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1. El cos dels nombres complexos

1.1. El cos dels nombres complexos

1.1.1. Doneu en forma a` bi:

a) p´1 ` iq2,

b) 8i´1
i ,

c) ´1`5i
2`3i ,

d)
p8 ` 2iq ´ p1 ´ iq

p2 ` iq2
,

e)

ˆ

2 ` i

6i´ p1 ´ 2iq

˙2

,

f) pp3 ´ iq2 ´ 3qi.

1.1.2. Demostreu o doneu un contraexemple:

a) Re pz`wq “ Re z`Rew, b) Re pzwq “ pRe zqpRewq, c) Re p z
w q “ Re z

Rew . Ž

1.1.3. Sigui z P C tal que Im pzq ą 0. Proveu que Im p1{zq ă 0. Ž

1.1.4. Si z “ x` iy on x, y P R, trobeu les parts real i imaginària de:

a) z2,

b) zpz ` 1q,

c) 1
z´3 ,

d) 1
z2
,

e) z`1
2z´5 ,

f) z3. Ž

1.1.5. Sigui px` iyq{px´ iyq “ a` ib. Proveu que a2 ` b2 “ 1. Ž

1.1.6. Proveu que ´1 ` i satisfà z2 ` 2z ` 2 “ 0. Ž

1.1.7. Escriviu l’equació complexa z3 ` 5z2 “ z ` 3i com dues equacions reals. Ž

1.1.8. a) Si z1, z2 són complexos amb z1 ` z2 i z1z2 reals negatius proveu que z1, z2 són
reals.

b) Proveu que el vector z1 és paral.lel al vector z2 si i només si Im pz1z̄2q “ 0. Ž
1.1.9. Proveu anaĺıticament i gràfica que |z ´ 1| “ |z̄ ´ 1|. Ž

1.1.10. Demostreu que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

“ 1 si |a| “ 1 o bé |b| “ 1. Quina excepció cal fer si

|a| “ |b| “ 1?

Demostreu també que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

ă 1 si |a| ă 1 i |b| ă 1.

Per acabar, si per a P D definim φapzq :“ a´z
1´āz , demostreu que φa : D̄ Ñ D̄, i és bijectiva

en D i en BD, i doneu-ne la inversa. Ž
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1. El cos dels nombres complexos

1.2. Els nombres complexos com a espai vectorial

1.2.1. Descriviu els conjunts de punts del pla que satisfan:

a) 1 ă Im pizq ă 2,

b) Im z´a
z “ 0, a P C˚,

c) |z| “ Re z ` 1,

d) |z ´ 1| “ |z ` i|,

e) |z ´ 2| ą |z ´ 3|,

f) |z ´ 1| ` |z ` 1| “ 7. Ž

1.2.2. Suposem que an Ñ a i bn Ñ b. Demostreu que an ` bn Ñ a` b i anbn Ñ ab, sabent
que ambdues propietats són certes a la recta real. Ž

1.2.3. Digueu si les següents successions són convergents i en cas afirmatiu calculeu el
seu ĺımit:

a) in `
1

n` i
, b)

n` i

n´ i
, c)

3 i n2

n2 ´ 2i
. Ž

1.2.4. Estudieu la convergència i la convergència absoluta de les sèries:

a)
8
ÿ

n“2

in

lnn
, b)

8
ÿ

n“1

in

n
. Ž

1.2.5. Demostreu el teorema de Mertens. Ž

1.2.6. Tota successió convergent tznuně0 Ă C satisfà que |zn`1 ´ zn| Ñ 0. Ž

1.3. Repàs de trigonometria

1.3.1. Demostreu tots els resultats de la secció. Ž

1.3.2. Definim el sinus i el cosinus hiperbòlics de x P R com

sinhpxq “
ex ´ e´x

2
, coshpxq “

ex ` e´x

2
.

Demostra que se satisfan les següents identitats:

a) sinhp0q “ 0 i coshp0q “ 1.

b) lim
xÑ`8

sinhx “ lim
xÑ`8

coshx “ `8 i lim
xÑ´8

sinhx “ ´8.

c) sinhp´xq “ ´ sinhpxq i coshp´xq “ coshpxq.

d) cosh2pxq ´ sinh2pxq “ 1.

e) coshpx` yq “ coshx cosh y ` sinhx sinh y

f) sinhpx` yq “ sinhx cosh y ` coshx sinh y.

g) psinhxq1 “ coshx i pcoshpxqq1 “ sinhpxq. Ž
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1. El cos dels nombres complexos

1.4. L’exponencial complexa

1.4.1. Fent servir la fórmula de de Moivre, trobeu expressions de sin 3θ i sin 4θ en termes
de sin θ i cos θ. Ž

1.4.2. Trobar les arrels de z4 ` 1 “ 0 i fer-les servir per veure que z4 ` 1 “ pz2 ´
?
2z `

1qpz2 `
?
2z ` 1q. Ž

1.5. Representació polar d’un nombre complex

1.5.1. Trobeu la forma polar dels nombres següents i dibuixeu-los.

a) 3p1 `
?
3 iq, b) 2

?
3 ´ 2i, c) ´2 ` 2i, d) ´1 ´ i. Ž

1.5.2. Expresseu en forma cartesiana (a` ib) els següents nombres:

a) p2 ` 3iqp4 ` iq,

b) p4 ` 2iq2,

c) 1
4`i ,

d) i
2`i ,

e) p1 ´ 2iq3,

f) 1
2`i ` 4´2i

3`i ,

g) p1 ` iq100 ` p1 ´ iq100,

h)
´

1`2i
1´i

¯2
. Ž

1.5.3. Fent servir el producte de p1 ` iqp5 ´ iq4 deduir la fórmula de Machin1: π{4 “

4 arctanp1{5q ´ arctanp1{239q. Ž

1.5.4. Estudiar la convergència de tzn0 u si |z0| ă 1 o si |z0| ą 1. Ž

1.5.5. Digueu si les següents successions són convergents i en cas afirmatiu calculeu el
seu ĺımit:

a) zn “
i

n
,

b) zn “ ip´1qn,

c) zn “ Argp´1 ` i{nq,

d) zn “
np2 ` iq

n` 1
,

e) zn “

ˆ

1 ´ i

4

˙n

,

f) zn “ exp

ˆ

2nπi

5

˙

.

Aqúı hem escrit exppzq “ ez.

1.6. Equacions amb exponencials

1.6.1.

Resoleu les següents equacions:
1John Machin (1706), podeu trobar més informació a https://en.wikipedia.org/wiki/Machin-like_

formula.
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1. El cos dels nombres complexos

a) ez “ 1 ` i, b) ez
2

“ i, c) eiz “ ´1. Ž

1.7. Arrels n-èsimes

1.7.1. Calculeu:

a) 3
?

´1, b) 31{4, c) 4
?

´i, d) p´1 `
?
3iq1{2, e) p3 ` 4iq

1
2 . Ž

1.7.2. Donat a P C, quin és el màxim de |zn ` a| per a |z| ď 1? Ž

1.8. Polinomis: enunciat del teorema fonamental de l’àlgebra

1.8.1. Resoleu pz ` 1q5 “ z5. Ž

1.8.2. Sigui P pzq “ 1 ` 2z ` 3z2 ` ¨ ¨ ¨ ` nzn´1. Considerant el polinomi p1 ´ zqP pzq,
demostreu que tots els zeros de P pzq estan dins del disc unitat. Ž
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2. Funcions de variable complexa

2.1. Funcions

2.1.1. Escriure les següents funcions de la forma upx, yq ` ivpx, yq.

a) fpzq “ 1{z,
b) gpzq “

2z2 ` 3

|z ´ 1|
,

c) hpzq “ ez ` e´z. Ž

2.1.2. Trobeu el rang de

a) fpzq “ z2 si z està en el primer quadrant,

b) gpzq “ 1{z per 0 ă |z| ď 1,

c) hpzq “ ´2z3 per z tal que 0 ă |z| ă 1 i Argz ă π{2. Ž

2.1.3. Digueu on són cont́ınues les següents funcions

a)
1

z ´ 2 ` 3i
,

b)
iz3 ` 2z

z2 ` 1
,

c)
3z ´ 1

z2 ` z ` 4
,

d) z2p2z2 ´ 3z ` 1q´2. Ž

2.1.4. Proveu que la inversió w “ fpzq “ 1{z transforma

a) el cercle |z| “ r en el cercle |w| “ 1{r,

b) el raig Argz “ θ0,´π ă θ0 ă π, en el raig Argw “ ´θ0,

c) el cercle |z ´ 1| “ 1 a la ĺınia vertical x “ 1{2. Ž

2.1.5. Trobeu una funció af́ı que transformi el cercle |z| ă 1 en el cercle |w ´ w0| ă R
de manera que els centres es corresponguin i el diàmetre horitzontal es transformi en el
diàmetre que forma un angle α amb l’eix real. Ž

2.1.6. Per l’exponencial fpzq “ ez:

a) Descriviu-ne el domini i el rang.

b) Proveu que fp´zq “ 1{fpzq.
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2. Funcions de variable complexa

c) Descriviu la imatge de Re z “ 1.

d) Descriviu la imatge de Im z “ π{4.

e) Descriviu la imatge de la banda 0 ď Im z ď π{4. Ž

2.1.7. La funció de Jukovski1 és w “ Jpzq “ 1
2

`

z ` 1
z

˘

, vegeu la figura 3.7. Proveu que

a) Jpzq “ Jp1{zq,

b) J porta el cercle unitat |z| “ 1 a l’interval real r´1, 1s,

c) J porta el cercle |z| “ r (r ą 0, ­“ 1) a l’el.lipse
u2

“

1
2

`

r ` 1
r

˘‰2 `
v2

“

1
2

`

r ´ 1
r

˘‰2 “ 1 que té

els focus a ˘1. Ž

2.1.8. Fent servir la comanda contour_plot de Sage dibuixeu les corbes de nivell de u i
v si f “ u` iv és

a) z,

b) z2,

c) logpzq,

d) sinpzq,

e) 1{z,

f) 1{z2,

g) ez,

h)
1

z ´ 1
`

1

z ` 1
,

i) logpz ´ 1q ` logpz ` 1q. Ž

2.2. Funcions multivaluades

2.2.1. Donada l’equació de Cardano z3`pz`q “ 0, comprova que si C “

ˆ

´
q
2 `

b

q2

4 `
p3

27

˙
1
3

,

aleshores z1 “ C ´
p
3C és solució de la cúbica. Les tres arrels s’obtenen canviant l’elecció

de l’arrel cúbica.
Tot seguit obre GeoGebra2 i dibuixa els punts p “ 1`i i q “ 2`0i; defineix w “ ´1

2`
?
3
2 i,

C mitjançant la fórmula anterior, i z1 “ C ´
p
3C , z2 “ wC ´

p
3wC i z3 “ w2C ´

p
3w2C

.
Escull tres colors diferents per zj, i activa la seva traça. Deixant q fixat i movent p,
per exemple, comprova que els tres punts són funció de p, i es poden determinar com a
branques cont́ınues localment de manera cont́ınua, tot i que C presenta discontinüıtats de
salt que fan que els tres zj vagin permutant la seva posició. Per exemple, pots fixar p
en la circumferència de radi 4 amb la instrucció p=Punt(Circumferència((0, 0), 4))i
observar què ocorre, i comparar amb el radi 2 o 3. Pots usar també la instrucció lloc

geomètric. Quantes voltes cal que faci p a aquesta circumferència per tal que una arrel
doni la volta a l’origen de manera cont́ınua? Ž

1Nikolai Jukovski, Orekhovo, 1847–1921, https://ca.wikipedia.org/wiki/Nikolai_Jukovski
2o entra a https://www.geogebra.org/m/jbszj89u

6

https://ca.wikipedia.org/wiki/Nikolai_Jukovski
https://www.geogebra.org/m/jbszj89u


2. Funcions de variable complexa

2.3. Logaritmes i arguments

2.3.1. Doneu exemples que mostrin la falsedat de la igualtat Log pa ¨ bq “ Log a ` Log b.
(Per exemple, a “ b “ ´1 ´ i). Ž

2.3.2. Sigui L una determinació del logaritme en Czp´8, 0s tal que Lp1q “ 2πi. Proveu
que la funció fpzq “ Lpz ` 3q és cont́ınua en

D :“ tz P C; Re pzq ą ´3u .

