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1. El cos dels nombres complexos

1.1. EIl cos dels nombres complexos

1.1.1. Doneu en forma a + bi:

a) (—1+1i)?, c) S, 0 < 2(+i )>2
6i—(1—2i))

(8 +2i) — (1 —1i)

b) B, Ve £) (8= =3)i.

1.1.2. Demostreu o doneu un contraexemple:

a) Re(z+w) =Rez+Rew, b) Re(zw) = (Rez)(Rew), ¢) Re(3) = ggi}. <
1.1.3. Sigui z € C tal que Im (z) > 0. Proveu que Im (1/z) < 0. <

1.1.4. Siz=xz+1iy on x,y € R, trobeu les parts real i tmaginaria de:

a) 22, c) Zig, e) 2Zz+—15’

b) z(z+ 1), d) z%, f) 22 <
1.1.5. Sigui (z + iy)/(x — iy) = a + ib. Proveu que a®> +b* = 1. <
1.1.6. Proveu que —1 + i satisfa z°> + 2z + 2 = 0. <
1.1.7. Escriviu Uequacio complexa z° + 522 = z + 3i com dues equacions reals. <

1.1.8. a) Si z1, 22 sén complexos amb z1 + z2 i z122 Teals negatius proveu que z1,za SON
reals.

b) Proveu que el vector z1 és parallel al vector zp si i només si Im (2122) = 0. 4
1.1.9. Proveu analiticament i grafica que |z — 1| = |z — 1]. q

1.1.10. Demostreu que
laf = [b] = 17

1a __b’ =1sila] =1 0 bé |b] = 1. Quina excepcid cal fer si
—a

Demostreu també que

—b
’<1si|a|<1i|b|<1.
Per acabar, si per a € D definim ¢q(2) = {===, demostreu que @, : D — D, i és bijectiva

en D i en D, i doneu-ne la inversa. <




1. El cos dels nombres complexos

1.2. Els nombres complexos com a espai vectorial

1.2.1. Descriviu els conjunts de punts del pla que satisfan:

a) 1 <Im(iz) < 2, c) |z| =Rez+1, e) |z—2|>|z—3|,

b) Im2*2 =0,a e C*, d) |z —1| = |z +1, f)lz=1+z+1=7. <«

1.2.2. Suposem que a, — a i b, — b. Demostreu que a, + b, — a+b i a,b, — ab, sabent
que ambdues propietats son certes a la recta real. 4

1.2.3. Digueu si les segiients successions son convergents i en cas afirmatiu calculeu el
seu limit:

1 b) n+1 3in2
n+1’

a) i" +

n—i’ ¢) n? —2i

1.2.4. Estudieu la convergencia i la convergencia absoluta de les series:
o0 n o0 n
1 i
a) D b S ;
n=2 nn n=1 n

1.2.5. Demostreu el teorema de Mertens. q

1.2.6. Tota successid convergent {z,}n=0 < C satisfa que |zp4+1 — zn| — 0. <

1.3. Repas de trigonometria

1.3.1. Demostreu tots els resultats de la seccio. <
1.3.2. Definim el sinus i el cosinus hiperbolics de x € R com

el —e ¥ et 4+ et
— cosh(z) = ———

Demostra que se satisfan les segiients identitats:

a) sinh(0) =0 i cosh(0) = 1.

sinh(z) =

b) lim sinhx = lim coshz = +o0 i lim sinhz = —oo.
r—+00 xr—+00 xr——00

¢) sinh(—z) = — sinh(x) i cosh(—z) = cosh(z).

d) cosh?(z) — sinh?(z) = 1.

e) cosh(z + y) = coshz cosh y + sinh zsinh y

f) sinh(z + y) = sinh z coshy + cosh x sinh y.

g) (sinhz) = coshz i (cosh(z))" = sinh(z). <



1. El cos dels nombres complexos

1.4. L’exponencial complexa

1.4.1. Fent servir la formula de de Moivre, trobeu expressions de sin 30 i sin46 en termes
de sinf i cosf. <

1.4.2. Trobar les arrels de z* +1 = 0 i fer-les servir per veure que z* + 1 = (22 — /22 +
1)(22 + /22 + 1). q

1.5. Representacié polar d’'un nombre complex
1.5.1. Trobeu la forma polar dels nombres segiients i dibuizeu-los.

a) 3(1++/31), b) 2¢/3 — 2i, c) =2+ 2, d) —1—i. 4

1.5.2. Expresseu en forma cartesiana (a + ib) els segiients nombres:

a) (2 +3i)(4+1), ¢) 17, e) (1—2i)3, g) (1+74)190 4 (1 — i)100,

b) (44 2i)? d) 5+ L 42 h) AN <
) ( + 2) ’ ) 2447 f) 2+i+ 343 7 1—2

1.5.3. Fent servir el producte de (1 + i)(5 — i)* deduir la férmula de Machin!: /4 =
4 arctan(1/5) — arctan(1/239). q

1.5.4. Estudiar la convergéncia de {z(}} si|zo| <1 o si|zo| > 1. <

1.5.5. Digueu si les segiients successions son convergents i en cas afirmatiu calculeu el

seu limait:
_ ¢) zn = Arg(—1+i/n), C(1—i\"
a) ZTL n7 6) Zn — 4 ,
n(2 +1) _ 2nmi
b) z, =i(—1)", d) Zn:ni—kl’ f) zn—exp( 5 >

Aqui hem escrit exp(z) = €.

1.6. Equacions amb exponencials

1.6.1.

Resoleu les segtients equacions:

! John Machin (1706), podeu trobar més informacié a https://en.wikipedia.org/wiki/Machin-1like_
formula.


https://en.wikipedia.org/wiki/Machin-like_formula
https://en.wikipedia.org/wiki/Machin-like_formula

1. El cos dels nombres complexos

a) e =1+1, b) e =1, c) e# =—1. <

1.7. Arrels n-ésimes

1.7.1. Calculeu:

o) V=1, b) 314, ¢) V=i, d) (-14VE)E, ) (3+4i)E.
1.7.2. Donat a € C, quin és el mazim de |2" + a| per a |z| < 17 a

1.8. Polinomis: enunciat del teorema fonamental de I’algebra

1.8.1. Resoleu (z +1)5 = 25. q

1.8.2. Sigui P(z) = 1+ 2z + 322+ .-+ + nz""L. Considerant el polinomi (1 — z)P(z),
demostreu que tots els zeros de P(z) estan dins del disc unitat. <



2. Funcions de variable complexa

2.1. Funcions

2.1.1. Escriure les segiients funcions de la forma u(z,y) + iv(x,y).

a) f(z) =1/z, b) g(2) = 222_""1?7 c) h(z) =e* +e % <

2.1.2. Trobeu el rang de
a) f(z) = 22 si z esta en el primer quadrant,
b) g(z) =1/z per 0 < |z| <1,

c) h(z) = =223 per z tal que 0 < |z| <1 i Argz < 7/2. q

2.1.3. Digueu on son continues les segiients funcions

) 1 ) 3z—1
a) —— c) ——m
z—2+ 3¢ 224+ 244
. 3
12° + 22
b) 211 d) 22(22* =324+ 1)72 a

2.1.4. Proveu que la inversid w = f(z) = 1/z transforma

a) el cercle |z| = en el cercle |w| = 1/r,

b) el raig Argz = 0y, —m < 0y < 7, en el raig Argw = —0,

c) el cercle |z — 1| =1 a la linia vertical x = 1/2. <
2.1.5. Trobeu una funcié afi que transformi el cercle |z| < 1 en el cercle lw — wg| < R

de manera que els centres es corresponguin i el diametre horitzontal es transformi en el
diametre que forma un angle o amb ’eix real. <

z

2.1.6. Per l’exzponencial f(z) = €*:

a) Descriviu-ne el domini i el rang.

b) Proveu que f(—z) =1/f(z).



2. Funcions de variable complexa

c¢) Descriviu la imatge de Rez = 1.
d) Descriviu la imatge de Im z = 7 /4.

e) Descriviu la imatge de la banda 0 < Im z < 7/4. <

2.1.7. La funcié de Jukovski' és w = J(z) = % (z + %), vegeu la figura 3.7. Proveu que

a) J(z) = J(1/z2),

b) J porta el cercle unitat |z| = 1 a Uinterval real [—1,1],

c) J porta el cercle |z| =r (r> 0,4 1) a lellipse

els focus a +1. <

2.1.8. Fent servir la comanda contour_plot de Sage dibuixzeu les corbes de nivell de u 1
vsif=u+1iv és

a) z, d) sin(z), g) €%,
b) 22, e) 1/z, h) zil + i,
c) log(z), f) 1/22, i) log(z — 1) + log(z + 1). «

2.2. Funcions multivaluades

2.2.1. Donada l’equacié de Cardano z3+pz+q = 0, comprova que si C = (—g + 4/ % + g;)

aleshores z1 = C — % €s solucid de la cubica. Les tres arrels s’obtenen canviant ’eleccio
de larrel cubica.

