Ω)− sets→ FinSets yields:

Fx : FEtx → FinSets.

This is the fibre functor of X over x.

Our next goal is to show that quotients by finite groups of automorphisms exist
in FEtX . To do so, we will first study the category of schemes that are affine over
X. This category properly contains FEtX , so at the end we will have to show that
the construction restricts well.
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1.6.1 Characterisation of AffX

This section does most of exercise II.5.17, in [7].
Let X be a scheme,M a sheaf of OX-modules on X.
Given a ring A and an A-module M , one defines a sheaf of OX-modules on

X = Spec(A), as follows:

Definition 1.6.4. The sheaf associated to M , written M̃ , is the sheaf character-
ized by M̃(Xf ) = Mf = M ⊗A Af , for any f ∈ A.

Definition 1.6.5. A sheaf of OX-modules M is quasicoherent if there exists an
open covering {Ui}i∈I of X by affines, such thatM|Ui

= ˜M(Ui), as OUi
-modules, for

all i ∈ I. If moreoverM(Ui) is finitely-generated for all i ∈ I, thenM is said to be
coherent.

Lemma 1.6.6. Let f : Y → X be an affine morphism of schemes. Then f∗OY is a
sheaf of OX-algebras which, as a sheaf of OX-modules, is quasicoherent.

Remark. The converse is also true, but we won’t need it for now.

Proof. Consider the corresponding morphism of sheaves f# : OX → f∗OY , which
gives to f∗OY the structure of a OX-algebra.

Because the property of being quasicoherent is local on X, we may assume that
X = Spec(A) is affine. In this case, f−1(X) = Y = Spec(B), and f#

X : A → B is a
ring homomorphism. Let a ∈ A. Then Xa = Spec(Aa) ⊆ X is an open affine in X,
and:

(f∗OY )(Xa) = OY (f−1(Xa)) = OY (f−1(Spec(Aa))) = Ba

and hence f∗OY = B̃, as wanted.

Fix a scheme X, and consider the category QCohOX
, whose objects are sheaves

A of OX-algebras on X, such that they are quasicoherent as OX-modules.
Define a contravariant functor

Γ: AffX → QCohOX
(f : Y → X) 7→ f∗OY

Lemma 1.6.7. The functor Γ is an anti-equivalence of categories.

Proof. We will describe the inverse functor Spec : QCohOX
→ AffX . So let A

be a quasicoherent sheaf of OX-algebras on X. We want to construct Spec(A) =
(f : Y → X), an affine morphism to X.

Let {Ui}i∈I be an open affine covering ofX, Ui = Spec(Ai). Let Yi = Spec(A(Ui)).
So we get a ring homomorphism OX(Ui) = Ai → A(Ui), which induces morphisms
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of schemes fi : Yi → Ui. We will glue this local data together, along the intersections.

So let Uij
def
= Ui ∩ Uj, which can be seen as inside Ui and Uj. Let Yij

def
= f−1

i (Uij).
Note then that Yij is a subscheme of Yi, and then Yji is a subscheme of Yj. We want
to identify these pairs, but they are not affines, so they have to be covered by affines
and be identified through them.

Let V = Spec(S) ⊆ Uij be an open affine. By quasicoherence, f−1
i (V ) =

Spec(A(V )) ⊆ Yij, and at the same time, f−1
j (V ) = Spec(A(V )) ⊆ Yji, and so

f−1
i (V ) ' f−1

j (V ). Varying V along an affine covering of Uij, to get an isomorphism
ϕij : Yij ' Yji.

By the glueing lemma, one obtains then Y = Spec(A), together with a map
f : Y → X, and it is an easy check to verify that f : Y → X is affine.

One should then check that the two constructions are inverse to each other, but
we omit this detail.

1.6.2 Quotients under group actions in AffX

Fix a scheme X, and let f : Y → X be an affine morphism.
Let G ⊆ AutAffX

(f : Y → X) = AutX(Y ) be a finite subgroup of the group of
automorphisms of Y that fix X.

Via the equivalence given by the previous lemmas, Y corresponds to a quasico-
herent sheaf of OX-algebras, say A, and G corresponds to a subgroup of AutOX

(A),
which will be called G by abuse of notation. This really acts on A, fixing OX (e.g.
if X = Spec(A), then A = B is an A-algebra, and G acts on B over A, like in the
setting of Galois theory).

Define then AG as a sheaf on X, given by (if U ⊆ X is an open):

AG(U)
def
= A(U)G = {a ∈ A(U) | σa = a,∀σ ∈ G}

Note now that the map OX(U)→ A(U) factors through A(U)G ↪→ A(U). More-
over, if U ⊆ V ⊆ X are two opens, then the following diagram is commutative:

A(V )
ρUV // A(U)

A(V )G
?�

OO

// A(V )G
?�

OO

because σ ∈ G gives a morphism of sheaves.
This makes AG into a presheaf, and it is easy to verify that it is actually a sheaf.
The last thing to do is to verify that it is quasicoherent.
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Note now that, for each U ⊆ X, we have a map

ϕU : A(U)→
⊕
σ∈G

A(U)

defined by a 7→ (σa − a)σ∈G, which is OX(U)-linear. The key point is to note that
ker(ϕU) = AG(U).

One checks that the {ϕU} give a morphism of OX-modules, ϕ : A → A#G, and
AG = ker(ϕ).

As both A and A#G are quasicoherent, then it follos that ker(ϕ) = AG is quasi-
coherent as well (see [7], chapter II, proposition 5.7, or Serre’s FAC).

Again under the correspondence described before, we get Y/G, together with
an affine morphism α : Y/G → X, which corresponds to the embedding AG ↪→ A.
Remark that Y/G = Spec(AG).

Claim. The map α : Y/G→ X satisfies the universal property.

Proof. The inclusion AG ↪→ A gives the morphism Y → Y/G, and the universal
property of Y/G follows from the corresponging universal property of AG in the
category QCohOX

.

1.6.3 Quotients under group actions in FEtX

Let f : Y toX be a finite étale morphism, and G ⊂ AutX(Y ) a finite group of auto-
morphisms. Then Y/G → X exists as an affine scheme. We will now show that in
fact Y/G ∈ FEtX .

Proposition 1.6.8. Let f : Y → X be an affine morphism, G ⊂ AutX(Y ) a finite
group and g : W → X a finite locally free morphism. Then there is a canonical
isomorphism:

(Y ×X W )/G ' (Y/G)×X W.

Proof. Affine morphisms are stable under basechange, so that Y ×X W → W is
affine. For every σ ∈ G, f ◦ σ = f , and hence:

Y ×X W //

��

W

g

��

Y σ
// Y

f
// X
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commutes. The universal property of the fibre product thence yields a unique endo-
morphism, which we also call σ, of Y ×X W → W such that:

Y ×X W σ
// **

��

Y ×X W //

��

W

g

��

Y σ
// Y

f
// X

commutes. Applying this to σ−1 allows one to show that σ ∈ AutW (Y ×X W ).
Similarly, one verifies that since G acts on Y → X, the definition above gives a
canonical action of G on Y ×XW → W . We henceforth regard G ⊂ AutW (Y ×XW )
in this canonical fashion.

Let h : Y → Y/G be a morphism in AffX that is invariant under G. Then:

h× IdW : Y ×X W → (Y/G)×X W

is a morphism over W . Moreover, it follows from the definition of the action of G
on Y ×X W that this map is invariant under G since h is. The universal property of
quotients thus supplies a unique morphism:

φ : (Y ×X W )/G→ (Y/G)×X W

over W . We must argue that this is an isomorphism, and such a property can be
checked locally on the base.

Assume X = Spec(A), so that then also Y = Spec(C) and W = Spec(B) (f
and g are affine morphisms over X). Let f : A → C and g : A → B denote the
corresponding ring homomorphisms. We have seen that:

Y ×X W = Spec(B ⊗A C),

Y/G = Spec(CG),

(Y/G)×X W = Spec(CG ⊗A B),

(Y ×X W )/G = Spec((C ⊗A B)G).

The map (Y ×X W )/G→ (Y/G)×X W is induced by the inclusion of rings:

CG ⊗A B ↪→ (C ⊗A B)G.

We would like to show that this map is actually a ring isomorphism, so that the
associated morphism if schemes is as well. Consider the following exact sequence of
A-modules:

0 −→ CG −→ C −→
⊕
σ∈G

C,
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where the last map sends c 7→ (σc − c)σ∈G. Since Y → X is finite and locally free,
B is finite and projective over A, and hence flat. Tensoring the sequence above over
A with B thus gives an exact sequence:

0 −→ CG ⊗A B −→ C ⊗A B −→
⊕
σ∈G

(C ⊗A B),

where the last map sends c ⊗ b 7→ ((σc − c) ⊗ b)σ∈G. The kernel of this map is
(C ⊗A B)G by definition of the action of G on this ring, and thus:

CG ⊗A B ' (C ⊗A B)G.

Proposition 1.6.9. Let f : Y → X be a finite étale morphism. Let G ⊂ AutX(Y )
be a finite subgroup. Then Y/G exists in FEtX .

We have seen that there is an affine morphism Y/G→ X. Suppose we can show
that if Y → X is finite étale, then so is Y/G→ X. Then it will follow that Y/G→ Y
is finite étale by a previous result, since we have a commutative diagram:

Y/G //

!!D
DD

DD
DD

D Y

����
��

��
��

X

So it suffices to prove that Y/G→ X is finite étale under the hypotheses above. We
prepare the proof of this proposition with a lemma that generalises a previous result:

Lemma 1.6.10. Let X, Y, Z be schemes with f : Y → X and g : Z → X both totally
split. Let σ1, . . . , σn : Y → Z be morphisms such that f = g ◦ σi for all i. Then
for each x ∈ X, there exists an affine open neighbourhood U ⊂ X of x such that
each σi is trivial over U . By this we mean that there exist two finite sets D,E with
f−1(U) ' U ×D and g−1(U) ' U × E, and maps φ1 . . . , φn : D → E such that:

f−1(U)

f

��

σi //

α

%%KKKKKKKKKK
g−1(U)

β

yysssssssss

g

��

U ×D φi //

xxrrrrrrrrrrr
U × E

%%LLLLLLLLLLL

U U

commutes for each i.
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In the case of a single σi, this lemma was proved in the section on totally split
morphisms. This generalisation is proved by applying the single case to each σi and
then intersection the Ui’s obtained. An affine open contained in this intersection
yields the desired U ⊂ X.

This lemma will be applied when Y = Z, f = g and {σ1, . . . , σn} = G ⊂
AutX(Y ). Specialised to this situation, the lemma says that each x ∈ X has an affine
open neighbourhood U such that there exists a finite G-set D such that f−1(U) '
U × D and the action of G on Y keeps U stable. Moreover, the action above U is
induced by the action of G on D. We return now to the proof of the proposition:

Proof. We proceed in three stages. First suppose that Y = X × D where D is a
finite G-set. We have:

Y/G = (X ×D)/G = (X ×Spec(Z) Spec(ZD))/G = X ×Spec(Z) Spec((ZD)G).

Now, ZD is the ring of functions fromD → Z. The G-invariant functions are uniquely
determined by their values on orbits representatives of D/G. One observes that thus
(ZD)G ' ZD/G and hence:

Y/G = X ×Spec(Z) Spec((ZD)G) ' X ×Spec(Z) Spec(ZD/G) = X × (D/G).

Moreover, this isomorphism is a morphism over X. Hence, Y/G is totally split over
X. We deduce that Y/G→ X is finite étale.

Next suppose that Y → X is totally split. The previous lemma yields an affine
open cover {Ui}i∈I of X such that f−1(Ui) ' Ui×Di for some finite G-set Di, and G
acts trivially above Ui. It follows by the case just treated that s : Y/G→ X is finite
étale over each Ui, and hence itself finite étale.

In the general case, we use our old trick of reducing to the totally split case by
making a surjective and locally-free base change. Since Y → X is finite étale, we
have seen that there exists a surjective, finite and locally free morphism W → X so
that Y ×XW → W is totally split. We showed above how to define an action of G on
Y ×XW . The totally split case just treated hence implies that (Y ×XW )/G→ W is
finite étale. However, the first proposition of this section showed that (Y ×XW )/G '
(Y/G) ×X W . We deduce that (Y/G) ×X W → W is finite étale. Since W → X is
surjective, finite and locally free, it follows by a previous result that Y/G → X is
finite étale as well.

This result can be used to weaken the hypotheses of the first proposition proved
in this section:
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Proposition 1.6.11. Let f : Y → X be an affine morphism, G ⊂ AutX(Y ) a fi-
nite group and g : Z → X any morphism of schemes. Then there is a canonical
isomorphism:

(Y ×X Z)/G ' (Y/G)×X Z.

Proof. As above, the universal property of the quotient yields a morphism over Z:

(Y ×X Z)/G→ (Y/G)×X Z.

We will show that this is an isomorphism in three steps.
First assume that Y = X ×D, where D is a finite G-set, and G acts on Y via D.

In this case there is nothing to prove since:

Y ×X Z = X ×Spec(Z) Spec(ZD)×X Z = (X ×X Z)×Spec(Z) Spec(ZD) = Z ×D.

Moreover G acts on the fiber product via D in this decomposition, so that:

(Y ×X Z)/G ' Z × (D/G).

Similarly Y/G ' X×(D/G) sinceG acts viaD, and one also computes (Y/G)×XZ '
Z × (D/G). This concludes the proof in this case.

Next assume that f : Y → X is totally split. Then X can be covered by affines
Ui such that Yi = f−1(Ui) → Ui is trivial, and the action of G is trivial (permutes
the slices of Ui ×Di). By the previous case we obtain isomorphisms for each i:

(Yi ×X Z)/G ' ((Yi/G)×X Z).

Glueing these togethers gives the desired isomorphism (Y ×X Z)/G ' (Y/G)×X Z.
Now for the general (and most interesting) case. Choose a surjective, finite and

locally free morphism W → X such that Y ×X W → W is totally split. Given a
fibre product U ×V W we introduce the notation UW for the scheme U ×V W → W
over W . So in this notation, YW → W is totally split. By the case just treated:

(YW ×W ZW )/G ' (YW/G)×W ZW .

But note that:

YW ×W ZW = (Y ×X W )×W (Z ×W W ) = (Y ×X Z)×Z WZ ,

and WZ → Z is surjective, finite and locally free since it is the base change of
W → X. Thus, the first proposition of this section (the one we are generalising)
implies that:

((Y ×X Z)×Z WZ)/G ' ((Y ×X Z)/G)×Z WZ .
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Also by that proposition:

YW/G = (Y ×X W )/G ' (Y/G)×X W = (Y/G)W .

Hence:

(YW/G)×W ZW = (Y/G)W ×W ZW = ((Y/G)×X Z)×Z WZ .

We thus have an isomorphism:

((Y ×X Z)/G)×Z WZ ' ((Y/G)×X Z)×Z WZ .

We claim that the isomorphism above is the base change to WZ of the map
(Y ×X Z)/G→ (Y/G)×X Z. Hence, the map under consideration is an isomorphism
after base-changing via a surjective, finite and locally free morphism. It follows by
previous work that (Y ×X Z)/G→ (Y/G)×X Z is already an isomorphism.

We turn now to the long awaited:

Theorem 1.6.12. Let X be a connected scheme and let x be a geometric point of
X. Then (FEtX , Fx) is a Galois category.

Proof. We have been studying FEtX for some time, and have alreay shown many of
the relevant details. We will prove two more details, and leave the remaining ones
to the reader.

Let h : Y → Z be a morphism in FEtX . We will show that h = f ◦ g factors as
an epimorphism g and a monomorphism f . For this, we write Z = Z0qZ1 as above,
where Z0 is the subscheme of points of Z of degree 0, and Z1 is the subscheme of
points of degree≥ 1. We have seen that h−1(Z0) = ∅, so that h factors: Y → Z1 → Z.
Since [Y : Z1] ≥ 1, Y → Z1 is surjective. By earlier work it is hence an epimorphism.
Similarly, Z1 → Z is a monomorphism.

We next show that if h : Y → Z in FEtX is such that Fx(h) is an isomorphism,
then in fact h is an isomorphism. Note first that since X is connected, [Y : X] is
constant. In fact, one sees that [Y : X] = |Fx(Y )|.As above, write Z = Z0 q Z1.
Apply the fibre functor to the diagram:

Y → Z1 ↪→ Z

to obtain:

Fx(Y )→ Fx(Z1) ↪→ Fx(Z) = Fx(Z0)q Fx(Z1).
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By assumption the composition is an isomorphism. The only way that this can
happen is if Fx(Z0) = ∅. But then [Z0 : X] = 0 and hence Z0 = ∅. Hence Z = Z1, h
is surjective and [Z : X] = [Y : X] (since |FX(Z)| = |FX(Y )|). We argue that h must
be an isomorphism.

