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A note on dihedral polynomials of prime degree

Joan-C. Lario and Marc Masdeu

Abstract. We present an algorithm to determine all roots of a prime degree p
polynomial with dihedral Galois group D2p as rational functions of any two
of them. This must be seen as an effective version of a more general result of
Galois valid for prime degree equations with solvable group.

1. Introduction

Let k be a field of characteristic zero, and f ∈ k[x] be an irreducible polynomial
of prime degree p. A well-known theorem asserts that f is solvable by radicals
if and only if all its roots can be expressed as rational functions over k of any
two of them. The original proof of this result was exposed in a memoir of Galois
rejected by the French Academy in 1831. We refer to [Sig] for an updated proof in
a modern language. In addition, it must be pointed out that the proof is far from
being algorithmic; it merely shows the existence of such relations among the roots
but not how to produce the rational functions themselves.

The first non-trivial case being for p = 5, Spearman and Williams provided
an algorithm in [Sp-Wi] to solve the problem from a computational point of view
for quintic polynomials with Galois group isomorphic to the dihedral group D10

of ten elements. In this short note, our aim is to present an algorithm that solves
the problem for the dihedral case D2p, where p is any prime.

A brute-force algorithm consists in factoring the polynomial f over k(α, β),
where α and β denote any two roots of f . Under the solvability hypothesis for
its Galois group, f decomposes as linear factors over k(α, β). The existent general
algorithms to perform this task are based in a combination of the Hensel’s lift
followed by a reconstructing process (for instance, see [Rob]). In the specific setting
under consideration, our algorithm avoids this double factorization, simplifying
somehow the costs of computation. Indeed, we need instead to factorize f only
over k(α) and then make use of the Chebotarev density theorem along with basic
properties of the dihedral group.
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2. Three lemmas

From now on, we assume that f ∈ k[x] is monic irreducible of odd prime degree p
with Galois group isomorphic to D2p. We fix k an algebraic closure of k.

Lemma 2.1. There exist (p−1)/2 pairs of polynomials (gi(t), hi(t)) in k[t] of degree
at most p− 1 such that

(x− α)
(p−1)/2∏

i=1

(
x2 + gi(α)x+ hi(α)

)

is the factorization of f(x) into irreducible polynomials in k(α)[x], where α is any
root of f .

Proof. Fix α a root of f , and let L = k(α). Since f is irreducible, we have that
[L : k] = p. Clearly, x − α is a factor of f over L[x]. On one hand, no other
linear factors can occur in the factorization of f over L; otherwise L would be
the splitting field of f in accordance with the above mentioned result of Galois
since deg f is prime and D2p is a solvable group. On the other hand, no irreducible
factors of degree greater than 2 can occur either; otherwise the splitting field of f
over k would have degree > 2p.

The polynomials gi(t) and hi(t) in k[t] can be chosen of degree at most p− 1
since α has degree p, and do not depend on the root α: for if α′ is another root of
f , then k(α) and k(α′) are k-isomorphic.

Lemma 2.2. Let α and β two different roots of f . There is a unique σ ∈ Gal(f) of
order 2 such that σ(α) = β.

Proof. After a suitable ordering of the roots of f as {x0, x1, . . . , xp−1} with in-
dices considered mod p, the Galois group of f is generated by the automorphisms
τ(xk) = xk+1 and ν(xk) = x−k for all k. Then, α = xi and β = xj for some indices
i and j. The elements of order 2 are precisely the conjugates of ν. We have that

τnντ−n(xi) = τnν(xi−n) = τn(xn−i) = x2n−i .

Since p is odd, there is a unique solution of the congruence 2n − i ≡ j (mod p).
That gives the unique σ with the desired requirements.

Since we want to make use of an effective version of the Chebotarev density
theorem, hereafter we assume that k = Q.

Lemma 2.3. Let K be the splitting field of f over k, and let ∆ be its discriminant.
Assuming the Extended Riemann Hypothesis for the Dedekind zeta function of K,
there is a prime ` such that

` ≤ (4 log |∆|+ 5 p+ 5)2 and f(x) ≡
p−1∏

i=0

(x− γi) (mod `) ,

for some γi ∈ F`.
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Proof. This is an immediate consequence of the effective version of the Chebotarev
density theorem obtained by Bach and Sorenson in [Bac-Sor].

3. The algorithm

The above lemmas justify the first steps of the following algorithm to determine
all roots of a dihedral equation of degree p in terms of any two of them.

Input: f ∈ k[x] as above, and α, β two different roots of f ;

Output: the p roots of f as rational functions of α and β.

1. Factorize f(x) = (x− α)
(p−1)/2∏

i=1

Pi(x) over k(α).

2. Choose a prime ` such that f(x) ≡
p−1∏

i=0

(x− γi) (mod `).

3. Initialize List := {α, β} and ModList := List mod `.

4. Set σ the involution that switches α and β.

5. While # List < p, do

P (x) := Pi(x) such that Pi(Last(ModList)) ≡ 0 (mod `);

βnew := −Coeff(P (x), x)− Last(List);

List := List ∪ {βnew, σ(βnew)};
ModList := ModList ∪ {σ(βnew) mod p}.

