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1. El cos dels nombres complexos

1.1. El cos dels nombres complexos

1.1.1. Doneu en forma a` bi:

a) p´1 ` iq2,

b) 8i´1
i ,

c) ´1`5i
2`3i ,

d)
p8 ` 2iq ´ p1 ´ iq

p2 ` iq2
,

e)

ˆ

2 ` i

6i´ p1 ´ 2iq

˙2

,

f) pp3 ´ iq2 ´ 3qi.

Solució:

a) ´2i,

b) 8 ` i,

c) 1 ` i,

d) 33{25 ´ 19i{25,

e) p´253 ´ 204iq{4225,

f) 6 ` 5i.

1.1.2. Demostreu o doneu un contraexemple:

a) Re pz`wq “ Re z`Rew, b) Re pzwq “ pRe zqpRewq, c) Re p z
w q “ Re z

Rew . Ž

Solució:

a) Cert b) Fals c) Fals

1.1.3. Sigui z P C tal que Im pzq ą 0. Proveu que Im p1{zq ă 0. Ž

Solució: Si z “ x` iy amb y ą 0 com que 1{z “ px´ yiq{|z|2 resulta que Im p1{zq ă 0.

1.1.4. Si z “ x` iy on x, y P R, trobeu les parts real i imaginària de:

a) z2,

b) zpz ` 1q,

c) 1
z´3 ,

d) 1
z2
,

e) z`1
2z´5 ,

f) z3. Ž

Solució:

a) x2 ´ y2 ` 2xyi

b) x2 ´ y2 ` x` p2xy ` yqi

c) px´3´iyq{ppx´3q2`y2q,

d) x2´y2´i2xy
px2`y2q2

e) 2x2´5x`2x´5`2y2´i7y
p2x´5q2`4y2

f) x3 ´ 3xy2 ` ipyx2 ´ y3 `

2x2yq.
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1. El cos dels nombres complexos

1.1.5. Sigui px` iyq{px´ iyq “ a` ib. Proveu que a2 ` b2 “ 1. Ž

Solució: Notem per un cantó que

pa` ibq ¨ pa` ibq “ pa` ibq ¨ pa´ ibq “ a2 ` b2.

Per altra banda, com que 1{z “ 1{z, tenim que

x` iy

x´ iy

x` iy

x´ iy
“
x` iy

x´ iy

x´ iy

x` iy
“ 1.

1.1.6. Proveu que ´1 ` i satisfà z2 ` 2z ` 2 “ 0. Ž

Solució: N’hi ha prou amb substituir: p´1 ` iq2 ` 2p´1 ` iq ` 2 “ ¨ ¨ ¨ “ 0.

1.1.7. Escriviu l’equació complexa z3 ` 5z2 “ z ` 3i com dues equacions reals. Ž

Solució: x3 ´ 3xy2 ` 5x2 ´ 5y2 ´ x “ 0, 3x2y ´ y3 ` 10xy ´ y ´ 3 “ 0.

1.1.8. a) Si z1, z2 són complexos amb z1 ` z2 i z1z2 reals negatius proveu que z1, z2 són
reals.

b) Proveu que el vector z1 és paral.lel al vector z2 si i només si Im pz1z̄2q “ 0. Ž
Solució:

a) Si zk “ xk ` iyk, tenim que y1 ` y2 “ 0, x1 ` x2 ă 0 i x1x2 ´ y1y2 ă 0, x1y2 ` x2y1 “ 0.
Llavors x1x2 ` y21 ă 0 i y1px2 ´ x1q “ 0. Si y1 “ 0, llavors y2 “ 0 i z1, z2 són reals. Si
x1 “ x2 tenim que x1x2 ą 0, llavors Re pz1z2q ą 0 que no és possible per hipòtesi.

Solució proposada per Tomàs Planelles Alonso (amb una visió més constructivista):

Considerem el polinomi P pXq “ X2 ´ pz1 ` z2qX ` z1z2 P RrXs. Notem que

∆P “ pz1 ` z2q2 ´ 4z1z2 ě 0,

ja que z1z2 ď 0. Aleshores, les dues arrels de P són reals.

D’altra banda, tenim que P pz1q “ P pz2q “ 0 per construcció. Per tant, z1 i z2 són
reals.

Comentaris: Notem que podem relaxar alguna de les hipòtesi de l’enunciat; ens serveix
que z1 ` z2 sigui real.

b) Volem provar que z1 ∥ z2 ðñ Im pz1z̄2q “ 0.

(ñ) Per ser paral.lels resulta que z2 “ λz1 (λ real), llavors Im pz1z̄2q “ x2y1 ´ x1y2 “

λpx1y1 ´ x1y1q “ 0.

(ð) Im pz1z̄2q “ x2y1 ´ x1y2 “ 0 tenim que x1{x2 “ y1{y2 i z1 ∥ z2 quan x2 ‰ 0 ‰ y2.
Si x2 “ 0, aleshores o bé z2 “ 0 “ 0 ¨ z1, o bé x1 “ 0 i tenim z1 “ λz2 P iR. Si y2 “ 0,
aleshores raonem anàlogament.
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1. El cos dels nombres complexos

1.1.9. Proveu anaĺıticament i gràfica que |z ´ 1| “ |z̄ ´ 1|. Ž

Solució: Com que z̄ és el simètric respecte de l’eix OX de z els dos punts estan a la

mateixa distància de qualsevol punt de OX, en particular de 1. També podem veure que

|z ´ 1|2 “ pz ´ 1qpz ´ 1q “ |z̄ ´ 1|2.

1.1.10. Demostreu que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

“ 1 si |a| “ 1 o bé |b| “ 1. Quina excepció cal fer si

|a| “ |b| “ 1?

Demostreu també que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

ă 1 si |a| ă 1 i |b| ă 1.

Per acabar, si per a P D definim φapzq :“ a´z
1´āz , demostreu que φa : D̄ Ñ D̄, i és bijectiva

en D i en BD, i doneu-ne la inversa. Ž

Solució: Suposem |a| “ 1, l’altre cas es demostra igual per simetria.

a´ b

1 ´ āb

a

a
“
apa´ bq

a´ b
“ a, a ­“ b.

Si tenen mòdul 1 cal evitar que siguin iguals ja que en aquest cas dividim per 0.
Suposem ara |a|, |b| ă 1, tenim que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

2

ă 1 ðñ |a´ b|2 ă |1 ´ āb|2 ðñ |a|2 ` |b|2 ă 1 ` |a|2|b|2

i això equival a
p|a|2 ´ 1qp|b|2 ´ 1q ą 0

que és cert per ser |a|, |b| ă 1.
Que φa : D̄ Ñ D̄ es dedueix de l’apartat anterior. La bijectivitat es dedueix si veiem

que l’equació w “ φapzq té només una solució, i usant que |zā| “ |z||a| ă 1, obtenim

w “
a´ z

1 ´ āz
ðñ w ´ āzw “ a´ z ðñ

w ´ a

´1 ` āw
“ z,

d’on surt la bijectivitat (w P D o w P BD si z P D o z P BD altra vegada usant l’apartat
anterior).

1.2. Els nombres complexos com a espai vectorial

1.2.1. Descriviu els conjunts de punts del pla que satisfan:

a) 1 ă Im pizq ă 2,

b) Im z´a
z “ 0, a P C˚,

c) |z| “ Re z ` 1,

d) |z ´ 1| “ |z ` i|,

e) |z ´ 2| ą |z ´ 3|,

f) |z ´ 1| ` |z ` 1| “ 7. Ž
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1. El cos dels nombres complexos

Solució:

a) t1 ă Repzq ă 2u;

b) z “ at, t P R˚;

c) Paràbola x “ p1{2qpy2 ´ 1q;

d) Mediatriu de 1 i ´i: y “ ´x;

e) tRe z ą 5{2u;

f) px{p7{2qq2`py{p3
?
5{2qq2 “ 1 que és una

el.lipse, també podem escriure 180x2 `

196y2 “ 2205.

1.2.2. Suposem que an Ñ a i bn Ñ b. Demostreu que an ` bn Ñ a` b i anbn Ñ ab, sabent
que ambdues propietats són certes a la recta real. Ž

Solució: La primera es deriva de l’estructura d’espai vectorial, i ja es va fer en cursos

anteriors.
La segona, en ser una operació nova, cal demostrar-la:

Re panbnq “ Re anRe bn ´ Im anIm bn Ñ Re aRe b´ Im aIm b “ Re pabq,

i
Im panbnq “ Re anIm bn ` Im anRe bn Ñ Re aIm b` Im aRe b “ Im pabq.

Per (1.5) això implica
anbn Ñ ab.

1.2.3. Digueu si les següents successions són convergents i en cas afirmatiu calculeu el
seu ĺımit:

a) in `
1

n` i
, b)

n` i

n´ i
, c)

3 i n2

n2 ´ 2i
. Ž

Solució: a) No; b) 1, usant l’exercici 1.2.2; c) 3i, usant l’exercici 1.2.2.

Per exemple,
n` i

n´ i
“

1 ` i{n

1 ´ i{n
Ex.1.2.2

Ñ
1 ` 0

1 ` 0
“ 1.

1.2.4. Estudieu la convergència i la convergència absoluta de les sèries:

a)
8
ÿ

n“2

in

lnn
, b)

8
ÿ

n“1

in

n
. Ž

Solució: Cap convergeix absolutament. Però sense mòdul, la part real i la imaginària

són sèries alternades amb terme general tendint a 0. Per tant les dues sèries són conver-
gents.

1.2.5. Demostreu el teorema de Mertens. Ž
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1. El cos dels nombres complexos

Solució: Suposem αn, βn ą 0 per no escriure valors absoluts, i sigui A “
ř8

n“0 αn,

B “
ř8

n“0 βn. Donat ε ą 0, existeix N0 P N tal que per N ą N0 tenim que 0 ă

A´
řN

n“0 αn ď ε
A`B i 0 ă B ´

řN
n“0 βn ď ε

A`B . Aleshores

AB ´

2N
ÿ

n“0

n
ÿ

k“0

αkβn´k ď AB ´

N
ÿ

k“0

N
ÿ

j“0

αkβj “

˜

A´

N
ÿ

k“0

αk

¸

B `

˜

B ´

N
ÿ

j“0

βj

¸

N
ÿ

k“0

αk

ď
ε

A`B
B `

ε

A`B
A “ ε.

Per altra banda,

AB ´

2N
ÿ

n“0

n
ÿ

k“0

αkβn´k ě AB ´

2N
ÿ

k“0

2N
ÿ

j“0

αkβj “

˜

A´

2N
ÿ

k“0

αk

¸

B `

˜

B ´

2N
ÿ

j“0

βj

¸

2N
ÿ

k“0

αk

ě 0.

1.2.6. Tota successió convergent tznuně0 Ă C satisfà que |zn`1 ´ zn| Ñ 0. Ž

Solució: Considerem w0 :“ z0, wn :“ zn`1 ´ zn per n ě 1. Aleshores la successió

coincideix amb la suma parcial telescòpica

zn “

n´1
ÿ

k“0

wk,

de manera que zn és convergent si i només si
ř

ně0wn ho és. En cas de ser-ho, la condició
necessària de convergència (observació ) aplicada a la sèrie diu que |zn`1 ´zn| “ |wn| Ñ 0.

1.3. Repàs de trigonometria

1.3.1. Demostreu tots els resultats de la secció. Ž

1.3.2. Definim el sinus i el cosinus hiperbòlics de x P R com

sinhpxq “
ex ´ e´x

2
, coshpxq “

ex ` e´x

2
.

Demostra que se satisfan les següents identitats:

a) sinhp0q “ 0 i coshp0q “ 1.

b) lim
xÑ`8

sinhx “ lim
xÑ`8

coshx “ `8 i lim
xÑ´8

sinhx “ ´8.

c) sinhp´xq “ ´ sinhpxq i coshp´xq “ coshpxq.

d) cosh2pxq ´ sinh2pxq “ 1.
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1. El cos dels nombres complexos

e) coshpx` yq “ coshx cosh y ` sinhx sinh y

f) sinhpx` yq “ sinhx cosh y ` coshx sinh y.

g) psinhxq1 “ coshx i pcoshpxqq1 “ sinhpxq. Ž

Solució: Es pot calcular tot directament usant les propietats de la funció x ÞÑ ex per

x P R.

1.4. L’exponencial complexa

1.4.1. Fent servir la fórmula de de Moivre, trobeu expressions de sin 3θ i sin 4θ en termes
de sin θ i cos θ. Ž

Solució:

cos 3θ` i sin 3θ “ pcos θ` i sin θq3 “ cospθq3 ´ 3 cospθq sinpθq2 ` ip3 cospθq2 sinpθq ´ sinpθq3q

i amb això acabem. De manera similar sin 4θ “ 4 cos3 θ sin θ ´ 4 cos θ sin3 θ i cos 4θ “

sin4 θ ´ 6 cos2 θ sin2 θ ` cos4 θ.

1.4.2. Trobar les arrels de z4 ` 1 “ 0 i fer-les servir per veure que z4 ` 1 “ pz2 ´
?
2z `

1qpz2 `
?
2z ` 1q. Ž

Solució: Les arrels són α “ eiπ{4, ᾱ, β “ ei3π{4, β̄. Com que pz ´ αqpz ´ ᾱq “ z2 ´

pα ` ᾱqz ` αᾱ “ z2 ´
?
2z ` 1 i de manera similar per β, els polinomis pz ´ αqpz ´ ᾱq i

pz ´ βqpz ´ β̄q són els que es citen a l’enunciat.

1.5. Representació polar d’un nombre complex

1.5.1. Trobeu la forma polar dels nombres següents i dibuixeu-los.

a) 3p1 `
?
3 iq, b) 2

?
3 ´ 2i, c) ´2 ` 2i, d) ´1 ´ i. Ž

Solució:

a) 6pcospπ{3q ` i sinpπ{3qq;

b) 4pcosp´π{6q ` i sinp´π{6qq;

c) 2
?
2pcosp3π{4q ` i sinp3π{4qq;

d)
?
2pcosp´3π{4q ` i sinp´3π{4qq.

1.5.2. Expresseu en forma cartesiana (a` ib) els següents nombres:

6



1. El cos dels nombres complexos

a) p2 ` 3iqp4 ` iq,

b) p4 ` 2iq2,

c) 1
4`i ,

d) i
2`i ,

e) p1 ´ 2iq3,

f) 1
2`i ` 4´2i

3`i ,

g) p1 ` iq100 ` p1 ´ iq100,

h)
´

1`2i
1´i

¯2
. Ž

Solució: (a) 5` 14i; (b) 12` 16i; (c) 4´i
17 (d) 1

5 ` 2
5 i; (e) ´11` 2i; (f) 7

5 ´ 6
5 i; (g) ´251;

(h)´2 ´ 3
2 i.

1.5.3. Fent servir el producte de p1 ` iqp5 ´ iq4 deduir la fórmula de Machin1: π{4 “

4 arctanp1{5q ´ arctanp1{239q. Ž

Solució: Abans de fer l’exercici cal que fem algunes observacions.

• En primer lloc que la funció arctanpxq pren valors a p´π{2, π{2q.

• En segon lloc que la funció Argpzq pren valors entre p´π, πs.

• A més a més la igualtat Argpz1 ¨ z2q “ Argpz1q ` Argpz2q només té sentit mòdul 2π.
Per exemple

Argpip´1` iqq “ Argp´1´ iq “ ´3π{4 ­“ Argpiq `Argp´1` iq “ π{2`3π{4 “ 5π{4

però difereixen en 2π.

Dit això observem que Argp1 ` iq “ π{4 i està en el primer quadrant, Argp5 ´ iq “

arctanp´1{5q “ ´ arctanp1{5q i està en el quart quadrant, Argpp5´iq4q “ ´4 arctanp1{5q “

Argp476´480iq que també està en el quart quadrant. Resulta que p1`iqp5´iq4 “ 4p239´iq
que està en el quart quadrant i Argpp1 ` iqp5 ´ iq4q “ arctanp´1{239q “ ´ arctanp1{239q.
Llavors

π{4 “ 4 arctanp1{5q ´ arctanp1{239q ` 2πn.

Però arctanp1{5q ą arctanp1{239q d’on 0 ă 4 arctanp1{5q´arctanp1{239q ă 4 arctanp1{5q ă

4 arctanp1{
?
3q “ 2π{3 llavors ha de ser n “ 0 i tenim la igualtat.

1.5.4. Estudiar la convergència de tzn0 u si |z0| ă 1 o si |z0| ą 1. Ž

Solució: Donem per conegut que si 0 ă r ă 1 llavors limnÑ8 rn “ 0 i que si r ą 1

llavors limnÑ8 rn “ 8. Aleshores si |z0| ă 1 el ĺımit és 0 i si és més gran que 1 el ĺımit
és 8. El cas més interessant es dona quan |z0| “ 1. Aleshores z0 “ e2παi, si α és racional
(llevat d’un enter parell) els tzn0 u formen un conjunt finit de punts de la circumferència.
Si α és irracional és un conjunt infinit.

1.5.5. Digueu si les següents successions són convergents i en cas afirmatiu calculeu el
seu ĺımit:

1John Machin (1706), podeu trobar més informació a https://en.wikipedia.org/wiki/Machin-like_

formula.
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1. El cos dels nombres complexos

a) zn “
i

n
,

b) zn “ ip´1qn,

c) zn “ Argp´1 ` i{nq,

d) zn “
np2 ` iq

n` 1
,

e) zn “

ˆ

1 ´ i

4

˙n

,

f) zn “ exp

ˆ

2nπi

5

˙

.

Aqúı hem escrit exppzq “ ez.

Solució: a) 0, b) ˘i (alterna), c) π, d) 2 ` i, e) 0, f) recorre les arrels cinquenes de la

unitat.

1.6. Equacions amb exponencials

1.6.1.

Resoleu les següents equacions:

a) ez “ 1 ` i, b) ez
2

“ i, c) eiz “ ´1. Ž

Solució: (a) z “ ln
?
2 ` ipπ4 ` 2kπq, k P Z;

(b) z “ ˘
a

π
2 ` 2kπ ei

π
4 , k P N Y t0u; z “ ˘

a

2kπ ´ π
2 e

´iπ
4 , k P Nzt0u;

(c) z “ p2k ` 1qπ, k P Z;

1.7. Arrels n-èsimes

1.7.1. Calculeu:

a) 3
?

´1, b) 31{4, c) 4
?

´i, d) p´1 `
?
3iq1{2, e) p3 ` 4iq

1
2 . Ž

Solució: (a) ´1, p1˘i
?
3q{2; (b) ˘

4
?
3,˘i 4

?
3; (c) cos θ`i sin θ amb θ “ 3π

8 ,
7π
8 ,

11π
8 , 15π8 ;

(d) ˘
?
2{2p1 ` i

?
3q; (e)˘p2 ` iq.

1.7.2. Donat a P C, quin és el màxim de |zn ` a| per a |z| ď 1? Ž

Solució: z “ pa{|a|q1{n.

1.8. Polinomis: enunciat del teorema fonamental de l’àlgebra

1.8.1. Resoleu pz ` 1q5 “ z5. Ž
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1. El cos dels nombres complexos

Solució: 1) Si z és solució ha de passar que |z`1| “ |z| llavors z ha d’estar a la mateixa

distància de ´1 que de 0. Llavors z es troba a la recta x “ ´1{2, és a dir, és de la forma
´1{2` it. Substitüım i veiem que t ha de satisfer 5t4 ´ 5t2{2` 1{16 “ 0. Aquesta equació
és biquadràtica i es resol fàcilment. Obtenim

˘

˜
a

2
?
5 ` 5

2
?
5

¸

, ˘

˜
a

5 ´ 2
?
5

2
?
5

¸

.

Numèricament ´1{2 ˘ 0.688i i ´1{2 ˘ 0.162i.
2) Fem el canvi z “ 1{w, llavors p1{w` 1q5 “ 1{w5. Si w ­“ 0 resulta que z és solució si

i només si p1 ` wq5 “ 1, això vol dir que 1 ` w és una arrel 5-èsima de la unitat diferent
de 1. Aleshores

1 ` w “ ωk, k “ 1, . . . , 4, ω “ ei2π{5.

Llavors

z “
1

ωk ´ 1
“ ´

1

2
´
i

2

sinp2πk{5q

1 ´ cosp2πk{5q
, k “ 1, . . . , 4.

Com abans tenim numèricament que ´1{2 ˘ 0.688i i ´1{2 ˘ 0.162i.
Observem que l’equació polinòmica original és de grau 4 i per tant té 4 solucions.

1.8.2. Sigui P pzq “ 1 ` 2z ` 3z2 ` ¨ ¨ ¨ ` nzn´1. Considerant el polinomi p1 ´ zqP pzq,
demostreu que tots els zeros de P pzq estan dins del disc unitat. Ž

Solució: p1 ´ zqP pzq “ 1 ` z ` z2 ` ¨ ¨ ¨ ` zn´1 ´ nzn. Si z és zero de P amb |z| ą 1

tenim que

|nzn| “ |1 ` z ` ¨ ¨ ¨ ` zn´1| ď 1 ` |z| ` |z|2 ` ¨ ¨ ¨ ` |z|n´1 ă 1 ` pn´ 1q|z|n

ja que |z|r ă |z|n si r ă n. Llavors n|z|n ă 1 ` pn ´ 1q|z|n, això implica que |z|n ă 1.
Contradicció amb |z| ą 1. Llavors ha de ser |z| ď 1.
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1. El cos dels nombres complexos
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2. Funcions de variable complexa

2.1. Funcions

2.1.1. Escriure les següents funcions de la forma upx, yq ` ivpx, yq.

a) fpzq “ 1{z,
b) gpzq “

2z2 ` 3

|z ´ 1|
,

c) hpzq “ ez ` e´z. Ž

Solució:

a) x{px2 ` y2q ´ iy{px2 ` y2qq.

b)
2x2 ´ 2 y2 ` 3
a

px´ 1q2 ` y2
` i

4xy
a

px´ 1q2 ` y2
.

c) 2pcoshx ¨ cos y ` i sinhx ¨ sin yq.

2.1.2. Trobeu el rang de

a) fpzq “ z2 si z està en el primer quadrant,

b) gpzq “ 1{z per 0 ă |z| ď 1,

c) hpzq “ ´2z3 per z tal que 0 ă |z| ă 1 i Argz ă π{2. Ž

Solució:

a) el semiplà superior, b) tz : |z| ě 1u, c) tz : 0 ă |z| ă 2u.

2.1.3. Digueu on són cont́ınues les següents funcions

a)
1

z ´ 2 ` 3i
,

b)
iz3 ` 2z

z2 ` 1
,

c)
3z ´ 1

z2 ` z ` 4
,

d) z2p2z2 ´ 3z ` 1q´2. Ž

Solució: a) Czt2 ´ 3iu, b) Czt˘iu, c) Czt´1{2 ˘ i
?
15{2u, d) Czt1, 1{2u.

2.1.4. Proveu que la inversió w “ fpzq “ 1{z transforma

a) el cercle |z| “ r en el cercle |w| “ 1{r,

11



2. Funcions de variable complexa

b) el raig Argz “ θ0,´π ă θ0 ă π, en el raig Argw “ ´θ0,

c) el cercle |z ´ 1| “ 1 a la ĺınia vertical x “ 1{2. Ž

Solució:

a) Si |z| “ r llavors |1{z| “ 1{r,

b) Si z “ reiθ0 amb r ą 0 llavors w “ p1{rqe´iθ0 i l’afirmació és clara.

c) Si |z ´ 1| “ 1 llavors z “ 1 ` eit “ 1 ` cos t` i sin t i

w “ 1{z “
1 ` cos t´ i sin t

p1 ` cos tq2 ` sin2 t
“

1 ` cos t´ i sin t

2 ` 2 cos t

té part real igual a 1{2. Estudiant els ĺımits laterals, per exemple, o bé trobant-ne la
inversa, podem comprovar que és exhaustiva en aquesta recta.

2.1.5. Trobeu una funció af́ı que transformi el cercle |z| ă 1 en el cercle |w ´ w0| ă R
de manera que els centres es corresponguin i el diàmetre horitzontal es transformi en el
diàmetre que forma un angle α amb l’eix real. Ž

Solució: Volem trobar fpzq “ az ` b, a, b P C de manera que fp0q “ w0, fpeitq “

w0 `Reipt`αq. Llavors b “ w0 i a “ Reiα i

fpzq “ Reiαz ` w0.

2.1.6. Per l’exponencial fpzq “ ez:

a) Descriviu-ne el domini i el rang.

b) Proveu que fp´zq “ 1{fpzq.

c) Descriviu la imatge de Re z “ 1.

d) Descriviu la imatge de Im z “ π{4.

e) Descriviu la imatge de la banda 0 ď Im z ď π{4. Ž

Solució:

a) Domini és C i rang és Czt0u.

b) fp´zq “ e´z “ 1{ez “ 1{fpzq.

c) te1`iy “ epcos y ` i sin yq, y P Ru és la circumferència de radi e centrada a l’oŕıgen de
coordenades.

d) tex`iπ{4 “ exp
?
2{2 ` i

?
2{2q, x P Ru que és el raig y “ x amb x ą 0.

12



2. Funcions de variable complexa

e) El sector circular amb angle entre 0 i π{4 al primer quadrant.

2.1.7. La funció de Jukovski1 és w “ Jpzq “ 1
2

`

z ` 1
z

˘

, vegeu la figura 3.7. Proveu que

a) Jpzq “ Jp1{zq,

b) J porta el cercle unitat |z| “ 1 a l’interval real r´1, 1s,

c) J porta el cercle |z| “ r (r ą 0, ­“ 1) a l’el.lipse
u2

“

1
2

`

r ` 1
r

˘‰2 `
v2

“

1
2

`

r ´ 1
r

˘‰2 “ 1 que té

els focus a ˘1. Ž

Solució:

a) Jp1{zq “ 1
2p1{z ` 1

1{p1{zq
q “ Jpzq.

b) Jpeitq “ 1
2peit ` e´itq “ cosptq P r´1, 1s.

c) Si Jpreitq “ uptq ` ivptq és clar que uptq “ 1
2pr ` 1{rq cosptq i vptq “ 1

2pr ´ 1{rq sinptq.
D’aqúı dedüım que pu, vq de la imatge de |z| “ r satisfan l’equació de l’el.lipse que es
dona. Recordem que en una el.lipse px{aq2 ` py{bq2 “ 1 amb a ą b els focus estan a
p˘c, 0q amb c “ ˘

?
a2 ´ b2. En el nostre cas a “ 1

2pr ` 1{rq, b “ 1
2pr ´ 1{rq i c “ 1.

2.1.8. Fent servir la comanda contour_plot de Sage dibuixeu les corbes de nivell de u i
v si f “ u` iv és

a) z,

b) z2,

c) logpzq,

d) sinpzq,

e) 1{z,

f) 1{z2,

g) ez,

h)
1

z ´ 1
`

1

z ` 1
,

i) logpz ´ 1q ` logpz ` 1q. Ž

Solució: Pel cas i) podem fer com es veu a la figura annexa

1Nikolai Jukovski, Orekhovo, 1847–1921, https://ca.wikipedia.org/wiki/Nikolai_Jukovski

13

https://ca.wikipedia.org/wiki/Nikolai_Jukovski


2. Funcions de variable complexa

Els altres són encara més senzills.

2.2. Funcions multivaluades

2.2.1. Donada l’equació de Cardano z3`pz`q “ 0, comprova que si C “

ˆ

´
q
2 `

b

q2

4 `
p3

27

˙
1
3

,

aleshores z1 “ C ´
p
3C és solució de la cúbica. Les tres arrels s’obtenen canviant l’elecció

de l’arrel cúbica.
Tot seguit obre GeoGebra2 i dibuixa els punts p “ 1`i i q “ 2`0i; defineix w “ ´1

2`
?
3
2 i,

C mitjançant la fórmula anterior, i z1 “ C ´
p
3C , z2 “ wC ´

p
3wC i z3 “ w2C ´

p
3w2C

.
Escull tres colors diferents per zj, i activa la seva traça. Deixant q fixat i movent p,
per exemple, comprova que els tres punts són funció de p, i es poden determinar com a
branques cont́ınues localment de manera cont́ınua, tot i que C presenta discontinüıtats de
salt que fan que els tres zj vagin permutant la seva posició. Per exemple, pots fixar p
en la circumferència de radi 4 amb la instrucció p=Punt(Circumferència((0, 0), 4))i
observar què ocorre, i comparar amb el radi 2 o 3. Pots usar també la instrucció lloc

geomètric. Quantes voltes cal que faci p a aquesta circumferència per tal que una arrel
doni la volta a l’origen de manera cont́ınua? Ž

Solució:

z31 ` pz1 ` q “ pC ´
p

3C
q3 ` ppC ´

p

3C
q ` q.

Notem que

pC ´
p

3C
q3 “ C3 ´ pC `

p2

3C
´

p3

27C3
.

2o entra a https://www.geogebra.org/m/jbszj89u
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2. Funcions de variable complexa

Per tant,

z31 ` pz1 ` q “ C3 ´
p3

27C3
` q “ ´

q

2
`

c

q2

4
`
p3

27
´

p3

27

ˆ

´
q
2 `

b

q2

4 `
p3

27

˙ ` q.

Notem ara que

p3

27

ˆ

´
q
2 `

b

q2

4 `
p3

27

˙ “

p3
ˆ

´
q
2 ´

b

q2

4 `
p3

27

˙

27
´

q2

4 ´
q2

4 ´
p3

27

¯ “
q

2
`

c

q2

4
`
p3

27
.

2.3. Logaritmes i arguments

2.3.1. Doneu exemples que mostrin la falsedat de la igualtat Log pa ¨ bq “ Log a ` Log b.
(Per exemple, a “ b “ ´1 ´ i). Ž

Solució: Log paq ` Log pbq “ 2Log p´1 ´ iq “ 2plnp
?
2q ´ i3π{4qq “ ln 2 ´ i3π{2 i

Log pp´1 ´ iqp´1 ´ iqq “ Log p2iq “ ln 2 ` iπ{2 que són diferents.

2.3.2. Sigui L una determinació del logaritme en Czp´8, 0s tal que Lp1q “ 2πi. Proveu
que la funció fpzq “ Lpz ` 3q és cont́ınua en

D :“ tz P C; Re pzq ą ´3u .

Quant val fp3iq? Ž

Solució: Notem que D`3 “ tz P C; Re pzq ą 0u Ă Czp´8, 0s. Per tant, f és cont́ınua.

A més sabem que L “ Log ` 2kπi. Com que 0 “ Log p1q “ Lp1q ´ 2kπi “ 2πi ´ 2kπi,
trobem k “ 1. I per tant,

fp3iq “ Lp3i` 3q “ Log p3i` 3q ` 2πi “ ln |3i` 3| ` pArg p3i` 3q ` 2πqi “ lnp3
?
2q `

9π

4
i.

2.3.3. Una branca de l’argument Apzq (o del logaritme Lpzq) queda fixada si donem i) el
domini Ω on està definida ii) el valor de Apzq (o de Lpzq) d’un punt d’Ω. Conside reu
els dominis:

Ω1 “ Cz
␣

reiπ, r ě 0
(

; Ω2 “ Cz

!

reiπ{4, r ě 0
)

Ω3 “ Cz ptx P r´1, 0su Y t´1 ` iy, y P r0, 1.5su Y tx` 1.5i, x P r´1,8quq .
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2. Funcions de variable complexa

Completeu la següent taula.

Ω1 Ω2 Ω3

Ap1q “ 0 Apiq “ Apiq “ Apiq “

Lpiq “ Lpiq “ Lpiq “

Lp2iq “

Ap1q “ ´2π Apiq “ Apiq “ Apiq “

Lpiq “ Lpiq “ Lpiq “

Lp2iq “

Apiq “ ´3π
2 Ap1q “ Ap1q “ Ap1q “

Lp1q “ Lp1q “ Lp1q “

Lp2iq “

Ž

Solució: Fila 1: π
2 ;

π
2 i | ´3π

2 ; ´3π
2 i | π

2 ;
π
2 i;

´3π
2 i ` ln 2. Fila 2: restar a tot 2π. Fila 3:

´2π;´2πi | 0; 0 | ´2π;´2πi; ´7π
2 i` ln 2.

2.3.4. Estudieu si existeix alguna determinació del logaritme en els conjunts següents i
determineu els possibles conjunts imatge:

a) tz P C | Re z ą 0u, b) tz P C | Re z ą Im zu, c) tz P C | 1 ă |z| ă 2u. Ž

Solució: a) Śı, Ω Ă Czp´8, 0s, per tant fkpzq “ Log pzq ` 2kπi és una determinació

amb fkpΩq “ tx` iy : y ´ 2kπ P p´π{2, π{2qu per algun k P Z fixat.
b) Śı, Ω Ă Czp´8, 0s, per tant per algun k P Z fixat, definim fkpzq “ Log pzq ` 2kπi,

que és una determinació amb fkpΩq “ tx` iy : y P p´3π{4 ` 2kπ, π{4 ` 2kπqu.
c) No. Si exist́ıs, existiria una branca cont́ınua de l’argument A : D2p0qzD Ñ R.

Aleshores fpzq “ Ap3z{2q serà una determinació en BD, però no n’existeix cap per la
proposició 2.15.

2.3.5. Calculeu els possibles valors de

a) logp1q, b) logp´1q, c) logp1 ` iq, d) logp1´ i
?
3q, e) logpiq. Ž

Solució: (a) 2kπi, k P Z; (b) p2k ` 1qπi, k P Z; (c) ln
?
2 ` ipπ{4 ` 2kπq, k P Z; (d)

ln 2 ` ip5π{3 ` 2kπq, k P Z; (e) pπ{2 ` 2kπqi, k P Z.

2.3.6. Escrivim cos z “ peiz ` e´izq{2 i sin z “ peiz ´ e´izq{2i. Resoleu les equacions

a) ez “ 2i,

b) Logpz2 ´ 1q “ iπ{2,

c) e2z ` ez ` 1=0,

d) cos z “ 2i,

e) cos z “ sin z.
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2. Funcions de variable complexa

Solució: a) z P logp2iq és a dir z P tlnp2q ` iπ{2 ` 2kπi : k P Zu

b) Escrivim w “ z2 ´ 1. Trobem que w “ eiπ{2 “ i. Per tant, z2 ´ 1 “ i, i z “

˘
?
1 ` i “ ˘

4
?
2ei

π
8 .

c) Posem ez “ t llavors t és una arrel tercera de la unitat que no és 1, és a dir t “ e˘i2π{3.
Llavors z P tip2π{3 ` 2kπq : k P Zu Y tip´2π{3 ` 2kπq : k P Zu

d) Posem w “ eiz, resolem l’equació de segon grau que obtenim i resulta w “ p2˘
?
5qi.