Quant val fp3iq? Ž

2.3.3. Una branca de l’argument Apzq (o del logaritme Lpzq) queda fixada si donem i) el
domini Ω on està definida ii) el valor de Apzq (o de Lpzq) d’un punt d’Ω. Conside reu
els dominis:

Ω1 “ Cz
␣

reiπ, r ě 0
(

; Ω2 “ Cz

!

reiπ{4, r ě 0
)

Ω3 “ Cz ptx P r´1, 0su Y t´1 ` iy, y P r0, 1.5su Y tx` 1.5i, x P r´1,8quq .

Completeu la següent taula.

Ω1 Ω2 Ω3

Ap1q “ 0 Apiq “ Apiq “ Apiq “

Lpiq “ Lpiq “ Lpiq “

Lp2iq “

Ap1q “ ´2π Apiq “ Apiq “ Apiq “

Lpiq “ Lpiq “ Lpiq “

Lp2iq “

Apiq “ ´3π
2 Ap1q “ Ap1q “ Ap1q “

Lp1q “ Lp1q “ Lp1q “

Lp2iq “

Ž

2.3.4. Estudieu si existeix alguna determinació del logaritme en els conjunts següents i
determineu els possibles conjunts imatge:

a) tz P C | Re z ą 0u, b) tz P C | Re z ą Im zu, c) tz P C | 1 ă |z| ă 2u. Ž

2.3.5. Calculeu els possibles valors de

a) logp1q, b) logp´1q, c) logp1 ` iq, d) logp1´ i
?
3q, e) logpiq. Ž

2.3.6. Escrivim cos z “ peiz ` e´izq{2 i sin z “ peiz ´ e´izq{2i. Resoleu les equacions
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2. Funcions de variable complexa

a) ez “ 2i,

b) Logpz2 ´ 1q “ iπ{2,

c) e2z ` ez ` 1=0,

d) cos z “ 2i,

e) cos z “ sin z.

2.4. Potències complexes

2.4.1. Trobeu l’error en el següent raonament de Bernoulli: p´zq2 “ z2, llavors 2 logp´zq “

2 log z. Per tant, logp´zq “ logpzq. Ž

2.4.2. Calculeu els possibles valors de

a) ii, b) p
?
3 ` iq1´i, c) 2´i, d) pi2qi, e) piiq2. Ž

2.4.3. Determinar expĺıcitament la inversa de qpzq “ 2ez ` e2z en funció de logaritmes.
Resoldre qpzq “ 3, trobant totes les solucions.

2.4.4. Siguin h0pzq, h1pzq i h2pzq les determinacions de l’arrel cúbica en Ω “ Czp´8, 0s

tal que h0p1q “ 1, h1p1q “ e2πi{3 i h2p1q “ e4πi{3.

i) Descriviu hjpΩq per j “ 0, 1, 2.

ii) Per j “ 0, 1, 2 relacioneu hj amb Log i Arg (on Log i Arg denoten les branques
principals del logaritme i de l’argument respectivament).

iii) Usant les relacions anterior, trobeu el valor de hjpiq, per j “ 0, 1, 2. Ž

2.5. Determinacions de logaritmes i arrels de funcions

2.5.1. Sigui X un espai topològic connex. Demostreu que si S1 i S2 són dues determina-
cions de l’arrel n-èsima de f : X Ñ Czt0u llavors existeix una arrel n-èsima de la unitat
ζ tal que S2pxq “ ζ ¨ S1pxq, per a tot x P X. Ž

2.5.2. Determineu els dominis de continüıtat (és a dir l’obert maximal on una funció és
cont́ınua) de les funcions ez

2
, e1{z, 1{ez, 1{pez ´ 1q, de la branca principal de

?
1 ´ z i de

la branca principal de
?
1 ` ez. Ž

2.5.3. Donar una determinació de fpzq que sigui cont́ınua a la regió D donada.

a) f1pzq “ pz2 ´ 1q1{2, D “ tz P C : |z| ă 1u,

b) f2pzq “ pz2 ` 4q1{2, D “ Cztiy P C : |y| ă 2u,

c) f3pzq “ pz4 ´ 1q1{2, D “ tz P C : |z| ą 1u,

d) f4pzq “ pz3 ´ 1q1{3, D “ tz P C : |z| ą 1u. Ž
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2. Funcions de variable complexa

2.6. Sèries de potències de nombres complexos

2.6.1. Considereu la sèrie de potències Spzq :“
ř8

n“0 anpz ´ iqn. Digueu si són certes les
següents afirmacions.

a) Spzq pot ser divergent en z “ 0 i convergent en z “ ´i simultàniament

b) Spzq pot ser convergent en z “ 1 ` i i en z “ 2 ` i simultàniament

c) Si Spzq és convergent en z “ 1 ` i, aleshores també ho és en z “ 2i

d) Si Spzq és divergent en z “ 2i, aleshores també ho és en z “ 2 ` i. Ž

2.6.2. Sigui fpzq “
8
ř

n“0
anz

n una sèrie convergent en el disc D “ DRp0q. Demostreu que

ˆ 2π

0
|fpreiθq|2

dθ

2π
“

8
ÿ

n“0

|an|2r2n, si 0 ă r ă R. Ž

2.6.3. Sigui S1pzq “
8
ř

n“1
anz

n i S2pzq “
8
ř

n“1
anz

n´1. Demostreu que S1 és convergent en

z si i només si ho és S2. En cas afirmatiu, tenim que S1pzq “ zS2pzq.

2.7. Càlcul del radi de convergència

2.7.1. Calculeu el radi de convergència de les següents sèries de potències

a)
8
ÿ

n“1

nαzn; α P R,

b)
8
ÿ

n“1

pn` 1qpn` 2q . . . 2n

nn
zn,

c)
8
ÿ

n“1

pz ` iq2
n

nn
,

d)
8
ÿ

n“1

n!

p2nqn
pz ´ 1qn,

e)
8
ÿ

n“0

an
2
pz ` 1qn a P p0, 1q,

f)
8
ÿ

n“1

p2zqn
?
n

,

g)
8
ÿ

n“1

p´1qn

npn` 1q
pz ´ 2qnpn`1q,

h)
8
ÿ

n“0

zn

n` 2n
,

i)
8
ÿ

n“1

n2p3z ´ 2qn,

j)
8
ÿ

n“0

p1 ` p´1qnqnz2
n
. Ž

2.8. Comportament a la frontera del disc de convergència

2.8.1. Estudieu la convergència de les següents sèries de potències:
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2. Funcions de variable complexa

a)
8
ÿ

n“1

zn

n

b)
8
ÿ

n“0

zn`2

pn` 1qpn` 2q

c)
8
ÿ

n“0

z3n`1

3n` 1

d)
8
ÿ

n“1

p´1qpn`1q

n
zn

e)
8
ÿ

n“1

npz ´ iqn´1

5n
. Ž

2.8.2. Demostreu el criteri d’Abel i el teorema d’Abel. Indicació: Vegeu [BC13, Teorema
2.20] per un cas més general en regions no tangencials (angles de Stolz). Ž
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3. Derivació complexa i holomorfia

3.1. Funcions holomorfes

3.1.1. a) Demostreu la regla del producte per la derivació.

b) Proveu que si f és C-derivable en z0 llavors és cont́ınua en aquest punt.

c) Proveu que si f és C-derivable en z0, llavors

fpzq “ fpz0q ` f 1pz0qpz ´ z0q ` λpzqpz ´ z0q

on λpzq Ñ 0 si z Ñ z0. Ž

3.1.2. Siguin fpzq i gpzq funcions enteres. Decidiu si les següents funcions són enteres:

a) fpzq3,

b) fpzqgpzq,

c) fpzq{gpzq,

d) 5fpzq ` igpzq,

e) fp1{zq,

f) fpgpzqq.

3.1.3. Proveu que gpzq “ 3x2 ` 2x ´ 3y2 ´ 1 ` ip6xy ` 2yq és entera. Escriviu g com a
funció de z.1 Ž

3.1.4. Existeix alguna funció f holomorfa en el disc unitat D tal que per a tot n “ 2, 3, . . .

a) f
`

˘ 1
n

˘

“ 1
2n`1?

b) f
`

˘ 1
n

˘

“ 1
n2 ?

c)
ˇ

ˇf
`

1
n

˘
ˇ

ˇ “ 1
lnpn`1q

?

d)
ˇ

ˇf
`

1
n

˘ˇ

ˇ “ n
n`1? Ž

3.1.5. Doneu una branca de logpz2 ` 2z ` 3q que sigui holomorfa a z “ ´1. Calculeu la
seva derivada en aquest punt. En quin domini és holomorfa la branca que heu definit? Ž

3.1.6. Sigui f una funció holomorfa en un obert Ω Ă C que satisfà |fpzq ´ i| ă 1 per a
tot z P Ω. Demostreu que la funció g definida per

gpzq “
1 ´ i` fpzq

1 ` i´ fpzq

té logaritme holomorf en Ω. Ž

3.1.7. Sigui fpzq “ z3 `1 i z1 “ p´1`
?
3iq{2, z2 “ p´1´

?
3iq{2. Provar que no existeix

cap punt w en el segment que uneix z1 i z2 de manera que fpz2q ´ fpz1q “ f 1pwqpz2 ´ z1q.
Que es pot dir del teorema del valor mitjà per funcions complexes? Ž

1Si fpzq “ upx, yq ` ivpx, yq és holomorfa en un domini Ω que talla la recta real i u, v són holomorfes en
dues variables, llavors es pot provar que fpzq “ upz, 0q ` ivpz, 0q, vegeu l’exercici 4.10.10.
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3. Derivació complexa i holomorfia

Figura 3.1.: Graella en el pla complex entre ´2 ´ 2i i 2 ` 2i.