Suppose first that Y = X×D and Z = X×E and h is induced by a map φ : D →
E. Surjectivity of h implies that φ is surjective. Also |D| = [Y : X] = [Z : X] = |E|.
It follows that φ is actually a bijection between sets, and hence h is an isomorphism.

Next assume that Y and Z are both totally split. One can check locally that h
is an isomorphism, and it thence follows from the previous case just treated.

In the general case, we can find a surjective finite and locally free morphism
W → X so that both Y ×X W → W and Z ×X W → W are totally split. By the
previous case, the induced map h × IdW is an isomorphism. Then previous work
shows that since W → X is surjective, fintie and locally free, the original map h is
also an isomorphism.

1.7 Étale Morphisms

In this section we introduce étale morphisms, and relate them with what we have
studied on finite étale morphisms.

Let f : Y → X be a morphism of schemes.

Definition 1.7.1. We say that f is flat if, for every y ∈ Y , letting x = f(y), the
natural map OX,x → OY,y makes OY,y into a flat OX,x-module (algebra).

Remark. This is a definition which is local on Y , not on X.

Definition 1.7.2. We say that f is unramified if, for every y ∈ Y , letting x = f(y),
the ring OY,y/mX,xOY,y is a finite, separable, field extension of OX,y/mX,x.

Equivalently, we require that mX,xOY,y = mY,y and that κ(y) is a finite separable
extension of κ(x).

Definition 1.7.3. We say that f is étale if it is both flat and unramified.

Note that we need to work a little bit to relate this new definition to the definition
of a morphism f being finite-étale. For this we make an ad-hoc and nonstandard
definition:

Definition 1.7.4. The morphism f : Y → X is said to be of finite presentation as
modules (fpm) if there exists an open affine covering {Ui}i∈I of X, Ui = Spec(Ai),
such that for all V = Spec(B) ⊆ f−1(Ui), one has that B is an Ai-module of finite
presentation.



1.7. ÉTALE MORPHISMS 57

With this definition, we can relate the different notions of étale maps:

Proposition 1.7.5. Let f : Y → X be a morphism of schemes. Then f is étale and
fpm if, and only if, it is finite-étale (as defined before).

Corollary 1.7.6. If X is a locally noetherian scheme (that is, X can be covered by
the spectra of noetherian rings), and f : Y → X is a morphism, then f is finite and
étale if, and only if, f is finite-étale.

To be able to prove Proposition 1.7.5, we need some more preparation.

Proposition 1.7.7. Let A,B be rings, and let f : A→ B be a ring homomorphism.
Then the following statements are equivalent:

i) f is flat (that is, B is a flat A-algebra).

ii) For each q ∈ Spec(B), let p = f−1(q), and then fq : Ap → Bq is flat.

iii) The induced morphism of schemes Spec(B)→ Spec(A) is flat.

iv) For each q ∈ Spec(B), let p = f−1(q), and then fq : Ap → Bq is flat.

Proof. (i)⇒ (ii):
Let q ∈ Spec(B), p = f−1(q) ∈ Spec(A). Let S = A \ p. As localization is exact, the
resulting homomorphism Ap → S−1B = Bp is flat. Moreover, the map S−1B → Bq

is also flat, as it is a further localisation. Hence, the composition of the two is flat
as well (flatness is preserved under composition).

(ii)⇒ (iii) is just by definition, and (iii)⇒ (iv) is trivial because, in fact, (ii) is
equivalent to (iii) (and (iv) is a weakening of (ii)).

(iv)⇒ (i):
Let M and N be A-modules, and ϕ : M → N an injective A-linear map. We want

to show that ϕ⊗IdB : M ⊗AB → N ⊗AB is still injective. So let K
def
= ker(ϕ⊗IdB).

Let m be a maximal ideal of B, and n = f−1(m) ∈ Spec(A). As localisation is
exact, ϕ⊗IdAn : M⊗AAn → N⊗AAn is injective. Moreover, by hypothesis An → Bm

is flat, so we can apply ⊗AnBm to the previous injection, to get an injective map
(M ⊗A B) ⊗B Bm ' M ⊗A Bm → N ⊗A Bm ' (N ⊗A B) ⊗B Bm. This implies that
K ⊗B Bm = 0 for all m maximal ideals of B. As the property of being 0 is local on
the maximals, we conclude that K = 0, as we wanted.

We now we restate the geometric version of the previous proposition:

Proposition 1.7.8. Let f : Y → X be a morphism of schemes. Then the following
statements are equivalent:
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i) f is flat.

ii) For any pair U = Spec(A) ⊆ X, V = Spec(B) ⊆ Y such that f(V ) ⊆ U , the
induced map A→ B is flat.

iii) There is an open affine covering {Vi}i∈I of Y such that for every i ∈ I and
every open affine U = Spec(A) ⊆ X such that f(Vi) ⊆ U , the induced map
A→ Bi is flat.

iv) For every closed point y ∈ Y , x = f(y) ∈ X, the induced morphism OX,x →
OY,y is flat.

The following easy result will help us in the proof of the next lemma:

Lemma 1.7.9. Let A be a ring. Let M be a finitely-presented A-module, and let
N be a flat A-module. Then the map φ : M∨ ⊗A N → HomA(M,N) which maps
f ⊗n 7→ [m 7→ f(m)n] is an isomorphism.

Proof. It is clear if M is free (we actually have proven it for M projective). Start
then with a presentation Am → An → M → 0, and apply the functors Hom(−, N)
and Hom(−, A), to get the following diagram, where the second row is the result of
applying also the ⊗AN functor, which is exact because N is flat:

0 // HomA(M,N) // HomA(An, N) // HomA(Am, N)

0 // HomA(M,A)⊗A N //

φ

OO

HomA(An, A)⊗A N

'

OO

// HomA(AmA)⊗A N

'

OO

By diagram chasing, it follows that φ is also an isomorphism.

We continue with a lemma which relates the notions of flatness and projectiveness :

Lemma 1.7.10. Let A be a ring, and let P be an A-module. Then P is finitely-
generated and projective if, and only if, P is finitely-presented and flat.

Proof. We know already that projective modules are always flat, and that finitely-
generated projectives are finitely-presented.

Conversely, suppose that P is finitely-presented and flat. We want to prove that
P is projective. Apply the previous lemma to M = N = P , to get an isomorphism:

φP : P∨ ⊗A P → HomA(P, P )
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Consider the element IdP ∈ HomA(P, P ). Then, consider elements fi ∈ P∨,
pi ∈ P , such that φP (

∑
fi ⊗pi) = IdP .

This says that, for any x ∈ P ,
∑
fi(x)pi = x, so we have a map f : P → An

sending x to the tuple (f1(x), . . . , fn(x)), and also a map g : An → P sending ei 7→ pi.
Then g ◦ f = IdP , and so g is surjective. Moreover, f provides a splitting, and hence
P is a direct summand of An, hence it is projective.

The following is the geometric version of the previous lemma:

Proposition 1.7.11. Let f : Y → X be a morphism of schemes. Then f is finite
and locally free if, and only if, f is fpm and flat.

We now restate and prove Proposition 1.7.5:

Proposition. Let f : Y → X be a morphism of schemes. Then f is étale and fpm
if, and only if, it is finite-étale (as defined before).

Proof. After the previous proposition, the only remaining fact to prove is that f is
separable if, and only if f is unramified.

So let U = Spec(A) ⊆ X be an open affine, V = Spec(B) ⊆ Y be such that
f(V ) ⊆ U . By taking U small enough, we may assume that the ring homomorphism
f : A→ B is finite and free (not just projective).

This allows one to reduce to the case of A being a field K.
In this case, B =

∏n
i=1Bi, with Bi a local K-algebra, and mi ⊆ Bi nilpotent.

Let now X be a normal and integral scheme. For instance, if k is an algebraically-
closed field and X → Spec(k) is smooth and connected, then X is always normal
and integral –and for curves, the converse is true–).

Let η ∈ X be its generic point. Let K = K(X) be the function field of X, that
is K = OX,η. Then one has that, for any open U ⊆ X, OX(U) ⊆ K.

We want to relate the Galois theory of K with the étale covers of X.
Let L be a finite separable field extension of K, and denote by Y → X the

normalisation of X in L. This is done by defining the sheaf A by, for each U ⊆ X,

A(U)
def
= integral closure of OX(U) in L, and then A turns out to be a quasicoherent

sheaf. One then defines Y
def
= Spec(A).

Definition 1.7.12. We say that L/K is unramified if Y → X is unramified.

Theorem 1.7.13.

i) If L/K is finite, separable and unramified, then Y → X is finite étale.
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ii) Every connected, finite étale covering of X is obtained as in (1).

iii) Let K be a fixed algebraic closure of K. Let M be the compositum of all the
finite, separable, unramified extensions of K in K. Then:

π1 (X) ' Gal(M/K)

Exercises 3. In all the problems A is a ring and B,C are A-algebras with structure
morphisms f : A→ B and g : A→ C.

Properties U and E.

composition Suppose we have a ring homomorphism h : B → C such that g = h◦f .

i) If B has property U over A and C has property U over B then C has
property U over A.

ii) If B has property E over A and C has property E over B then C has
property E over A.

base-change

i) If B has property U over A then BC := B ⊗A C has property U over C.

ii) If B has property E over A then BC := B ⊗A C has property E over C.

tensor product

i) If B has property U over A and C has property U over A then B ⊗A C
has property U over A.

ii) If B has property E over A and C has property E over A then B ⊗A C
has property E over A.

faithfully flat descent Suppose that C is a faithfully flat A-algebra.

i) If BC := B ⊗A C has property U over C then B has property U over A.

ii) If BC := B ⊗A C has property E over C then B has property E over A.

localization Suppose that f ∈ B is an element.

i) If B has property U over A then Bf has property U over A.

ii) If B has property E over A then Bf has property E over A.
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properties U,E are local on Spec(B) Suppose that for all q ∈ Spec(B) there ex-
ists f ∈ B \ q such that

i) Bf has property U over A. Then B has property U over A.

ii) Bf has property E over A. Then B has property E over A.

examples

i) If I ⊂ A is an ideal then B = A/I has property U over A.

ii) Let f, g ∈ A[X] such that f is a monic polynomial and denote by f ′ ∈
A[X] the formal derivative of f . Let B :=

(
A[X]/fA[X]

)
g
. Show that if

f ′ ∈ B× then B has property E over A. For example one can take g = f ′.

Remark. An algebra B as in the above problem is called an E-standard
A-algebra.

Properties of derivations and differentials

localization Let S ⊂ B be a multiplicatively closed set. Let M be an BS := S−1B-
module and j : B → BS the canonical morphism. We may regard M also as a
B module via j and denote it Mj.

i) Show that the composition with j given an isomorphism

DerA(BS,M) ∼= DerA(B,Mj).

ii) Deduce that we have a canonical isomorphism of BS-modules ΩB/A ⊗B
BS
∼= ΩBS/A.

base-change Let us denote as before BC := B⊗AC and think of it as a C-algebra.
Prove that we have a natural isomorphism of BC-algebras ΩBC/C

∼= ΩB/A⊗AC.

first fundamental exact sequence Let A
f→ B

h→ C be a sequence of rings and
ring homorphisms. Let M be a C-module which we regard as a B-module via
h.

i) Prove that the natural sequence of B-modules is exact

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M).
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ii) Prove that the following sequence of C-modules is exact

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0.

second fundamental exact sequence Suppose that J ⊂ B is an ideal and denote
C = B/J . Let M be a C-module which we may also view as a B-module via
the natural projection B → C.

i) Prove that the natural sequence of B-modules is exact

0→ DerA(C,M)→ DerA(B,M)→ HomC(J/J2,M).

ii) Deduce that the sequence of C-modules below is exact

J/J2 → ΩB/A ⊗B C → ΩC/A → 0.

explicit calculations

i) Let B = A[X1, ..., Xd] be the polynomial algebra. Prove that ΩB/A is the
free B module with basis d(X1), ..., d(Xd).

ii) If C = B/J = A[X1, ..., Xd]/(f1, ..., fm), with f1, ..., fm ∈ A[X1, ..., Xd]
prove that

ΩC/A
∼=
(
⊕di=1Cd(Xi)

)
/ (d(f1), ..., d(fm)) .

iii) Let A = K be a field and B = K[X, Y ]/(Y 2 −X3 + 1). Calculate ΩB/K

and prove that it is a projective B-module of rank 1.

1.8 Differentials

Let f : Y → X be a morphism of schemes.

Definition 1.8.1. We say that f is locally of finite type (resp. locally of finite
presentation) if for every point y ∈ Y , x = f(y) ∈ X, there exist open affine
neighbourhoods V = Spec(B) and U = Spec(A) of y and x, respectively, such that
f(V ) ⊂ U and B ' A[x1, . . . , xd]/I for some ideal I (resp. some finitely generated
ideal I).

Note that if Y is locally Noetherian, then these two definitions are equilvalent.

Definition 1.8.2. Let ι : T0 ↪→ T be a closed immersion corresponding to a quasi-
coherent sheaf of ideals I on T . We say that ι is a first order thickening (or that
T is a first order thickening of T0) if I2 = 0.
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If T = Spec(C) is affine, then first order thickenings correspond to ideals I ⊂ C
such that I2 = 0. For instance, take C = k[x]/(x2) for some field k. Consider
the ideal I = (x) generated by the image of x in C. Then C/I ' k, and the ring
homomorphism C → k corresponds to a first order thickening Spec(k) ↪→ Spec(C)
of Spec(k).

Definition 1.8.3. Let f : Y → X be locally of finite presentation. We say that:
a) f is smooth
b) f has property U
c) f has property E
if for every commutative diagram:

Y

f

��

T0

g0

77ooooooooooooooo
ι
// T // X

where ι is a first order thickening,
a) locally on T , there exist morphisms g : T → Y “lifting g0” (N.B. these mor-

phisms need not glue together to give a global morphism).
b) there exists at most one global morphism g : T → Y “lifting g0”.
c) there exists exactly one global morphism g : T → Y “lifting g0”.

Remark. The terminology of properties U and E is nonstandard. We will see
presently that they correspond to the morphism being unramified and étale, re-
spectively. Also, the maps g are really extensions of g0 to the first order thickening.
This terminology comes from the ring theoretic side, where the extensions become
liftings after reversing arrows.

The following theorem is an important characterisation of the properties above.
It motivates our coming study of differentials; we postpone the proof until after we
have covered that material.

Theorem 1.8.4. Let f : Y → X be locally of finite presentation. Then:
a) f has property U if and only if Ω1

Y/X = 0, if and only if f is unramified.

b) f has property E if and only if f has property U and is flat, if and only if f
is étale.

Our discussion of differentials will begin by considering the affine case. Before
delving into this topic, we will hence describe the ring theoretic versions of some the
definitions above (as well as a new definition):
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Definition 1.8.5. Let Y = Spec(B) and X = Spec(A), f : A→ B. We say that:
a) f is smooth (or B is smooth over A)
b) f has property U (or B has property U over A)
c) f has property E (or B has property E over A)

if for every A-algebra C, and ideal J ⊂ C with J2 = 0 such that:

B
u?

����
��

��
��

u
��

C ι
// C

commutes, where C = C/J , then:
a) there exists an A-algebra homomorphism u making the diagram commute.
b) there exists at most one u making the diagram commute.
c) there exists exactly one u making the diagram commute.

These conditions can be phrased a different way. There is a natural map:

φ : HomA−alg(B,C)→ HomA−alg(B,C)

where u 7→ u = u ◦ p (p is the quotient map C → C). With this notation:
a) is equivalent to φ being surjective,
b) is equivalent to φ being injective,
c) is equivalent to φ being an isomorphism.

Definition 1.8.6. Let A be a ring, B an A-algebra and M a B-module. Then
∂ : B → M is called an A-derivation if it is A-linear and satisfies the Leibniz rule
for products:

∂(bb′) = b∂(b′) + b′∂(b)

for all b, b′ ∈ B. Let:

DerA(B,M) = {∂ : B →M | ∂ is an A-derivation}.

Note that since 12
B = 1B, the Leibniz property implies that ∂(1B) = 0, and hence

that ∂(a1B) = 0 for all a ∈ A. One can thus think of the elements in A as “scalars”
annihilated by differentiation. Since M is a B-module, DerA(B,M) carries a natural
B-module structure. The operations are defined pointwise.