Per tant, z “ π{2` 2kπ´ i lnp2`
?
5q, i z “ ´π{2` 2kπ´ i lnp

?
5´ 2q. Tot plegat, queda

z “ ˘pπ{2 ` 2kπ ` i lnp
?
5 ´ 2qq, amb k P Z

e) Procedim com en el cas anterior i tenim que

z P tπ{4 ` 2kπ, 3π{4 ` 2kπ : k P Zu “ tπ{4 ` kπ : k P Zu.

2.4. Potències complexes

2.4.1. Trobeu l’error en el següent raonament de Bernoulli: p´zq2 “ z2, llavors 2 logp´zq “

2 log z. Per tant, logp´zq “ logpzq. Ž

Solució: Recordem que logpzq “ tln r ` ipθ ` 2kπq : k P Zu on z “ reiθ. És a dir,

logpzq és un conjunt de valors, és multivaluada. Recordem també que ez és 2πi periòdica.
Llavors

p´zq2 “ z2 ñ e2 logp´zq “ e2 logpzq ñ 2 logp´zq´2 logpzq “ 2kπi ñ logp´zq´ logpzq “ kπi.

Els arguments de z i de ´z (que són oposats) difereixen en un múltiple senar de π. Si
considerem els arguments principals

|Argp´zq ´ Argpzq| “ kπ, |Argp´zq ´ Argpzq| ă 2π

llavors difereixen en π. La conclusió correcta doncs, en termes de funcions multivaluades,
és logp´zq “ logpzq ` πi.

2.4.2. Calculeu els possibles valors de

a) ii, b) p
?
3 ` iq1´i, c) 2´i, d) pi2qi, e) piiq2. Ž

Solució: (a) expp´pπ{2`2kπqq, k P Z; (b) exp
`

ln 2 ` π
6 ` 2kπ ` ipπ6 ` 2kπ ´ ln 2q

˘

, k P

Z; (c) e2kπe´i ln 2, k P Z; (d) eπp1`2kq, k P Z. (e) eπp´1`4kq, k P Z.

2.4.3. Determinar expĺıcitament la inversa de qpzq “ 2ez ` e2z en funció de logaritmes.
Resoldre qpzq “ 3, trobant totes les solucions.
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Solució: Si t “ ez cal resoldre l’equació t2 ` 2t´ w “ 0 d’on

ez “ ´1 `
?
1 ` w,

on usem
?

per la funció multivaluada arrel quadrada. Apliquem logaritmes i obtenim

q´1pwq “ logp´1 `
?
1 ` wq “ Log p´1 ˘ e

1
2
Log p1`wqq ` 2kπi

que és una funció multivaluada.

• Per la branca positiva de l’arrel tenim que

q´1p3q “ logp´1 ` 2q “ logp1q “ t2πni, n P Zu.

• Per la branca negativa

q´1p3q “ logp´1 ´ 2q “ logp´3q “ tlnp3q ` ipπ ` 2πnq, n P Zu.

2.4.4. Siguin h0pzq, h1pzq i h2pzq les determinacions de l’arrel cúbica en Ω “ Czp´8, 0s

tal que h0p1q “ 1, h1p1q “ e2πi{3 i h2p1q “ e4πi{3.

i) Descriviu hjpΩq per j “ 0, 1, 2.

ii) Per j “ 0, 1, 2 relacioneu hj amb Log i Arg (on Log i Arg denoten les branques
principals del logaritme i de l’argument respectivament).

iii) Usant les relacions anterior, trobeu el valor de hjpiq, per j “ 0, 1, 2. Ž

Solució: Tenim que hjpzqn “ z “ ex`iy`2kπi per tot z P Ω, on fixem y “ Arg z. Si

escrivim les parts real i imaginària del logaritme tindrem

hjpzq “ eu`iv

amb nu “ x i nv “ y ` 2kπ. Per tant,

u “
x

n
v “

y ` 2kπ

n
.

Traient-ne mòdul i argument tenim que

|hjpzq| “ e
x
n “ |z|

1
n Arg phjpzqq “

y ` 2kπ

n
“

Arg pzq

n
`

2kπ

n
.

Responem ara les preguntes:

i) Trobem imposant que e2πji{3 P hjpΩq, que

h0pΩq “ tz P C : Arg pzq P p´π{3, π{3qu,

h1pΩq “ tz P C : Arg pzq P pπ{3, πqu,

h2pΩq “ tz P C : Arg pzq P p´π,´π{3qu.
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ii) En tenir n “ 3 trobem

Arg phjpzqq “
Arg pzq

3
`

2kjπ

3
ùñ kj “

3Arg phjpzqq

2π
´

Arg pzq

2π
.

En el cas z “ 1,

k0 “
3Arg p1q

2π
´

Arg p1q

2π
“ 0 ´ 0 “ 0.

k1 “
3Arg pe2πi{3q

2π
´

Arg p1q

2π
“ 1 ´ 0 “ 1.

k2 “
3Arg pe´2πi{3q

2π
´

Arg p1q

2π
“ ´1 ´ 0 “ ´1.

Per tant,

hjpzq “ |hjpzq|eiArg phjpzqq “ |z|
1
3 ei

Arg pzq

3
`i

2kjπ

3 “ e
Log pzq

3
`i

2kjπ

3 .

iii)

hjpiq “ |i|
1
n ei

Arg piq

3
`i

2kjπ

3 “ ei
π
6

`i
2kjπ

3 “

$

’

&

’

%

ei
π
6 si j “ 0,

ei
5π
6 si j “ 1,

ei
´π
2 “ ´i si j “ 2.

.

2.5. Determinacions de logaritmes i arrels de funcions

2.5.1. Sigui X un espai topològic connex. Demostreu que si S1 i S2 són dues determina-
cions de l’arrel n-èsima de f : X Ñ Czt0u llavors existeix una arrel n-èsima de la unitat
ζ tal que S2pxq “ ζ ¨ S1pxq, per a tot x P X. Ž

Solució: Sabem que S1pxq ‰ 0 per hipòtesi. Aleshores S2pxq

S1pxq
és cont́ınua, i

ˆS2pxq

S1pxq

˙n

“ 1.

Com que S2pxq

S1pxq
pren per valors en les arrels de la unitat

!

1, e
2πi
n , e

4πi
n , ¨ ¨ ¨ , e

2pn´1qπi
n

)

,

que és un conjunt finit, necessàriament la funció S2{S1 és constant (la imatge cont́ınua
d’un connex és connexa).

2.5.2. Determineu els dominis de continüıtat (és a dir l’obert maximal on una funció és
cont́ınua) de les funcions ez

2
, e1{z, 1{ez, 1{pez ´ 1q, de la branca principal de

?
1 ´ z i de

la branca principal de
?
1 ` ez. Ž
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Solució:

• ez
2
és cont́ınua a C.

• e1{z té domini Czt0u.

• 1{ez té domini C, ja que el recorregut de l’exponencial és el domini de 1{z.

• 1{pez ´ 1q té domini Cz2πiZ.

•
?
1 ´ z “ e

1
2
Log p1´zq té domini de continüıtat Czr1,`8q.

•
?
1 ` ez “ e

1
2
Log p1`ezq té domini de continüıtat

Cztz : eRe z ě 1, Im z P π ` 2πku “ Cztx` ip2k ` 1qπ : x ě 0u.

Per aquest cas, notem que cal 1 ` ez R p´8, 0s, és a dir ez R p´8,´1s.

2.5.3. Donar una determinació de fpzq que sigui cont́ınua a la regió D donada.

a) f1pzq “ pz2 ´ 1q1{2, D “ tz P C : |z| ă 1u,

b) f2pzq “ pz2 ` 4q1{2, D “ Cztiy P C : |y| ă 2u,

c) f3pzq “ pz4 ´ 1q1{2, D “ tz P C : |z| ą 1u,

d) f4pzq “ pz3 ´ 1q1{3, D “ tz P C : |z| ą 1u. Ž

Solució: a) Observem que si considerem la branca principal tenim que

pz2 ´ 1q1{2 “ exp

ˆ

1

2
Logpz2 ´ 1q

˙

i Log té com a domini d’holomorfia tots els z P C excepte els que z2 ´ 1 ď 0, és a dir
cal treure els z “ a ` bi, a, b P R tals que a2 ´ b2 ` 2abi ď 1. Això només pot passar per
ab “ 0. Cas a “ 0, llavors per a tot bi es compleix. Cas b “ 0, cal que a2 ď 1. No és la
branca que volem ja que en aquest cas

D “ Cz ptz P C : Re z “ 0u Y tz P C : Im z “ 0, |Re z| ă 1uq .

Observem abans el que es veu si fem un complex plot():
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Caldrà canviar la branca del logaritme. Podem buscar una branca de l’argument que

ens vagi bé però és més fàcil considerar
?
z2 ´ 1 “

a

p´1qp1 ´ z2q
O.2.21

“ i
?
1 ´ z2 “

i expp12Logp1 ´ z2qq. Aleshores, traient els z tal que 1 ´ z2 ď 0 resulta que el domini és
Cztz P R : |z| ą 1u i aquest domini inclou el disc. Veiem el complex plot() corresponent:

Vegeu també la figura 3.8.
b) Com a funcions multivaluades (o multivalents) tenim que

?
z2 ` 4 “ z

a

1 ` 4{z2,
això vol dir que els conjunts que determinen són iguals. Les branques principals de cada
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expressió són:

a

z2 ` 4 “ exp

ˆ

1

2
Log

`

z2 ` 4
˘

˙

, D “ Cztz2 ` 4 ď 0u “ Cztiy, y P R : |y| ě 2u

z
a

1 ` 4{z2 “ z exp

ˆ

1

2
Log

`

1 ` 4{z2
˘

˙

, D “ Czt1 ` 4{z2 ď 0u “ Cztiy, y P R : |y| ď 2u

on Log denota la branca principal del logaritme.

La que ens va bé és la branca principal de la segona expressió. El domini de continüıtat
és llavors Cztiy, y P R : |y| ă 2u.

c) Considerem f3pzq “ z2
a

1 ´ 1{z4 “ iz2f1p1{z2q, d) Similarment podem definir
z 3
a

1 ´ 1{z3.

2.6. Sèries de potències de nombres complexos

2.6.1. Considereu la sèrie de potències Spzq :“
ř8

n“0 anpz ´ iqn. Digueu si són certes les
següents afirmacions.

a) Spzq pot ser divergent en z “ 0 i convergent en z “ ´i simultàniament

b) Spzq pot ser convergent en z “ 1 ` i i en z “ 2 ` i simultàniament

c) Si Spzq és convergent en z “ 1 ` i, aleshores també ho és en z “ 2i

d) Si Spzq és divergent en z “ 2i, aleshores també ho és en z “ 2 ` i. Ž

Solució: Falsa. Certa. Falsa. Certa.

La darrera, per exemple, es pot justificar aix́ı: Si S és divergent en z “ 2i, aleshores el
radi de convergència R ď |2i ´ i| “ 1. En particular, la sèrie divergeix en tot z tal que
|z ´ i| ą 1, cosa que se satisfà a z “ 2 ` i. L’afirmació és, per tant, CERTA.
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2. Funcions de variable complexa

2.6.2. Sigui fpzq “
8
ř

n“0
anz

n una sèrie convergent en el disc D “ DRp0q. Demostreu que

ˆ 2π

0
|fpreiθq|2

dθ

2π
“

8
ÿ

n“0

|an|2r2n, si 0 ă r ă R. Ž

Solució: Prenem una suma parcial fN :“
řN

n“0 anz
n. Observem que

|fN preiθq|2 “ fN preiθqfN preiθq “ Re

˜

`

N
ÿ

n“0

anr
neinθ

˘`

N
ÿ

m“0

āmr
me´imθ

˘

¸

“

N
ÿ

n,m“0

rn`mRe panāme
ipn´mqθq.

Integrant, i escrivint
´
u` iv “

´
u` i

´
v, tenim que

ˆ 2π

0
|fN preiθq|2

dθ

2π
“

N
ÿ

n,m“0

rn`mRe

ˆ

anām

ˆ 2π

0
eipn´mqθ dθ

2π

˙

Però tenim que ˆ 2π

0
eipn´mqθ dθ

2π
“

#

0 si n ‰ m

1 si n “ m,

la qual cosa ja dona el resultat si la sèrie és finita.
Per altra banda, com que fN convergeix uniformement a f en el disc Drp0q, tenim que

ˆ 2π

0
|fpreiθq ´ fN preiθq|2

dθ

2π
ď sup

θPr0,2πs

|fpreiθq ´ fN preiθq|2
NÑ8
ÝÝÝÝÑ 0.

2.6.3. Sigui S1pzq “
8
ř

n“1
anz

n i S2pzq “
8
ř

n“1
anz

n´1. Demostreu que S1 és convergent en

z si i només si ho és S2. En cas afirmatiu, tenim que S1pzq “ zS2pzq.

Solució: (proposada per Clara Valls Moreso)

El cas z “ 0, és trivialment cert ja que

S1p0q “

8
ÿ

n“1

an ¨ 0n “ 0,

que és convergent,

S2p0q “

8
ÿ

n“1

an ¨ 0n´1 “ a1,
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2. Funcions de variable complexa

que també és convergent i, per tant, efectivament S1pzq “ zS2pzq per z “ 0:

S1p0q “ 0 “ 0 ¨ a1 “ 0 ¨ S2p0q.

Manca estudiar el cas general z ‰ 0.
ñ Suposem que S1pzq és convergent. Per definició, la successió de sumes parcials

S
pNq

1 pzq :“
N
ÿ

n“1

anz
n

convergeix quan N Ñ 8.
Observem que

S
pNq

1 pzq “

N
ÿ

n“1

anz
n “ z

N
ÿ

n“1

anz
n´1 “ zS

pNq

2 pzq.

Com que z ‰ 0 obtenim

S
pNq

2 pzq “
S

pNq

1 pzq

z
.

Prenent ĺımits, com que S1pzq és convergent i z ‰ 0, obtenim

lim
NÑ8

S
pNq

2 pzq “
1

z
lim

NÑ8
S

pNq

1 pzq “
S1pzq

z
ă 8,

Aix́ı S2pzq és convergent i a més

zS2pzq “ S1pzq.

.
ð Suposem que S2pzq és convergent. Per definició la sucessió de sumes parcials,

S
pNq

2 pzq :“
N
ÿ

n“1

anz
n´1.

convergeix quan N Ñ 8.
Observem que:

zS
pNq

2 pzq “

N
ÿ

n“1

anz
n “ S

pNq

1 pzq.

Prenent ĺımits

lim
NÑ8

S
pNq

1 pzq “ lim
NÑ8

zS
pNq

2 pzq “ z lim
NÑ8

S
pNq

2 pzq ă 8.

Com que S2pzq és convergent, també S1pzq és convergent i

S1pzq “ zS2pzq.

Aix́ı doncs queda provat l’enunciat.

2.7. Càlcul del radi de convergència

2.7.1. Calculeu el radi de convergència de les següents sèries de potències
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2. Funcions de variable complexa

a)
8
ÿ

n“1

nαzn; α P R,

b)
8
ÿ

n“1

pn` 1qpn` 2q . . . 2n

nn
zn,

c)
8
ÿ

n“1

pz ` iq2
n

nn
,

d)
8
ÿ

n“1

n!

p2nqn
pz ´ 1qn,

e)
8
ÿ

n“0

an
2
pz ` 1qn a P p0, 1q,

f)
8
ÿ

n“1

p2zqn
?
n

,

g)
8
ÿ

n“1

p´1qn

npn` 1q
pz ´ 2qnpn`1q,

h)
8
ÿ

n“0

zn

n` 2n
,

i)
8
ÿ

n“1

n2p3z ´ 2qn,

j)
8
ÿ

n“0

p1 ` p´1qnqnz2
n
. Ž

Solució: Els oberts on hi ha convergència absoluta i uniforme en compactes són: (a) D;
(b) De{4p0q; (c) D1p´iq; (d) D2ep1q; (e) C; (f) D1{2p0q; (g) D1p2q; (h) D2p0q; (i) D1{3p2{3q;
(j) D.
Per exemple, fem i) i j).

(i) Escrivim
8
ÿ

n“1

n2p3z ´ 2qn “

8
ÿ

n“1

3nn2
ˆ

z ´
2

3

˙n

, aix́ı que definim an :“ 3nn2.

Calculem
ˇ

ˇ

ˇ

ˇ

an`1

an

ˇ

ˇ

ˇ

ˇ

“
pn` 1q23n`1

n23n
nÑ8
ÝÝÝÑ 3.

Per tant, pel criteri del quocient, el radi de convergència és 1{3. Tenim doncs convergència
al disc D1{3p2{3q. En compactes la convergència serà uniforme.

(j) Tenim que
8
ÿ

n“0

p1 ` p´1qnqnz2
n
. Notem que el coeficient s’anul.la per n “ 2k ` 1. És

a dir que aj “ 0 si j ‰ 4k, i aj “ 4k “ j si j “ 4k. Aleshores

lim sup
j

j

b

|aj | “ lim sup
k

4k
a

|a4k | “ lim sup
j“4k

j
a

j

Com que aquest ĺımit existeix, podem substituir ĺımit superior per ĺımit:

lim
j

j
a

j “ e
limj

ln j
j “ 1.

Per tant, el radi de convergència és R “ 1{1 “ 1, i tenim convergència al disc D.

2.8. Comportament a la frontera del disc de convergència

2.8.1. Estudieu la convergència de les següents sèries de potències:
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2. Funcions de variable complexa

a)
8
ÿ

n“1

zn

n

b)
8
ÿ

n“0

zn`2

pn` 1qpn` 2q

c)
8
ÿ

n“0

z3n`1

3n` 1

d)
8
ÿ

n“1

p´1qpn`1q

n
zn

e)
8
ÿ

n“1

npz ´ iqn´1

5n
. Ž

Solució: (a) Conv. unif. en compactes de D i en tot arc tancat de t|z| “ 1u que no

contingui z “ 1.
(b) Conv. abs. i unif. a D pel criteri M de Weierstrass.
(c) Conv unif. en tot compacte de D i en tot arc tancat de |z| “ 1 que no contingui

1, e2πi{3 o e4πi{3.
Si anomenem Spzq :“

ř8
n“0

z3n`1

3n`1 , podem veure que el radi de convergència és 1. Quan
el mòdul és |z| ď 1 (la desigualtat estricta no cal, però surt “gratis”), mirem d’aplicar el
criteri de Dirichlet:

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“0

z3n`1

ˇ

ˇ

ˇ

ˇ

ˇ

“ |z|

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ z3pN`1q

1 ´ z3

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

|1 ´ z3|

Per tant, si distpz3, 1q ą ε, aleshores tenim una cota uniforme de les sumes parcials
řN

n“0 z
3n`1 i podem aplicar el criteri de Dirichlet.

Concloem que per tot compacte de Dzt1, e˘2πi{3u hi ha convergència uniforme. En
particular, en aquests compactes S és el ĺımit uniforme de polinomis, que són funcions
cont́ınues, i és, per tant, cont́ınua a Dzt1, e˘2πi{3u i uniformement cont́ınua en compactes.
(d) Conv. unif. en compactes de D i en tot arc tancat de t|z| “ 1u que no contingui

z “ ´1:
Si anomenem Spzq :“

ř8
n“1

p´1qpn`1q

n zn, aleshores Spzq “ ´T p´zq, on T pzq “
ř8

n“1
zn

n
és la sèrie estudiada a l’apartat (a). Aix́ı dedüım que S convergeix uniformement en
compactes de D i en tot arc tancat de t|z| “ 1u que no contingui z “ ´1.
(e) Conv unif. en compactes de D5piq. Divergeix per a tot punt de la frontera del disc:

Estudiem la sèrie Spzq “
ř8

n“1
npz´iqn´1

5n . Notem que el radi de convergència és 5 i que

quan |z ´ i| “ 5, aleshores el terme general de la sèrie té mòdul
ˇ

ˇ

ˇ

npz´iqn´1

5n

ˇ

ˇ

ˇ
“ n que no

convergeix a zero (condició necessària per la convergèncie d’una sèrie!). Per tant, la sèrie
és divergent a tota la circumferència. La convergència és uniforme en compactes de D5piq.
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2. Funcions de variable complexa

2.8.2. Demostreu el criteri d’Abel i el teorema d’Abel. Indicació: Vegeu [BC13, Teorema
2.20] per un cas més general en regions no tangencials (angles de Stolz). Ž

Solució: Deixem el criteri pel lector, i demostrem el teorema d’Abel: Apliquem el

criteri d’Abel a X “ A, Y “ r0, 1s, per sèrie en X prenem anpζ ´ bqn, i en Y prenem rn,
i dedüım que

ř

n anr
npζ ´ bqn convergeix uniformement a X ˆ Y . És a dir que per tot ε

existeix nε tal que m,n ą nε, ζ P A, r P r0, 1s, trobem

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“n

akr
kpζ ´ bqk

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε.

Si z P CpA, bq, aleshores existeixen ζ P A i r P Y tal que z “ b` rpζ ´ bq. Dedüım que

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“n

akpz ´ bqk

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“n

akr
kpζ ´ bqk

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε,

que és la condició de convergència uniforme en CpA, bq.
Per veure l’intercanvi de ĺımits, n’hi ha prou amb establir la continüıtat del ĺımit. Notem

que
řn

k“0 akpz ´ bqk és cont́ınua en C i, per tant, en el con. La convergència uniforme de
funcions cont́ınues implica que el ĺımit és continu: per la desigualtat triangular, per tot n
tenim que

|fpzq ´ fpwq| ď |fpzq ´ fnpzq| ` |fnpzq ´ fnpwq| ` |fnpwq ´ fpwq|;

per la convergència uniforme, si ε ą 0 existeix n tal que supz |fpzq ´ fnpzq| ă ε
3 ; i per la

continüıtat de fn existeix δ tal que |z ´ w| ă δ implica |fnpzq ´ fnpwq| ă ε
3 . Per tant,

|fpzq ´ fpwq| ď
2ε

3
` |fnpzq ´ fnpwq| ă ε.
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3. Derivació complexa i holomorfia

3.1. Funcions holomorfes

3.1.1. a) Demostreu la regla del producte per la derivació.

b) Proveu que si f és C-derivable en z0 llavors és cont́ınua en aquest punt.

c) Proveu que si f és C-derivable en z0, llavors

fpzq “ fpz0q ` f 1pz0qpz ´ z0q ` λpzqpz ´ z0q

on λpzq Ñ 0 si z Ñ z0. Ž

Solució:

a)

fpz ` ∆zqgpz ` ∆zq ´ fpzqgpzq

∆z

“
fpz ` ∆zqgpz ` ∆zq ´ fpz ` ∆zqgpzq ` fpz ` ∆zqgpzq ´ fpzqgpzq

∆z
,

prenem factor comú, passem al ĺımit i obtenim f 1pzqgpzq ` fpzqg1pzq que és la fórmula
per la derivada.

b) Volem veure que limzÑz0 fpzq “ fpz0q quan f és derivable en z0. Tenim que

lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“ f 1pz0q ­“ 8.

Com que el denominador tendeix a zero cal que el numerador també tendeixi a zero
llavors queda provada la continüıtat.

c) Escrivim

fpzq ´ fpz0q

z ´ z0
“ f 1pz0q `

ˆ

fpzq ´ fpz0q ´ f 1pz0qpz ´ z0q

z ´ z0

˙

“: f 1pz0q ` λpzq.

És clar que λpzq Ñ 0 si z Ñ z0 i hem provat l’enunciat.

3.1.2. Siguin fpzq i gpzq funcions enteres. Decidiu si les següents funcions són enteres:
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3. Derivació complexa i holomorfia

a) fpzq3,

b) fpzqgpzq,

c) fpzq{gpzq,

d) 5fpzq ` igpzq,

e) fp1{zq,

f) fpgpzqq.

Solució: Totes són enteres excepte el cas c) quan gpzq “ 0 i e) quan z “ 0.

3.1.3. Proveu que gpzq “ 3x2 ` 2x ´ 3y2 ´ 1 ` ip6xy ` 2yq és entera. Escriviu g com a
funció de z.1 Ž

Solució: Si posem x “ 1{2pz ` z̄q i y “ 1{p2iqpz ´ z̄q veiem que fpzq “ 3z2 ` 2z ´ 1

que és un polinomi. Es pot fer més fàcilment amb la indicació del peu de pàgina:

fpzq “ upz, 0q ` ivpz, 0q “ 3z2 ` 2z ´ 3 ¨ 02 ´ 1 ` ip6x ¨ 0 ` 2 ¨ 0q “ 3z2 ` 2z ´ 1.

3.1.4. Existeix alguna funció f holomorfa en el disc unitat D tal que per a tot n “ 2, 3, . . .

a) f
`

˘ 1
n

˘

“ 1
2n`1?

b) f
`

˘ 1
n

˘

“ 1
n2 ?

c)
ˇ

ˇf
`

1
n

˘ˇ

ˇ “ 1
lnpn`1q

?

d)
ˇ

ˇf
`

1
n

˘
ˇ

ˇ “ n
n`1? Ž

Solució: (a) No existeix; (b) Śı, per exemple fpzq “ z2; (c) No existeix; (d) Śı, per

exemple fpzq “ 1{p1 ` zq.
Fem el primer amb detall, el tercer és semblant: Notem que, en cas d’existir una tal

funció f holomorfa, aquesta serà en particular cont́ınua a l’origen. Aix́ı, necessàriament
haurem de tenir

fp0q “ fp lim
nÑ8

1{nq “ lim
nÑ8

fp1{nq “ lim
nÑ8

1

2n` 1
“ 0.

Si és holomorfa, haurà d’existir el ĺımit

f 1p0q “ lim
zÑ0

fpzq ´ fp0q

z ´ 0
“ lim

zÑ0

fpzq

z
.

En particular tindrem que aquest ĺımit s’assoleix si ens acostem a l’origen pels reals positius
i pels reals negatius. Més concretament tindrem

f 1p0q “ lim
nÑ8

fp1{nq

1{n
“ lim

nÑ8

n

2n` 1
“

1

2

i, a la vegada

f 1p0q “ lim
nÑ8

fp´1{nq

´1{n
“ lim

nÑ8

´n

2n` 1
“ ´

1

2
.

Com que 1{2 ‰ ´1{2, hem arribat a una contradicció i f no pot existir.

1Si fpzq “ upx, yq ` ivpx, yq és holomorfa en un domini Ω que talla la recta real i u, v són holomorfes en
dues variables, llavors es pot provar que fpzq “ upz, 0q ` ivpz, 0q, vegeu l’exercici 4.10.10.
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3. Derivació complexa i holomorfia

3.1.5. Doneu una branca de logpz2 ` 2z ` 3q que sigui holomorfa a z “ ´1. Calculeu la
seva derivada en aquest punt. En quin domini és holomorfa la branca que heu definit? Ž

Solució: Com que p´1q2 ` 2p´1q ` 3 “ 2, en un entorn de ´1 serem lluny dels reals

negatius i, per tant, podem escollir Log pz2 ` 2z ` 3q, per exemple.
Veiem que el polinomi ppzq “ z2 ` 2z` 3 “ pz` 1q2 ` 2 P R si i només si z` 1 P RY iR

i que concretament ppzq “ pz ` 1q2 ` 2 s’anul.la a ´1 ˘
?
2i. A partir d’aquests punts es

veurà el que hem de podar per continüıtat (teorema de Bolzano). Com que a z “ ´1 el
valor és positiu, deduim que el mateix passarà a R i a ´1 ` ip´

?
2,`

?
2q. Comprovant

que a z “ ´1˘ 4i la imatge és negativa, concloem que p és negatiu a ´1` ip´
?
2,`

?
2qc.

Per tant, el domini és Czt´1`it, |t| ě
?
2u. Podem veure el fenòmen fent complex plot()

(a l’esquerra z2 ` 2z ` 3 a la dreta el seu logaritme).

3.1.6. Sigui f una funció holomorfa en un obert Ω Ă C que satisfà |fpzq ´ i| ă 1 per a
tot z P Ω. Demostreu que la funció g definida per

gpzq “
1 ´ i` fpzq

1 ` i´ fpzq

té logaritme holomorf en Ω. Ž

Solució: Primer observem que la hipòtesi implica que 1 ` i ´ fpzq ‰ 0 per z P Ω, aix́ı

que g és holomorfa en Ω ja que f ho és. Si posem w “ fpzq ´ i, la hipòtesi ens diu que
|w| ă 1. Observem que

1 ´ i` fpzq

1 ` i´ fpzq
“

1 ` w

1 ´ w
.

Ara, tenim que

Re

ˆ

1 ` w

1 ´ w

˙

“
1

2

ˆ

1 ` w

1 ´ w
`

1 ` w

1 ´ w

˙

“
1 ´ |w|2

|1 ´ w|2

Aix́ı doncs,

Re

ˆ

1 ` w

1 ´ w

˙

ą 0 si |w| ă 1.
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3. Derivació complexa i holomorfia

Figura 3.1.: Graella en el pla complex entre ´2 ´ 2i i 2 ` 2i.

Per tant,
gpΩq Ă tRe ζ ą 0u Ă Czp´8, 0s

regió on el logaritme principal és holomorfa. Aleshores la funció

hpzq “ Logpgpzqq, z P Ω

és un logaritme holomorf de g en Ω.

3.1.7. Sigui fpzq “ z3 `1 i z1 “ p´1`
?
3iq{2, z2 “ p´1´

?
3iq{2. Provar que no existeix

cap punt w en el segment que uneix z1 i z2 de manera que fpz2q ´ fpz1q “ f 1pwqpz2 ´ z1q.
Que es pot dir del teorema del valor mitjà per funcions complexes? Ž

Solució: Tenim que z1 i z2 són arrels terceres de la unitat llavors fpz2q ´ fpz1q “ z32 ´

z31 “ 1´1 “ 0. Volem saber si hi ha w P z1z2 de manera que 0 “ 3w2pz2´z1q “ 3w2p´
?
3iq.

Però això només passa si w “ 0 que no pertany al segment entre z1 i z2. Llavors el teorema
del valor mitjà tal com es coneix per les funcions reals no és cert en el cas complex.

3.2. Les equacions de Cauchy-Riemann

3.2.1. Representem la identitat al pla complex amb la coloració habitual i amb la graella
entera. Per exemple, la identitat sobre el quadrat Q “ tx ` iy : x, y P p´2, 2qu és la
primera imatge de la figura 3.2. Una de les següents funcions, les diferencials de les quals
no s’anul.len en Q, representa una funció holomorfa en Q. Quina és?

a) b) c) d) Ž
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3. Derivació complexa i holomorfia

Solució: És la d).

La primera no ho pot ser ja que té les preimatges de la graella ortogonal tallen en angles
que no són rectes. També podem observar que hi ha punts on la funció no és cont́ınua (el
seu mòdul va a infinit), i que canvia l’orientació.
La segona la descartem per la presència de singularitats també: Hi ha dos punts del

quadrat on la funció no està definida (el seu mòdul va a infinit). De fet es tracta de la
tangent complexa, i els punts són ˘π{2.
La tercera no ho pot ser ja que les preimatges de la graella ortogonal tallen en angles

que no són rectes.
Ha de ser la quarta.

3.2.2. Trobar els valors de les constants a, b, c de manera que f sigui holomorfa i expresseu-
la en termes de z.

a) fpzq “ x` ay ` ipbx` cyq

b) fpzq “ cosxpcosh y ` a sinh yq ` i sinxpcosh y ` b sinh yq. Ž

Solució: Demanem que es compleixin les equacions de Cauchy-Riemann. Llavors a)

c “ 1 i a “ ´b i fpzq “ p1 ´ iaqz. b) Veiem que a “ b “ ´1 per Cauchy-Riemann i
fpzq “ cospzq ` i sinpzq.

3.2.3. Sigui f “ u` iv holomorfa i dues vegades diferenciable en un obert Ω Ă C. Proveu
que les funcions u i v són harmòniques (una funció fpx, yq és harmònica si les seves
segones derivades parcials són cont́ınues i el seu laplacià ∆f :“ fxx ` fyy “ 0.) Ž

Solució: Usant les equacions de Cauchy-Riemann i el teorema de les derivades creuades

de Schwarz, uxx
CR
“ vyx “ vxy

CR
“ ´uyy, llavors uxx ` uyy “ 0 i u és harmònica. Amb v

podem fer el mateix.

3.2.4. Considerem u “ e´xpx sin y ´ y cos yq

a) Provar que u és harmònica.

b) Trobar una v de manera que f “ u` iv sigui holomorfa (s’anomena harmònica conju-
gada de u).

c) Trobar una expressió compacta de fpzq. Ž

Solució: a) Comprovem que uxx ` uyy “ 0 és feixuc però elemental (podeu fer servir

Sage). b) Resolem l’equació vy “ ux “ e´xpy cos y ´ px ´ 1q sin yq respecte de y i trobem
que v “ e´xpx cos y`y sin yq`Cpxq. Fent servir l’altra equació de Cauchy-Riemann veiem
que C “ ct. P R i

v “ e´xpx cos y ` y sin yq ` C.

c) Fem servir que el candidat natural és fpzq “ upz, 0q ` ivpz, 0q, i obtenim fpzq “

ize´z ` iC.
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3. Derivació complexa i holomorfia

3.2.5. Trobar els polinomis harmònics de la forma ax3 ` bx2y ` cxy2 ` dy3. Trobar la
funció harmònica conjugada i la funció holomorfa corresponent. Ž

Solució: Si imposem la condició de ser harmònica (veure un exercici anterior) veiem

que c “ ´3a i b “ ´3d. Llavors per que el polinomi de l’enunciat sigui harmònic ha
de ser u “ ax3 ´ 3dx2y ´ 3axy2 ` dy3. Ara volem trobar v de manera que f “ u ` iv
sigui holomorfa, cal que vx “ ´uy i vy “ ux. De la segona equació obtenim que v “

3ax2y´ 3dxy2 ´ ay3 `Cpxq. Imposant ara la primera equació veiem que Cpxq “ dx3 `K
on K és una constant d’integració. Llavors ja tenim una f (que no és única). Es veu
fàcilment que fpzq “ pa` idqz3 ` iK,K P R (feu servir el truc de l’apartat c de l’exercici
anterior, per exemple).