6. Return Listr Last(List).

Some comments are in order. The function Last returns the last element of
a list, and ModList means the list formed by the mod ` reduction of its elements.
Notice that the new root βnew obtained in Step 5 lies in k(α, β), and applying σ
to it just represents to switch α and β in βnew. Now, we need to ensure that the
loop in Step 5 always reaches the end. For it, consider again α = xi and β = xj as
in the proof of lemma 2.2. Then, σ acts as σ(xk) = xi+j−k and sα(xk) = x2i−k is
the unique element in D2p that fixes α. Step 5 essentially consists in applying sα
and σ ◦ sα. Starting with xj , after n iterations we get xn(i−j)+i and xn(j−i)+j as
βnew and σ(βnew), respectively. Since α and β are different, it follows that when
n = (p−1)/2 we will have obtained all roots (the last one fixed by σ), and therefore
# List > p.



4 J.C. Lario and M. Masdeu

4. Some examples

The following polynomials of prime degree and dihedral Galois group have been
taken from the database of number fields of given Galois group up to degree 15
elaborated by Klüners and Malle [Klu-Mal]. Class field theory for quadratic imag-
inary fields with prime class number also provide a wide source of prime degree
dihedral polynomials over Q.

• Example with p = 7. Let f(x) = x7 − 2x6 − 7x5 + 10x4 + 13x3 − 10x2 − x+ 1,
and take α and β the roots of f such that are congruent to 17 and 91 mod ` = 283.
The other five roots are:

16+16α−99α2−38α3+47α4+9α5−6α6−β ;

16+16 β−99 β2−38 β3+47 β4+9 β5−6 β6−α ;

−22−5α+35α2+13α3−16α4−3α5+2α6−16 β+99 β2+38 β3−47 β4−9 β5+6 β6 ;

−22−5 β+35 β2+13 β3−16 β4−3 β5+2 β6−16α+99α2+38α3−47α4−9α5+6α6 ;

14+5 (α+β)−35 (α2+β2)−13 (α3+β3)+16 (α4+β4)+3 (α5+β5)−2 (α6+β6) .

• Example with p = 11. Let f(x) = x11 − 5x10 − 4x9 + 54x8 − 53x7 − 127x6 +
208x5 + 69x4 − 222x3 + 29x2 + 56x − 5, and take α and β the roots of f such
that are congruent to 39 and 251 mod ` = 397. The other nine roots are:

(−45+623α+795α2−2190α3−670α4+2173α5−111α6−763α7+173α8+67α9−19α10−5 β)/5 ;

(105−583α−831α2+1837α3+776α4−1730α5−31α6+589α7−109α8−51α9+13α10−623 β−

795 β2+2190 β3+670 β4−2173 β5+111 β6+763 β7−173 β8−67 β9+19 β10)/5 ;

(−110+746α+862α2−2514α3−637α4+2420α5−188α6−828α7+198α8+72α9−21α10+

583 β+831 β2−1837 β3−776 β4+1730 β5+31 β6−589 β7+109 β8+51 β9−13 β10)/5 ;

(90−155α−266α2+497α3+206α4−472α5+13α6+161α7−36α8−14α9+4α10−746 β−

862 β2+2514 β3+637 β4−2420 β5+188 β6+828 β7−198 β8−72 β9+21 β10)/5 ,

their σ-conjugates, and

(−55+155 (α+β)+266 (α2+β2)−497 (α3+β3)−206 (α4+β4)+472 (α5+β5)−13 (α6+β6)−

161 (α7+β7)+36 (α8+β8)+14 (α9+β9)−4 (α10+β10))/5 .

These and some other examples have been performed using Magma V2.11
on a Pentium 4 at 2.0 GHz. The following table displays the computing times for
certain dihedral polynomials of degree p ≤ 23, comparing the costs of first fac-
torization, the dihedral algorithm, and the double-factorization. It is noteworthy
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that the only computing-intensive part of the dihedral algorithm is the factoriza-
tion over k(α).

p First-factorization Dihedral algorithm Double-factorization
7 0.058 s 0.063 s 0.297 s

11 0.575 s 0.609 s 1.969 s
13 1.730 s 1.810 s 5.094 s
17 14.442 s 14.631 s 44.156 s
19 22.703 s 22.912 s 109.210 s
23 139.124 s 139.854 s 1144.747 s
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[Klu-Mal] Klüners, J.; Malle, G.: “A Database for Number Fields”, in the
web page http://www.mathematik.uni-kassel.de/∼klueners/minimum/.

[Rob] Roblot, X.-F. “Polynomial Factorization Algorithms over Number
Fields”, to appear in J. Symbolic Computation.

[Sig] Sigrist, F. “Problem 88-4.” Math. Intelligencer 11 (1989), 53-54.

[Sp-Wi] Spearman, B.K.; Williams, K.S. “Dihedral quintic polynomials
and a theorem of Galois.” Indian J. Pure Appl. Math. 30 (1999), no. 9,
839–845.