Tot sequit obre GeoGebra® i dibuiza els punts p = 1+i i q = 2+0i; defineiz w = —%—F@i,
C' mitjangant la férmula anterior, i z1 = C — F=, 20 = wC — 385 i 23 = w?C — ETTek
Escull tres colors diferents per zj, i activa la seva traca. Deizant q fizat i movent p,
per exemple, comprova que els tres punts son funcié de p, i es poden determinar com a
branques continues localment de manera continua, tot i que C presenta discontinuitats de
salt que fan que els tres z; vagin permutant la seva posicié. Per exemple, pots fizar p
en la circumferéncia de radi 4 amb la instruccié p=Punt (Circumferéncia((0, 0), 4))i
observar qué ocorre, i comparar amb el radi 2 o 3. Pots usar també la instruccio 1loc
geométric. Quantes voltes cal que faci p a aquesta circumferéncia per tal que una arrel
doni la volta a lorigen de manera continua? <

!Nikolai Jukovski, Orekhovo, 1847-1921, https://ca.wikipedia.org/wiki/Nikolai_Jukovski
20 entra a https://www.geogebra.org/m/jbszj89u

ol


https://ca.wikipedia.org/wiki/Nikolai_Jukovski
https://www.geogebra.org/m/jbszj89u

2. Funcions de variable complexa

2.3. Logaritmes i arguments

2.3.1. Doneu exemples que mostrin la falsedat de la igualtat Log (a - b) = Loga + Logb.
(Per exemple, a = b= —1—1). a

2.3.2. Sigui L una determinacid del logaritme en C\(—o0,0] tal que L£(1) = 2mi. Proveu
que la funcio f(z) = L(z + 3) és continua en

D :={zeC; Re(z) > —3}.
Quant val f(3i)? <
2.3.3. Una branca de l'argument A(z) (o del logaritme L(z)) queda fixada si donem i) el

domini Q on esta definida i) el valor de A(z) (o de L(z)) d’un punt d’Q2. Conside reu
els dominis:

Q1 =C\{re'™, r > 0}; Qy = C\ {rei”/‘l, r>= 0}
Q3 =C\({zre[-1,0]} u{-1+1y, ye[0,1.5]} u{x+ 1.5{, ze[-1,0)}).

Completeu la segiient taula.

O Qo Qs
A1) =0 | A(i) = A(i) = A(i) =
L(i) = L(i) = L(i) =
L(2i) =
AM = —2r | A= [ AW = | A@ = q
L(i) = L(i) = L(i) =
L(2i) =
AG) = =5 | A1) A1) A1)
£(1) £(1) £(1) =
£(2i)

2.3.4. FEstudieu si existeir alguna determinacio del logaritme en els conjunts seguents 1
determineu els possibles conjunts imatge:

a) {ze C|Re z >0}, b) {zeC|Re z>1Im 2z}, ¢){zeC|l<]z|<2}. <«

2.3.5. Cualculeu els possibles valors de

a) log(1), b) log(—1), c) log(1+ 1), d) log(1—1iv/3), e) log(i). a

2.3.6. Escrivim cosz = (€”* + e %*)/2 i sinz = (¢** — e7%*)/2i. Resoleu les equacions



2. Funcions de variable complexa

a) e = 2i, c) e?* + e* + 1=0), e) cosz =sinz.

b) Log(z® — 1) = in/2, d) cosz = 2i,

2.4. Potencies complexes

2.4.1. Trobeu error en el segiient raonament de Bernoulli: (—z)? = 22, llavors 2log(—z) =

2log z. Per tant, log(—z) = log(z). <

2.4.2. Calculeu els possibles valors de

a) i, b) (V3+i)t )27 d) (i), e) (i")2. <

2.4.3. Determinar explicitament la inversa de q(z) = 2e* + €2* en funcid de logaritmes.
Resoldre q(z) = 3, trobant totes les solucions.

2.4.4. Siguin ho(z),h1(2) @ ho(2) les determinacions de ’arrel cubica en 2 = C\(—o0,0]
tal que ho(1) = 1, hy(1) = €>™/3 § hy(1) = e*™/3,

i) Descriviu hj(Q) per j =0,1,2.

ii) Per j = 0,1,2 relacioneu h; amb Log i Arg (on Log i Arg denoten les branques
principals del logaritme i de l’argument respectivament).

iii) Usant les relacions anterior, trobeu el valor de hj(i), per j = 0,1,2. <

2.5. Determinacions de logaritmes i arrels de funcions

2.5.1. Sigui X un espai topologic connex. Demostreu que si 81 1 Sa son dues determina-
cions de l'arrel n-ésima de f : X — C\{0} llavors existeiz una arrel n-ésima de la unitat
¢ tal que Sa(x) = ¢ - Si(x), per a tot x € X. q

2.5.2. Determineu els dominis de continuitat (és a dir 'obert mazimal on una funcid és
continua) de les funcions €=, €'/%, 1/e*, 1/(e* — 1), de la branca principal de /T — z i de
la branca principal de /1 + 7. <

2.5.3. Donar una determinacié de f(z) que sigui continua a la regid D donada.

a) fi(z) = (" =1, D={zeC: 7| < 1},

b) fo(z) = (22 +4)"%, D= C\{iye C: [y| < 2},

¢) fa(z) = (' =1)?, D={zeC: |z > 1},

d) fi(z) = (-3, D={2eC:|z| > 1}. a



2. Funcions de variable complexa

2.6. Series de poténcies de nombres complexos

2.6.1. Considereu la série de poténcies S(z) == > an(z —i)". Digueu si sén certes les
segiients afirmacions.

a) S(z) pot ser divergent en z = 0 i convergent en z = —i simultaniament
b) S(z) pot ser convergent en z =1+1 i en z = 2 + i simultaniament

c) Si S(z) és convergent en z = 1+ i, aleshores també ho és en z = 2i

d) Si S(z) és divergent en z = 2i, aleshores també ho és en z = 2 + 1. q
o0
2.6.2. Sigui f(z) = >, anz™ una série convergent en el disc D = Dg(0). Demostreu que
n=0
27 do 0
/ Fre)P S Z an22" si 0<r <R .
0 n—0
2.6.3. Sigui S1(z) = Z anz" i So(z) = Z anz" . Demostreu que S1 és convergent en

z $i i només si ho és Sz En cas aﬁrmatzu temm que S1(z) = 252(z).

2.7. Calcul del radi de convergencia

2.7.1. Calculeu el radi de convergéncia de les segiients séries de poténcies

S e, o o (22)"
); ; aeR, 7Y R

= n" —n(n+1)
o0
(z +1) 2"
C) Z nn ’ ) n + 2n’
n=1 =0

2.8. Comportament a la frontera del disc de convergencia

2.8.1. Estudieu la convergencia de les segiients séries de poténcies:



2. Funcions de variable complexa

0 pe 0 Z3n+1 0 n(z—i)"_l

%) ZIF ¢) 203n+1 ¢) 21 o °
© L2 0 (_1)(n+1)

Yy 20y e
= (n+1)(n+2) = n

2.8.2. Demostreu el criteri d’Abel i el teorema d’Abel. Indicaci6é: Vegeu [BC13, Teorema
2.20] per un cas més general en regions no tangencials (angles de Stolz). <

10



3. Derivacié complexa i holomorfia

3.1. Funcions holomorfes

3.1.1. a) Demostreu la regla del producte per la derivacid.
b) Proveu que si f és C-derivable en zy llavors és continua en aquest punt.

c¢) Proveu que si f és C-derivable en zg, llavors

f(2) = f(20) + f'(20)(2 — 20) + M(2) (2 — 20)

on A(z) — 0 si z — 2. 4
3.1.2. Siguin f(2) i g(z) funcions enteres. Decidiu si les segiients funcions sén enteres:
a) f(2)%, c) f(2)/9(2), e) f(1/2),
b) f(2)g(2), d) 5f(2) +ig(2), f) f(g(2)).

3.1.3. Proveu que g(z) = 32 + 22 — 3y> — 1 +i(6xy + 2y) és entera. Escriviu g com a
funcio de z." <

3.1.4. Existeix alguna funcid f holomorfa en el disc unitat D tal que per a totn = 2,3, ...

a) f(*£3)= 2nl+l? c) |f ()] = m?
b) ft5) =7 Q) |f G| =77 «
3.1.5. Doneu una branca de log(z? + 2z + 3) que sigui holomorfa a z = —1. Calculeu la

seva derivada en aquest punt. En quin domini és holomorfa la branca que heu definit? <

3.1.6. Sigui f una funcié holomorfa en un obert Q < C que satisfa |f(z) —i| < 1 per a
tot z € Q). Demostreu que la funcio g definida per
1 —i+ f(2)
9C) = =)
té logaritme holomorf en €. <
3.1.7. Sigui f(2) = 22+ 1421 = (—=1++/30)/2, 20 = (—1—~/3i)/2. Provar que no existeix

cap punt w en el segment que uneiz z1 © zo de manera que f(z2) — f(21) = f/(w)(2z2 — 21).
Que es pot dir del teorema del valor mitja per funcions complexes? <

1Si f(2) = u(z,y) + iv(x,y) és holomorfa en un domini Q que talla la recta real i u, v sén holomorfes en
dues variables, llavors es pot provar que f(z) = u(z,0) + iv(z,0), vegeu l'exercici 4.10.10.

11



3. Derivacié complexa i holomorfia

Figura 3.1.: Graella en el pla complex entre —2 — 27 i 2 + 2i.

3.2. Les equacions de Cauchy-Riemann

3.2.1. Representem la identitat al pla complex amb la coloracio habitual © amb la graella
entera. Per exemple, la identitat sobre el quadrat Q = {x + iy : z,y € (=2,2)} és la
primera imatge de la figura 3.2. Una de les segiients funcions, les diferencials de les quals
no s’anullen en Q, representa una funcié holomorfa en Q. Quina és?