3.2.6. Sigui Ω Ă C un domini (és a dir, un obert connex) i f una funció holomorfa en Ω.

1. Proveu que si f només pren valors imaginaris purs, aleshores f és constant.

2. Proveu que si |f | és constant, aleshores f també és constant. Equivalentment si f
només pren valors en una circumferència, llavors f és constant. Ž

Solució: 1. (proposada per Clara Valls Moreso) Suposem que f : Ω Ñ C és una funció

holomorfa tal que per a tot z P Ω, fpzq P iR. Això vol dir que la part real de f és nul·la.
Escrivim fpzq “ upx, yq ` ivpx, yq, on upx, yq “ 0 per a tot px, yq P Ω.
Com que f és holomorfa, les parts real i imaginària verifiquen les equacions de Cauchy-

Riemann:
Bu

Bx
“

Bv

By
,

Bu

By
“ ´

Bv

Bx
.

Però com que u ” 0, tenim que:

Bu

Bx
“ 0,

Bu

By
“ 0,

i per tant,
Bv

By
“ 0,

Bv

Bx
“ 0.

Això implica que v és constant en Ω, ja que Ω és connex (vegeu la proposició 3.14).
2.: Suposem primer que |f | ” 0. Aleshores efectivament f ” 0 és constant.
Si, en canvi |f | ” rC ą 0, aleshores escrivint les parts real i imaginària de f com

f “ u` iv, tenim que
u2 ` v2 ” C “ rC2.

Derivant l’expressió respecte de les parts real i imaginària, obtenim gràcies a les equacions
de Cauchy-Riemann

#

2uux ` 2vvx “ 0,

2uuy ` 2vvy “ 0,

CR
ðñ

#

uux ` vvx “ 0,

´uvx ` vux “ 0,
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Ara multiplicant la primera equació per u, la segona per v i sumant, obtenim

#

u2ux ` uvvx “ 0,

´uvvx ` v2ux “ 0,
ùñ Cux “ pu2 ` v2qux “ 0 ùñ ux “ 0.

Ara multiplicant la primera equació per v, la segona per u i restant, obtenim

#

uvux ` v2vx “ 0,

´u2vx ` uvux “ 0,
ùñ Cvx “ pu2 ` v2qvx “ 0 ùñ vx “ 0.

Hem vist que ux “ vx “ 0 a tot Ω. Per les equacions de Cauchy-Riemann, tenim que la
diferencial és 0 a tot Ω. Com que aquest conjunt és connex, dedüım que f és constant.

3.2.7. Doneu una descripció de les funcions enteres de la forma fpx ` iyq “ upxq `

ivpx, yq. Ž

Solució: Vegem que la solució és fpzq “ αz ` β amb α P R i β P C.
Com que la part real de f depèn només de x, per les equacions de Cauchy-Riemann,

tenim que 0 “ uy “ ´vx. En particular, vpx, yq “ rvpyq `C. Altra volta per les equacions
de Cauchy-Riemann dedüım que ux “ vy i, per tant, ux “ rvy.
Prenem x0 fixat. Aleshores

rvypyq “ vypx0, yq “ uxpx0q,

és a dir que rvy és una funció constant d’una variable real. Per tant, rvpyq “ Cy `D, amb
C “ uxpx0q i D P R.

Prenem ara y0 fixat. Aleshores

uxpxq “ vypx, y0q “ rvypy0q “ vypx0, y0q “ uxpx0q,

és a dir que ux és una funció constant d’una variable real. Per tant, upxq “ Ax`B, amb
A “ uxpx0q i B P R.

Tot plegat,

fpx, yq “ Ax`B ` ipCy `Dq “ uxpx0qpx` iyq `B ` iD.

Dit d’una altra manera,

fpx, yq “ αz ` β, on α P R, i β P C.

3.2.8. (a) Determineu els nombres λ P R pels quals

vλpx, yq “ 2 sinx sinh y ` x3 ´ λxy2 ` y

és la part imaginària d’una funció entera fλ i calculeu fλ.
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(b) Sigui λ P R un nombre determinat en a). És

gλ “
Bvλ
Bx

´ i
Bvλ
By

una funció entera? Quina relació hi ha entre gλ i fλ? Ž

Solució: (a) λ “ 3 i f3 “ u3 ` iv3 amb u3px, yq “ ´2 cosx cosh y ´ 3x2y ` x` y3 ` C,

on C P R; (b) gλ és entera i igλpzq “ f 1
λpzq.

3.2.9. Decidiu on no són holomorfes les funcions següents

a)
1

z ´ 2 ` 3i
, b)

iz3 ` 2z

z2 ` 1
, c)

3z ´ 1

z2 ` z ` 4
, d)

z2

p2z2 ´ 3z ` 1q2
.Ž

Solució:

a) Czt2 ´ 3iu, b) Czt˘iu, c) Czt´1{2 ˘

i
?
15{2u,

d) Czt1, 1{2u.

3.2.10. Provar que |z|2 és C-derivable en z “ 0 però enlloc més. Ž

Solució: Fora de zero no es compleixen les equacions de Cauchy-Riemann però limzÑ0 |z|2{z “

limzÑ0 z̄ “ 0 i és diferenciable al 0.
Alternativa: A la següent secció veurem que fpzq “ zz̄ implica que B̄fpzq “ z i per tant

B̄fpzq “ 0 si i només si z “ 0.

3.2.11. Sigui

fpzq “

#

expp´1{z4q si z ‰ 0

0 si z “ 0.
.

Demostreu que

a) fpzq satisfà les equacions de Cauchy-Riemann a tot punt z P C.

b) f no és cont́ınua al 0 i per tant f no és holomorfa a un entorn del 0. Ž

Solució: Podem fer el càlcul i la comprovació de que es compleixen les equacions de

Cauchy-Riemann amb Sage. Fem-ho a mà i comprovem que fx ` ify “ 0, que equival a
les equacions de Cauchy-Riemann. Tenim que

fxpzq “ e´1{z4
ˆ

´1

z4

˙

x

“ e´1{z4
ˆ

4z3zx
z8

˙

“ 4e´1{z4 1

z5
.

Anàlogament fypzq “ 4e´1{z4 i

z5
. Llavors fx ` ify “ 0 i es compleixen les equacions. No

obstant si ens acostem a 0 seguint l’eix de les x el ĺımit és 0 i si ens acostem seguint el
raig λp1 ` iq, λ ą 0 el valor de f s’acosta a infinit. Llavors f no és cont́ınua en 0 i no pot
ser holomorfa.
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3.2.12. Si u i v s’expressen respecte a les coordenades polars pr, θq, proveu que les equa-
cions de Cauchy-Riemann es poden expressar de la forma

Bu

Br
“

1

r

Bv

Bθ
,

Bv

Br
“ ´

1

r

Bu

Bθ
.

Indicació: estudieu el ĺımit incremental seguint argz “ θ0 i |z| “ r0. Ž

Solució: (proposada per Tomàs Planelles Alonso)

Podem expressar u : R2 Ñ R i v : R2 Ñ R en polars fent el canvi px, yq “ pr cos θ, r sin θq.
Aplicant la regla de la cadena tenim que

ur :“
Bupr sin θ, r cos θq

Br
“ ux cos θ ` uy sin θ,

uθ :“
Bupr sin θ, r cos θq

Bθ
“ ´uxr sin θ ` uyr cos θ,

on ux i uy són les parcials respecte x i y. Notem que per v són les mateixes expressions
canviant ux i uy per vx i vy respectivament.
Assumim que es compleixen les equacions de Cauchy-Riemann. Aleshores,

rur “ rux cos θ ` ruy sin θ
C.R.
“ rvy cos θ ´ rvx sin θ “ vθ

i

rvr “ rvx cos θ ` rvy sin θ
C.R.
“ ´ruy cos θ ` rux sin θ “ ´uθ.

Hem arribat a les relacions de l’enunciat.
Rećıprocament, si es compleix la relació de l’enunciat, escrivint sθ :“ sin θ i cθ :“ cos θ,

#

rur “ vθ

rvr “ ´uθ
ðñ

#

uxcθ ` uysθ “ vycθ ´ vxsθ

vxcθ ` vysθ “ uxsθ ´ uycθ.

Multiplicant la primera equació per sθ i la segona per cθ i sumant-les ens queda uy “

´vx. Finalment, multiplicant la primera per cθ i la segona per ´sθ i sumant-les, ens queda
ux “ vy. En resum, tenim que

pC.R.q :

#

ux “ vy

uy “ ´vx.

3.2.13. Quina part del pla es contreu i quina part es dilata si la transformació es realitza
mitjançant la funció:
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3. Derivació complexa i holomorfia

a) w “ z2;

b) w “ z2 ` 2z;

c) w “
1

z
; d) w “ ez;

e) w “ logpz ´ 1q. Ž

Solució: a) |w1| “ 2|z| ă 1 si i només si |z| ă 1{2 és la zona on es contreu, si |z| ą 1{2

s’expandeix. b) |w1| “ |2z ` 2| ă 1 si i només si la distància a ´1 és menor que 1{2, es
contreu en el disc de radi 1{2 al voltant de ´1. c) Es contreu si |z| ą 1. d) |w1| “ ex, si
x ą 0 expansió, si x ă 0 contracció. e) |w1| “ |1{pz ´ 1q| ă 1 fora del disc de radi 1 al
voltant de 1, és on es contreu. La zona de dilatació és a l’interior d’aquest. Cal treure en
els dos casos la branca que no és del domini de logpz ´ 1q, és la branca tx ď 1, y “ 0u.

3.3. Càlcul de les derivades

3.3.1. Sigui Ω Ă C un obert i f una funció holomorfa en Ω. Definim Ω˚ “ tz P C : z P Ωu

i f˚ : Ω˚ Ñ C donada per f˚pzq “ fpzq. Proveu que f˚ és holomorfa en Ω˚. Ž

Solució: Primer argument: Considerem les descomposicions en parts reals i imaginàries

f˚ :“ u˚ ` iv˚, i f “ u ` iv. Segons l’enunciat, tenim que u˚px ` iyq “ upx ´ iyq i
v˚px ` iyq “ ´vpx ´ iyq. Comprovem les equacions de Cauchy-Riemann de f˚ usant les
de f :

Bu˚

Bx
px` iyq “

Bu

Bx
px´ iyq

CR
“

Bv

By
px´ iyq “ ´

Bv˚

By
px` iyqp´1q “

Bv˚

By
px` iyq,

i
Bu˚

By
px` iyq “

Bu

By
px´ iyqp´1q

CR
“

Bv

Bx
px´ iyq “ ´

Bv˚

Bx
px` iyq.

Segon argument: apliquem la regla de la cadena complexa. Considerem la funció conju-
gar gpzq “ z. Notem que Bg “ 0 i Bg “ 1. Aleshores tenim que f˚ “ g ˝ f ˝ g i aplicarem
dues vegades la regla de la cadena complexa: en primer lloc

Bf˚ “ BgBpf ˝ gq ` BgBpf ˝ gq “ 0 Bpf ˝ gq ` 1 Bpf ˝ gq,

aix́ı que només cal calcular el segon sumand. Continuant l’argument, obtenim

Bf˚ “ Bpf ˝ gq “ BfBg ` BfBg “ Bf 0 ` Bf1 “ Bf.

Com que f és holomorfa, per les equacions de Cauchy-Riemann tenim que Bf “ 0, és a
dir que f˚ també és holomorfa.

3.3.2. Trobeu els punts on la funció f té derivada complexa (i calculeu-la si escau) en els
següents casos. (Podeu fer servir si cal que f 1 “ fx.)
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a) fpzq “ |z|4

b) fpx` iyq “ expcos y ` i sin yq

c) fpzq “ z ` 1
z

d) fpzq “ 1
pz´1q2pz2`2q

e) fpzq “ |z|

f) fpx` iyq “ coshx cos y ` i sinhx sin y

g) cos |z|2

h) fpzq “ z ` zz̄ Ž

Solució: (a) 0; (b) C i f 1pzq “ expcos y ` i sin yq; (c) Czt0u; f 1pzq “ 1 ´ 1
z2
; (d)

Czt1,˘
?
2iu i f 1pzq “ ´4z2`2z´4

pz´1q3pz2`2q2
; (e) H; (f) C i f 1px` iyq “ sinhx cos y ` i coshx sin y;

(g) tz “ reit : r2 P πN Y t0uu; (h) 0.
Il.lustrem com resoldre en els casos c, d i g. Notem que fpzq “ z ` 1{z és la suma de

dues funcions holomorfes a Czt0u. Per tant, f és també holomorfa. Com que per funcions
holomorfes tenim que f 1 “ fx (és a dir que podem derivar usant les regles habituals
respecte a la z), podem calcular

f 1pzq “
Bf

Bz
pzq “ 1 ´

1

z2
.

En el cas fpzq “ 1
pz´1q2pz2`2q

també tenim un polinomi, que és una funció holomorfa, al

denominador. Per tant, f és holomorfa allà on està definida, que és el pla complex llevat
dels zeros del polinomi en qüestió. Aix́ı, el domini és tz P C : pz ´ 1q2pz2 ` 2q ‰ 0u, és a
dir Czt1,˘

?
2iu. Aqúı podem derivar també usant les regles de càlcul per trobar

f 1pzq “
´2pz ´ 1qpz2 ` 2q ´ pz ´ 1q22z

pz ´ 1q4pz2 ` 2q2
“

´4z2 ` 2z ´ 4

pz ´ 1q3pz2 ` 2q2
.

En el cas (g) tenim que fpzq “ cos |z|2 “ cospzzq “ F pz, zq, on F pz, wq :“ cospzwq.

Aquesta funció és la composició de la funció cospzq “ eiz`e´iz

2 , que és holomorfa, amb el
polinomi en dues variables zw, que és holomorf respecte a z i respecte a w. Per tant, F
és holomorfa respecte a les dues variables. Per tant, les derivades de Wirtinger de f es
poden calcular usant que

Bf

Bz
pzq “

BF

Bz
pz, zq

i
Bf

Bz
pzq “

BF

Bw
pz, zq.

Les darreres derivades, en ser F holomorfa respecte a les dues variables, es poden calcular
per les regles habituals. Aix́ı

BF

Bz
pz, wq “ ´ sinpzwqw

i
BF

Bw
pz, zq “ ´ sinpzwqz.
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Obtenim que
Bf

Bz
pzq “

BF

Bz
pz, zq “ ´z sinp|z|2q

i
Bf

Bz
pzq “

BF

Bw
pz, zq “ ´z sinp|z|2q.

Ens interessa només saber quan s’anul.la la darrera derivada. Serà doncs quan z “ 0
(és a dir a l’origen) o bé quan |z|2 “ kπ, és a dir si x2 ` y2 “ kπ, amb k P N. En aquests
punts, precisament

f 1pzq “
Bf

Bz
pzq “ ´z sinp|z|2q “ 0.

3.3.3. Donat un polinomi de dues variables reals P px, yq, demostreu que identificant z “

x` iy són equivalents:

1. P es pot expressar com un polinomi en z.

2. P és una funció entera.

3. B̄P “ 0 en C. Ž

Solució:

1. ùñ 3., ja que per la proposició 3.27 tenim que B̄P “ 0.
3. ùñ 2. pel teorema 3.13 és una funció entera.
2. ùñ 1., ja que P px, yq “ P ppz ` z̄q{2, pz ´ z̄q{p2iqq “ Qpz, z̄q, on Q P Crz, ws. Pel

teorema 3.13 tenim que B̄Q “ 0 i la proposició 3.27 es diu que el polinomi Q és independent
de z̄.

3.4. Funcions anaĺıtiques

3.4.1. Discutir l’analiticitat de

a) 8z̄ ` i,

b)
z

z̄ ` 2
,

c)
z3 ` 2z ` i

z ´ 1
(vegeu la figura 3.7),

d) x2 ´ y2 ` 2xyi,

e) x2 ` y2 ` y ´ 2 ` ix,

f)

ˆ

x`
x

x2 ` y2

˙

` i

ˆ

y ´
y

x2 ` y2

˙

,

g) |z|2 ` 2z,

h)
|z|2 ` z

2
. Ž

Solució: a) No, b) No, c) Śı, excepte a z “ 1, d) Si, és z2, e) No es compleixen C.R.

enlloc, f) Si, excepte a z “ 0: és z ` 1{z, g) No, h) No.

3.4.2. Trobeu la suma de les sèries
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a)
8
ÿ

n“1

ˆ

1 ` i

3

˙n

; b)
8
ÿ

n“1

p3 ` iqn

n!
; c)

8
ÿ

n“1

nzn si |z| ă 1. Ž

Solució: a)
ř8

n“1

`

1`i
3

˘n
“ 1{p1 ´ p1 ` iq{3q ´ 1 “ p1 ` iq{p2 ´ iq, b) ep3`iq ´ 1, c)

z{p1 ´ zq2.

3.4.3. Sigui fpzq :“
ř

ně0 cnz
n per |z| ă R on R és el radi de convergència de la sèrie.

Demostreu que si fpzkq “ 0 per una successió pzkqk tal que zk ‰ 0 i zk Ñ 0 quan k Ñ 8,
aleshores fpzq ” 0 (i.e. cn “ 0 per a tot n ě 0). Indicació: Calculeu fp0q i considereu la
sèrie fpzq{z). Ž

Solució: Com que f és holomorfa (és una sèrie de potències) també és cont́ınua. Ales-

hores
fp0q “ fp lim

kÑ8
zkq “ lim

kÑ8
fpzkq “ lim

kÑ8
0 “ 0.

D’altra banda
0 “ fp0q “ c0 ` c10 ` c20

2 ` . . . “ c0

i per tant c0 “ 0. Suposem ara que haguéssim demostrat que c0 “ c1 “ . . . “ cn “ 0 i
anem a veure que cn`1 “ 0 també. Escrivim

fpzq “ cn`1z
n`1 ` cn`2z

n`2 ` . . . “ zn`1pcn`1 ` cn`2z ` . . .q “: zn`1gpzq.

Per hipòtesi, per a tota k P N

0 “ fpzkq “ zn`1
k gpzkq.

la qual cosa, atès que zk ‰ 0, implica que gpzkq “ 0 per a tots els punts de la successió.
La funció g és també cont́ınua al 0 i pel mateix raonament anterior veiem que

0 “ gp0q “ cn`1,

com voĺıem demostrar. Aquest raonament per inducció prova que cn “ 0 per a tota n i
que per tant f ” 0.

3.4.4. Demostreu que si dues sèries
ř

ně0 anz
n i

ř

ně0 bnz
n són convergents i tenen la

mateixa suma per a una successió pzkqk tal que zk ‰ 0 i zk Ñ 0 quan k Ñ 8 aleshores
an “ bn per a tot n ě 0. Ž

Solució: Siguin Spzq :“
ř

ně0 anz
n i T pzq :“

ř

ně0 bnz
n, i considerem fpzq :“ Spzq ´

T pzq “
ř

ně0pan ´ bnqzn. Aleshores fpzkq “ Spzkq ´ T pzkq “ 0 per hipòtesi. L’exercici
anterior ens implica que an ´ bn “ 0 per a tot n P N o, equivalentment, que fpzq ” 0 o
que S ” T .

3.4.5. Calculeu la suma de les sèries de potències de l’exercici 2.8.1.
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Solució: (a) ´Log p1 ´ zq;

(b) La suma és p1 ´ zqpLog p1 ´ zq ´ 1q ` 1, si z P Dzt1u i és 1 si z “ 1;
(c) La suma és ´1{3Log p1´zq´ei2π{3{3Log pz´ei2π{3q´ei4π{3{3Log pz´ei4π{3q´π

?
3{9:

Si anomenem Spzq :“
ř8

n“0
z3n`1

3n`1 , a l’interior del conjunt, tenim que S1pzq “
ř8

n“0 z
3n.

Calculem-ne la primitiva: sabem que

S1pzq “
1

1 ´ z3
“

A

1 ´ z
`

B

e
2πi
3 ´ z

`
C

e
´2πi

3 ´ z
.

Sumant i igualant numeradors, obtenim

Ap1 ` z ` z2q `Bp1 ´ zqpe
´2πi

3 ´ zq ` Cp1 ´ zqpe
2πi
3 ´ zq “ 1.

Substitüınt z “ 1 obtenim
3A “ 1.

Substitüınt z “ e
2πi
3 obtenim

Bp1 ´ e
2πi
3 qpe

4πi
3 ´ e

2πi
3 q “ 1,

és a dir
1 “ Be

4πi
3 pe

4πi
3 ´ 1qpe

2πi
3 ´ 1q “ 3Be

4πi
3 ,

i 3B “ e
2πi
3 .

Anàlogament 3C “ e
´2πi

3 . Hem vist que

3S1pzq “
1

1 ´ z
`

e
2πi
3

e
2πi
3 ´ z

`
e

´2πi
3

e
´2πi

3 ´ z
.

Per tant

3Spzq “ ´Log p1 ´ zq ´ e
2πi
3 L1pe

2πi
3 ´ zq ´ e

´2πi
3 L2pe

´2πi
3 ´ zq ` C.

Notem que les determinacions del logaritme Lj en els dos darrers casos es pot prendre
qualsevol determinació a Czr0,8q, en particular podem agafar Ljpzq :“ Log p´zq ` πi.
Trobem doncs

3Spzq “ ´Log p1 ´ zq ´ e
2πi
3 pLog pz ´ e

2πi
3 qq ´ e

´2πi
3 pLog pz ´ e

´2πi
3 qq ` C.

Per tenir Sp0q “ 0, cal

0 “ ´Log p1q ´ e
2πi
3 pLog pe

´πi
3 qq ´ e

´2πi
3 pLog pe

´πi
3 qq ` C “ 0 ´ e

2πi
3

´πi

3
´ e

´2πi
3
πi

3
` C.

Obtenim

C “
πi

3
pe

´2πi
3 ´ e

2πi
3 q “

πi

3
2iIm pe

´2πi
3 q “

´
?
3π

3
.

Per continüıtat, aquesta funció s’estén a tot el domini de convergència de S.
(d) Log p1 ` zq:
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Si anomenem Spzq :“
ř8

n“1
p´1qpn`1q

n zn, aleshores Spzq “ ´T p´zq, on T pzq “
ř8

n“1
zn

n
és la sèrie estudiada a l’apartat (a). Aix́ı dedüım que S té suma Spzq “ ´T p´zq “

´p´Log p1 ` zqq “ Log p1 ` zq.
(e) 1

5p1´ z´i
5

q2
.

Estudiem la sèrie Spzq “
ř8

n“1
npz´iqn´1

5n . Definim T pzq :“
ř8

n“0
pz´iqn

5n . Aleshores T
té el mateix radi de convergència que S, que és R “ 5. A l’interior del disc tenim que
T 1pzq “ Spzq, i

T pzq “

8
ÿ

n“0

pz ´ iqn

5n
“

1

1 ´ z´i
5

“
5

5 ` i´ z
.

Per tant,

Spzq “ T 1pzq “
5

p5 ` i´ zq2
.

3.4.6. Considereu la sèrie

Spzq “
ÿ

ně1

z2n´1

2n
.

a) Estudieu-ne la convergència puntual i uniforme sobre compactes.

b) Calculeu quant val la suma per tot z del disc de convergència.

c) Doneu el valor de

ÿ

ně1

p´1qn

n9n
. Ž

Solució: a) El radi de convergència és 1. En la circumferència unitat tenim una sèrie

divergent quan z “ ˘1, ja que

Sp˘1q “
ÿ

ně1

p˘1q2n´1

2n
“

ÿ

ně1

´1

2n
“ ´8.

En canvi, si z ‰ ˘1, aleshores tenim que
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

z2n´1

ˇ

ˇ

ˇ

ˇ

ˇ

“ |z|

ˇ

ˇ

ˇ

ˇ

1 ´ z2N

1 ´ z2

ˇ

ˇ

ˇ

ˇ

ď
2|z|

|1 ´ z2|
.

Tenim, pel criteri de Dirichlet, que Spzq convergeix uniformement en qualsevol arc tancat
de BDzt˘1u, ja que 1

|1´z2|
està uniformement acotat en aquests arcs. Pel teorema d’Abel,

tenim doncs convergència uniforme en compactes de Dzt´1, 1u;

b) Tal com hem fet a l’exercici 3, podem justificar que zSpzq “
ř

ně1
z2n

2n , amb radi de
convergència R “ 1. Aleshores, en l’interior del disc tenim que

pzSpzqq1 “
ÿ

ně1

z2n´1 “
z

1 ´ z2
.
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Per tant,

zSpzq “ ´
Log p1 ´ z2q

2
` C,

és a dir

Spzq “ ´
Log p1 ´ z2q ` C

2z
.

Com que Sp0q “ 0 i Log p1 ´ 02q “ 0, inferim que cal C “ 0 per garantir la continüıtat de
S a l’origen. Per tant,

Spzq “ ´
Log p1 ´ z2q

2z
.

c)

ÿ

ně1

p´1qn

n9n
“ 2

ÿ

ně1

pi{3q2n

2n
“

2i

3

ÿ

ně1

pi{3q2n´1

2n

“
2i

3
Spi{3q “ ´

2i

3

Log p1 ´ pi{3q2q

2pi{3q
“ ´Log p1 ` 1{9q “ ´ lnp10{9q.

3.4.7. Considereu la sèrie de potències
ÿ

ně1

npn` 1qzn.

a) Estudieu la seva convergència.

b) Calculeu la seva suma.

c) Quant val
ř

ně1p´1qn
npn`1q

2n ? Ž

Solució: a) Pel criteri del quocient, el radi de convergència és 1. A la frontera t|z| “ 1u,

tenim que
Spzq “

ÿ

ně1

npn` 1qzn

el terme general |npn ` 1qzn| “ npn ` 1q no convergeix a zero i per tant, mai podrà ser
convergent. Aix́ı, la sèrie convergeix absolutament a D i ho fa de manera uniforme als
compactes continguts al disc, o el que és el mateix, convergeix absolutament en tot disc
Drp0q amb r ă 1.
b) Si prenem T pzq “

ř

kě0 z
k “ 1

1´z per z P D, aleshores

2z

p1 ´ zq3
“ zT 2pzq “ z

ÿ

kě2

kpk ´ 1qzk´2 “
ÿ

kě2

kpk ´ 1qzk´1 “
ÿ

ně1

pn` 1qnzn “ Spzq.

Tenim doncs que

Spzq “
2z

p1 ´ zq3
.

c) Trobem
ÿ

ně1

p´1qn
npn` 1q

2n
“ Sp´1{2q “

´1

p3{2q3
“ ´8{27.
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3.4.8. Considereu la sèrie de potències

Spzq “ 2πi`
ÿ

ně1

p´1qnp2z ` 1qn

n
.

(a) Calculeu la seva suma i el seu domini de convergència, especificant amb precisió
totes les funcions involucrades. Indicació: Per especificar un logaritme, cal donar
un domini de definició i la imatge d’un punt.

(b) Calcula la solució (si existeix) de l’equació Spzq “ e. Ž

Solució: (a) Amb el mètode habitual trobem Spzq “ ´pz ` 1
2q `

Log p2z`2q

2 ` C per

z P D 1
2
p´1

2q. Igualant en z “ ´1
2 amb la sèrie donada trobem C “ 2πi. La sèrie

és convergent en compactes de D 1
2
p´1

2qzt´1u, usant altra vegada els mètodes habituals.

També es pot resoldre per un canvi de variable w “ ´2z ´ 1, relacionant-la amb el
Log p1 ´ wq (Exercici 3.4.5, apartat a).

(b) No té solució, ja que Im
´

Log p2z`2q

2

¯

P r´π, πs, mentre que Im
`

e` z ` 1
2 ´ 2πi

˘

P

r´2π ´ 1
2 ,´2π ` 1

2 s, de manera que no poden coincidir.

3.5. Algunes funcions holomorfes importants

3.5.1. Demostreu que:

(i) sin z i cos z són funcions enteres amb

psin zq1 “ cos z; pcos zq1 “ ´ sin z.

(ii) cosp´zq “ cos z, i també sinp´zq “ ´ sin z per a tot z P C.

(iii) cos2 z ` sin2 z “ 1.

(iv) Per a tot z, w P C, cospz ` wq “ cos z cosw ´ sin z sinw, sinpz ` wq “ sin z cosw `

cos zsinw. Ž

Solució: i) Són suma de funcions exponencials compostes amb funcions C-lineals. Per
tant són enteres. Vegem per exemple la derivada del sinus:

sin1pzq “
eizi´ e´izp´iq

2i
“
eiz ` e´iz

2
“ cospzq.

ii) cosp´zq “ eip´zq`e´ip´zq

2 “ e´iz`eiz

2 “ cospzq. El sinus es veu anàlogament.
iii)

cos2 z ` sin2 z “

`

eiz ´ e´iz
˘2

´4
`

`

eiz ` e´iz
˘2

4
“

´e2iz ` 2 ´ e´2iz

4
`
e2iz ` 2 ` e´2iz

4
“ 1
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iv) Raonant de la mateixa manera tenim que

cos z cosw´sin z sinw “

`

eiz ` e´iz
˘ `

eiw ` e´iw
˘

4
´

`

eiz ´ e´iz
˘ `

eiw ´ e´iw
˘

´4
“ cospz`wq

i anàlogament pel sinus.

3.5.2.

Resoleu les següents equacions:

a) sin z “ 4 b) cos z “ i. Ž

Solució: (a) z “ π{2` 2kπ˘ i arccosh 4, k P Z (dos valors per cada k); vegeu l’apartat

d) de l’exercici 2.3.6.
(b) z “ π{2 ` 2kπ ´ i arcsinh 1; z “ 3π{2 ` 2kπ ` i arcsinh 1.

3.5.3. a) Proveu que cos z “ cos z i que sin z “ sin z, per a tot z P C.

b) Trobeu tots els zeros de les funcions sinus i cosinus.

c) Dedüıu de (b) que, per a z1, z2 P C, es verifica:

i) cos z1 “ cos z2 si, i només si, z2 ˘ z1 P 2πZ.
ii) sin z1 “ sin z2 si, i només si, z2 ´ z1 P 2πZ o bé z2 ` z1 P π ` 2πZ.

d) Proveu que per a tot z “ x` iy P C se satisfà:

i) sin z “ sinx cosh y ` i cosx sinh y (vegeu l’exercici 1.3.2).

ii) cos z “ cosx cosh y ´ i sinx sinh y.

iii) | sin z|2 “ sin2 x` sinh2 y.

iv) | cos z|2 “ cos2 x` sinh2 y.

e) Sobre quines rectes està acotada la funció sinus? I la funció cosinus? Ž

Solució: a) Es conseqüència directe del fet que ez̄ “ ez.

b) Vegeu l’apartat d) de l’exercici 2.3.6: Per fer cos z “ 0, posem w “ eiz, resolem
l’equació de segon grau que obtenim i resulta w “ ˘i “ e˘iπ{2. Per tant, z “ ˘π{2 `

2kπ´ i lnp1q “ π{2`kπ. De la mateixa manera, pel sinus obtenim sin z “ 0 ðñ z “ kπ.
c) Expressem z1 “ z1`z2

2 ` z1´z2
2 i z2 “ z1`z2

2 ` z2´z1
2 . Aleshores, per l’exercici 3.5.2,

tenim que

cospz1q “ cos

ˆ

z1 ` z2
2

˙

cos

ˆ

z1 ´ z2
2

˙

´ sin

ˆ

z1 ` z2
2

˙

sin

ˆ

z1 ´ z2
2

˙

“ cos

ˆ

z1 ` z2
2

˙

cos

ˆ

z2 ´ z1
2

˙

` sin

ˆ

z1 ` z2
2

˙

sin

ˆ

z2 ´ z1
2

˙
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i anàlogament,

cospz2q “ cos

ˆ

z1 ` z2
2

˙

cos

ˆ

z1 ´ z2
2

˙

´ sin

ˆ

z1 ` z2
2

˙

sin

ˆ

z2 ´ z1
2

˙

Restant, tenim que

cospz1q ´ cospz2q “ 2 sin

ˆ

z1 ` z2
2

˙

sin

ˆ

z2 ´ z1
2

˙

“ 0 ðñ
z1 ˘ z2

2
“ kπ

Per tant, el sinus és 2kπ periòdica en C i té simetria central respecte a π{2`kπ. El cosinus
funciona de manera similar, i resulta ser també 2kπ periòdica en C amb simetria central
en kπ (vegeu la figura 3.3).
d) Es tracta d’un mer càlcul usant els resultats de 1.3.2 que deixem al lector.

3.5.4. (a) Proveu que per a cada w P Czt˘iu, l’equació tan z “ w té infinites solucions,
que són la funció multivaluada

arctanw :“
1

2i
log

ˆ

i´ w

i` w

˙

.

Vegeu també que per a w “ ˘i l’equació no té cap solució.

(b) Vegeu que dues determinacions cont́ınues de arctanw en un conjunt connex E Ă

Czt˘iu difereixen de kπ, k P Z.

(c) Vegeu que no hi ha cap determinació cont́ınua de arctanw als anells tr ă |w ´ i| ă

Ru, tr ă |w ` i| ă Ru, 0 ă r ă R ă 2, però que śı que n’hi ha si 2 ă r ă R ă `8.

Solució: a) Si w “ tan z “ sin z
cos z “ eiz´e´iz

ipeiz`e´izq
“ e2iz´1

ipe2iz`1q
. Aleshores, äıllant e2iz trobem

e2iz “
1 ` iw

1 ´ iw
“
i´ w

i` w
,

és a dir que

2iz “ log

ˆ

i´ w

i` w

˙

.

Per tant, podem definim la funció multivaluada

arctanw :“
1

2i
log

ˆ

i´ w

i` w

˙

.

