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Abstract. Let k be a fixed algebraic closure of Q and k(t)ac a fixed
algebraic closure of k(t). Let S ⊆ k[t] \ {0} be a multiplicative set. Let

A = S−1(k[t]) and eA be the the integral closure of A in k(t)ac. We

use elliptic curves to develop a necessary condition on S for eA to be a
Bezout domain. We give some examples of S which fail to satisfy this
condition. As a consequence, we eliminate some candidates for a good
Rumely domain of characteristic 0 with algebraic subring k.

1. Introduction

A Bezout domain is an integral domain such that any finitely generated
ideal is principal. Clearly a noetherian Bezout domain is a PID. Examples
of non-noetherian Bezout domains are the ring of algebraic integers (see van
den Dries and Macintyre (1990) 2.4) and the ring of holomorphic functions
on a noncompact Riemann surface (see Forster (1981), 26.5).

In van den Dries and Macintyre (1990), a first-order axiomatization of the
theory of the ring of algebraic integers is described. (See Marker (2002) for
background material on model theoretic notions mentioned in this paper.)
Included in these axioms are the axioms for good Rumely domains. A good
Rumely domain is a Bezout domain which is not a field and which satisfies
certain other algebraic properties, among them that its fraction field is al-
gebraically closed; see van den Dries and Macintyre (1990) for the precise
definition of a good Rumely domain. We should remark that the funda-
mental property in the definition of a good Rumely domain is the so-called
“glueing condition”, which was inspired by Rumely’s remarkable local-global
principle for points with algebraic integer coordinates on varieties defined
over the field of algebraic numbers; see Rumely (1986). Van den Dries and
Macintyre prove that any two good Rumely domains of characteristic p > 0
are elementarily equivalent. In characteristic 0, the situation is more com-
plicated.

For any domain R, let

alg(R) := {x ∈ R | x is algebraic over the prime ring of R}
be the algebraic subring of R. Van den Dries and Macintyre prove that
two good Rumely domains R1 and R2 of characteristic 0 are elementarily
equivalent if and only if alg(R1) and alg(R2) are isomorphic. Note that for
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a good Rumely domain R, alg(R) is isomorphic to a ring lying between Z̃
and Qac, where Z̃ is the ring of all algebraic integers and Qac is the field
of algebraic numbers. Remarkably, it is proven in their paper that any
ring lying between Z̃ and Qac is of the form alg(R) for some good Rumely
domain R of characteristic 0. This good Rumely domain is constructed as a
certain ultraproduct of localizations of Z̃. In van den Dries and Macintyre
(1990), they ask “What is a natural example of a good Rumely domain of
characteristic 0 whose algebraic subring is Qac?”

Since Bezout domains are integrally closed in their fraction field, the
first natural candidate for a good Rumely domain containing Qac that they
considered was the integral closure of Qac[t] in the algebraic closure of Qac(t).
Van den Dries and Macintyre eliminate this possibility in Example 5.3 of
their paper, where they use an argument involving elliptic curves to show
that this ring is not a Bezout domain. There appeared to be much flexibility
in their argument and van den Dries suggested that their argument could
be modified to eliminate other candidates of transcendence degree 1. The
goal of this paper is to develop a necessary condition for the integral closure
of S−1(Qac[t]) in the algebraic closure of Qac(t) to be a Bezout domain,
where S ⊆ Qac[t] \ {0} is a saturated multiplicatively closed set. As a
result, we eliminate further natural candidates for a good Rumely domain
of characteristic 0 containing Qac.

In this paper, we make the following conventions. We let k := Qac and
A := S−1(k[t]). We also let Ã denote the integral closure of A in the algebraic
closure of k(t). Since the case S = {1} was eliminated in van den Dries and
Macintyre (1990), we may assume {1} ( S. Since k is algebraically closed,
S is generated by linear polynomials of the form t − a for a ∈ k. We let
X := {a ∈ k | t− a ∈ S} ⊆ k.

