NUMERICAL EXPERIMENTS WITH PLECTIC STARK-HEEGNER POINTS

LFANT SEMINAR

April 6, 2021

Marc Masdeu

Universitat Autònoma de Barcelona

Let F be a number field.

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.
 - Assume for simplicity that $\mathfrak N$ is square-free, coprime to $\operatorname{disc}(K/F)$.

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.
 - Assume for simplicity that \mathfrak{N} is square-free, coprime to $\operatorname{disc}(K/F)$.
- For each prime \mathfrak{p} of K, $a_{\mathfrak{p}}(E) = 1 + |\mathfrak{p}| \#E(\mathbb{F}_{\mathfrak{p}})$.

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.
 - Assume for simplicity that $\mathfrak N$ is square-free, coprime to $\operatorname{disc}(K/F)$.
- For each prime \mathfrak{p} of K, $a_{\mathfrak{p}}(E) = 1 + |\mathfrak{p}| \#E(\mathbb{F}_{\mathfrak{p}})$.

Hasse-Weil L-function of the base change of E to K ($\Re(s) \gg 0$)

$$L(E/K, s) = \prod_{\mathfrak{p} \mid \mathfrak{N}} (1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s})^{-1} \times \prod_{\mathfrak{p} \nmid \mathfrak{N}} (1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s} + |\mathfrak{p}|^{1-2s})^{-1}.$$

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.
 - Assume for simplicity that \mathfrak{N} is square-free, coprime to $\operatorname{disc}(K/F)$.
- For each prime \mathfrak{p} of K, $a_{\mathfrak{p}}(E) = 1 + |\mathfrak{p}| \#E(\mathbb{F}_{\mathfrak{p}})$.

Hasse-Weil L-function of the base change of E to K ($\Re(s) \gg 0$)

$$L(E/K,s) = \prod_{\mathfrak{p} \mid \mathfrak{N}} \left(1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s} \right)^{-1} \times \prod_{\mathfrak{p} \nmid \mathfrak{N}} \left(1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s} + |\mathfrak{p}|^{1-2s} \right)^{-1}.$$

Modularity conjecture =>>

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.
 - Assume for simplicity that $\mathfrak N$ is square-free, coprime to $\operatorname{disc}(K/F)$.
- For each prime \mathfrak{p} of K, $a_{\mathfrak{p}}(E) = 1 + |\mathfrak{p}| \#E(\mathbb{F}_{\mathfrak{p}})$.

Hasse-Weil L-function of the base change of E to K ($\Re(s) \gg 0$)

$$L(E/K,s) = \prod_{\mathfrak{p} \mid \mathfrak{N}} \left(1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s}\right)^{-1} \times \prod_{\mathfrak{p} \nmid \mathfrak{N}} \left(1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s} + |\mathfrak{p}|^{1-2s}\right)^{-1}.$$

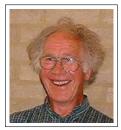
- Modularity conjecture =>>
 - Analytic continuation of L(E/K, s) to \mathbb{C} .

- Let F be a number field.
- Let $E_{/F}$ be an elliptic curve of conductor $\mathfrak{N} = \mathfrak{N}_E$.
- Let K/F be a quadratic extension of F.
 - Assume for simplicity that $\mathfrak N$ is square-free, coprime to $\operatorname{disc}(K/F)$.
- For each prime $\mathfrak p$ of K, $a_{\mathfrak p}(E)=1+|\mathfrak p|-\#E(\mathbb F_{\mathfrak p})$.

Hasse-Weil L-function of the base change of E to K ($\Re(s) \gg 0$)

$$L(E/K,s) = \prod_{\mathfrak{p} \mid \mathfrak{N}} \left(1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s} \right)^{-1} \times \prod_{\mathfrak{p} \nmid \mathfrak{N}} \left(1 - a_{\mathfrak{p}} |\mathfrak{p}|^{-s} + |\mathfrak{p}|^{1-2s} \right)^{-1}.$$

- Modularity conjecture =>>
 - Analytic continuation of L(E/K, s) to \mathbb{C} .
 - Functional equation relating $s \leftrightarrow 2 s$.



Sir P. Swinnerton-Dyer

Kurt Heegner

Coarse version of BSD conjecture

$$\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rk}_{\mathbb{Z}} E(K).$$

Sir P. Swinnerton-Dyer

Kurt Heegner

Coarse version of BSD conjecture

$$\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rk}_{\mathbb{Z}} E(K).$$

Heegner Points

Sir P. Swinnerton-Dyer

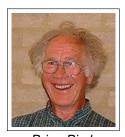
Kurt Heegner

Coarse version of BSD conjecture

$$\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rk}_{\mathbb{Z}} E(K).$$

Heegner Points

Only for F totally real and K/F totally complex (CM extension).



Sir P. Swinnerton-Dyer

Kurt Heegner

Coarse version of BSD conjecture

$$\operatorname{ord}_{s=1} L(E/K, s) = \operatorname{rk}_{\mathbb{Z}} E(K).$$

Heegner Points

- Only for F totally real and K/F totally complex (CM extension).
- Simplest setting: $F = \mathbb{Q}$ (and K/\mathbb{Q} imaginary quadratic), and $\ell \mid \mathfrak{N} \implies \ell$ split in K.

•
$$\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$$

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n \geqslant 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

• Given $\tau \in K \cap \mathcal{H}$,

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

• Given
$$\tau \in K \cap \mathcal{H}$$
, set $J_{\tau} = \int_{\infty}^{\tau} 2\pi i f_{E}(z) dz \in \mathbb{C}$.

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n\geqslant 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

- Given $\tau \in K \cap \mathcal{H}$, set $J_{\tau} = \int_{-\infty}^{\tau} 2\pi i f_E(z) dz \in \mathbb{C}$.
- Well-defined up to the lattice

$$\Lambda_E = \left\{ \int_{\gamma} 2\pi i f_E(z) dz \mid \gamma \in H_1\left(\overline{\Gamma_0(\mathfrak{N}) \backslash \mathcal{H}}, \mathbb{Z}\right) \right\}.$$

- $\bullet \ \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n\geqslant 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

- Given $\tau \in K \cap \mathcal{H}$, set $J_{\tau} = \int_{-\infty}^{\tau} 2\pi i f_E(z) dz \in \mathbb{C}$.
- Well-defined up to the lattice

$$\Lambda_E = \left\{ \int_{\gamma} 2\pi i f_E(z) dz \mid \gamma \in H_1\left(\overline{\Gamma_0(\mathfrak{N}) \backslash \mathcal{H}}, \mathbb{Z}\right) \right\}.$$

• There exists an isogeny $\eta \colon \mathbb{C}/\Lambda_E \to E(\mathbb{C})$.

- $\bullet \ \Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n\geqslant 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

- Given $\tau \in K \cap \mathcal{H}$, set $J_{\tau} = \int_{-\infty}^{\tau} 2\pi i f_E(z) dz \in \mathbb{C}$.
- Well-defined up to the lattice

$$\Lambda_E = \left\{ \int_{\gamma} 2\pi i f_E(z) dz \mid \gamma \in H_1\left(\overline{\Gamma_0(\mathfrak{N}) \backslash \mathcal{H}}, \mathbb{Z}\right) \right\}.$$

- There exists an isogeny $\eta \colon \mathbb{C}/\Lambda_E \to E(\mathbb{C})$.
- Set $P_{\tau} = \eta(J_{\tau}) \in E(\mathbb{C})$.

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n \geqslant 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

- Given $\tau \in K \cap \mathcal{H}$, set $J_{\tau} = \int_{\infty}^{\tau} 2\pi i f_{E}(z) dz \in \mathbb{C}$.
- Well-defined up to the lattice

$$\Lambda_E = \left\{ \int_{\gamma} 2\pi i f_E(z) dz \mid \gamma \in H_1\left(\overline{\Gamma_0(\mathfrak{N}) \backslash \mathcal{H}}, \mathbb{Z}\right) \right\}.$$

- There exists an isogeny $\eta \colon \mathbb{C}/\Lambda_E \to E(\mathbb{C})$.
- Set $P_{\tau} = \eta(J_{\tau}) \in E(\mathbb{C})$.
- Fact: $P_{\tau} \in E(H_{\tau})$, where H_{τ}/K is a class field attached to τ .

- $\Gamma_0(\mathfrak{N}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \colon \mathfrak{N} \mid c \}.$
- Attach to E a modular form:

$$f_E(z) = \sum_{n \ge 1} a_n e^{2\pi i n z} \in S_2(\Gamma_0(\mathfrak{N})).$$

- Given $\tau \in K \cap \mathcal{H}$, set $J_{\tau} = \int_{-1}^{1} 2\pi i f_{E}(z) dz \in \mathbb{C}$.
- Well-defined up to the lattice

$$\Lambda_E = \left\{ \int_{\gamma} 2\pi i f_E(z) dz \mid \gamma \in H_1\left(\overline{\Gamma_0(\mathfrak{N}) \backslash \mathcal{H}}, \mathbb{Z}\right) \right\}.$$

- There exists an isogeny $\eta \colon \mathbb{C}/\Lambda_E \to E(\mathbb{C})$.
- Set $P_{\tau} = \eta(J_{\tau}) \in E(\mathbb{C})$.
- Fact: $P_{\tau} \in E(H_{\tau})$, where H_{τ}/K is a class field attached to τ .

Theorem (Gross-Zagier)

$$P_K = \operatorname{Tr}_{H_{\tau}/K}(P_{\tau})$$
 nontorsion $\iff L'(E/K, 1) \neq 0.$

• $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$

- $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- $\bullet \ S(E,K) = \Big\{ v \mid \mathfrak{N} \infty_F : v \text{ not split in } K \Big\}.$

- $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- $\bullet \ S(E,K) = \Big\{ v \mid \mathfrak{N} \infty_F : v \text{ not split in } K \Big\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.

- $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.

- $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E,K)$.

- $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
 - There is also an archimedean version...

- \bullet $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
 - There is also an archimedean version...
- **Darmon** ('99): First construction, with $F = \mathbb{Q}$ and s = 1.

- $n = \#\{v \mid \infty_F \colon v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
 - There is also an archimedean version...
- **Darmon** ('99): First construction, with $F = \mathbb{Q}$ and s = 1.
- **Trifkovic** ('06): F imaginary quadratic, still s = 1.

- \bullet $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
 - There is also an archimedean version...
- **Darmon** ('99): First construction, with $F = \mathbb{Q}$ and s = 1.
- **Trifkovic** ('06): F imaginary quadratic, still s = 1.
- Greenberg ('08): F totally real, arbitrary ramification, and $s \ge 1$.