3.2. Les equacions de Cauchy-Riemann

3.2.1. Representem la identitat al pla complex amb la coloració habitual i amb la graella
entera. Per exemple, la identitat sobre el quadrat Q “ tx ` iy : x, y P p´2, 2qu és la
primera imatge de la figura 3.2. Una de les següents funcions, les diferencials de les quals
no s’anul.len en Q, representa una funció holomorfa en Q. Quina és?

a) b) c) d) Ž

3.2.2. Trobar els valors de les constants a, b, c de manera que f sigui holomorfa i expresseu-
la en termes de z.

a) fpzq “ x` ay ` ipbx` cyq

b) fpzq “ cosxpcosh y ` a sinh yq ` i sinxpcosh y ` b sinh yq. Ž

3.2.3. Sigui f “ u` iv holomorfa i dues vegades diferenciable en un obert Ω Ă C. Proveu
que les funcions u i v són harmòniques (una funció fpx, yq és harmònica si les seves
segones derivades parcials són cont́ınues i el seu laplacià ∆f :“ fxx ` fyy “ 0.) Ž

3.2.4. Considerem u “ e´xpx sin y ´ y cos yq

a) Provar que u és harmònica.

b) Trobar una v de manera que f “ u` iv sigui holomorfa (s’anomena harmònica conju-
gada de u).

12



3. Derivació complexa i holomorfia

c) Trobar una expressió compacta de fpzq. Ž

3.2.5. Trobar els polinomis harmònics de la forma ax3 ` bx2y ` cxy2 ` dy3. Trobar la
funció harmònica conjugada i la funció holomorfa corresponent. Ž

3.2.6. Sigui Ω Ă C un domini (és a dir, un obert connex) i f una funció holomorfa en Ω.

1. Proveu que si f només pren valors imaginaris purs, aleshores f és constant.

2. Proveu que si |f | és constant, aleshores f també és constant. Equivalentment si f
només pren valors en una circumferència, llavors f és constant. Ž

3.2.7. Doneu una descripció de les funcions enteres de la forma fpx ` iyq “ upxq `

ivpx, yq. Ž

3.2.8. (a) Determineu els nombres λ P R pels quals

vλpx, yq “ 2 sinx sinh y ` x3 ´ λxy2 ` y

és la part imaginària d’una funció entera fλ i calculeu fλ.

(b) Sigui λ P R un nombre determinat en a). És

gλ “
Bvλ
Bx

´ i
Bvλ
By

una funció entera? Quina relació hi ha entre gλ i fλ? Ž

3.2.9. Decidiu on no són holomorfes les funcions següents

a)
1

z ´ 2 ` 3i
, b)

iz3 ` 2z

z2 ` 1
, c)

3z ´ 1

z2 ` z ` 4
, d)

z2

p2z2 ´ 3z ` 1q2
.Ž

3.2.10. Provar que |z|2 és C-derivable en z “ 0 però enlloc més. Ž

3.2.11. Sigui

fpzq “

#

expp´1{z4q si z ‰ 0

0 si z “ 0.
.

Demostreu que

a) fpzq satisfà les equacions de Cauchy-Riemann a tot punt z P C.

b) f no és cont́ınua al 0 i per tant f no és holomorfa a un entorn del 0. Ž

3.2.12. Si u i v s’expressen respecte a les coordenades polars pr, θq, proveu que les equa-
cions de Cauchy-Riemann es poden expressar de la forma

Bu

Br
“

1

r

Bv

Bθ
,

Bv

Br
“ ´

1

r

Bu

Bθ
.

Indicació: estudieu el ĺımit incremental seguint argz “ θ0 i |z| “ r0. Ž

3.2.13. Quina part del pla es contreu i quina part es dilata si la transformació es realitza
mitjançant la funció:

13



3. Derivació complexa i holomorfia

a) w “ z2;

b) w “ z2 ` 2z;

c) w “
1

z
; d) w “ ez;

e) w “ logpz ´ 1q. Ž

3.3. Càlcul de les derivades

3.3.1. Sigui Ω Ă C un obert i f una funció holomorfa en Ω. Definim Ω˚ “ tz P C : z P Ωu

i f˚ : Ω˚ Ñ C donada per f˚pzq “ fpzq. Proveu que f˚ és holomorfa en Ω˚. Ž

3.3.2. Trobeu els punts on la funció f té derivada complexa (i calculeu-la si escau) en els
següents casos. (Podeu fer servir si cal que f 1 “ fx.)

a) fpzq “ |z|4

b) fpx` iyq “ expcos y ` i sin yq

c) fpzq “ z ` 1
z

d) fpzq “ 1
pz´1q2pz2`2q

e) fpzq “ |z|

f) fpx` iyq “ coshx cos y ` i sinhx sin y

g) cos |z|2

h) fpzq “ z ` zz̄ Ž

3.3.3. Donat un polinomi de dues variables reals P px, yq, demostreu que identificant z “

x` iy són equivalents:

1. P es pot expressar com un polinomi en z.

2. P és una funció entera.

3. B̄P “ 0 en C. Ž

3.4. Funcions anaĺıtiques

3.4.1. Discutir l’analiticitat de

a) 8z̄ ` i,

b)
z

z̄ ` 2
,

c)
z3 ` 2z ` i

z ´ 1
(vegeu la figura 3.7),

d) x2 ´ y2 ` 2xyi,

e) x2 ` y2 ` y ´ 2 ` ix,

f)

ˆ

x`
x

x2 ` y2

˙

` i

ˆ

y ´
y

x2 ` y2

˙

,

g) |z|2 ` 2z,

h)
|z|2 ` z

2
. Ž

3.4.2. Trobeu la suma de les sèries

14



3. Derivació complexa i holomorfia

a)
8
ÿ

n“1

ˆ

1 ` i

3

˙n

; b)
8
ÿ

n“1

p3 ` iqn

n!
; c)

8
ÿ

n“1

nzn si |z| ă 1. Ž

3.4.3. Sigui fpzq :“
ř

ně0 cnz
n per |z| ă R on R és el radi de convergència de la sèrie.

Demostreu que si fpzkq “ 0 per una successió pzkqk tal que zk ‰ 0 i zk Ñ 0 quan k Ñ 8,
aleshores fpzq ” 0 (i.e. cn “ 0 per a tot n ě 0). Indicació: Calculeu fp0q i considereu la
sèrie fpzq{z). Ž

3.4.4. Demostreu que si dues sèries
ř

ně0 anz
n i

ř

ně0 bnz
n són convergents i tenen la

mateixa suma per a una successió pzkqk tal que zk ‰ 0 i zk Ñ 0 quan k Ñ 8 aleshores
an “ bn per a tot n ě 0. Ž

3.4.5. Calculeu la suma de les sèries de potències de l’exercici 2.8.1.

3.4.6. Considereu la sèrie

Spzq “
ÿ

ně1

z2n´1

2n
.

a) Estudieu-ne la convergència puntual i uniforme sobre compactes.

b) Calculeu quant val la suma per tot z del disc de convergència.

c) Doneu el valor de

ÿ

ně1

p´1qn

n9n
. Ž

3.4.7. Considereu la sèrie de potències
ÿ

ně1

npn` 1qzn.

a) Estudieu la seva convergència.

b) Calculeu la seva suma.

c) Quant val
ř

ně1p´1qn
npn`1q

2n ? Ž

3.4.8. Considereu la sèrie de potències

Spzq “ 2πi`
ÿ

ně1

p´1qnp2z ` 1qn

n
.

(a) Calculeu la seva suma i el seu domini de convergència, especificant amb precisió
totes les funcions involucrades. Indicació: Per especificar un logaritme, cal donar
un domini de definició i la imatge d’un punt.

(b) Calcula la solució (si existeix) de l’equació Spzq “ e. Ž

15



3. Derivació complexa i holomorfia

3.5. Algunes funcions holomorfes importants

3.5.1. Demostreu que:

(i) sin z i cos z són funcions enteres amb

psin zq1 “ cos z; pcos zq1 “ ´ sin z.

(ii) cosp´zq “ cos z, i també sinp´zq “ ´ sin z per a tot z P C.

(iii) cos2 z ` sin2 z “ 1.

(iv) Per a tot z, w P C, cospz ` wq “ cos z cosw ´ sin z sinw, sinpz ` wq “ sin z cosw `

cos zsinw. Ž

3.5.2.

Resoleu les següents equacions:

a) sin z “ 4 b) cos z “ i. Ž

3.5.3. a) Proveu que cos z “ cos z i que sin z “ sin z, per a tot z P C.

b) Trobeu tots els zeros de les funcions sinus i cosinus.

c) Dedüıu de (b) que, per a z1, z2 P C, es verifica:

i) cos z1 “ cos z2 si, i només si, z2 ˘ z1 P 2πZ.
ii) sin z1 “ sin z2 si, i només si, z2 ´ z1 P 2πZ o bé z2 ` z1 P π ` 2πZ.

d) Proveu que per a tot z “ x` iy P C se satisfà:

i) sin z “ sinx cosh y ` i cosx sinh y (vegeu l’exercici 1.3.2).

ii) cos z “ cosx cosh y ´ i sinx sinh y.

iii) | sin z|2 “ sin2 x` sinh2 y.

iv) | cos z|2 “ cos2 x` sinh2 y.

e) Sobre quines rectes està acotada la funció sinus? I la funció cosinus? Ž

3.5.4. (a) Proveu que per a cada w P Czt˘iu, l’equació tan z “ w té infinites solucions,
que són la funció multivaluada

arctanw :“
1

2i
log

ˆ

i´ w

i` w

˙

.

Vegeu també que per a w “ ˘i l’equació no té cap solució.
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3. Derivació complexa i holomorfia

(b) Vegeu que dues determinacions cont́ınues de arctanw en un conjunt connex E Ă

Czt˘iu difereixen de kπ, k P Z.

(c) Vegeu que no hi ha cap determinació cont́ınua de arctanw als anells tr ă |w ´ i| ă

Ru, tr ă |w ` i| ă Ru, 0 ă r ă R ă 2, però que śı que n’hi ha si 2 ă r ă R ă `8.

3.5.5. Demostra que el domini de continüıtat de la branca principal de l’arctangent

Arctanw :“
1

2i
Log

ˆ

i´ w

i` w

˙

.

és Cztiy : |y| ě 1u. Ž

3.5.6. a) Sigui L la determinació del logaritme en Czp´8, 0s que compleix que Lp1q “

4πi. Definim fpzq :“ ´Lp2 ´ 2zq. Demostreu que f és holomorfa en Czr1,`8q.
Calculeu fp0q i fp´iq.

b) Considereu la sèrie de potències

Spzq “
ÿ

ně1

p2z ´ 1qn

n
.

Demostreu que Spzq “ ´Log p2 ´ 2zq, per tot z P D :“ D1{2p1{2q, on Log és la
determinació principal del logaritme.

c) Quina relació hi ha entre Spzq i fpzq? Indicació: Relacioneu primer Lpzq amb Log pzq

per z P Czp´8, 0s. Ž

3.5.7. Sigui
?

¨ la determinació de l’arrel quadrada en Czr0,8q complint que
?

´1 “ i i
sigui fpzq “

?
3z ` 2.

1. Expresseu
?

¨ en termes d’una determinació del logaritme i argument.

Recordem que
?
z “ e

1
2
log z “ e

1
2

pln |z|`i arg zq.