També es pot resoldre tenint en compte que tanpzq “ f3˝f2˝f1pzq, on f1pzq “ 2iz és una
funció C-lineal bijectiva, f2pξq “ eξ és una funció 2πi-periòdica i que pren imatge a Czt0u,
de manera bijectiva en franges horitzontals semiobertes d’amplada 2π , i f3pζq “ ´i ζ´1

ζ`1 .
D’aqúı també recuperem l’expressió de l’arctangent, però a més a més podem argumentar
per què ˘i R tanpCq:
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Notem que f3pζq “ w equival a ζ “ i´w
i`w “ f´1

3 pwq, i que si w “ ´i no existeix ζ tal que
f3pζq “ ´i, ja que ζ ´ 1 ‰ ζ ` 1. Finalment, si w “ `i, aleshores necessàriament tenim
que ζ “ 0 R f2pCq “ f2 ˝ f1pCq. En particular, f3 : Czt0,´1u Ñ Czt˘iu és bijectiva, i

tan z “ f3 ˝ f2 ˝ f1pzq “ ˘i

no pot tenir solucions.
b) Si hj són determinacions de l’arctangent amb j P t1, 2u, volem veure que h1pwq ´

h2pwq “ kπ. Notem que f3 : Czt0,´1u Ñ Czt˘iu és bijectiva, tal com hem vist abans.
Per tant,

tanph1pwqq “ tanph2pwqq ðñ f2 ˝ f1ph1pwqq “ f2 ˝ f1ph2pwqq ðñ e2ih1pwq “ e2ih2pwq

Per acabar, usem la proposició 1.45: cal que

h1pwq “ h2pwq ` kπ.

c) Suposem que tanphpwqq “ w per tot w P A˘ “ tr ă |w ˘ i| ă Ru amb r ă R i 2 ă r
o bé R ă 2. Aleshores, com que f3 és bijectiva en la preimatge de l’anell, trobem que per
cada w existeix un únic ζ amb f3pζq “ w i per tant,

ef1phpf3pζqqq “ f2pf1phpf3pζqqqq “ f´1
3 ptanphpwqqq “ ζ.

Per tant, f1 ˝ h ˝ f3 és una determinació cont́ınua del logaritme en f´1
3 pAq. Notem que en

l’eix imaginari tenim que

f´1
3 piyq “

i´ iy

i` iy
“

1 ´ y

1 ` y
.

Per tant, f´1
3 pip´1, 1qq “ R`, mentre que f´1

3 pi rp´8,´1q Y p1,`8qsq “ R´.
Quan r ą 2 tenim que

AX iR Ă i rp´8,´1q Y p1,`8qs

i per tant, f´1
3 pA˘q X R` “ H. En canvi, si R ă 2, aleshores A´ talla ip´1, 1q i també

ip´8,´1q, i A` talla ip´1, 1q i també ip1,`8q. Per tant, hi ha una corba en A que
té per preimatge una corba que rodeja l’origen, on no hi pot haver una determinació de
l’argument i, per tant, no n’hi pot haver del logaritme. Aix́ı, hem arribat a una contradicció
i h no pot existir.

3.5.5. Demostra que el domini de continüıtat de la branca principal de l’arctangent

Arctanw :“
1

2i
Log

ˆ

i´ w

i` w

˙

.

és Cztiy : |y| ě 1u. Ž
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Solució: Vegeu el darrer apartat de l’exercici anterior:

f´1
3 pCztiy : |y| ě 1uq “ Czp´8, 0s,

i aquesta regió és precisament l’obert maximal on tenim definida la branca cont́ınua del
logaritme principal.

3.5.6. a) Sigui L la determinació del logaritme en Czp´8, 0s que compleix que Lp1q “

4πi. Definim fpzq :“ ´Lp2 ´ 2zq. Demostreu que f és holomorfa en Czr1,`8q.
Calculeu fp0q i fp´iq.

b) Considereu la sèrie de potències

Spzq “
ÿ

ně1

p2z ´ 1qn

n
.

Demostreu que Spzq “ ´Log p2 ´ 2zq, per tot z P D :“ D1{2p1{2q, on Log és la
determinació principal del logaritme.

c) Quina relació hi ha entre Spzq i fpzq? Indicació: Relacioneu primer Lpzq amb Log pzq

per z P Czp´8, 0s. Ž

Solució: El primer apartat és molt similar a l’exercici 2.3.2, ara trobem k “ 2. Per tant,

Lpzq “ Log pzq ` 4πi, i trobem fpzq :“ ´Log p2´ 2zq ´ 4πi. Per tant fp0q “ ´ lnp2q ´ 4πi
i fp´iq “ ´Log p2 ` 2iq ´ 4πi “ ´ lnp2

?
2q ´ i17π4 .

Pel segon apartat,

Spzq “
ÿ

ně1

2npz ´ 1{2qn

n
.

és una sèrie centrada en el punt 1{2 i amb radi de convergència 1{2. Notem que

S1pzq “
ÿ

ně1

2p2z ´ 1qn´1 “ 2
ÿ

ně0

p2z ´ 1qn “
2

1 ´ p2z ´ 1q
“

2

2 ´ 2z

. Per tant, en el disc de convergència trobem

Spzq “ C ´ Log p2 ´ 2zq.

Per expressar S com a funció cont́ınua, ens cal observar que el centre del disc és 1{2 i el
radi de convergència és també R “ 1{2. Aix́ı, 2´ 2z “ 1` 2p1{2´ zq té part real positiva:

Re p2 ´ 2zq “ 1 ` 2Re p1{2 ´ zq ě 1 ´ 2|1{2 ´ z| ě 1 ´ 2 ¨ 1{2 “ 0.

Per tant, té sentit prendre la branca principal del logaritme, ja que hi és cont́ınua. Per
determinar la constant, notem que

Sp1{2q “ 0

i
Log p2 ´ 2p1{2qq “ Log p1q “ 0.
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Trobem C “ 0 i
Spzq “ ´Log p2 ´ 2zq,

tal com voĺıem veure.
Del primer apartat sabem que L “ Log ` 4πi. Tenim doncs que

fpzq “ Spzq ´ 4πi.

3.5.7. Sigui
?

¨ la determinació de l’arrel quadrada en Czr0,8q complint que
?

´1 “ i i
sigui fpzq “

?
3z ` 2.

1. Expresseu
?

¨ en termes d’una determinació del logaritme i argument.

Recordem que
?
z “ e

1
2
log z “ e

1
2

pln |z|`i arg zq.

2. Quina és la regió més gran of f és holomorfa? Quina és la imatge? Existeix z tal
que fpzq “ ´i?

3. Què val fp i´2
3 q? Ž

Solució:

1. Observem que 3z ` 2 P Czr0,8q si i només si z P Czr´2{3,8q. Per tant, el domini
de f és Czr´2{3,8q.
Per a determinar la imatge, observem que donat que

?
´1 “ i, s’ha de complir que

i “ e
1
2

pp2k`1qπiq, k P Z. Per tant, cal que k sigui un múltiple de 2 i podem triar arg z que
sigui la determinació de l’argument en Czr0,8q complint que arg z P p0, 2πq (observeu que
si triem una altre determinació de la forma arg z ` 4πik, k P Z, llavors les corresponents
arrels quadrades coincideixen).
2. El domini ja l’hem comentat. Com que arg z P p0, 2πq, 1

2 arg z P p0, πq i per tant la
imatge de f és el semiplà superior. En particular, no hi ha cap z tal que fpzq “ ´i.

3. fp i´2
3 q “

?
i´ 2 ` 2 “

?
i “ ei

π
4 .

3.5.8. Trobeu el desenvolupament en sèrie de potències al voltant del punt a “ 1 de la
funció fpzq “ 3

?
z on 3

?
. denota la determinació de l’arrel cúbica definida a Czp´8, 0s tal

que 3
?
1 “ e2πi{3 “ ´1`i

?
3

2 . Ž

Solució: Anomenem ζ “ e2πi{3. Escrivim z “ 1 ` w i desenvoluparem la funció

gpwq “ 3
?
1 ` w “ p1 ` wq1{3 en a “ 0, que serà vàlida per |w| ă 1.

Aleshores

gpwq “ gp0q `
g1p0q

w
`
g2p0q

2
w2 ` ¨ ¨ ¨ .
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Utilitzant la determinació que ens indiquen, tenim que

gp0q “ p1 ` 0q1{3 “
3
?
1 “ ζ;

g1pwq “
1

3
p1 ` wq´2{3; g1p0q “

1

3
p1q

1
3

´1 “
1

3
ζ;

g2pwq “
´2

32
p1 ` wq´5{3 g2p0q “

´2

32
p

3
?
1q

1
3

´2 “
´2

32
ζ;

. . .

gpnqpwq “
1

3

ˆ

1

3
´ 1

˙

. . .

ˆ

1

3
´ n

˙

p1 ` wq
1
3

´n;

gpnqp0q “
1

3

ˆ

1

3
´ 1

˙

. . .

ˆ

1

3
´ n

˙

p1q
1
3 p1q´n “

1

3

ˆ

1

3
´ 1

˙

. . .

ˆ

1

3
´ n

˙

ζ.

En conseqüència

gpwq “ ζ `
ÿ

ně1

ˆ1
3

n

˙

ζwn,

on definim
ˆ

α

n

˙

“
αpα ´ 1q . . . pα ´ pn´ 1qq

n|
.

Desfent el canvi

fpzq “ ζ

˜

1 `
ÿ

ně1

ˆ1
3

n

˙

pz ´ 1qn

¸

, per |z ´ 1| ă 1.

Observem que fpzq “ ζpf̃pzqq on f̃pzq és la determinació de l’arrel cúbica tal que f̃p1q “ 1.

3.5.9. Els polinomis de Legendre2 Pjpζq són els coeficients de zj en el desenvolupament
de Taylor

1
a

1 ´ 2ζz ` z2
“

8
ÿ

j“0

Pjpζqzj .

Provar que Pjpζq és un polinomi de grau j i calcular P0, P1, P2 i P3.

Ž

Solució:

p1 ´ 2ζz ` z2q´1{2 “

8
ÿ

n“0

ˆ

´1{2

n

˙

znpz´2ζqn “

8
ÿ

n“0

ˆ

´1{2

n

˙

zn
n
ÿ

k“0

ˆ

n

k

˙

p´2qn´kzkζn´k “

“
ÿ

ně0

n
ÿ

k“0

p´2qn´k

ˆ

n

k

˙ˆ

´1{2

n

˙

zn`kζn´k “

8
ÿ

j“0

Pjpζqzj .

2Adrien-Marie Legendre, Paŕıs, 1752 – 1833, https://ca.wikipedia.org/wiki/Adrien-Marie_Legendre
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Si n` k “ j amb k ď n, el valor més gran de n´ k és j que s’assoleix quan n “ j i k “ 0
llavors Pjpζq pot tenir grau com a molt j. De fet

Pjpζq “ p´2qj
ˆ

´1{2

j

˙

ζj ` ¨ ¨ ¨ .

Els polinomis que es demanen són

1, ζ,
3

2
ζ2 ´

1

2
,

5

2
ζ3 ´

3

2
ζ.

Els polinomis de Legendre es fan servir en moltes disciplines, en particular en l’estudi de
xarxes neuronals.

52
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4. Integrals de ĺınia i teoria local de Cauchy

4.1. Corbes

4.1.1. Proveu que l’el.lipse x2{a2 ` y2{b2 “ 1 és una corba diferenciable (és a dir, existeix
una parametrització zptq, t P I que el seu rang és l’el.lipse, és diferenciable, z1ptq ­“ 0 i zptq
és injectiva. Diem que zptq és una parametrització admissible o regular). Ž

Solució: Parametritzem zptq “ a cos t` ib sin t amb t P r0, 2πs. Llavors z1ptq ­“ 0.

4.1.2. Parametritzeu el contorn format pel peŕımetre del quadrat amb vèrtexs ´1 ´ i, 1 ´

i, 1 ` i, ´1 ` i seguint aquest ordre. Quina és la seva longitud? Ž

Solució: En general si volem z : ra, bs ÞÑ C tal que zpaq “ p i zpbq “ q fem

zptq “
1

b´ a
ppb´ tqp` pt´ aqqqq.

En el nostre cas fem que el paràmetre varïı als intervals r0, 1q, r1, 2q, r2, 3q, r3, 4q. La longitud
és clarament 8.

4.2. Integració sobre corbes

4.2.1. Sigui γ “ tz P C : |z| “ 1u el cercle unitat amb l’orientació habitual. Avalueu, per
a tots els m P Z: ˆ

γ

dz

zm
,

ˆ
γ

|dz|

zm
,

ˆ
γ

dz

|zm|
,

ˆ
γ

|dz|

|zm|
. Ž

Solució: Parametritzant z “ γptq “ eit, t P r0, 2πs tenim que |z| “ 1, dz “ ieitdt,

|dz| “ dt, i per tant

ˆ
γ

dz

zm
“

ˆ 2π

0

ieit

eimt
dt “ i

ˆ 2π

0
eip1´mqtdt “

#

0 si m ‰ 1

2πi si m “ 1.
ˆ
γ

|dz|

zm
“

ˆ 2π

0

dt

eimt
“

#

0 si m ‰ 0

2π si m “ 0.ˆ
γ

dz

|zm|
“

ˆ 2π

0

ieit

1
dt “ 0,

ˆ
γ

|dz|

|zm|
“

ˆ 2π

0

dt

1
“ 2π.
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4. Integrals de ĺınia i teoria local de Cauchy

4.2.2. Sigui γ “ BDrp0q. Calculeu, per a n P Z,
ˆ
γ
zn dz. Ž

Solució: Llavors si n ě 0,
zn`1

n` 1
és una primitiva holomorfa a C. Per tant,

ˆ
γ
zn dz “ 0.

Si n ă ´1,
zn`1

n` 1
és una primitiva holomorfa a Czt0u. Per tant,

ˆ
γ
zn dz “ 0.

Finalment, si n “ ´1, parametritzem γ com γptq “ reit, t P r0, 2πs. Obtenim

ˆ
γ

dz

z
“

ˆ 2π

0

ireit

reit
dt “ 2πi.

4.2.3. Sigui γ “ ri` 1,´is. Avalueu les següents integrals de ĺınia:

a)
´
γ sinp2zq dz b)

´
|z|“1 ze

z2 dz c)
´

|z´2|“1
1
z dz Ž

Solució: (a) pcosp2 ` 2iq ´ cosp2iqq{2; (b) 0; (c) 0.

Es poden obtenir totes mitjançant el teorema fonamental del càlcul. Per exemple, la
primitiva de sinp2zq és ´ cosp2zq{2, aix́ı que

ˆ
γ
sinp2zq dz “ r´ cosp2zq{2s

´i
i`1 “ ´ cosp´2iq{2 ` cosp2pi` 1qq{2.

Alternativa: també podem usar la definició d’integral de ĺınia: γptq “ p1´tqp1`iq`tp´iq,
γ1ptq “ ´1 ´ 2i. Aix́ı

ˆ
γ
sinp2zq dz “

ˆ 1

0
sinp2rp1 ´ tqp1 ` iq ` tp´iqsqp´1 ´ 2iq dt.

Usant la regla de la cadena complexa, veiem que ´ cosp2rp1 ´ tqp1 ` iq ` tp´iqsq{2 és la
primitiva de l’integrand, aix́ı que podem fer servir el teorema fonamental del càlcul en
variable real per acabar el càlcul

ˆ
γ
sinp2zq dz “ r´ cosp2rp1 ´ tqp1 ` iq ` tp´iqsq{2s10 “ ´ cosp´2iq{2 ` cosp2pi` 1qq{2.

4.2.4. Avaluar les següents integrals.

a)

ˆ
γ

ˆ

6

pz ´ iq2
`

2

z ´ i
` 1 ´ 3pz ´ iq2

˙

dz si γ és |z ´ i| “ 4 recorreguda un cop amb

l’orientació estàndard.

b)

ˆ
γ
px´ 2xyiqdz al llarg del contorn γ : z “ t` it2 amb t P r0, 1s.
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4. Integrals de ĺınia i teoria local de Cauchy

c)

ˆ
γ
p|z ´ 1 ` i|2 ´ zqdz al llarg de la semicircumferència γ : z “ 1 ´ i` eit on t P r0, πs.

d) La funció no anaĺıtica fpzq “ x2 ` iy (per què?) al llarg de |z| “ 1 recorreguda un cop
en sentit antihorari. Ž

Solució: a) 1{pz ´ iq2 i pz ´ iq2 tenen antiderivada en un entorn obert del disc de vora

C llavors les integrals corresponent són zero, en canvi 1{pz ´ iq no i cal integrar amb una
parametrització. Posem z “ i` 4eit amb t P r0, 2πq. Finalment la integral val 4πi.
b) La funció no és holomorfa, no té antiderivada, cal substituir. Val 13{10 ` i{6.
c) Sobre la corba la integral és la de p1 ´ zq fem la primitiva i obtenim ´2i.
d) No satisfà les equacions de Cauchy-Riemann, no pot ser holomorfa i per tant tampoc

anaĺıtica. Considerem z “ cos t` i sin t, substitüım x “ cos t, y “ sin t calculem i obtenim
´πi.

4.2.5. Calcular les següents integrals al llarg del camı́ γ que s’indica.

a)

ˆ
γ

1

z
dz per qualsevol contorn en el semiplà dret que va de ´3i a 3i. Quin problema

tenim si seguim un contorn pel semiplà esquerre? Indicació: considerar la determinació
principal del logaritme en la qual el logaritme no està definit si y “ 0, x ď 0.

b)

ˆ
γ
ez cos zdz per un camı́ d’origen a “ i i final b “ π.

c)

ˆ
γ
z1{2dz per la branca principal de z1{2 per un camı́ d’origen a “ i i final b “ π que

no talli la semirecta p´8, 0s. Ž

Solució: a) Pel costat on x ą 0 no tenim problema ja que 1{z té per primitiva la

branca principal del logaritme, llavors la integral val rLogpzqs3i´3i “ Logp3iq ´ Logp´3iq “

πi{2´p´πi{2q “ πi. Per l’altra banda cal fer la integral directament o jugar amb el teorema
integral de Cauchy. Sigui C la circumferència de radi 3 centrada en l’origen recorreguda
en sentit antihorari tenim que

´
C 1{z “ 2πi. Si γ1 és un camı́ de ´3i a 3i pel costat dret i

γ2 pel costat esquerre amb C “ γ1 Y p´γ2q llavors 2πi “
´
γ2

1
z ` πi. Llavors la integral de

´3i a 3i pel costat esquerre és ´πi. No hi ha independència del camı́.
b) La funció és entera, una primitiva és 1

2 pcos pzq ` sin pzqqez, llavors la integral val
´1

2 e
π ´ 1

2 cosh p1q ei ´ 1
2 i e

i sinh p1q (encara podem simplificar més).
c) El camı́ està en el domini de la branca principal de l’arrel quadrada. Tenim primitiva.

La integral val

2{3pe
3
2
Log π ´ e

3
2
Log iq “ 2{3pπ

3
2 ´ e

3
2
iArg iq “ 2{3pπ

3
2 ´ e

3π
4
iq “ 2{3pπ

3
2 ´

?
2p´1 ` iqq.

4.2.6.

Considerem la determinació de l’arrel
?
z2 ´ 1 que és holomorfa a Czr´1, 1s i positiva a

p1,8q.
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4. Integrals de ĺınia i teoria local de Cauchy

(a) Vegeu que z `
?
z2 ´ 1 omet l’eix real negatiu si z P Ω “ Czp´8, 1s, de manera que

la determinació principal Log pz `
?
z2 ´ 1q està definida a Ω.

(b) Vegeu que Log pz `
?
z2 ´ 1q és una primitiva de 1?

z2´1
a Ω.

(c) Avalueu

ˆ
γ

dz
?
z2 ´ 1

, on γ és el tros de cercle |z ´ 1| “
?
2 que va de i a ´i passant

pel semiplà de la dreta (Re z ą 0).

Indicació: comproveu que
?
z2 ´ 1 “ e

1
2

pLog pz´1q`Log pz`1qq s’estén a Czr´1, 1s de manera
cont́ınua. Ž

Solució:

Observem que les expressions

a

z2 ´ 1 “ e
1
2

plogpz´1q`logpz`1qq,

on logw és alguna determinació del logaritme, són arrels de z2 ´1 en alguna regió del pla.
Si triem el logaritme principal tenim directament que

a

z2 ´ 1 “ e
1
2

pLog pz´1q`Log pz`1qq

és holomorfa a Czp´8, 1s i positiva a p1,`8q.
Comprovem en primer lloc que efectivament aquesta és la funció de la que ens parla

l’enunciat.
Mètode 1: Si ens hi fixem, veiem que també ho és als punts reals x ă ´1. Escrivint

Logw “ ln |w| ` iArgw veiem que per a comprovar això només cal veure que

F pzq :“ e
i
2

pArg pz´1q`Arg pz`1qq

és cont́ınua a aquests punts x ă ´1. Si ens acostem a x pel semiplà de dalt tenim que

F px` i0`q “ e
i
2

pπ`πq “ eiπ “ ´1,

i si ens hi acostem pel semiplà de baix tenim anàlogament

F px` i0´q “ e
i
2

p´π´πq “ e´iπ “ ´1.

Per tant hi ha continüıtat de F aquests punts. Un cop hem vist que la funció és cont́ınua,
l’holomorfia de l’arrel

?
z2 ´ 1 definida a dalt a tot Czr´1, 1s se segueix: per z0 P Czr´1, 1s,

podem trobar δ ą 0 tal que si z P Bpz0, δq, aleshores |z2 ´ z20 | ă |z20 ´ 1| per continüıtat i,
en particular, 0 ‰ z2 ´ 1. Aix́ı, com que F pzq té només dues alternatives que són nombres
complexos oposats, l’elecció està uńıvocament determinada quan z P Bpz0, δq i, donada

una determinació del logaritme log a Bpz20 ´ 1, |z20 ´ 1|q, F ha de coincidir amb e
1
2
logpz2´1q

o bé amb el seu oposat, és a dir, F pzq “ e
1
2
logpz2´1q. En qualsevol cas, la seva derivada és

F 1pzq “ ˘e
1
2
logpz2´1q z

z2´1
“

zF pzq

F pzq2
“ z

F pzq
.
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Mètode 2: Prenent una determinació del logaritme a Czr0,8q, tenim que per z R

r´1,8q la funció

e
1
2

plogpz´1q`logpz`1qq

està ben definida i, si z R R tenim que logpz ´ 1q “ Log pz ´ 1q ` 2kπi i logpz ` 1q “

Log pz`1q `2kπi, amb k constant en els semiplans de part imaginària positiva i negativa.
Aleshores tenim que

e
1
2

plogpz´1q`logpz`1qq “ e
1
2

pLog pz´1q`Log pz`1qq`2kπi “ F pzq.

Però aquesta segona definició és cont́ınua i holomorfa a z R r´1,8q, mentre que la definició
amb logaritmes principals és cont́ınua i holomorfa a z R p8, 1s. Aix́ı doncs F és holomorfa
a Czr´1, 1s. A més

F 1pzq “ e
1
2

plogpz´1q`logpz`1qq 1

2
p

1

z ´ 1
`

1

z ` 1
q “ F pzq

z

F pzq2
“

z

F pzq
,

i el mateix podem fer amb els logaritmes principals de manera que la derivada de F és
z

F pzq
a tot arreu on la tenim definida.

(a) Mirem per a quins punts z P C tenim que z `
?
z2 ´ 1 P p´8, 0s, i veurem que cap

d’aquests punts no és a Ω. L’equació

z `
a

z2 ´ 1 “ ´x, x ą 0,

dona per solució z “ ´
1 ` x2

2x
. Observem que tots aquests punts són reals negatius, i per

tant queden fora d’Ω.
(b) Ara sabem que aquesta funció és holomorfa, ja que és composició de funcions holo-

morfes (tant l’arrel com el logaritme són holomorfs allà on no tenen discontinüıtats). Per
tant, per la regla de la cadena,

`

Log pz `
a

z2 ´ 1q
˘1

“
1

z ` F pzq
p1 ` F 1pzqq “

1

z ` F pzq

ˆ

1 `
z

F pzq

˙

“
1

F pzq
.

(c) L’arc d’integració (en blau) és dins del domini on la primitiva de la funció a integrar
és holomorfa.

1

i

´i
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Utilitzant el teorema 4.9, és a dir, la regla de Barrow de les integrals de ĺınia, i dient
Gpzq “ Log pz `

?
z2 ´ 1q tenim:

ˆ
γ

dz
?
z2 ´ 1

“ Gp´iq ´Gpiq “ Log p´i`
a

p´iq2 ´ 1q ´ Log pi`
a

i2 ´ 1q.

Notem que la notació
a

p´iq2 ´ 1 es refereix a una funció avaluada en z “ ´i, que no
coincideix en principi (de fet, no coincideix) amb

?
i2 ´ 1! En realitat, per ser rigorosos,

haurem de parlar de F piq i F p´iq. Aqúı

a

i2 ´ 1 “ e
1
2

pLog pi´1q`Log pi`1qq “ e
1
2

pln
?
2`iArg pi´1qq`ln

?
2`iArg pi´1qq

“ e
1
2

pln 2`i 3π
4

`iπ
4

q “ i
?
2.

Anàlogament, es comprova que,

a

p´iq2 ´ 1 “ ´i
?
2.

Llavors ˆ
γ

dz
?
z2 ´ 1

“ Log p´i´ i
?
2q ´ Log pi` i

?
2q.

Tenim que

Log p´i´ i
?
2q “ ln | ´ i´ i

?
2| ` iArg p´i´ i

?
2q “ lnp1 `

?
2q ´ i

π

2
,

i anàlogament

Log pi` i
?
2q “ lnp1 `

?
2q ` i

π

2
.

Finalment ˆ
γ

dz
?
z2 ´ 1

“ lnp
?
2 ´ 1q ´ i

π

2
´ lnp

?
2 ´ 1q ´ i

π

2
“ ´iπ.

4.2.7. Siguin γ1 :“ t|z| “ 1 : Im z ě 0u i γ2 :“ t|z| “ 2 : Re z, Im z ě 0u. Demostreu que:

a)

ˇ

ˇ

ˇ

ˇ

ˆ
γ1

dz

z2 ` 2

ˇ

ˇ

ˇ

ˇ

ď π

b)

ˇ

ˇ

ˇ

ˇ

ˆ
γ2

dz

z2 ` 1

ˇ

ˇ

ˇ

ˇ

ď π
3

c)

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“1

sin z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2πe

d)

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“2

e´z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď πe2. Ž
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4. Integrals de ĺınia i teoria local de Cauchy

Solució: Afitem com a exemple la integral

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“1

sin z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ
|z|“1

ˇ

ˇ

ˇ

ˇ

sin z

z2

ˇ

ˇ

ˇ

ˇ

|dz| ď MLpγq “ 2πM

on γ és la circumferència unitat i

M “ max
|z|“1

| sin z|

|z|2
“ max

|z|“1
| sinpzq|.

Sabem que si z “ x` iy aleshores

|sinpzq|2 “ sin2pxq ` sinh2pyq.

El primer terme té 1 com a valor màxim, mentre que el segon terme és una funció creixent
per y ě 0 i parell. Donat que |z| “ 1 tenim que y ď 1 i per tant

| sinpzq| “

b

sin2pxq ` sinh2 y ď

a

1 ` sinh2 1 “
a

p2 ` e` e´1q{2 ď
?
e,

ja que e´1 ă 0.5 i 2.5 ă e. Concloem doncs que M ď e i per tant l’afitació queda provada.

4.2.8. (a) Sigui γ un camı́ en C. Proveu que si f és una funció cont́ınua en γ˚ llavors
ˆ
γ
fpzq dz “

ˆ
γ
fpzq dz.

(b) Dedüıu que si f és una funció cont́ınua en el cercle unitat llavors
ˆ

|z|“1
fpzq dz “ ´

ˆ
|z|“1

fpzq
dz

z2
. Ž

Solució: Escrivim f “ u ` iv i γ “ r ` is per les parts reals i imaginàries. Aleshores

tenim que γ “ r ´ is, i

ˆ
γ
fpzq dz “

ˆ b

a
f ˝ γptqγ1ptq dt “

ˆ b

a
pupγptqq ´ ivpγptqqqpr1ptq ´ is1ptqq dt

“

ˆ b

a
pupγptqq ´ ivpγptqqpγ1ptqq dt “

ˆ
γ
fpzq dz.

Per l’apartat b), si considerem γ “ eit la circumferència unitat resseguida en sentit
antihorari, aleshores γ “ e´it és el mateix camı́ resseguit en sentit horari, i

ˆ
γ
fpzq dz “

ˆ
γ
fpzq dz “

ˆ 2π

0
fpeitq p´ie´itq dt

és a dir que ˆ
γ
fpzq dz “ ´

ˆ 2π

0
fpeitq pieitq

dt

e2it
“ ´

ˆ
γ
fpzq

dz

z2
.
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4.3. Teorema de Cauchy

4.3.1. Recordeu que

ˆ 8

´8

e´x2
dx “

?
π.

(a) Proveu que

ˆ 8

´8

e´px`iaq2dx “
?
π per a tot a ą 0. Indicació: Apliqueu el teorema

de Cauchy al rectangle r´R,Rs ˆ r0, as.

(b) Proveu que

ˆ 8

´8

e´x2{2 cospnxq dx “
?
2πe´n2{2, n P Z. Ž

Solució:

(a) Considerem la funció entera fpzq “ e´z2 i apliquem el teorema de Cauchy a la vora
del rectangle R que donen a la Indicació:

ˆ
BR
fpzq dz “ 0.

Parametritzem cadascun dels quatre costats del rectangle:
1) γ1pxq “ x, amb x P r´R,Rs. Aqúı dz “ dx.
2) γ2pyq “ R ` iy, amb y P r0, as. Aqúı dz “ i dy.
3) γ3pxq “ x` ia, amb x P r´R,Rs. Ara dz “ dx.
4) γ4pyq “ ´R ` iy, amb y P r0, as. Aqúı dz “ i dy.
Amb aquestes parametritzacions tenim, tenint en compte l’orientació, que BR “ γ1 `

γ2 ´ γ3 ´ γ4.

´R R0

γ2pyq´γ4pyq

´γ3pxq

γ1pxq

R ` ia´R ` ia

R

Aleshores

0 “

ˆ R

´R
e´x2

dx`

ˆ a

0
e´pR`iyq2i dy ´

ˆ R

´R
e´px`iaq2dx´

ˆ a

0
e´p´R`iyq2i dy

Observem que les dues integrals en y, corresponents als costats del rectangle, tendeixen a
0 quan R tendeix a `8: p˘R ` iyq2 “ R2 ´ y2 ˘ 2iyR, de manera que

ˇ

ˇe´p˘R`iyq2
ˇ

ˇ “ e´R2`y2 ď e´R2
ea

2
.
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4. Integrals de ĺınia i teoria local de Cauchy

Aleshores
ˇ

ˇ

ˇ

ˇ

ˆ a

0
e´p˘R`iyq2i dy

ˇ

ˇ

ˇ

ˇ

ď

ˆ a

0
e´R2

ea
2
dy “ aea

2
e´R2 RÑ8

ÝÑ 0.

Per tant, passant al ĺımit la igualtat anterior obtenim

0 “

ˆ 8

´8

e´x2
dx´

ˆ 8

´8

e´px`iaq2dx,

i per tant
?
π “

ˆ 8

´8

e´x2
dx “

ˆ 8

´8

e´px`iaq2dx.

(b) Utilitzem l’apartat anterior, reescalant x per a tenir x2{2. És a dir, fem primer el
canvi x “ t{

?
2; dt “

?
2 dx. Aleshores, de l’apartat (a) tenim que

ˆ 8

´8

e
´p t?

2
`iaq2

dt “
?
2π.

Prenem ara a “ n{
?
2, amb n ě 1 (per a tenir a ą 0). Llavors

` t
?
2

` ia
˘2

“
` t

?
2

` i
n

?
2

˘2
“
t2

2
´
n2

2
` i tn

i per tant

en
2{2

ˆ 8

´8

e´t2{2e´itn dt “
?
2π.

Prenent les parts reals d’aquesta igualtat obtenim el resultat demanat, per a n ě 1. Per a
n ď ´1, observem que cospnxq “ cosp´nxq, i per tant el valor de la integral que obtenim
per a aquest n és el mateix que prenent ´n “ |n|. Per a n “ 0 el resultat és la indicació
que ens donen a l’apartat (a).

4.3.2. Determineu el domini d’holomorfia de les funcions f donades i digueu perquè´
|z|“2 fpzqdz “ 0.

a) fpzq “
cos z

z2 ´ 6z ` 10
,

b) fpzq “ Logpz ` 3q. Ž

Solució: a) És holomorfa allà on el denominador és diferent de zero, és a dir a C excepte

z “ 3 ˘ i. El circuit d’integració no envolta la singularitat llavors pel teorema de Cauchy
la integral és zero.

b) El domini d’holomorfia de la funció és D “ Cztx ď ´3, y “ 0u llavors tz P C : |z| ď

2u Ă D i la integral és zero pel teorema de Cauchy.
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4. Integrals de ĺınia i teoria local de Cauchy

4.3.3. Sigui u : D Ñ R una funció harmònica en un disc D, és a dir, tal que ∆u “

4B̄Bu “ 0. Demostra que existeix una funció v : D Ñ R harmònica tal que pu ` ivq és
holomorfa. L’anomenem harmònica conjugada. Indicació: Demostreu que les equacions
de Cauchy-Riemann per F “ U ` iV es poden escriure com BF “ 2BU o com BU “ ´iB̄V .

Ž

Solució: Si F “ U ` iV satisfà que

B̄F “ 0 ðñ BŪ “ B̄U “ ´iB̄V “ iBV̄ ,

vegeu l’observació 3.25. Com que U i V prenen valors reals tenim que Ū “ U i V̄ “ V , i
trobem

B̄F “ 0 ðñ BU “ ´iB̄V ðñ BU “ iBV ðñ BF “ 2BU.

Considerem u harmònica. Aleshores f “ 2Bu és holomorfa. Pel teorema de Cauchy té
una primitiva holomorfa F “ U ` iV , que ha de satisfer que B̄F “ 0 i BF “ f . Prenem
doncs v “ V . Aleshores per Cauchy-Riemann tenim que

B̄pu` iV q
CR
“ B̄u´ BU

CR
“ Bu´

BF

2
“
f

2
´
f

2
“ 0.

Per veure que V és harmònica, notem que

4B̄BV
CR
“ 4B̄p´iBUq

CR
“ ´2iB̄BF “ ´2iB̄f “ 0.

4.3.4. El teorema de Green diu que si Ω Ă C és un obert i U Ă Ω és un obert fitat
prou regular (per exemple amb frontera C1) i tal que U Ă Ω, aleshores tot camp vectorial
F “ pF1, F2q : Ω Ñ R2 amb F P C1pΩq satisfà que

ˆ
U

pBxF2 ´ ByF1q dm “

ˆ
BU

pF1 dx` F2 dyq .