Throughout, n and m, sometimes with subscripts, range over N and l,
sometimes with subscripts, ranges over Z.

We would like to thank Lou van den Dries for many helpful discussions
concerning this paper.

2. A Necessary Condition for Ã to be Bezout

In this section, we prove a theorem giving a necessary condition for Ã to
be Bezout and give a few elementary examples for which this condition is
not met. Our theorem rests on the following result.

Lemma 2.1. Let B be an integrally closed domain with fraction field K.
Let B̃ be the integral closure of B in Kac. Suppose B̃ is a Bezout domain.



BEZOUT DOMAINS AND ELLIPTIC CURVES 3

Then for every finitely generated ideal I of B, there is an n ≥ 1 such that
In is prinicipal.

Proof. See van den Dries and Macintyre (1990), Proposition 5.2. �

Let E ⊆ P2(k) be an elliptic curve defined over k by the affine equation
w2 = t3 + bt + c, where b, c ∈ k. As usual, we have the point at infinity
O ∈ P2(k) \ A2(k), which serves as the identity element for the group law
on E. Let E′ := E \ {O}. For P ∈ E′, we let t(P ) denote its t-coordinate.
We set

Ebad := {P ∈ E′ | t(P ) ∈ X}.
By 〈Ebad〉 we mean the subgroup of E generated by Ebad.

Theorem 2.2. Suppose Ã is Bezout. Then for every P ∈ E′, there is an
n ≥ 1 such that nP ∈ 〈Ebad〉.

Proof. The theorem is trivial if P ∈ Ebad, so we assume that P /∈ Ebad. Let
C := k[t, w]/I(E′) be the affine coordinate ring of E′. Identify k[t] with a
subring of C by viewing t as the function P 7→ t(P ). For any Q ∈ E′ \Ebad,
let

mQ := {g

h
∈ S−1C | g(Q) = 0}.

Note that mQ is a maximal ideal of S−1C for every Q ∈ E′ \ Ebad.

Since the integral closure of S−1C in the algebraic closure of its fraction
field is equal to Ã, Lemma 2.1 implies that there is n ≥ 1 such that mn

P is
principal. Suppose mn

P = (S−1C)u. If Q ∈ E′ \ Ebad is such that u ∈ mQ,
then mn

P ⊆ mQ, implying that mP = mQ, whence P = Q. So the only zero of
u on E′ \ Ebad is at P . Hence, there are P1, . . . , Pm ∈ Ebad and l1, . . . , lm, l
such that

div(u) = n(P ) +
m∑

i=1

li(Pi) + l(O).

Specializing, one gets that nP ∈ 〈Ebad〉. �

Since the contrapositive of the previous theorem is how we will find non-
Bezout domains, we state it as a corollary.

Corollary 2.3. Suppose there is an elliptic curve E and a point P ∈ E′

such that nP /∈ 〈Ebad〉 for all n ≥ 1. Then Ã is not Bezout.

We finish this section with two simple examples illustrating our use of the
preceding corollary. In both of our examples, we will need the fact that any



4 ISAAC GOLDBRING AND MARC MASDEU

elliptic curve E as above has infinite torsion-free rank; see van den Dries
and Macintyre (1990), 5.5 for a proof of this fact.

Example 2.4. Let E be any elliptic curve as above and let Etor be the
torsion subgroup of E. If S is such that X ⊆ {t(P ) : P ∈ Etor}, then Ã is
not Bezout. To see this, note that 〈Ebad〉 ≤ Etor, and since E has infinite
(in particular, positive) rank, there is P ∈ E′ \ Etor. Such a P satisfies the
hypotheses of Corollary 2.3.

Example 2.5. Suppose S is finitely generated. Then Ã is not Bezout. To
see this, take any elliptic curve E as above and let P1, . . . , Pm ∈ E′ be the
distinct zeros of the generators of S on E′. Then Ebad = {P1, . . . , Pm}, and
since E has infinite rank, there is a P as in Corollary 2.3.

3. The Number Field Example

The goal of this section if to prove the following result.