7 <

a) d)

3.2.2. Trobar els valors de les constants a, b, ¢ de manera que f sigui holomorfa i expresseu-
la en termes de z.

a) f(z) =x+ay +i(bx + cy)

b) f(z) = cosz(coshy + asinhy) + isinx(coshy + bsinhy). q
3.2.3. Sigui f = u+ v holomorfa i dues vegades diferenciable en un obert Q0 = C. Proveu
que les funcions w i v son harmoniques (una funcié f(x,y) €és harmonica si les seves
segones derivades parcials son continues i el seu laplacia Af = fi, + fyy = 0.) <
3.2.4. Considerem u = e *(xsiny — ycosy)

a) Provar que u és harmonica.

b) Trobar una v de manera que f = u+ iv sigui holomorfa (s’anomena harmonica conju-
gada de u).

12



3. Derivacié complexa i holomorfia

c¢) Trobar una expressid compacta de f(z). q

3.2.5. Trobar els polinomis harmonics de la forma ax® + bx’y + cxy® + dy>. Trobar la
funcio harmonica conjugada 4 la funcid holomorfa corresponent. <

3.2.6. Sigui Q2 < C un domini (és a dir, un obert connex) i f una funcid holomorfa en €.
1. Proveu que si f només pren valors imaginaris purs, aleshores f és constant.

2. Proveu que si |f| és constant, aleshores f també és constant. Equivalentment si f
només pren valors en una circumferéncia, llavors f €és constant. <

3.2.7. Doneu una descripcid de les funcions enteres de la forma f(x + iy) = u(z) +
v(z,y). <

3.2.8. (a) Determineu els nombres A € R pels quals
va(x,y) = 2sinzsinhy + 2° — Azy? +y
és la part imaginaria d’una funcio entera fy 1 calculeu fy.

(b) Sigui A € R un nombre determinat en a). Es

5?))\ ,51))\
= — — 73—
9N op oy
una funcid entera? Quina relacié hi ha entre gy i )¢ <

3.2.9. Decidiu on mo son holomorfes les funcions segiients

1 2%+ 22 3z—1 22
J—— )2 ) 2 9 -
2 —2+3i 2211 224 2+4 (222 =32 +1)?
3.2.10. Provar que |z|> és C-derivable en z = 0 pero enlloc més. q

3.2.11. Sigui

exp(—=1/2%) siz#0
flo) = {CPIED etz 20

0 stz =0.
Demostreu que

a) f(z) satisfa les equacions de Cauchy-Riemann a tot punt z € C.

b) f no és continua al 0 i per tant f no és holomorfa a un entorn del 0. <

3.2.12. Siu i v s’expressen respecte a les coordenades polars (r,0), proveu que les equa-

cions de Cauchy-Riemann es poden expressar de la forma
w_1ov v 1o
or  radd or 1l

Indicacié: estudieu el limit incremental sequint argz = 0y i |z| = ro. <

3.2.13. Quina part del pla es contreu i quina part es dilata si la transformacid es realitza
mitjancant la funcio:

13



3. Derivacié complexa i holomorfia

a) w=2?; ¢) w= 17. d) w=e€*;
z

b) w= 2%+ 2z; e) w=1log(z—1). <

3.3. Calcul de les derivades

3.3.1. Sigui Q2  C un obert i f una funcié holomorfa en . Definim Q* = {z € C : Z€ Q}
i f*: Q% - C donada per f*(z) = f(Z). Proveu que f* és holomorfa en *. q

3.3.2. Trobeu els punts on la funcié f té derivada compleza (i calculeu-la si escau) en els
seglients casos. (Podeu fer servir si cal que ' = f;.)

a) f(z) = |2* e) f(z) =z

b) f(x+iy) = e*(cosy + isiny) f) flz+iy) = coshacosy + isinha siny

c) f(z) =2+ g) cos |z|?

d) f(2) = ey h) f(z) =2+ 22 <

3.3.3. Donat un polinomi de dues variables reals P(x,y), demostreu que identificant z =
T + 1y son equivalents:

1. P es pot expressar com un polinomi en z.
2. P és una funcio entera.

3. 0P =0 en C. 4

3.4. Funcions analitiques

3.4.1. Discutir l'analiticitat de

a) 8z + 1, e) ¥ +y? +y—2+ix,

D (i) i wt)
c) %QZH (vegeu la figura 3.7), g) |2* + 2z,
d) % —y? + 2zyi, h) |222+Z a

3.4.2. Trobeu la suma de les series
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3. Derivacié complexa i holomorfia

0¢] S\ N e ¢] a0
1 (3
a) Z( ;Z> ; Z +Z c) an" silz| < 1. a

3.4.3. Sigui f(z) := D ,50cn2" per|z| < R on R és el radi de convergencia de la serie.
Demostreu que si f(zr) = 0 per una successid (zi)x tal que zx # 0 i 2z — 0 quan k — o0,
aleshores f(z) =0 (i.e. ¢, =0 per a tot n > 0). Indicacié: Calculeu f(0) i considereu la

série (2)/2). <

3.4.4. Demostreu que si dues séries Y, —oanz" i Y, ~obn2™ son convergents i tenen la
mateiza suma per a una successio (zx)g tal que zi # 0 iz — 0 quan k — oo aleshores
n = bp per a totn = 0. a4

3.4.5. Cualculeu la suma de les séries de potencies de 'exercici 2.8.1.

3.4.6. Considereu la serie
ZQn—l

5(z) = Z 2n

n=1

a) Estudieu-ne la convergéncia puntual i uniforme sobre compactes.
b) Calculeu quant val la suma per tot z del disc de convergéncia.

¢) Doneu el valor de

3.4.7. Considereu la série de potencies

Z n(n +1)z"

n=1

a) Estudieu la seva convergéncia.

b) Calculeu la seva suma.

¢) Quant val Zn>1(—1)””(gjl) ¢ q

3.4.8. Considereu la série de poténcies

(2 1
—2772—1—2 2+ )"

(a) Calculeu la seva suma i el seu domini de convergéncia, especificant amb precisié
totes les funcions involucrades. Indicacié: Per especificar un logaritme, cal donar
un domini de definicid i la imatge d’un punt.

(b) Calcula la solucid (si existeix) de l’equacid S(z) = e. <
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3. Derivacié complexa i holomorfia

3.5. Algunes funcions holomorfes importants
3.5.1. Demostreu que:

(i) sin z i cos z son funcions enteres amb

(sin 2)" = cos z; (cos z)' = —sin z.

(ii) cos(—z) = cos z, i també sin(—z) = —sinz per a tot z € C.
(iii) cos? z +sin? z = 1.
(iv) Per a tot z,w € C, cos(z + w) = coszcosw — sin zsinw, sin(z + w) = sinz cosw +

COS ZStnw. 4

3.5.2.

Resoleu les segtients equacions:

a) sinz =4 b) cosz =i. q

3.5.3. a) Proveu que coszZ = C€0s z i que sinz = sin z, per a tot z € C.
b) Trobeu tots els zeros de les funcions sinus i cosinus.

¢) Deduiu de (b) que, per a z1, z9 € C, es verifica:
i) COSz1 = COS 29 Si, 1 NOMES si, 29 + 21 € 27ZL.

i) sinz; = sin zo si, i només si, zo — 21 € 2w 0 bé zo + z1 € ™ + 27 Z.

d) Proveu que per a tot z = x + iy € C se satisfa:
i) sinz = sinx coshy + icoszsinhy (vegeu l’exercici 1.3.2).
i) cos z = cosx coshy — isinzsinhy.
ii) | sin z|> = sin® 2 4 sinh? y.
w) |cosz|? = cos®x + sinh? y.

e) Sobre quines rectes esta acotada la funcid sinus? I la funcid cosinus? <

3.5.4. (a) Proveu que per a cada w € C\{+i}, l'equacio tan z = w té infinites solucions,
que son la funcio multivaluada

1 17— W
arctanw = — log < . ) .

Vegeu també que per a w = +i [’equacio no té cap solucio.

16



3. Derivacié complexa i holomorfia

(b) Vegeu que dues determinacions continues de arctanw en un conjunt conner E
C\{%i} difercizen de kr, k € 7Z.

(c) Vegeu que no hi ha cap determinacié continua de arctanw als anells {r < |w —i| <
R}, {r<|w+i <R}, 0<r<R<2, pero que si que n’hi ha si 2 <r < R < 400.

3.5.5. Demostra que el domini de continuitat de la branca principal de l’arctangent

1 ) —
Arctanw := —Log (Z w) )
21

T+ w
és C\{iy : |y| = 1}. a
3.5.6. a) Sigui L la determinacio del logaritme en C\(—00,0] que compleix que L(1) =

4mi.  Definim f(z) = —L(2 — 2z). Demostreu que f és holomorfa en C\[1,+00).
Calculew f(0) i f(—1).

b) Considereu la série de poténcies

Demostreu que S(z) = —Log(2 — 2z), per tot z € D = D;;(1/2), on Log és la
determinacid principal del logaritme.

¢) Quina relacid hi ha entre S(z) i f(z) ¢ Indicacié: Relacioneu primer L(z) amb Log (2)

per z € C\(—0,0]. <

3.5.7. Sigui /- la determinacid de l’arrel quadrada en C\[0,00) complint que \/—1 =i i
sigui f(z) = /32 + 2.

1. Expresseu +/- en termes d’una determinacid del logaritme i argument.

Recordem que
1 1 .
\/g _ eilogz _ ei(ln\z|+zargz)‘

2. Quina és la regio més gran of f és holomorfa? Quina és la imatge? FExisteix z tal
que f(z) = —i?

3. Qué val f(52)? q

3.5.8. Trobeu el desenvolupament en serie de poténcies al voltant del punt a = 1 de la
funcié f(z) = {/z on @/ denota la determinacidé de l'arrel cibica definida a C\(—o0,0] tal

que Y1 = €2™/3 = —14;‘\/5, 4
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3. Derivacié complexa i holomorfia

3.5.9. Els polinomis de Legendre? P;(¢) son els coeficients de 2 en el desenvolupament
de Taylor

1 :"O Py
V1—2Cz + 22 jZOPJ(OZ'

Provar que P;(C) és un polinomi de grau j i calcular Py, P1, P i Ps.