- $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- $S(E,K) = \{v \mid \mathfrak{N}\infty_F : v \text{ not split in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
 - There is also an archimedean version...
- **Darmon** ('99): First construction, with $F = \mathbb{Q}$ and s = 1.
- Trifkovic ('06): F imaginary quadratic, still s = 1.
- Greenberg ('08): F totally real, arbitrary ramification, and $s \ge 1$.
- Guitart–M.–Sengun ('14): F of arbitrary signature, arbitrary ramification, and $s \ge 1$.

- \bullet $n = \#\{v \mid \infty_F : v \text{ splits in } K\}.$
- Sign of functional equation for L(E/K, s) should be $(-1)^{\#S(E,K)}$.
- Assume that s = #S(E, K) is **odd**.
- Fix a finite place $\mathfrak{p} \in S(E, K)$.
 - There is also an archimedean version...
- **Darmon** ('99): First construction, with $F = \mathbb{Q}$ and s = 1.
- Trifkovic ('06): F imaginary quadratic, still s = 1.
- Greenberg ('08): F totally real, arbitrary ramification, and $s \ge 1$.
- Guitart–M.–Sengun ('14): F of arbitrary signature, arbitrary ramification, and $s \ge 1$.
- Guitart–M.–Molina ('18): Adelic generalization, removing all restrictions.

Review of Darmon points

• Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.

Review of Darmon points

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

$$\Theta_{\psi} \in \mathcal{H}_n\left(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}}\right).$$

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_{\mathfrak{p}})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

$$\Theta_{\psi} \in \mathcal{H}_n\left(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}}\right).$$

• Well defined up to the image of $H_{n+1}(\Gamma, \mathbb{Z}) \stackrel{\delta}{\to} H_n(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}})$.

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_{\mathfrak{p}})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

$$\Theta_{\psi} \in \mathcal{H}_n\left(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}}\right).$$

- Well defined up to the image of $H_{n+1}(\Gamma, \mathbb{Z}) \stackrel{\delta}{\to} H_n(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}})$.
- Here δ is a connecting homomorphism arising from

$$0 \longrightarrow \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0$$

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_{\mathfrak{p}})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

$$\Theta_{\psi} \in \mathcal{H}_n\left(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}}\right).$$

- Well defined up to the image of $H_{n+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_n(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}})$.
- Here δ is a connecting homomorphism arising from

$$0 \longrightarrow \operatorname{Div}^{0} \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0$$

• Cap-product and integration on the coefficients yield an element:

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_\mathfrak{p})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}.$
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

$$\Theta_{\psi} \in \mathcal{H}_n\left(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}}\right).$$

- Well defined up to the image of $H_{n+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_n(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}})$.
- Here δ is a connecting homomorphism arising from

$$0 \longrightarrow \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0$$

• Cap-product and integration on the coefficients yield an element:

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{n}}^{\times}.$$

- Define a quaternion algebra $B_{/F}$ and a group $\Gamma \subset \mathrm{SL}_2(F_{\mathfrak{p}})$.
 - The group Γ acts (non-discretely) on $\mathcal{H}_{\mathfrak{p}}$.
- Attach to E a cohomology class

$$\Phi_E \in \mathrm{H}^n\left(\Gamma, \mathrm{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}, \mathbb{Z}))\right).$$

• Attach to each embedding $\psi \colon K \hookrightarrow B$ a **homology** class

$$\Theta_{\psi} \in \mathcal{H}_n\left(\Gamma, \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}}\right).$$

- Well defined up to the image of $H_{n+1}(\Gamma, \mathbb{Z}) \xrightarrow{\delta} H_n(\Gamma, \operatorname{Div}^0 \mathcal{H}_n)$.
- Here δ is a connecting homomorphism arising from

$$0 \longrightarrow \operatorname{Div}^0 \mathcal{H}_{\mathfrak{p}} \longrightarrow \operatorname{Div} \mathcal{H}_{\mathfrak{p}} \xrightarrow{\operatorname{deg}} \mathbb{Z} \longrightarrow 0$$

• Cap-product and integration on the coefficients yield an element:

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times}.$$

• J_{ψ} well-defined up to a multiplicative lattice $L = \langle \Phi_E, \delta(H_{n+1}(\Gamma, \mathbb{Z})) \rangle$.

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times}/L.$$

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times}/L.$$

Conjecture 1

There is an isogeny $\eta_{\mathsf{Tate}} \colon K_{\mathfrak{p}}^{\times}/L \to E(K_{\mathfrak{p}}).$

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times}/L.$$

Conjecture 1

There is an isogeny $\eta_{\mathsf{Tate}} \colon K_{\mathfrak{p}}^{\times}/L \to E(K_{\mathfrak{p}})$.

 Proven for totally-real fields (Greenberg, Rotger–Longo–Vigni, Spiess, Gehrmann–Rosso).

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times} / L.$$

Conjecture 1

There is an isogeny $\eta_{\mathsf{Tate}} \colon K_{\mathfrak{p}}^{\times}/L \to E(K_{\mathfrak{p}})$.

 Proven for totally-real fields (Greenberg, Rotger–Longo–Vigni, Spiess, Gehrmann–Rosso).

The Darmon point attached to E and $\psi \colon K \to B$ is:

$$P_{\psi} = \eta_{\mathsf{Tate}}(J_{\psi}) \in E(K_{\mathfrak{p}}).$$

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times} / L.$$

Conjecture 1

There is an isogeny $\eta_{\mathsf{Tate}} \colon K_{\mathfrak{p}}^{\times}/L \to E(K_{\mathfrak{p}})$.

 Proven for totally-real fields (Greenberg, Rotger–Longo–Vigni, Spiess, Gehrmann–Rosso).

The Darmon point attached to E and $\psi \colon K \to B$ is:

$$P_{\psi} = \eta_{\mathsf{Tate}}(J_{\psi}) \in E(K_{\mathfrak{p}}).$$

Conjecture 2

- **1** The local point P_{ψ} is **global**, and belongs to $E(K^{ab})$.
- ② P_{ψ} is nontorsion if and only if $L'(E/K, 1) \neq 0$.

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times} / L.$$

Conjecture 1

There is an isogeny $\eta_{\mathsf{Tate}} \colon K_{\mathfrak{p}}^{\times}/L \to E(K_{\mathfrak{p}})$.

 Proven for totally-real fields (Greenberg, Rotger–Longo–Vigni, Spiess, Gehrmann–Rosso).

The Darmon point attached to E and $\psi \colon K \to B$ is:

$$P_{\psi} = \eta_{\mathsf{Tate}}(J_{\psi}) \in E(K_{\mathfrak{p}}).$$

Conjecture 2

- **1** The local point P_{ψ} is **global**, and belongs to $E(K^{ab})$.
- ② P_{ψ} is nontorsion if and only if $L'(E/K, 1) \neq 0$.
 - **Predicts** also the **exact number field** over which P_{ψ} is defined.

$$J_{\psi} = \langle \Phi_E, \Theta_{\psi} \rangle \in K_{\mathfrak{p}}^{\times} / L.$$

Conjecture 1

There is an isogeny $\eta_{\text{Tate}} \colon K_{\mathfrak{p}}^{\times}/L \to E(K_{\mathfrak{p}}).$

 Proven for totally-real fields (Greenberg, Rotger–Longo–Vigni, Spiess, Gehrmann–Rosso).

The Darmon point attached to E and $\psi \colon K \to B$ is:

$$P_{\psi} = \eta_{\mathsf{Tate}}(J_{\psi}) \in E(K_{\mathfrak{p}}).$$

Conjecture 2

- ① The local point P_{ψ} is **global**, and belongs to $E(K^{ab})$.
- ② P_{ψ} is nontorsion if and only if $L'(E/K, 1) \neq 0$.
 - **Predicts** also the **exact number field** over which P_{ψ} is defined.
- Includes a **Shimura reciprocity law** like that of Heegner points.

ullet $B_{/F}=$ quaternion algebra with $\mathrm{Ram}(B)=S(E,K)\smallsetminus\{\mathfrak{p}\}.$

- ullet $B_{/F}=$ quaternion algebra with $\mathrm{Ram}(B)=S(E,K)\smallsetminus\{\mathfrak{p}\}.$
- Induces a factorization $\mathfrak{N} = \mathfrak{p}\mathfrak{D}\mathfrak{m}$.

- ullet $B_{/F}=$ quaternion algebra with $\mathrm{Ram}(B)=S(E,K)\smallsetminus\{\mathfrak{p}\}.$
- Induces a factorization $\mathfrak{N} = \mathfrak{p}\mathfrak{D}\mathfrak{m}$.
- Set $R_0^B(\mathfrak{pm}) \subset R_0^B(\mathfrak{m}) \subset B$, Eichler orders of levels \mathfrak{pm} and \mathfrak{m} .

- $B_{/F}=$ quaternion algebra with $Ram(B)=S(E,K)\smallsetminus\{\mathfrak{p}\}.$
- Induces a factorization $\mathfrak{N} = \mathfrak{p}\mathfrak{D}\mathfrak{m}$.
- Set $R_0^B(\mathfrak{pm}) \subset R_0^B(\mathfrak{m}) \subset B$, Eichler orders of levels \mathfrak{pm} and \mathfrak{m} .
- Define $\Gamma_0^B(\mathfrak{pm}) = R_0^B(\mathfrak{pm})_1^{\times}$ and $\Gamma_0^B(\mathfrak{m}) = R_0^B(\mathfrak{m})_1^{\times}$.

- $B_{/F} =$ quaternion algebra with $Ram(B) = S(E, K) \setminus \{\mathfrak{p}\}.$
- Induces a factorization $\mathfrak{N} = \mathfrak{p}\mathfrak{D}\mathfrak{m}$.
- Set $R_0^B(\mathfrak{pm}) \subset R_0^B(\mathfrak{m}) \subset B$, Eichler orders of levels \mathfrak{pm} and \mathfrak{m} .
- Define $\Gamma_0^B(\mathfrak{pm}) = R_0^B(\mathfrak{pm})_1^{\times}$ and $\Gamma_0^B(\mathfrak{m}) = R_0^B(\mathfrak{m})_1^{\times}$.
- Set

$$\Gamma = \left(R_0^B(\mathfrak{m})[\mathfrak{p}^{-1}] \right)_1^{\times}.$$

- $B_{/F} =$ quaternion algebra with $Ram(B) = S(E, K) \setminus \{\mathfrak{p}\}.$
- Induces a factorization $\mathfrak{N} = \mathfrak{p}\mathfrak{D}\mathfrak{m}$.
- Set $R_0^B(\mathfrak{pm}) \subset R_0^B(\mathfrak{m}) \subset B$, Eichler orders of levels \mathfrak{pm} and \mathfrak{m} .
- Define $\Gamma_0^B(\mathfrak{pm}) = R_0^B(\mathfrak{pm})_1^{\times}$ and $\Gamma_0^B(\mathfrak{m}) = R_0^B(\mathfrak{m})_1^{\times}$.
- Set

$$\Gamma = \left(R_0^B(\mathfrak{m})[\mathfrak{p}^{-1}] \right)_1^{\times}.$$

• Fix an embedding $\iota_{\mathfrak{p}} \colon R_0^B(\mathfrak{m}) \hookrightarrow M_2(\mathbb{Z}_{\mathfrak{p}})$.