Theorem 3.1. Let K be a number field. If X ⊆ K, then Ã is not Bezout.

Throughout this section, we fix a number field K. Define the field
√

K to be
the compositum of all the quadratic extensions of K. It is clear that for any
elliptic curve E defined over k, Ebad ⊆ E(

√
K). In order to prove Theorem

3.1, it is enough, by Corollary 2.3, to find an elliptic curve E, defined over
k, and a point P ∈ E′ such that, for all n ≥ 1, nP 6∈ E(

√
K).

We will need the following very particular version of Hilbert’s Irreducibility
Theorem; see Serre (1992). Of course, we could omit the following lemma
and just rely upon the aforementioned result, but in this way we keep things
more elementary.

Lemma 3.2. Let F (t, w) = t3−w2+1 and let L be a number field containing
K. Then there exists w0 ∈ K such that F (t, w0) is irreducible in L[t].

Proof. Let p be a prime of K, unramified in L and not containing the rational
prime 2. Choose any z ∈ p \ p2 and set w0 := z − 1. Then w0 + 1 ∈ p and
w0 − 1 6∈ p (for otherwise p would divide 2). If the polynomial t3 − w2

0 + 1
were to have a root t0 ∈ L, then taking P any prime of L over p, we would
have that t30 ∈ P \P2, which is not possible because any prime dividing t30
divides it at least to the third power. �
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Figure 1. Fields appearing in the proof of Theorem 3.1

The following proposition is the key ingredient in the proof of Theorem 3.1.

Proposition 3.3. There exists an elliptic curve E, defined over Q, and a
cubic extension F of K such that rk (E(F )) > rk (E(K)).

Proof. Note first that, without loss of generality, we can assume that K
contains the cube roots of unity. Let F ′ = K

(
{ 3
√

β}β∈K×
)

be the algebraic
extension of K obtained by adjoining all the cube roots of elements in K.

Claim. Let p be any (finite) prime of K. Then there is some prime P of
F ′ dividing p such that the residue field κ(P) corresponding to P is finite.

In order to prove the claim, consider the extension of completed fields F ′
P/Kp

and the corresponding extension of residue fields κ(P)/κ(p). Let

K1 := Kp({ 3
√

β}β∈K×p
)

be the algebraic extension of Kp obtained by adjoining all the cube roots of
elements in Kp. There is a unique extension of the valuation given by p to
K1. Also, as K1 is a finite extension of Kp (see Lang (1994), II Prop 3.6), it
is complete with respect to this valuation. Clearly the field F ′ is contained in
K1 and the valuation induced by p in K1 restricts to a valuation P of F ′. The
embedding F ′

P ↪→ K1 induces an embedding of the corresponding residue
fields. Since the residue field of Kp is finite and K1 is a finite extension of
Kp, we know that the residue field of K1 is finite, whence it follows that
κ(P) is finite. This proves the claim.

Note that the residue field κ(P) is then finite for any prime P of F ′ dividing
p as the extension F ′/K is Galois, implying all primes above p are conjugate.

Let E ⊆ P2(k) be the elliptic curve defined by the affine equation w2 =
t3 + 1. The claim readily implies that E(F ′) has finite torsion. In fact, as
proven in Silverman (1986) VII Prop 3.1, for any prime P of F ′, prime-to-
P torsion injects in E(κ(P)), which is finite by the claim. Let r0 be the
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exponent of E(F ′)tor (i.e. if P ∈ E(F ′) is torsion, then r0P = O) and let
r := lcm(r0, 3). Consider the extension L := K([r]−1E(K)), that is L is the
extension obtained by adjoining to K the coordinates of all the points Q ∈ E
such that rQ ∈ E(K). By Silverman (1986) VIII Prop 1.5, [L : K] < ∞.

By Lemma 3.2, there exists some w0 ∈ K such that 3
√

w2
0 − 1 6∈ L. Let

α := w2
0 − 1 and define F := K( 3

√
α). Note that F/K is a Galois extension

and F ∩ L = K since [F : K] = 3 is prime and 3
√

α 6∈ L. Note also that
P := ( 3

√
α, w0) ∈ E(F ) \ E(K).