Suppose that f : M → N is a map of B-modules, and ∂ : B → M is an A-
derivation. Then one easily checks that f ◦ ∂ : B → N is also an A-derivation. It
follows that DerA(B,−) is a covariant functor on the category of B-modules.
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Lemma 1.8.7. The functor DerA(B,−) is representable. We denote the representing
object (which is only determined up to unique isomorphism) ΩB/A. There is hence
an isomorphism of functors:

DerA(B,−) ' HomB(ΩB/A,−).

We must show that for every B-module M , there are canonical isomorphisms:

DerA(B,M) ' HomB(ΩB/A,M)

which are functorial in M . If we apply this to the B-modular ΩB/A, then we obtain
an isomorphism:

DerA(B,ΩB/A) ' HomB(ΩB/A,ΩB/A).

There hence exists a natural derivation d : B → ΩB/A, which corresponds to the
identity map of ΩB/A. With these observations, one can show that the lemma above
is equivalent to proving the more usual characterisation of ΩB/A:

There exists a B-module ΩB/A and a derivation d : B → ΩB/A, such that the fol-
lowing universal property is satisfied: for every B-module M and derivation ∂ : B →
M , there exists a unique B-linear map f : ΩB/A →M such that ∂ = f ◦ d.

It is this formulation of the lemma that we will prove.

Proof. The proof boils down to a simple and obvious construction. Let F denote the
free B-module on formal symbols db for b ∈ B. Let G denote the B-submodule of F
generated by all elements of the form:

a) d(ab + a’b’) - adb - a’db’,
b) d(bb’) - bd(b’) - b’db

for all a, a′ ∈ A and b, b′ ∈ B. Let ΩB/A = F/G and define d : B → ΩB/A by mapping
b to the image of db in the quotient. We will often abuse notation and write the
image simply as db. This should cause no confusion.

Suppose that ∂ : B → M is a derivation. Define a map α : F → M by putting
α(db) = ∂(b). Then one checks that α(G) = 0, and hence that α factors through
ΩB/A. One easily deduces that ΩB/A satisfies the desired universal property.

We will give a second construction of the module of differentials ΩB/A. This is
particularly nice for scheme theory, as it lends itself to a simple definition of sheaves
of differentials on a scheme X. For the time being, however, we continue to focus on
the affine case.

Given a ring homomorphism A → B, then there is a corresponding surjective
map m : B ⊗A B → B given by multiplication, b ⊗ b′ 7→ bb′. This map corresponds
to the diagonal embedding of schemes. If we let i1, i2 be the canonical maps B 7→



66 CHAPTER 1. ÉTALE COVERINGS AND FUNDAMENTAL GROUPS

B ⊗A B, then one has m ◦ i1 = m ◦ i2 = IdB. Let I = ker(m). Note that I/I2 is
naturally a (B⊗AB/I)-module, since I acts trivially on I/I2. Since m is surjective,
B⊗AB/I ' B. We will describe explicitely the B-module structure on I/I2 obtained
under these identifications.

Let x ∈ I/I2 and b ∈ B. Let β ∈ B ⊗A B be such that m(β) = b. Then we
define:

bx = βx,

where the action of β is induced by the fact that I ⊂ B⊗AB is an ideal. Note that,
in particular, we can take β = 1⊗ b or b⊗ 1. So if we regard i1, i2 as defining a B-
module structure on B⊗AB, then the induced structure on I/I2 is the corresponding
B-module structure.

Now consider the map j = i1 − i2 : B → B ⊗A B, which is a map of A-modules
(not B-algebras!). Since m ◦ i1 = m ◦ i2, we have m ◦ j = 0. This implies that the
image of j is contained in I, so that we can really consider j as mapping into I. If
we compose this with the natural projection map π : I → I/I2, then we obtain:

d : B → I/I2.

Claim. d is an A-derivation.

Proof. The A-linearity is clear. One simply verifies the Leibniz property directly:

d(bb′) = i1(bb
′)− i2(bb′) (mod I2)

= bb′ ⊗ 1− 1⊗ bb′ (mod I2)

= bb′ ⊗ 1− b⊗ b′ + b⊗ b′ − 1⊗ bb′ (mod I2)

= (b⊗ 1)(b′ ⊗ 1− 1⊗ b′) + (1⊗ b′)(b⊗ 1− 1⊗ b) (mod I2)

= bd(b′) + b′d(b)

Now, the universal property of ΩB/A supplies a B-linear map f : ΩB/A → I/I2.
We will prove the following:

Theorem 1.8.8. f : ΩB/A → I/I2 is a B-linear isomorphism.

This theorem will be proved by showing that I/I2 represents DerA(B,−). Before
we can attack this theorem, we will first provide some more background material to
help explain connections between ΩB/A and other geometric notions introduced in
this course.
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Relationships between liftings of maps and differentials

Suppose that B,C are A-algebras, with J ⊂ C an ideal such that J2 = 0. Put
C = C/J , let p : C → C be the quotient map, and fix an A-algebra morphism
u : B → C. Put u = p ◦ u : B → C. Since J2 = 0, it follows that J is a C-module. It
is also a B-module via the map u. We denote this B-module by Ju. Note that this
B-module structure only depends on u; any other lifting of u to a map u′ : B → C
will induce the same B-module structure on J .

Lemma 1.8.9. Let ∂ ∈ DerA(B, Ju). Then v = u + ∂ : B → C is an A-algebra
homomorphism lifting u to C. Moreover, the map:

DerA(B, Ju)→ {v : B → C | v lifts u}

given by ∂ 7→ u+ ∂, is a bijection.

Remark. The map u is itself a lifting of u. It corresponds to the zero derivation
under this association.

Proof. We first show that the map v is a map of A-algebras. The A-linearity is clear.
We need only verify the multiplicativity. This is a simple calculation. Note that
since J2 = 0, ∂(b)∂(b′) = 0 for all b, b′ ∈ B.

v(bb′) = u(bb′) + ∂(bb′)

= u(b)u(b′) + b∂(b′) + b′∂(b) + ∂(b)∂(b′)

= u(b)u(b′) + u(b)∂(b′) + u(b′)∂(b) + ∂(b)∂(b′)

= (u(b) + ∂(b))(u(b′) + ∂(b′))

= v(b)v(b′)

Now we will verify that v lifts u. But this is simple:

p ◦ v = p ◦ (u+ ∂) = p ◦ u+ p ◦ ∂ = u+ 0 = u.

Note that p ◦ ∂ = 0 since J = ker(p).
For the second claim of this lemma, we will construct the inverse map. Suppose

that v : B → C lifts u. We will show that ∂ = v− u is a derivation into Ju. A priori
it is an A-module map from B → C. Note that:

p ◦ ∂ = p ◦ v − p ◦ u = u− u = 0,
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since v lifts u. We deduce that the image of ∂ is in fact contained in J = ker(p). It
remains to verify the Leibniz property:

∂(bb′) = v(bb′)− u(bb′)
= v(b)v(b′)− u(b)u(b′)
= v(b)v(b′)− v(b)u(b′) + v(b)u(b′)− u(b)u(b′)
= v(b)(v(b′)− u(b′)) + u(b′)(v(b)− u(b))
= v(b)∂(b′) + u(b′)∂(b)

Now, by the remark above, either of u or v can be used to define the B-module
structure on J . The last line above is hence b∂(b′) + b′∂(b), which is the Leibniz
property. So ∂ is an A-derivation. Obviously this map is inverse to ∂ 7→ u+∂, which
verifies the bijection.

Fix u : B → C, a lift of u. Let v : B → C be another lift. These maps give a ring
homomorphism w : B ⊗A B → C by w(b ⊗ b′) = u(b)v(b′). This obviously satisfies
w ◦ i1 = u and w ◦ i2 = v. Moreover, we have commutative diagram:

B ⊗A B w //

m

��

C

p

��

B
u

// C

This implies, in particular, that w(I) ⊂ J . But then:

w(I2) ⊂ w(I)2 ⊂ J2 = 0.

Thus, w actually induces a map:

α : I/I2 → J.

This is a B-linear map when J = Ju is given the B-module structure induced by u.
Here there is a diagram showing all the involved maps:

B ⊗A B w //

π
��

C

(B ⊗A B)/I2

w1

44iiiiiiiiiiiiiiiiiiiii

I/I2
?�

OO

α=w1|I/I2
// J
?�

OO

The following proposition is a step towards showing that I/I2 represents DerA(B,−):
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Proposition 1.8.10. The map:

{v : B → C | v lifts u} → HomB(I/I2, Ju)

sending v → α (in the notation above) is a bijection (of sets).

Proof. We will construct the inverse map. For this, consider the exact sequence of
A-modules:

0
I //// B ⊗A B m // B

i1
ww

// 0

which is split thanks to i1. THen, as A-modules, B ⊗A B ' B ⊕ I, the identification
being (x ⊗ y) 7→ (xy, x ⊗ y − xy ⊗ 1. On the right hand side, one can put the
ring structure induced by the left hand side, and this isomorphisms (B ⊗A B)/I2 '
(B ⊕ I)/I2 ' B ⊕ (I/I2), multiplication being:

(b, i) · (b′, i′) = (bb′, bi′ + b′i)

Note also that the image of I in B ⊕ I/I2 has square 0, as expected.
Define now w1 : B ⊗A B/I2 ' (B ⊕ I)/I2 → C by

w1(b, i)
def
= u(b) + α(i)

One needs to check that w1 is an A-algebra homomorphism, and that w
def
= w1 ◦π

and v
def
= w ◦ i2, defined respectively from B ⊗A B → C and from B → C are the

desired maps, which is routine calculation.
We can compute that, given b ∈ B,

v(b) = u(b) + α(1⊗ b− b⊗1)

Finally, one should check that this assignment from α to v is the inverse to the
given in the statement of the proposition.

From the two bijections we have so far established, we get a third one by compo-
sition:

{v : B → C | v lifts u}
v 7→u−v
��

HomB(I/I2, Ju)
v(b)=u(b)+α(1⊗b−b⊗1)
oo

φ
rre e e e e e e e e e e e e e e

DerA(B, Ju)

where φ is given by (φ(α)) (b) = u(b)− v(b) = −α(1⊗ b− b⊗1) = α(b⊗1− 1⊗ b),
and it is an isomorphism of B-modules.
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Remark. If J2 6= 0 in C, then one can lift u : B → C/J to u1 : B → C/J2, and then
to B/J4, and continue in the same fashion to lift u to û : B → lim←−C/J

n = Ĉ.

So far we have assumed that there is at least one lifting of u, and we were also
working only with a particular B-module, namely Ju. We will see now that this
wasn’t actually a restriction:

Lemma 1.8.11. If M is a B-module, then M = Ju for some A-algebra C, some
J ⊆ C of square 0, and some u : B → C, such that there exists at least one lifting of
u to u : B → C.

Proof. Define C
def
= B ⊕M as B-modules. Put a multiplication on C, given by:

(b,m) · (b′,m′)
def
= (bb′, b′m+ bm′)

Then Ju
def
= M ' {(0,m) : m ∈ M}, and it is an ideal of square 0. The lifting is

the map b 7→ (b, 0).

From the previous discussion, we get the following proposition:

Proposition 1.8.12. The quotient I/I2 represents the functor M 7→ DerA(B,M).
In particular, I/I2 ' Ω1

B/A.

We will next sheafify this constructions, to get a geometric analogue.
Let f : Y → X be a morphism of schemes.

Definition 1.8.13. We say that f is separated if ∆: Y → Y ×X Y is a closed
immersion.

Assume from now on that f is separated (if it weren’t, then the image would
be a closed subset inside some open, and we still can do it). We will define the
relative sheaf of differentials of Y over X, written Ω1

Y/X , as a quasi-coherent
sheaf of OY -modules on Y .

Let I ⊆ OY×XY be the (quasi-coherent) ideal sheaf defining the image of ∆.

Definition 1.8.14. The relative sheaf of differentials is the quasi-coherent sheaf

of OY -modules given by Ω1
Y/X

def
= ∆∗(I/I2).

Proposition 1.8.15. For each pair of affine opens V = SpecB ⊆ Y , U = SpecA ⊆
C such that f(V ) ⊆ U , we have:

Ω1
Y/X |V = Ω̃B/A

In particular, Ω1
Y/X(V ) = ΩB/A.
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Proof. Just note that V ×U V = Spec(B ⊗A B), and that ∆ corresponds to the
multiplication map m : B⊗AB → B sending b⊗b′ 7→ bb′. Hence I|V×UV = ker ∆ = Ĩ,

and ∆∗(I/I2)|V = Ĩ/I2 = Ω̃B/A.
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Chapter 2

Grothendieck Topologies

2.1 Grothendieck topologies

Let X be a topological space and F a sheaf of abelian groups on X. We will restrict
ourselves to sheaves of sets and abelian groups, although the definitions here will
clearly be seen to be much more widely applicable. Recall that a presheaf can be
described very simply in categorical language. Indeed, one considers the category
C with objects the open subsets of X, and morphisms inclusions of sets. Then a
presheaf is simply a contravariant functor from C to the category of abelian groups.
More generally, one might call any contravariant functor a presheaf.

In order to generalise the notion of a sheaf, one needs to generalise the sheaf
axioms. In the case of a topological space X, one can formulate the sheaf property
for F very succinctly. Let U ⊂ X be any open subset and {Ui}i∈I an open cover of
U . Consider the maps:

F(U) α //
∏

i∈I F(Ui)
β
//

γ
//

∏
i,j∈I F(Ui ∩ Uj)

Here α(s) = (s|Ui
), β(si) = (si|Ui∩Uj

) and similarly for γ. The sheaf axioms are
equivalent to the exactness of:

0 // F(U) α //
∏

i∈I F(Ui)
β−γ

//
∏

i,j∈I F(Ui ∩ Uj)

for every open set U ⊂ X and open cover {Ui}i∈I of U .
If F is a sheaf of sets, then we cannot form the difference β − γ. However, it is

still possible to formulate the sheaf property using the formalism above. In this case
we will say that:

73
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F(U) α //
∏

i∈I F(Ui)
β
//

γ
//

∏
i,j∈I F(Ui ∩ Uj)

is exact if α is injective, and im(α) = Eq(β, γ). Here:

Eq(β, γ) = {x ∈
∏
i∈I

F(Ui) | β(x) = γ(x)}

is the equaliser of β and γ.
One can make this definition slightly more abstract by noting that Ui ∩ Uj =

Ui ×U Uj, where the fibre product is taken with respect to the natural injections
Ui → U .

Definition 2.1.1. A Grothendieck Topology T consists of the following data: a
category, denoted Cat T , along with a collection of coverings, denoted Cov T . By
a collection of coverings we mean that Cov T contains families of morphisms:

{φi : Ui → U}i∈I ,

where U,Ui are objects in Cat T and φi is a morphism in Cat T . These families
must satisfy the following three axioms:

1) If V → U is an isomorphism in Cat T , then {V → U} ∈ Cat T .
2) If {φi : Ui → U}i∈I ∈ Cov T is such that for each i ∈ I, there exists {φij : Vij →

Ui}j∈Ji
∈ Cov T , then:

{φi ◦ φij : Vij → U}i∈I, j∈Ji
∈ Cov T.

3) If {φi : Ui → U}i∈I ∈ Cov T and V → U is any morphism in Cat T , then
Ui ×U V exists for each i ∈ I and:

{Ui ×U V → V }i∈I ∈ Cov T.

The first axiom of a covering corrsponds to the fact that U is itself a covering
of an open subset U ⊂ X. The second says that if you have an open covering of
U by Ui’s, and an open covering of each Ui, then putting all of these together gives
an open covering of U . The third axiom says that if {Ui} is a covering of U , then
{V ∩ Ui} is a covering of U ∩ V .

Definition 2.1.2. A presheaf of sets on T is a contravariant functor F : Cat T →
Sets. A sheaf of sets on T is a presheaf F of sets such that for every {φi : Ui →
U}i∈I ∈ Cov T , the sequence:

F(U) α //
∏

i∈I F(Ui)
β
//

γ
//

∏
i,j∈I F(Ui ×U Uj)
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is exact in the sense discussed above. Note that now β and γ are induced by F
applied to the natural maps Ui ×U Uj → Ui and Ui ×U Uj → Uj.

Remark. Although we have only formulated the definitions of sheaves of sets, one
can easily generalise this to sheaves of abelian groups, or other objects (one requires
arbitrary products to exist in the target category). In the case of abelian groups,
one can formulate the sheaf property in terms of an ordinary exact sequence:

0 // F(U) α //
∏

i∈I F(Ui)
β−γ

//
∏

i,j∈I F(Ui ×U Uj) .