- $B_{/F}=$ quaternion algebra with $Ram(B)=S(E,K)\smallsetminus\{\mathfrak{p}\}.$
- Induces a factorization $\mathfrak{N} = \mathfrak{p}\mathfrak{D}\mathfrak{m}$.
- Set $R_0^B(\mathfrak{pm}) \subset R_0^B(\mathfrak{m}) \subset B$, Eichler orders of levels \mathfrak{pm} and \mathfrak{m} .
- $\bullet \ \, \mathsf{Define} \,\, \Gamma_0^B(\mathfrak{pm}) = R_0^B(\mathfrak{pm})_1^\times \,\, \mathsf{and} \,\, \Gamma_0^B(\mathfrak{m}) = R_0^B(\mathfrak{m})_1^\times.$
- Set

$$\Gamma = \left(R_0^B(\mathfrak{m})[\mathfrak{p}^{-1}] \right)_1^{\times}.$$

• Fix an embedding $\iota_{\mathfrak{p}} \colon R_0^B(\mathfrak{m}) \hookrightarrow M_2(\mathbb{Z}_{\mathfrak{p}}).$

Lemma

 $\iota_{\mathfrak{p}}$ induces bijections

$$\Gamma/\Gamma_0^B(\mathfrak{m}) \cong \mathcal{V}_0, \quad \Gamma/\Gamma_0^B(\mathfrak{pm}) \cong \mathcal{E}_0$$

 \mathcal{V}_0 (resp. \mathcal{E}_0) are the even vertices (resp. edges) of the BT tree.

• Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.

- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \smallsetminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\int_{\tau_1}^{\tau_2} \omega_{\mu}$$

- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\int_{\tau_1}^{\tau_2} \omega_{\mu} = \int_{\mathbb{P}^1(F_{\mathfrak{p}})} \log_{\mathfrak{p}} \left(\frac{t - \tau_2}{t - \tau_1} \right) d\mu(t) = \varinjlim_{\mathcal{U}} \sum_{U \in \mathcal{U}} \log_{\mathfrak{p}} \left(\frac{t_U - \tau_2}{t_U - \tau_1} \right) \mu(U).$$

- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\int_{\tau_1}^{\tau_2} \omega_{\mu} = \int_{\mathbb{P}^1(F_{\mathfrak{p}})} \log_{\mathfrak{p}} \left(\frac{t - \tau_2}{t - \tau_1} \right) d\mu(t) = \varinjlim_{\mathcal{U}} \sum_{U \in \mathcal{U}} \log_{\mathfrak{p}} \left(\frac{t_U - \tau_2}{t_U - \tau_1} \right) \mu(U).$$

$$\mathrm{H}^{i}(\Gamma, \mathrm{Meas}^{0}(\mathbb{P}^{1}(F_{\mathfrak{p}}), \mathbb{Z})) \times \mathrm{H}_{i}(\Gamma, \mathrm{Div}^{0} \mathcal{H}_{\mathfrak{p}}) \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{C}_{\mathfrak{p}}$$
.

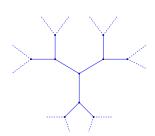
- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\int_{\tau_1}^{\tau_2} \omega_{\mu} = \int_{\mathbb{P}^1(F_{\mathfrak{p}})} \log_{\mathfrak{p}} \left(\frac{t - \tau_2}{t - \tau_1} \right) d\mu(t) = \varinjlim_{\mathcal{U}} \sum_{U \in \mathcal{U}} \log_{\mathfrak{p}} \left(\frac{t_U - \tau_2}{t_U - \tau_1} \right) \mu(U).$$

• For $\Gamma \subset \operatorname{PGL}_2(F_{\mathfrak{p}})$, induce a pairing

$$\mathrm{H}^{i}(\Gamma, \mathrm{Meas}^{0}(\mathbb{P}^{1}(F_{\mathfrak{p}}), \mathbb{Z})) \times \mathrm{H}_{i}(\Gamma, \mathrm{Div}^{0} \mathcal{H}_{\mathfrak{p}}) \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{C}_{\mathfrak{p}}$$
.

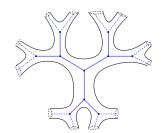
• Bruhat-Tits tree of $GL_2(F_{\mathfrak{p}})$, $|\mathfrak{p}|=2$.



- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\mathrm{H}^{i}(\Gamma, \mathrm{Meas}^{0}(\mathbb{P}^{1}(F_{\mathfrak{p}}), \mathbb{Z})) \times \mathrm{H}_{i}(\Gamma, \mathrm{Div}^{0} \mathcal{H}_{\mathfrak{p}}) \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{C}_{\mathfrak{p}}$$
.

- Bruhat-Tits tree of $GL_2(F_{\mathfrak{p}})$, $|\mathfrak{p}|=2$.
- $\mathcal{H}_{\mathfrak{p}}$ having the Bruhat-Tits as retract.

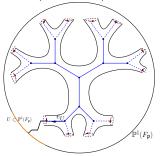


- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\int_{\tau_1}^{\tau_2} \omega_{\mu} = \int_{\mathbb{P}^1(F_{\mathfrak{p}})} \log_{\mathfrak{p}} \left(\frac{t - \tau_2}{t - \tau_1} \right) d\mu(t) = \varinjlim_{\mathcal{U}} \sum_{U \in \mathcal{U}} \log_{\mathfrak{p}} \left(\frac{t_U - \tau_2}{t_U - \tau_1} \right) \mu(U).$$

$$\mathrm{H}^{i}(\Gamma, \mathrm{Meas}^{0}(\mathbb{P}^{1}(F_{\mathfrak{p}}), \mathbb{Z})) \times \mathrm{H}_{i}(\Gamma, \mathrm{Div}^{0} \mathcal{H}_{\mathfrak{p}}) \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{C}_{\mathfrak{p}}$$
.

- Bruhat-Tits tree of $GL_2(F_{\mathfrak{p}}), |\mathfrak{p}| = 2.$
- \bullet $\mathcal{H}_{\mathfrak{p}}$ having the Bruhat-Tits as retract.
- Can identify $\operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z}) \cong \operatorname{HC}(\mathbb{Z})$ = $\{c : \mathcal{E}(\mathcal{T}_{\mathfrak{p}}) \to \mathbb{Z} \mid \sum_{o(e)=v} c(e) = 0\}.$

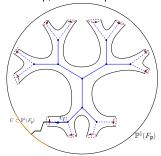


- Let $\mu \in \operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z})$.
- Coleman integration on $\mathcal{H}_{\mathfrak{p}} = \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{P}^1(F_{\mathfrak{p}})$ can be defined as:

$$\int_{\tau_1}^{\tau_2} \omega_{\mu} = \int_{\mathbb{P}^1(F_{\mathfrak{p}})} \log_{\mathfrak{p}} \left(\frac{t - \tau_2}{t - \tau_1} \right) d\mu(t) = \varinjlim_{\mathcal{U}} \sum_{U \in \mathcal{U}} \log_{\mathfrak{p}} \left(\frac{t_U - \tau_2}{t_U - \tau_1} \right) \mu(U).$$

$$\mathrm{H}^{i}(\Gamma, \mathrm{Meas}^{0}(\mathbb{P}^{1}(F_{\mathfrak{p}}), \mathbb{Z})) \times \mathrm{H}_{i}(\Gamma, \mathrm{Div}^{0} \mathcal{H}_{\mathfrak{p}}) \xrightarrow{\langle \cdot, \cdot \rangle} \mathbb{C}_{\mathfrak{p}}$$
.

- Bruhat-Tits tree of $GL_2(F_{\mathfrak{p}}), |\mathfrak{p}| = 2.$
- \bullet $\mathcal{H}_{\mathfrak{p}}$ having the Bruhat-Tits as retract.
- Can identify $\operatorname{Meas}^0(\mathbb{P}^1(F_{\mathfrak{p}}), \mathbb{Z}) \cong \operatorname{HC}(\mathbb{Z})$ = $\{c : \mathcal{E}(\mathcal{T}_{\mathfrak{p}}) \to \mathbb{Z} \mid \sum_{o(e)=v} c(e) = 0\}.$
- ullet t_U is any point in $U \subset \mathbb{P}^1(F_{\mathfrak{p}})$.



Plectic conjectures

Jan Nekovář

Tony Scholl

 $L^{(r)}(E/K,1)$ should be related to CM-points on a r-dimensional quaternionic Shimura variety.

Plectic conjectures

Jan Nekovář

Tony Scholl

"

 $L^{(r)}(E/K,1)$ should be related to CM-points on a r-dimensional quaternionic Shimura variety.

"

Goal : Construct $Q \in \wedge^r(E(K))$ such that

Q non-torsion $\iff L^{(r)}(E/K,1) \neq 0$.

p-adic Plectic invariants

Michele Fornea

• Let $r \ge 1$ with same parity as #S(E, K).

p-adic Plectic invariants

Michele Fornea

- Let $r \ge 1$ with same parity as #S(E, K).
- \circ $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$

Michele Fornea

- Let $r \ge 1$ with same parity as #S(E, K).
- \bullet $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$
- Let $B_{/F}$ with $Ram(B) = S(E, K) \setminus S$.

Michele Fornea

- Let $r \ge 1$ with same parity as #S(E, K).
- \bullet $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$
- Let $B_{/F}$ with $Ram(B) = S(E, K) \setminus S$.
- Set $\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$.

Michele Fornea

• Let
$$r \ge 1$$
 with same parity as $\#S(E, K)$.

$$\bullet$$
 $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$

• Let
$$B_{/F}$$
 with $Ram(B) = S(E, K) \setminus S$.

• Set
$$\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$$
.

$$F_S = \prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \, \mathbb{P}^1(F_S) = \prod_{\mathfrak{p} \in S} \mathbb{P}^1(F_{\mathfrak{p}}), \, \text{and} \, \, \mathcal{H}_S = \prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}.$$

Michele Fornea

• Let
$$r \ge 1$$
 with same parity as $\#S(E, K)$.

$$\bullet$$
 $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$

• Let
$$B_{/F}$$
 with $Ram(B) = S(E, K) \setminus S$.