2. Quina és la regió més gran of f és holomorfa? Quina és la imatge? Existeix z tal
que fpzq “ ´i?

3. Què val fp i´2
3 q? Ž

3.5.8. Trobeu el desenvolupament en sèrie de potències al voltant del punt a “ 1 de la
funció fpzq “ 3

?
z on 3

?
. denota la determinació de l’arrel cúbica definida a Czp´8, 0s tal

que 3
?
1 “ e2πi{3 “ ´1`i

?
3

2 . Ž
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3. Derivació complexa i holomorfia

3.5.9. Els polinomis de Legendre2 Pjpζq són els coeficients de zj en el desenvolupament
de Taylor

1
a

1 ´ 2ζz ` z2
“

8
ÿ

j“0

Pjpζqzj .

Provar que Pjpζq és un polinomi de grau j i calcular P0, P1, P2 i P3.

Ž

2Adrien-Marie Legendre, Paŕıs, 1752 – 1833, https://ca.wikipedia.org/wiki/Adrien-Marie_Legendre
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4. Integrals de ĺınia i teoria local de Cauchy

4.1. Corbes

4.1.1. Proveu que l’el.lipse x2{a2 ` y2{b2 “ 1 és una corba diferenciable (és a dir, existeix
una parametrització zptq, t P I que el seu rang és l’el.lipse, és diferenciable, z1ptq ­“ 0 i zptq
és injectiva. Diem que zptq és una parametrització admissible o regular). Ž

4.1.2. Parametritzeu el contorn format pel peŕımetre del quadrat amb vèrtexs ´1 ´ i, 1 ´

i, 1 ` i, ´1 ` i seguint aquest ordre. Quina és la seva longitud? Ž

4.2. Integració sobre corbes

4.2.1. Sigui γ “ tz P C : |z| “ 1u el cercle unitat amb l’orientació habitual. Avalueu, per
a tots els m P Z: ˆ

γ

dz

zm
,

ˆ
γ

|dz|

zm
,

ˆ
γ

dz

|zm|
,

ˆ
γ

|dz|

|zm|
. Ž

4.2.2. Sigui γ “ BDrp0q. Calculeu, per a n P Z,
ˆ
γ
zn dz. Ž

4.2.3. Sigui γ “ ri` 1,´is. Avalueu les següents integrals de ĺınia:

a)
´
γ sinp2zq dz b)

´
|z|“1 ze

z2 dz c)
´

|z´2|“1
1
z dz Ž

4.2.4. Avaluar les següents integrals.

a)

ˆ
γ

ˆ

6

pz ´ iq2
`

2

z ´ i
` 1 ´ 3pz ´ iq2

˙

dz si γ és |z ´ i| “ 4 recorreguda un cop amb

l’orientació estàndard.

b)

ˆ
γ
px´ 2xyiqdz al llarg del contorn γ : z “ t` it2 amb t P r0, 1s.

c)

ˆ
γ
p|z ´ 1 ` i|2 ´ zqdz al llarg de la semicircumferència γ : z “ 1 ´ i` eit on t P r0, πs.

d) La funció no anaĺıtica fpzq “ x2 ` iy (per què?) al llarg de |z| “ 1 recorreguda un cop
en sentit antihorari. Ž
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4. Integrals de ĺınia i teoria local de Cauchy

4.2.5. Calcular les següents integrals al llarg del camı́ γ que s’indica.

a)

ˆ
γ

1

z
dz per qualsevol contorn en el semiplà dret que va de ´3i a 3i. Quin problema

tenim si seguim un contorn pel semiplà esquerre? Indicació: considerar la determinació
principal del logaritme en la qual el logaritme no està definit si y “ 0, x ď 0.

b)

ˆ
γ
ez cos zdz per un camı́ d’origen a “ i i final b “ π.

c)

ˆ
γ
z1{2dz per la branca principal de z1{2 per un camı́ d’origen a “ i i final b “ π que

no talli la semirecta p´8, 0s. Ž

4.2.6.

Considerem la determinació de l’arrel
?
z2 ´ 1 que és holomorfa a Czr´1, 1s i positiva a

p1,8q.

(a) Vegeu que z `
?
z2 ´ 1 omet l’eix real negatiu si z P Ω “ Czp´8, 1s, de manera que

la determinació principal Log pz `
?
z2 ´ 1q està definida a Ω.

(b) Vegeu que Log pz `
?
z2 ´ 1q és una primitiva de 1?

z2´1
a Ω.

(c) Avalueu

ˆ
γ

dz
?
z2 ´ 1

, on γ és el tros de cercle |z ´ 1| “
?
2 que va de i a ´i passant

pel semiplà de la dreta (Re z ą 0).

Indicació: comproveu que
?
z2 ´ 1 “ e

1
2

pLog pz´1q`Log pz`1qq s’estén a Czr´1, 1s de manera
cont́ınua. Ž

4.2.7. Siguin γ1 :“ t|z| “ 1 : Im z ě 0u i γ2 :“ t|z| “ 2 : Re z, Im z ě 0u. Demostreu que:

a)

ˇ

ˇ

ˇ

ˇ

ˆ
γ1

dz

z2 ` 2

ˇ

ˇ

ˇ

ˇ

ď π

b)

ˇ

ˇ

ˇ

ˇ

ˆ
γ2

dz

z2 ` 1

ˇ

ˇ

ˇ

ˇ

ď π
3

c)

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“1

sin z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2πe

d)

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“2

e´z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď πe2. Ž

4.2.8. (a) Sigui γ un camı́ en C. Proveu que si f és una funció cont́ınua en γ˚ llavors
ˆ
γ
fpzq dz “

ˆ
γ
fpzq dz.

(b) Dedüıu que si f és una funció cont́ınua en el cercle unitat llavors
ˆ

|z|“1
fpzq dz “ ´

ˆ
|z|“1

fpzq
dz

z2
. Ž
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4.3. Teorema de Cauchy

4.3.1. Recordeu que

ˆ 8

´8

e´x2
dx “

?
π.

(a) Proveu que

ˆ 8

´8

e´px`iaq2dx “
?
π per a tot a ą 0. Indicació: Apliqueu el teorema

de Cauchy al rectangle r´R,Rs ˆ r0, as.

(b) Proveu que

ˆ 8

´8

e´x2{2 cospnxq dx “
?
2πe´n2{2, n P Z. Ž

4.3.2. Determineu el domini d’holomorfia de les funcions f donades i digueu perquè´
|z|“2 fpzqdz “ 0.

a) fpzq “
cos z

z2 ´ 6z ` 10
,

b) fpzq “ Logpz ` 3q. Ž

4.3.3. Sigui u : D Ñ R una funció harmònica en un disc D, és a dir, tal que ∆u “

4B̄Bu “ 0. Demostra que existeix una funció v : D Ñ R harmònica tal que pu ` ivq és
holomorfa. L’anomenem harmònica conjugada. Indicació: Demostreu que les equacions
de Cauchy-Riemann per F “ U ` iV es poden escriure com BF “ 2BU o com BU “ ´iB̄V .

Ž

4.3.4. El teorema de Green diu que si Ω Ă C és un obert i U Ă Ω és un obert fitat
prou regular (per exemple amb frontera C1) i tal que U Ă Ω, aleshores tot camp vectorial
F “ pF1, F2q : Ω Ñ R2 amb F P C1pΩq satisfà queˆ

U
pBxF2 ´ ByF1q dm “

ˆ
BU

pF1 dx` F2 dyq .

Demostreu la fórmula de Green en variable complexa (4.1). Ž

4.3.5. Continuant amb l’exercici 4.3.4, demostreu la fórmula de Cauchy generalitzada,
coneguda com a fórmula de Cauchy-Pompeiu1, que diu que si ϕ P C1pΩq i z0 P U , aleshores

ϕpz0q “
1

2πi

ˆ
BU

ϕpzq

z ´ z0
dz ´

1

π

ˆ
U

B̄ϕpzq

z ´ z0
dmpzq.

Notem que el cas particular ϕ P C1
c pΩq ens diu ϕ “ CpB̄ϕq, on C indica la transformada de

Cauchy

Cψpz0q :“ ´
1

π

ˆ
U

B̄ψpzq

z ´ z0
dmpzq. Ž

4.4. Fórmula integral de Cauchy

4.4.1. Avalueu, usant la fórmula integral de Cauchy, les següents integrals:
1Dimitrie Pompeiu, Broscăut, i, 1873–1954, https://ca.wikipedia.org/wiki/Dimitrie_Pompeiu
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4. Integrals de ĺınia i teoria local de Cauchy

a)
´

|z|“2
z2

z´1dz;

b)
´

|z|“1
sinpezq

z dz;

c)
´

|z|“2
dz

z2´1
;

d)
´

|z|“2
dz

z2`z`1
;

e)
´

|z|“2
dz

z2`2z´3
;

f)
´

|z´2|“ 3
2

cospzq

z2pz2´π2q
dz;

g)
´

|z|“3
3z´2
z2´z

dz;

h)
´

|z`1|“1
1

z2´1
dz. Ž

4.4.2. Sigui p un polinomi de grau n, amb tots els seus zeros continguts en DRp0q. De-
mostreu que

ˆ
|z|“R

p1pzq

ppzq
dz “ 2πin. Ž

4.4.3. Sigui a P C, |a| ă 1. Calculeu la integral de ĺınia

ˆ
|z|“1

ˆ

2

z ´ a
´

1

z

˙

dz, i dedüıu

que

ˆ 2π

0

p1 ´ r2q dt

1 ` r2 ´ 2r cospθ ´ tq
“ 2π, per a tot 0 ď r ă 1 i θ P R. Ž

4.4.4. Siguin f, g P HpΩq, on Ω és un domini tal que D Ă Ω. Donat a P C amb |a| ‰ 1,
calculeu

1

2πi

ˆ
BD

ˆ

fpwq

w ´ a
´

agpwq

aw ´ 1

˙

dw. Ž

4.4.5. Es consideren els següent exercicis relacionats amb la Fórmula Integral de Cauchy.2

a) Calculeu

˛
C

z2

z4 ´ 1
dz sobre la circumferència de radi 3 centrada en 0.

b) És cert que

˛
C

ez

z
dz “ 0 si C és tancada i simple?

4.5. Sèries de potències

4.5.1. Desenvolupeu en sèrie de potències al voltant del punt a i doneu el radi de con-
vergència de:

a) 1{z, a “ 1,

b) z2ez, a “ 0,

c) 1
pz´1qpz´2q

, a “ 0,

d) 1
p1´zq3

, a “ 0,

e) ez

1´z , a “ 0,

f) 1
1`ez , a “ 0.

2De vegades es fa servir la notació
¸

per indicar que la integral és sobre un camı́ tancat.
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4. Integrals de ĺınia i teoria local de Cauchy

(en (e) i (f) només cal calcular els 3 primers termes). Ž

4.5.2. Sigui α P C, provar que si p1 ` zqα es pensa com eαLogp1`zq llavors per |z| ă 1

p1 ` zqα “ 1 ` αz `
αpα ´ 1q

2!
z2 `

αpα ´ 1qpα ´ 2q

3!
z3 ` ¨ ¨ ¨

(generalització del binomi de Newton).