Demostreu la fórmula de Green en variable complexa (4.1). Ž

Solució: Suposem que f “ u` iv i g “ ru` irv. Aleshores

I “

ˆ
BU

pf dz̄ ´ g dzq “

ˆ
BU

ppu` ivq pdx´ idyq ´ pru` irvq pdx` idyqq .

Per tant,

I “

ˆ
BU

pu dx´ iu dy ` iv dx` v dy ´ ru dx´ iru dy ´ irv dx` rv dyq

“

ˆ
BU

pu dx` v dy ´ ru dx` rv dyq ` i

ˆ
BU

p´u dy ` v dx´ ru dy ´ rv dxq .
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4. Integrals de ĺınia i teoria local de Cauchy

Apliquem ara el teorema de Green als camps pu´ ru, v ` rvq i pv ´ rv,´u´ ruq. Obtenim

I “

ˆ
U

p´uy ` vx ` ruy ` rvx ` i p´ux ´ vy ´ rux ` rvyqq dm

“

ˆ
U

p´fy ` gy ` i p´fx ´ gxqq “ ´i

ˆ
U

pfx ´ ify ` gx ` igyq dm

“ ´2i

ˆ
U

`

Bf ` B̄g
˘

dm.

4.3.5. Continuant amb l’exercici 4.3.4, demostreu la fórmula de Cauchy generalitzada,
coneguda com a fórmula de Cauchy-Pompeiu1, que diu que si ϕ P C1pΩq i z0 P U , aleshores

ϕpz0q “
1

2πi

ˆ
BU

ϕpzq

z ´ z0
dz ´

1

π

ˆ
U

B̄ϕpzq

z ´ z0
dmpzq.

Notem que el cas particular ϕ P C1
c pΩq ens diu ϕ “ CpB̄ϕq, on C indica la transformada de

Cauchy

Cψpz0q :“ ´
1

π

ˆ
U

B̄ψpzq

z ´ z0
dmpzq. Ž

Solució: Prenem Uε “ UzBεpz0q amb ε prou petit (tal que Bεpz0q Ă U). Aleshores

prenent gpzq “
ϕpzq

z´z0
, com que B̄gpzq “

B̄ϕpzq

z´z0
en Uε, obtenim

2i

ˆ
Uε

B̄ϕpzq

z ´ z0
dm “

ˆ
BU

ϕpzq

z ´ z0
dz ´

ˆ
BBεpz0q

ϕpzq

z ´ z0
dz.

Per passar al ĺımit en ε, notem que per ε prou petit
ˇ

ˇ

ˇ

ˇ

ˇ

˜ˆ
Uztz0u

´

ˆ
Uε

¸

B̄ϕpzq

z ´ z0
dm

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2|B̄ϕpz0q|

ˆ
Bεztz0u

1

|z ´ z0|
dm

polars
“ 2|B̄ϕpz0q|2πε

εÑ0
ÝÝÝÑ 0,

i per tant

2i

ˆ
Uε

B̄ϕpzq

z ´ z0
dm

εÑ0
ÝÝÝÑ 2i

ˆ
U

B̄ϕpzq

z ´ z0
dm.

Per altra banda, pel teorema del valor mitjà,
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
BBεpz0q

ϕpzq ´ ϕpz0q

z ´ z0
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
Bεpz0q

|∇ϕ|

ˆ
BBεpz0q

|dz| ď sup
Bεpz0q

|∇ϕ|2πε
εÑ0
ÝÝÝÑ 0,

i ˆ
BBεpz0q

ϕpz0q

z ´ z0
dz “ ϕpz0q

ˆ
BD

1

z
dz

Ex.4.2.1
“ 2πiϕpz0q.

Passant al ĺımit, doncs, tot plegat ens queda

2i

ˆ
U

B̄ϕpzq

z ´ z0
dm “

ˆ
BU

ϕpzq

z ´ z0
dz ´ 2πiϕpz0q.

1Dimitrie Pompeiu, Broscăut, i, 1873–1954, https://ca.wikipedia.org/wiki/Dimitrie_Pompeiu
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4. Integrals de ĺınia i teoria local de Cauchy

4.4. Fórmula integral de Cauchy

4.4.1. Avalueu, usant la fórmula integral de Cauchy, les següents integrals:

a)
´

|z|“2
z2

z´1dz;

b)
´

|z|“1
sinpezq

z dz;

c)
´

|z|“2
dz

z2´1
;

d)
´

|z|“2
dz

z2`z`1
;

e)
´

|z|“2
dz

z2`2z´3
;

f)
´

|z´2|“ 3
2

cospzq

z2pz2´π2q
dz;

g)
´

|z|“3
3z´2
z2´z

dz;

h)
´

|z`1|“1
1

z2´1
dz. Ž

Solució:

(a) Com que 1 P D2p0q, la fórmula de Cauchy per a fpzq “ z2 dona

ˆ
|z|“2

z2

z ´ 1
dz “ 2πi 12 “ 2πi.

(b) Essent 0 P D, podem aplicar la fórmula de Cauchy a fpzq “ sinpezq:

ˆ
|z|“1

sinpezq

z
dz “ 2πifp0q “ 2πi sin 1.

(c) Descomponem en fraccions simples

1

z2 ´ 1
“

1{2

z ´ 1
´

1{2

z ` 1

tenim que

ˆ
|z|“2

dz

z2 ´ 1
“

1

2

ˆ
|z|“2

dz

z ´ 1
´

1

2

ˆ
|z|“2

dz

z ` 1
“ πi´ πi “ 0.

Observem que ˆ
|z|“2

dz

z ´ 1
“ 2πi npγ, 1q,

on γ és la circumferència de radi 2. Anàlogament, l’altra integral dona 2πi npγ, 1q. És
clar, tal com acabem de veure, que la diferència d’́ındexs és 0.
(d) Les arrels de z2 ` z ` 1 “ 0 són α “ ´1{2 ` i

?
3{2 i β “ ᾱ, totes dues dins el disc

D2p0q. Escrivint
1

pz ´ αqpz ´ βq
“

1

α ´ β

` 1

z ´ α
´

1

z ´ β

˘

tenim que

ˆ
|z|“2

dz

z2 ` z ` 1
“

1

α ´ β

`

ˆ
|z|“2

dz

z ´ α
´

ˆ
|z|“2

dz

z ´ β

˘

“
1

α ´ β
p2πi´ 2πiq “ 0.
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4. Integrals de ĺınia i teoria local de Cauchy

Observem que, llevat del factor 2πi, aquesta integral equival a la diferència de dos ı́ndexs
de punts de l’interior del disc D2p0q, i per tant val 0.
(e) Tenim que z2 ` 2z ´ 3 “ pz ´ 1qpz ` 3q. L’arrel 1 és dins D2p0q, però l’arrel ´3 és

fora, de manera que la funció 1{pz ` 3q és holomorfa en aquest disc. Aplicant la fórmula
de Cauchy a aquesta funció tenim:

ˆ
|z|“2

dz

z2 ` 2z ´ 3
“

ˆ
|z|“2

1{pz ` 3q

z ´ 1
dz “ 2πi

1

1 ` 3
“ i

π

2
.

g) Descomponem en fraccions simples

3z ´ 2

z2 ´ z
“

1

z ´ 1
`

2

z
.

Llavors tenim que

ˆ
|z|“3

3z ´ 2

z2 ´ z
dz “

ˆ
|z|“3

ˆ

1

z ´ 1
`

2

z

˙

dz “

ˆ
|z|“3

1

z ´ 1
dz `

ˆ
|z|“3

2

z
dz “ 6πi.

h)

ˆ
|z`1|“1

1

z2 ´ 1
dz “

ˆ
|z`1|“1

ˆ

´
1

2 pz ` 1q
`

1

2 pz ´ 1q

˙

dz “ 2πip´1{2q ` 0 “ ´πi.

4.4.2. Sigui p un polinomi de grau n, amb tots els seus zeros continguts en DRp0q. De-
mostreu que

ˆ
|z|“R

p1pzq

ppzq
dz “ 2πin. Ž

Solució: Convé expressar el polinomi com a producte de monomis. Tenimque ppzq “

C
śn

i“1pz ´ αiq. Aleshores calculant la derivada del producte trobem que

p1pzq “ C
n
ÿ

k“1

ź

iPt1,...,nuzk

pz ´ αiq,

i obtenim
p1pzq

ppzq
“

n
ÿ

k“1

1

z ´ αk
.

Aplicant la fórmula integral de Cauchy a cada sumand obtenim el resultat demanat:

ˆ
|z|“R

p1pzq

ppzq
dz “

n
ÿ

k“1

ˆ
|z|“R

1

z ´ αk
dz “

n
ÿ

k“1

2πi “ 2πin.
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4.4.3. Sigui a P C, |a| ă 1. Calculeu la integral de ĺınia

ˆ
|z|“1

ˆ

2

z ´ a
´

1

z

˙

dz, i dedüıu

que

ˆ 2π

0

p1 ´ r2q dt

1 ` r2 ´ 2r cospθ ´ tq
“ 2π, per a tot 0 ď r ă 1 i θ P R. Ž

Solució: Aplicant la fórmula integral de Cauchy tenim que

ˆ
|z|“1

ˆ

2

z ´ a
´

1

z

˙

dz “

ˆ
|z|“1

2 dz

z ´ a
´

ˆ
|z|“1

dz

z
“ 2p2πiq ´ 2πi “ 2πi.

Per altra part, sumant dins la integral i parametritzant z “ eit, obtenim

ˆ
|z|“1

ˆ

2

z ´ a
´

1

z

˙

dz “

ˆ
|z|“1

z ` a

zpz ´ aq
dz “

ˆ 2π

0

eit ` a

eitpeit ´ aq
ieit dt

“ i

ˆ 2π

0

1 ´ |a|2 ` ae´it ´ āeit

|eit ´ a|2
dt.

Observem que ae´it ´ āeit “ 2iIm pae´itq. Per tant, prenent les parts imaginàries a la
igualtat anterior i utilitzant la igualtat que hem vist al principi obtenim,

2π “

ˆ 2π

0

1 ´ |a|2

|eit ´ a|2
dt.

Escrivint a “ reiθ, r ă 1, obtenim el resultat, ja que

|eit ´ a|2 “ 1 ` |a|2 ´ ae´it ´ āeit “ 1 ` |a|2 ´ 2Re pae´itq.

4.4.4. Siguin f, g P HpΩq, on Ω és un domini tal que D Ă Ω. Donat a P C amb |a| ‰ 1,
calculeu

1

2πi

ˆ
BD

ˆ

fpwq

w ´ a
´

agpwq

aw ´ 1

˙

dw. Ž

Solució: Separem dos casos:

(i) |a| ă 1. Per la fórmula de Cauchy

1

2πi

ˆ
BD

fpwq

w ´ a
dw “ fpaq.

Per altra part, com que 1{|a| ą 1,

1

2πi

ˆ
BD

agpwq

aw ´ 1
dw “

1

2πi

ˆ
BD

gpwq

w ´ 1{a
dw “ 0.
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(ii) |a| ą 1. Aqúı els papers d’a i 1{a es giren; com que 1{a P D, tenim que

1

2πi

ˆ
BD

fpwq

w ´ a
dw “ 0

i
1

2πi

ˆ
BD

agpwq

aw ´ 1
dw “

1

2πi

ˆ
BD

gpwq

w ´ 1{a
dw “ g

`1

a

˘

.

Tot plegat

1

2πi

ˆ
BD

ˆ

fpwq

w ´ a
´

agpwq

aw ´ 1

˙

dw “

#

fpaq si a P D
´gp1{aq si a R D.

4.4.5. Es consideren els següent exercicis relacionats amb la Fórmula Integral de Cauchy.2

a) Calculeu

˛
C

z2

z4 ´ 1
dz sobre la circumferència de radi 3 centrada en 0.

b) És cert que

˛
C

ez

z
dz “ 0 si C és tancada i simple?

Solució: a)

z2

z4 ´ 1
“

1

4

ˆ

i

z ´ i
´

i

z ` i
`

1

z ´ 1
´

1

z ` 1

˙

.

Obtenim

˛
|z“3|

z2

z4 ´ 1
dz “

1

4

˜˛
|z“3|

i dz

z ´ i
´

˛
|z“3|

i dz

z ` i
`

˛
|z“3|

dz

z ´ 1
´

˛
|z“3|

dz

z ` 1

¸

“ 0.

b) Si C no envolta el 0 és cert. Si C envolta el zero la integral val 2πie0 “ 2πi.

4.5. Sèries de potències

4.5.1. Desenvolupeu en sèrie de potències al voltant del punt a i doneu el radi de con-
vergència de:

a) 1{z, a “ 1,

b) z2ez, a “ 0,

c) 1
pz´1qpz´2q

, a “ 0,

d) 1
p1´zq3

, a “ 0,

e) ez

1´z , a “ 0,

f) 1
1`ez , a “ 0.

(en (e) i (f) només cal calcular els 3 primers termes). Ž

2De vegades es fa servir la notació
¸

per indicar que la integral és sobre un camı́ tancat.
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Solució: (a) Si fpzq “ 1{z, aleshores si n ě 1 tenim que f pnqpzq “
n!p´1qn

zn`1 , com podem

veure per inducció sobre n. Aleshores f pnqp1q “ n!p´1qn per n ě 0, i obtenim

fpzq “
ÿ

ně0

f pnqp1q

n!
pz ´ 1qn “

ÿ

ně0

p´1qnpz ´ 1qn.

El radi de convergència és R “ 1 pel criteri del quocient.
(b) Si fpzq “ z2ez, aleshores f 1pzq “ pz2 ` 2zqez, i si n ě 2 tenim que f pnqpzq “

pz2 ` 2nz ` npn ´ 1qqez, com podem veure per inducció sobre n. Aleshores fp0q “ 0,
f 1p0q “ 0 i f pnqp0q “ npn´ 1q per n ě 2, i obtenim

fpzq “
ÿ

ně0

f pnqp0q

n!
zn “

ÿ

ně2

1

pn´ 2q!
zn “

ÿ

ně0

1

n!
zn`2.

El radi de convergència és infinit pel criteri del quocient.
Aquesta sèrie també es pot calcular directament sabent que ez “

ř

ně0
zn

n! .
(c) Ara tenim que fpzq “ 1

pz´1qpz´2q
“ 1

z´2 ´ 1
z´1 . Per tant,

f pnqpzq “ n!p´1qn
ˆ

1

pz ´ 2qn`1
´

1

pz ´ 1qn`1

˙

,

i se segueix que

f pnqp0q “ n!
2n`1 ´ 1

2n`1
.

Aix́ı obtenim que
ÿ

ně0

p2n`1 ´ 1qzn

2n`1
,

i R “ 1.
(d) Ara tenim que fpzq “ 1

p1´zq3
. Per tant,

f pnqpzq “
pn` 2q!

2

1

p1 ´ zqn`3
,

i se segueix que

f pnqp0q “
pn` 2q!

2
.

Aix́ı obtenim que
ÿ

ně0

pn` 1qpn` 2q

2
zn,

i R “ 1.
Alternativament, usant el teorema de Mertens (vegeu el teorema 1.22), com que sabem

que

1

1 ´ z
“

8
ÿ

n“0

zn,
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aleshores

1

p1 ´ zq2
“

1

1 ´ z
¨

1

1 ´ z
“

˜

8
ÿ

n“0

zn

¸˜

8
ÿ

n“0

zn

¸

T.1.22
“

8
ÿ

n“0

˜

n
ÿ

k“0

1

¸

zn “

8
ÿ

n“0

pn` 1qzn,

i
1

p1 ´ zq3
“

1

p1 ´ zq2
¨

1

1 ´ z
T.1.22

“

8
ÿ

n“0

˜

n
ÿ

k“0

pk ` 1q

¸

zn “

8
ÿ

n“0

pn` 1qpn` 2q

2
zn.

(f) Ara tenim que

fpzq “
1

1 ` ez
,

f 1pzq “
´ez

p1 ` ezq2
,

f2pzq “
e3z ´ ez

p1 ` ezq4
,

i

f3pzq “
p3e3z ´ ezqp1 ` ezq ´ pe3z ´ ezq4ez

p1 ` ezq5
.

Obtenim que

fpzq “
1

2
´
z

4
`
z3

48
`Opz4q.

D’entrada no podem calcular R en no conèixer els coeficients. A la demostració del
teorema 4.22, que dona el desenvolupament local en sèrie de potències, es demostra que si
Drp0q Ă Ω, aleshores R ě r. Per tant, com que la funció és holomorfa a tot arreu llevat
dels pols z “ iπ ` 2kπi per tot k P Z, dedüım que R ě π. A la vegada, precisament
entorn del pol iπ la funció pren valors arbitràriament grans. Per tant la sèrie no pot ser
uniformement convergent entorn del pol i, en particular R ď π. Aix́ı, tenim que R “ π.

4.5.2. Sigui α P C, provar que si p1 ` zqα es pensa com eαLogp1`zq llavors per |z| ă 1

p1 ` zqα “ 1 ` αz `
αpα ´ 1q

2!
z2 `

αpα ´ 1qpα ´ 2q

3!
z3 ` ¨ ¨ ¨

(generalització del binomi de Newton).

Solució: Podem provar per inducció que pp1` zqαqpnq “ α ¨ pα´ 1q ¨ ¨ ¨ pα´ pn´ 1qqp1`

zqpα´nq. D’aqúı el resultat. Escrivim
ˆ

α

n

˙

“
αpα ´ 1q ¨ ¨ ¨ pα ´ pn´ 1qq

n!

si n ą 0 i

ˆ

α

0

˙

“ 1.

4.5.3. Trobeu els desenvolupament en sèrie de potències al voltant del punt a de les
següents funcions:
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4. Integrals de ĺınia i teoria local de Cauchy

a) fpzq “ cos2 z, a “ 0.

b) fpzq “ z2

pz`1q2
, a “ 1.

c) 3
?
z, a “ 1.

Aqúı 3
?
. és la determinació de l’arrel cúbica en Czp´8, 0s que val p´1 ` i

?
3q{2 en

z “ 1. Ž

Solució: (a) Mètode estàndard: Tenim que fpzq “
cosp2zq`1

2 . Per tant,

f 1pzq “ ´ sinp2zq

i per inducció veiem que si n ě 1 tenim que

f p2nqpzq “ p´1qn22n´1 cosp2zq

f p2n`1qpzq “ p´1qn`122n sinp2zq.

Avaluant en a “ 0 tenim que
fp0q “ 1,

f p2nqp0q “ p´1qn22n´1,

i
f p2n`1qp0q “ 0.

Per tant,

fpzq “ 1 `
ÿ

ně1

p´1qn22n´1z2n

p2nq!
.

Mètode intel.ligent: Podem fer el càlcul directament notant que

fpzq “
1

2
`

cosp2zq

2
“

1

2
`

1

2

ÿ

ně0

p´1qnp2zq2n

p2nq!
.

(b) Prenem fpzq “ z2

pz`1q2
“ z2gpzq, on gpzq “ 1

pz`1q2
. Calculem per inducció

gpnqpzq “
pn` 1q!p´1qn

pz ` 1qn`2
.

Per fer aquests càlculs, normalment usem intüıció + inducció. La intüıció prové de
calcular un parell o tres de derivades i detectar els patrons: g1pzq “ ´2{pz`1q3 “ ´2!{pz`

1qp2`1q, g2pzq “ 6{pz ` 1q4 “ 3!{pz ` 1qp2`2q, . . . Per la inducció notem en primer lloc que
és cert per n “ 1 tal com hem vist. Per altra banda, si per un n P N efectivament tenim
gpnqpzq “

pn`1q!p´1qn

pz`1qn`2 , aleshores pel següent nombre natural podem derivar un cop més i

obtenim gpn`1qpzq “
´pn`2qpn`1q!p´1qn

pz`1qn`3 “
ppn`1q`1q!p´1qn`1

pz`1qpn`1q`2 , i es compleix el pas inductiu.

Un cop establerta la derivada n-èsima, és moment de calcular els valors que pren en
a “ 1:

gp1q “ 1{4 gpnqp1q “
pn` 1q!p´1qn

2n`2
.
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4. Integrals de ĺınia i teoria local de Cauchy

Notem que per n “ 0 les dues expressions coincideixen.
Escrivim ara la sèrie de potències:

gpzq “
ÿ

ně0

pn` 1q!p´1qn

n!2n`2
pz ´ 1qn

Simplificant els factorials i multiplicant per z2 “ pz ´ 1q2 ` 2pz ´ 1q ` 1 obtenim

fpzq “ ppz ´ 1q2 ` 2pz ´ 1q ` 1q
ÿ

ně0

pn` 1qp´1qn

2n`2
pz ´ 1qn.

Multiplicant terme a terme i reindexant, obtenim

fpzq “
ÿ

ně2

pn´ 1qp´1qn

2n
pz ´ 1qn `

ÿ

ně1

2np´1qn`1

2n`1
pz ´ 1qn `

ÿ

ně0

pn` 1qp´1qn

2n`2
pz ´ 1qn.

Ajuntant termes,

fpzq “
1

4
`

ˆ

1

2
´

1

4

˙

pz ´ 1q `
ÿ

ně2

p´1qn

2n

ˆ

pn´ 1q ´
2n

2
`
n` 1

4

˙

pz ´ 1qn

“
1

4
`
z ´ 1

4
`

ÿ

ně2

p´1qnpn´ 3q

2n`2
pz ´ 1qn.

(c) A l’exercici 7 de la llista 3 vam veure que si fpzq “ 3
?
z, aleshores tenim que

f pnqpzq “

ˆ

1{3

n

˙

1

fpzq3n´1
“

ˆ

1{3

n

˙

fpzq

zn
,

on
`

α
n

˘

:“ α¨pα´1q¨...¨pα´pn´1qq

n! . Avaluant a z “ 1 tenim que

f pnqp1q “

ˆ

1{3

n

˙

fp1q

1n
“

ˆ

1{3

n

˙

ζ,

on ζ “ fp1q “ p´1 ` i
?
3q{2 per hipòtesi.

La sèrie de potències serà doncs

fpzq “
ÿ

ně0

`

1{3
n

˘

n!
ζpz ´ 1qn.

Pel criteri del quocient el radi de convergència és 1. També ho podem argumentar notant
que el domini d’holomorfia exclou necessàriament l’origen.

4.5.4. Considereu la funció fpzq “
z ` 1

pz ´ 1qpz ` iqz
i el punt a “ ´1.
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4. Integrals de ĺınia i teoria local de Cauchy

1. “Sense fer cap càlcul”, raoneu quin és el disc de convergència de la sèrie de potències
de f al voltant del punt a.

2. Calculeu la sèrie de potències de f al voltant de a. Ž

Solució: (a) Sabem que f és holomorfa a tot arreu llevat dels zeros del denominador,

que són 0, ´i i 1. El més proper a ´1 és l’origen, que està a distància 1. Aix́ı doncs, com
que la funció és holomorfa a D1p´1q obtenim que R ě 1 i com que té un pol a l’origen no
és uniformement convergent a D1`εp´1q de manera que R ď 1. Tenim doncs R “ 1.
(b) Escrivim fpzq “ z`1

pz´1qpz`iqz “ pz ` 1qgpzq, on gpzq “ 1
pz´1qpz`iqz “ A

z´1 ` B
z`i ` C

z .
Per trobar les constants A, B i C, resolem

Apz ` iqz `Bpz ´ 1qz ` Cpz ´ 1qpz ` iq “ 1.

Avaluant a z “ 0 obtenim C “ i, a z “ ´i obtenim B “ ´i´1
2 i a z “ 1 trobem A “ 1´i

2 .
Tenim que

gpnqpzq “ p´1qnn!

ˆ

A

pz ´ 1qn`1
`

B

pz ` iqn`1
`

C

zn`1

˙

,

i a z “ ´1 trobem

gpnqp´1q “ p´1qnn!

ˆ

A

p´2qn`1
`

B

p´1 ` iqn`1
`

C

p´1qn`1

˙

,

és a dir

gpnqp´1q “ ´n!

ˆ

pi´ 1q{2

2n`1
`

p´i´ 1q{2

p1 ´ iqn`1
` i

˙

.

Les sèries de potències resultants seran

gpzq “
ÿ

ně0

´

ˆ

i´ 1

2n`2
`

´i´ 1

2p1 ´ iqn`1
` i

˙

pz ` 1qn

i

fpzq “
ÿ

ně0

´

ˆ

i´ 1

2n`2
`

´i´ 1

2p1 ´ iqn`1
` i

˙

pz ` 1qn`1.

4.5.5. a) Es pot desenvolupar
?
z en sèrie de potències en un entorn de l’origen?

b) Quin és el disc màxim centrat a 0 on es pot desenvolupar cosp1{pz ´ 1qq en sèrie de
potències?

c) I la funció
1

2 ´ z
`

z

3 ´ z
?

Solució: a) No hi ha cap disc al voltant de 0 on la funció sigui holomorfa, no ho podem

fer. b) El disc més gran d’holomorfia al voltant de 0 és el disc de radi 1. c)

1

2 ´ z
`

z

3 ´ z
“

1

2

1

1 ´ z{2
´ 1 ´

1

1 ´ z{3
.

Cal que |z{2| ă 1 i |z{3| ă 1. Llavors el radi de convergència al voltant de 0 és 2.
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4. Integrals de ĺınia i teoria local de Cauchy

4.5.6. Determinar com a mı́nim els coeficients a1, a2, a3, a4 de la sèrie de Taylor de 1{p1`

z` z4q centrada a l’origen. Expliqueu perquè el radi de convergència és com a mı́nim 2{3.

Solució: Ho podem fer amb Sage, amb la comanda taylor. Fem-ho a ma.

1

1 ` z ` z4
“

8
ÿ

n“1

p´1qnpz ` z4qn “ 1 ´ z ` z2 ´ z3 ` z5 ` ¨ ¨ ¨

i obtenim els coeficients demanats. Per controlar el radi de convergència cal que trobem el
zero ω de z4`z`1 més proper a l’origen. Llavors el radi de convergència serà |ω|. Veiem si
pot haver un zero a distància menor que 2{3. Si |z| ă 2{3 llavors |z`z4| ă 2{3`16{81 ă 1
llavors no pot ser que z4 ` z ` 1 “ 0. Aleshores el radi de convergència és major que 2{3.
(de fet l’arrel més propera és aproximadament ´0.727` 0.43i i la seva distància a l’origen
és 0.8447 ą 2{3.)

4.5.7. Vegem com el teorema 4.22 és propi de l’anàlisi complexa. Una funció de variable
real f és anaĺıtica en un interval obert I Ă R si es pot expressar localment com a sèrie
de potències amb coeficients reals. Demostra que si f és anaĺıtica en I aleshores hi és
derivable. Troba una funció infinites vegades derivable en R que no hi sigui anaĺıtica.
Troba una funció f anaĺıtica en R que tingui radi de convergència 1.

Solució: Si f es pot expressar com a série de potències en un entorn de x P R, la
mateixa sèrie serà convergent en un disc centrat en x pel teorema de Hadamard i, per
tant, hi és holomorfa, de manera que la derivada f 1pxq “ Bfpx` 0iq.

La funció fpxq “ e´1{x2
és l’exemple més conegut de funció C8 de variable real que no

és anaĺıtica en l’origen, ja que totes les derivades són zero i la sèrie no pot coincidir amb
f que és positiva en tot punt llevat de l’origen.

La funció fpxq “ 1
1`x2 és derivable en tota la recta real, amb sèrie

ř

p´1qnx2n, que
té radi de convergència 1. Els punts on l’extensió holomorfa deixa de ser cont́ınua són
˘i, justificant també aquest radi tan petit. En general, per tot punt a P R, el radi de
convergència de la sèrie corresponent serà la distància a ˘i, és a dir

?
a2 ` 1.

4.6. Fórmula integral de Cauchy centrada per derivades i
desigualtats de Cauchy

4.6.1. Donat r ą 0 i a P C calculeu

I “

ˆ
|z´a|“r

e2z

pz ´ aq3
dz. Ž

Solució: Per la fórmula integral de Cauchy per derivades, si fpzq “ e2z tenim que

ˆ
|z´a|“r

e2z

pz ´ aq3
dz “

2πi

2!
f p2qpaq “ πi4e2a.
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4. Integrals de ĺınia i teoria local de Cauchy

4.6.2. Siguin 0 ď m ď n enters. Calculeu
ˆ

|z|“1

p1 ` zqn

zm`1
dz. Ž

Solució: Sigui fpzq “ p1 ` zqn. Aleshores

f pmqpzq “ n ¨ pn´ 1q ¨ . . . ¨ pn´m` 1qp1 ` zqn´m “
n!

pn´mq!
p1 ` zqn´m.

Aix́ı

f pmqp0q “
n!

pn´mq!

i per la fórmula integral de Cauchy per derivades tenim que
ˆ

|z|“1

p1 ` zqn

zm`1
dz “

2πi

m!
f pmqp0q “ 2πi

n!

pn´mq!m!
“ 2πi

ˆ

n

m

˙

.

4.6.3. Intenteu calcular I “

ˆ 8

´8

1

p1 ` x2q2
dx fent servir la fórmula integral de Cauchy

per derivades (potser cal recordar la desigualtat |
´
Γ fpzqdz| ď

´
Γ |fpzq||dz|.)

a) Considereu la semicircumferència C en el semiplà superior centrada a 0 amb radi R i

tancada pel segment de l’eix OX. Calculeu

ˆ
C

1

p1 ` z2q2
dz.

b) Descomponeu C “ C1 Y C2 on C1 és el segment de ´R a R i C2 la part restant
de C. Fent servir la desigualtat triangular per integrals donar una fita superior de
ˇ

ˇ

ˇ

ˇ

ˆ
C2

1

p1 ` z2q2
dz

ˇ

ˇ

ˇ

ˇ

.

c) Fent servir els apartats anteriors calcular

ˆ
C1

1

p1 ` z2q2
dz. Que passa si R tendeix a

infinit? Ž

Solució: a) La funció fpzq “ 1{pz ` iq2 P HpCzt´iuq, és holomorfa a l’interior de la

corba C llavors ˆ
C

1

p1 ` z2q2
dz “

ˆ
C

fpzq

pz ´ iq2
dz

Per altra banda, la FIC dona per derivades
ˆ

|z´i|“1

fpzq

pz ´ iq2
dz “ 2πif 1piq “ π{2.

Ens falta veure doncs que
ˆ
C

fpzq

pz ´ iq2
dz “

ˆ
|z´i|“1

fpzq

pz ´ iq2
dz.
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4. Integrals de ĺınia i teoria local de Cauchy

Notem que l’integrand és holomorf en un entorn Ω̄, on Ω és el domini Ω “ DzB1piq comprès
entre la corba inicial C i la bola de radi 1 centrada en i. Ara com ara no podem garantir
que existeixi una primitiva holomorfa en aquest entorn, ja que el domini Ω no és convex
(ni simplement connex, de fet).

−i

U1U2

w3 = −R

i

z2

z1 = z4

w2

z3

w1 = w4 = R
U3

γ1

η1

γ2

η2

γ3
η3

σ1 = σ4

σ2

σ3

No obstant, śı que són convexos els semiplans i les interseccions de semiplàns, aix́ı que
definim

U1 “ tz : Re z ` Im z ą 1 ` εu,

U2 “ tz : Im z ´ Re z ą 1 ` εu,

U3 “ tz : ´1 ă Im z ă 1u.

Aleshores, si escrivim gpzq “ 1
p1`z2q2

, i notant que g P HpUjq, podem aplicar el teorema

de Cauchy en cada camı́ contingut en Uj .
Definim doncs t1 “ ´10ε, t2 “ π{2, t3 “ π ` 10ε i t4 “ 2π, i escrivim

γjptq :“ i` eit, amb tj ă t ă tj`1,

zj “ i` eitj ,

w1 “ R ` 0i, w2 “ iR, w3 “ ´R ` 0i, i w4 “ w1.

Aleshores prenem els segments
σj “ rzj , wjs

i dividim el camı́ C en els fragments compresos entre els punts wj , que anomenem ηj , amb

ηjp0q “ wj i ηjp1q “ wj`1.

Aleshores, per j P t1, 2, 3u tenim que

Γj :“ σj _ ηj _ pσj`1q´ _ pγjq´ Ă Uj ,
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4. Integrals de ĺınia i teoria local de Cauchy

i pel teorema de Cauchy en cada Uj trobem

ˆ
Γj

gpzq
T.4.16

“ 0.

Com que els camins es recorren en sentit antihorari, es cancel.len els valors dels fragments
de camı́ en comú, és a dir les integrals en σj desapareixen, i obtenim

ˆ
C
gpzqdz “

3
ÿ

j“1

ˆ
ηj

gpzqdz “

3
ÿ

j“1

ˆ
γj

gpzqdz “

ˆ
|z´i|“1

fpzq

pz ´ iq2
dz “ π{2.

Notem que tot aquest procediment se simplificarà quan coneguem el teorema de Cauchy
global. Aquest procediment modificat convenientment, permet també deduir la FIC per a
derivades no centrada de la FIC per a derivades centrada.
b)

ˇ

ˇ

ˇ

ˇ

ˆ
C2

1

p1 ` z2q2
dz

ˇ

ˇ

ˇ

ˇ

ď

ˆ
C2

1

|1 ` z2|2
|dz| ď

πR

pR2 ´ 1q2
Ñ 0 si R Ñ 8

ja que |1 `R2ei2t| ě R2 ´ 1 (R gran).
c) Llavors

lim
RÑ8

ˆ
C1

1

p1 ` z2q2
dz “

ˆ 8

´8

1

p1 ` x2q2
dx “

π

2.

4.6.4. Sigui α ą 0 i f P HpDq complint que existeix c ą 0 i per a tot |z| ă 1, p1 ´

|z|qα|fpzq| ď c. Demostreu que per a tot n ě 0, |f pnqp0q| ď cn!
`

e
α

˘α
pn` αqα. Ž

Solució: Sigui 0 ă r ă 1. Llavors sup|z|“r |fpzq| ď c
p1´rqα

. Aplicant les desigualtats de

Cauchy, obtenim que

|f pnqp0q| ď
n!c

rnp1 ´ rqα
:“ φprq.

Calculem el mı́nim de φ. Derivant,

φ1prq “
´n!c

`

nrn´1p1 ´ rqα ´ αrnp1 ´ rqα´1
˘

prnp1 ´ rqαq2
“

´n!c
`

np1 ´ rq ´ αr
˘

rn`1p1 ´ rqα`1
.