2 Adrien-Marie Legendre, Paris, 1752 — 1833, https://ca.wikipedia.org/wiki/Adrien-Marie_Legendre
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4. Integrals de linia i teoria local de Cauchy

4.1. Corbes

4.1.1. Proveu que Uellipse 2% /a® + y?/b* = 1 és una corba diferenciable (és a dir, existeir
una parametritzacid z(t),t € I que el seu rang és lellipse, és diferenciable, 2'(t) & 0 i z(t)
és injectiva. Diem que z(t) és una parametritzacié admissible o regular). <

4.1.2. Parametritzeu el contorn format pel perimetre del quadrat amb vérters —1 —i,1 —
1,1+, —1 + i sequint aquest ordre. Quina és la seva longitud? <

4.2. Integracié sobre corbes

4.2.1. Sigui v = {z € C: |z| = 1} el cercle unitat amb l'orientacid habitual. Avalueu, per

a tots els m € 7:
[E[E [ [ «
5 2 5 2 5 1z ¥ 2

4.2.2. Sigui v = 0D, (0). Calculeu, per a n € Z, /z” dz. <
v

4.2.3. Siguiy = [i + 1,—1]. Avalueu les segiients integrals de linia:

a) f7 sin(22) dz b) f‘z|=1 ze” dz ¢) f|z_2|:1 2 dz <

4.2.4. Avaluar les segiients integrals.

6 2
a) / ( — + -+ 1 —3(2—2')2) dz siy és |z —i| = 4 recorreguda un cop amb
5 \(z —1) z—1

l’orientacid estandard.

b) /(a: — 2xyi)dz al llarg del contorn v : z =t + it? amb t € [0, 1].
g

c) /(\z —1+i|*> = 2)dz al llarg de la semicircumferéncia v : z =1 —1i+ € on t € [0,7].
g

d) La funcié no analitica f(z) = 2% + iy (per qué?) al llarg de |z| = 1 recorreguda un cop
en sentit antihorari. <
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4. Integrals de linia i teoria local de Cauchy

4.2.5. Calcular les segiients integrals al llarg del cami v que s’indica.

1
a) /Zdz per qualsevol contorn en el semipla dret que va de —3i a 3i. Quin problema
v

tenim si seqguim un contorn pel semipla esquerre? Indicacid: considerar la determinacio
principal del logaritme en la qual el logaritme no esta definit si y = 0,2 < 0.

b) /ez cos zdz per un cami d’origen a =i i final b= 7.
v

c) /zl/2dz per la branca principal de z'/? per un cami d’origen a = i i final b = w que
v

no talli la semirecta (—o0,0]. <

4.2.6.

Considerem la determinacid de l'arrel /22 — 1 que és holomorfa a C\[—1,1] i positiva a
(1,00).

(a) Vegeu que z + /22 — 1 omet l’eiz real negatiu si z € Q = C\(—o0, 1], de manera que
la determinacid principal Log (z + v/2%2 — 1) estd definida a Q.

(b) Vegeu que Log (z + /22 — 1) és una primitiva de \/% a .

(c) Avalueu on 7y és el tros de cercle |z — 1| = /2 que va de i a —i passant

/ dz
RV
pel semipla de la dreta (Re z > 0).

Indicaci6: comproveu que v/z2 — 1 = e2Log(z=D)+Log (z+1)) g7egten g C\[-1,1] de manera
continua. <

4.2.7. Siguin y1 == {|z| =1:Imz >0} i y2 := {|z]| =2 : Rez,Imz > 0}. Demostreu que:

dz .
a) / . < ¢) / sinz .,
q 25+ 2 12=1 22

dz e’
b d / dz
) /72 22+1 / o]=2 2

4.2.8. (a) Sigui~y un cami en C. Proveu que si f és una funcid continua en vy* llavors

Lf(z) dz = LMdz.

(b) Deduiu que si f és una funcié continua en el cercle unitat llavors

W:_/z|=1f(z)i; :

< 27e

< we?. <

IN
cola
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4. Integrals de linia i teoria local de Cauchy

4.3. Teorema de Cauchy

0

4.3.1. Recordeu que/ e dy = N

—Q0
a0
(a) Proveu que / e~ (@Fia)? gy — AT per a tot a > 0. Indicacié: Apliqueu el teorema
-0
de Cauchy al rectangle [—R, R] x [0, a].

0
(b) Proveu que / e T2 cos(nx) dx = V2re 2 nel. a

—00

4.3.2. Determineu el domini d’holomorfia de les funcions f donades i digueu perque

f|2\=2 f(z)dz = 0.

COS z
Y IE= e
) 1(2) = Log(z + 3). .

4.3.3. Sigui v : D — R wuna funcié harmonica en un disc D, és a dir, tal que Au =
400u = 0. Demostra que existeiz una funcié v : D — R harmonica tal que (u + iv) és
holomorfa. L’anomenem harmonica conjugada. Indicacié: Demostreu que les equacions
de Cauchy-Riemann per F = U +1iV es poden escriure com 0F = 20U o com oU = —idV .

<

4.3.4. El teorema de Green diu que si @ < C és un obert 1 U < ) és un obert fitat
prou reqular (per exemple amb frontera C') i tal que U < 2, aleshores tot camp vectorial
F=(F,F):Q—R? amb FeCYQ) satisfa que

/ (6xF2—ayF1) dm = (F1 dl’—l—FQdy).
U oU

Demostreu la férmula de Green en variable complexa (4.1). <

4.3.5. Continuant amb Uezercici 4.3.4, demostreu la formula de Cauchy generalitzada,
coneguda com a férmula de Cauchy-Pompeiu®, que diu que si ¢ € C*(Q) i zg € U, aleshores

#(20) L Mdz— l/U 09(2) dm(z).

21t Jou 2 — 20 us zZ— 20

Notem que el cas particular ¢ € CL(Q) ens diu ¢ = C(0¢), on C indica la transformada de

Cauchy -
Coten) =~ [ L ), «

™ JUu X — 20

4.4. Férmula integral de Cauchy

4.4.1. Avalueu, usant la férmula integral de Cauchy, les segiients integrals:

'Dimitrie Pompeiu, Brosciuti, 1873-1954, https://ca.wikipedia.org/wiki/Dimitrie_Pompeiu
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4. Integrals de linia i teoria local de Cauchy
22 . .
a’) f|z|:2 ;dz’ d) f\z|:2 Z2fj+1’ g) f |z|= 32§ z
sin(e® 1
b) f|z|=1 i Ldz; ¢) fz| =2 z2+2z 37 h) f|z+1|:1 zopdz. <
¢) Jojmz Fo15 1) fieajs simmde;

4.4.2. Sigui p un polinomi de grau n, amb tots els seus zeros continguts en Dg(0). De-
mostreu que

/
/ P(z) dz = 2min. N
|

z|=R p(z)

2 1
4.4.3. Sigui a € C, |a|] < 1. Calculeu la integral de linia / ( - ) dz, i deduiu
\z|:1 Z—a z
que

27 2
1-— dt
/ 2( ) =2m, peratot0<r<1ifeR. N
o 1+4+7r2—2rcos(0—t)

4.4.4. Siguin f,g € H(Q), on Q és un domini tal que D = Q. Donat a € C amb |a| # 1,

calculeu
1
L[ (L) ety q
2t Jop\w—a aw —1

4.4.5. Es consideren els segiient exercicis relacionats amb la Formula Integral de Cauchy.”

2

a) Calculeu ¢ 4271dz sobre la circumferéncia de radi 3 centrada en 0.
cc =

, e?
b) Es cert que §£ —dz =0 si C és tancada i simple?
Cc <

4.5. Series de poténcies

4.5.1. Desenvolupeu en serie de poténcies al voltant del punt a i doneu el radi de con-
vergencia de:

a) 1/z, a =1, c) m,azo, =0,

b) 2%, a =0, d) 1z3, a=0, f)H%,azO.

2De vegades es fa servir la notacié ¢ per indicar que la integral és sobre un camf tancat.
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4. Integrals de linia i teoria local de Cauchy

(en (e) i (f) només cal calcular els 3 primers termes). <

aLog(1+z)

4.5.2. Sigui o € C, provar que si (1 + z)® es pensa com e llavors per |z| < 1

-1 -1 -2
(1+z)a=1+az+a(a2' )2, oo 3)‘(a )4,

(generalitzacié del binomi de Newton ).

4.5.3. Trobeu els desenvolupament en série de poténcies al voltant del punt a de les
seglients funcions:

a) f(z) =cos®z, a=0. c) ¥z, a=1.
b) f(z) = (2121)2; a=1

Aqui /- és la determinacid de Uarrel cibica en C\(—o0,0] que val (=1 + in/3)/2 en
z=1. <

z+1

4.5.4. Considereu la funcid f(z) = m

1 el punt a = —1.

1. “Sense fer cap calcul”, raoneu quin és el disc de convergéncia de la série de poténcies
de f al voltant del punt a.

2. Calculeu la serie de poténcies de f al voltant de a. <

4.5.5. a) FEs pot desenvolupar /z en série de poténcies en un entorn de l’origen?

b) Quin és el disc maxim centrat a 0 on es pot desenvolupar cos(1/(z — 1)) en série de
poténcies?

z

+ ?
3—=z

c) Ila funcio 5

4.5.6. Determinar com a minim els coeficients a1, as, as, aq de la série de Taylor de 1/(1+
2+ 2%) centrada a lorigen. Expliqueu perqué el radi de convergéncia és com a minim 2/3.