There is a natural map induced by the embedding of K in F :

(1) e : E(K)/pE(K) −→ E(F )/pE(F )

It is injective for any prime p different from 3. In fact, from the kernel-
cokernel exact sequence associated to the Kummer maps for E(K) and E(F )
(see Silverman (1986) VIII.2), ker(e) is a subgroup of H1(Gal(F/K), E[p]),
which is trivial because #E[p] = p2 while # Gal(F/K) = 3.

Suppose, towards a contradiction, that nP ∈ E(K) for some n ≥ 1. After
replacing P by a suitable multiple, we may assume that n = p is prime.
By how L has been constructed, we know that p 6= 3 and P is not torsion.
Moreover, by the embedding in (1), since pP becomes divisible by p in F , it
becomes divisible by p in K. Choose Q ∈ E(K) such that pP = pQ. Then
P −Q ∈ Etor ∩ E(F ) ⊆ Etor ∩ E(F ′) ⊆ E(L). Since Q ∈ E(K) ⊆ E(L), we
conclude that P ∈ E(F ) ∩ E(L) = E(K), a contradiction.

We have thus proven that for all n ≥ 1, nP 6∈ E(K). This implies that
rk (E(F )) > rk (E(K)), as desired. �

Corollary 3.4. There exists a number field F , an elliptic curve E, defined
over Q, and P ∈ E(F ) such that nP 6∈ E(

√
K) for all n ≥ 1.

Proof. Choose E and F as in the previous proposition and choose P ∈ E(F )
independent of E(K). If nP ∈ E(

√
K), then nP ∈ E(

√
K)∩E(F ) = E(K),

contradicting the choice of P . �

Note that the preceding corollary immediately proves Theorem 3.1.

4. Questions

We conclude this paper with several questions that we were unable to answer
concerning further examples of our method as well as refinements of the
method.
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Question 1. If X ⊆ Ralg := k ∩ R, is Ã Bezout? We were able to prove
the following partial result.

Proposition 4.1. There is an elliptic curve E, defined over Q, and a point
P ∈ E′ such that nP /∈ Ebad for all n ≥ 1.

Proof. (Sketch) Let Γ be the lattice Z + Zi. Let g2(Γ) and g3(Γ) be the
invariants of Γ. Note that g3(Γ) = 0 and g2(Γ) ∈ R>0; see Debarre (2005),
pg. 15. Let ω := g2(Γ)

1
4 ∈ R and let Λ := ωΓ. Note that g2(Λ) = 1 and

g3(Λ) = 0. Hence, if E ⊆ P2(C) is the elliptic curve defined by the affine
equation w2 = 4t3− t and ℘ is the Weierstrauss ℘-function associated to the
lattice Λ, then the map

φ : C/Λ → E, z + Λ 7→ [℘(z) : ℘′(z) : 1]

is an isomorphism of complex Lie groups.

Suppose P ∈ E(k) is such that nP ∈ Ebad. Choose a ∈ C such that
φ(a) = P . Then ℘(na) ∈ Ralg, whence ℘(na) = ℘(na) since Λ is closed
under conjugation. This implies that na ≡ ±na mod Λ. From this it
follows that Re(a) ∈ Q ·ω or Im(a) ∈ Q ·ω. It thus suffices to find an a ∈ C
such that Re(a), Im(a) /∈ Q ·ω and such that φ(a) ∈ E(k). We now indicate
how to find such a point.