4.5.3. Trobeu els desenvolupament en sèrie de potències al voltant del punt a de les
següents funcions:

a) fpzq “ cos2 z, a “ 0.

b) fpzq “ z2

pz`1q2
, a “ 1.

c) 3
?
z, a “ 1.

Aqúı 3
?
. és la determinació de l’arrel cúbica en Czp´8, 0s que val p´1 ` i

?
3q{2 en

z “ 1. Ž

4.5.4. Considereu la funció fpzq “
z ` 1

pz ´ 1qpz ` iqz
i el punt a “ ´1.

1. “Sense fer cap càlcul”, raoneu quin és el disc de convergència de la sèrie de potències
de f al voltant del punt a.

2. Calculeu la sèrie de potències de f al voltant de a. Ž

4.5.5. a) Es pot desenvolupar
?
z en sèrie de potències en un entorn de l’origen?

b) Quin és el disc màxim centrat a 0 on es pot desenvolupar cosp1{pz ´ 1qq en sèrie de
potències?

c) I la funció
1

2 ´ z
`

z

3 ´ z
?

4.5.6. Determinar com a mı́nim els coeficients a1, a2, a3, a4 de la sèrie de Taylor de 1{p1`

z` z4q centrada a l’origen. Expliqueu perquè el radi de convergència és com a mı́nim 2{3.

4.5.7. Vegem com el teorema 4.22 és propi de l’anàlisi complexa. Una funció de variable
real f és anaĺıtica en un interval obert I Ă R si es pot expressar localment com a sèrie
de potències amb coeficients reals. Demostra que si f és anaĺıtica en I aleshores hi és
derivable. Troba una funció infinites vegades derivable en R que no hi sigui anaĺıtica.
Troba una funció f anaĺıtica en R que tingui radi de convergència 1.
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4. Integrals de ĺınia i teoria local de Cauchy

4.6. Fórmula integral de Cauchy centrada per derivades i
desigualtats de Cauchy

4.6.1. Donat r ą 0 i a P C calculeu

I “

ˆ
|z´a|“r

e2z

pz ´ aq3
dz. Ž

4.6.2. Siguin 0 ď m ď n enters. Calculeuˆ
|z|“1

p1 ` zqn

zm`1
dz. Ž

4.6.3. Intenteu calcular I “

ˆ 8

´8

1

p1 ` x2q2
dx fent servir la fórmula integral de Cauchy

per derivades (potser cal recordar la desigualtat |
´
Γ fpzqdz| ď

´
Γ |fpzq||dz|.)

a) Considereu la semicircumferència C en el semiplà superior centrada a 0 amb radi R i

tancada pel segment de l’eix OX. Calculeu

ˆ
C

1

p1 ` z2q2
dz.

b) Descomponeu C “ C1 Y C2 on C1 és el segment de ´R a R i C2 la part restant
de C. Fent servir la desigualtat triangular per integrals donar una fita superior de
ˇ

ˇ

ˇ

ˇ

ˆ
C2

1

p1 ` z2q2
dz

ˇ

ˇ

ˇ

ˇ

.

c) Fent servir els apartats anteriors calcular

ˆ
C1

1

p1 ` z2q2
dz. Que passa si R tendeix a

infinit? Ž

4.6.4. Sigui α ą 0 i f P HpDq complint que existeix c ą 0 i per a tot |z| ă 1, p1 ´

|z|qα|fpzq| ď c. Demostreu que per a tot n ě 0, |f pnqp0q| ď cn!
`

e
α

˘α
pn` αqα. Ž

4.6.5. Sigui f una funció entera de manera que existeixen constants C,M ą 0 tals que
|fpzq|e´C|z| ď M per a tot z P C. Demostreu que |f 1pzq|e´C|z| ď CMe per a tot z P C.
Indicació: Apliqueu la desigualtat de Cauchy al cercle centrat a z i de radi r per provar
que |f 1pzq|e´C|z| ď M

r e
Cr per a tot r ą 0 i z P C. Avalueu a r “ 1{C. Ž

4.6.6. (a) Suposem que una funció f entera satisfà que |fpzq| ď M si |z| “ R. Demos-
treu que els coeficients ck de la seva sèrie de Taylor centrada a a “ 0 compleixen

|ck| ď
M

Rk
.

(b) Suposem que el mòdul d’un polinomi P pzq està acotat per 1 pels z al disc unitat.
Demostreu que tots els coeficients de P tenen mòdul acotat per 1. Ž

4.6.7. Proveu que si f P HpDq tal que |fpzq| ď |eiz| per a tot z P D, aleshores, per a tot
n P N,

|f pnqp0q| ď n! e. Ž
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4. Integrals de ĺınia i teoria local de Cauchy

4.7. Teorema de Liouville i teorema fonamental de l’àlgebra

4.7.1. Suposem que f és entera. Provar que si f p4qpzq és fitada en el pla llavors f és un
polinomi de grau 4 com a màxim. Ž

4.7.2. La funció fpzq “ 1{z2 tendeix a 0 quan z Ñ 8 però no és una funció constant.
Contradiu això el Teorema de Liouville? Ž

4.7.3. Sigui f una funció entera. Per a |a| ă R i |b| ă R calculeu

I “

ˆ
|z|“R

fpzq

pz ´ aqpz ´ bq
dz.

Useu el resultat per demostrar el teorema de Liouville. Ž

4.7.4. Caracteritzeu les funcions enteres f tals que |f 1pzq| ď |z| per a tot z P C. Ž

4.7.5. Sigui f una funció entera. Usant el teorema de Liouville proveu que

(a) Si |f | ě 1, llavors f és constant.

(b) Si Re f ě 0, llavors f és constant.

(c) Si Im f ď 1, llavors f és constant. Ž

(d) Si Re f no té zeros, llavors f és constant.

4.7.6. Sigui f una funció entera tal que |fpzq| ď CeRe z, per a tot z P C, on C ą 0 és una
constant. Què es pot dir de f? Ž

4.7.7. Sigui f una funció entera tal que |f 1pzq| ă |fpzq| per a tot z P C. Què podem dir
de f? Ž

4.8. Teorema de Morera

4.8.1. Demostreu la continüıtat de f en el principi de reflexió de Schwarz. Ž

4.8.2. Sigui fpzq “ 1{z2. Comproveu que
´
γ fpzq dz “ 0 per a tot camı́ tancat γ que no

passi per 0, però f no és anaĺıtica en 0. Contradiu això el corol.lari 4.34 del teorema de
Morera? Ž
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4. Integrals de ĺınia i teoria local de Cauchy

4.8.3. (a) Sigui h una funció cont́ınua a R amb suport compacte (és a dir, existeix
K Ă R compacte tal que hpxq “ 0 si x R K) i sigui

Hpzq “

ˆ
R
hptqe´itzdt

(quan ens restringim a z P R, H s’anomena transformada de Fourier de h; si prenem
iz en el lloc de z, H s’anomena transformada de Laplace3 bilateral de h). Proveu
que H és una funció entera amb creixement exponencial: existeixen A,C ą 0 tals
que |Hpzq| ď CeA|Im z|.

(b) Sigui h una funció cont́ınua a r0, 1s. Demostreu que la seva transformada de Hilbert4

Hpzq “

ˆ 1

0

hptq

t´ z
dt

és anaĺıtica per a z P Czr0, 1s. Ž

4.8.4. Sigui f holomorfa en un obert Ω, i sigui z0 P Ω amb f 1pz0q ‰ 0. Demostreu que hi
ha r0 ą 0 de manera que, per 0 ă ε ă r0, es compleix la identitat

2πi

f 1pz0q
“

ˆ
|z´z0|“ε

dz

fpzq ´ fpz0q
.

Indicació: proveu primer que la funció G definida per

Gpzq “

#

fpzq´fpz0q

z´z0
si z ‰ z0

f 1pz0q si z “ z0

és holomorfa en Ω. Ž

4.9. Derivació sota el signe integral i fórmula integral de Cauchy
per derivades

4.9.1. Avalueu, usant la fórmula de Cauchy per a les derivades

a)

ˆ
|z|“1

ez

pz ´ 1{2q2
dz. b)

ˆ
|z|“1

sinpzq

p3z ´ 2q4
dz. c)

ˆ 2π

0
e´iθee

iθ
dθ. Ž

3Pierre-Simon Laplace, Beaumont-en-Auge, 1749–1827, https://ca.wikipedia.org/wiki/

Pierre-Simon_Laplace
4David Hilbert, Königsberg, 1862–1943, https://ca.wikipedia.org/wiki/David_Hilbert
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4. Integrals de ĺınia i teoria local de Cauchy

4.10. Zeros de funcions holomorfes i principi de prolongació
anaĺıtica

4.10.1. Trobeu els zeros, amb l’ordre corresponent, de les següents funcions:

a)
z2 ` 1

z2 ´ 1
b) z2 sin z c) fpzq “

1

z
`

1

z5
. Ž

4.10.2. Trobeu la multiplicitat de z “ 0 com a zero de la funció entera fpzq “ 2 cos z3 `

z6 ´ 2. Ž

4.10.3. Trobeu tots els zeros de les següents funcions holomorfes i calculeu-ne les seves
multiplicitats:

a) fpzq “ z2pez
2

´ 1q.

b) fpzq “ pz2 ´ π2q sin z{z.

c) fpzq “ p
?
z ´ 2q3.

Aqúı
?
. és la determinació de l’arrel quadrada en Czp´8, 0s que val ´1 en z “ 1. Ž

4.10.4. Sigui Ω Ă C un domini. Demostreu que l’anell de funcions holomorfes HpΩq a
una regió Ω és un domini d’integritat, és a dir, si f, g P HpΩq amb fg ” 0 aleshores f ” 0
o g ” 0. Ž

4.10.5. Sigui tanun una successió estrictament decreixent de nombres reals an P p0, 1q i
tal que lim

nÑ8
an “ 0. Sigui f una funció holomorfa en D. Demostreu que:

(a) Si fpanq P R per a tot n, aleshores fpz̄q “ fpzq per a tot z P D.

(b) Si a més fpa2nq “ fpa2n`1q per a tot n, aleshores f és constant. Ž

4.10.6. Trobeu totes les funcions holomorfes a D tals que:

(a) |fp1{nq| ď 1{2n, per a tot nombre natural n ě 2.

(b) fp1{nq “ lnp1 ` n3q ´ 3 lnn per a n ą 1. Ž

4.10.7. Trobeu totes les funcions f holomorfes en el disc D2p0q tals que fpeiθq “ ei2θ per
a tot θ P r0, 2πq, i a més fp0q “ 0. Ž

4.10.8. Sigui f P HpΩq en un domini Ω Ă C tal que f ˝ f “ f . Demostreu que o bé f és
constant, o bé és la identitat. Ž
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4. Integrals de ĺınia i teoria local de Cauchy

4.10.9. (a) Sigui f una funció entera tal que existeixen constants n P N, C ą 0 i R ą 0
tals que |fpzq| ď C|z|n, per a |z| ě R. Demostreu que f és un polinomi de grau més petit
o igual que n.

(b) Dedüıu que si f és una funció entera amb lim
|z|Ñ8

|fpzq| “ 8, llavors f és un polinomi.