4.5.7. Vegem com el teorema 4.22 és propi de l'analisi complexa. Una funcid de variable
real f és analitica en un interval obert I < R si es pot expressar localment com a série
de poténcies amb coeficients reals. Demostra que si f és analitica en I aleshores hi és
derivable. Troba una funcio infinites vegades derivable en R que no hi sigui analitica.
Troba una funcio f analitica en R que tingui radi de convergéncia 1.
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4. Integrals de linia i teoria local de Cauchy

4.6. Férmula integral de Cauchy centrada per derivades i
desigualtats de Cauchy

4.6.1. Donatr >0 i ae C calculeu

622
I = —=dz.
/za|—r (Z - a)3 : )

4.6.2. Siguin 0 < m < n enters. Calculeu
1 n
/ 7( i Zl) dz. <
|2=1 2m+

4.6.3. Intenteu calcular I = / md:ﬂ fent servir la formula integral de Cauchy
o x

per deriwades (potser cal recordar la desigualtat | [ f(2)dz| < [¢|f(2)]|dz].)

0

a) Considereu la semicircumferéncia C en el semipla superior centrada a 0 amb radi R i

1
tancada pel segment de Ueiz OX. Calculeu ——dz.
bet seg /C (14 22)2
b) Descomponeu C = Cy u Cy on Cy és el segment de —R a R i Co la part restant
de C. Fent servir la desigualtat triangular per integrals donar una fita superior de

1
- 4
/02 1+ 2227

1
c) Fent servir els apartats anteriors calcular/ mdz. Que passa si R tendeir a
C1 z
infinit? <

4.6.4. Sigui o > 0 i f € H(D) complint que existeixr ¢ > 0 i per a tot |z] < 1, (1 —
12])%|f(2)| < c. Demostreu que per a tot n =0, |f™(0)] < en! (£)" (n+ a)°. a

4.6.5. Sigui f una funcio entera de manera que existeixen constants C, M > 0 tals que
|f(2)|e=C1?l < M per a tot z € C. Demostreu que |f'(z)|e=C1?l < CMe per a tot z € C.

Indicacié: Apliqueu la desigualtat de Cauchy al cercle centrat a z i de radi r per provar
que | f'(2)]e €1l < MeCm per a tot r > 0 i 2 € C. Avalueu ar =1/C. <

4.6.6. (a) Suposem que una funcié f entera satisfa que |f(z)| < M si|z| = R. Demos-
treu que els coeficients ¢ de la seva série de Taylor centrada a a = 0 compleizen

M
(b) Suposem que el modul d’un polinomi P(z) esta acotat per 1 pels z al disc unitat.
Demostreu que tots els coeficients de P tenen modul acotat per 1. <

4.6.7. Proveu que si f € H(D) tal que |f(2)| < |e¥*| per a tot z € D, aleshores, per a tot
neN,

£ )] < nte. :
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4. Integrals de linia i teoria local de Cauchy

4.7. Teorema de Liouville i teorema fonamental de I’'algebra

4.7.1. Suposem que f és entera. Provar que si f) (z) és fitada en el pla llavors f és un
polinomi de grau 4 com a mazim. <

4.7.2. La funcié f(z) = 1/2% tendeir a 0 quan z — o perd no és una funcié constant.
Contradiu aizo el Teorema de Liouville? <

4.7.3. Sigui f una funcio entera. Per a |a| < R i |b| < R calculeu

) e
I‘/M_R CEPEET

Useu el resultat per demostrar el teorema de Liouville. <
4.7.4. Caracteritzeu les funcions enteres f tals que |f'(z)| < |z| per a tot z € C. <

4.7.5. Sigui f una funcio entera. Usant el teorema de Liouwville proveu que
(a) Si|f] =1, llavors f és constant.
(b) SiRef =0, llavors f és constant.
(c) Silm f <1, llavors f és constant. <
(d) SiRe f no té zeros, llavors f és constant.

4.7.6. Sigui f una funcid entera tal que |f(2)| < CeRe*, per a tot 2 € C, on C > 0 és una
constant. Qué es pot dir de f? <

4.7.7. Sigui f una funcid entera tal que |f'(2)| < |f(2)| per a tot z € C. Qué podem dir
de f? <

4.8. Teorema de Morera

4.8.1. Demostreu la continuitat de f en el principi de reflexio de Schwarz. <

4.8.2. Sigui f(z) = 1/22. Comproveu que f7 f(z)dz = 0 per a tot cami tancat vy que no
passi per 0, pero f no €s analitica en 0. Contradiu aixo el corollari 4.34 del teorema de
Morera? q

25



4. Integrals de linia i teoria local de Cauchy

4.8.3. (a) Sigui h una funcié continua a R amb suport compacte (és a dir, existeizx
K < R compacte tal que h(z) =0 si x ¢ K) i sigui

H(z) = /R h(t)e “#dt

(quan ens restringim a z € R, H s’anomena transformada de Fourier de h; si prenem
iz en el lloc de z, H s’anomena transformada de Laplace’ bilateral de h). Proveu
que H és una funcio entera amb creizement exponencial: existeixen A,C > 0 tals
que |H(z)| < CeAllm2l,

(b) Sigui h una funcié continua a [0,1]. Demostreu que la seva transformada de Hilbert*

és analitica per a z € C\[0, 1]. 4

4.8.4. Sigui f holomorfa en un obert , i sigui zo € Q amb f'(z9) # 0. Demostreu que hi
ha ro > 0 de manera que, per 0 < € < rg, es compleizr la identitat

2 / dz
f/(Z()) |z—z0|=¢ f(Z) - f(ZO) '

Indicacid: proveu primer que la funcio G definida per
oy = | P i 22
f'(z0) si z=2

és holomorfa en ). <

4.9. Derivacié sota el signe integral i formula integral de Cauchy
per derivades

4.9.1. Avalueu, usant la férmula de Cauchy per a les derivades

e” sin(z)

2T
a) LA b BLLICI 9, g,
z]=1 (2 = 1/2)? ) z=1 (32 —2)* Z /o © e )

3Pierre-Simon  Laplace, Beaumont-en-Auge, 1749-1827, https://ca.wikipedia.org/wiki/

Pierre-Simon_Laplace
“David Hilbert, Kénigsberg, 1862-1943, https://ca.wikipedia.org/wiki/David_Hilbert
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4. Integrals de linia i teoria local de Cauchy

4.10. Zeros de funcions holomorfes i principi de prolongacio
analitica

4.10.1. Trobeu els zeros, amb l'ordre corresponent, de les segiients funcions:

241 11
: +1 b) Z%sinz c) f(z):;—i—;. q

a)

22 _

4.10.2. Trobeu la multiplicitat de z = 0 com a zero de la funcié entera f(z) = 2 cos 2> +
6
z° — 2. <

4.10.3. Trobeu tots els zeros de les segiients funcions holomorfes i calculeu-ne les seves
multiplicitats:

a) f(z) =22 —1). c) f(2) = (V= —2)°.
b) f(z) = (22 — w?)sin z/z.

Aqui /- és la determinacié de l'arrel quadrada en C\(—o0,0] que val =1 en z =1. <«
4.10.4. Sigui Q@ < C un domini. Demostreu que ’anell de funcions holomorfes H (2

a
una regio  és un domini d’integritat, és a dir, si f,g€ H(Q) amb fg =0 aleshores f =0
0g=0. <

4.10.5. Sigui {an}, una successio estrictament decreizent de nombres reals a, € (0,1) i
tal que lingo an = 0. Sigut f una funcié holomorfa en D. Demostreu que:
n—

(a) Si f(an) € R per a tot n, aleshores f(Z) = f(z) per a tot z € D.

(b) Si a més f(agn) = f(agn+1) per a tot n, aleshores f és constant. <

4.10.6. Trobeu totes les funcions holomorfes a D tals que:
(a) |f(1/n)| < 1/2", per a tot nombre natural n = 2.

(b) f(1/n) =In(1+n?) —31Inn per an > 1. a

4.10.7. Trobeu totes les funcions f holomorfes en el disc Do(0) tals que f(e'?) = 2% per
a tot 6 € [0,2m), i a més f(0) = 0. q

4.10.8. Sigui f € H(Q) en un domini Q < C tal que fo f = f. Demostreu que o bé f és
constant, o bé €s la identitat. 4
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4. Integrals de linia i teoria local de Cauchy

4.10.9. (a) Sigui f una funcié entera tal que existeixen constants n e N, C >0 i R >0
tals que | f(z)| < C|z|", per a |z| = R. Demostreu que f és un polinomi de grau més petit
o0 igual que n.

(b) Deduiu que si f és una funcid entera amb ‘ 1|im |f(2)| = 0, llavors f és un polinomi.
Z|—00

Indicaci6é: Demostreu que f només té un nombre finit de zeros aq,...,a, (comptant mul-
tiplicitats) i apliqueu Uapartat (a) a la funcio F = P/f, on P(z) = (z —a1) - (2 — an).