Let P ∈ E(k) \ Etor and write P = φ(α + βi), α, β ∈ R. If α, β /∈ Q · ω,
we are done. Assume that α ∈ Q · ω. (The case that β ∈ Q · ω is treated
similarly.) Choose m > 0 such that mα ∈ Z·ω. Then mP = φ(mβi) ∈ E(k).
One can then show that φ(mβ + mβi) ∈ E(k) and it suffices to show that
mβ /∈ Q · ω. Towards a contradiction, suppose that there is m′ such that
mm′ ∈ Z · ω. Then m′mP = φ(m′mβ + m′mβi) = O, contradicting that P
is not torsion. �

Since we needed to find P ∈ E(k) such that nP /∈ 〈Ebad〉 for all n ≥ 1,
the preceding result is not enough to allow us to conclude that Ã is not
Bezout. In fact, Ebad ⊆ E(Y ), where Y := Ralg ∪ Ralgi, and it seems that
〈E(Y )〉 = E. It may be that a refinement of Corollary 2.3 might be needed
to settle this case; see Question 3 below.

Question 2. If X ⊆ Z̃, is Ã Bezout? More generally, if X ⊆ O for O
a proper valuation ring of Qac, is Ã Bezout? We were unable to find any
useful literature on points on elliptic curves defined over the rationals with
algebraic integer coordinates. When X ⊆ O (as when X ⊆ Ralg), we were
able to use elementary properties of the division polynomials associated to
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any elliptic curve E defined over Q to find P ∈ E′ such that nP /∈ Ebad for
all n ≥ 1. However, as one takes combinations of points, the valuations of
t-coordinates drop and it once again appears that 〈Ebad〉 = E.

Question 3. Can Corollary 2.3 be refined so as to weaken the conditions
the point P needs to satisfy? We have two such refinements in mind. One
refinement would be to only require the existence of a point P such that
nP /∈ 〈Ebad〉 for all n ∈ {1, . . . , N}, where N is some fixed positive integer.
Such a bound would follow from a bound on n in Theorem 2.2. A case
that this would settle would be when X ⊆ (Qac \ O), where O is a proper
valuation ring of Qac. To see this, one can choose any elliptic curve defined
over Q and find a point whose t-coordinate has sufficiently large valuation.

Another valuable improvement in the method would be to be more specific
about how nP is generated by elements of Ebad in Theorem 2.2. For exam-
ple, this would be useful in analyzing the case X ⊆ Ralg. With the notations
of Question 1, call a point P ∈ E(Y ) of type I if P ∈ E(Ralg) and of type
II if w(P ) ∈ Ralgi. It is easy to verify that the sum of two points of E(Y )
of the same type is still in E(Y ), whereas the sum of two points of E(Y ) of
different types no longer remains in E(Y ). If one could refine the method
to disallow such combinations, then one could settle the case X ⊆ Ralg.

Question 4. One should note that the only special role that elliptic curves
played is that there is a group law on Pic0(E) such that the specialization
map is a homomorphism. This begs the question: Is there any advantage in
working with Jac(C) for an arbitrary smooth projective curve C?

Question 5. Can one give a necessary and sufficient condition on X for
when Ã is Bezout? From the case that X is contained in a number field,
we have seen that inverting a “small” collection of elements leads to Ã
being non-Bezout. The following lemma, which is a modification of van den
Dries and Macintyre (1990), 5.5, shows that inverting a “large” collection of
elements leads to Ã being Bezout.

Lemma 4.2. Suppose A has only finitely many maximal ideals. Then Ã is
Bezout.

Proof. We may assume that A is not a field. Let L be a finite extension of
k(t). Then since A is a Dedekind domain with only finitely many maximal
ideals, so is its integral closure in L. By standard facts in commutative
algebra (see Bourbaki (1972), pg. 495), this integral closure must necessarily
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be a PID. Thus Ã is a directed union of principal ideal domains, and hence
is a Bezout domain. �

It is shown in Moret-Bailly (1987) that when A = k[t](t), Ã is not a Rumely
domain (even though it is Bezout) for it fails to satisfy the “glueing condi-
tion.” It is unclear whether the same arguments show that Ã does not have
the glueing condition for any S such that A has only finitely many maximal
ideals.

The preceding lemma led us to the näıve conjecture that Ã is Bezout if and
only if A has finitely many maximal ideals. Thus far, Corollary 2.3 has not
led to any progress on this conjecture.
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