Indicació: Demostreu que f només té un nombre finit de zeros a1, . . . , an (comptant mul-
tiplicitats) i apliqueu l’apartat (a) a la funció F “ P {f , on P pzq “ pz ´ a1q ¨ ¨ ¨ pz ´ anq.

Ž

4.10.10. Sigui Ω Ă C un domini (obert connex) tal que Ω X R ‰ H. Suposem que tenim
f, g, h P HpΩq i u, v : Ω Ñ R tals que per x` iy P Ω tenim

fpx` iyq “ upx, yq ` ivpx, yq,

i per x P Ω X R tenim
upx, 0q “ gpxq vpx, 0q “ hpxq.

Demostreu que
fpzq “ gpzq ` ihpzq per a tot z P Ω. Ž

4.11. El principi del mòdul màxim

4.11.1. Cerqueu l’enunciat del teorema de Stone5-Weierstrass i compareu-lo amb l’exemple
4.53.

4.11.2. Trobeu el màxim de:

a) | cos z| i | sin z| a r0, 2πs ˆ r0, 2πs.

b) |ez| i |ez
2
| a |z| ď 1. Ž

4.11.3. Trobeu totes les funcions holomorfes en D tals que fp1{2q “ 3 i |fpzq| ď 3 si
|z| ă 1. Ž

4.11.4. Es considera fpzq “ ecospzqz2 i el disc D de radi 2 centrat a 5. Provar que fpzq

assoleix el valor màxim i mı́nim del mòdul a |z ´ 5| “ 2. Indicació: considerar 1{fpzq. Ž

4.11.5. Sigui f una funció holomorfa en el disc DRp0q, R ą 0. Definim

Mprq “ max
|z|“r

|fpzq|, 0 ď r ă R.

Demostreu que si f no és constant, aleshores Mprq és estrictament creixent a r0, Rq. Ž

5Marshall Harvey Stone, New York City, 1903–1989, https://en.wikipedia.org/wiki/Marshall_H.

_Stone
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4. Integrals de ĺınia i teoria local de Cauchy

4.11.6. Sigui f una funció holomorfa en un obert connex Ω i D un disc obert tal que
D Ă Ω. Suposeu que |fpzq| “ c per tot z P BD, on c és una constant. Proveu que f té
almenys un zero en D o bé f és constant en Ω. Indicació: Distingiu segons si c “ 0 o
c ą 0. En el segon cas, proveu que si f no té zeros en D, aleshores f és constant en D.

Ž

4.11.7. Sigui f una funció holomorfa i no constant en Ω Ă C, un obert connex. Suposeu
que existeix a P Ω tal que |fpaq| ď |fpzq| per a tot z P Ω. Proveu que aleshores fpaq “ 0.

Ž

4.11.8. Sigui f P HpCq no constant. Demostreu que, per a tot c ą 0,

tz; |fpzq| ă cu “ tz; |fpzq| ď cu. Ž
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5. Topologia en el pla complex: teoria
global de Cauchy

5.1. Índex d’una corba tancada respecte d’un punt

5.1.1. Considerem el camı́ γptq “ 4eit cos 2
3 t, p0 ď t ď 6πq. Calculeu Ind pγ, 3q i Ind pγ, 1q.

Ž

5.1.2. Considerem el camı́ γptq “ p1 ` eit ` e´itqeit, p0 ď t ď 2πq. Esbosseu el dibuix
de la corba i calculeu-ne l’́ındex en cada component connexa del complementari de la seva
imatge. Calculeu ˆ

γ

3z ´ 3

z2 ´ 5
2z ` 1

dz. Ž

5.2. El teorema global de Cauchy

5.2.1. Considerem el camı́ γptq “ p2 sinp2t ´ π
3 q, 2 sinp3tqq, amb t P r0, 2πs. Esbosseu el

camı́, calculeu l’́ındex de la corba en cada component connexa de Czγ˚, i trobeu el valor
de ˆ

γ

e
1

z2´1

z2 ` 1
dz. Ž

5.3. Homotopia i teorema de Cauchy

5.4. Dominis simplement connexos

5.4.1. Siguin f, g P HpCq tals que f2 ` g2 ” 1. Demostra que existeix h P HpCq tal que
f “ cosphq i g “ sinphq. Ž

5.4.2. Demostra que si C8zΩ és connex i Ω és un obert connex, aleshores tota corba
tancada γ és homòtopa a 0. Ž

5.4.3. [Determinació de l’arrel en dominis simplement connexos] Sigui Ω Ă C un obert
simplement connex, i f P HpΩq amb fpzq ‰ 0 per a tot z P Ω. Llavors existeix g P HpΩq

amb
gpzq2 “ fpzq per a tot z P Ω.

A més, si z0 P Ω i tenim que w2
0 “ fpz0q, podem escollir g de manera que gpz0q “ w0.
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5.5. Funcions harmòniques

5.5.1. Sigui u : D Ñ R una funció harmònica en un domini simplement connex Ω.
Demostra que existeix una funció v : D Ñ R harmònica conjugada d’u (vegeu l’exercici
4.3.3). Ž

5.5.2. Demostra el lema 5.35 usant les equacions de Cauchy-Riemann directament. Ž

5.5.3. Sigui Ω un domini simplement connex, i sigui φ : D Ñ Ω una aplicació de Rie-
mann, és a dir un homeomorfisme holomorf entre D i Ω amb inversa holomorfa, vegeu el
teorema 7.6, les derivades de les quals estenen cont́ınuament a BD i a BΩ respectivament.
Demostreu que existeixen determinacions del logaritme i l’argument de manera que

Lpφ1pz0qq “ ReLpφ1qp0q `
i

2πr

ˆ
BD

Apφ1pzqqHpz, z0q|dz|. Ž

5.5.4. El problema de Dirichlet consisteix en trobar una funció harmònica en un domini
obert Ω que sigui cont́ınua fins la seva frontera BΩ i amb un valor prefixat a BΩ. Suposem
que ϕ1 i ϕ2 són harmòniques a Ω i cont́ınues fins a BΩ i que ϕ1 “ ϕ2 a la vora BΩ. Provar
que si Ω és simplement connex, aleshores ϕ1 “ ϕ2 en tot punt d’Ω. Indicació: trobar
la funció v harmònica conjugada de ϕ1 ´ ϕ2 i aplicar el principi del màxim (mı́nim) a
ϕ1 ´ ϕ2 ` iv. Ž

5.5.5. Una distribució estacionària T de la temperatura en una regió Ω és una funció
harmònica i cont́ınua fins la frontera. Trobeu la temperatura T a l’interior d’un disc de
radi 1 si sabem que la temperatura val Im z als dos primers quadrants de la circumferència
de frontera i 0 a la resta de punts de la vora. En particular veieu que la temperatura al
centre del disc és 1{π. Ž
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6. Sèries de Laurent

6.1. Sèries de Laurent i singularitats

6.1.1. Calcular la sèrie de Laurent de

a)
z ´ 1

zpz ´ 4q3
a 0 ă |z ´ 4| ă 4.

b) 1{ep1´zq per |z| ą 1. Ž

6.1.2. Per a la funció fpzq “
sin z cos 3z

z4

1. Trobar els primers termes no nuls de la part central de la seva sèrie de Laurent a
z “ 0.

2. Calcular
¸
fpzqdz si es recorre |z| “ 1 un cop i en sentit antihorari. Ž

6.1.3. Trobeu el desenvolupament en sèrie de Laurent de fpzq “
1

zpz ´ 1q
a les corones:

(a) tz P C : 0 ă |z| ă 1u, (b) tz P C : 0 ă |z ´ 1| ă 1u, (c) tz P C : |z| ą 1u i
(d) tz P C : |z ´ 1| ą 1u. Ž

6.1.4. Sigui fpzq “
1

pz ´ 1qpz ´ 3q
, donar les sèries de Laurent per les tres corones cen-

trades a 0 allà on f és anaĺıtica (|z| ă 1, 1 ă |z| ă 3 i |z| ą 3). Ž

6.1.5. Donar els primers termes de la sèrie de Laurent de

a) fpzq “ z2 cos

ˆ

1

3z

˙

per |z| ą 0.

b) fpzq “
1

ez ´ 1
per 0 ă |z| ă R. Ž

6.1.6. Quina és la corona (o anell) de convergència de
8
ÿ

n“´8

zn

2|n|
? Ž

33



6. Sèries de Laurent

6.2. Singularitats äıllades de funcions holomorfes

6.2.1. Construcció de funcions

1. Trobar una funció f que tingui un pol d’ordre 2 a z “ 1` i i singularitats essencials
a z “ 0, 1.

2. Trobar una funció f que tingui una singularitat evitable a z “ 0, un pol d’ordre 6 a
z “ 1 i una singularitat essencial a z “ i. Ž

6.2.2. Sigui f anaĺıtica amb zero d’ordre n a z0 i g anaĺıtica amb zero d’ordre m a z0. Si
hpzq “ fpzq{gpzq proveu que

a) Si n ą m hpzq té un zero d’ordre n´m a z0,

b) si n ă m hpzq té un pol d’ordre m´ n a z0,

c) si n “ m hpzq és holomorfa i no nul.la a z0. Ž

6.2.3. Determineu les singularitats de les funcions següents. Si a és una singularitat
evitable de f , calculeu el valor que cal donar a fpaq per a què f sigui holomorfa en un
entorn d’a, i si a és un pol de f , determineu la part singular de f en a (la part de la sèrie
amb ı́ndexs negatius).

a) fpzq “ z cosp1{zq.

b) fpzq “
z2 ` 1

z3pz ´ 1q2
.

c) fpzq “
1

p1 ´ ezq2
. Ž

6.2.4. Sigui f P HpDrpaqz tauq. Suposem que existeix una successió pznqn tal que zn Ñ a
i

lim
nÑ8

|efpznq| “ 0,

ˇ

ˇ

ˇ

ˇ

f

ˆ

zn `
1

n

˙ˇ

ˇ

ˇ

ˇ

ď 1 ´
1

n
, n P N.

Determineu el tipus de singularitat que té la funció f en el punt a. Ž

6.2.5. a) La funció tanp1{zq té una singularitat äıllada al 0? De quin tipus?

b) Sigui 0 singularitat äıllada de fpzq. Suposem que |fpzq| ď |z|´α on 0 ă α ă 1.
Demostreu que 0 és una singularitat evitable. Ž

34
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6.3. Teorema dels Residus

6.3.1. Existeix alguna funció f amb pol simple a z0 tal que Respf, z0q “ 0? Què passa si
el pol és d’ordre 2, pot passar que Respf, z0q “ 0? Ž

6.3.2. Calculeu els residus de les funcions següents en els punts indicats:

a) fpzq “
1

ez ´ 1
, z0 “ 0.

b) fpzq “
1 ` ez

z4
, z0 “ 0. Ž

6.3.3. Calculeu

ˆ
|z|“1

e1{z

z ´ a
dz pels diferents valors d’a P C tals que |a| ‰ 1. Ž

6.3.4. Decidiu si són certes o falses les següents afirmacions. Doneu els arguments que
provin les afirmacions.

1. Si f, g tenen un pol a z0 llavors f ` g té un pol a z0.

2. Si f, g tenen un pol a z0 i en els dos casos el residu és no nul llavors f ¨ g té un pol
a z0 amb residu no nul.

3. Si f té una singularitat essencial a z “ 0 i g un pol d’ordre finit a z “ 0 llavors
f ` g té singularitat essencial a z “ 0.