<

4.10.10. Sigui Q < C un domini (obert connez) tal que Q "R # . Suposem que tenim
frg,he HQ) iu,v:Q— R tals que per x + iy € Q tenim

f(@ +iy) = u(z,y) +iv(z,y),

iper x € QN R tenim
u(x,0) = g(z) v(x,0) = hz).
Demostreu que
f(z) =g(z) +ih(z) per a tot z € . q

4.11. El principi del modul maxim

4.11.1. Cerqueu 'enunciat del teorema de Stone’- Weierstrass i compareu-lo amb lexemple
4.538.

4.11.2. Trobeu el mazim de:
a) |cosz| i|sinz| a [0,27] x [0, 27].
b) |e*| i|e*’| alz] < 1. 4

4.11.3. Trobeu totes les funcions holomorfes en D tals que f(1/2) = 3 i |f(2)| < 3 si
|z| < 1. <

4.11.4. Es considera f(z) = e®)22 i el disc D de radi 2 centrat a 5. Provar que f(z)
assoleix el valor mazim i minim del modul a |z — 5| = 2. Indicacié: considerar 1/f(z). <

4.11.5. Sigui f una funcid holomorfa en el disc Dr(0), R > 0. Definim

M (r) = max |f(z)], 0<r<R.

|2|=r

Demostreu que si f no és constant, aleshores M(r) és estrictament creizent a [0, R). <

®Marshall Harvey Stone, New York City, 1903-1989, https://en.wikipedia.org/wiki/Marshall_H.
_Stone
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4. Integrals de linia i teoria local de Cauchy

4.11.6. Sigui f una funcio holomorfa en un obert connex 2 i D un disc obert tal que
D < Q. Suposeu que |f(z)| = ¢ per tot z € 0D, on ¢ és una constant. Proveu que f té
almenys un zero en D o bé f és constant en ). Indicacié: Distingiu segons si ¢ = 0 o

c> 0. En el segon cas, proveu que si f no té zeros en D, aleshores f és constant en D.
<

4.11.7. Sigui f una funcié holomorfa i no constant en Q < C, un obert connex. Suposeu

que existeiz a € Q tal que |f(a)| < |f(2)| per a tot z € Q. Proveu que aleshores f(a) = 0.
N

4.11.8. Sigui f € H(C) no constant. Demostreu que, per a tot ¢ > 0,

{z [fG) <t ={z |f(2)] < ¢} <
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5. Topologia en el pla complex: teoria
global de Cauchy

5.1. index d’una corba tancada respecte d'un punt

5.1.1. Considerem el cami y(t) = 4e' cos 2t, (0 <t < 67). Calculew Ind (v, 3) iInd (v, 1).

<

5.1.2. Considerem el cami v(t) = (1 + € + e~®)e', (0 < t < 2m). Esbosseu el dibuiz
de la corba i calculeu-ne ’index en cada component connexa del complementari de la seva

tmatge. Calculeu
3z —3
# dz. <
~ ze — 52 +1

5.2. El teorema global de Cauchy

5.2.1. Considerem el cami y(t) = (2sin(2t — §),2sin(3t)), amb t € [0,27]. Esbosseu el
cami, calculeu l'index de la corba en cada component connexa de C\v*, i trobeu el valor

de
22-1
/62 dz. q
N ? +1

5.3. Homotopia i teorema de Cauchy

5.4. Dominis simplement connexos

5.4.1. Siguin f,g € H(C) tals que f> + g> = 1. Demostra que existeizr h € H(C) tal que
f =cos(h) i g =sin(h). <

5.4.2. Demostra que si Cy,\Q2 és connex i Q0 és un obert connez, aleshores tota corba
tancada v és homotopa a 0. <

5.4.3. [Determinacid de larrel en dominis simplement connexos] Sigui @ < C un obert
simplement connez, i f € H(QX) amb f(z) # 0 per a tot z € Q. Llavors existeiz g € H()
amb

g(2)? = f(z) peratotzeQ.

A més, si 2o € Qi tenim que wi = f(20), podem escollir g de manera que g(z0) = wo.
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5. Topologia en el pla complex: teoria global de Cauchy

5.5. Funcions harmoniques

5.5.1. Sigui v : D — R una funcié harmonica en un domini simplement connex ().
Demostra que existeix una funcié v : D — R harmonica conjugada duw (vegeu l'exercici

4.8.3). q
5.5.2. Demostra el lema 5.35 usant les equacions de Cauchy-Riemann directament. <

5.5.3. Sigui Q un domini simplement connezx, © sigui ¢ : D — € una aplicaciéo de Rie-
mann, €s a dir un homeomorfisme holomorf entre D i Q0 amb inversa holomorfa, vegeu el
teorema 7.6, les derivades de les quals estenen continuament a 0D i a 0S) respectivament.
Demostreu que existeizen determinacions del logaritme @ l’argument de manera que

£/ (20)) = Re L()(0) + = /a A () H (e 0)lde] ‘

2r

5.5.4. FEl problema de Dirichlet consisteiz en trobar una funcié harmonica en un domini
obert Q que sigui continua fins la seva frontera 0€2 i amb un valor prefixat a 02. Suposem
que @1 i P2 son harmoniques a 2 i continues fins a 082 i que ¢1 = P2 a la vora 0). Provar
que si 2 és simplement connex, aleshores ¢1 = ¢2 en tot punt d’§2. Indicacié: trobar
la funcié v harmonica conjugada de ¢y — @2 i aplicar el principi del maxim (minim) a
o1 — ¢a + iv. <

5.5.5. Una distribucio estaciondaria T de la temperatura en una regié €1 és una funcio
harmonica i continua fins la frontera. Trobeu la temperatura T a Uinterior d’un disc de
radi 1 si sabem que la temperatura val Im z als dos primers quadrants de la circumferéncia
de frontera i 0 a la resta de punts de la vora. En particular veieu que la temperatura al
centre del disc és 1/m. q

32



6. Series de Laurent

6.1. Series de Laurent i singularitats

6.1.1. Calcular la série de Laurent de

z—1
PRI
b) 1/e172) per |z| > 1. )
i 3
6.1.2. Per a la funcidé f(z) = w
z

1. Trobar els primers termes no nuls de la part central de la seva série de Laurent a

z=0.

2. Calcular ¢ f(z)dz si es recorre |z| = 1 un cop i en sentit antihorari. <
N 1

6.1.3. Trobeu el desenvolupament en série de Laurent de f(z) = Pl les corones:
z2(z —

(a) {ze C:0< |z <1}, ) {zeC:0<|z—-1 <1}, (¢){z € C: |z| > 1} i

(d) {zeC:|z—1] > 1}. <

o 1 "
6.1.4. Sigui f(z) = ——————, donar les séries de Laurent per les tres corones cen-
(z—1)(z—3)
trades a 0 alla on f és analitica (|z] < 1,1 < |z| <3 i]|z| > 3). a

6.1.5. Donar els primers termes de la série de Laurent de

a) f(z) = 2% cos (312) per |z| > 0.

b) f(z) =

6Z_lpe7"0<|z\<R. <

0 n
6.1.6. Quina és la corona (o anell) de convergencia de Z % ? <

n=—0u
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6. Séries de Laurent

6.2. Singularitats aillades de funcions holomorfes

6.2.1. Construccid de funcions

1. Trobar una funcid f que tingui un pol d’ordre 2 a z = 1+ 14 i singularitats essencials
az=0,1.

2. Trobar una funcio f que tingui una singularitat evitable a z = 0, un pol d’ordre 6 a
z = 1 i una singularitat essencial a z = 1. a

6.2.2. Sigui f analitica amb zero d’ordre n a zg 1 g analitica amb zero d’ordre m a zy. Si
h(=) = £()/9(z) proveu que

a) Sin>m h(z) té un zero d’ordre n —m a zo,
b) sin <m h(z) té un pol d’ordre m —n a z,

c) sin=m h(z) és holomorfa i no nulla a z. a

6.2.3. Determineu les singularitats de les funcions segiients. Si a és una singularitat
evitable de f, calculeu el valor que cal donar a f(a) per a qué f sigui holomorfa en un
entorn d’a, i si a és un pol de f, determineu la part singular de f en a (la part de la série
amb indexs negatius).

a) f(2) = zcos(1/2). Qf@:jji? .
2241 (1=e)
b) f(z):m~

6.2.4. Sigui f € H(D,(a)\{a}). Suposem que existeix una successid (zy),, tal que z, — a
1

1 1
lim |ef)| =0, ‘f (zn—|—>’ <1—--=, neN.
n—>00 n n
Determineu el tipus de singularitat que té la funcido f en el punt a. <

6.2.5. a) La funcié tan(1/z) té una singularitat aillada al 09 De quin tipus?

b) Sigui 0 singularitat aillada de f(z). Suposem que |f(z)] < |z|7® on 0 < a < 1.
Demostreu que 0 és una singularitat evitable. <
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6. Séries de Laurent

6.3. Teorema dels Residus

6.3.1. Euxisteiz alguna funcico f amb pol simple a zy tal que Res(f,z0) = 07 Qué passa si
el pol és d’ordre 2, pot passar que Res(f,zy) =07 <

6.3.2. Cualculeu els residus de les funcions segiients en els punts indicats:
1

W) §(2) = 20 =0.
14 €7
b) f(Z): A 720:0- N
1/z
6.3.3. Calculeu / dz pels diferents valors d’a € C tals que |a] # 1. <
2]=1 %~ @

6.3.4. Decidiu si son certes o falses les segiients afirmacions. Doneu els arguments que
provin les afirmacions.

1. Si f,g tenen un pol a zg lavors f + g té un pol a zg.

2. Si f,g tenen un pol a zg i en els dos casos el residu és no nul llavors f - g té un pol
a zo amb residu no nul.

3. Si f té una singularitat essencial a z = 0 i g un pol d’ordre finit a z = 0 llavors
f + g té singularitat essencial a z = 0.