Examples 2.1.3.

i) Let X be a topological space. Let Cat T be the category with objects the
open subsets of X and morphisms inclusion. Let Cov T be the collection of
open covers of open subsets of X. Then T is a Grothendieck topology.

ii) Let Cat T be the category of sets (in some universe, so that the Hom sets
are actually sets). Let Cov T be the collection of surjective families of maps
{φi : Ui → U}; by this we mean that U =

⋃
i∈I φi(Ui). Then T is a Grothendieck

topology. One can show that every functor HomSets(−, X) is a sheaf of sets on
T , and that every sheaf F of sets on T is representened by a set X; this means
that there is a natural isomorphism of functors, HomSets(−, X) ' F(−).

iii) Let G be a group. Let Cat TG be the category of left G-sets. Let Cov TG
denote the collection of surjective families of morphisms in Cat TG. Then TG
is a Grothendieck topology. The set valued sheaves on T are classified up to
isomorphism by the functors HomG(−, X) for X ∈ Cat TG, as above.

iv) Let π be a profinite group. Let Cat Tπ denote the category of finite π-sets
with continuous action (when the set is endowed with the discrete topology).
Let Cov Tπ consist of all surjective families of morphisms that are indexed by
a finite set. Then Tπ is a Grothendieck topology and sheaves of sets on Tπ
are classified as above. One can show that the category of sheaves of abelian
groups on Tπ is equivalent to the category of π-modules.

v) Let X be a connected scheme. Let Cat T fX = FEtX (f is for finite) and let
Cov T fX denote the collection of surjective families of morphisms indexed by a
finite set. Then T fX is a Grothendieck topology. The sheaves of abelian groups
on T fX are naturally identified with π-modules, where π is the fundamental
group of the scheme X.
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vi) Let X be a Noetherian connected scheme. Let Cat T et
X denote the category of

schemes Y of finite type and étale over X. Let Cov T et
X denote the collection

of surjective families of morphisms indexed by a finite set. Then T et
X is a

Grothendieck topology.

2.2 Inductive and projective limits

In order to define stalks and completions of sheaves, we will need to generalise the
notions of inductive and projective limits. Let I,C be categories. For each object
X ∈ C, define the constant functor cX : I → C by cX(i) = X for all objects i ∈ I
and cX(φ) = IdX for every morphism φ ∈ I. Let F : I → C be a functor.

Definition 2.2.1. Consider the functor ˜lim−→F : C → Sets defined on objects by

( ˜lim−→F )(x) = Homfunctors(F, cX), where Homfunctors denotes the collection of mor-
phisms (natural transformations) between the functors F and cX . If this functor is
represented by some object Y ∈ C, meaning that there are natural isomorphisms:

Homfunctors(F, cX) ' HomC(Y,X)

for each X ∈ C, then we say that Y is the direct limit of F and write lim−→F
def
= Y .

Analogously, define lim←−F as representing the functor ˜lim←−F : C → Sets, defined

on objects by ( ˜lim←−F )(X) = Homfunctors(cX , F ), and so that there exist natural iso-
morphisms:

Homfunctors(cX , F ) ' HomC(X, lim←−F )

for each X ∈ C.

Remark. We stress that the universal property of the direct limit of F is encapsulated
in the natural isomorphism:

Homfunctors(F, cX) ' HomC(lim−→F,X).

Suppose that ϕ : F → cX is a morphism of functors. That is, for each i an object

of I, we have ϕi : Fi → X (we denote Fi
def
= F (i)), and also for each i→ j morphism

of I, we have a commutative diagram:

Fi
ϕi //

��

X

Fj
ϕj
// X

In this case, there exists a unique morphism ψ : lim−→F → X.
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Proposition 2.2.2. If C = Sets or C = AbGrp, then inductive and projective
limits exist, for any functor F : I → C.

Proof. Note that inductive and projective limits share the same definition, as long
as one is allowed to change the categories in which one works (to the opposite ones).
As we are proving a general statement, it is enough to prove it then for inductive
limits.

If C = Sets, denote Fi = F (i) as before, and consider the set:

lim−→F
def
= (qi∈IFi)/R

where R is the equivalence relation generated by the pairs (x, y) ∈ Fi×Fj such that
there exists a morphism φ : i→ j such that F (φ)(x) = y. One then checks that this
has the right universal property.

If C = AbGrp, then one defines

lim−→F
def
= (
⊕
i∈I

Fi)/R

where now R is the subgroup generated by the x− y where (x, y) is as before.

We proceed now to explain better what is the relation R defined in the proof of
the previous theorem. It is easy to see that (x, y) ∈ R if, and only if, there exists
two chains i = i0, i1, . . . , in = i′ and j1, . . . , jn of objects in I, such that there exists
a diagram:

j1 j2 jn

i = i0

<<yyyyyyyyy
i1

__>>>>>>>

??�������
i2

__>>>>>>>
. . . in−1

=={{{{{{{{
in = i′

bbFFFFFFFFF

together with elements x0 = x, x1, . . . , xn = y, with xk ∈ Fik , and z1, . . . , zn with
zk ∈ Fjk related through the following diagram:

z1 z2 zn

x = x0

::vvvvvvvvv
x1

``BBBBBBBB

>>||||||||
x2

``BBBBBBBB
. . . xn−1

<<xxxxxxxx
xn = y

ddHHHHHHHHH

These diagrams are called a connection between i and i′.
Next, we describe some properties that I may or may not satisfy, but that will

allow us to prove stronger statements about limits.
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L1 Given a diagram like:
j

i

;;xxxx

""F
FF

j′

then there exists another diagram

j
##G

GGG

k

j′
;;www

such that the resulting square commutes:

j
##G

GGG

i

<<xxxx

""E
EEE k

j′
;;www

L2 Given i //// j in I, then there exists a morphism j → k such that the compo-
sitions are the same.

L3 (connectedness) For each pair of objects i, i′ ∈ I, there is a connection between
them.

Let now F be the category of covariant functors F : I → AbGrp, where mor-
phisms are natural transformations of functors. This category is very well behaved,
as the following theorems show:

Theorem 2.2.3.

i) The category F is abelian,

ii) The functor lim−→ : F → AbGrp which sends F to the object lim−→F is right exact.

Proof. We first show that F is an abelian category. So let F,G be two functors
I → AbGrp. We want to give a group structure to HomF(F,G). This is done
pointwise, which means that given ϕ, ψ two natural transformations, one defines

another transformation by (ϕ + ψ)(i)
def
= ϕi + ψi. It is easy to see that this is a

natural transformation. One needs to check as well that composition of natural
transformations is a group homomorphism, which is easy as well.
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So far, we have sketched why F is an additive category. Let now ϕ : F → G be
a morphism in F . We want to define kerϕ. Again, we do it pointwise:

(kerϕ)i
def
= ker(ϕ : Fi → Gi)

If i → j is a morphism in I, then one defines (kerϕ)(i → j) through the following
diagram:

(kerϕ)i

��
�
�
�

// Fi

F (i→j)

��

ϕi // Gi

G(i→j)

��

(kerϕ)j // Fj
ϕj

// Gj

The cokernel is defined in the same way. As usual, the image is defined as imϕ
def
=

ker(G→ cokerϕ)

Given a sequence F
ϕ
// G

ψ
// H , one says that it is exact if kerψ = imϕ.

Remark that this is equivalent to saying that, for each i ∈ I, kerψi = imϕi.
Next we show that lim−→ is actually a functor, and will leave as an exercise to check

that is right-exact.
Given ϕ : F → G a morphism in F , we want to show that there exists lim−→ϕ : lim−→F →

lim−→G. We have that HomF(F, cX) ' HomAbGrp(lim−→F,X), for each object X of
AbGrp. Apply this to X = lim−→G. To find an element of HomAbGrp(lim−→F, lim−→G) is
then equivalent to finding an element of α ∈ HomF(F, clim−→G). That is, we need to find

αi : Fi → lim−→G in a functorial way. By the property satisfied by lim−→G, we have that
HomF(G, clim−→G) ' HomAbGrp(lim−→G, lim−→G), and this last set always contains the

element Idlim−→G. Also, there is a natural map HomF(lim−→G, clim−→G)→ HomF(F, clim−→G),

which is ϕ∗, the pullback by ϕ. Applying then this pullback with the image of Idlim−→G

we get an element of HomF(F, clim−→G), as wanted.

Theorem 2.2.4. If the category I satisfies properties L1,L2 and L3, then the func-
tor lim−→ : F → AbGrp is exact.

Proof. It is enough to show, thanks to the previous theorem, that if 0→ F → G is
exact, then 0→ lim−→F → lim−→G is exact as well.

Consider F ′ : I → Sets to be the forgetful functor AbGrp→ Sets applied after

F . Denote by lim−→
′ F

def
= lim−→F ′. There is an obvious morphism lim−→F ′ → lim−→F .

We use without proof the following proposition, whose proof is not trivial:

Proposition. If I satisfies L1,L2 and L3, then lim−→
′ F ' lim−→F is bijective (as sets!).
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To prove the theorem is enough then to prove it on the underlying sets, as a
group homomorphism is injective if it is so as a map of sets. By the proposition, it is
enough then to show that if F → G is injective, then the map of sets lim−→

′ F → lim−→
′G

is injective as well.
Recall that lim−→

′ F = (qF ′
i )/R, and because of L1, the relation R is simplified

to (x, y) ∈ R if, and only if, x ∈ Fi, y ∈ Fj and there exists k ∈ I, together with
morphisms i→ k and j → k such that the image of x and of y are the same in Fk.

Consider now the map

(qFi)/RF

ϕ=lim−→
′ ϕ
// (qGi)/RG

x ∈ Fi � // ϕi(x)

Suppose now that x ∈ Fi and y ∈ Fj are such that (ϕi(x), ϕj(y)) ∈ RG. We want to
see that (x, y) ∈ RF . But by hypothesis, there exists k ∈ I with morphisms u : i→ k
and u : u→ k such that:

(G′(u))(ϕi(x)) = (G′(v))(ϕj(y))

But the left hand side in the previous equation is ϕk(F
′(u)(x)), while the right hand

side is ϕk(F
′(v)(y)). As by assumption ϕk is injective, we get that F ′(u)(x) =

F ′(v)(y), and so (x, y) ∈ RF as wanted.

Remark. The property L3 is not necessary for the previous theorem to be true, but
it simplifies its proof.

2.3 Pushforwards, pullbacks and adjunctions

Let C be a category and let PC = P (we drop the C whenever the category is un-
derstood) denote the category of contravariant functors C→ AbGrp. The previous
section showed that for any category C, P is an abelian category. It is not hard to
show that a sequence:

F1 → F2 → F3

in P is exact if and only if for all U ∈ C,

F1(U)→ F2(U)→ F3(U)

is exact. We will use this fact constantly in what follows.
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Example. We will now explain the primary example of presheaves. Throughout
this section we will constantly return to this example, which we will refer to as the
“canonical example”. Let X be a topological space, and let CX denote the category
with objects the open subsets of X, and morphisms inclusions of sets. The PCx = P
is the usual category of presheaves of abelian groups on X.

Suppose that C and C′ are categories, and f : C→ C′ a covariant functor. Define
a morphism:

f∗ : PC′ → PC

by composition:
f∗(F

′) = F ′ ◦ f.

Example. In the canonical example, if X and Y are topological spaces, then any
continuous map f : X → Y induces a covariant functor from CY to CX by sending
U 7→ f−1(U). Denote this functor by f−1. If F is a presheaf on X, then f−1

∗ F is a
presheaf on Y , such that:

f−1
∗ F (V ) = F (f−1(V )).

So in this case, f−1
∗ acts like a pushforward from X to Y .

Lemma 2.3.1. f∗ is an exact functor.

Proof. We apply the remark at the beginning of this section. Let

F ′
1 → F ′

2 → F ′
3

be an exact sequence in PC′ . Then:

f∗F
′
1 → f∗F

′
2 → f∗F

′
3

is exact if and only if for all U ∈ C,

f∗F
′
1(U)→ f∗F

′
2(U)→ f∗F

′
3(U)

is exact. But this is just:

F ′
1(f(U))→ F ′

2(f(U))→ F ′
3(f(U)),

which is exact since the first sequence above is exact. The lemma follows.

Remark. We stress that f∗ is exact on presheaves.
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We recall now the notion of an adjoint pair of functors. Let M,N be (small)
categories with covariant functors α : M → N and β : N →M .

Definition 2.3.2. We say that β is left adjoint to α (or that β is right adjoint
to α) if there is an isomorphism of functors:

HomN(−, α(−)) ' HomM(β(−),−)

from M ×N to Sets.

If α or β is given, then the other is determined uniquely up to isomorphism (if it
exists at all).

Example. Let M = N = AbGrp. Let Z ∈ AbGrp and put αZ : AbGrp →
AbGrp by αZ(X) = HomAbGrp(Z,X), βZ : AbGrp→ AbGrp by βZ(Y ) = Y ⊗ZZ.
Then there are natural isomorphisms for all X,Y ∈ AbGrp:

Hom(Y,Hom(Z,X)) ' Hom(Y ⊗Z Z,X).

Theorem 2.3.3. Let C and C′ be categories, f : C→ C′ a covariant functor. There
exists a left adjoint functor f ∗ : P → P ′ to f∗. Moreover, f ∗ is right exact.

Proof. We will only sketch the proof. Let Y ∈ C′ and define IY to be the following
category: objects are pairs (X,φ) where X ∈ C and φ : Y → f(X) is a morphism in
C′. So if (X,φ) ∈ IY then HomC′(Y, f(X)) 6= ∅. If (X1, φ1) and (X2, φ2) are objects
in IY , a morphism is a morphism ξ : X1 → X2 in C such that the diagram:

f(X1)

f(ξ)

��

Y

φ1

<<yyyyyyyyy

φ2 ""E
EE

EE
EE

EE

f(X2)

commutes.
Suppose that ε : Y → Z is a morphism in C′. Then there is a natural functor

ε : IZ → IY defined by:
ε(X,φ) = (X,φ ◦ ε).

If F ∈ P , then for every Y ∈ C′, we get a functor FY : IY → AbGrp defined by:

FY (X,φ) = F (X).
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Definition 2.3.4. Let F ∈ P and define:

f ∗F : C′ → AbGrp

by putting:
(f ∗F )(Y ) = lim−→

IY

FY .

With this definition, f ∗F is a contravariant functor in P ′. In other words, if
ε : Y → Z is a morphism in C′, then we get a functor ε : IZ → IY which induces
maps between the injective limits. This is used to define (f ∗F )(ε). A simple formal
argument shows that f ∗F is right exact: let

F1 → F2 → F3 → 0

be exact in P . Consider:

f ∗F1 → f ∗F2 → f ∗F3 → 0.

This is exact if and only if for every Y ∈ C′, the sequence:

f ∗F1(Y )→ f ∗F2(Y )→ f ∗F3(Y )→ 0

is exact. By definition, this is just:

lim−→
IY

F1,Y → lim−→
IY

F2,Y → lim−→
IY

F3,Y → 0.

One checks that since the first sequence is exact, so is:

F1,Y → F2,Y → F3,Y → 0.

Taking injective limits, which is an exact functor, concludes the proof that f ∗F is
right exact.

We will omit most of the remaining details, save for giving an indication of why
f ∗ is left adjoint to f∗. Let F ∈ P and G ∈ P ′. We want to show that:

HomP(F, f∗G) ' HomP ′(f
∗F,G).

Suppose that φ : F → f∗G is a natural transformation. This means that for every
X ∈ C we have:

φX : F (X)→ (f∗G)(X) = G(f(X)).
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We will define map φ → ψ where ψ is a natural transformation f ∗F → G. Let
Y ∈ C′. To define ψ, we must give maps:

ψY : (f ∗G)(Y )→ G(Y ).

Take (X,φ) ∈ IY , so that we have a commutative diagram:

F (X)
φX //

%%KKKKKKKKKK
G(f(X))

G(φ)

��

G(Y )

Since we have such maps F (X)→ G(Y ) for every object in IY , the universal property
of the injective limit implies that there exists a corresponding map (f ∗F )(Y ) →
G(Y ). We call this ψY . One checks that this actually defines a natural transformation
ψ : f ∗F → G.

Now we explain how to define the inverse map. Take ψ : f ∗F → G ∈ P ′. This
time we want to define maps:

φX : F (X)→ (f∗G)(X) = G(f(X)),

for each X ∈ C. Fix X ∈ C and put Y = f(X) ∈ C′. Then:

(X, IdY ) ∈ IY ,

so that IY 6= ∅. We thus certainly have a commutative diagram:

F (X) = FY (X, IdY ) //

**UUUUUUUUUUUUUUUUU
(f ∗F )(Y ) = lim−→IY

FY

ψY

��

G(Y ) = G(f(X))

Let φX be the diagonal arrow. We claim that this gives a natural transformation φ,
and sets up a natural bijection:

HomP(F, f∗G) ' HomP ′(f
∗F,G).