Per tant, φ1prq “ 0 en p0, 1q si i només si, r “ n
n`α i es verifica que

|f pnqp0q| ď
n!c

p n
n`αqnp α

n`αqα
“ cn!pp1 `

α

n
qn{αqα

pn` αqα

αα
ď cn!

´ e

α

¯α
pn` αqα.

4.6.5. Sigui f una funció entera de manera que existeixen constants C,M ą 0 tals que
|fpzq|e´C|z| ď M per a tot z P C. Demostreu que |f 1pzq|e´C|z| ď CMe per a tot z P C.
Indicació: Apliqueu la desigualtat de Cauchy al cercle centrat a z i de radi r per provar
que |f 1pzq|e´C|z| ď M

r e
Cr per a tot r ą 0 i z P C. Avalueu a r “ 1{C. Ž
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Solució: Per la desigualtat de Cauchy tenim que per tot r ą 0

|f 1pzq| ď
supθPr0,2πs |fpz ` reiθq|

r
ď
M

r
sup

θPr0,2πs

eC|z`reiθ| ď
M

r
eC|z|`Cr.

Per tant,

|f 1pzq|e´C|z| ď
M

r
eCr,

com proposa la indicació.
Un cop vist això, prenem r “ 1{C i trobem

|f 1pzq|e´C|z| ď CMe.

Notem que eCr

r té un mı́nim en r “ 1{C, aix́ı que la cota no pot millorar, almenys
seguint aquest mètode!

4.6.6. (a) Suposem que una funció f entera satisfà que |fpzq| ď M si |z| “ R. Demos-
treu que els coeficients ck de la seva sèrie de Taylor centrada a a “ 0 compleixen

|ck| ď
M

Rk
.

(b) Suposem que el mòdul d’un polinomi P pzq està acotat per 1 pels z al disc unitat.
Demostreu que tots els coeficients de P tenen mòdul acotat per 1. Ž

Solució: (a) Per les desigualtats de Cauchy tenim que

|ck| “
|f pkqp0q|

k!
ď
M

Rk
.

(b) Com abans tenim que

|ck| ď
Mr

rk
,

on Mr “ sup|z|“r |P pzq| ď 1. Prenent r “ 1 obtenim la fita desitjada.

4.6.7. Proveu que si f P HpDq tal que |fpzq| ď |eiz| per a tot z P D, aleshores, per a tot
n P N,

|f pnqp0q| ď n! e. Ž

Solució: Per les desigualtats de Cauchy tenim que

|f pnqp0q| ď n!
supD e

|z|

rn
rÑ1
ÝÝÝÑ n!e.
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4.7. Teorema de Liouville i teorema fonamental de l’àlgebra

4.7.1. Suposem que f és entera. Provar que si f p4qpzq és fitada en el pla llavors f és un
polinomi de grau 4 com a màxim. Ž

Solució: f p4qpzq fitada vol dir que el seu mòdul és fitat, pel teorema de Liouville

f p4qpzq “ c P C. Integrem i obtenim un polinomi de quart grau com a màxim.

4.7.2. La funció fpzq “ 1{z2 tendeix a 0 quan z Ñ 8 però no és una funció constant.
Contradiu això el Teorema de Liouville? Ž

Solució: No el contradiu ja que 1{z2 no és entera, el 0 no és del seu domini.

4.7.3. Sigui f una funció entera. Per a |a| ă R i |b| ă R calculeu

I “

ˆ
|z|“R

fpzq

pz ´ aqpz ´ bq
dz.

Useu el resultat per demostrar el teorema de Liouville. Ž

Solució: Si a “ b, I “ 2πif 1paq per la fórmula integral de Cauchy per derivades. Si

a ‰ b,

I “
1

a´ b

ˆ
|z|“R

pa´ bqfpzq dz

pz ´ aqpz ´ bq
“

1

a´ b

˜ˆ
|z|“R

fpzq dz

z ´ a
´

ˆ
|z|“R

fpzq dz

z ´ b

¸

,

i concloem per la fórmula integral de Cauchy que I “ 2πi
a´bpfpaq ´ fpbqq.

4.7.4. Caracteritzeu les funcions enteres f tals que |f 1pzq| ď |z| per a tot z P C. Ž

Solució: És clar que fpzq “ αz2 `β amb α, β P C i 2|α| ď 1 satisfà les hipòtesis. Veiem

que no hi ha més solucions.
Si |f 1pzq| ď |z|, prenem gpzq “ fpzq ´ fp0q també satisfà les hipòtesis i gp0q “ 0. Tenim

que

|g2pzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ˆ
|w|“R

g1pwq

pw ´ zq2
dw

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2π

ˆ
|w|“R

|w|

|w ´ z|2
|dw|

RÑ8
ÝÝÝÑ 1.

Aix́ı que g2 “ f2 és una funció entera i fitada. Pel teorema de Liouville, es tracta d’una
funció constant.

4.7.5. Sigui f una funció entera. Usant el teorema de Liouville proveu que

(a) Si |f | ě 1, llavors f és constant.

(b) Si Re f ě 0, llavors f és constant.

(c) Si Im f ď 1, llavors f és constant. Ž
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(d) Si Re f no té zeros, llavors f és constant.

Solució: (a) Amb aquesta condició f no té zeros, i per tant 1{f és entera. La mateixa

condició diu que |1{f | ď 1, de manera que, pel Teorema de Liouville, 1{f (i per tant f) és
constant.
(b) Considerem F pzq “ e´fpzq. Tenim que |F pzq| “ e´Re fpzq ď 1, i per tant F és

constant.
(c) Anàlogament al cas anterior, considerem F pzq “ e´ifpzq. Tenim que |F pzq| “

eIm fpzq ď e, de manera que F (i per tant f) és constant.
(d) Com que Re f és cont́ınua (de fet, fins i tot anaĺıtica), tenim que Re f ą 0 o bé

Re f ă 0. Al primer cas apliquem (b), i al segon considerem F pzq “ efpzq i fem com al cas
(b).

4.7.6. Sigui f una funció entera tal que |fpzq| ď CeRe z, per a tot z P C, on C ą 0 és una
constant. Què es pot dir de f? Ž

Solució: Notem que eRe z “ |ez|. La funció e´z és entera i per tant, e´zfpzq és una

funció entera i acotada per C. Per tant, és constant. Aix́ı doncs, fpzq “ aez, amb |a| ď C.

4.7.7. Sigui f una funció entera tal que |f 1pzq| ă |fpzq| per a tot z P C. Què podem dir
de f? Ž

Solució: (proposada per Miguel Puelma Mart́ınez)

La hipòtesi sobre f implica que per a tot z P C, |fpzq| ą 0, per tant f no té zeros i
aleshores f 1{f P HpCq. Com que a més per a tot z P C

ˇ

ˇ

ˇ

ˇ

f 1pzq

fpzq

ˇ

ˇ

ˇ

ˇ

ă 1,

pel teorema de Liouville f 1{f és constant, i.e., existeix λ P C tal que f 1 “ λf . Volem
concloure d’aqúı que f és de la forma z ÞÑ Ceλz per a algun C P C. Proposem dues
maneres alternatives de veure-ho.
Alternativa 1 : Com que f és entera, es pot expressar en sèrie de potències a tot C com

@z P C, fpzq “

`8
ÿ

n“0

f pnqp0q

n!
zn. p˚q

Per inducció immediata, de f 1 “ λf obtenim f pnq “ λnf , i per tant p˚q esdevé

@z P C, fpzq “ fp0q

`8
ÿ

n“0

1

n!
pλzqn “ fp0qeλz

com voĺıem veure, amb C “ fp0q .
Alternativa 2 : Si ja hem intüıt que les solucions seran d’aquesta forma, l’únic que cal

veure és que g : z ÞÑ fpzqe´λz és constant —o equivalentment, que té derivada 0, perquè
C és connex—. Efectivament,

@z P C, g1pzq “ f 1pzqe´λz ´ λfpzqe´λz “ 0.

81
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Finalment, dels candidats a solució, els que verifiquen |f 1{f | ă 1 són

fpzq “ Ceλz, C P C, λ P D,

ja que |f 1{f | “ |λ| per a tots els candidats.
Nota: com que C és simplement connex i f no s’hi anul.la, existeix una determinació

F pzq de log fpzq, com veurem a la proposició 5.29. Usant això se simplifica la prova i
estalviem l’argument de compacitat.

4.8. Teorema de Morera

4.8.1. Demostreu la continüıtat de f en el principi de reflexió de Schwarz. Ž

4.8.2. Sigui fpzq “ 1{z2. Comproveu que
´
γ fpzq dz “ 0 per a tot camı́ tancat γ que no

passi per 0, però f no és anaĺıtica en 0. Contradiu això el corol.lari 4.34 del teorema de
Morera? Ž

Solució: Definim F pzq “ ´1
z . F és holomorfa a Czt0u i la seva derivada és F 1pzq “ fpzq.

Per tant, si γ : ra, bs Ñ Czt0u és un camı́ tancat, aleshoresˆ
γ
fpzq dz “ F pγpbqq ´ F pγpaqq “ F pγpbqq ´ F pγpbqq “ 0.

Com que f no és cont́ınua a l’origen, tampoc pot ser anaĺıtica.
El corol.lari del teorema de Morera diu que si una funció és holomorfa en un obert llevat

d’un punt però que la funció és cont́ınua en aquest punt, aleshores la funció és holomorfa
en tot l’obert. En aquest cas falla la hipòtesi de la continüıtat i falla també la conclusió,
ja que f no és anaĺıtica a l’origen i, per tant, no és holomorfa.

4.8.3. (a) Sigui h una funció cont́ınua a R amb suport compacte (és a dir, existeix
K Ă R compacte tal que hpxq “ 0 si x R K) i sigui

Hpzq “

ˆ
R
hptqe´itzdt

(quan ens restringim a z P R, H s’anomena transformada de Fourier de h; si prenem
iz en el lloc de z, H s’anomena transformada de Laplace3 bilateral de h). Proveu
que H és una funció entera amb creixement exponencial: existeixen A,C ą 0 tals
que |Hpzq| ď CeA|Im z|.

(b) Sigui h una funció cont́ınua a r0, 1s. Demostreu que la seva transformada de Hilbert4

Hpzq “

ˆ 1

0

hptq

t´ z
dt

és anaĺıtica per a z P Czr0, 1s. Ž

3Pierre-Simon Laplace, Beaumont-en-Auge, 1749–1827, https://ca.wikipedia.org/wiki/

Pierre-Simon_Laplace
4David Hilbert, Königsberg, 1862–1943, https://ca.wikipedia.org/wiki/David_Hilbert
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Solució: (a) En primer lloc comprovem que la integral és finita per a tot z P C. Sigui

A ą 0 tal que suppphq Ă r´A,As. Passant el mòdul dins la integral tenim que

|Hpzq| ď

ˆ A

´A
|hptq||e´itz|dt.

Essent h cont́ınua i de suport compacte, existeix M “ max
tPR

|hptq| ă `8. Per altra part

|e´itz| “ |e´itpRe pzq`iIm pzqq| “ et Im pzq.

Amb tot això tenim que

|Hpzq| ď

ˆ A

´A
Met Im pzqdt ď M

ˆ A

´A
eA |Im pzq|dt “ Mp2AqeA |Im pzq|.

Per a veure que H és holomorfa utilitzarem el Teorema de Morera. Haurem de veure per
tant que H és cont́ınua i que la integral al llarg de la vora de qualsevol triangle dona 0.

Que H és cont́ınua és immediat, ja que la funció que integrem és cont́ınua i ho fem a
un conjunt compacte:

lim
zÑz0

Hpzq “ lim
zÑz0

ˆ
K
hptqe´itzdt “

ˆ
K
hptqp lim

zÑz0
e´itzqdt “

ˆ
R
hptqe´itz0dt “ Hpz0q.

Sigui ara T un triangle qualsevol de C. Per Fubini i pel teorema de Cauchy aplicat a les
funcions enteres ftpzq “ e´itz, tenim queˆ

BT
Hpzq dz “

ˆ
R
hptq

ˆˆ
BT
e´itzdz

˙

dt “

ˆ
R
hptq 0 dt “ 0.

(b) Fem anàlogament a l’apartat anterior. Diem dpzq a la distància de z R r0, 1s a
aquest interval. Passant el mòdul dins la integral i utilitzant que h és una funció cont́ınua
al compacte r0, 1s, veiem de seguida que la integral és finita:

|Hpzq| ď

ˆ 1

0

|hptq|

|t´ z|
dt ď

1

dpzq

ˆ 1

0
|hptq| dt.

Per veure que és holomorfa apliquem de nou el teorema de Morera. Si z0 R r0, 1s existeix
ϵ ą 0 tal que Dεpz0q X r0, 1s “ H. Aleshores, prenent z P Dεpz0q tenim que

lim
zÑz0

Hpzq “ lim
zÑz0

ˆ 1

0

hptq

t´ z
dt “

ˆ 1

0
lim
zÑz0

hptq

t´ z
dt “

ˆ 1

0

hptq

t´ z0
dt “ Hpz0q.

Sigui ara T un triangle completament contingut a Czr0, 1s. Observem que per als punts
t P r0, 1s l’́ındex de BT a t és 0: Ind pBT, tq “ 0.

0 1

t

T
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Aleshores,

ˆ
BT
Hpzq dz “

ˆ 1

0

ˆˆ
BT

dz

t´ z

˙

hptq dt “

ˆ 1

0

`

´2πi Ind pBT, tq
˘

hptq dt “ 0.

4.8.4. Sigui f holomorfa en un obert Ω, i sigui z0 P Ω amb f 1pz0q ‰ 0. Demostreu que hi
ha r0 ą 0 de manera que, per 0 ă ε ă r0, es compleix la identitat

2πi

f 1pz0q
“

ˆ
|z´z0|“ε

dz

fpzq ´ fpz0q
.

Indicació: proveu primer que la funció G definida per

Gpzq “

#

fpzq´fpz0q

z´z0
si z ‰ z0

f 1pz0q si z “ z0

és holomorfa en Ω. Ž

Solució: Com que f és holomorfa, la funció G és clarament holomorfa en Ωztz0u.

Vegem que G és cont́ınua en z0. Com que f és holomorfa en z0, tenim que

lim
zÑz0

Gpzq “ lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“ f 1pz0q “ Gpz0q.

Per tant, G P CpΩqXH
`

Ωztz0u
˘

, i això implica que G és holomorfa en Ω pel corol.lari 4.34.

Com que Gpz0q “ f 1pz0q ‰ 0, per continüıtat, hi ha r0 ą 0 de manera que Gpzq ‰ 0 per
z P Dr0pz0q. Llavors la funció

Hpzq “
1

Gpzq
, z P Dr0pz0q

és holomorfa en Ω1 “ Dr0pz0q. Sigui ε ą 0 amb 0 ă ε ă r0. Com que Dεpz0q Ă Ω1,
aplicant la fórmula integral de Cauchy obtenim

Hpz0q “
1

2πi

ˆ
|z´z0|“ε

Hpzq

z ´ z0
dz.

És a dir,

2πi

f 1pz0q
“

2πi

Gpz0q
“

ˆ
|z´z0|“ε

dz

Gpzqpz ´ z0q
“

ˆ
|z´z0|“ε

dz

fpzq ´ fpz0q
.

4.9. Derivació sota el signe integral i fórmula integral de Cauchy
per derivades

4.9.1. Avalueu, usant la fórmula de Cauchy per a les derivades
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a)

ˆ
|z|“1

ez

pz ´ 1{2q2
dz. b)

ˆ
|z|“1

sinpzq

p3z ´ 2q4
dz. c)

ˆ 2π

0
e´iθee

iθ
dθ. Ž

Solució:

a) 2πi
?
e. b) ´πi cosp2{3q

35
. c) 2π.

4.10. Zeros de funcions holomorfes i principi de prolongació
anaĺıtica

4.10.1. Trobeu els zeros, amb l’ordre corresponent, de les següents funcions:

a)
z2 ` 1

z2 ´ 1
b) z2 sin z c) fpzq “

1

z
`

1

z5
. Ž

Solució:

a) Té zeros simples a ˘i.

b) Té un zero d’ordre 3 a l’origen i zeros simples a kπ amb k P Zzt0u.

c) Té 4 zeros simples: 1?
2
p˘1 ˘ iq.

4.10.2. Trobeu la multiplicitat de z “ 0 com a zero de la funció entera fpzq “ 2 cos z3 `

z6 ´ 2. Ž

Solució: (proposada per Clara Valls Moreso) Trobem la multiplicitat de z “ 0 com a

zero de la funció:
fpzq “ 2 cospz3q ` z6 ´ 2.

Recordem que:

cospzq “ 1 ´
z2

2!
`
z4

4!
`Opz6q

Per tant,

cospz3q “ 1 ´
z6

2!
`
z12

4!
`Opz18q

Llavors:

2 cospz3q “ 2 ´ z6 `
z12

12
`Opz18q

I per tant:

fpzq “ 2 cospz3q ` z6 ´ 2 “

ˆ

2 ´ z6 `
z12

12
`Opz18q

˙

` z6 ´ 2 “
z12

12
` opz17q

Per tant, z “ 0 és un zero de multiplicitat 12.

4.10.3. Trobeu tots els zeros de les següents funcions holomorfes i calculeu-ne les seves
multiplicitats:
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a) fpzq “ z2pez
2

´ 1q.

b) fpzq “ pz2 ´ π2q sin z{z.

c) fpzq “ p
?
z ´ 2q3.

Aqúı
?
. és la determinació de l’arrel quadrada en Czp´8, 0s que val ´1 en z “ 1. Ž

Solució:

(a) Tenim que ez
2

´1 “ 0 si i només si z2 “ log 1 “ 2πi k, k P Z, és a dir, z˘
k “ ˘

?
2πik.

Considerem primer l’arrel que correspon a k “ 0, és a dir z0 “ 0. Prenent la sèrie de
l’exponencial a l’entorn del 0 tenim que ez

2
´1 “ z2 `¨ ¨ ¨ , i per tant z2pez

2
´1q “ z4 `¨ ¨ ¨ .

Aix́ı doncs, z0 “ 0 és una arrel de multiplicitat 4.
Per a k ‰ 0 les arrels són de multiplicitat 1. Sigui zk alguna de les arrels de dalt amb

k ‰ 0. Tenim que ez
2
k “ 1. Desenvolupem gpzq “ ez

2
´ 1 a l’entorn de zk. Tenim que

g1pzq “ ez
2
2z, i per tant g1pzkq “ 2zk ‰ 0. El desenvolupament dona doncs

gpzq “ gpzkq ` g1pzkqpz ´ zkq “ 2zkpz ´ zkq ` ¨ ¨ ¨

Per altra part, a l’entorn de zk tenim que z “ zk ` pz ´ zkq, i tot plegat

fpzq “ rzk ` pz ´ zkqs2r2zkpz ´ zkq ` ¨ ¨ ¨ s “ 2z2kpz ´ zkq ` ¨ ¨ ¨

la qual cosa mostra que la multiplicitat de zk és efectivament 1.
(b) La funció sin z s’anul.la als punts zk “ kπ, k P Z, i el factor z2 ´π2 “ pz´πqpz`πq

s’anul.la z˘1 “ ˘π. Considerem doncs diferents k P Z.

(i) k “ 0. Tenim que sin z “ z ´
z3

3!
` ¨ ¨ ¨ i per tant

sin z

z
“ 1 ´

z2

3!
` ¨ ¨ ¨ . Amb això

pz2 ´ π2q
sin z

z
“ ´π2 `

`

1 `
π2

3!

˘

z2 ` ¨ ¨ ¨

i per tant z0 “ 0 no és de fet un zero de la funció donada.
(ii) k “ ˘1. Suposem k “ 1; el cas k “ ´1 es fa anàlogament. Fent Taylor a l’entorn

de z1 “ π, trobem que

sin z “ ´pz ´ πq `
1

3!
pz ´ πq3 ` ¨ ¨ ¨ “ pz ´ πqhpzq,

amb h holomorfa i hpπq ‰ 0. Per tant

fpzq “ pz ´ πqpz ` πq
pz ´ πqhpzq

z
“ pz ´ πq2

pz ` πqhpzq

z
.

El segon factor en aquest producte és una funció holomorfa no nul¨la l’entorn de π, i per
tant z1 “ π és un zero de multiplicitat 2.

(iii) zk “ kπ, k ‰ 0,˘1. Desenvolupant per Taylor a l’entorn de zk com al cas anterior,
tenim que

sin z “ p´1qkpz ´ kπq `
p´1qk`1

3!
pz ´ kπq3 ` ¨ ¨ ¨ “ pz ´ kπqhpzq,
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amb h holomorfa i hpkπq ‰ 0. Aleshores

fpzq “ pz ´ kπq
pz2 ´ π2qhpzq

z
,

i el segon factor en aquest producte és una funció holomorfa i no nul¨la un entorn de
zk “ kπ. Per tant, zk és un zero de multiplicitat 1.

(c) En primer lloc mirem a quina determinació de l’argument argpzq correspon l’arrel
donada. Essent el semieix de discontinüıtats p´8, 0s tenim que

argpzq “ Arg pzq ` 2πk, k P Z,

on Arg pzq denota l’argument principal (amb angle a p´π, πq). Aleshores

?
1 “ e

1
2

pln |1|`iArg p1q`2iπkq “ eiπk.

Ens diuen que
?
1 “ ´1, d’on dedüım que k “ 1 (o qualsevol altre k senar que vulguem;

hi ha dues arrels, la que correspon als k parells, i aquesta, que correspon als k senars).
Amb això, l’argument triat és tal que

argpzq P pπ, 3πq.

Aleshores
?
z “ e

1
2

pln |z|`i argpzqq “
a

|z|ei
argpzq

2

és un nombre complex amb arguments a pπ2 ,
3π
2 q. En particular, veiem que

?
z no pot ésser

2 (és l’altra arrel que pot valdre 2, però no aquesta), i per tant la funció fpzq no té cap
zero.

4.10.4. Sigui Ω Ă C un domini. Demostreu que l’anell de funcions holomorfes HpΩq a
una regió Ω és un domini d’integritat, és a dir, si f, g P HpΩq amb fg ” 0 aleshores f ” 0
o g ” 0. Ž

Solució: En efecte, suposem que existeix z0 P Ω i fpz0q ‰ 0. Llavors, per continüıtat,

existeix r ą 0 complint que fpzq ‰ 0 si z P Drpz0q Ă Ω. Per hipòtesi, f ¨ g ” 0 i, per tant,
g ” 0 en Drpz0q. Aplicant el Principi de Prolongació anaĺıtica, com que Ω és una regió,
es compleix que g ” 0 en Ω.

Com a alternativa, raonem per contradicció. Si f i g no són idènticament nul¨les, els seus
conjunts de zeros Zpfq i Zpgq són successions de punts äıllats i, en particular, conjunts
com a molt numerables. Aleshores Zpfgq “ ZpfqYZpgq també seria numerable, en contra
de la hipòtesi.

4.10.5. Sigui tanun una successió estrictament decreixent de nombres reals an P p0, 1q i
tal que lim

nÑ8
an “ 0. Sigui f una funció holomorfa en D. Demostreu que:

(a) Si fpanq P R per a tot n, aleshores fpz̄q “ fpzq per a tot z P D.

(b) Si a més fpa2nq “ fpa2n`1q per a tot n, aleshores f és constant. Ž
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Solució:

(a) Observem en primer lloc que la funció hpzq :“ fpz̄q és holomorfa a D. Amb la
intenció de veure que Bh

Bz̄ “ 0, considerem primer gpzq “ fpz̄q. Com que f és holomorfa

tenim que Bf
Bz̄ “ 0, i per tant Bg

Bz “ 0. Aleshores

Bh

Bz̄
“

Bḡ

Bz̄
“

Bg

Bz
“ 0 “ 0.

Per tant la funció F pzq “ fpz̄q´fpzq és holomorfa a D. Per a veure que F ” 0 utilitzarem
el principi de prolongació anaĺıtica, és a dir que el conjunt de zeros d’aquesta funció no
pot tenir punts d’acumulació a D, llevat que sigui 0. Observem però que, per hipòtesi,

F panq “ fpanq ´ fpanq “ 0.

Com que tanun s’acumula a 0, dedüım que necessàriament F ” 0, com voĺıem.
(b) De l’apartat (a) en tenim que si x P R X D aleshores fpxq P R. Per tant, mirant

la funció només a la recta real i aplicant el teorema de Rolle tenim que existeixen punts
βn P pa2n`1, a2nq tals que f 1pβnq “ 0. Com que limn an “ 0, necessàriament també
limn βn “ 0. Ara el principi de prolongació anaĺıtica, aplicat a la funció f 1 P HpDq,
implica que f 1 ” 0, i per tant f és constant.

4.10.6. Trobeu totes les funcions holomorfes a D tals que:

(a) |fp1{nq| ď 1{2n, per a tot nombre natural n ě 2.

(b) fp1{nq “ lnp1 ` n3q ´ 3 lnn per a n ą 1. Ž

Solució: a) És clar que fp0q “ 0 per continüıtat. Vegem que, de fet, f ” 0. Ho farem

raonant per l’absurd, factoritzant el zero de l’origen: sabem que existeix n0 i an0 P Rzt0u

amb
fpzq “

ÿ

něn0

anz
n “ an0z

n0 ` Op|z|n0`1q.

Aix́ı, per z prou petit (podem prendre |z| ă
|an0 |

2C , amb C determinat a la següent ĺınia),
tenim que

|fpzq| “
ˇ

ˇan0z
n0 ` Op|z|n0`1q

ˇ

ˇ ě |an0z
n0 | ´ C|z|n0`1 ě

|an0 |

2
|z|n0 .

Combinant-ho amb la hipòtesi, obtenim

1

2n
ě

ˇ

ˇ

ˇ

ˇ

f

ˆ

1

n

˙ˇ

ˇ

ˇ

ˇ

ě
|an0 |

2
p1{nqn0 ,

és a dir que
nn0

2n
ě

|an0 |

2
,
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la qual cosa contradiu que

lim
nÑ8

nn0

2n
“ lim

nÑ8
2n0plog2 nq´n “ 0.

b) fpzq “ Log pz3 ` 1q i PPA.

4.10.7. Trobeu totes les funcions f holomorfes en el disc D2p0q tals que fpeiθq “ ei2θ per
a tot θ P r0, 2πq, i a més fp0q “ 0. Ž

Solució: Tenim que fpzq “ z2 per a tots els |z| “ 1. Pel principi de prolongació

anaĺıtica, això obliga a que fpzq “ z2 a tot el disc (ja que fpzq i z2 coincideixen en un
conjunt no numerable i amb punts d’acumulació a l’interior de D2p0q). A més, fp0q “ 0.

4.10.8. Sigui f P HpΩq en un domini Ω Ă C tal que f ˝ f “ f . Demostreu que o bé f és
constant, o bé és la identitat. Ž

Solució: Suposem que f no és constant. Aleshores fpΩq és un obert. Per y P fpΩq

tenim que y “ fpzq i, per tant, fpyq “ fpfpzqq “ fpzq “ y. Per tant, f és la identitat en
un obert no buit. Pel PPA, f és la identitat en Ω.

4.10.9. (a) Sigui f una funció entera tal que existeixen constants n P N, C ą 0 i R ą 0
tals que |fpzq| ď C|z|n, per a |z| ě R. Demostreu que f és un polinomi de grau més petit
o igual que n.

(b) Dedüıu que si f és una funció entera amb lim
|z|Ñ8

|fpzq| “ 8, llavors f és un polinomi.

Indicació: Demostreu que f només té un nombre finit de zeros a1, . . . , an (comptant mul-
tiplicitats) i apliqueu l’apartat (a) a la funció F “ P {f , on P pzq “ pz ´ a1q ¨ ¨ ¨ pz ´ anq.

Ž

Solució: (a) Escrivim f en sèrie de potències al voltant del 0: fpzq “
8
ř

m“1
amz

m. Per

les desigualtats de Cauchy:

|am| “
|f pmqp0q|

m!
ď

max
|z|“r

|fpzq|

rm
, @r ą 0.

Prenem r ě R, de manera que valgui l’acotació que dona l’enunciat; aleshores,

|am| ď
Crn

rm
.

Veiem per tant que si m ą n, fent r Ñ `8, obtenim am “ 0. Tornant a la sèrie inicial,
queda

fpzq “ a0 ` a1z ` ¨ ¨ ¨ ` anz
n.

(b) Per hipòtesi existeix R ą 0 tal que |fpzq| ě 1 si |z| ě R. Mirem ara f a DRp0q.
Com que la funció no s’anul¨la la frontera del disc, el nombre de zeros que té f a DRp0q
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és necessàriament finit (recordem que el principi de prolongació anaĺıtica diu que els zeros
són äıllats i per tant només es podrien acumular a la frontera).

Diem doncs a1, . . . , an als zeros de f , comptats tantes vegades com la seva multiplicitat.
Aquests punts són tots a DRp0q. Aleshores la funció

F pzq “
pz ´ a1q ¨ ¨ ¨ pz ´ anq

fpzq

és holomorfa als punts aj , j “ 1, . . . , n, i per tant a tot arreu.
Amb la intenció d’aplicar l’apartat (a), diem M “ maxj |aj | i acotem,

|F pzq| ď
p|z| ` |a1|q ¨ ¨ ¨ p|z| ` |an|q

|fpzq|
ď

p|z| `Mqn

|fpzq|
.

Prenem R ě M tal que |fpzq| ě 1 si |z| ě R. Aleshores, per a |z| ě R tenim que

|F pzq| ď
p2|z|qn

1
“ C|z|n, C “ 2n,

de manera que podem aplicar l’apartat (a) i concloure que F és un polinomi. Com que F no
té zeros pel teorema 4.41, concloem que F és constant i, per tant, f “ Cpz´a1q ¨ ¨ ¨ pz´anq.

4.10.10. Sigui Ω Ă C un domini (obert connex) tal que Ω X R ‰ H. Suposem que tenim
f, g, h P HpΩq i u, v : Ω Ñ R tals que per x` iy P Ω tenim

fpx` iyq “ upx, yq ` ivpx, yq,

i per x P Ω X R tenim
upx, 0q “ gpxq vpx, 0q “ hpxq.

Demostreu que
fpzq “ gpzq ` ihpzq per a tot z P Ω. Ž

Solució: Com que Ω és obert i tca la recta real, la intersecció és un obert relatiu i, per

tant, té punts d’acumulació. Com que per tot x P Ω X R tenim que

fpxq “ upx, 0q ` ivpx, 0q “ gpxq ` ihpxq.

Dit d’una altra manera, per tot z P Ω X R tenim que

fpzq “ gpzq ` ihpzq.

En ser funcions holomorfes, i coincidir en un conjunt amb punts d’acumulació en Ω, pel
PPA han de coincidir en tot Ω.
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4.11. El principi del mòdul màxim

4.11.1. Cerqueu l’enunciat del teorema de Stone5-Weierstrass i compareu-lo amb l’exemple
4.53.

4.11.2. Trobeu el màxim de:

a) | cos z| i | sin z| a r0, 2πs ˆ r0, 2πs.

b) |ez| i |ez
2
| a |z| ď 1. Ž

Solució: (a) Pel principi del mòdul màxim, el màxim de fpzq “ | cos z| a Ω̄ “ r0, 2πs ˆ

r0, 2πs s’assoleix a la frontera. Estudiem doncs el comportament d’aquesta funció als
quatre costats del quadrat donat.
(i) y “ 0; x P r0, 2πs. Aqúı tenim que fpxq “ | cosx|, i el màxim s’assoleix als punt

x “ 0, π, 2π. En aquests punts el valor de la funció és 1.
(ii) x “ 0, 2π, y P r0, 2πs. Aqúı, per la periodicitat de cos z, tenim que fp2π ` iyq “

fpiyq “
ey ` e´y

2
. Aquesta funció és creixent, i per tant té el màxim a 2π. Per tant el

valor màxim en aquest segments correspon a fp2π iq “ fp2π ` 2πiq “
e2π ` e´2π

2
.

(iii) y “ 2π, x P r0, 2πs. Aqúı fpx` 2πiq “
eixe´2π ` e´ixe2π

2
. Amb això

| cospx` 2πiq|2 “
1

4

`

e´4π ` e´2ix ` e2ix ` e4π
˘

“
1

4

`

e4π ` e´4π ` 2 cosp2xq
˘

.

Això és màxim quan cosp2xq “ 1, és a dir, als punts x “ 0, π, 2π. El valor màxim és
aleshores | cosp2πiq| “ 1

2

`

e2π ` e´2πq.
Com que 1

2

`

e2π ` e´2πq ą 1, el valor màxim és 1
2

`

e2π ` e´2πq i s’assoleix als punts 2πi,
2π ` 2πi i π ` 2πi.
El cas | sin z| es fa anàlogament.
(b) Pel principi del màxim

max
|z|ď1

|ez| “ max
|z|“1

|ez| “ max
|z|“1

eRe z.

Com que la funció exponencial (real) és creixent, és clar que el màxim s’assolirà al punt
del cercle on Re z sigui màxim, és a dir, al punt z “ 1.
Anàlogament, si posem z “ x` iy, tenim que

max
|z|ď1

|ez
2
| “ max

|z|“1
|ez

2
| “ max

|z|“1
eRe z2 “ max

|z|“1
ex

2´y2 .

Aqúı és clar que el màxim s’assoleix quan x2 és màxim i y2 mı́nim, és a dir, als punts
z “ ˘1.

5Marshall Harvey Stone, New York City, 1903–1989, https://en.wikipedia.org/wiki/Marshall_H.

_Stone
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4.11.3. Trobeu totes les funcions holomorfes en D tals que fp1{2q “ 3 i |fpzq| ď 3 si
|z| ă 1. Ž

Solució: Només pot ser fpzq “ 3 per a tot z P D pel principi del mòdul màxim.

4.11.4. Es considera fpzq “ ecospzqz2 i el disc D de radi 2 centrat a 5. Provar que fpzq

assoleix el valor màxim i mı́nim del mòdul a |z ´ 5| “ 2. Indicació: considerar 1{fpzq. Ž

Solució: La funció és holomorfa al disc donat ja que és producte d’holomorfes, llavors,

pel principi del mòdul màxim, el màxim de |fpzq| s’assoleix a la frontera. Com que la
funció fpzq només és zero quan z “ 0 i 0 no és del disc, la funció fpzq no s’anul.la mai en
aquest disc, llavors la funció gpzq és holomorfa en ell i el seu mòdul assoleix el màxim a la
frontera. Com que el màxim de |g| “ 1{|f | és el mı́nim de |f | hem acabat.