4. Si f té un pol d’ordre m a z = 0 llavors f(z?) té un pol d’ordre 2m. q

6.3.5. Suposem que f és holomorfa amb un zero d’ordre m a zy. Proveu que g(z) =
1'(2)/f(2) té un pol simple a zy amb Res(g, 29) = m. <

6.3.6. a) Proveu que si g(z) té un zero simple a zy, llavors 1/g(z) té un pol simple a z.
b) Proveu que Res(1/g,z0) = 1/¢'(20).
c) Sigui f(z) = 1/sin(z), trobeu els seus pols i proveu que son simples. Trobeu els residus.<

6.3.7. Trobeu i classifiqueu les singularitats aillades de cadascuna de les funcions segiients.
Calculeu el residu a cada singularitat.

2 +1
a) f(z) = m
1
) 9(z) = ——.
c) h(z) =cos(l —1/z). q
1
3.8. 4 l l -3 =
6.3.8 valueu¢ (z+1)(2—1)(z—2)(z—3)(z—4)(z—5)dz al llarg de la corba |z—3|
3 recorrequda en sentit antihorart. <

6.3.9. Avalueu les segiients integrals
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6. Séries de Laurent

sin z ez
a —dz dz.
) ﬁz=5 22 —4 C) ¢‘Z|—3 ZQ(Z - 2)(Z + 52) & <]

1
b)yf N
|2]=8 2 +z+1
14z

6.3.10. Calculeu la integral de la funcid f(z) = T smz sobre la vora del disc D7(0). <«
inz

6.3.11. Per at > 0, sigui Cy la circumferéncia de centre it, que passa pels punts —2 i 2.
Calculeu

() eiwz+
f(t =/ ———dz, perat#2. <
CtZ(Z—t)

6.4. Residu a l'infinit

5 —
6.4.1. Trobar el valor la integral §1§ ﬁdz calculant el residu de lintegrand a
l2|=2 #\% =
Uinfinit. <
a? — 22
6.4.2. Sigui a € R, calculeu, estudiant el residu a l'infinit, I = 515 ——5.dz on C és
o 2(2%2 + a?)
una corba simple que envolta les singularitats de l'integrand. <
6.4.3. Avaluar§£ e/%sin(1/z)dz. q
|z|=1

6.5. Aplicacié al calcul d’integrals

6.5.1. Perr > 0, considerem la corba v, : [0,7] — C definida per ,.(t) = re®, i sigui
1z
I(r) =/ € de.
Yr z
Demostreu que lim, o I(r) = 0. <
52

6.5.2. Considereu la funcid f(z) = CEDICETE
2 z

(a) Determineu les singularitats de f.

(b) Calculeu la part principal del desenvolupament de Laurent al voltant de z = 2i.
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6. Séries de Laurent

/Ooo f(z)dzx

1 calculeu-ne el seu valor. 4

(c) Justifiqueu la convergéncia de

6.5.3. Demostreu que

+00 $2 T
de = —. q
/_oo 1+t V2

0
d
0o 1+=x
6.5.5. Donat a € (0,1) calculeu el valor de la integral

©  ga
/ — dx. <
0 1 + -172

6.5.4. Calculeu

6.5.6. Calcular

/Ooo x/i((lia;m?) )

ee]
1
/ T <
0 1 +£U2

6.5.8. Justifiqueu la integrabilitat (Lebesgue o impropia Riemann) i calculeu les segiients
integrals (en tots els apartats k € Z, a« e R in =0,1,2,---):

27
sin? ¢ 2 —x 42
dt. d dx.

a)/ 5+ 4cost )/OO 24+ 1022+ 9

sin? z sinx
b dz. dz.
)/ 2 e)/oon—m—irl )

/27r cos(nt)

c)

2+Cost

6.5.9. Justifiqueu la convergéncia de

6.5.7. Calcular

+00
/ Ve dzx
0

x2 4+ 3

i calculeu-ne el seu valor (cal justificar tots els passos). <
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6. Séries de Laurent

6.5.10. Siguin f(z) = €*/2% i la recta v = {1 +it; t € (—0, +0)}.

/7 F(2)d=.

Indicacid: integreu f sobre la vora del semidisc de centre zg = 1 i radi R amb Rez < 1.

a) Calculeu (justificant tots els passos)

TO (1 —¢2 t) + 2tsin(t 2
b) Deduiu que / ( ) cos( )2+2 sin >dt - 4
% (1+1¢2) e
6.5.11. Considereu
22 -2

1(z) = (22 +1)2(22 +4)%

(a) Trobeu la part principal de la série de Laurent al voltant de z = 2i.

(b) Justifiqueu la convergéncia de
+oo

f(z)de

—00

i calculeu-ne el seu valor (justifiqueu tots els passos). <

6.5.12. Sigui f(z) = 6”2, i considereu el cami vy format per el segment que va de 0 a R;
Uarc del cercle |z| = R que va de R a Re'™/* i el segment que va de Re'™* a 0. Demostreu
que

f(z)dz =0,

YR
1 utilitzeu-ho per a calcular les integrals de Fresnel

e ¢] e 0]
/ cos(z?)dz, / sin(z?)dz.
0 0

Observacié: Podeu utilitzar que fooo et dt = @ a

6.5.13. (a) Sigui f una funcié holomorfa en D* = {0 < |z| < 1}. Suposem que f(a,) =0
per una successié ap € D* tal que ap, — 0. Demostreu que f =0 o bé z = 0 és una
singularitat essencial de f.

(b) Sigui f una funcié holomorfa en D* tal que per a tot n = 2, f no té zeros sobre les

corbes |z| = 1/n i a més
1 1
—dz 7&/ dz.
/|;—711 f(z) =-1- f(2)

=31

Demostreu que z = 0 és una singularitat essencial de f. Indicacié: Utilitzeu el Teore-
ma de deformacio i l'apartat anterior. <
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6. Séries de Laurent

6.5.14. Calculeu, justificant tots els passos, la integral

+00 &
/ —————dz, -l<a<l.
0 X +ﬂf+1

zOL

24+ z+1
me log(z) a C\[0, +0) de manera que z* = e*92). Finalment integreu la funcié f(z) a
la mateixa regio que les integrals del tipus

Indicacié: Considereu la funcié f(z) = Definiu una determinacio del logarit-

/0 " R(@) (). <

6.6. Principi de I'argument
6.6.1. Quines de les segiients funcions son meromorfes a C¥

a) 2° b) 22 c) el? d) 1/sin(z).

A

6.6.2. Calculeu el nombre de zeros (comptats amb multiplicitat) amb part real positiva del
polinomi P(z) = 26 — 2% — 22 — 6.
I si alternativament el polinomi fos Q(z) = 28 — 24 — 22 + 62 <

6.6.3. Sigui f una funcio entera tal que
f(z)eER < z€eR.

Demostreu que f té, com a molt, un zero a tot C. <

6.7. Teorema de Rouché
6.7.1. Demostreu que l'equacio e = 2z + 1 té exactament una solucio en el disc unitat

obert. Indicacié: Proveu que |e* — 1] <e—1 si|z| = 1. 4

6.7.2. Sigui f una funcié holomorfa en el disc unitat tancat tal que |f(2)] < 1, per a
|z| = 1. Quants punts fixos té f?¢ q

6.7.3. Calculeu el nombre de solucions (comptant multiplicitats) de les segiients equacions
en el disc unitat:

(a) 2% — 225+ 22 —82—-2=0.

(b) 225 — 23 +322 — 2+ 8 =0.

39



6. Séries de Laurent

(c) 27 =524 + 22 =2, a
6.7.4. Quants zeros té P(z) = 2 + 623 — 422 + 1/8 en la regi6 {z € C; 3 < [2| <1}? <
6.7.5. Considerem P(z) = 2% +32* + 22 + 24+ 9.

(a) Proveu que tots els zeros de P(z) son a lanell 1 < |z| < 2.

(b) Calculeu el nombre de zeros (comptats amb multiplicitat) de P(z) al primer quadrant.<

6.7.6. (a) Calculeu el nombre de solucions a D de l'equacio e* = 4z + 1.

(b) Demostreu que l’equacid e = 32™ té n solucions en el disc unitat (n =0,1,2,...). <
6.7.7. SiguiacC,0<la| <1, ineN.

(a) Demostreu que l’equacid
(z—1)"" =a

té exactament n arrels diferents al semipla {z € C | Rez > 0}. Indicacié: Considereu
un disc centrat a z = 1 i de radi R = 1 primer, deprés mireu d’augmentar el radi
sense sortir del semipla tancat de la dreta.

(b) Proveu que si, a més, |a| < 1/2", llavors totes aquestes arrels son al disc Dyj5(1). <

6.7.8. Demostreu que per a tot R > 0 existeiz n(R) = 0 tal que si n > n(R)

2 P

Pn(z):1+z+%+m+F

no té zeros al disc {|z| < R}. q

6.7.9. Sigui f, una successio de funcions holomorfes en un domini 2 tals que fr, — f
uniformement en compactes d’S), per una certa funcio f.

1. (Corollari de Hurwitz) Deduiu que si fn(z) # a per a tot z € i tot n € N, aleshores,
f=aobé f(z)#aen.

2. Proveu que si f és injectiva en ) per a tot n = 0, aleshores f és constant o bé f és
injectiva en €. Indicacié: Argumenteu per reduccié a ’absurd, i utilitzeu ’apartat
antertor.