The remaining details are left to the reader.
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Example. Return to the standard example, so that f : X → Y is a continuous map
of topological spaces. We will describe (f−1)∗. Let F be a presheaf on Y . Let U be
an open subset of X. Then objects of IU are pairs (V, φ) where φ : U → f−1(V ) is a
morphism in CX ; in other words, U ⊂ f−1(V ). We see that objects of IU are open
subsets V in Y such that f(U) ⊂ V . In this case:

((f−1)∗F )(U) = lim−→
f(U)⊂V//V ∈CY

F (V ).

This agrees with the standard definition (see Hartshorne, for instance).

Recall that in an abelian category, an object Z is said to be injective if the
functor X 7→ Hom(X,Z) is exact. More will be said about injective objects in the
following section on cohomology. In preparation for this discussion, we prove now a
useful corollary:

Corollary 2.3.5. Let C and C′ be categories, with f : C→ C′ a covariant functor.
Suppose that f ∗ is exact. Then f∗ preserves injectives.

Proof. Let Z be an injective object in P ′. We want to show that f∗Z is injective in
P . Let:

0→ F1 → F2 → F3 → 0

be exact in P . We want to show that:

0→ HomP(F3, f∗Z)→ HomP(F2, f∗Z)→ HomP(F1, f∗Z)→ 0

is exact. By adjunction this is the same as:

0→ HomP(f ∗F3, Z)→ HomP(f ∗F2, Z)→ HomP(f ∗F1, Z)→ 0

Apply the exact functor f ∗ to the first exact sequence above and use the fact that
Z is injective to conclude the proof.

Let C be a category and let X ∈ C. Let {X} be the category with a single
object, X, and a single morphism, IdX . Then there is an obvious inclusion functor
iX : {X} → C. If we note that presheaves on {X} are equivalent to the category
AbGrp, then we obtain a functor:

iX,∗ : PC → AbGrp.

It is simply evaluation at X, F 7→ F (X). By the work above, there is also a functor
i∗X : AbGrp→ PC.
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Claim. i∗X is exact.

Proof. Let Y ∈ C. Then in this case, since P{X} ' AbGrp is such a simple category,
one easily verifies that:

IY = HomC(Y,X).

By this we mean that the objects are the morphisms, and the morphisms in IY are
just the identity morphisms for each object. Such a category is said to be discrete.
It follows from the discreteness that we don’t need to divide by any relations in the
definition of the following direct limit:

(i∗XA)(Y ) = lim−→
IY

FY =
⊕

φ∈Hom(Y,X)

A.

(recall the explicit description of the direct limit given in the previous section). With
this description of i∗X , it is not hard to verify that it is an exact functor.

If one applies the previous corollary to iX , one hence obtains:

Corollary 2.3.6. If F is an injective object in PC, then for all X ∈ C, F (X) is
injective in AbGrp.

Given an object X ∈ C, let ζX = i∗X(Z). Then for every presheaf F ∈ PC, the
adjunction property implies that there is a natural isomorphism:

HomP(ζX , F ) ' HomAbGrp(Z, iX,∗F ).

But note that iX,∗F = F (X), and that HomAbGrp(Z, F (X)) ' F (X). We thus see
that:

F (X) ' HomP(ζX , F ).

For a fixed object X, we see that the functor from P → AbGrp defined by F 7→
F (X) is represented by ζX ∈ P. We will see below (and explain what these words
mean) that the collection of ζX ∈ P is a family of generators, and that P has enough
injectives.

2.4 Cohomological δ-functors

We first recall the notion of a complex for an arbitrary abelian category. So let A
be an abelian category (e.g. presheaves, modules over any ring, . . . ).
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Definition 2.4.1. A complex E• is a sequence E0
d0 // E1

d1 // E2 // . . . of
morphisms in A such that di ◦ di−1 = 0, for each i ≥ 1.

Definition 2.4.2. A morphism of complexes f • : E• → E ′• is a sequence of
morphisms f i : Ei → E ′i, such that the following diagram commutes:

E0
d0 //

f0

��

E1
d1 //

f1

��

E2 //

f2

��

. . .

E ′0
d′0 // E ′1

d′1 // E ′2 // . . .

Definition 2.4.3. The cohomology objects (or also called cohomology groups),
written Hn(E•), are defined as ker dn/ im dn−1 (note that dn ◦ dn−1 = 0 means that
im dn−1 embeds in ker dn, and Hn(E•) is the cokernel of this map).

The cohomology groups are functorial. That is, if f • : E• → E ′• is a morphism
of complexes, then for each n ≥ 0 we have morphisms:

Hn(f •) : Hn(E•)→ Hn(E ′•)

Moreover,if 0 → E ′• → E• → E ′′• → 0 is an exact sequence of complexes, then
we get a long exact sequence in cohomology:

0 // H0(E ′•) // H0(E•) // H0(E ′′•) EDBC δ0
GF@A

// H1(E ′•) // H1(E•) // H1(E ′′•) EDBC δ1
GF@A

// H2(E ′•) // H2(E•) // H2(E ′′•) // . . .

The morphisms δi are called connecting homomorphisms, and their existence is
proved using the snake lemma.

Consider now a pair of morphism of complexes f •, g• : E• → E ′•.

Definition 2.4.4. We say that f • and g• are homotopic if there exists a sequence
of morphisms hn : En → E ′n−1, for each n ≥ 1, such that

fn − gn = d′n−1 ◦ hn + hn+1 ◦ dn

.
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The importance of this definition is seen in the following easy result, whose proof
we leave as an easy exercise in tracking definitions.

Lemma 2.4.5. If f • and g• are homotopic, then Hn(f •) = Hn(g•), for each n ≥ 0.

We finally define the objects of study of this section. Let A and B be abelian
categories. Recall that a functor F : A → B is called additive if the natural map
HomA(M,N)→ HomB(FM,FN) is a group homomorphism.

Definition 2.4.6. A cohomological δ-functor is a sequence of additive functors
{F n}n≥0, with F n : A→ B such that:

i) For every exact sequence − → M ′ → M → M ′′ → 0 of objects in A we have
a sequence of morphisms δn : F n(M ′′) → F n+1(M ′), for n ≥ 0 such that the
resulting sequence is exact:

0 // F 0(M ′) // F 0(M) // F 0(M ′′) EDBC δ0
GF@A

// F 1(M ′) // F 1(M) // F 1(M ′′) EDBC δ1
GF@A

// F 2(M ′) // F 2(M) // F 2(M ′′) // . . .

ii) For any given commutative diagram with exact rows:

0 //M ′ //

α

��

M //

β

��

M ′′ //

γ

��

0

0 // N ′ // N // N ′′ // 0

then the following squares commute:

F n(M ′′)
δn //

Fn(γ)

��

F n+1(M ′)

Fn+1(α)
��

F n(N ′′)
δn // F n+1(N ′)

Of course, this definition has its motivation in the example of the cohomology
functors Hn.
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Definition 2.4.7. Let F : A → B be a functor. We say that F is effaçable if for
every object M of A there exists an exact sequence 0→M

u→ A such that F (u) = 0.

Definition 2.4.8. A cohomological δ-functor is called effaçable if F n is so, for each
n ≥ 1 (note that we don’t require F 0 to be effaçable).

Lemma 2.4.9. Let {F n}n≥0 and {Gn}n≥0 be cohomological δ-functors such that
{F n}n≥0 is effaçable. Suppose also that there exists a morphism of functors f0 : F 0 →
G0. Then there exists a unique sequence of morphisms fn : F n → Gn which commutes
with the corresponding δ morphisms.

Proof. Let M be an object of A. We want to construct a sequence fn,M : F n(M)→
Gn(M) in a natural way. Consider the exact sequence 0→M

u→ A→ P → 0, where
P is the cokernel of u, and such that F (u) = 0.

We get then a long exact sequence:

· · · // F 0(A)
α //

f0
A
��

F 0(P ) //

f0
P
��

F 1(M)
F 1(u)=0

//

f1
M
��
�
�
�

F 1(A) // · · ·

· · · // G0(A)
β
// G0(P ) // G1(M) // G1(A) // · · ·

To construct f 1
M , we observe that F 1(M) ' coker(α), which maps to coker(β), and

this last object maps canonically into G1(M). Composing, we get the desired map.
The remaining morphisms are constructed inductively in the same way. See [8]

for more details.

The following is an immediate corollary of the previous lemma.

Corollary 2.4.10. If {F n}n≥0 and {Gn}n≥0 are effaçable cohomological δ-functors
and F 0 ' G0 (as functors), then there are unique isomorphisms F n ' Gn, which
commute with the δ morphisms.

2.4.1 Right derived Functors

We will see now a method to construct effaçable δ-functors, given F 0. Recall first
that we call an object I of the category A injective if the functor HomA(−, I) is
exact.

Proposition 2.4.11. Let I be an object of A. The following statements are equiva-
lent:
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i) I is injective.

ii) For every exact sequence 0→ M ′ u→ M of objects in A and f : M ′ → I, there
exists a morphism g : M → I such that g ◦ u = f .

iii) Every short exact sequence 0→ I →M →M ′′ → 0 is split.

Proof. Exercise.

Recall that we say that A has enough injectives if every object M of A can
be embedded in an injective object.

Theorem 2.4.12. Let F : A → B be an additive left-exact functor. Then there
exists an effaçable cohomological δ-functor {RnF}n≥0 such that R0F = F . The
functor RnF is called the nth right derived functor of F .

Remark. This construction is unique, by the previous lemma.

Proof. Let M be an object of A. Consider an injective resolution of M , that is an
exact sequence 0 → M → I0 → I1 → · · · in which In is injective for each n ≥ 0.
This is done using the property of having enough injectives: 0 → M

u→ I0 is given
by the property, and then one applies it again to cokeru, which embeds in I1, and
one keeps going indefinitely.

From this, one considers the “deleted complex” I•:

I• = 0→ I0 → I1 → I2 → · · ·

Finally, define (RnF )(M)
def
= Hn (F (I•)). One should see that this is well defined

(independent of the resolution one starts with), and that it is functorial.
We use the following lemma, which can be easily proved:

Lemma 2.4.13. Let M and M ′ be two objects in A, and let ϕ : M → M ′ be a
morphism. Let 0 → M → I0 → I1 → · · · and 0 → M ′ → I ′0 → I ′1 → · · · . Then
ϕ extends to a morphism of the two resolutions, and any two of them is homotopy
equivalent.

Applying the previous lemma to IdM : M →M , one gets well-definedness of RnF .
Applying it to a morphism ϕ : M →M ′, one gets functoriality.

Next, one needs to see that R0F = F , which is a direct consequence of the
left-exactness of F .

To see that RnF is effaçable for each n ≥ 1, we will prove the stronger fact that,
if I is injective, (RnF )(I) = 0. For this, one can take the trivial injective resolution
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for I, which is given by I• = 0 → I
IdI→ I → 0 → 0 → · · · . The resulting complex

F (I•) is still exact, so that it has 0 cohomology on positive degrees, as we wanted.
Finally, we should see that RnF is a δ-functor. So consider 0 → M ′ → M →

M ′′ → 0 be an exact sequence. We need to construct injective resolutions for each
of the terms, such that they are good enough for us to work with them.

Lemma 2.4.14. If I ′• is an injective resolution for M ′ and I ′′• is one for M ′′, then

I•
def
= I ′• ⊕ I ′′• is an injective resolution for M .

This lemma can be easily proven using that F is left exact, together with the fact
that short exact sequences with an injective as the first term always split.

Moreover, F will preserve exactness of split exact sequences. Therefore, the
exact sequence 0 → F (I ′•) → F (I•) → F (I ′′•) → 0 gies a long exact sequence in
cohomology, which in turn gives the δn’s.

Example 2.4.15. Let G be a group. Let ModG be the category of G-modules. Con-

sider the functor H0(G,−) : ModG → AbGrp defined on objects by H0(G,M)
def
=

MG (the G-invariant elements).
Then ModG is an abelian category with enough injectives, and H0(G,−) is

additive and left exact. In this case, the right derived functors RnH0(G,−)
def
=

Hn(G,−) are the group cohomology.
If G was a topological group, then the category of discrete groups with continuous

G-action might not lead to a δ-functor.

Example 2.4.16. Let X be a topological space, and let A
def
= Sh(X), the category of

sheaves of abelian groups on X. Let H0(X,−) : A→ AbGrp be defined on objects

by H0(X,F)
def
= F(X). Then A is again an abelian category, and we get Hn(X,F),

which is the sheaf cohomology of X.

2.5 Čech Cohomology

Let T be a Grothendieck topology, C = Cat T , and let P = PC be the category of
presheaves on C. Let V be an object of C, and let {Uα → V }α∈I be in Cov T .

We have a diagram of maps:

V {Uα}oo {Uα ×V Uβ}0̂oo

1̂oo

{Uα ×V Uβ ×V Uγ}
0̂oo

1̂oo

2̂oo

· · ·

Applying to it a presheaf F : C → AbGrp, we get:
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∏
α F (Uα) //

∏
α,β F (Uα ×V Uβ)

F (0̂)
//

F (1̂)
//

∏
α,β,γ F (Uα ×V Uβ ×V Uγ)

F (0̂)
//

F (1̂)
//

F (2̂)
//

· · ·

We get a complex C•, which is called the Čech complex attached to the pair

({Uα → V }, F ), by defining dn
def
=
∑n+1

i=0 (−1)iF (̂i):

dn :
∏

α0,...,αn

F (Uα0 × · · · × Uαn)→
∏

α0,...,αn+1

F (Uα0 × · · · × Uαn+1)

C• :
∏

α F (Uα)
d0 //

∏
α,β F (Uα ×V Uβ) d1 //

∏
α,β,γ F (Uα ×V Uβ ×V Uγ) d2 // · · ·

It is a routine check to see that dn+1 ◦ dn = 0. From this, one defines the Čech
cohomology groups:

Ȟ i({Uα → V }, F )
def
= H i(C•) = ker di/ im di−1

Theorem 2.5.1. The functor Ȟ i({Uα → V },−) is effaçable, for i ≥ 1. This implies,
as we have seen, that Ȟ0 determines everything, by using its right-derived functors.

Proof. Let F be a presheaf. Then, there exists an injective presheaf I and F ↪→ I.
We will actually show a stronger statement than needed. Namely, we will see that
Ȟ i({Uα → V }, I) = 0 for all i ≥ 1.

Consider the complex:∏
α

I(Uα)
d0→
∏
α,β

I(Uα × Uβ)
d1→
∏
α,β,γ

I(Uα × Uβ × Uγ)→ · · · (2.1)

Recall that, for X an object in the category C, we had defined a functor {X} i
↪→ C

giving a push-forward i∗ : P → AbGrp, and that i∗ has a left-adfoint i∗ : AbGrp→
P . Define, as we did before, ζX

def
= i∗(Z), an object in P . Then one has:

HomP(ζX , I) ' HomAbGrp(Z, I(X)) ' I(X)

Moreover, ζX(Y ) =
⊕

Hom(Y,X) Z. Then the sequence (2.1) becomes:∏
α

HomP(ζUα , I)
d0→
∏
α,β

HomP(ζUα×Uβ
, I)

d1→
∏
α,β,γ

HomP(ζUα×Uβ×Uγ , I)→ · · ·
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which in turn is isomorphic to:

HomP

(⊕
α

ζUα , I

)
→ HomP

(⊕
α,β

ζUα×Uβ
, I

)
→ HomP

(⊕
α,β,γ

ζUα×Uβ×Uγ , I

)
→ · · ·

So to prove that the first complex (2.1) is exact, it is enough to show that the
following is exact (as I is injective):⊕

α ζUα

⊕
α,β ζUα×Uβ

oo
⊕

α,β,γ ζUα×Uβ×Uγ
oo · · ·oo

So let Y be an object in C. Consider the resulting sequence:⊕
α ζUα(Y )

⊕
α,β ζUα×Uβ

(Y )oo
⊕

α,β,γ ζUα×Uβ×Uγ (Y )oo · · ·oo

which comes from the sequence:∐
α Hom(Y, Uα)

∐
α,β Hom(Y, Uα × Uβ)oo

oo
∐

α,β,γ Hom(Y, Uα × Uβ × Uγ)oo
oo
oo

· · ·
oo
oo
oo
oo

Fix now φ : Y → V , and let S(φ)
def
= {fα : Y → Uα such that φα ◦ fα = φ}.