4.11.5. Sigui f una funció holomorfa en el disc DRp0q, R ą 0. Definim

Mprq “ max
|z|“r

|fpzq|, 0 ď r ă R.

Demostreu que si f no és constant, aleshores Mprq és estrictament creixent a r0, Rq. Ž

Solució: Aplicació del principi del mòdul màxim.

4.11.6. Sigui f una funció holomorfa en un obert connex Ω i D un disc obert tal que
D Ă Ω. Suposeu que |fpzq| “ c per tot z P BD, on c és una constant. Proveu que f té
almenys un zero en D o bé f és constant en Ω. Indicació: Distingiu segons si c “ 0 o
c ą 0. En el segon cas, proveu que si f no té zeros en D, aleshores f és constant en D.

Ž

Solució: Suposem que f no té cap zero a D i veurem que necessàriament ha de ser

constant. En aquest supòsit sabem que 1{f P HpDq, i pel principi del mòdul màxim

max
D

ˇ

ˇ

ˇ

ˇ

1

fpzq

ˇ

ˇ

ˇ

ˇ

“ max
BD

ˇ

ˇ

ˇ

ˇ

1

fpzq

ˇ

ˇ

ˇ

ˇ

“
1

c
.

Amb això tenim que |fpzq| ě c per a tot z P D. Però per hipòtesi (i pel principi del mòdul
màxim), per a aquests z:

|fpzq| ď max
BD

|fpzq| “ c.

Tot plegat |fpzq| “ c per a tot z P D. Com ja vam veure, tota f holomorfa de mòdul
constant és constant (conseqüència de les equacions de Cauchy-Riemann). Per tant f
és constant a D. Però el principi de prolongació anaĺıtica obliga a que aleshores f sigui
constant a tot Ω (la component connexa del domini de definició de f que conté D).

4.11.7. Sigui f una funció holomorfa i no constant en Ω Ă C, un obert connex. Suposeu
que existeix a P Ω tal que |fpaq| ď |fpzq| per a tot z P Ω. Proveu que aleshores fpaq “ 0.

Ž
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4. Integrals de ĺınia i teoria local de Cauchy

Solució: Suposem que fpaq ‰ 0. Aleshores 1{f seria holomorfa ja que no hi hauria cap

zero de f en Ω. Per tant, pel principi del mòdul màxim, al tenir 1{f un extrem a l’interior
ha de ser constant, en contradicció amb la hipòtesi de l’enunciat.

4.11.8. Sigui f P HpCq no constant. Demostreu que, per a tot c ą 0,

tz; |fpzq| ă cu “ tz; |fpzq| ď cu. Ž

Solució: Feu servir el Teorema de l’aplicació oberta.

La inclusió tz; |fpzq| ă cu Ă tz; |fpzq| ď cu és conseqüència de la continüıtat de f .
Per veure la inclusió contrària, suposem que z P C tal que |fpzq| “ c. Aleshores, com

que f no és constant, el teorema de l’aplicació oberta diu que fpD1{npzqq és un obert.
Com que conté c, contindrà una bola centrada en c i en particular conté p1 ´ εqc per un
cert ε prou petit, és a dir que existeix zn P D1pzq tal que

|fpznq| “ p1 ´ εq|c| ă |fpzq|.

Per construcció tenim que zn Ñ z, i hem vist que zn P tz; |fpzq| ă cu. Per tant, z P

tz; |fpzq| ă cu, tal com voĺıem veure.
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5. Topologia en el pla complex: teoria
global de Cauchy

5.1. Índex d’una corba tancada respecte d’un punt

5.1.1. Considerem el camı́ γptq “ 4eit cos 2
3 t, p0 ď t ď 6πq. Calculeu Ind pγ, 3q i Ind pγ, 1q.

Ž

Solució: Resolem aqúı l’exercici usant només la definició:

Ind pγ, 3q “
1

2πi

ˆ
γ

dz

z ´ 3
.

Com que la primitiva és un logaritme, per poder fer el càlcul cal trencar la integral en
trossos cada vegada que z´ 3 talli la semirecta dels reals positius, per exemple, en aquest
cas per poder usar alguna determinació del logaritme log en Czr0,8q. Busquem doncs
solucions de

4eit cos
2

3
t´ 3 “ x

amb x ą 0. En particular, tindrem que 4eit cos 2
3 t P R amb 4eit cos 2

3 t ą 3. Això passa
quan eit “ ˘1 i el cosinus contribueix favorablement, ja que quan cos 2

3 t “ 0 la segona
condició no pot ocórrer. Vegem primer els valors de t tals que γptq és un nombre real no
nul:

• t “ 0: γptq “ 4 cos 0 “ 4, Im pγ1ptqq “ Im p4iei0 cos 0 ´ 4e0 sin 0q “ 4. Creua doncs
del semiplà de part imaginària negativa cap al de part imaginària positiva.

• t “ π: γptq “ ´4 cos 2π
3 “ ´4p´1{2q “ 2, Im pγ1ptqq “ 4eiπ cos 2

3π ą 0. Ara també
creua de baix a dalt. Notem que no hi ha cap contradicció, entremig ha creuat
l’origen perquè s’ha anul.lat el cosinus!

• t “ 2π: γptq “ ´4 cos 4π
3 “ 4p´1{2q “ ´2, Im pγ1ptqq ă 0.

• t “ 3π: γptq “ ´4 cos 6π
3 “ ´4, Im pγ1ptqq ă 0.

• t “ 4π: γptq “ ´4 cos 8π
3 “ 4p´1{2q “ ´2, Im pγ1ptqq ă 0.

• t “ 5π: γptq “ ´4 cos 10π
3 “ ´4p´1{2q “ 2, Im pγ1ptqq ą 0.

• t “ 6π: γptq “ ´4 cos 12π
3 “ 4, Im pγ1ptqq ą 0.
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Veiem que en estudiar l’́ındex de γ respecte a 3, no cal fer res, ja que la determinació
del logaritme només falla als extrems d’integració:

Ind pγ, 3q “
1

2πi

ˆ
γ

dz

z ´ 3
“

1

2πi
rlogpγptq ´ 3qs

6π
0

“
1

2πi

„

lim
tÕ6π

log pγptq ´ 3q ´ lim
tŒ0

logpγptq ´ 3q

ȷ

“
1

2πi
rln 1 ` ip2π ` 2πk0q ´ ln 1 ´ ip2πk0qs “

2πi

2πi
“ 1.

Per calcular els ĺımits laterals, hem usat que la corba creua els dos cops de baix cap a dalt,
i això determina l’argument en els valors propers.
Per calcular l’́ındex al voltant de 1, ara creuarem tres vegades la semirecta r1,8q, però

el primer camı́ no fa cap volta,ja que roman a la part imaginària positiva i el darrer camı́
roman a la part real negativa, i cada vegada haurem acumulat un argument de 2π, ja que
en tots els casos, el camı́ creua de la part imaginària negativa cap a la positiva. Aix́ı,

Ind pγ, 1q “
1

2πi

ˆ
γ

dz

z ´ 1
“

1

2πi

´

rlogpγptq ´ 1qs
π
0 ` rlogpγptq ´ 1qs

5π
π ` rlogpγptq ´ 1qs

6π
5π

¯

“
1

2πi
pri2kπs ` ri2kπs ` ri2kπsq “

6πi

2πi
“ 3.

5.1.2. Considerem el camı́ γptq “ p1 ` eit ` e´itqeit, p0 ď t ď 2πq. Esbosseu el dibuix
de la corba i calculeu-ne l’́ındex en cada component connexa del complementari de la seva
imatge. Calculeu ˆ

γ

3z ´ 3

z2 ´ 5
2z ` 1

dz. Ž

Solució: La corba és una corba parametritzada en polars: 1 ` eit ` e´it “ 1 ` 2 cos t,

talla l’eix real a l’origen per t “ 2π{3 i t “ 4π{3, en els punt x “ 3 per t “ 0 i en x “ 1
per t “ π. Podem comprovar gràficament que té index 2 respecte la component interior
i ı́ndex 1 respecte la component intermitja, en particular Ind pγ, 1{2q “ 2 i Ind pγ, 2q “ 1.
Finalment, trobem que

ˆ
γ

3z ´ 3

pz ´ 1
2qpz ´ 2q

dz “

ˆ
γ

1

z ´ 1
2

dz ` 2

ˆ
γ

1

z ´ 2
dz “ 2πip1 ¨ 2 ` 2 ¨ 1q “ 8πi.

5.2. El teorema global de Cauchy

5.2.1. Considerem el camı́ γptq “ p2 sinp2t ´ π
3 q, 2 sinp3tqq, amb t P r0, 2πs. Esbosseu el

camı́, calculeu l’́ındex de la corba en cada component connexa de Czγ˚, i trobeu el valor
de ˆ

γ

e
1

z2´1

z2 ` 1
dz. Ž
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Solució:

Es tracta d’una corba mecànica anomenada corba de Lissajous1, vegeu https://ca.

wikipedia.org/wiki/Corba_de_Lissajous. L’́ındex és 0 a les components que contenen
˘1, és 0 a la component no fitada, i és ˘1 a les altres components. En particular,
Ind pγ, iq “ ´1 i Ind pγ,´iq “ 1, mentre que Ind pγ,˘1q “ 0. Considerem Ω “ Czt˘1u i
trobem que Γ « 0 en Ω. Com que

ˆ
γ

e
1

z2´1

z2 ` 1
dz “

ˆ
γ

e
1

z2´1 {2i

z ´ i
dz ´

ˆ
γ

e
1

z2´1 {2i

z ` i
dz,

definint hpzq “ e
1

z2´1 {2i P HpΩq, per la FIC global trobem

ˆ
γ

e
1

z2´1

z2 ` 1
dz “ 2πi pInd pγ, iqhpiq ´ Ind pγ,´iqhp´iqq “ ´

2π
?
e
.

5.3. Homotopia i teorema de Cauchy

5.4. Dominis simplement connexos

5.4.1. Siguin f, g P HpCq tals que f2 ` g2 ” 1. Demostra que existeix h P HpCq tal que
f “ cosphq i g “ sinphq. Ž

Solució: Tenim

pf ` igqpf ´ igq “ 1.

Com que C és simplement connex, f ` ig P HpCq i f ` ig : C Ñ Czt0u, de la proposició
5.29 n’inferim que existeix una funció L : C Ñ C tal que

eLpzq “ fpzq ` igpzq.

A més, com que

fpzq ´ igpzq “
1

fpzq ` igpzq
“ e´Lpzq,

sumant i restant convenientment trobem que

fpzq “
eLpzq ` e´Lpzq

2
“ cosp´iLpzqq,

i

gpzq “
eLpzq ´ e´Lpzq

2i
“ sinp´iLpzqq.

1Jules Antoine Lissajous, Versalles 1822 – 1880, https://ca.wikipedia.org/wiki/Jules_Antoine_

Lissajous
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5.4.2. Demostra que si C8zΩ és connex i Ω és un obert connex, aleshores tota corba
tancada γ és homòtopa a 0. Ž

Solució: Per començar, notem que γ˚ i totes les components fitades de Czγ˚ estan

contingudes en Ω per la hipòtesi. Per tant, el compacte arcconnex K format per la
clausura de la unió de tots aquests conjunts, també, i està a distància positiva de Ωc,
diguem-ne d.
Si la corba γ és una poligonal i K és convex amb vèrtexs ordenats tpju

N
j“1, aleshores

n’hi ha prou amb connectar cada vèrtex pj de la corba amb un punt z0 de K per un camı́
γj que comença en z0 i acaba en pj sense sortir de K, que és arcconex. Ara, per la resta
de punts de la corba interpolem entre els dos camins: si z “ p1 ´ tqpj ` tpj`1, aleshores
definim γz :“ p1 ´ tqγj ` tγj`1. A pratir d’aqúı, la creació de l’homotopia entre el camı́ γ
i el camı́ constant z0 és un exercici elemental.
Si K no és convex, podem argumentar per inducció en triangles fins a arribar a un K

convex. Efectivament, si K és la unió d’un convex i un triangle i tenim un vèrtex pj0
que no forma part del convex, aleshores connectem aquest vèrtex amb el punt mig q del
segment que uneix el triangle amb el convex. Procedint com abans, Creem una homotopia
entre el camı́ inicial i un nou camı́ poĺıgonal que té un vèrtex menys en la part no convexa.
Amb un nombre finit de passos haurem eliminat tots els vèrtexs que no són en el convex.
Si K és la unió d’un convex i dos triangles, procedim inductivament com hem descrit.
Si γ és una corba qualsevol, podem trobar una poligonal a distància d{2 de γ, i veure’n

l’homotopia es pot fer mitjançant el lema 5.22.

5.4.3. [Determinació de l’arrel en dominis simplement connexos] Sigui Ω Ă C un obert
simplement connex, i f P HpΩq amb fpzq ‰ 0 per a tot z P Ω. Llavors existeix g P HpΩq

amb
gpzq2 “ fpzq per a tot z P Ω.

A més, si z0 P Ω i tenim que w2
0 “ fpz0q, podem escollir g de manera que gpz0q “ w0.

Solució: Prenem la determinació del logaritme L donada per la proposició 5.29 i definim

gpzq “ e
1
2
Lz.

5.5. Funcions harmòniques

5.5.1. Sigui u : D Ñ R una funció harmònica en un domini simplement connex Ω.
Demostra que existeix una funció v : D Ñ R harmònica conjugada d’u (vegeu l’exercici
4.3.3). Ž

Solució: Si F “ U ` iV satisfà que

B̄F “ 0 ðñ BŪ “ B̄U “ ´iB̄V “ iBV̄ ,
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vegeu l’observació 3.25. Com que U i V prenen valors reals tenim que Ū “ U i V̄ “ V , i
trobem

B̄F “ 0 ðñ BU “ ´iB̄V ðñ BU “ iBV ðñ BF “ 2BU.

Considerem u harmònica. Aleshores f “ 2Bu és holomorfa. Per la proposició 5.28 té
una primitiva holomorfa F “ U ` iV , que ha de satisfer que B̄F “ 0 i BF “ f . Prenem
doncs v “ V . Aleshores per Cauchy-Riemann tenim que

B̄pu` iV q
CR
“ B̄u´ BU

CR
“ Bu´

BF

2
“
f

2
´
f

2
“ 0.

Per veure que V és harmònica, notem que

4B̄BV “ 4B̄p´iBUq “ ´2iB̄BF “ ´2iB̄f “ 0.

5.5.2. Demostra el lema 5.35 usant les equacions de Cauchy-Riemann directament. Ž

Solució: Tenim

∆u “ uxx ` uyy “ puxqx ` puyqy
CR
“ pvyqx ´ pvxqy “ 0,

on hem usat el teorema d’igualtat de les derivades creuades. De la mateixa manera,

∆v “ vxx ` vyy “ pvxqx ` pvyqy
CR
“ ´puyqx ` puxqy “ 0.

5.5.3. Sigui Ω un domini simplement connex, i sigui φ : D Ñ Ω una aplicació de Rie-
mann, és a dir un homeomorfisme holomorf entre D i Ω amb inversa holomorfa, vegeu el
teorema 7.6, les derivades de les quals estenen cont́ınuament a BD i a BΩ respectivament.
Demostreu que existeixen determinacions del logaritme i l’argument de manera que

Lpφ1pz0qq “ ReLpφ1qp0q `
i

2πr

ˆ
BD

Apφ1pzqqHpz, z0q|dz|. Ž

Solució: Notem que φ1 ‰ 0 per hipòtesi, i D és simplement connex. Per la proposició

5.29 existeix una determinació del logaritme L i prenem A “ ImL. Com que Lpφ1q és
holomorfa, obtenim el resultat per la fórmula de representació de Herglotz aplicada a L˝ϕ1.
Notem que aquesta serà per radis menors que 1, però es pot estendre per continüıtat a
radi 1.

5.5.4. El problema de Dirichlet consisteix en trobar una funció harmònica en un domini
obert Ω que sigui cont́ınua fins la seva frontera BΩ i amb un valor prefixat a BΩ. Suposem
que ϕ1 i ϕ2 són harmòniques a Ω i cont́ınues fins a BΩ i que ϕ1 “ ϕ2 a la vora BΩ. Provar
que si Ω és simplement connex, aleshores ϕ1 “ ϕ2 en tot punt d’Ω. Indicació: trobar
la funció v harmònica conjugada de ϕ1 ´ ϕ2 i aplicar el principi del màxim (mı́nim) a
ϕ1 ´ ϕ2 ` iv. Ž
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5. Topologia en el pla complex: teoria global de Cauchy

Solució: Considerem la funció conjugada v de ϕ1 ´ϕ2 (existeix pel problema anterior).

Aleshores la funció eϕ1´ϕ2`iv és holomorfa en Ω. Pel principi del mòdul màxim i mı́nim,
els extrems s’assoleixen a la vora, on tenim que

|eϕ1´ϕ2`iv| “ 1.

Per tant, la funció és constant i també ho serà ϕ1 ´ ϕ2.

5.5.5. Una distribució estacionària T de la temperatura en una regió Ω és una funció
harmònica i cont́ınua fins la frontera. Trobeu la temperatura T a l’interior d’un disc de
radi 1 si sabem que la temperatura val Im z als dos primers quadrants de la circumferència
de frontera i 0 a la resta de punts de la vora. En particular veieu que la temperatura al
centre del disc és 1{π. Ž

Solució: Per l’exercici anterior, estem buscant la solució del problema de Dirichlet amb

dada de frontera fpx ` iyq “ yχyą0. Pel teorema 5.40, i argumentant per continüıtat,
trobem

fp0q “
1

2π

ˆ
BD
fpzqP pz, 0q|dz| “

1

2π

ˆ π

0
sin tdt “

1

π
.
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6. Sèries de Laurent

6.1. Sèries de Laurent i singularitats

6.1.1. Calcular la sèrie de Laurent de

a)
z ´ 1

zpz ´ 4q3
a 0 ă |z ´ 4| ă 4.

b) 1{ep1´zq per |z| ą 1. Ž

Solució:

z ´ 1

zpz ´ 4q3
“

1

pz ´ 4q3

ˆ

1 ´
1

z

˙

“
1

pz ´ 4q3

ˆ

1 ´
1

4 ` pz ´ 4q

˙

“

1

pz ´ 4q3

ˆ

1 ´
1

4

1

1 ` pz ´ 4q{4

˙

“
1

pz ´ 4q3

˜

1 ´
1

4

8
ÿ

n“0

p´1qn
pz ´ 4qn

4n

¸

“

3

4

1

pz ´ 4q3
`

1

16

1

pz ´ 4q2
´

1

64

1

z ´ 4
`

ÿ

ně3

p´1qn`1 pz ´ 4qn´3

4n`1
.

Nota: amb Sage podem fer servir taylor.
b) Està centrada al zero,

1

ep1´zq
“ ez´1 “ e´1

ÿ

ně0

zn

n!
.

6.1.2. Per a la funció fpzq “
sin z cos 3z

z4

1. Trobar els primers termes no nuls de la part central de la seva sèrie de Laurent a
z “ 0.

2. Calcular
¸
fpzqdz si es recorre |z| “ 1 un cop i en sentit antihorari. Ž

Solució: a) Si fem servir la identitat 2 cos a sin b “ sinpa`bq´sinpa´bq podem escriure

sin z cos 3z “ 1
2psinp4zq ´ sinp2zqq llavors

sin z cos 3z “
1

2

˜

8
ÿ

n“1

p´1qn´1 p4zq2n´1

p2n´ 1q!
´

8
ÿ

n“1

p´1qn´1 p2zq2n´1

p2n´ 1q!

¸

“

“
1

2

ÿ

ně1

p´1qn´1 4
2n´1 ´ 22n´1

p2n´ 1q!
z2n´1.
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6. Sèries de Laurent

Llavors

fpzq “
1

2z4

˜

2z ´
43 ´ 23

3!
z3 `

ÿ

ně3

p´1qn´1 4
2n´1 ´ 22n´1

p2n´ 1q!
z2n´1

¸

“

“
1

z3
´

14

3

1

z
`

ÿ

ně3

p´1qn´1

2

42n´1 ´ 22n´1

p2n´ 1q!
z2n´5.

b) La integral és 2πip´14{3q.

6.1.3. Trobeu el desenvolupament en sèrie de Laurent de fpzq “
1

zpz ´ 1q
a les corones:

(a) tz P C : 0 ă |z| ă 1u, (b) tz P C : 0 ă |z ´ 1| ă 1u, (c) tz P C : |z| ą 1u i
(d) tz P C : |z ´ 1| ą 1u. Ž

Solució: a) tz P C : 0 ă |z| ă 1u, el centre és z “ 0

´
1

z

1

1 ´ z
“ ´

1

z
p1 ` z ` z2 ` ¨ ¨ ¨ q “ ´

1

z
´ 1 ´ z ´ z2 ´ ¨ ¨ ¨

b) tz P C : 0 ă |z ´ 1| ă 1u, el centre és z “ 1

1

z ´ 1

1

z ´ 1 ` 1
“

1

z ´ 1
p1´pz´1q`pz´1q2´pz´1q3`¨ ¨ ¨ q “

1

z ´ 1
`
ÿ

ně0

p´1qn`1pz´1qn.

c) tz P C : |z| ą 1u, sigui w “ 1{z, desenvolupem al voltant de w “ 0 (z amb centre a
8)

1

zpz ´ 1q
“

w2

1 ´ w
“ w2p

ÿ

ně0

wnq “
1

z2
`

1

z3
`

1

z4
` ¨ ¨ ¨

d) tz P C : |z ´ 1| ą 1u. Aqúı posem z ´ 1 “ 1{w i

1

zpz ´ 1q
“

w2

1 ` w
“

1

pz ´ 1q2
´

1

pz ´ 1q3
`

1

pz ´ 1q4
´ ¨ ¨ ¨

6.1.4. Sigui fpzq “
1

pz ´ 1qpz ´ 3q
, donar les sèries de Laurent per les tres corones cen-

trades a 0 allà on f és anaĺıtica (|z| ă 1, 1 ă |z| ă 3 i |z| ą 3). Ž

Solució: Primer veiem que
1

pz ´ 1qpz ´ 3q
“ ´

1

2

1

z ´ 1
`

1

2

1

z ´ 3
. Tenim casos

• Si |z| ă 1,
1

z ´ 1
“ ´

ÿ

ně0

zn.

• Si |z| ą 1,
1

z ´ 1
“

1

zp1 ´ 1{zq
“

1

z

ÿ

ně0

1

zn
.
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• Si |z| ă 3,
1

z ´ 3
“ ´

1

3

1

1 ´ z{3
“ ´

1

3

ÿ

ně0

zn

3n
.

• Si |z| ą 3,
1

z ´ 3
“

1

zp1 ´ 3{zq
“

1

z

ÿ

ně0

3n

zn
.

Combinem aquestes expressions i obtenim
a) Si |z| ă 1

1

pz ´ 1qpz ´ 3q
“

1

2

ÿ

ně0

zn ´
1

2

1

3

ÿ

ně0

zn

3n
“

1

2

ÿ

ně0

ˆ

1 ´
1

3n`1

˙

zn

b) Si 1 ă |z| ă 3
1

pz ´ 1qpz ´ 3q
“ ´

1

2

ÿ

ně1

1

zn
´

1

6

ÿ

ně0

zn

3n
.

c) Si |z| ą 3,
1

pz ´ 1qpz ´ 3q
“

1

2

ÿ

ně1

´1 ` 3n´1

zn
.

6.1.5. Donar els primers termes de la sèrie de Laurent de

a) fpzq “ z2 cos

ˆ

1

3z

˙

per |z| ą 0.

b) fpzq “
1

ez ´ 1
per 0 ă |z| ă R. Ž

Solució: a) La singularitat es dona quan z “ 0, fem el canvi z “ 1{w, llavors

fpzq “ fp1{wq “
1

w2
cospw{3q “

1

w2

ÿ

ně0

p´1qn
w2n

32n2n!
“ z2 `

ÿ

ně1

p´1qn

32np2nq!

1

z2pn´1q
.

b) Veiem que les singularitats es donen quan ez “ 1. Això passa si ex`iy “ 1 que equival
a x “ 0, y “ 2kπ. Com que el terme no nul més proper al zero i que anul.la el denominador
és ˘2πi tenim que R “ 2π i la sèrie de Laurent la tenim per 0 ă |z| ă 2π.

1

ez ´ 1
“

1

z ` z2{2! ` z3{3! ` ¨ ¨ ¨
“

1

z

1

1 ` z{2 ` z2{3! ` ¨ ¨ ¨
“

“
1

z

`

1 ´ pz{2 ` z2{3! ` ¨ ¨ ¨ q ` pz{2 ` z2{3! ` ¨ ¨ ¨ q2 ´ pz{2 ` z2{3! ` ¨ ¨ ¨ q3 ` ¨ ¨ ¨
˘

“

“
1

z

ˆ

1 ´
1

2
z `

1

12
z2 ´

1

720
z4 ` ¨ ¨ ¨

˙

.

Nota: els coeficients (multiplicats per n!) de la sèrie de z{pez ´1q són els famosos nombres
de Bernoulli, molt importants en teoria de nombres.
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6. Sèries de Laurent

6.1.6. Quina és la corona (o anell) de convergència de
8
ÿ

n“´8

zn

2|n|
? Ž

Solució: Estudiem la part regular i la part singular.

• Regular. 1 ` z{2 ` z2{22 ` z3{23 ` . . .

• Singular 1{2z ` 1{22z2 ` 1{23z3 ` . . .

Fem servir el criteri del quocient per trobar el radi de convergència:

• Per la part regular volem que z sigui tal que lim |cn`1{cn| ă 1. Tenim que

ˇ

ˇ

ˇ

ˇ

cn`1

cn

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pzn`1{2n`1q

pzn{2nq

ˇ

ˇ

ˇ

ˇ

“ |z{2| ă 1.

Hi ha convergència si |z| ă 2.

• Per la part singular fem el mateix

ˇ

ˇ

ˇ

ˇ

cn`1

cn

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

p1{2n`1zn`1q

p1{2nznq

ˇ

ˇ

ˇ

ˇ

“ |1{p2zq| ă 1.

Hi ha convergència si |z| ą 1{2.

L’anell de convergència és R “ tz P C : 1{2 ă |z| ă 2u.

6.2. Singularitats äıllades de funcions holomorfes

6.2.1. Construcció de funcions

1. Trobar una funció f que tingui un pol d’ordre 2 a z “ 1` i i singularitats essencials
a z “ 0, 1.

2. Trobar una funció f que tingui una singularitat evitable a z “ 0, un pol d’ordre 6 a
z “ 1 i una singularitat essencial a z “ i. Ž

Solució: a) Per exemple

fpzq “
1

pz ´ 1 ´ iq2
` e1{z ` e1{pz´1q.

b) Per exemple

gpzq “
z2 ` 2z

sinpzq
`

1

pz ´ 1q6
` e1{pz´iq.

6.2.2. Sigui f anaĺıtica amb zero d’ordre n a z0 i g anaĺıtica amb zero d’ordre m a z0. Si
hpzq “ fpzq{gpzq proveu que
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a) Si n ą m hpzq té un zero d’ordre n´m a z0,

b) si n ă m hpzq té un pol d’ordre m´ n a z0,

c) si n “ m hpzq és holomorfa i no nul.la a z0. Ž

Solució: Per hipòtesi fpzq “ anpz´z0qn`¨ ¨ ¨ i gpzq “ cmpz ´ z0qm`¨ ¨ ¨ amb an, cm ­“ 0.

Aleshores

hpzq “
anpz ´ z0qn

cmpz ´ z0qm
λpzq “

anpz ´ z0qn

cmpz ´ z0qm
pd0 ` d1pz ´ z0q ` ¨ ¨ ¨ q

amb λpzq holomorfa a z0 amb λpz0q “ d0 ­“ 0. D’aqúı es dedueix a) b) i c).)

6.2.3. Determineu les singularitats de les funcions següents. Si a és una singularitat
evitable de f , calculeu el valor que cal donar a fpaq per a què f sigui holomorfa en un
entorn d’a, i si a és un pol de f , determineu la part singular de f en a (la part de la sèrie
amb ı́ndexs negatius).

a) fpzq “ z cosp1{zq.

b) fpzq “
z2 ` 1

z3pz ´ 1q2
.

c) fpzq “
1

p1 ´ ezq2
. Ž

Solució: (a) L’única possible singularitat és a z “ 0, ja que la funció cos z és entera.

Utilitzem la sèrie del cosinus: cosw “
ř

ně0

w2n

p2nq!
“ 1´

w2

2
` ¨ ¨ ¨ Prenent w “ 1{z obtenim

fpzq “ z
ÿ

ně0

p´1qn

p2nq!

1

z2n
“

ÿ

ně0

p´1qn

p2nq!

1

z2n´1
.

Per tant, el punt z “ 0 és una singularitat essencial.

(b) Tenim una funció racional, i per tant les úniques singularitats són els zeros del
denominador: z “ 0 i z “ 1.

z “ 0. La funció gpzq :“
1 ` z2

pz ´ 1q2
és holomorfa a un entorn de 0 i té gp0q “ 1 ‰ 0. Per

tant, tenim que

fpzq “
1

z3
gpzq,

i dedüım que f té un pol de multiplicitat 3 a z “ 0. Trobem la part singular del desenvo-
lupament a partir del desnvolupament de g a l’entorn de 0: si gpzq “ a0 `a1z`a2z

2 ` ¨ ¨ ¨

aleshores

fpzq “
1

z3
ra0 ` a1z ` a2z

2 ` ¨ ¨ ¨ s “
a0
z3

`
a1
z2

`
a2
z

` ¨ ¨ ¨
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Cal doncs trobar a0 “ gp0q, a1 “ g1p0q i a2 “ g2p0q{2. Utilitzant l’expressió de g i derivant,
veiem que aquests valors són a0 “ 1, a1 “ 2 i a2 “ 4, de manera que la part singular de
la sèrie de Laurent al pol z “ 0 és

1

z3
`

2

z2
`

4

z
.

z “ 1. Procedim com al cas z “ 0. La funció hpzq :“
1 ` z2

z3
és holomorfa a l’entorn de

1, amb valor hp1q “ 2. Tenim doncs que z “ 1 és un pol de multiplicitat 2:

fpzq “
1

pz ´ 1q2
hpzq,

i la part singular de la sèrie de Laurent a aquest punt sortirà de mirar el desenvolupament
de h a l’entorn del punt 1. Derivant h i avaluant al punt 1 tenim que

hpzq “ 2 ´ 4pz ´ 1q ` ¨ ¨ ¨ ,

i per tant la part singular de la sèrie de Laurent a aquest punt és

2

pz ´ 1q2
´

4

z ´ 1
.

(c) La funció 1 ´ ez és entera; per tant les singularitats de f es troben només allà on
ez ´ 1 “ 0, és a dir, als punts zk “ 2πik, k P Z.

Mirem quin tipus de singularitat tenim a cada punt zk.Desenvolupant ez al punt zk
tenim que

ez “ ezk ` ezkpz ´ zkq `
ezk

2
pz ´ zkq2 ` ¨ ¨ ¨ “ 1 ` 1pz ´ zkq `

1

2
pz ´ zkq2 ` ¨ ¨ ¨

i per tant

ez ´ 1 “ pz ´ zkq r1 `
1

2
pz ´ zkq ` ¨ ¨ ¨ s “ pz ´ zkq gpzq,

amb g holomorfa a l’entorn de zk i amb gpzkq “ 1 ‰ 0. Amb això veiem que

fpzq “
1

pz ´ zkq2

1

g2pzq
,

i 1{g2 és una funció holomorfa a l’entorn del punt zk, amb 1{g2pzkq “ 1 ‰ 0.
Per tant zk és un pol de multiplicitat 2. La part singular la trobem mirant el desenvo-

lupament a l’entorn de zk de la funció h “ 1{g2. Tenim que hpzkq “ 1. Derivant,

h1pzkq “ ´
2

g3pzkq
g1pzkq “ ´1,

ja que, pel que veiem al desenvolupament de g, tenim que gpzkq “ 1 i g1pzkq “ 1{2.
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Per tant

fpzq “
1

pz ´ zkq2
r1 ´ pz ´ zkq ` ¨ ¨ ¨ s ,

i la part singular de la sèrie de Laurent a aquests punts és

1

pz ´ zkq2
´

1

z ´ zk
.

6.2.4. Sigui f P HpDrpaqz tauq. Suposem que existeix una successió pznqn tal que zn Ñ a
i

lim
nÑ8

|efpznq| “ 0,

ˇ

ˇ

ˇ

ˇ

f

ˆ

zn `
1

n

˙
ˇ

ˇ

ˇ

ˇ

ď 1 ´
1

n
, n P N.

Determineu el tipus de singularitat que té la funció f en el punt a. Ž

Solució: Determinem el tipus de singularitat mirant el comportament de f al voltant

del punt a.
La primera condició diu que lim

nÑ8
Re fpznq “ ´8, i per tant la singularitat no és evitable.

Per altra part, els punts zn ` 1{n tendeixen a a, i en aquest punts la funció té un mòdul
proper a 1; això exclou que a pugui ser un pol. Si ho fos tindŕıem lim

zÑa
|fpzq| “ `8, i per

tant, per a tot M ą 0 existiria ϵ ą 0 tal que

|fpzq| ě M, per a tot z amb 0 ă |z ´ a| ă ϵ.

Això donaria, per a n prou avançat,

|fpzn `
1

n
q| ě M,

en contra de la hipòtesi.
Per tant, a és una singularitat essencial.