• Set
$$\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$$
.

$$F_S = \prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \, \mathbb{P}^1(F_S) = \prod_{\mathfrak{p} \in S} \mathbb{P}^1(F_{\mathfrak{p}}), \, \text{and} \, \, \mathcal{H}_S = \prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}.$$

• Construct $\Phi_E \in \mathrm{H}^n(\Gamma_S, \mathrm{Meas}^0(\mathbb{P}^1(F_S), \mathbb{Z}))$.

Michele Fornea

• Let
$$r \ge 1$$
 with same parity as $\#S(E, K)$.

$$\bullet$$
 $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$

• Let
$$B_{/F}$$
 with $Ram(B) = S(E, K) \setminus S$.

• Set
$$\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$$
.

$$F_S = \prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \, \mathbb{P}^1(F_S) = \prod_{\mathfrak{p} \in S} \mathbb{P}^1(F_{\mathfrak{p}}), \, \text{and} \, \mathcal{H}_S = \prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}.$$

- Construct $\Phi_E \in \mathrm{H}^n(\Gamma_S, \mathrm{Meas}^0(\mathbb{P}^1(F_S), \mathbb{Z}))$.
 - $\mu\left(\mathbb{P}^1(F_{\mathfrak{p}})\times U_{S^{\mathfrak{p}}}\right)=0$, for all $\mathfrak{p}\in S$, all $U_{S^{\mathfrak{p}}}\subseteq\mathbb{P}^1(F_{S^{\mathfrak{p}}})$.

Michele Fornea

• Let
$$r \geqslant 1$$
 with same parity as $\#S(E, K)$.

- \bullet $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$
- Let $B_{/F}$ with $Ram(B) = S(E, K) \setminus S$.
- Set $\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$.

$$F_S = \prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \, \mathbb{P}^1(F_S) = \prod_{\mathfrak{p} \in S} \mathbb{P}^1(F_{\mathfrak{p}}), \, \text{and} \, \, \mathcal{H}_S = \prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}.$$

- Construct $\Phi_E \in \mathrm{H}^n(\Gamma_S, \mathrm{Meas}^0(\mathbb{P}^1(F_S), \mathbb{Z}))$.
 - $\mu\left(\mathbb{P}^1(F_{\mathfrak{p}}) \times U_{S^{\mathfrak{p}}}\right) = 0$, for all $\mathfrak{p} \in S$, all $U_{S^{\mathfrak{p}}} \subseteq \mathbb{P}^1(F_{S^{\mathfrak{p}}})$.
- Construct $\Theta_{\psi} \in H_n(\Gamma_S, \mathbb{Z}_0(\mathcal{H}_S))$.

Michele Fornea

• Let
$$r \geqslant 1$$
 with same parity as $\#S(E, K)$.

$$\bullet$$
 $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$

• Let
$$B_{/F}$$
 with $Ram(B) = S(E, K) \setminus S$.

• Set
$$\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$$
.

$$F_S=\prod_{\mathfrak{p}\in S}F_{\mathfrak{p}},\,\mathbb{P}^1(F_S)=\prod_{\mathfrak{p}\in S}\mathbb{P}^1(F_{\mathfrak{p}}),\, ext{and}\,\,\mathcal{H}_S=\prod_{\mathfrak{p}\in S}\mathcal{H}_{\mathfrak{p}}.$$

- Construct $\Phi_E \in \mathrm{H}^n(\Gamma_S, \mathrm{Meas}^0(\mathbb{P}^1(F_S), \mathbb{Z}))$.
 - $\mu\left(\mathbb{P}^1(F_{\mathfrak{p}}) \times U_{S^{\mathfrak{p}}}\right) = 0$, for all $\mathfrak{p} \in S$, all $U_{S^{\mathfrak{p}}} \subseteq \mathbb{P}^1(F_{S^{\mathfrak{p}}})$.
- Construct $\Theta_{\psi} \in H_n(\Gamma_S, \mathbb{Z}_0(\mathcal{H}_S))$.
- Pairing $\operatorname{Meas}^0(\mathbb{P}^1(F_S),\mathbb{Z}) \times \operatorname{Div}^0(\mathcal{H}_S) \to \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}.$

Michele Fornea

• Let
$$r \ge 1$$
 with same parity as $\#S(E, K)$.

- \bullet $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$
- Let $B_{/F}$ with $Ram(B) = S(E, K) \setminus S$.
- Set $\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$.

$$F_S = \prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \, \mathbb{P}^1(F_S) = \prod_{\mathfrak{p} \in S} \mathbb{P}^1(F_{\mathfrak{p}}), \, \text{and} \, \mathcal{H}_S = \prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}.$$

- Construct $\Phi_E \in \mathrm{H}^n(\Gamma_S, \mathrm{Meas}^0(\mathbb{P}^1(F_S), \mathbb{Z}))$.
 - $\mu\left(\mathbb{P}^1(F_{\mathfrak{p}}) \times U_{S^{\mathfrak{p}}}\right) = 0$, for all $\mathfrak{p} \in S$, all $U_{S^{\mathfrak{p}}} \subseteq \mathbb{P}^1(F_{S^{\mathfrak{p}}})$.
- Construct $\Theta_{\psi} \in H_n(\Gamma_S, \mathbb{Z}_0(\mathcal{H}_S))$.
- Pairing $\operatorname{Meas}^0(\mathbb{P}^1(F_S),\mathbb{Z}) \times \operatorname{Div}^0(\mathcal{H}_S) \to \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}.$
 - $\operatorname{H}^{n}(\Gamma_{S}, \operatorname{Meas}^{0}(\mathbb{P}^{1}(F_{S}), \mathbb{Z})) \times \operatorname{H}_{n}(\Gamma_{S}, \mathbb{Z}_{0}(\mathcal{H}_{S})) \xrightarrow{\langle \cdot, \cdot \rangle} \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}.$

Michele Fornea

• Let
$$r \ge 1$$
 with same parity as $\#S(E, K)$.

$$\bullet$$
 $S = {\mathfrak{p}_1, \ldots, \mathfrak{p}_r} \subseteq S(E, K), |\mathfrak{p}_i| = p.$

• Let
$$B_{/F}$$
 with $Ram(B) = S(E, K) \setminus S$.

• Set
$$\Gamma_S = \left(R_0^B(\mathfrak{m})[S^{-1}]\right)_1^{\times}$$
.

$$F_S = \prod_{\mathfrak{p} \in S} F_{\mathfrak{p}}, \, \mathbb{P}^1(F_S) = \prod_{\mathfrak{p} \in S} \mathbb{P}^1(F_{\mathfrak{p}}), \, \text{and} \, \mathcal{H}_S = \prod_{\mathfrak{p} \in S} \mathcal{H}_{\mathfrak{p}}.$$

- Construct $\Phi_E \in \mathrm{H}^n(\Gamma_S, \mathrm{Meas}^0(\mathbb{P}^1(F_S), \mathbb{Z}))$.
 - $\mu\left(\mathbb{P}^1(F_{\mathfrak{p}}) \times U_{S^{\mathfrak{p}}}\right) = 0$, for all $\mathfrak{p} \in S$, all $U_{S^{\mathfrak{p}}} \subseteq \mathbb{P}^1(F_{S^{\mathfrak{p}}})$.
- Construct $\Theta_{\psi} \in H_n(\Gamma_S, \mathbb{Z}_0(\mathcal{H}_S))$.
- Pairing $\operatorname{Meas}^0(\mathbb{P}^1(F_S),\mathbb{Z}) \times \operatorname{Div}^0(\mathcal{H}_S) \to \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}.$
 - $\vdash \operatorname{H}^{n}(\Gamma_{S}, \operatorname{Meas}^{0}(\mathbb{P}^{1}(F_{S}), \mathbb{Z})) \times \operatorname{H}_{n}(\Gamma_{S}, \mathbb{Z}_{0}(\mathcal{H}_{S})) \stackrel{\langle \cdot, \cdot \rangle}{\to} \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}.$

Plectic invariant attached to E, K and S

$$J := \langle \Phi_E, \Theta_{\psi} \rangle \in \bigotimes_{\mathfrak{p} \in S} K_{\mathfrak{p}}.$$

• Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - Via Eichler–Shimura and Jacquet–Langlands.

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - Via Eichler-Shimura and Jacquet-Langlands.
- Shapiro isomorphism $\leadsto \tilde{\varphi}_E \in \mathrm{H}^n(\Gamma_S, \mathrm{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S}\mathbb{Z}).$

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - Via Eichler–Shimura and Jacquet–Langlands.
- Shapiro isomorphism $\leadsto \tilde{\varphi}_E \in \mathrm{H}^n(\Gamma_S, \mathrm{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S}\mathbb{Z}).$
- $\bullet \operatorname{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S} \mathbb{Z} \cong \operatorname{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}).$

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - · Via Eichler-Shimura and Jacquet-Langlands.
- Shapiro isomorphism $\rightsquigarrow \tilde{\varphi}_E \in \mathrm{H}^n(\Gamma_S, \mathrm{coInd}_{\Gamma^B_0(p_S\mathfrak{m})}^{\Gamma_S}\mathbb{Z}).$
- $\bullet \operatorname{coInd}_{\Gamma_{D}^{B}(p_{S}\mathfrak{m})}^{\Gamma_{S}}\mathbb{Z} \cong \operatorname{Maps}(\mathcal{E}(\mathcal{T}_{S}),\mathbb{Z}).$
- $\mathrm{HC}_S(\mathbb{Z}) = \{c \colon \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z} \text{ "harmonic in each variable"} \}$:

$$0 \to \mathrm{HC}_S(\mathbb{Z}) \to \mathrm{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}) \xrightarrow{\nu} \bigoplus_{\mathfrak{p} \in S} \mathrm{Maps}(\mathcal{V}(\mathcal{T}_{\mathfrak{p}}) \times \mathcal{E}(\mathcal{T}_{S^{\mathfrak{p}}}), \mathbb{Z}) \to \cdots$$

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - Via Eichler–Shimura and Jacquet–Langlands.
- Shapiro isomorphism $\rightsquigarrow \tilde{\varphi}_E \in \mathrm{H}^n(\Gamma_S, \mathrm{coInd}_{\Gamma^B_0(p_S\mathfrak{m})}^{\Gamma_S}\mathbb{Z}).$
- $\bullet \operatorname{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S} \mathbb{Z} \cong \operatorname{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}).$
- $\mathrm{HC}_S(\mathbb{Z}) = \{c \colon \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z} \text{ "harmonic in each variable"}\}$:

$$0 \to \mathrm{HC}_S(\mathbb{Z}) \to \mathrm{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}) \xrightarrow{\nu} \bigoplus_{\mathfrak{p} \in S} \mathrm{Maps}(\mathcal{V}(\mathcal{T}_{\mathfrak{p}}) \times \mathcal{E}(\mathcal{T}_{S^{\mathfrak{p}}}), \mathbb{Z}) \to \cdots$$

• $\operatorname{Meas}^0(\mathbb{P}^1(F_S),\mathbb{Z})$ identified with $\operatorname{HC}_S(\mathbb{Z})$.