Then this diagram becomes:

ZS(φ) ZS(φ)×S(φ)oo ZS(φ)×S(φ)×S(φ)oo · · ·oo

which is exact, as we wanted.

Fix a Grothendieck topology T , with C = Cat T and P a presheaf of abelian
groups on T . Fix U ∈ C and two coverings {Uα → U}α∈I , {Vν → U}ν∈J . A
morphism of coverings:

f : {Uα → U}α∈I → {Vν → U}ν∈J

consists of the data f = (ε, (fα)α∈I) where ε : I → J is a map of sets, and fα : Uα →
Vε(α) is a morphism such that:

Uα //

  
@@

@@
@@

@@
Vε(α)

}}{{
{{

{{
{{

U

commutes.
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If f is a morphism of coverings, then one obtains maps:

{Uα}

f

��

{Uα ×U Uβ}
oo

oo

f×f

��

{Uα ×U Uβ ×U Uγ}
oo

oo

oo

f×f×f

��

· · ·

{Vν} {Vν ×U Vν′}
oo

oo

{Vν ×U Vν′ ×U Vν′′}
oo

oo

oo

· · ·

Applying P yields a morphism of Čech complexes. If f ∗ = P (f), then one obtains
maps:

f i : Ȟ i({Uα → U}, P )→ Ȟ i({Vν → U}, P ).

We say that these maps are “induced by the refinement” f . One can prove the
following:

Proposition 2.5.2. With notation as above, if f, g : {Uα → U}α∈I → {Vν → U}ν∈J
are two morphisms of coverings, then f ∗ and g∗ are homotopic maps of Čech com-
plexes. This implies, in particular, that f i = gi for all i.

2.6 Sheafification

Fix a Grothendieck topology T with C = Cat T . Let P denote the category of
presheaves on T and let S denote the category of sheaves. Let ι : S → P denote the
natural fully-faithful inclusion functor (so morphisms of sheaves are just morphisms
of presheaves). This section is devoted to proving the following crucial:

Theorem 2.6.1. There exists a left adjoint ] : P → S to ι. This is called the
sheafification functor.

Remarks.

i) If P is a presheaf and S a sheaf, then:

HomS(P
], S) ' HomP(P, ι(S)).

If we take S = P ], then we see that there exists a canonical morphism α : P →
ι(P ]) corresponding to the identity P ] → P ].

ii) P ] has the following universal property: for every sheaf S and morphism
f : P → ι(S), there exists a unique morphism g : P ] → S such that f = g ◦ α.
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Proof. Our proof begins by defining a functor +: P → P . Fix U ∈ C and let JU be
the category of coverings of U with morphisms as defined in the previous section. If
P ∈ P , then we obtain a functor:

PU : JU → AbGrp

by putting:
PU({Uα → U}) = Ȟ0({Uα → U}, P ).

We define + using the limit of this functor:

P+(U) = lim−→
JU

PU .

Claim. P+ is a presheaf.

We must describe how P+ acts on morphism φ : V → U in C. We begin by
describing a functor J(φ) : JU → JV . Given a covering {Uα → U}, J(φ) maps it to:

{Uα ×U V → V }

This can be extended to morphisms of coverings. We thus have a diagram of functors:

JU
J(φ)

//

PU

��

JV

PV

��

AbGrp AbGrp

and maps:
Ȟ0({Uα → U}, P )→ Ȟ0({Uα ×U V → V }, P ).

These induce map between the direct limits, which we define to be:

φ+ : P+(U)→ P+(V ).

One checks that this actually defines a contravariant functor P → P+, and hence
that + is a presheaf.

If P ∈ P and U ∈ C then there is a map P (U) → P+(U). Indeed, given a
covering {Uα → U}, one obtains a sequence:

P (U)→
∏
α

P (Uα)→
∏
α,β

P (Uα ×U Uβ)
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These two maps always compose to the zero map, as is seen by applying P to the
appropriate fibre product diagrams. Since Ȟ0 is defined as the kernel of the second
map, we hence obtain maps:

P (U)→ Ȟ0({Uα → U}, P )

for every covering. Taking the direct limit of these maps gives P (U)→ P+(U). One
can check that this actually defines a morphism of presheaves P → P+. If P = S is
actually a sheaf, then the sequence:

0→ S(U)→
∏
α

S(Uα)→
∏
α,β

S(Uα ×U Uβ)

is actually exact. In this case S(U)→ Ȟ0({Uα → U}, S) is an isomorphism for each
covering, and hence S ' S+.

Technical remark: The category JU is not a nice category for taking inductive
limits. One can replace JU by J ′U , defined in the following way: objects of J ′U are
still coverings of U in T . We restrict morphisms in the following way:

HomJ ′U
({Uα → U}, {Vν → U}) =

{
one morphism if there is a map between the coverings,

∅ otherwise.

The reason that we can restrict morphisms like this is essentially because any two
morphisms of coverings (or refinements) induce the same maps on cohomology (see
the remarks at the end of the previous section). Now J ′U is just a partially ordered set
via the morphisms and, moreover, it satisfies axiom L3 from the section on inductive
limits above. For if Uα → U and Vν → U are coverings, then:

{Uα ×U Vν → U}

is a covering that is larger than both.
Returning to the proof, if P is any presheaf and S a sheaf such that f : P → S,

then we have a commutative diagram:

P //

f

��

P+

f+

��

S // S+

We have seen that the bottom arrow is an isomorphism. We thus see that f factors
through P → P+. If P+ were a sheaf, then this would be one half of the desired uni-
versal property for ] (we have not shown uniqueness of the map P+ → S). Although
it need not be true that P+ is a sheaf, we claim that:
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Claim. For every presheaf P , P++ is a sheaf.

With this claim, we can hence put P ] = P++. One can then show, using the
diagram above, that P ] satisfies the desired universal property. We will prove the
claim in a somewhat roundabout manner. First, say that a presheaf has property
(+) if for every U ∈ C and covering {Uα → U}, the map:

P (U)→
∏
α

P (Uα)

is injective. With this terminology, we can prove the claim in two steps:
(i) If P is a presheaf, then P+ has property (+).
(ii) If P has property (+), then P+ is a sheaf.
For (i), let U ∈ C and let {Uα → U} be a covering. Take ξ1ξ2 ∈ P+(U), where we

put overlines to emphasize that P+(U) is a direct limit. Suppose that the restrictions
ξ1|Uα = ξ2|Uα are equal for all α. We want to show that ξ1 = ξ2.

Let ξ1, ξ2 represent ξ1, ξ2; by this we mean, find a covering {Vν → U} and take:

ξ1, ξ2 ∈ ker

(∏
ν

P (Vν)→
∏
ν,ν′

P (Vν ×U Vν′
)

mapping to ξ1 and ξ2 in the direct limit. Then the images of ξ1, ξ2 in P+(Uα) are
represented by:

ξ1,α, ξ2,α ∈ ker

(∏
ν

P (Vν ×U Uα)→
∏
ν,ν′

P (Vν ×U Vν′ ×U Uα

)

There exists a finer covering of Uα, {Wα,µ → Uα}, such that the images of ξ1,α
and ξ2,α in

∏
µ P (Wα,µ) are the same. Then:

{Wα,µ → Uα → U}α,µ

is a covering of U . Now the families {ξ1,α,µ} and {ξ2,α,µ} represent ξ1 and ξ2 in∏
α,mu P (Wα,µ). But we have chosen this covering so that the two families are equal

in this product. This implies that ξ1 and ξ2 are equal in the direct limit P+(U).
This concludes the proof of (i).

We now turn to proving (ii). For this, we first show that if P has property (+)
and f : {Vν → U} → {Uα → U} is a morphism of coverings, then f ∗ : Ȟ0({Uα →
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U}, P )→ Ȟ0({Vν → U}, P ) is injective. For each α, {Vν×U Uα → Uα} is a covering.
We deduce that:

P (Uα)→
∏
ν

P (Vν ×U Uα)

is injective, since P has property (+). But then it follows that the product of these
maps is injective:

0→
∏
α

P (Uα)→
∏
α,ν

P (Vν ×U Uα).

One argues similarly that the natural diagram:

0→
∏
α,β

P (Uα ×U Uβ)→
∏

α,β,ν,ν′

P (Vν ×U Vν′ ×U Uα ×U Uβ)

is exact. We thus have a commutative diagram with exact rows:

0 // Ȟ0({Uα → U}, P ) //

��

∏
α P (Uα) //

��

∏
α,ν P (Vν ×U Uα)

��

0 // Ȟ0({Uα ×U Vν → U}, P ) //
∏

α,β P (Uα ×U Uβ) //
∏

α,β,ν,ν′ P (Vν ×U Vν′ ×U Uα ×U Uβ)

such that the rightmost two vertical arrows are injective. One deduces, for example
by the snake lemma, that the first vertical map is also injective. But, by functoriality,
this map is just p∗ ◦ f ∗, where p∗ is induced by the projections:

Vν ×U Uα → Vν .

So f ∗ must itself be injective, as was claimed above.
We now want to show that P+ is a sheaf whenever P has property (+). This will

follow if we can show that for each covering {Uα → U} and collection of ξα ∈ P+(Uα)
satisfying:

ξα|Uα×UUβ
= ξβ|Uα×UUβ

,

then there exists ζ ∈ P+(U) such that ζα = ξ|Uα .
We will only give a proof in the case of a covering by two sets {U1, U2 → U}. We

thus have ξi ∈ P+(Ui) for i = 1, 2 such that ξ1|U1×UU2 = ξ2|U1×UU2 . We want to show
that there exists α ∈ P+(U) such that α|Ui

= ξi.
These ξi are represented by

ξi ∈ Ȟ0({Vα,i → Ui}, P ) ∈
∏
α

P (Vα,i),
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for two coverings {Vα,i → Ui}, i = 1, 2. The restrictions ξi|U1×UU2 are the image of ξi
in:

Ȟ0({Vα,i ×U Uj → U1 ×U U2}, P ).

where j ∈ {1, 2} is taken j 6= i. We must take a refinement of these two covers so
that we can compare the restrictions of the ξi.

The two ξi|U1×UU2 are represented by the same element in P+(U1 ×U U2). This
implies that there exists a covering {Wγ → U1×U U2} which is a common refinement
of:

{Vα,1 ×U U2 → U1 ×U U2}
and

{U1 ×U Vα,2 → U1 ×U U2},
such that the images of the ξi in:

Ȟ0({Wγ → U1 ×U U2}, P )

are equal.
However, P has (+) and so, by what was proved above, ξ1 and ξ2 have the same

image in:
Ȟ0({W ′

γ′ → U1 ×U U2}, P )

where {W ′
γ′ → U1 ×U U2} is any common refinement of

{Vα,1 ×U U2 → U1 ×U U2}

and
{U1 ×U Vα,2 → U1 ×U U2}.

This is true, in particular, for:

{Vα,1 ×U Vβ,2 → U1 ×U U2}.

Thus, ξ1 and ξ2 have the same image in:

Ȟ0({Vα,1 ×U Vβ,2 → U1 ×U U2}), P ),

and hence also in: ∏
α,β

P (Vα,1 ×U Vβ,2).

This shows that (ξ1, ξ2) are in the kernel of:∏
α

P (Vα,1)×
∏
β

P (Vβ,2)→
∏
α,β

P (Vα,1 ×U Vβ,2).
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So by definition, (ξ1, ξ2) ∈ Ȟ0({Vα,i → U}α,i, P ) and this maps into the direct limit
P+(U) of the cohomology groups. Call the image α. Then α satisfies α|Ui

= ξi.
This concludes the proof of our claim in the case of a covering by two sets. The
general case is similar, but requires much more burdensome notation. The general
case implies (ii) above, and hence completes the proof.

Given a presheaf P on T , we call P ] the associated sheaf, or the sheafification
of P . We end this section with a discussion of another crucial result:

Theorem 2.6.2. a) S is an abelian category.
b) S has enough injectives.
c) ι is left exact and ] is exact.

We will not prove this theorem fully, but will explain how to define kernels,
cokernels and images in S. Let F,G be sheaves. A morphism between them is
a morphism as presheaves, and so HomS(F,G) has a natural structure of abelian
group. Let f : F → G be a morphism of sheaves. We let ker f be the presheaf kernel
of f defined previously. A priori this is just a presheaf, but we claim that it is in fact
a sheaf. Let K = ker f , let U ∈ C and let {Uα → U}α∈I be a covering of U . Then
one has the following commutative diagram:

0 // K(U) //

��

∏
α∈I K(Uα)

//

��

//

∏
α,βK(Uα ×U Uβ)

��

0 // F (U) //

��

∏
α∈I F (Uα)

//

��

//

∏
α,β F (Uα ×U Uβ)

��

0 // G(U) //
∏

α∈I G(Uα)
//
//

∏
α,β G(Uα ×U Uβ)

The bottom two rows are actually exact, since F and G are sheaves. One concludes
that the top row is exact by the snake lemma. This shows that the presheaf kernel
is actually a sheaf.

It remains to argue that K is actually a kernel for f in S. This amounts to
showing that the sequence:

0→ HomS(X,K)→ HomS(X,F )→ HomS(X,G)

induced by the maps:

K → F
f→ G
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is actually exact, for every sheaf X. Note that since X is a sheaf, X ' ι(X)]. We
can thus employ the adjointness property of ι and ] to obtain an equivalent sequence:

0→ HomP(ι(X), ι(K))→ HomP(ι(X), ι(F ))→ HomP(ι(X), ι(G))

Now since ι(K) is the kernel of ι(f) in P , this last sequence is exact. It follows that
the first one from this paragraph is as well, and hence that K is a kernel for f in S.

We turn to the subject of defining coker f . In general, the presheaf cokernel
C = coker ι(f) given by:

C(U) = G(U)/im(fU)

is not a sheaf. We thus sheafify:

coker f = C] = (coker ι(f))] .

There is a map of coker f obtained from the natural map G → C followed by the
canonical map C → C].

We will now argue that G→ C] as defined is a cokernel for f . This amounts to
showing that for each sheaf X ∈ S, the sequence:

0→ HomS(C
], X)→ HomS(G,X)→ HomS(F,X)

is exact. But again, G = (ιG)] since G is a sheaf, and similarly for F . Applying the
adjunction property yields the equivalent sequence:

0→ HomP(C, ι(X))→ HomP(ι(G), ι(X))→ HomP(ι(F ), ι(X))

This is exact since C = coker ι(f). So C] is a cokernel for f , as claimed. We leave
the remaining details of the theorem above to the reader. We end this section by
recalling some definitions pertaining to abelian categories:

Definition 2.6.3. Given a morphism of sheaves f : F → G, define the image of f :

im(f) = ker (G→ coker f) .

A sequence of sheaves:

F
f→ G

g→ H

is said to be exact if ker g = im f .
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Remark. Given a presheaf F and an object U ∈ C, how should one think about
sections s ∈ F+(U)? Such a section is represented by pairs:

({Uα → U}α∈I , (sα)α∈I)

consisting of a covering and sections sα ∈ F (Uα), compatible on overlaps:

sα|Uα×UUβ
= sβ|Uα×UUβ

for all α, β ∈ I. Two representatives:

({Uα → U}α∈I , (sα)α∈I), ({Vη → U}η∈J , (tη)η∈J)

are equal in F+(U) if and only if there exists a common refinement:

{Wν → U}ν∈A

of the two coverings, corresponding to index set maps:

A

ε
����

��
��

�

δ
��

??
??

??
?

I J

such that for every ν ∈ A,
sε(ν)|Wν = tδ(ν)|Wν .

2.7 Sheaves on Xet

There are several different Grothendieck topologies on a scheme relating to the étale
condition that are commonly in use. We will use one of the more common ones.
Given a scheme X, we define a Grothendieck topology Xet in the following way:
Cat (Xet) is the category of étale morphisms f : U → X. The admissible coverings
Cov (Xet) are given by the collection of finite surjective families of morphisms:{

Ui
fi→ U | U → X and Ui → U are étale, U =

⋃
fi(Ui)

}n
i=1
∈ Cov (Xet).

Remark. Given a covering as above, we can always consider:

U ′ =
n∐
i=1

Ui
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with the induced surjective map U ′ → U . This map is étale since each Ui → U is,
and hence {U ′ → U} ∈ Cov (Xet). These two coverings are isomorphic, under a
natural notion of isomorphism in Cov (Xet). One can thus work solely with coverings
consisting of a single morphism.