4. Si f té un pol d’ordre m a z “ 0 llavors fpz2q té un pol d’ordre 2m. Ž

6.3.5. Suposem que f és holomorfa amb un zero d’ordre m a z0. Proveu que gpzq “

f 1pzq{fpzq té un pol simple a z0 amb Respg, z0q “ m. Ž

6.3.6. a) Proveu que si gpzq té un zero simple a z0, llavors 1{gpzq té un pol simple a z0.

b) Proveu que Resp1{g, z0q “ 1{g1pz0q.

c) Sigui fpzq “ 1{ sinpzq, trobeu els seus pols i proveu que són simples. Trobeu els residus.Ž

6.3.7. Trobeu i classifiqueu les singularitats äıllades de cadascuna de les funcions següents.
Calculeu el residu a cada singularitat.

a) fpzq “
z3 ` 1

z2pz ` 1q
.

b) gpzq “
1

ez ´ 1
.

c) hpzq “ cosp1 ´ 1{zq. Ž

6.3.8. Avalueu

˛
1

pz ` 1qpz ´ 1qpz ´ 2qpz ´ 3qpz ´ 4qpz ´ 5q
dz al llarg de la corba |z´3| “

3 recorreguda en sentit antihorari. Ž

6.3.9. Avalueu les següents integrals
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6. Sèries de Laurent

a)

˛
|z|“5

sin z

z2 ´ 4
dz

b)

˛
|z|“8

1

z2 ` z ` 1
dz

c)

˛
|z|“3

eiz

z2pz ´ 2qpz ` 5iq
dz. Ž

6.3.10. Calculeu la integral de la funció fpzq “
1 ` z

1 ` sin z
sobre la vora del disc D7p0q. Ž

6.3.11. Per a t ą 0, sigui Ct la circumferència de centre it, que passa pels punts ´2 i 2.
Calculeu

fptq “

ˆ
Ct

eiπz ` 1

zpz ´ tq
dz, per a t ‰ 2. Ž

6.4. Residu a l’infinit

6.4.1. Trobar el valor la integral

˛
|z|“2

5z ´ 1

zpz ´ 1q
dz calculant el residu de l’integrand a

l’infinit. Ž

6.4.2. Sigui a P R, calculeu, estudiant el residu a l’infinit, I “

˛
C

a2 ´ z2

zpz2 ` a2q
dz on C és

una corba simple que envolta les singularitats de l’integrand. Ž

6.4.3. Avaluar

˛
|z|“1

e1{z sinp1{zqdz. Ž

6.5. Aplicació al càlcul d’integrals

6.5.1. Per r ą 0, considerem la corba γr : r0, πs Ñ C definida per γrptq “ reit, i sigui

Iprq “

ˆ
γr

eiz

z
dz.

Demostreu que limrÑ8 Iprq “ 0. Ž

6.5.2. Considereu la funció fpzq “
z2

pz2 ` 9qpz2 ` 4q2
.

(a) Determineu les singularitats de f .

(b) Calculeu la part principal del desenvolupament de Laurent al voltant de z “ 2i.
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6. Sèries de Laurent

(c) Justifiqueu la convergència de ˆ 8

0
fpxqdx

i calculeu-ne el seu valor. Ž

6.5.3. Demostreu que ˆ `8

´8

x2

1 ` x4
dx “

π
?
2
. Ž

6.5.4. Calculeu

I :“

ˆ 8

0

dx

1 ` x5
.

Ž

6.5.5. Donat a P p0, 1q calculeu el valor de la integral

ˆ 8

0

xa

1 ` x2
dx. Ž

6.5.6. Calcular ˆ 8

0

dx
?
x p1 ` x2q

. Ž

6.5.7. Calcular ˆ 8

0

lnx

1 ` x2
dx. Ž

6.5.8. Justifiqueu la integrabilitat (Lebesgue o impròpia Riemann) i calculeu les següents
integrals (en tots els apartats k P Z, α P R i n “ 0, 1, 2, ¨ ¨ ¨ ):

a)

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt.

b)

ˆ 8

0

sin2 x

x2
dx.

c)

ˆ 2π

0

cospntq

2 ` cos t
dt.

d)

ˆ `8

´8

x2 ´ x` 2

x4 ` 10x2 ` 9
dx.

e)

ˆ 8

´8

sinx

x2 ´ x` 1
dx. Ž

6.5.9. Justifiqueu la convergència de

ˆ `8

0

?
x

x2 ` 3
dx

i calculeu-ne el seu valor (cal justificar tots els passos). Ž
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6. Sèries de Laurent

6.5.10. Siguin fpzq “ ez{z2 i la recta γ “ t1 ` it; t P p´8,`8qu.

a) Calculeu (justificant tots els passos)
ˆ
γ
fpzqdz.

Indicació: integreu f sobre la vora del semidisc de centre z0 “ 1 i radi R amb Re z ď 1.

b) Dedüıu que

ˆ `8

´8

p1 ´ t2q cosptq ` 2t sinptq

p1 ` t2q2
dt “

2π

e
. Ž

6.5.11. Considereu

fpzq “
z2 ´ 2

pz2 ` 1q2pz2 ` 4q2
.

(a) Trobeu la part principal de la sèrie de Laurent al voltant de z “ 2i.

(b) Justifiqueu la convergència de ˆ `8

´8

fpxqdx

i calculeu-ne el seu valor (justifiqueu tots els passos). Ž

6.5.12. Sigui fpzq “ eiz
2
, i considereu el camı́ γR format per el segment que va de 0 a R;

l’arc del cercle |z| “ R que va de R a Reiπ{4, i el segment que va de Reiπ{4 a 0. Demostreu
que ˆ

γR

fpzqdz “ 0,

i utilitzeu-ho per a calcular les integrals de Fresnel

ˆ 8

0
cospx2qdx,

ˆ 8

0
sinpx2qdx.

Observació: Podeu utilitzar que
´8

0 e´t2 dt “
?
π
2 . Ž

6.5.13. (a) Sigui f una funció holomorfa en D˚ “ t0 ă |z| ă 1u. Suposem que fpanq “ 0
per una successió an P D˚ tal que an Ñ 0. Demostreu que f ” 0 o bé z “ 0 és una
singularitat essencial de f .

(b) Sigui f una funció holomorfa en D˚ tal que per a tot n ě 2, f no té zeros sobre les
corbes |z| “ 1{n i a més

ˆ
|z|“ 1

n

1

fpzq
dz ‰

ˆ
|z|“ 1

n`1

1

fpzq
dz.

Demostreu que z “ 0 és una singularitat essencial de f . Indicació: Utilitzeu el Teore-
ma de deformació i l’apartat anterior. Ž
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6. Sèries de Laurent

6.5.14. Calculeu, justificant tots els passos, la integral

ˆ `8

0

xα

x2 ` x` 1
dx, ´1 ă α ă 1.

Indicació: Considereu la funció fpzq “
zα

z2 ` z ` 1
. Definiu una determinació del logarit-

me logpzq a Czr0,`8q de manera que zα “ eαlogpzq. Finalment integreu la funció fpzq a
la mateixa regió que les integrals del tipus

ˆ `8

0
Rpxq lnpxqdx. Ž

6.6. Principi de l’argument

6.6.1. Quines de les següents funcions són meromorfes a C?

a) z5 b) z5{2 c) e1{z d) 1{ sinpzq. Ž

6.6.2. Calculeu el nombre de zeros (comptats amb multiplicitat) amb part real positiva del
polinomi P pzq “ z6 ´ z4 ´ 2z ´ 6.
I si alternativament el polinomi fos Qpzq “ z6 ´ z4 ´ 2z ` 6? Ž

6.6.3. Sigui f una funció entera tal que

fpzq P R ðñ z P R.

Demostreu que f té, com a molt, un zero a tot C. Ž

6.7. Teorema de Rouché

6.7.1. Demostreu que l’equació ez “ 2z ` 1 té exactament una solució en el disc unitat
obert. Indicació: Proveu que |ez ´ 1| ď e´ 1 si |z| “ 1. Ž

6.7.2. Sigui f una funció holomorfa en el disc unitat tancat tal que |fpzq| ă 1, per a
|z| “ 1. Quants punts fixos té f? Ž

6.7.3. Calculeu el nombre de solucions (comptant multiplicitats) de les següents equacions
en el disc unitat:

(a) z9 ´ 2z6 ` z2 ´ 8z ´ 2 “ 0.

(b) 2z5 ´ z3 ` 3z2 ´ z ` 8 “ 0.
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6. Sèries de Laurent

(c) z7 ´ 5z4 ` z2 “ 2. Ž

6.7.4. Quants zeros té P pzq “ z4 ` 6z3 ´ 4z2 ` 1{8 en la regió
␣

z P C; 1
2 ă |z| ă 1

(

? Ž

6.7.5. Considerem P pzq “ z6 ` 3z4 ` z2 ` z ` 9.

(a) Proveu que tots els zeros de P pzq són a l’anell 1 ă |z| ă 2.

(b) Calculeu el nombre de zeros (comptats amb multiplicitat) de P pzq al primer quadrant.Ž

6.7.6. (a) Calculeu el nombre de solucions a D de l’equació ez “ 4z ` 1.

(b) Demostreu que l’equació ez “ 3zn té n solucions en el disc unitat (n “ 0, 1, 2, . . . ). Ž

6.7.7. Sigui a P C, 0 ă |a| ă 1, i n P N.

(a) Demostreu que l’equació
pz ´ 1qnez “ a

té exactament n arrels diferents al semiplà tz P C | Re z ą 0u. Indicació: Considereu
un disc centrat a z “ 1 i de radi R “ 1 primer, deprés mireu d’augmentar el radi
sense sortir del semiplà tancat de la dreta.

(b) Proveu que si, a més, |a| ď 1{2n, llavors totes aquestes arrels són al disc D1{2p1q. Ž

6.7.8. Demostreu que per a tot R ą 0 existeix npRq ě 0 tal que si n ą npRq

Pnpzq “ 1 ` z `
z2

2!
` ¨ ¨ ¨ `

zn

n!

no té zeros al disc t|z| ď Ru. Ž

6.7.9. Sigui fn una successió de funcions holomorfes en un domini Ω tals que fn Ñ f
uniformement en compactes d’Ω, per una certa funció f .

1. (Corol.lari de Hurwitz) Dedüıu que si fnpzq ‰ a per a tot z P Ω i tot n P N, aleshores,
f ” a o bé fpzq ‰ a en Ω.

2. Proveu que si fn és injectiva en Ω per a tot n ě 0, aleshores f és constant o bé f és
injectiva en Ω. Indicació: Argumenteu per reducció a l’absurd, i utilitzeu l’apartat
anterior.