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - Via Eichler–Shimura and Jacquet–Langlands.
- Shapiro isomorphism $\rightsquigarrow \tilde{\varphi}_E \in \mathrm{H}^n(\Gamma_S, \mathrm{coInd}_{\Gamma^B_0(p_S\mathfrak{m})}^{\Gamma_S}\mathbb{Z}).$
- $\bullet \operatorname{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S} \mathbb{Z} \cong \operatorname{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}).$
- $\mathrm{HC}_S(\mathbb{Z}) = \{c \colon \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z} \text{ "harmonic in each variable"}\}$:

$$0 \to \mathrm{HC}_S(\mathbb{Z}) \to \mathrm{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}) \xrightarrow{\nu} \bigoplus_{\mathfrak{p} \in S} \mathrm{Maps}(\mathcal{V}(\mathcal{T}_{\mathfrak{p}}) \times \mathcal{E}(\mathcal{T}_{S^{\mathfrak{p}}}), \mathbb{Z}) \to \cdots$$

- $\operatorname{Meas}^0(\mathbb{P}^1(F_S),\mathbb{Z})$ identified with $\operatorname{HC}_S(\mathbb{Z})$.
- ullet Since φ_E is p-new, have an isomorphism

$$H^n(\Gamma_S, HC_S(\mathbb{Z}))_E \cong H^n(\Gamma_S, Maps(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}))_E.$$

- Consider $\varphi_E \in \mathrm{H}^n(\Gamma_0^B(p_S\mathfrak{m}),\mathbb{Z})$ attached to E.
 - Via Eichler–Shimura and Jacquet–Langlands.
- Shapiro isomorphism $\sim \tilde{\varphi}_E \in \mathrm{H}^n(\Gamma_S, \mathrm{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S}\mathbb{Z}).$
- $\bullet \operatorname{coInd}_{\Gamma_0^B(p_S\mathfrak{m})}^{\Gamma_S} \mathbb{Z} \cong \operatorname{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}).$
- $\mathrm{HC}_S(\mathbb{Z}) = \{c \colon \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z} \text{ "harmonic in each variable"} \}$:

$$0 \to \mathrm{HC}_S(\mathbb{Z}) \to \mathrm{Maps}(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}) \xrightarrow{\nu} \bigoplus_{\mathfrak{p} \in S} \mathrm{Maps}(\mathcal{V}(\mathcal{T}_{\mathfrak{p}}) \times \mathcal{E}(\mathcal{T}_{S^{\mathfrak{p}}}), \mathbb{Z}) \to \cdots$$

- $\operatorname{Meas}^0(\mathbb{P}^1(F_S),\mathbb{Z})$ identified with $\operatorname{HC}_S(\mathbb{Z})$.
- Since φ_E is p-new, have an isomorphism

$$H^n(\Gamma_S, HC_S(\mathbb{Z}))_E \cong H^n(\Gamma_S, Maps(\mathcal{E}(\mathcal{T}_S), \mathbb{Z}))_E.$$

• Therefore we can define Φ_E , unique up to sign.

• Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} \colon \operatorname{Nm}_{K/F}(u) = 1\}.$

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} \colon \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} : \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$
- Choose a basis $u_1, \ldots, u_n \in \mathcal{O}_1^{\times}$ for the non-torsion units.

$$\Delta_{\psi} = \psi(u_1) \wedge \cdots \wedge \psi(u_n) \in H_n(\Gamma, \mathbb{Z}).$$

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} : \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$
- Choose a basis $u_1, \ldots, u_n \in \mathcal{O}_1^{\times}$ for the non-torsion units.

$$\Delta_{\psi} = \psi(u_1) \wedge \cdots \wedge \psi(u_n) \in H_n(\Gamma, \mathbb{Z}).$$

• K_1^{\times} acts on \mathcal{H}_S through $K_1^{\times} \stackrel{\psi}{\hookrightarrow} B_1^{\times} \stackrel{\bigoplus_{\mathfrak{p} \in S} \iota_{\mathfrak{p}}}{\hookrightarrow} \mathrm{SL}_2(F_S)$.

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} : \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$
- Choose a basis $u_1, \ldots, u_n \in \mathcal{O}_1^{\times}$ for the non-torsion units.

$$\Delta_{\psi} = \psi(u_1) \wedge \cdots \wedge \psi(u_n) \in H_n(\Gamma, \mathbb{Z}).$$

- K_1^{\times} acts on \mathcal{H}_S through $K_1^{\times} \stackrel{\psi}{\hookrightarrow} B_1^{\times} \stackrel{\bigoplus_{\mathfrak{p} \in S} \iota_{\mathfrak{p}}}{\hookrightarrow} \mathrm{SL}_2(F_S)$.
- Let $\tau_{\mathfrak{p}}, \bar{\tau}_{\mathfrak{p}}$ be the fixed points of K_1^{\times} acting on $\mathcal{H}_{\mathfrak{p}}$.

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} : \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$
- Choose a basis $u_1, \ldots, u_n \in \mathcal{O}_1^{\times}$ for the non-torsion units.

$$\Delta_{\psi} = \psi(u_1) \wedge \cdots \wedge \psi(u_n) \in H_n(\Gamma, \mathbb{Z}).$$

- K_1^{\times} acts on \mathcal{H}_S through $K_1^{\times} \stackrel{\psi}{\hookrightarrow} B_1^{\times} \stackrel{\bigoplus_{\mathfrak{p} \in S} \iota_{\mathfrak{p}}}{\hookrightarrow} \mathrm{SL}_2(F_S)$.
- Let $\tau_{\mathfrak{p}}, \bar{\tau}_{\mathfrak{p}}$ be the fixed points of K_1^{\times} acting on $\mathcal{H}_{\mathfrak{p}}$.
 - Set $D = \bigotimes_{\mathfrak{p} \in S} (\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}) \in \mathbb{Z}_0(\mathcal{H}_S)$.

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} : \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$
- Choose a basis $u_1, \ldots, u_n \in \mathcal{O}_1^{\times}$ for the non-torsion units.

$$\Delta_{\psi} = \psi(u_1) \wedge \cdots \wedge \psi(u_n) \in H_n(\Gamma, \mathbb{Z}).$$

- K_1^{\times} acts on \mathcal{H}_S through $K_1^{\times} \stackrel{\psi}{\hookrightarrow} B_1^{\times} \stackrel{\bigoplus_{\mathfrak{p} \in S} \iota_{\mathfrak{p}}}{\hookrightarrow} \mathrm{SL}_2(F_S)$.
- Let $\tau_{\mathfrak{p}}, \bar{\tau}_{\mathfrak{p}}$ be the fixed points of K_1^{\times} acting on $\mathcal{H}_{\mathfrak{p}}$.
 - Set $D = \bigotimes_{\mathfrak{p} \in S} (\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}) \in \mathbb{Z}_0(\mathcal{H}_S)$.
- Define $\Theta_{\psi} = [\Delta_{\psi} \otimes D] \in H_n(\Gamma_S, \mathbb{Z}_0(\mathcal{H}_S)).$

- Let $\psi \colon \mathcal{O} \hookrightarrow R_0^B(\mathfrak{m})$ be an embedding of an order \mathcal{O} of K.
 - Which is optimal: $\psi(\mathcal{O}) = R_0^B(\mathfrak{m}) \cap \psi(K)$.
- Consider the group $\mathcal{O}_1^{\times} = \{u \in \mathcal{O}^{\times} : \operatorname{Nm}_{K/F}(u) = 1\}.$
 - $\operatorname{rank}(\mathcal{O}_1^{\times}) = \operatorname{rank}(\mathcal{O}^{\times}) \operatorname{rank}(\mathcal{O}_F^{\times}) = n.$
- Choose a basis $u_1, \ldots, u_n \in \mathcal{O}_1^{\times}$ for the non-torsion units.

$$\Delta_{\psi} = \psi(u_1) \wedge \cdots \wedge \psi(u_n) \in H_n(\Gamma, \mathbb{Z}).$$

- K_1^{\times} acts on \mathcal{H}_S through $K_1^{\times} \stackrel{\psi}{\hookrightarrow} B_1^{\times} \stackrel{\bigoplus_{\mathfrak{p} \in S} \iota_{\mathfrak{p}}}{\hookrightarrow} \mathrm{SL}_2(F_S)$.
- Let $\tau_{\mathfrak{p}}, \bar{\tau}_{\mathfrak{p}}$ be the fixed points of K_1^{\times} acting on $\mathcal{H}_{\mathfrak{p}}$.
 - Set $D = \bigotimes_{\mathfrak{p} \in S} (\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}) \in \mathbb{Z}_0(\mathcal{H}_S)$.
- Define $\Theta_{\psi} = [\Delta_{\psi} \otimes D] \in H_n(\Gamma_S, \mathbb{Z}_0(\mathcal{H}_S)).$

Ideally, we'd like to define a class attached to $\otimes \tau_{\mathfrak{p}}.$

 $\mathfrak{p} \in S$

• Granting BSD + parity conjectures, expect $r_{alg}(E/K) \equiv r \pmod{2}$.

- Granting BSD + parity conjectures, expect $r_{alg}(E/K) \equiv r \pmod{2}$.
- Fix embeddings $\iota_{\mathfrak{p}} \colon K \hookrightarrow K_{\mathfrak{p}}$. Get a *regulator* map $\det \colon \wedge^r E(K) \to \hat{E}(K_S), \quad Q_1 \wedge \cdots \wedge Q_r \mapsto \det(\iota_{\mathfrak{p}_i}(Q_j)).$

- Granting BSD + parity conjectures, expect $r_{alg}(E/K) \equiv r \pmod{2}$.
- Fix embeddings $\iota_{\mathfrak{p}} \colon K \hookrightarrow K_{\mathfrak{p}}$. Get a *regulator* map $\det \colon \wedge^r E(K) \to \hat{E}(K_S), \quad Q_1 \wedge \cdots \wedge Q_r \mapsto \det(\iota_{\mathfrak{p}_i}(Q_j)).$

Conjecture 1 (algebraicity)

Suppose that $r_{alg}(E/K) \geqslant r$. Then:

- Granting BSD + parity conjectures, expect $r_{alg}(E/K) \equiv r \pmod{2}$.
- Fix embeddings $\iota_{\mathfrak{p}} \colon K \hookrightarrow K_{\mathfrak{p}}$. Get a *regulator* map $\det \colon \wedge^r E(K) \to \hat{E}(K_S), \quad Q_1 \wedge \cdots \wedge Q_r \mapsto \det(\iota_{\mathfrak{p}_i}(Q_j)).$

Conjecture 1 (algebraicity)

Suppose that $r_{alg}(E/K) \ge r$. Then:

 $\bullet \exists w \in \wedge^r E(K) \text{ such that } \eta_{\mathsf{Tate}}(J) = \det(w).$

- Granting BSD + parity conjectures, expect $r_{alg}(E/K) \equiv r \pmod{2}$.
- Fix embeddings $\iota_{\mathfrak{p}} \colon K \hookrightarrow K_{\mathfrak{p}}$. Get a *regulator* map $\det \colon \wedge^r E(K) \to \hat{E}(K_S), \quad Q_1 \wedge \cdots \wedge Q_r \mapsto \det(\iota_{\mathfrak{p}_i}(Q_j)).$

Conjecture 1 (algebraicity)

Suppose that $r_{alg}(E/K) \geqslant r$. Then:

- $\bullet \exists w \in \wedge^r E(K) \text{ such that } \eta_{\mathsf{Tate}}(J) = \det(w).$
- \bullet $\eta_{\mathsf{Tate}}(J) \neq 0 \implies r_{\mathsf{alg}}(E/K) = r.$

• Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central L-values of twists of by characters ramified at S.