We turn to proving that an abelian group scheme (to be defined below) defines
a sheaf of abelian groups on Xet. First let G → X be a scheme over X. Note well
that we do not suppose G is étale over X. Define a set valued contravariant functor:

G : Xet → Sets

by:
G(U) = HomX(U,G),

where we mean only to consider scheme morphisms over X. This defines a presheaf
on Xet. In fact, one has the following:

Theorem 2.7.1. With notation as above, G is a set-valued sheaf on Xet.

Proof. The remark above implies that we need only verify the sheaf axiom for cov-
erings of the form {U ′ → U}. We will thus be concerned with the sequence:

0 // G(U) // G(U ′)
//
// G(U ′ ×U U ′)

We treat the case that all schemes appearing are affine, and leave the various reduc-
tions to the reader. Let X = Spec(R), U = Spec(A), U ′ = Spec(B), G = Spec(S).
By assumption, A→ B is affine and Spec(B)→ Spec(A) is surjective. This implies
that f : A→ B is faithfully flat. We hence have the descent exact sequence:

0 // A
f
// B

i1 //

i2
// B ⊗A B

where i1(b) = b⊗ 1 and i2(b) = 1⊗ b.
By definition of G, we must show the exactness of:

0 // HomR−alg(S,A) // HomR−alg(S,B)
//
// HomR−alg(S,B ⊗A B).

Suppose that φ, φ′ : S → A satisfy f ◦φ = f ◦φ′. Since f is faithfully flat, it follows
that φ1 = φ2. This proves the injectivity of the first map above. For exactness of
the last map, suppose that φ : S → B satisfies i1 ◦ φ = i2 ◦ φ. Then from the descent
exact sequence, for each s ∈ S there exists a unique a ∈ A so that φ(s) = f(a).
Define a map ψ : S → A by putting ψ(s) = a. One can argue that this actually gives
an R-algebra map ψ : S → A. By construction, ψ maps to φ in the sequence above.
This shows that the equaliser of the last map is contained in the image of second
map in our sequence. The other inclusion is trivial.
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We say that G is an abelian group scheme if the associated functor is such
that:

G(U) = HomX(U,G)

has the structure of an abelian group for every U ∈ Cat (Xet), and for every f : U →
V with U, V ∈ Cat (Xet), G(f) is a group homomorphism. If one begins with
a representable set-valued covariant functor G : Cat (Xet) → Sets satisfying this
same property, then the representing object is an abelian group scheme. With this
definition, one can prove the following corollary to the theorem above:

Corollary 2.7.2. If G → X is an abelian group scheme, then G defines a sheaf of
abelian groups on Xet.

We will illustrate the definition of an abelian group scheme via a series of exam-
ples.

Examples 2.7.3.

Additive group over X: Ga,X

Let A = OX [T ] denote the quasi-coherent sheaf of OX-algebras on X. Recall
that this is defined as:

OX [T ](U) = OX(U)[T ].

The sheaf of OX-algebras defines a natural scheme:

Y = Spec(A)→ X.

This is defined by taking an affine cover ofX and glueing together theOX [T ](U)
for the opens U in the cover. We put:

Ga,X(U) = HomX(U, Y ),

for U → X étale.

We claim that HomA(U, Y ) = (OU(U),+) is the additive group of OU(U). In
the special case that X = Spec(K) for a field K, then Y = Spec(K[T ]). Take
U = Spec(A)→ X étale. Then:

Ga,K = HomX(U, Y )

' HomK−alg(K[T ], A)

' A,

since K-algebra homomorphisms as above are determined by where they map
T .
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Multiplicative group over X: Gm,X

In this case one considers the quasi-coherent sheaf Am = OX [T, T−1] of OX-
algebras and puts:

Ym = Spec(OX [T, T−1])→ X.

Then:
Gm,X(U) = HomX(U, Ym) ' ((OU(U))×, ·).

n-th roots of unity: µn

Given an integer n > 0 put:

An = OX [T ]/(T n − 1)

and
Yn = Spec(An)→ X.

Then put µn(U) = HomX(U, Yn) = (µn(OU(U)), ·).
Note that this group scheme can be defined in a second, perhaps more concep-
tual, way. We define a map of sheaves [n] : Gm,X → Gm,X in the following way:
for each U → X étale, let:

[n] = [n]U : Gm,X(U)→ Gm,X(U)

be given by x 7→ xn. Then define µn = ker[n]. This definition of µn is only
applicable to étale maps U → X.

Constant group scheme.

Given an abelian group M , define YM = X ×M → X (recall that X ×M =∐
m∈M X). Then define the constant sheaf M on Xet by:

M(U) = HomX(U, YM) 'M ] of components of U ,

for U → X étale.

2.8 Sheaf Cohomology

Let X be a scheme. Consider on it the Grothendieck topology X ét, and let F be a
sheaf (that is, an object of Sh(X ét)).

Define first H0(X ét, F )
def
= F (X) (note that the one-set covering {X Id→ X} is

étale).
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Lemma 2.8.1. The functor H0(X ét,−) : Sh(X ét)→ AbGrp is left exact.

Proof. Let 0 → F ′ → F → F ′′ be an exact sequence of sheaves on X ét. This
means that F ′ ' ker(F → F ′′) as presheaves as well. Hence the presheaf sequence
0 → ι(F ′) → ι(F ) → ι(F ′′) is exact, and in particular, the sections sequence 0 →
ι(F ′)(X) → ι(F )(X) → ι(F ′′)(X) is exact as well. But this last sequence is 0 →
F ′(X)→ F (X)→ F ′′(X), and proves the lemma.

Recall now that the category of sheaves on X ét, which we call Sh(X ét), has
enough injectives, so we can define its right derived functors:

Hn(X ét,−)
def
= Rn(H0(X ét,−)) = nth right derived functor of H0(X ét,−)

We know then that the sequence {Hn(X ét,−)}n≥0 is an effaçable cohomological
δ-functor.

2.8.1 Calculating cohomology: direct and inverse images

Let f : X ′ → X be a morphism of schemes. We want to generalize the constructions
of f∗ and f ∗, to the étale topology.

For this, consider first the functor:

ft : (X ét)→ (X ′ét)

whose action on objects is: if U → X is étale, ft(U)
def
= X ′ ×X U → X ′ (which is

étale as well!).

Proposition 2.8.2 (Properties of ft). i) The functor ft commutes with fiber
products: if U → X and V → X are étale, then ft(U×X V ) ' ft(U)×X′ ft(V ).

ii) The functor ft takes coverings to coverings: if {Uα → U}α∈I is a covering in
X ét, then the family {ft(Uα)→ ft(U)}α∈I is a covering in X ′ét.

These two properties actually generalise the property of a map being continuous,
but to Grothendieck topologies:

Definition 2.8.3. Given T and T ′ two Grothendieck topologies, and a functor
f : T → T ′, we say that f is continuous if f commutes with fiber products, and if
f takes coverings to coverings.
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From the (continuous) functor ft we obtain a new functor:

f∗ : Sh(X ′ét)→ Sh(X ét)

by sending a sheaf F on X ′ét to (f∗F )(U)
def
= F (ft(U)).

Claim. The presheaf f∗F is a sheaf.

Proof. As ft and F are both functors, the composition is as well, and so f∗F is a
presheaf. We need to show that it verifies the sheaf property. So let {Uα → U}α∈I ∈
Cov (X ét) be a covering, and let F be a sheaf on X ′ét. The sheaf property sequence
is:

0 // F (ft(U)) //
∏

α∈I F (ft(Uα))
//
//

∏
α,β∈I F (ft(Uα ×X Uβ))

but note that ft(Uα ×X Uβ) = ft(Uα) ×X′ ft(Uβ), and so the result follows from
observing that the family {ft(Uα) → ft(U)}α∈I is an element of Cov (X ′ét), and
that F is a sheaf on X ′ét.

The functor f∗ is left-exact, and has a left-adjoint, which we will denote by
f ∗ : Sh(X ét)→ Sh(X ′ét).

Remark. Consider the composition of functors:

Sh(X ′ét)
f∗

// Sh(X ét)
H0(X ét,−)

//AbGrp

If F ∈ Sh(X ′ét), we compute:

H0(X ét, f∗F ) = (f∗)F (X) = F (X ′) = H0(X ét, F )

so H0(X ét,−) ◦R0f∗ = H0(X ét,−). We have then the Leray spectral sequence:

Ei,j
2 = H i(X ét, Rjf∗F ) =⇒ H i+j(X ′ét, F )

We should think of this as a way to obtain the cohomology of X ′ in terms of the
cohomology of the base X and the cohomology of the fibers.

Example 2.8.4. For i+ j = 0 this gives:

H0(X ′ét, F ) ' H0(X ét, R0f∗F )

which we already knew. For i+ j = 1, we get the following exact sequence:

0→ H1(X ét, R0f∗F )→ H1(X ′ét, F )→ H0(X ét, R1f∗F )→ H2(X ét, R0f∗F )→ · · ·

Corollary 2.8.5 (to the remark). If Rif∗F = 0 for all j ≥ 1, then:

Hn(X ′ét, F ) ' Hn(X ét, f∗F )
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2.9 Stalks on X ét

For general Grothendieck topologies we don’t have a good notion of stalks. However,
for the étale topology we do have them, and they are as useful as when working with
the usual Zariski topology. So let X be a scheme, and consider the étale topology
on it X ét, and the sheaves on X ét, which we write Sh(X ét).

Definition 2.9.1. A geometric point x of X is a morphism of schemes:

x : Spec(K)→ X

where K is a separably closed field (K = Ksep).
This is the same to fixing a point x ∈ X and an embedding of κ(x) into some

separable closure K.
Equivalently, it is the same to having a ring homomorphism OX(X) → K such

that the following diagram commutes:

OX(X) //

��

K

OX,x // // κ(x)

OO

We call x ∈ X the support of x.

Example 2.9.2. Let X = Spec Z, x = (p) ∈ Spec Z, κ(x) = Fp ↪→ Fp.
But also one can take x = (0) ∈ X, and κ(x) = Q. Then a geometric point with

support x would correspond to fixing an algebraic closure of Q.

Definition 2.9.3. Let x→ X be a geometric point ofX. An étale neighbourhood
of x is a pair (U, u) where U → X is étale, and u : x → U is such that it makes the
following diagram commutative:

x
u //

��
??

??
??