3. Proveu que si f té un zero d’ordre m en a P Ω, aleshores existeix ρ0 ą 0 tal que
per tot ρ ă ρ0 i per tot n ą nρ, fn té exactament m zeros en Dρpaq comptant
multiplicitats. Ž
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7.1. El teorema de l’aplicació de Riemann

7.2. Projecció estereogràfica i circumferències generalitzades

7.2.1. Sigui p la projecció estereogràfica. Demostreu que λ “ 1
1´z , i que la inversa de p

és

p´1px` iyq “
1

x2 ` y2 ` 1

`

x, y, x2 ` y2
˘

. Ž

7.2.2. Demostreu que l’equació d’una circumferència de centre α P C i radi r és

|z|2 ´ αz̄ ´ ᾱz “ r2 ´ |α|2, z P C,

i la d’una recta perpendicular a α passant per z0 P C és

ᾱz ` αz̄ “ m, z P C,

on m és una constant real que només depèn d’α i z0. Ž

7.3. Transformacions de Möbius

7.3.1. Donada una homografia T pzq “ az`b
cz`d , definim AT :“

ˆ

a b
c d

˙

, que està definit

mòdul constant multiplicativa. Per exemple, les matrius

ˆ

1 b
0 1

˙

,

ˆ

a 0
0 1

˙

,

ˆ

0 1
1 0

˙

cor-

responen respectivament a la translació z ÞÑ z ` b, a la dilatació z ÞÑ az i a la inversió
z ÞÑ 1{z.

a) Donades T1, T2 P M, demostreu que AT2˝T1 “ AT2AT1 (mòdul constant multiplicativa).

b) Trobeu T´1 i relacioneu-la amb AT1. Ž

7.3.2. Demostreu que tota T P M es pot escriure com a composició de dilatacions, trans-
lacions i inversions. Ž

7.3.3. Trobeu una descomposició en dilatacions, translacions i una inversió de la trans-
formació

T pzq “
2z ` i

p1 ´ iqz ` 3i
. Ž

7.3.4. Demostreu que tota T P M envia circumferències generalitzades a circumferències
generalitzades. Ž

7.3.5. Sigui fpzq “ z´1
z`1 . Quina és la imatge per f de
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a) la recta real, b) BD2p0q, c) BD, d) l’eix imaginari.

I per gpzq “ z´i
z`i? Ž

7.3.6. Troba l’homografia que envia pi, 0,´1q a p´i, 0,8q. Ž

7.3.7. Demostra el corol.lari 7.16. Ž

7.3.8. Troba una homografia que envïı D a tIm z ą 0u. Ž

7.3.9. Sigui a P C, a ‰ 0 i definim

T1pzq “
z ´ 1

2z ´ i
, T2pzq “

z ` 1

iz ´ 1
, T3pzq “

iz

p1 ` iq ´ z
, T pzq “

z

az ` 1
.

Trobeu
T´1
3 ˝ T2 ˝ T1, Tm,m P Z. Ž

7.3.10. Trobeu totes les T P M que tinguin per punts fixos 0 i ´i. Ž

7.3.11. Trobeu T P M tal que T p1 ´ iq “ 1 ` i, T p2q “ i, T p1 ` iq “ ´i. Ž

7.3.12. Siguin C1 i C2 dues circumferències generalitzades i z1 P C8zC1, z2 P C8zC2.
Demostreu que existeix T P M tal que T pC1q “ C2 i T pz1q “ z2. Podeu fer servir
l’Exercici 1.1.10. Trobeu una d’elles en el cas particular

C1 “ tz : |z ´ 1| “ 1u, z1 “ 1;C2 “ tz : z̄i “ zu, z2 “ i.

Ž

7.4. Raó doble i simetria

7.4.1. Sigui T P M tal que T pDRpaqq “ DRpaq. Demostreu que els punts fixos de T estan
a BDRpaq o bé són simètrics respecte BDRpaq. Ž

7.5. Automorfismes

7.5.1. Demostra que tota representació conforme de C8 en C8 és una homografia. Ž

7.5.2. Troba tots els automorfismes T de D tals que T p1{2q “ 1{3. Ž

7.5.3. Trobeu totes les representacions conformes del disc unitat en ell mateix que envien
1{2 a 0. N’existeix alguna que envïı 0 a ´i{2? I 0 a ´i{4? Utilitzeu T per trobar una
representació conforme S que envïı BD a BD2piq tal que Sp1{2q “ i i Sp0q “ 0. Ž

7.5.4. Demostreu que el lloc geomètric de les imatges de qualsevol punt b P D per les
transformacions que fixen la imatge d’un altre punt, és a dir

tw P D : w “ T pbq amb T P AutpDq, T paq “ rau,

és una circumferència. Ž
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7.6. Altres transformacions conformes

7.6.1. Quina és la imatge del primer quadrant per z3? Ž

7.6.2. Quina transformació pot enviar una banda horitzontal a a un semiplà? Ž

7.6.3. Trobeu una aplicació de Riemann del sector t0 ă Arg z ă π{8u. Ž

7.6.4. Es pot enviar el semiplà superior a un triangle mitjançant una homografia? Ž

7.6.5. Proveu que no existeix cap representació conforme del semiplà de la dreta en D1p1q

que envïı 1 ÞÑ 1, 0 ÞÑ 0 i 8 ÞÑ 1 ` i. Ž

7.6.6. Demostreu que les transformacions conformes del semiplà superior H` :“ tIm z ą

0u en D són de la forma eiθ z´a
z´ā per alguna a P H` i algun θ P R. Ž

7.6.7. Trobeu una transformació de Möbius que envïı el primer quadrant a D` “ DXH`.
Utilitzeu-la per a trobar una transformació conforme de H` a t|Re z| ă 1, Im z ą 0u. Ž

7.6.8. Trobeu una representació conforme de t0 ă Re z ă π{2u en D. Ž

7.6.9. Trobeu una representació conforme d’Ω1 en Ω2.

a) Ω1 “ D X H`, Ω2 “ H`.

b) Ω1 “ D, Ω2 “ H` X Dc
.

c) Ω1 “ D X tRe z ą 1{2u, Ω2 “ D X p´iH`q.

d) Ω1 “ H`, Ω2 “ t|Re z| ă 1, Im z ą 0u.

e) Ω1 “ D X p´iH`q, Ω2 “ D X t|z ` 1{2| ą 1{2u.

f) Ω1 “ D?
2p1q XD?

2p´1q, Ω2 “ D, que deixi invariant el segment p´i, iq.

g) Ω1 “ Dzr0, 1q, Ω2 “ Czr0,8q.

h) Ω1 “ t|Im z| ă π{2uzpp´8, 0s Y rln 2,`8qq, Ω2 “ D. Ž
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8. Fluids

8.1. Qüestions generals. Escenari i notació.

8.1.1. Proveu que Γ “ 0 en un flux potencial (suposeu que la funció potencial és de classe
C2 com a mı́nim). Ž

8.1.2. Proveu que per fluxos definits en un domini Ω Ă C que satisfan les quatre hipòtesis
anteriors, la velocitat potencial φpx, yq és una funció harmònica. Ž

8.1.3. Proveu que Φ1pzq “ Vpzq “ V1 ` iV2. Ž

8.2. Fluxos bàsics.

8.2.1. Superposició. Sumant diferents potencials complexos es poden descriure fluxos més
sofisticats. Un exemple important s’obté sumant una font al punt ´a amb una pica al punt
a:

Φpzq “ k logpz ` aq ´ k logpz ´ aq “ k log

ˆ

z ` a

z ´ a

˙

.

Trobeu l’expressió de V, V , φ i ψ. Dibuixeu les ĺınies de corrent (ψ “ c). Ž

8.2.2. En l’exercici anterior, fem a Ñ 0 i k Ñ 8 de manera que 2ka “ µ sigui finit. Veure
que al ĺımit obtenim el potencial complex Φpzq “ µ{z que s’anomena doblet o dipol. Ve
a ser una font i una pica separades per una distància infinitesimal. La quantitat 2πµ
s’anomena moment del doblet. Trobeu l’expressió de V, V , φ i ψ. Dibuixeu les ĺınies de
corrent (ψ “ c). Ž

8.2.3. Font-remoĺı. Estudiar el flux amb funció potencial Φpzq “
Γ ` iQ

2πi
logpz ´ aq.

Discutiu segons els valors de Γ (circul.lació o intensitat) i Q (potència). Feu dibuixos de
les ĺınies de camp segons els signes de Γ i Q. Ž
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Figura 8.1.: Superposició amb a “ 1.

8.3. Obstacles

8.3.1. Modifiquem el flux amb potencial donat per fpzq “ logpz ` 2q que és una font
sortint des del punt z “ ´2 (vist en un exemple/exercici anterior). Per això considerem
la modificació donada pel potencial

Φpzq “ fpzq ` f

ˆ

1

z̄

˙

“ logpz ` 2q ` log

ˆ

1

z̄
` 2

˙

.

a) Descomposeu Φ en fluxos coneguts.

b) Calculeu Φ1pzq i confirmeu el que es demostra a l’apartat anterior.

c) Vegeu que per z amb |z| molt gran resulta Φ1pzq «
1

z ` 2
i que llavors lluny de z “ ´2

el flux associat a Φ és com una font sortint de z “ ´2.

d) Mostreu amb un gràfic com eviten el disc unitari les ĺınies de flux (feu servir contour_plot
i streamline_plot). Ž

8.4. Expressió general (recapitulació).

8.4.1. Pels z on Vpzq “ Φ1pzq “ 0 diem que hi ha un punt estacionari del corrent (per
exemple és aquell punt d’un riu on una fulla petita s’ha quedat aturada però que al seu
voltant circula l’aigua).

a) Per Φpzq “ zn el 0 és un punt estacionari d’ordre n ´ 1. Feu un dibuix amb les ĺınies
de flux i les ĺınies equipotencials superposades per n “ 2, 3, 4.
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b) Podeu deduir experimentalment quin angle formen les ĺınies equipotencials i les ĺınies
de flux?

c) Proveu que si un punt estacionari a és un zero d’ordre n ´ 1 llavors les ĺınies equipo-
tencials i de corrent (φ “ ct., ψ “ ct.) formen un angle π{2n en el punt estacionari
(feu-lo com a mı́nim pel cas Φ1pzq “ Czn´1, C P C). Quin angle formen una ĺınia de
corrent i una ĺınia equipotencial quan es creuen en un punt no estacionari?

8.4.2. Discutir el moviment del fluid amb potencial complex igual a

a) Φpzq “
Γ ` iQ

2πi
log

ˆ

z ´ a

z ´ b

˙

on a, b P C i Q,Γ P R..

b) Φpzq “ az `
Γ

2πi
logpzq on a,Γ ą 0.

c) Φpzq “ az `
Q

2π
logpzq on a,Q ą 0.

d) Φpzq “
p

2πz
`

Γ

2πi
logpzq on p,Γ ą 0. Ž

8.4.3. Discutir el moviment del fluid amb potencial complex

Φpzq “ V0

ˆ

z `
R2

z

˙

`
Γ

2πi
logpzq, amb Γ, V0, R ą 0.

Particularment estudieu els casos Γ ă 4πRV0, Γ ą 4πRV0 i Γ “ 4πRV0. Dibuixeu exemples
de cadascun dels casos. Ž

8.4.4. Donar un potencial complex que té fonts-remolins tpak;Qk,Γkq : k “ 1, . . . , nu i
velocitat V8 “ V eiα a l’infinit. Ž
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