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - ullet Interpolates central L-values of twists of by characters ramified at S.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S),\rho(E^K,S)\}.$

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central *L*-values of twists of by characters ramified at *S*.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S), \rho(E^K,S)\}.$
- Fornea–Gehrmann show that $L_p^{(r(E,K,S))} \stackrel{\cdot}{=} J$.

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central *L*-values of twists of by characters ramified at *S*.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S),\rho(E^K,S)\}.$
- \bullet Fornea–Gehrmann show that $L_p^{(r(E,K,S))} \stackrel{\cdot}{=} J.$
- Assume that $F = \mathbb{Q}(j(E))$.

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central L-values of twists of by characters ramified at S.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S),\rho(E^K,S)\}.$
- Fornea–Gehrmann show that $L_p^{(r(E,K,S))} \stackrel{\cdot}{=} J$.
- Assume that $F = \mathbb{Q}(j(E))$.

Conjecture 2 (non-vanishing)

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central *L*-values of twists of by characters ramified at *S*.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S),\rho(E^K,S)\}.$
- Fornea–Gehrmann show that $L_p^{(r(E,K,S))} \stackrel{.}{=} J$.
- Assume that $F = \mathbb{Q}(j(E))$.

Conjecture 2 (non-vanishing)

• If $r_{\text{alg}}(E/K) = r = \max\{\rho(E,S), \rho(E^K,S)\}$, then $J \neq 0$.

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central L-values of twists of by characters ramified at S.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S),\rho(E^K,S)\}.$
- Fornea–Gehrmann show that $L_p^{(r(E,K,S))} \stackrel{\cdot}{=} J$.
- Assume that $F = \mathbb{Q}(j(E))$.

Conjecture 2 (non-vanishing)

- If $r_{\text{alg}}(E/K) = r = \max\{\rho(E,S), \rho(E^K,S)\}$, then $J \neq 0$.
- If $r_{alg}(E/K) < r$, then $J \neq 0$ (but don't know arithmetic meaning).

- Write $T(E) = \{ \mathfrak{p} \in S \mid a_{\mathfrak{p}}(E) = 1 \}.$
- Set $\rho(E, S) = r_{alg}(E/F) + |T(E)|$.
- Bergunde–Gehrmann construct a p-adic L-function attached to (E,K,S).
 - Interpolates central *L*-values of twists of by characters ramified at *S*.
 - Vanishes to order at least $r(E,K,S) = \max\{\rho(E,S), \rho(E^K,S)\}.$
- Fornea–Gehrmann show that $L_p^{(r(E,K,S))} \stackrel{.}{=} J.$
- Assume that $F = \mathbb{Q}(j(E))$.

Conjecture 2 (non-vanishing)

- If $r_{\text{alg}}(E/K) = r = \max\{\rho(E,S), \rho(E^K,S)\}$, then $J \neq 0$.
- If $r_{\text{alg}}(E/K) < r$, then $J \neq 0$ (but don't know arithmetic meaning).
 - Provided that the order of vanishing of L_p allows for it.

Joint work with Xevi Guitart and Michele Fornea.

Joint work with Xevi Guitart and Michele Fornea.

ullet We have restricted to F real quadratic of narrow class number one.

Joint work with Xevi Guitart and Michele Fornea.

- We have restricted to *F* real quadratic of narrow class number one.
 - Therefore take r=2.

Joint work with Xevi Guitart and Michele Fornea.

- \bullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

Joint work with Xevi Guitart and Michele Fornea.

- \bullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

Case 1

• We first consider curves E/F where $r_{alg}(E/F)=0$.

Joint work with Xevi Guitart and Michele Fornea.

- \bullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{\text{alg}}(E/K) = 0$ as well.

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{alg}(E/K) = 0$ as well.
- Expect J to often be nonzero, unrelated to global points.

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{alg}(E/K) = 0$ as well.
- Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{alg}(E/K) = 0$ as well.
- ullet Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:

•
$$F = \mathbb{Q}(\sqrt{13}), E = 36.1\text{-a2}, \beta = -9w + 8, -12w + 17.$$

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{\text{alg}}(E/K) = 0$ as well.
- ullet Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 36.1\text{-a2}, \beta = -9w + 8, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1\text{-a2}, \beta = -4w + 9.$

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{\text{alg}}(E/K) = 0$ as well.
- Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 36.1\text{-a2}, \beta = -9w + 8, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1\text{-a2}, \beta = -4w + 9.$
- For the following two curves, we have observed $J \simeq 0$ for many β .

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{alg}(E/K) = 0$ as well.
- ullet Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 36.1\text{-a2}, \beta = -9w + 8, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1\text{-a2}, \beta = -4w + 9.$
- For the following two curves, we have observed $J \simeq 0$ for many β .
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1 b1.$

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{alg}(E/K) = 0$ as well.
- Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 36.1\text{-a2}, \beta = -9w + 8, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1\text{-a2}, \beta = -4w + 9.$
- For the following two curves, we have observed $J \simeq 0$ for many β .
 - $F = \mathbb{O}(\sqrt{37}), E = 36.1 b1.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1 c1.$

Joint work with Xevi Guitart and Michele Fornea.

- ullet We have restricted to F real quadratic of narrow class number one.
 - Therefore take r=2.
- For $\beta \in F$, define $K = F(\sqrt{\beta})$.

- We first consider curves E/F where $r_{alg}(E/F) = 0$.
- Generically, $r_{alq}(E/K) = 0$ as well.
- ullet Expect J to often be nonzero, unrelated to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 36.1$ -a2, $\beta = -9w + 8, -12w + 17$.
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1 \text{-a2}, \beta = -4w + 9.$
- For the following two curves, we have observed $J \simeq 0$ for many β .
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1 b1.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 36.1 c1.$
- Due to the fact that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1 \implies$ extra vanishing of L_p .

• We consider curves E/F where $r_{alg}(E/F) = 1$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{alg}(E/K) = 2$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{\text{alg}}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^6) in the following:

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^6) in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 225.1$ -b2, $\beta = -3w 1, -12w + 17.$

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^6) in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 225.1\text{-b2}, \beta = -3w 1, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1$ -a2, $\beta = -4w + 9$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^6) in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 225.1$ -b2, $\beta = -3w 1, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1$ -a2, $\beta = -4w + 9$.
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-b1}, \beta = -4w + 9.$

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1$, so $\max\{\rho(E,S),\rho(E^K,S)\}>2$.
- Generically, $r_{\text{alg}}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^6) in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 225.1-b2, \beta = -3w-1, -12w+17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1$ -a2, $\beta = -4w + 9$.
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-b1}, \beta = -4w + 9.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.2\text{-a1}, \beta = -3w + 5.$

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- $\bullet \ \ \text{We impose that} \ a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=1 \text{, so } \max\{\rho(E,S),\rho(E^K,S)\}>2.$
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should vanish because of an exceptional zero in the p-adic L-function.
- We have checked that this is the case (up to precision p^6) in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 225.1\text{-b2}, \beta = -3w 1, -12w + 17.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-a2}, \beta = -4w + 9.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-b1}, \beta = -4w + 9.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.2\text{-a1}, \beta = -3w + 5.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.2\text{-b1}, \beta = -3w + 5.$

• We consider curves E/F where $r_{alg}(E/F)=1$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{alg}(E/K) = 2$.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- $\bullet \ \ \text{We impose that} \ a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E) = -1, \, \text{so max}\{\rho(E,S),\rho(E^K,S)\} = 2.$
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 153.2\text{-e2}, \beta = -9w + 8.$

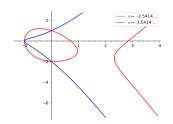
- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{\text{alg}}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 153.2\text{-e2}, \beta = -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{13}), E = 207.1\text{-c1}, \beta = -9w 4, -9w + 8.$

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{\text{alg}}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 153.2\text{-e2}, \beta = -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{13}), E = 207.1\text{-c1}, \beta = -9w 4, -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-d1}, \beta = -4w + 9.$

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 153.2\text{-e2}, \beta = -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{13}), E = 207.1\text{-c1}, \beta = -9w 4, -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-d1}, \beta = -4w + 9.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.2\text{-d1}, \beta = -3w + 5$

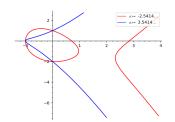
- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 153.2\text{-e2}, \beta = -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{13}), E = 207.1\text{-c1}, \beta = -9w 4, -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1\text{-d1}, \beta = -4w + 9.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.2 \text{-d1}, \beta = -3w + 5$
 - F = $\mathbb{Q}(\sqrt{37})$, E = 99.2-c1, $\beta = -8w + 17$, -16w + 9, -20w + 29, -9w + 14, -12w + 29, -32w + 41, -12w 7, -35w + 17.