3. Proveu que si f té un zero d’ordre m en a € S), aleshores existeir pg > 0 tal que
per tot p < po i per tot n > n,, fn té exactament m zeros en Dp(a) comptant
multiplicitats. <
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7. Representacié Conforme

7.1. El teorema de I'aplicacié de Riemann

7.2. Projeccid estereografica i circumferéncies generalitzades

1

1=, ¢ que la inversa de p

7.2.1. Sigui p la projeccio estereografica. Demostreu que A =
és

pil(x +iy) = (% y, x2 + y2) . 4

2?2 +y?+1

7.2.2. Demostreu que ’equacid d’una circumferéncia de centre oo € C i radi v €s
12> —az—az=1%—|a]?, zeC,

i la d’una recta perpendicular a o passant per zg € C és

az+az=m, zeC,

on m és una constant real que només depén d’a i z. 4

7.3. Transformacions de Maobius

7.3.1. Donada una homografia T(z) = gjifl, definim Ar := Z Z), que esta definit

modul constant multiplicativa. Per exemple, les matrius <(1) l1)> , (g (1)> , <(1) (1)) cor-

responen respectivament a la translacio z — z + b, a la dilatacio z — az i a la inversio
z—1/z.

a) Donades Ty, Th € M, demostreu que Apyor, = Ap, Ar, (modul constant multiplicativa).

b) Trobeu T—' i relacioneu-la amb Ar, . <
7.3.2. Demostreu que tota T’ € M es pot escriure com a composicid de dilatacions, trans-
lacions 1 tnversions. <

7.3.3. Trobeu una descomposicio en dilatacions, translacions i una inversié de la trans-
formacio

22 41
T(z) = ————. 4
(2) (1 —4)z+3i
7.3.4. Demostreu que tota T € M envia circumferéncies generalitzades a circumferéncies
generalitzades. <

7.3.5. Sigui f(z) = % Quina és la imatge per f de
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a) la recta real, b) 0Dy (0), c) oD, d) leiz imaginari.
I per g(z) = % ? 4
7.3.6. Troba I’homografia que envia (i,0,—1) a (—i,0,0). <
7.3.7. Demostra el corollari 7.16. <
7.3.8. Troba una homografia que envii D a {Imz > 0}. <

7.3.9. Sigui a € C,a # 0 1 definim

z—1 z+1 12 z
T = T: = T = T(2) =
1) = 5, BB = o @) = = TR = o
Trobeu,
TytoThoTy, T™ meZ. a
7.3.10. Trobeu totes les T € M que tinguin per punts fixos 0 i —i. <
7.3.11. Trobeu T € M tal que T(1 —i) =1+14,T(2) =4, T(1 +1i) = —i. q

7.3.12. Siguin Cy i Co dues circumferéncies generalitzades i z1 € Cy,\Cq, 22 € Cy,\Cs.
Demostreu que ezisteic T € M tal que T (C1) = Cy i T'(21) = z2. Podeu fer servir
UFExercici 1.1.10. Trobeu una d’elles en el cas particular

Ci={z:|z—1=1},xn1=1,Co={z:zi = z},290 = 1.

7.4. Rao doble i simetria

7.4.1. Sigui T € M tal que T(Dg(a)) = Dr(a). Demostreu que els punts fizos de T estan
a 0Dg(a) o bé son simétrics respecte 0Dg(a). a

7.5. Automorfismes

7.5.1. Demostra que tota representacio conforme de Cy en Co és una homografia. <

7.5.2. Troba tots els automorfismes T de D tals que T(1/2) = 1/3. <

7.5.3. Trobeu totes les representacions conformes del disc unitat en ell mateix que envien
1/2 a 0. N’existeix alguna que envii 0 a —i/279 10 a —i/4? Utilitzeu T per trobar una
representacié conforme S que envii 0D a 0Ds (i) tal que S(1/2) =14 i S(0) = 0. a

7.5.4. Demostreu que el lloc geométric de les imatges de qualsevol punt b € D per les
transformacions que fixen la imatge d’un altre punt, és a dir

{fweD:w=T(0b) amb T € Aut(D), T(a) = a},

€s una circumferencia. <
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7.6. Altres transformacions conformes

7.6.1. Quina és la imatge del primer quadrant per 232 <
7.6.2. Quina transformacié pot enviar una banda horitzontal a a un semipla? <
7.6.3. Trobeu una aplicacio de Riemann del sector {0 < Arg z < 7/8}. <

A

7.6.4. Es pot enviar el semipla superior a un triangle mitjancant una homografia?
7.6.5. Proveu que no existeix cap representacid conforme del semipla de la dreta en D1 (1)
que envii 1 — 1, 0— 0700 +—1+71. <

7.6.6. Demostreu que les transformacions conformes del semipla superior Hy := {Im z >

0} en D son de la forma ew% per alguna a € Hy ¢ algun 6 € R. <

7.6.7. Trobeu una transformacio de Mdbius que envii el primer quadrant a Dy = D H, .
Utilitzeu-la per a trobar una transformacic conforme de Hy a {|Rez| <1,Imz > 0}. «

7.6.8. Trobeu una representacio conforme de {0 < Rez < 7/2} en D. <

7.6.9. Trobeu una representacic conforme d’Q1 en s.

a) U =DnH,, Qy =H,.

b) O =D, QO = H, nD".

c) f=Dn{Rez>1/2}, Qy =D n (—iH,).

d) Q1 =Hy, Q3 ={|Rez| <1, Imz> 0}.

e) Q1 =Dn (—iHy), Qo =D~ {|z+1/2] > 1/2}.

f) Q=D 5(1) n D 5(=1), Q2 =D, que deizi invariant el segment (—i,i).

g) Q1 =D\[0,1), Qy = C\[0,00).

h) Q1 = {|Imz| < 7/2}\((—0,0] U [In2, +00)), Q2 = D. q
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8. Fluids

8.1. Qiiestions generals. Escenari i notacid.

8.1.1. Proveu que I' = 0 en un flux potencial (suposeu que la funcid potencial és de classe
C? com a minim,). q

8.1.2. Proveu que per fluzos definits en un domini < C que satisfan les quatre hipotesis
anteriors, la velocitat potencial p(x,y) és una funcié harmonica. <

8.1.3. Proveu que ®'(z) = V(z) = Vi +ilh. q

8.2. Fluxos basics.

8.2.1. Superposicié. Sumant diferents potencials complexos es poden descriure fluros més
sofisticats. Un exemple important s’obté sumant una font al punt —a amb una pica al punt
a:

zZ—a

®(2) = klog(z + a) — klog(z — a) = klog (Z +a> :

Trobeu 'expressio de V, V', ¢ i 1. Dibuizeu les linies de corrent () = c). <

8.2.2. En l’exercici anterior, fema — 0 i k — o0 de manera que 2ka = p sigui finit. Veure
que al limit obtenim el potencial complex ®(z) = p/z que s’anomena doblet o dipol. Ve
a ser una font i una pica separades per una distancia infinitesimal. La quantitat 2mp
s’anomena moment del doblet. Trobeu ’expressio de V, V, ¢ 1 1. Dibuizeu les linies de
corrent (Y = c). q

Lo
8.2.3. Font-remoli. Estudiar el flur amb funcid potencial ®(z) = ;ZQ log(z — a).
i

Discutiu segons els valors de T’ (circullacid o intensitat) i Q (poténcia). Feu dibuizos de
les linies de camp segons els signes de I' i Q). <
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Figura 8.1.: Superposicié amb a = 1.

8.3. Obstacles
8.3.1. Modifiquem el flux amb potencial donat per f(z) = log(z + 2) que és una font

sortint des del punt z = —2 (vist en un exemple/exercici anterior). Per aixo considerem
la modificacio donada pel potencial

1 1\
D(z) = f(z)+ f (%> =log(z + 2) + log (5 + 2)_
a) Descomposeu ® en fluzos coneguts.

b) Calculeu ®'(2) i confirmeu el que es demostra a lapartat anterior.

1
c) Vegeu que per z amb |z| molt gran resulta ®'(z) ~ o 1 que llavors lluny de z = —2
z
el flux associat a ® és com una font sortint de z = —2.

d) Mostreu amb un grafic com eviten el disc unitari les linies de flux (feu servir contour_plot
i streamline_plot). <

8.4. Expressié general (recapitulacio).

8.4.1. Pels z on V(z) = ®/(z) = 0 diem que hi ha un punt estacionari del corrent (per
exemple és aquell punt d’un riu on una fulla petita s’ha quedat aturada pero que al seu

voltant circula l'aigua).

a) Per ®(z) = 2" el 0 és un punt estacionari d’ordre n — 1. Feu un dibuiz amb les linies
de flux i les linies equipotencials superposades per n = 2,3, 4.
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b) Podeu deduir experimentalment quin angle formen les linies equipotencials i les linies
de flux?

c¢) Proveu que si un punt estacionari a és un zero d’ordre n — 1 llavors les linies equipo-
tencials i de corrent (@ = ct.,i = ct.) formen un angle 7/2n en el punt estacionari
(feu-lo com a minim pel cas ®'(z) = Cz""1,C € C). Quin angle formen una linia de
corrent 1 una linia equipotencial quan es creuen en un punt no estacionari?

8.4.2. Discutir el moviment del fluid amb potencial complex igual a

I'+iQ
= — lo
211

a) ®(z)

g(z_z> ona,beC i@, I'eR..

z —

r
b) ®(2) =az + %log(z) on a,I' > 0.

c) ®(z) =az+ % log(z) on a,@ > 0.

r
d) ®(z) = 27;:% + 507 log(z) on p,I" > 0. q

8.4.3. Discutir el moviment del fluid amb potencial complex

R? r
O(z)=Vo |2+ — )+ =—1log(z), amb I, V, R > 0.
z 27

Particularment estudieu els casosT' < AmRVy, I' > 4n RV + ' = 47w RVy. Dibuixeu exemples

de cadascun dels casos. <
8.4.4. Donar un potencial complex que té fonts-remolins {(ag; Qr,I'x) : k = 1,...,n} i
velocitat Vo, = V' a Uinfinit. <
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