??
U

~~~~
~~

~~
~

X

Remark. Let x
ι→ X be a geometric point, and let f : U → X be an étale map. Let

x ∈ X be the support of x, and suppose that x ∈ f(U) (note that f being étale
means that it’s open, so f(U) is an open in X).
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Then there one can construct an étale neighbourhood (U, u) of x in the following
way:

As x ∈ f(U), there is some u ∈ U such that f(u) = x. Write then x = SpecK,
and so ι is given by an inclusion κ(x) ↪→ K.

As U is étale over X, then OX,x → OU,u is unramified, and the extension κ(x) ↪→
κ(y) is finite and separable. Hence there is an extension u : κ(u) → K giving the
desired geometric point in U . In fact, there are as many possible u as the degree of
κ(u) over κ(x).

Let now F be a sheaf on X ét, and fix x → X a geometric point of X. We
can then consider the category of étale neighbourhoods of x, where a morphism
ϕ : (U, u)→ (V, v) is defined to be a morphism ϕ : U → V over X such that ϕ◦u = v.

Moreover, we can construct fibered products:

(U, u)×(X,x) (V, v)
def
= (U ×X V, u× v)

Note that the category of étale neighbourhoods of x satisfies the (L3) property
(it is a filtered category).

Definition 2.9.4. The stalk of a presheaf on X ét, F , at x is defined as:

Fx
def
= lim−→

(U,u)

F

Proposition 2.9.5 (properties of stalks).

i) Fix a geometrix point x → X, and let F ∈ P(X ét) be a presheaf. Then the
elements of Fx are classes of triples (U, u, s), where (U, u) is an étale neigh-
bourhood of x, and s ∈ F (U). Two triples (U, u, s) ≡ (V, v, t) are equivalent if
there exists an étale neighbourhood (W,w) of x and morphisms

(W,w) //

��

(U, u)

(V, v)

such that s|W = t|W .

ii) If F is a presheaf on X ét, and x→ X is a geometric point, then:

Px = (P#)x
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iii) One can characterise the exacntess of sequences by looking at the stalks at all
geometric points: a sequence of sheaves F ′ → F → F ′′ is exact if, and only if,
the sequence of stalks F ′

x → Fx → F ′′
x is exact, for all geometric points x→ X.

Proof. The first assertion follows from the fact that the category over which we are
taking the inductive limit satisfies property (L3).

To prove the second assertion, recall that P# = P++, and so we only need to
prove it for +. Consider the canonical map l : P → P+. We will see that it induces
isomorphisms on the stalks: lx : Px → (P+)x.

For injectivity, let α = [(U, u, s)] ∈ Px be such that lx(α) = 0. This means that
there exists (U ′, u′) → (U, u) such that s|U ′ = 0 (in P+(U ′)). So that there is a
covering {Uβ → U ′}β∈I and sections gβ ∈ P (Uβ) satisfying the glueing property, and
such that 0 = s|Uβ

= gβ. We need to lift u′ to Uβ0 , for some β0. So take Uβ0 such
that there exists some yβ0 with the property that yβ0 maps to x under the obvious
maps. Then, by a previous remark, there will exist uβ0 : x→ Uβ0 making all diagrams
commutative. This gives a morphism (Uβ0 , uβ0) → (U, u) such that s|Uβ0

= gβ0 = 0,
as wanted. Surjectivity is done with a similar argument, and we leave it to the reader.

Lastly, we prove the last statement of the proposition. First, if 0 → F ′ → F →
F ′′ → 0 is an exact sequence of sheaves, note that from both the section functor and
the inductive limit functor being left-exact, we obtain already exactness on the left.
So we just need to prove surjectivity, and the argument is very similar to what has
been done before in this proof.

We will show, to ilustrate how to do the converse, that injectivity can be detected
at the stalks. Suppose that φ : F ′ → F is such that, for all geometric points x→ X,
φx : F ′

x → Fx is exact. Note that it is enough to prove that φU is injective for all U
in a basis for the Zariski topology, and so we may take U to be affine (we just need

that U is quasicompact). Let x ∈ U , and take x
def
= Spec(κ(x)sep)

u→ U → X, so that
x becomes in this way a geometric point of X. By hypothesis then, 0→ F ′

x → Fx is

injective, and β
def
= [(U, u, s)] ∈ F ′

x. Also, φx(β) is zero in Fx, and so, as φx is injective,
we deduce that β = 0 in F ′

x. Hence there exists a morphism (Ux, ux) → (U, u) such
that s|Ux = 0. This can be done for each x ∈ U , and so we get a surjective family
{Ux → U}x∈U . As U is quasicompact, we can extract a finite covering, under which
s|Uxi

= 0. As F ′ is a sheaf, we deduce that s = 0, as we wanted to show.

Example 2.9.6. Consider the sheaf OX ét on X ét given by, if U → X is étale, then

OX ét(U)
def
= OU(U). Given x ∈ X, fix a separable closure K of κ(x), and then we

obtain a geometric point x = SpecK → X. Consider the stalk at x:

B
def
= OX ét,x = lim−→ (U, u)OU(U)
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Note that we have a map A → B, since A = lim−→U ′
OX(U ′), where U ′ ⊆ X are

Zariski opens (because U ′ ⊆ X are étale). This makes B an A-algebra. It is actually
the stric henselization of A (note that A is a local ring) which we will see below. As
we will see next A ' B precisely when the residue field of x is separably closed.

Definition 2.9.7. A local ring is called henselian if Hensel’s lemma hold in it. It
is called strict henselian if it is henselian and its residue field is separably closed.

Example 2.9.8. A strict Henselization of the ring of p-adic integers is given by the
maximal unramified extension, generated by all roots of unity of order prime to p.
It is not “universal” as it has non-trivial automorphisms.

Proposition 2.9.9 (properties of the strict henselisation). Let A be a local
ring, and let B be a strict henselisation of A. Then:

i) B is a local ring, and the structure morphism A→ B is a local homomorphism
(mAB ⊆ mB).

ii) B is unramified over A (mAB = mB) and the residue field of B is a separable
closure of that of A.

iii) B can be written as B = lim−→α
Bα, where Bα are étale A-algebras, for each α.

iv) If B → B′ is étale and B′/(mBB
′) 6= 0 (so that ϕ : SpecB′ � SpecB is

surjective), then there is a section s : SpecB → SpecB′ to ϕ (that is, ϕ ◦ s =
IdSpecB). In particular, B is a direct factor of B′.

Proof. We just sketch certain parts of the proof. First, note that one can write:

B = lim−→
(U,u)

OU(U) = lim−→
(U,u)

lim−→
U ′⊆U

OU ′(U ′) = lim−→
(U,u)

OU,u

where the open subsets U ′ ⊆ U considered are those containing the image of u. This
shows that B is a direct limit of local rings. After checking that the transition maps
are also local homomorphisms, one deduces that B is a local ring. Moreover, as
A→ OU,u is a local homomorphism, one deduces that A→ B is local as well.

We don’t prove unramifiedness, but note that at least A → OU,u is unramified.
One needs to see what happens when taking the direct limits.

For the second part, let V = Spec(R) ⊆ X, and x ∈ V . We may restrict the
inductive limit only to affine subsets U = Spec(R). Write then:

B = lim−→
(SpecRu,u)

Ru
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As B is an A-algebra, we have:

B ' B ⊗R A =

(
lim−→

(SpecRu,u)

Ru

)
⊗R A ' lim−→

(SpecRu,u)

Ru ⊗R A

As R→ Ru is étale, we get that Ru⊗RA is also étale over A (by base change) as
wanted.

Lastly, given B → B′ an étale B-algebra with B′/(mBB
′) 6= 0, from what we

have observed so far we deduce that there exists an étale neighbourhood of x, say
(U, u), with U = Spec(Ru), such that B′ = Ru ⊗R R′, and with R → R′ étale. We

just need to find then a map R′ → B. For this, let U ′ def
= Spec(R′).

U = SpecRu

��

x //

u
88qqqqqqqqqqqqq

u′

&&M
M

M
M

M
M x ∈ V = SpecR � � // X

U ′ = SpecR′

f

OO

Note that x ∈ f(U ′), because B′/mBB
′ 6= 0. Hence there exists a lift u′ : x → U ′

making the diagram commutative. This means that U ′, u′) is an étale neighbourhood
of x, and so there is a map R′ → B.

This allows us to define a section:

R′ ⊗R Ru → B

r′ ⊗a 7→ r′a

Corollary 2.9.10. Let X be a scheme, and let x → X be a geometric point with

support x ∈ X. Let B
def
= OX ét,x and Y

def
= Spec(B). Then, for any sheaf F on Y ét,

H i(Y ét, F ) = 0 for all i ≥ 1

Theorem 2.9.11 (pull-backs and stalks). Let f : Z → X be a morphism of

schemes. Let z → Z be a geometric point, and let x
def
= f(z)→ X be the corresponding

geometric point on X. Let F be a sheaf on X ét. Then:

((f ∗F )z ' Ff(z)
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Proof. Exercise.

Corollary 2.9.12. The functor f ∗ : Sh(X ét)→ Sh(Z ét) is exact.

Theorem 2.9.13 (push-forwards and stalks). Let f : Z → X be a morphism

of schemes, and let x → X be a geometric point, with support x ∈ X. Let X
def
=

Spec(OX ét,x), and define Z
def
= X ×X Z. Denote by α : Z → Z the second projection.

Let F be a sheaf on Z ét. Then:

(Rqf∗F )x = Hq(Z
ét
, α∗F )

Remark. We think of Rqf∗F as the “cohomology on the fibers”. Actually, if f is
proper, then the previous quotes can be removed (see [6]).

Corollary 2.9.14. Suppose that f : Z → X is finite. Let F be a sheaf on Z. Then:

i) Rqf∗F = 0 for all q ≥ 1.

ii) Hn(Z ét, F ) ' Hn(X, f∗F ) for all n ≥ 0

Proof. Note first that the second statement is a consequence of the first, because of
the Leray spectral sequence. So we prove the first statement in the remaining of the
proof.

Let x ∈ X, and let x = Spec(κ(x)sep)→ X be a geometric point with support x.
As Z → X is finite, then:

Z
def
= Spec

(
OX ét,x

)
×X Z '

t∐
i=1

Spec(Bi)

is a disjoint union of affine rings, where Bi are strict henselian rings (some argument
is needed to complete this claim).

Now, we have, for all q ≥ 1:

(Rqf∗F )x = Hq(Z, α∗F ) =
s∏
i=1

Hq(Spec(Bi)
ét, α∗iF ) = 0

It follows that Rqf∗F = 0, as it vanishes at all of its stalks.
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2.10 Application: The Cohomology of Curves

Fix k = k an algebraically-closed field, and let X be a smooth, projective, irreducible
algebraic variety of dimension 1 (a curve).

We want to calculate the cohomology groups of X ét, wich values on the con-
stant sheaf Z/nZ, when char(k) - n. That is, we are interested in computing

Hn(X ét,Z/nZ).
There is a (non-canonical) isomorphism:

Hn(X ét,Z/nZ) ' Hn(X ét, µn,X)

(where µn,X is the sheaf of nth roots of unity over X). We will actually compute the
latter groups. For this, we will compute the cohomology with values on the sheaf
Gm,X , and then show that the following sequence is exact:

0 // µn,X // Gm,X
[m]
// Gm,X

// 0

2.10.1 The Cohomology of Gm,X

We first recall some notions from classical algebraic geometry. We write Div(X) for
the free abelian group generated by the set of closed points on X. There is a group
homomorphism, the degree map:

deg : Div(X)→ Z,
∑

x∈|X|cl
nxx 7→

∑
x

nx

and we define Div0(X) to be the kernel of the degree map.
Let K(X) be the function field of X. We also have a map:

div : K(X)→ Div(X), f 7→
∑

x∈|X|cl
ordx(f) · x

As X is projective, we have that deg(div(f)) = 0 for all f ∈ K(X). Denote by

P (X) ⊆ Div0(X) the image of div, and write Pic(X)
def
= Div(X)/P (X). for the

Picard group of X. Also, define Pic0(X)
def
= Div0(X)/P (X) ⊆ Pic(X).

Theorem 2.10.1. There exists an abelian variety J(X), called the Jacobian of X
such that J(X)(k) = Pic0(X).
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Theorem 2.10.2. Let X be a (smooth, proper) curve over an algebraically closed
field k. Then:

H0(X ét,Gm,X) = k×, H1(X ét,Gm,X) ' Pic(X)

and the higher cohomology vanishes.

Proof. Let k(X) be the function field of X and let:

j : η → X

be the generic point. Let G = Gal(k(X)sep/k(X)) be the Galois group of a separable
closure of k(X). Then since η = Spec(k(X)), we have observed that:

ηet ' G− Sets.

Furthermore, we have seen that sheaves on ηet correspond to G-modules under this
identification. Under this correspondence:

Gm,η ↔ (k(X)sep)×.

Let x ∈ X be a closed point. Then k(x) is an algebraic extension of k; since k
is algebraically closed, k(x) = k. This shows that every closed point is a geometric
point. Let Zx be the constant sheaf Z on xet. Put ix : x→ X. We first claim that:

0→ Gm,X → j∗Gm,η →
⊕
x∈|X|cl

ix,∗(Zx)→ 0

is exact.
To prove this, we must first explain precisely how this sequence is defined. Let

f : U → X be étale with U connected. It follows that since X is an irreducible curve
and U → X is étale, U is an irreducible curve. Let ξ = Spec(k(U)) be the generic
point of U . We have Gm,X(U) = OU(U)× and:

j∗(Gm,η(U) = Gm,η(U ×X η) = Gm,η(f
−1(η)) = Gm,η(ξ) = k(U)×.

Let φU : OU(U)× → k(U)× denote the natural embedding. Then φ defines the first
mapping.

We must next analyze:

ix,∗(Zx)(U) = Zx(U ×X x) = Zx({x ∈ U | f(u) = x}) =
⊕
f(u)=x

Zu.
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This shows that: ⊕
x∈|X|cl

ix,∗(Zx)(U) =
⊕
x∈|X|cl

⊕
f(u)=x

Zu = Div(U).

Let ψU : k(U)× → Div(U) be given by g 7→ div(g). Then ψ defines the second map.
We must now argue that the sequence is exact. Note that:

0→ OU(U)× → k(U)× → Div(U)

is exact. The first map is naturally injective, and a function in k(U)× without poles
is a unit in OU(U). It remains to show that the last map is surjective.

Let D =
∑m

i=1 niui with ni ∈ Z and ui ∈ U . For each i, we can find Zariski open
neighbourhoods Ui ∈ U of ui, and parameters ti ∈ k(Ui)× on Ui, such that:

divUi
(ti) = Ui.

Put U0 = U − (U1 ∪ · · · ∪Um). Note that D|U0 = 0, which is the image of 1 ∈ k(U)×.
For i 6= 0 we have D|Ui

= niui. This is the image of tni
i ∈ k(Ui)

×. So for each i,
D|Ui

∈ Im(ψUi
). It follows by the sheaf property that ψ is surjective. This concludes

the proof of our first claim.
We will now consider the associated long exact cohomology sequence:

0 // H0(Xet,Gm,X) // H0(Xet, j∗(Gm,η)) //
⊕

x∈|X|cl H0(Xet, ix,∗(Zx)) //

// H1(Xet,Gm,X) // H1(Xet, j∗(Gm,η)) //
⊕

x∈|X|cl H1(Xet, ix,∗(Zx)) //

...

The theorem will follow by applying the following two lemmas to this sequence.

Lemma 2.10.3. For n ≥ 0:

Hn(Xet, j∗(Gm,η)) ' Hn(ηet,Gm,k) '
{
k(x)× if n = 0
0 otherwise

Proof. We will use the Leray spectral sequence. Hence, we begin by computing:

Rq
j∗(Gm,η)
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for q ≥ 1.
Let y → X be a geometric point. We will show that all the stalks (Rq

j∗(Gm,η))y
vanish, treating two cases.

For the first case, suppose y = η = Spec(k(X)sep) → X. Then OXet,η is the
strict Henselization of OX,η = k(X). But the strict Henselization of a field is just
the separable closure, and thus:

OXet,η = k(X)sep.

Therefore:

(Rq
j∗(Gm,η))η = Hq(Spec(k(X)sep)×X η, α∗(Gm,η)) = Hq(Spec(k(X)sep)et, α∗(Gm,η)).

But again, this can be computed in terms of Galois cohomology by previous work.
Since k(X)sep is separably closed, the Galois group of this field is trivial. Hence the
Galois cohomology groups are trivial, and so the group above is zero. This concludes
the first case.

In the second case, suppose that y = x is a closed point of X with i : x → X
the natural embedding. Then OXet,x is the strict Henselization of OX,x. It is hence
an inductive limit of local rings of curves U étale over X. Put Frac(OXet,x) = K
and note that Frac(OX,x) = k(X). Then K ⊂ k(X). Note that this extension is
separable, since K is an inductive limit of fraction fields which are each separable
over k(X). After one shows that α∗(Gm,η) ' Gm,K , it follows that:

(Rqj∗(Gm,η))x = Hq(Spec(OXet,x)×X η, α∗(Gm,η))

= Hq(Spec(K),Gm,K)

' Hq(GK , (k(X)sep)×),

where the last group is a Galois cohomology group with GK = Gal(Ksep, K). When
q = 0, take Galois invariants to obtain K×. When q = 0 the cohomology vanishes
by Hilbert theorem 90. When q ≥ 2 it also vanishes, this time by Tsen’s theorem.
This concludes the second case. Thus:

Rq
j∗(Gm,η) = 0

for q ≥ 1, since all the stalks vanish. The Leray spectral sequence then gives:

Hn(Xet, j∗(Gm,η) ' Hn(ηet,Gm,η)

' Hn(G, (k(X)sep)×)

=

{
k(X)× n = 0
0 otherwise

This concludes the proof of the lemma.
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Lemma 2.10.4. For all n ≥ 0,

Hn(Xet, ix,∗(Zx)) ' Hn(xet,Zx) =

{
Zx n = 0
0 otherwise

Proof. The second equality of the lemma follows similarly to above, using Galois
cohomology. For the first, we will again make use of the Leray spectral sequence.
Since k is algebraically closed, xet is equivalent to the category of finite sets. More-
over, sheaves on xet are the same thing as abelian groups. If M is an abelian group
(corresponding to a constant sheaf on x) then (ix,∗(M))y = 0 if x 6= y and M if
x = y. One deduces that the functor ix,∗ is exact. Thence Rqix,∗ = 0 for q ≥ 1. The
lemma then follows by the Leray spectral sequence.

This concludes the proof of the theorem.

Theorem 2.10.5. Let n > 0 be an integer. Suppose that char(k) does not divide n.
Then:

H0(Xet, µ
n
) = µn(k)

H1(Xet, µ
n
) = Pic0(X)[n] ' Jac(X)[n]

H2(Xet, µ
n
) = Z/nZ

Hq(Xet, µ
n
) = 0

for q ≥ 3.

Proof. We first claim that:

0→ µn → Gm,X
[n]→ Gm,X → 0

is an exact sequence of sheaves on Xet. Let U → X be étale. Then:

0→ µn(OU(U))→ OU(U)× → OU(U)×

where the last map is x 7→ xn, is exact. It thus remains to show that [n] is a surjective
map of sheaves.

Let g ∈ Gm,X(U) = OU(U)×. We must construct an étale cover of U containing
an n-th root of g. Define a quasi-coherent sheaf of OU -algebras by putting:

T = OU [T ]/(T n − g)
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and Y = Spec(T ). Then Y → U is a surjective affine map. We will show that it is
étale. Let V = Spec(A) ⊂ U be an affine open subset. Then:

W = f−1(V ) = Spec(A[T ]/(T n − g|V )).

Put B = Spec(A[T ]/(T n − g|V ). Note that (d/dT )(T n − g|V ) = nT n−1. Since n is
relatively prime to the characteristic of k, it follows that n is a unit in B. Moreover,
T n = g ∈ A× ⊂ B× and hence T is also a unit in B. A homework problem thus
shows that B/A is étale. One can show that W → V is surjective by the going-up
theorem of commutative algebra (since B/A is integral). It follows that Y → U is
étale and surjective, and hence is an étale cover.

Let t ∈ OU(U) be the image of T ∈ OY (Y ). Then it follows that [n] is surjective
and:

0→ µ
n
→ Gm,X

[n]→ Gm,X → 0

is exact. Consider the corresponding long exact sequence of cohomology:

0 // H0(Xet, µ
n
) // H0(Xet,Gm,X) // H0(Xet,Gm,X) //

// H1(Xet, µ
n
) // H1(Xet,Gm,X) // H1(Xet,Gm,X) //

// H2(Xet, µ
n
) // H2(Xet,Gm,X) // H2(Xet,Gm,X) //

...

For q ≥ 3, we deduce that Hq(Xet, µ
n
) = 0 by the previous theorem. Since k is

algebraically closed, the map k× → k× given by x 7→ xn is surjective. Since H0 is
just the global sections, it follows that we must analyze the sequence:

0→ H1(Xet, µ
n
)→ Pic(X)

[n]→ Pic(X)→ H2(Xet, µ
n
)→ 0.

Consider the commutative diagram with exact rows:

0 // Pic0(X) //

[n]

��

Pic(X)
deg

//

[n]

��

Z //

[n]

��

0

0 // Pic0(X) // Pic(X)
deg

// Z // 0
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Apply the snake lemma to this diagram. The kernel of the last map is zero, since
Z has no torsion. The cokernel of the first map is zero since Pic0(X) is a divisible
group. We hence obtain two exact sequences, one for the kernels:

0→ Pic0(X)[n]→ H1(Xet, µ
n
)→ 0

and one for the cokernels:

0→ H2(Xet, µ
n
)→ Z/nZ→ 0.

The theorem follows.

Theorem 2.10.6. Let n > 0 be an integer and suppose that n and char(k) are rela-
tively prime. Let g be the genus of X. Then there are (noncanoncial) isomorphisms:

H0(Xet,Z/nZ) = Z/nZ
H1(Xet,Z/nZ) = (Z/nZ)2g

H2(Xet,Z/nZ) = Z/nZ
Hq(Xet,Z/nZ) = 0

for q ≥ 3.

Proof. Choose a primitive n-th root of unity ζ ∈ µn(k). Then we claim that there is
an isomorphism of sheaves on Xet:

Z/nZ ' µ
n
.

It is given in the following way. If U → X is étale, let s be the number of connected
components of U . Then:

Z/nZ(U) = (Z/nZ)s

and:
µ
n
(U) ' µn(k)

s.

Define a map φU : (Z/nZ)s → µn(k)
s by putting φU(u1, . . . , us) = (ζu1 , . . . , ζun).

Then the φU ’s define an isomorphism of sheaves φ : Z/nZ → µ
n
. The theorem now

follows from the previous one, using the fact that:

Pic0(X)[n] ' (Z/nZ)2g.

For a proof of this fact, see Mumfords book on abelian varieties.

This concludes the course!!
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