- We consider curves E/F where $r_{alg}(E/F) = 1$.
- We impose that $a_{\mathfrak{p}_1}(E)a_{\mathfrak{p}_2}(E)=-1$, so $\max\{\rho(E,S),\rho(E^K,S)\}=2$.
- Generically, $r_{alg}(E/K) = 2$.
- In those cases, J should be nonzero and related to global points.
- We have checked that this is the case in the following:
 - $F = \mathbb{Q}(\sqrt{13}), E = 153.2 \text{-e2}, \beta = -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{13}), E = 207.1\text{-c1}, \beta = -9w 4, -9w + 8.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.1 \text{-d1}, \beta = -4w + 9.$
 - $F = \mathbb{Q}(\sqrt{37}), E = 63.2 \text{-d1}, \beta = -3w + 5$
 - F = $\mathbb{Q}(\sqrt{37})$, E = 99.2-c1, $\beta = -8w + 17$, -16w + 9, -20w + 29, -9w + 14, -12w + 29, -32w + 41, -12w 7, -35w + 17.
- In one of the examples, we obtain what seems to be zero. We expect that this is due to the low working precision...



$$\begin{split} F &= \mathbb{Q}(\sqrt{13}),\, w = \frac{1+\sqrt{13}}{2},\\ E/F &: y^2 + xy + y = x^3 + wx^2 + (w+1)\,x + 2,\\ K &= F(\sqrt{\beta}),\, \text{with}\,\, \beta = 62 - 21w. \end{split}$$

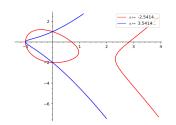
https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1



$$\begin{split} F &= \mathbb{Q}(\sqrt{13}), \, w = \frac{1+\sqrt{13}}{2}, \\ E/F &: y^2 + xy + y = x^3 + wx^2 + (w+1)\,x + 2, \\ K &= F(\sqrt{\beta}), \, \text{with} \, \beta = 62 - 21w. \end{split}$$

•
$$E(K) \otimes \mathbb{Q} = \langle P, Q \rangle$$
, with $P = (3 - w, 4 - w)$ and $Q = (8 - \frac{25}{9}w, (\frac{-23}{27}w + \frac{17}{6})\sqrt{\beta} + \frac{25}{18}w - \frac{9}{2})$.

https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1

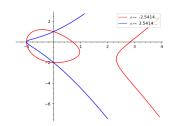


$$\begin{split} F &= \mathbb{Q}(\sqrt{13}), \, w = \frac{1+\sqrt{13}}{2}, \\ E/F &: y^2 + xy + y = x^3 + wx^2 + (w+1)\,x + 2, \\ K &= F(\sqrt{\beta}), \, \text{with} \,\, \beta = 62 - 21w. \end{split}$$

- $E(K) \otimes \mathbb{Q} = \langle P, Q \rangle$, with P = (3 w, 4 w) and $Q = (8 \frac{25}{9}w, (\frac{-23}{27}w + \frac{17}{6})\sqrt{\beta} + \frac{25}{18}w \frac{9}{2})$.
- We may compute

$$\log_{E_1}(P_1 - \bar{P}_1) \otimes \log_{E_2}(Q_2 - \bar{Q}_2) - \log_{E_1}(Q_1 - \bar{Q}_1) \otimes \log_{E_2}(P_2 - \bar{P}_2) \in \mathbb{Q}_{p^2} \otimes \mathbb{Q}_{p^2}.$$

https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1



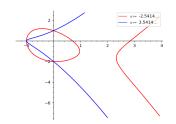
$$\begin{split} F &= \mathbb{Q}(\sqrt{13}), \, w = \frac{1+\sqrt{13}}{2}, \\ E/F &: y^2 + xy + y = x^3 + wx^2 + (w+1)\,x + 2, \\ K &= F(\sqrt{\beta}), \, \text{with} \, \beta = 62 - 21w. \end{split}$$

- $E(K) \otimes \mathbb{Q} = \langle P, Q \rangle$, with P = (3 w, 4 w) and $Q = (8 \frac{25}{9}w, (\frac{-23}{27}w + \frac{17}{6})\sqrt{\beta} + \frac{25}{18}w \frac{9}{2})$.
- We may compute

$$\log_{E_1}(P_1 - \bar{P}_1) \otimes \log_{E_2}(Q_2 - \bar{Q}_2) - \log_{E_1}(Q_1 - \bar{Q}_1) \otimes \log_{E_2}(P_2 - \bar{P}_2) \in \mathbb{Q}_{p^2} \otimes \mathbb{Q}_{p^2}.$$

• Projecting $\mathbb{Q}_{p^2} \otimes \mathbb{Q}_{p^2} \to \mathbb{Q}_p$, get $2 \cdot 3^2 + 3^6 + 2 \cdot 3^7 + 3^9 + O(3^{10})$.

https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1



$$\begin{split} F &= \mathbb{Q}(\sqrt{13}), \, w = \frac{1+\sqrt{13}}{2}, \\ E/F &: y^2 + xy + y = x^3 + wx^2 + (w+1)\,x + 2, \\ K &= F(\sqrt{\beta}), \, \text{with} \, \beta = 62 - 21w. \end{split}$$

- $E(K) \otimes \mathbb{Q} = \langle P, Q \rangle$, with P = (3 w, 4 w) and $Q = (8 \frac{25}{9}w, (\frac{-23}{27}w + \frac{17}{6})\sqrt{\beta} + \frac{25}{18}w \frac{9}{2})$.
- We may compute

$$\log_{E_1}(P_1 - \bar{P}_1) \otimes \log_{E_2}(Q_2 - \bar{Q}_2) - \log_{E_1}(Q_1 - \bar{Q}_1) \otimes \log_{E_2}(P_2 - \bar{P}_2) \in \mathbb{Q}_{p^2} \otimes \mathbb{Q}_{p^2}.$$

- Projecting $\mathbb{Q}_{p^2} \otimes \mathbb{Q}_{p^2} \to \mathbb{Q}_p$, get $2 \cdot 3^2 + 3^6 + 2 \cdot 3^7 + 3^9 + O(3^{10})$.
- This matches our computation of $J = 2 \cdot 3^2 + 3^6 + O(3^7)$.

https://www.lmfdb.org/EllipticCurve/2.2.37.1/63.2/d/1

• Assume, for concreteness, that r=2.

- Assume, for concreteness, that r=2.
- We start with $\varphi_E \in H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2), \mathbb{Z})$.

- Assume, for concreteness, that r=2.
- We start with $\varphi_E \in H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2), \mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z})\cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$

- Assume, for concreteness, that r = 2.
- We start with $\varphi_E \in \mathrm{H}^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z}) \cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$
 - $\rightsquigarrow [\tilde{\varphi}_E] \in \mathrm{H}^1(\Gamma_S, \operatorname{coInd} \mathbb{Z}).$

- Assume, for concreteness, that r=2.
- We start with $\varphi_E \in H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2), \mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z}) \cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$
 - $\rightsquigarrow [\tilde{\varphi}_E] \in \mathrm{H}^1(\Gamma_S, \operatorname{coInd} \mathbb{Z}).$
 - The exact cocycle representative depends on a choice of coset representatives for $\Gamma_S/\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2)$.

- Assume, for concreteness, that r=2.
- We start with $\varphi_E \in \mathrm{H}^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z}) \cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$
 - $\bullet \leadsto [\tilde{\varphi}_E] \in \mathrm{H}^1(\Gamma_S, \operatorname{coInd} \mathbb{Z}).$
 - The exact cocycle representative depends on a choice of coset representatives for $\Gamma_S/\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2)$.
- Have a long-exact sequence

$$\mathrm{H}^1(\Gamma_S,\mathrm{HC}(\mathbb{Z})) \to \mathrm{H}^1(\Gamma_S,\mathrm{coInd}\,\mathbb{Z}) \overset{\nu}{\to} \bigoplus_{\mathfrak{p} \in S} \mathrm{H}^1(\Gamma_S,\mathrm{Maps}(\mathcal{V}(\mathcal{T}_\mathfrak{p}) \times \mathcal{E}(\mathcal{T}_{S^\mathfrak{p}}),\mathbb{Z}))$$

- Assume, for concreteness, that r = 2.
- We start with $\varphi_E \in \mathrm{H}^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z}) \cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$
 - $\bullet \leadsto [\tilde{\varphi}_E] \in \mathrm{H}^1(\Gamma_S, \operatorname{coInd} \mathbb{Z}).$
 - The exact cocycle representative depends on a choice of coset representatives for $\Gamma_S/\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2)$.
- Have a long-exact sequence

$$\mathrm{H}^1(\Gamma_S,\mathrm{HC}(\mathbb{Z})) \to \mathrm{H}^1(\Gamma_S,\mathrm{coInd}\,\mathbb{Z}) \stackrel{\nu}{\to} \bigoplus_{\mathfrak{p} \in S} \mathrm{H}^1(\Gamma_S,\mathrm{Maps}(\mathcal{V}(\mathcal{T}_{\mathfrak{p}}) \times \mathcal{E}(\mathcal{T}_{S^{\mathfrak{p}}}),\mathbb{Z}))$$

• φ_E is p-new $\leadsto [\Phi_E] \in \mathrm{H}^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$ lifting $[\tilde{\varphi}_E]$.

- Assume, for concreteness, that r = 2.
- We start with $\varphi_E \in H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2), \mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z}) \cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$
 - $\rightsquigarrow [\tilde{\varphi}_E] \in \mathrm{H}^1(\Gamma_S, \operatorname{coInd} \mathbb{Z}).$
 - The exact cocycle representative depends on a choice of coset representatives for $\Gamma_S/\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2)$.
- Have a long-exact sequence

$$\mathrm{H}^1(\Gamma_S,\mathrm{HC}(\mathbb{Z})) \to \mathrm{H}^1(\Gamma_S,\mathrm{coInd}\,\mathbb{Z}) \overset{\nu}{\to} \bigoplus_{\mathfrak{p} \in S} \mathrm{H}^1(\Gamma_S,\mathrm{Maps}(\mathcal{V}(\mathcal{T}_\mathfrak{p}) \times \mathcal{E}(\mathcal{T}_{S^\mathfrak{p}}),\mathbb{Z}))$$

- φ_E is p-new $\leadsto [\Phi_E] \in \mathrm{H}^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$ lifting $[\tilde{\varphi}_E]$.
- When r=1, one can choose appropriate coset representatives (called *radial*), which ensure that $\Phi_E = \tilde{\varphi}_E$.

- Assume, for concreteness, that r = 2.
- We start with $\varphi_E \in H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2), \mathbb{Z})$.
- Shapiro isomorphism yields an isomorphism $H^1(\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2),\mathbb{Z}) \cong H^1(\Gamma_S,\operatorname{coInd}\mathbb{Z}).$
 - $\rightsquigarrow [\tilde{\varphi}_E] \in \mathrm{H}^1(\Gamma_S, \operatorname{coInd} \mathbb{Z}).$
 - The exact cocycle representative depends on a choice of coset representatives for $\Gamma_S/\Gamma_0(\mathfrak{p}_1\mathfrak{p}_2)$.
- Have a long-exact sequence

$$\mathrm{H}^1(\Gamma_S,\mathrm{HC}(\mathbb{Z})) \to \mathrm{H}^1(\Gamma_S,\mathrm{coInd}\,\mathbb{Z}) \overset{\nu}{\to} \bigoplus_{\mathfrak{p} \in S} \mathrm{H}^1(\Gamma_S,\mathrm{Maps}(\mathcal{V}(\mathcal{T}_{\mathfrak{p}}) \times \mathcal{E}(\mathcal{T}_{S^{\mathfrak{p}}}),\mathbb{Z}))$$

- φ_E is p-new $\sim [\Phi_E] \in \mathrm{H}^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$ lifting $[\tilde{\varphi}_E]$.
- When r=1, one can choose appropriate coset representatives (called *radial*), which ensure that $\Phi_E = \tilde{\varphi}_E$.
- We don't know whether there are coset representatives that allow for that in our setting.

• We know that $\exists \phi : \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z}$ such that $\tilde{\varphi}_E - \partial \phi \in Z^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$.

- We know that $\exists \phi : \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z}$ such that $\tilde{\varphi}_E \partial \phi \in Z^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$.
- First, compute $\nu(\tilde{\varphi}_E) = \partial(f_1, f_2)$,

$$f_1 \colon \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}, \quad f_2 \colon \mathcal{E}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{V}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}.$$

- We know that $\exists \phi : \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z}$ such that $\tilde{\varphi}_E \partial \phi \in Z^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$.
- First, compute $\nu(\tilde{\varphi}_E) = \partial(f_1, f_2)$,

$$f_1: \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}, \quad f_2: \mathcal{E}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{V}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}.$$

• For each $(v,e) \in \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2})$, pick $\gamma \in \Gamma_S$ such that $\gamma(v,e) = (v_0,e_*)$, with $v_0 \in \{v_*,\hat{v}_*\}$.

$$f_1(v,e) - f_1(v_0,e_*) = \nu_1(\tilde{\varphi}_E(\gamma))(v_0,e_*).$$

- We know that $\exists \phi : \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z}$ such that $\tilde{\varphi}_E \partial \phi \in Z^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$.
- First, compute $\nu(\tilde{\varphi}_E) = \partial(f_1, f_2)$,

$$f_1 \colon \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}, \quad f_2 \colon \mathcal{E}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{V}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}.$$

• For each $(v,e) \in \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2})$, pick $\gamma \in \Gamma_S$ such that $\gamma(v,e) = (v_0,e_*)$, with $v_0 \in \{v_*,\hat{v}_*\}$.

$$f_1(v,e) - f_1(v_0,e_*) = \nu_1(\tilde{\varphi}_E(\gamma))(v_0,e_*).$$

• Analogously, $f_2(e, v) - f_2(e_*, v_0) = \nu_2(\tilde{\varphi}_E(\gamma))(e_*, v_0)$.

- We know that $\exists \phi : \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z}$ such that $\tilde{\varphi}_E \partial \phi \in Z^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$.
- First, compute $\nu(\tilde{\varphi}_E) = \partial(f_1, f_2)$,

$$f_1 \colon \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}, \quad f_2 \colon \mathcal{E}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{V}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}.$$

• For each $(v,e) \in \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2})$, pick $\gamma \in \Gamma_S$ such that $\gamma(v,e) = (v_0,e_*)$, with $v_0 \in \{v_*,\hat{v}_*\}$.

$$f_1(v,e) - f_1(v_0,e_*) = \nu_1(\tilde{\varphi}_E(\gamma))(v_0,e_*).$$

- Analogously, $f_2(e, v) f_2(e_*, v_0) = \nu_2(\tilde{\varphi}_E(\gamma))(e_*, v_0)$.
- Hence the four values $f_1(v_*,e_*)$, $f_1(\hat{v}_*,e_*)$, $f_2(v_*,e_*)$, $f_2(\hat{v}_*,e_*)$ determine all the remaining ones.

- We know that $\exists \phi : \mathcal{E}(\mathcal{T}_S) \to \mathbb{Z}$ such that $\tilde{\varphi}_E \partial \phi \in Z^1(\Gamma_S, \mathrm{HC}(\mathbb{Z}))$.
- First, compute $\nu(\tilde{\varphi}_E) = \partial(f_1, f_2)$,

$$f_1: \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}, \quad f_2: \mathcal{E}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{V}(\mathcal{T}_{\mathfrak{p}_2}) \to \mathbb{Z}.$$

• For each $(v,e) \in \mathcal{V}(\mathcal{T}_{\mathfrak{p}_1}) \times \mathcal{E}(\mathcal{T}_{\mathfrak{p}_2})$, pick $\gamma \in \Gamma_S$ such that $\gamma(v,e) = (v_0,e_*)$, with $v_0 \in \{v_*,\hat{v}_*\}$.

$$f_1(v,e) - f_1(v_0,e_*) = \nu_1(\tilde{\varphi}_E(\gamma))(v_0,e_*).$$

- Analogously, $f_2(e, v) f_2(e_*, v_0) = \nu_2(\tilde{\varphi}_E(\gamma))(e_*, v_0)$.
- Hence the four values $f_1(v_*,e_*)$, $f_1(\hat{v}_*,e_*)$, $f_2(v_*,e_*)$, $f_2(\hat{v}_*,e_*)$ determine all the remaining ones.
- Knowing the functions f_1 and f_2 to some fixed radius allows to find ϕ such that $\nu(\phi) = (f_1, f_2)$, by solving a linear system of equations.

• To compute ϕ we need to solve a system of:

- To compute ϕ we need to solve a system of:
 - + $2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1})$ equations, in

- To compute ϕ we need to solve a system of:
 - $\begin{array}{ll} & 2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1}) \text{ equations, in} \\ & \frac{(p+1)^2(p^d-1)^2}{(p-1)^2}=O(p^{2d}) \text{ unknowns.} \end{array}$

- To compute φ we need to solve a system of:
 - $\begin{array}{ll} & 2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1}) \text{ equations, in} \\ & \frac{(p+1)^2(p^d-1)^2}{(p-1)^2}=O(p^{2d}) \text{ unknowns.} \end{array}$
- p = 3, d = 7: get 12, 740, 008 equations in 19, 114, 384 unknowns.

- To compute φ we need to solve a system of:
 - $\begin{array}{ll} & 2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1}) \text{ equations, in} \\ & \frac{(p+1)^2(p^d-1)^2}{(p-1)^2}=O(p^{2d}) \text{ unknowns.} \end{array}$
- p = 3, d = 7: get 12, 740, 008 equations in 19, 114, 384 unknowns.
- Luckily, it's sparse: only p+1 unknowns involved in each equation.

- To compute ϕ we need to solve a system of:
 - $2\frac{(p+1)(p^d-1)}{p-1} \frac{p^d+p^{d-1}-2}{p-2} = O(p^{2d-1})$ equations, in
 - $\frac{(p+1)^2(p^d-1)^2}{(p-1)^2} = O(p^{2d})$ unknowns.
- p = 3, d = 7: get 12,740,008 equations in 19,114,384 unknowns.
- Luckily, it's sparse: only p+1 unknowns involved in each equation.
- We implemented a custom row reduction, avoiding division and choosing pivots that maintain sparsity.

- To compute φ we need to solve a system of:
 - $\begin{array}{ll} & 2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1}) \text{ equations, in} \\ & \frac{(p+1)^2(p^d-1)^2}{(p-1)^2}=O(p^{2d}) \text{ unknowns.} \end{array}$
- p = 3, d = 7: get 12, 740, 008 equations in 19, 114, 384 unknowns.
- Luckily, it's sparse: only p+1 unknowns involved in each equation.
- We implemented a custom row reduction, avoiding division and choosing pivots that maintain sparsity.
- Takes ~ 60 hours using 16 CPUs to compute f_1 and f_2 .

- To compute ϕ we need to solve a system of:
 - $2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1})$ equations, in
 - $\frac{(p+1)^2(p^d-1)^2}{(p-1)^2} = O(p^{2d})$ unknowns.
- p = 3, d = 7: get 12, 740, 008 equations in 19, 114, 384 unknowns.
- Luckily, it's sparse: only p+1 unknowns involved in each equation.
- We implemented a custom row reduction, avoiding division and choosing pivots that maintain sparsity.
- Takes ~ 60 hours using 16 CPUs to compute f_1 and f_2 .
- \bullet Solve the system in ~ 2 hours (non-parallel), using $\sim 300 \mbox{GB RAM}.$

- To compute ϕ we need to solve a system of:
 - $2\frac{(p+1)(p^d-1)}{p-1}\frac{p^d+p^{d-1}-2}{p-2}=O(p^{2d-1})$ equations, in
 - $\frac{(p+1)^{\frac{r}{2}}(p^{\bar{d}}-1)^2}{(p-1)^2} = O(p^{2d})$ unknowns.
- p = 3, d = 7: get 12, 740, 008 equations in 19, 114, 384 unknowns.
- ullet Luckily, it's sparse: only p+1 unknowns involved in each equation.
- We implemented a custom row reduction, avoiding division and choosing pivots that maintain sparsity.
- Takes ~ 60 hours using 16 CPUs to compute f_1 and f_2 .
- Solve the system in ~ 2 hours (non-parallel), using $\sim 300 {\rm GB}$ RAM.
- Integration takes ~ 10 hours using 64 CPUs.

• So far we can compute invariants attached to differences $au_{\mathfrak{p}} - \bar{ au}_{\mathfrak{p}}.$

- So far we can compute invariants attached to differences $\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}$.
 - Fornea–Gehrmann: refined invariants attached to $\tau_{\mathfrak{p}}$, more akin to Darmon points. Effective computation?

- So far we can compute invariants attached to differences $\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}$.
 - Fornea–Gehrmann: refined invariants attached to $\tau_{\mathfrak{p}}$, more akin to Darmon points. Effective computation?
- The Riemann sums algorithm runs in exponential time in the precision.

- So far we can compute invariants attached to differences $\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}$.
 - Fornea–Gehrmann: refined invariants attached to τ_p , more akin to Darmon points. Effective computation?
- The Riemann sums algorithm runs in exponential time in the precision.
 - Need an overconvergent method to compute the invariants in polynomial time.

- So far we can compute invariants attached to differences $\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}$.
 - Fornea–Gehrmann: refined invariants attached to $\tau_{\mathfrak{p}}$, more akin to Darmon points. Effective computation?
- The Riemann sums algorithm runs in exponential time in the precision.
 - Need an overconvergent method to compute the invariants in polynomial time.
- More experiments are needed in other settings (imaginary quadratic, mixed signature).

- So far we can compute invariants attached to differences $\tau_{\mathfrak{p}} \bar{\tau}_{\mathfrak{p}}$.
 - Fornea–Gehrmann: refined invariants attached to $\tau_{\mathfrak{p}}$, more akin to Darmon points. Effective computation?
- The Riemann sums algorithm runs in exponential time in the precision.
 - Need an overconvergent method to compute the invariants in polynomial time.
- More experiments are needed in other settings (imaginary quadratic, mixed signature).
- To compute plectic Heegner points, need fundamental domains for Bruhat—Tits trees acted on by groups attached to totally definite quaternion algebras (work in progress).

Merci!

http://www.mat.uab.cat/~masdeu/