6.2.5. a) La funció tanp1{zq té una singularitat äıllada al 0? De quin tipus?

b) Sigui 0 singularitat äıllada de fpzq. Suposem que |fpzq| ď |z|´α on 0 ă α ă 1.
Demostreu que 0 és una singularitat evitable. Ž

Solució: a) tanp1{zq “ sinp1{zq{ cosp1{zq, tenim singularitat a z “ 0, les altres sin-

gularitats són quan cosp1{zq “ 0, és a dir, quan 1{z “ π{2 ` nπ, llavors les tenim quan
z “ 1{pπ{2 ` nπq “: zn. Això és una successió de singularitats que tendeixen a 0. Llavors
la singularitat z “ 0 no és äıllada. Els pols a zn són simples. En efecte

lim
zÑzn

pz ´ znq sinp1{zq

cosp1{zq
“ p´1qn lim

zÑzn

pz ´ znq

cosp1{zq
“ p´1qn lim

zÑzn

z2

sinp1{zq
“ z2n ­“ 0

i si n ą 1

lim
zÑzn

pz ´ znqn sinp1{zq

cosp1{zq
“ p´1qn lim

zÑzn

pz ´ znqn

cosp1{zq
“ p´1qn lim

zÑzn

z2npz ´ znqn´1

sinp1{zq
“ 0
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i els pols són simples als zn. La singularitat a z “ 0 és essencial. Si no fos essencial hi ha
un enter k ą 0 tal que fpzq “ bk{zk ` bk´1{zk´1 ` ¨ ¨ ¨ amb bk ­“ 0, llavors gpzq “ zkfpzq “

bk ` bk´1z ` ¨ ¨ ¨ és holomorfa i no nul.la en un cert disc |z| ă r. Llavors fpzq “ gpzq{zk és
holomorfa a 0 ă |z| ă r i contradiu que 0 sigui punt d’acumulació de punts singulars.
b) Volem veure si bn “ 0 per a qualsevol n. Recordem que

bn “
1

2πi

˛
Cr

fpwqwn´1dw.

Però
ˇ

ˇ

ˇ

ˇ

˛
Cr

fpwqwn´1dw

ˇ

ˇ

ˇ

ˇ

ď

˛
Cr

|fpwq||wn´1||dw|

ď

˛
Cr

|w|´α|wn´1||dw| “

ˆ 2π

0
|reit|´α|reit|n´1|dpreitq| “ 2πrn´α

que tendeix a zero si r Ñ 0 ja que n ě 1 i 0 ă α ă 1. Llavors bn “ 0.

6.3. Teorema dels Residus

6.3.1. Existeix alguna funció f amb pol simple a z0 tal que Respf, z0q “ 0? Què passa si
el pol és d’ordre 2, pot passar que Respf, z0q “ 0? Ž

Solució: a) Si f té pol simple a z0 llavors la part b1{pz´ z0q de la seva sèrie de Laurent

és no nul.la, llavors b1 ­“ 0 i b1 “ Respf, z0q ­“ 0. b) Si que pot passar, per exemple
fpzq “ 1{z2 té residu 0 a z “ 0.

6.3.2. Calculeu els residus de les funcions següents en els punts indicats:

a) fpzq “
1

ez ´ 1
, z0 “ 0.

b) fpzq “
1 ` ez

z4
, z0 “ 0. Ž

Solució: (a) 1; (b) 1{6

6.3.3. Calculeu

ˆ
|z|“1

e1{z

z ´ a
dz pels diferents valors d’a P C tals que |a| ‰ 1. Ž

Solució: Si a “ 0, I “ 2πi; si |a| ą 1, I “ 2πip1 ´ e1{aq; si 0 ă |a| ă 1, I “ 2πi.

6.3.4. Decidiu si són certes o falses les següents afirmacions. Doneu els arguments que
provin les afirmacions.

1. Si f, g tenen un pol a z0 llavors f ` g té un pol a z0.
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2. Si f, g tenen un pol a z0 i en els dos casos el residu és no nul llavors f ¨ g té un pol
a z0 amb residu no nul.

3. Si f té una singularitat essencial a z “ 0 i g un pol d’ordre finit a z “ 0 llavors
f ` g té singularitat essencial a z “ 0.

4. Si f té un pol d’ordre m a z “ 0 llavors fpz2q té un pol d’ordre 2m. Ž

Solució: a) Falsa, exemple fpzq “ 1{z, gpzq “ ´1{z.

b) Falsa, exemple fpzq “ 1{z “ gpzq.
c) Per ser la singularitat de f essencial resulta

fpzq “
ÿ

ně1

bn
zn

` Part regular

amb infinits bn no nuls. I per ser la de g d’ordre finit k

gpzq “

k
ÿ

n“1

cn
zn

` Part regular.

Llavors

pf ` gqpzq “
ÿ

nąk

bn
zn

`

k
ÿ

n“1

bn ` cn
zn

` Part regular

i f ` g té singularitat essencial a 0.
d) L’enunciat diu que fpzq “ hpzq{zm amb h holomorfa tal que hpzq ­“ 0. Llavors

fpz2q “ hpz2q{z2m

i l’ordre del pol de fpz2q a 0 és 2m.

6.3.5. Suposem que f és holomorfa amb un zero d’ordre m a z0. Proveu que gpzq “

f 1pzq{fpzq té un pol simple a z0 amb Respg, z0q “ m. Ž

Solució: Si f té zero d’ordre m a z0 resulta que existeix h amb fpzq “ pz ´ z0qmhpzq

amb hpz0q ­“ 0 i holomorfa. Llavors

f 1pzq

fpzq
“
mpz ´ z0qm´1hpzq ` pz ´ z0qmh1pzq

pz ´ z0qmhpzq
“

m

z ´ z0
`
h1pzq

hpzq
.

Com que hpz0q ­“ 0 el quocient h1{h és anaĺıtic a z0 i Respf 1{f, z0q “ m.

6.3.6. a) Proveu que si gpzq té un zero simple a z0, llavors 1{gpzq té un pol simple a z0.

b) Proveu que Resp1{g, z0q “ 1{g1pz0q.

c) Sigui fpzq “ 1{ sinpzq, trobeu els seus pols i proveu que són simples. Trobeu els residus.Ž
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Solució: a) Per tenir zero simple a z0 resulta gpzq “
ř

ně1 anpz ´ z0qn amb a1 ­“ 0.

Llavors

1

gpzq
“

1

a1pz ´ z0qp1 ` a2
a1

pz ´ z0q ` . . . q
“

1{a1
z ´ z0

p1´p
a2
a1

pz´z0q`. . . q`p
a2
a1

pz´z0q`. . . qq2`. . . q

i el pol de 1{gpzq a z0 és simple.
b) El residu és 1{a1 i a1 “ g1pz0q.
c) Mirem els zeros de sin z, són a z “ nπ per n P Z. Llavors, per l’apartat anterior

Resp1{ sin z, nπq “ 1{ cospnπq “ p´1qn.

6.3.7. Trobeu i classifiqueu les singularitats äıllades de cadascuna de les funcions següents.
Calculeu el residu a cada singularitat.

a) fpzq “
z3 ` 1

z2pz ` 1q
.

b) gpzq “
1

ez ´ 1
.

c) hpzq “ cosp1 ´ 1{zq. Ž

Solució: a) La funció f té singularitats a z “ 0,´1. Quan z “ ´1 la singularitat

és evitable ja que limzÑ´1 fpzq “ 3 ­“ 8, llavors Respf,´1q “ 0. Com que f té un pol
d’ordre 2 a l’origen, Respf, 0q “ g1p0q, amb gpzq “ z2fpzq. Derivem

g1pzq “

ˆ

z3 ` 1

z ` 1

˙1

z“0

“ ´1

i Respf, 0q “ ´1.
b) Els pols són a z “ 2πni. Estudiem limzÑ2πnipz ´ 2πniqgpzq. Resulta

lim
zÑ2πni

pz ´ 2πniqgpzq “
0

0
“ lim

zÑ2πni

1

ez
“ 1

on hem fet servir la regla de l’Hôpital. Llavors Respgpzq, 2πniq “ 1.
c) La singularitat és a z “ 0. Tenim que

cosp1 ´ 1{zq “ cosp1q cosp1{zq ` sinp1q sinp1{zq “

“ cosp1qp1 ´ 1{p2z2q ` ¨ ¨ ¨ q ` sinp1qp1{z ´ 1{p6z3q ` ¨ ¨ ¨ q “ ¨ ¨ ¨ ` sinp1q{z ` ¨ ¨ ¨

i el residu que voĺıem calcular és sinp1q.

6.3.8. Avalueu

˛
1

pz ` 1qpz ´ 1qpz ´ 2qpz ´ 3qpz ´ 4qpz ´ 5q
dz al llarg de la corba |z´3| “

3 recorreguda en sentit antihorari. Ž
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Solució: L’interior de la corba d’integració conté els pols simples z “ 1, 2, 3, 4, 5.

Calculem els residus en aquests punts fent servir que per un pol simple Respf, z0q “

limzÑz0pz ´ z0qfpzq. Llavors

Respf, 1q “
1

48
, Respf, 2q “

´1

18
, Respf, 3q “

1

16
, Respf, 4q “

´1

30
, Respf, 5q “

1

144
,

i la integral val πi{360.

6.3.9. Avalueu les següents integrals

a)

˛
|z|“5

sin z

z2 ´ 4
dz

b)

˛
|z|“8

1

z2 ` z ` 1
dz

c)

˛
|z|“3

eiz

z2pz ´ 2qpz ` 5iq
dz. Ž

Solució: a) Té pols simples a z “ ˘2, calculem els residus i valen els dos sinp2q{4,

aplicant la fórmula del residus veiem que la integral és πi sinp2q.
b) Els pols són simples i són les arrels cúbiques de la unitat diferents de 1, és a dir

ω1 “ ei2π{3 i ω2 “ e´2πi{3. Els residus són ˘1{pω1 ´ ω2q respectivament. Llavors la
integral és 0.
c) Els pols a l’interior de la corba |z| “ 3 són z “ 2 i z “ 0. El primer és un pol simple

amb residu e2ip2 ´ 5iq{116. A z “ 0 tenim un pol d’ordre 2 llavors per calcular el residu
hem d’anar més en compte.

Respf, 0q “ pz2fpzqq1
z“0 “ ¨ ¨ ¨ “

12 ´ 5i

´100
.

Finalment tenim que la integral és

πi

ˆ

e2ip2 ´ 5iq

58
´

12 ´ 5i

50

˙

.

Nota: Amb Sage podem fer f.maxima methods().residue(z,a)

6.3.10. Calculeu la integral de la funció fpzq “
1 ` z

1 ` sin z
sobre la vora del disc D7p0q. Ž

Solució: Segons el teorema dels residus

ˆ
BD7p0q

fpzq dz “ 2πi
ÿ

a

Respf, aq ,

o a recorre els pols de f dins el disc D7p0q.
Els pols de f són els punts on 1`sin z “ 0, és a dir, els punts de la forma z “ ´π{2`2πk,

k P Z. D’aquesta famı́lia, nomes a1 “ ´π{2 i a2 “ 3π{2 són dins els disc D7p0q. Per tant
ˆ

BD7p0q

fpzq dz “ 2πi pRespf, a1q ` Respf, a2qq .
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Per trobar els valors d’aquests residus mirem quin és el desenvolupament de Laurent a
cadascun dels punts.
Punt a1. Desenvolupant la funció sin z a l’entorn d’aquest punt tenim

sin z “ ´1 `
1

2
pz ´ a1q2 ´

1

4!
pz ´ a1q4 ` ¨ ¨ ¨ ,

i per tant

1 ` sin z “
1

2
pz ´ a1q2 ´

1

4!
pz ´ a1q4 ` ¨ ¨ ¨ “ pz ´ a1q2hpzq ,

on hpzq és holomorfa a l’entorn de a1 i a més hpa1q “ 1{2, h1pa1q “ 0.
Amb això tenim, a l’entorn de a1:

fpzq “
1

pz ´ a1q2

1 ` z

hpzq
.

Aquest segon factor és holomorf a l’entorn de a1, aix́ı que té un desenvolupament en sèrie
de la forma

F pzq :“
1 ` z

hpzq
“ b0 ` b1pz ´ a1q ` b2pz ´ a1q2 ` ¨ ¨ ¨

Aix́ı doncs, localment a l’entorn de a1

fpzq “
b0

pz ´ a1q2
`

b1
z ´ a1

` b2 ` ¨ ¨ ¨

i per tant Respf, a1q “ b1 “ F 1pa1q. Derivant tenim que

F 1pzq “
hpzq ´ p1 ` zqh1pzq

phpzqq2
,

i avaluant a a1

Respf, a1q “ F 1pa1q “
1

hpa1q
“ 2 .

Punt a2. Procedint de manera anàloga es veu que Respf, a2q “ 2.
Tot plegat ˆ

BD7p0q

fpzq dz “ 2πip2 ` 2q “ 8πi .

6.3.11. Per a t ą 0, sigui Ct la circumferència de centre it, que passa pels punts ´2 i 2.
Calculeu

fptq “

ˆ
Ct

eiπz ` 1

zpz ´ tq
dz, per a t ‰ 2. Ž

Solució: La circumferència de centre it que passa per ˘2 té radi rt “ |it´2| “
?
4 ` t2.
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20´2

it

it1

rt

Els pols de f són z0 “ 0 i z1 “ t, i els residus respectius

Respf, 0q “
eiπ0 ` 1

p0 ´ tq
“ ´

2

t
,

Respf, tq “
eiπt ` 1

t
.

Observem que z0 “ 0 sempre és dins el disc Drtpitq:

|0 ´ it| “ t ă rt “
a

4 ` t2.

Per altra part z1 P Drtpitq si i només si

|t´ it| “ t
?
2 ă rt “

a

4 ` t2,

és a dir, si i només si t ă 2.
Separem per tant dos casos:
(i) t ă 2. Aqúı

fptq “ 2πi
“

Respf, 0q ` Respf, tq
‰

“ 2πi
“

´
2

t
`
eiπt ` 1

t

˘

“
2πi

t
peiπt ´ 1q.

(ii) t ą 2. Ara

fptq “ 2πiRespf, 0q “ ´
4πi

t
.
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6.4. Residu a l’infinit

6.4.1. Trobar el valor la integral

˛
|z|“2

5z ´ 1

zpz ´ 1q
dz calculant el residu de l’integrand a

l’infinit. Ž

Solució: La funció f que integrem té dos singularitats äıllades, a z “ 0, 1. Llavors la

integral és 2πipRespf, 0q ` Respf, 1qq “ ´2πiRespf,8q. Fem el canvi z “ 1{w llavors

1

w2

5p1{wq ´ 1

p1{wqpp1{wq ´ 1q
“

5 ´ w

wp1 ´ wq

i

Respf,8q “ ´Res

ˆ

5 ´ w

wp1 ´ wq
, 0

˙

“ ´5.

La integral és llavors igual a 10πi.

6.4.2. Sigui a P R, calculeu, estudiant el residu a l’infinit, I “

˛
C

a2 ´ z2

zpz2 ` a2q
dz on C és

una corba simple que envolta les singularitats de l’integrand. Ž

Solució: Sabem que I “ ´2πiRespf,8q “ 2πiRespfp1{wq{w2, 0q. Tenim que

1

w2
f

ˆ

1

w

˙

“
aw2 ´ 1

pa2w2 ` 1qw
.

Llavors Respfp1{wq{w2, 0q “ ´1 i I “ ´2πi.

6.4.3. Avaluar

˛
|z|“1

e1{z sinp1{zqdz. Ž

Solució:
1

w2
f

ˆ

1

w

˙

“
1

w2
ew sinpwq „

1

w

i el residu a l’infinit és ´1. Llavors la integral és 2πi.

6.5. Aplicació al càlcul d’integrals

6.5.1. Per r ą 0, considerem la corba γr : r0, πs Ñ C definida per γrptq “ reit, i sigui

Iprq “

ˆ
γr

eiz

z
dz.

Demostreu que limrÑ8 Iprq “ 0. Ž
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Solució: Provarem que |Iprq| Ñ 0 quan r Ñ 8. Parametritzant la corba, tenim que

Iprq “

ˆ π

0

eire
it

reit
ireit dt “ i

ˆ π

0
eire

it
dt.

Per tant

|Iprq| ď

ˆ π

0

ˇ

ˇ

ˇ
eire

it
ˇ

ˇ

ˇ
dt.

Com que
eire

it
“ eir cos t´r sin t,

llavors
ˇ

ˇ

ˇ
eire

it
ˇ

ˇ

ˇ
“
ˇ

ˇeir cos t
ˇ

ˇ e´r sin t “ e´r sin t.

Per tant

|Iprq| ď

ˆ π

0
e´r sin t dt.

Posem ˆ π

0
e´r sin t dt “

ˆ π{2

0
e´r sin t dt`

ˆ π

π{2
e´r sin t dt

Fent el canvi s “ π ´ t, i fent servir que sinpπ ´ sq “ sin s, veiem que

ˆ π

π{2
e´r sin t dt “

ˆ 0

π{2
e´r sinpπ´sq p´dsq “

ˆ π{2

0
e´r sin s ds.

Per tant

|Iprq| ď 2

ˆ π{2

0
e´r sin t dt

Fent servir la desigualtat

sin t ě
2

π
t, t P r0,

π

2
s,

tenim
e´r sin t ď e´ 2r

π
t, t P r0,

π

2
s.

Per tant,

|Iprq| ď 2

ˆ π{2

0
e´ 2r

π
t dt “

«

´π
e´ 2r

π
t

r

fft“π
2

t“0

“
π

r

`

1 ´ e´r
˘

ÝÑ 0

quan r Ñ `8.

6.5.2. Considereu la funció fpzq “
z2

pz2 ` 9qpz2 ` 4q2
.

(a) Determineu les singularitats de f .
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(b) Calculeu la part principal del desenvolupament de Laurent al voltant de z “ 2i.

(c) Justifiqueu la convergència de ˆ 8

0
fpxqdx

i calculeu-ne el seu valor. Ž

Solució: (a) La funció fpzq és racional i té com a úniques singularitats les arrels del

denominador. Factoritzant z2 ` 9 “ pz ` 3iqpz ´ 3iq i z2 ` 4 “ pz ` 2iqpz ´ 2iq veiem que
aquestes són z “ ˘3i (pols simples), z “ ˘2i (pols d’ordre 2).

(b) Tenim que

fpzq “
z2

pz ` 3iqpz ´ 3iqpz ` 2iq2pz ´ 2iq2
“

1

pz ´ 2iq2
hpzq,

on

hpzq “
z2

pz ` 3iqpz ´ 3iqpz ` 2iq2
“

z2

pz2 ` 9qpz ` 2iq2

és holomorfa a un entorn de z “ 2i i amb hp2iq ‰ 0. Desenvolupant en sèrie aquesta funció
a l’entorn d’aquest punt tindrem doncs

hpzq “ hp2iq ` h1p2iqpz ´ 2iq `
h2p2iq

2
pz ´ 2iq2 ` ¨ ¨ ¨ ,

i per tant

fpzq “
hp2iq

pz ´ 2iq2
`
h1p2iq

z ´ 2i
`
h2p2iq

2
` ¨ ¨ ¨

Aleshores, la part principal del desenvolupament de Laurent de f al voltant de z “ 2i serà

hp2iq

pz ´ 2iq2
`
h1p2iq

z ´ 2i
.

Directament de la definició de h tenim que

hp2iq “
4i2

p4i2 ` 9qp4iq2
“

1

20
.

Derivant tenim també que

h1pzq “
2z

pz2 ` 9qpz ` 2iq2
“

1 ´
z2

z2 ` 9
´

z

z ` 2i

‰

,

d’on veiem que

h1p2iq “
4i

5 p4iq2
“

1 `
4

5
´

2i

4i

‰

“
13

200i
.

Tot plegat, la part principal buscada és

P2ipzq “

1
20

pz ´ 2iq2
´

13i
200

z ´ 2i
.
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(c) La funció fpxq és acotada a r0,`8q, i per tant només cal estudiar-ne la convergència
a 8. Pel criteri de comparació per pas al ĺımit veiem que la integral demanada té el mateix

caràcter que

ˆ 8 dx

x4
, és a dir, és convergent:

lim
xÑ8

fpxq

1{x4
“ lim

xÑ8

x6

px2 ` 9qpx2 ` 4q2
“ 1.

Per calcular la integral utilitzarem el teorema dels residus a la funció fpzq i el camı́
tancat γ “ γ1 ` γ2, on γ1pxq “ x, x P r´R,Rs és el segment r´R,Rs Ă R i γ2ptq “ Reit,
t P r0, πs és la semicircumferència que va de R a ´R passant pel semiplà superior.

γ1pxq “ x

γ2ptq “ Reit

R´R 0

Les singularitats de f tancades per γ, si R és prou gran, són z “ 2i, 3i, i per tant, pel
teorema dels residus,

ˆ
γ
fpzq dz “ 2πi

`

Respf, 2iq ` Respf, 3iq
˘

.

Tenim ˆ
γ1

fpzq dz “

ˆ R

´R
fpxq dx

i ˆ
γ2

fpzq dz “

ˆ π

0
fpReitq iReitdt.

Com que

max
tPr0,2πs

lim
RÑ8

|fpReitq|

1{R4
ď 1,

veiem que la integral a γ2 tendeix a 0 quan R Ñ 8:

ˇ

ˇ

ˇ

ˇ

ˆ π

0
fpReitq iReitdt

ˇ

ˇ

ˇ

ˇ

ď

ˆ π

0
|fpReitq|Rdt ď CπR

1

R4

Tornant a la igualtat de dalt i passant al ĺımit quan R Ñ 8 tenim doncs que

ˆ 8

´8

fpxq dx “ 2πi
`

Respf, 2iq ` Respf, 3iq
˘

.
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A l’apartat (b) hem vist que

Respf, 2iq “
13

200i
.

De manera anàloga, factoritzant el denominador de f com hem fet anteriorment, veiem
que

Respf, 3iq “
p3iq2

p3i` 3iqpp3iq2 ` 4q2
“ ´

3

50i
.

Per tant, ˆ 8

´8

fpxq dx “ 2πi
` 13

200i
´

3

50i

˘

“
π

100
.

Com que la funció f és parell,

ˆ 8

´8

fpxq dx “ 2

ˆ 8

0
fpxq dx,

i per tant, finalment ˆ 8

0
fpxq dx “

π

200
.

6.5.3. Demostreu que ˆ `8

´8

x2

1 ` x4
dx “

π
?
2
. Ž

Solució: Considerem la funció fpzq “ z2

1`z4
que és holomorfa a tot C excepte en les

arrels quartes de ´1, que són pols simples de f . Aquestes singularitats són

ak “ eip
π
4

`k π
2

q, k “ 0, 1, 2, 3.

Si R ą 1, sigui γ “ γ1 ` γR el semicercle

γ1pxq “ x

γRptq “ Reit

R´R 0

Com que només a0 i a1 es troben a l’interior del semicercle, pel teorema dels residus, tenim
que ˆ

γ
fpzqdz “ 2πi

`

Res pf, a0q ` Res pf, a1q
˘

.
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Calculem aquests residus. Com que són pols simples,

Res pf, a0q “ lim
zÑa0

pz ´ a0qfpzq “ a20 lim
zÑa0

pz ´ a0q

1 ` z4
“

1

4 a0
.

De manera semblant, tenim que

Res pf, a1q “ lim
zÑa1

pz ´ a1qfpzq “
1

4 a1
.

Aleshores

Res pf, a0q ` Res pf, a1q “
1

4

`

e´iπ
4 ` e´i 3π

4

˘

“ ´i

?
2

4
.

Per tant ˆ
γ
fpzqdz “ π

?
2

2
“

π
?
2
.

Per altra banda, posant IR “
´
γR
f , tenim que

π
?
2

“

ˆ
γ
fpzqdz “

ˆ R

´R

x2

1 ` x4
dx` IR.

Si veiem que IR Ñ 0 quan R Ñ 8, llavors fent R Ñ 8 en la identitat anterior, obtindrem
el resultat desitjat (donat que és una integral impròpia convergent)

ˆ `8

´8

x2

1 ` x4
dx “

π
?
2
.

Tenim

IR “

ˆ π

0

R2e2it

1 `R4e2it
iReitdt.

Per tant

|IR| ď R3

ˆ π

0

dt

|1 `R4e2it|
ď

πR3

R4 ´ 1
Ñ 0.

6.5.4. Calculeu

I :“

ˆ 8

0

dx

1 ` x5
.

Ž

Solució: Considerem la funció fpzq “ 1
1`z5

, i integrem aquesta funció en el recinte γ

amb n “ 5. Obtenimˆ
γ
fpzqdz “ 2πiRes pf, ei

π
5 q “ 2πi lim

zÑei
π
5

pz ´ ei
π
5 qfpzq “

2πi

5
e´ 4πi

5 .

Posant γR “ Reit per t P r0, 2π5 s, tenim que
ˆ
γ
fpzqdz “

ˆ
r0,Rs

fpzqdz `

ˆ
γR

fpzqdz ´

ˆ
r0,Re

2πi
5 s

fpzqdz.
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Tenim ˆ
r0,Rs

fpzqdz “

ˆ R

0

dx

1 ` x5
ÝÑ I quan R Ñ 8.

Ara, el segment r0, Re
2πi
5 s ve parametritzat per σptq “ te

2πi
5 per t P r0, Rs. Llavors

ˆ
r0,Re

2πi
5 s

fpzqdz “

ˆ R

0

1

1 ` pte
2πi
5 q5

e
2πi
5 dt “ e

2πi
5

ˆ R

0

dt

1 ` t5
ÝÑ e

2πi
5 I quan R Ñ 8.

Si veiem que

lim
RÑ8

ˆ
γR

fpzqdz “ 0,

llavors obtindrem
2πi

5
e´ 4πi

5 “ p1 ´ e
2πi
5 qI.

Per tant ˆ 8

0

dx

1 ` x5
“

2πi

5e
4πi
5 p1 ´ e

2πi
5 q

“
2πie

πi
5

5pe
2πi
5 ´ 1q

“
π

5 sinpπ{5q
.

Finalment, com que ˆ
γR

fpzqdz “

ˆ 2π
5

0

iReit dt

1 `R5e5it
,

tenim
ˇ

ˇ

ˇ

ˇ

ˆ
γR

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď
2π

5

R

R5 ´ 1
ÝÑ 0 quan R Ñ 8.

6.5.5. Donat a P p0, 1q calculeu el valor de la integral

ˆ 8

0

xa

1 ` x2
dx. Ž

Solució: Aplicant el criteri de comparació per pas al ĺımit amb la funció 1{x2´a veiem

que aquesta integral impròpia és convergent.
Considerem la funció fpzq “ za

1`z2
“ eaLz

1`z2
, on el logaritme és l’associat a l’argument

Az P p0, 2πq. Donats ϵ, R ą 0 considerem també la corba γ “ γ1`γ2´γ3´γ4 diferenciable
a trossos i tancada formada pels trossos:

• γ1pxq “ x` iϵ, amb x P r0, Rs.

• γ2pθq “ Reiθ, amb θ P rδ, 2π ´ δs, on δ és l’argument del punt z “ x ` iϵ (δ “

arctanpR{ϵq.

• γ3pxq “ x´ iϵ, amb x P r0, Rs.

• γ4pθq “ ϵeiθ, amb θ P rπ{2, 3π{2s.
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6. Sèries de Laurent

Com que la funció f té els dos pols a1 “ i, a2 “ ´i dins la regió tancada per γ, el
teorema dels residus dona:

ˆ R

0

eaLpx`iϵq

1 ` px` iϵq2
dx`

ˆ 2π´δ

δ

eaLpReiθq

1 ` pReiθq2
iReiθdθ ´

ˆ R

0

eaLpx´iϵq

1 ` px´ iϵq2
dx´

´

ˆ 3π
2

π
2

eaLpϵeiθq

1 ` pϵeiθq2
iϵeiθdθ “ 2πi

“

Respf, iq ` Respf,´iq
‰

Essent fpzq “ eaLz

pz´iqpz`iq veiem que

Respf, iq “
eaLi

i` i
“
eaiπ{2

2i

Respf,´iq “
eaLp´iq

´i´ i
“
eai3π{2

´2i
,

aix́ı que
2πi

`

Respf, iq ` Respf,´iq
˘

“ π
`

eaiπ{2 ´ eai3π{2
˘

.

Per altra part és clar que les integrals dels trossos γ2 i γ4 tendeixen a 0 quan ϵ Ñ 0 i
R Ñ `8, ja que passant els mòduls a dins de la integral tenim:

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 2π´δ

δ

eaLpReiθq

1 ` pReiθq2
iReiθdθ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ 2π

0

ea lnR

R2 ´ 1
Rdθ “

2πR1`a

R2 ´ 1

i
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 3π
2

π
2

eaLpϵeiθq

1 ` pϵeiθq2
iϵeiθdθ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ 3π
2

π
2

ea ln ϵ

1 ´ ϵ2
ϵdθ “

πϵa`1

1 ´ ϵ2
.

Pel que fa al tros corresponent a γ3 tenim que

lim
RÑ8

lim
ϵÑ0

ˆ R

0

eaLpx´iϵq

1 ` px´ iϵq2
dx “

ˆ 8

0

eaplnx`i2πq

1 ` x2
dx “ e2πia

ˆ 8

0

xa

1 ` x2
dx .

Tot plegat tenim doncs

p1 ´ e2πiaq

ˆ 8

0

xa

1 ` x2
dx “ π

`

eaiπ{2 ´ eai3π{2
˘

,

d’on dedüım que ˆ 8

0

xa

1 ` x2
dx “ π

eaiπ{2 ´ eai3π{2

1 ´ e2πia
.

Podem comprovar que aquest és un nombre real positiu efectuant la divisió:

eaiπ{2 ´ eai3π{2

1 ´ e2πia
“
eaiπpe´aiπ{2 ´ eaiπ{2q

eaiπpe´aiπ ´ eaiπq
“

sinpaπ{2q

sinpaπq
“

sinpaπ{2q

2 sinpaπ{2q cospaπ{2q

“
1

2 cospaπ{2q
.
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6. Sèries de Laurent

6.5.6. Calcular ˆ 8

0

dx
?
x p1 ` x2q

. Ž

Solució: Considerem la funció

fpzq “
1

?
z p1 ` z2q

,
?
z “ e

1
2
Lz,

amb Lz “ ln |z| ` iAz, amb Az P p0, 2πq. Llavors aquesta branca de
?
z és holomorfa a

Czr0,`8q. En aquest cas, prenem R ą 1 prou gran, i 0 ă ε ă 1{2 prou petit, i integrem
f en el recinte “comecocos”γ de la figura

R´R

iε

´iε

´ε 0

Tenim γ “ γ1 ` γ2 ´ γ3 ´ γ4, amb

γ1pxq “ x` iε; x P r0, R˚s;

γ2ptq “ Reit; t P rε˚, 2π ´ ε˚s

γ3pxq “ x´ iε; x P r0, R˚s;

γ4ptq “ εeit; t P r
π

2
,
3π

2
s.

amb R˚ Ñ 8 quan R Ñ 8, i també ε˚ Ñ 0 quan ε Ñ 0.

Les singularitats de f a l’interior del recinte γ són z “ i i z “ ´i, que són pols de f
d’ordre 1. Pel teorema dels residus, tenim queˆ

γ

dz
?
z p1 ` z2q

“ 2πi
´

Res pf, iq ` Res pf,´iq
¯

.

122



6. Sèries de Laurent

Com que z “ i és un pol d’ordre 1, tenim que

Res pf, iq “ lim
zÑi

pz ´ iqfpzq “ lim
zÑi

1
?
zpz ` iq

“
1

?
i 2i

,

amb ?
i “ e

1
2
Li “ ei

π
4 .

De manera semblant, tenim que

Res pf,´iq “ lim
zÑ´i

pz ` iqfpzq “ lim
zÑ´i

1
?
zpz ´ iq

“ ´
1

?
´i 2i

,

amb ?
´i “ e

1
2
Lp´iq “ e

i
2
Ap´iq “ e

3π i
4 .

Llavors

Res pf, iq ` Res pf,´iq “
1

2i

´ 1
?
i

´
1

?
´i

¯

“
1

2i

`

e´iπ
4 ´ e´ 3π i

4

˘

“
1

2i
e´iπ

2

`

ei
π
4 ´ e´iπ

4

˘

“ e´iπ
2 sinpπ{4q “ ´i

?
2

2
.

Per tant, ˆ
γ

dz
?
z p1 ` z2q

“ π
?
2.

Per altra banda, tenim que
ˆ
γ
fpzqdz “

ˆ
γ1

fpzqdz ` IR ´

ˆ
γ3

fpzqdz ´ Iε,

amb

IR “

ˆ
γ2

fpzqdz “

ˆ 2π´ε˚

ε˚

iReit dt
?
Reitp1 `R2e2itq

i

Iε “

ˆ
γ4

fpzqdz “

ˆ 3π
2

π
2

iεeit dt
?
εeitp1 ` ε2e2itq

Tenim

|IR| ď
R

?
R

ˆ 2π

0

dt

|1 `R2e2it|
ď 2π

?
R

R2 ´ 1
ÝÑ 0

quan R Ñ 8. També

|Iε| ď
ε

?
ε

ˆ 3π
2

π
2

dt

|1 ` ε2e2it|
ď π

?
ε

1 ´ ε2
ÝÑ 0 quan ε Ñ 0.

Per tant,

lim
RÑ8;εÑ0

ˆˆ
γ1

fpzqdz ´

ˆ
γ3

fpzqdz

˙

“ π
?
2.
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6. Sèries de Laurent

Ara, pel teorema de la convergència dominada, tenim que

ˆ
γ1

fpzqdz “

ˆ R˚

0

dx
?
x` iε p1 ` px` iεq2q

ÝÑ

ˆ R

0

dx
?
x p1 ` x2q

,

quan ε Ñ 0, ja que, per x ą 0, tenim que Apx` iεq Ñ 0 quan ε Ñ 0, i per tant

?
x` iε “ e

1
2
Lpx`iεq “ e

1
2

pln |x`iε|`iApx`iεqq ÝÑ e
1
2
lnx “

?
x quan ε Ñ 0.

També, com que per x ą 0, tenim que Apx´ iεq Ñ 2π quan ε Ñ 0, tenim que

?
x´ iε “ e

1
2
Lpx´iεq “ e

1
2

pln |x´iε|`iApx´iεqq ÝÑ e
1
2

plnx`2πiq “
?
x eπi “ ´

?
x quan ε Ñ 0.

Per tant, usant el TCD

ˆ
γ3

fpzqdz “

ˆ R˚

0

dx
?
x´ iε p1 ` px´ iεq2q

ÝÑ ´

ˆ R

0

dx
?
x p1 ` x2q

,

quan ε Ñ 0. Tot plegat, tenim que

lim
RÑ8

lim
εÑ0

ˆˆ
γ1

fpzqdz ´

ˆ
γ3

fpzqdz

˙

“ 2

ˆ 8

0

dx
?
x p1 ` x2q

,

d’on obtenim ˆ 8

0

dx
?
x p1 ` x2q

“
π

?
2

2
.

6.5.7. Calcular ˆ 8

0

lnx

1 ` x2
dx. Ž

Solució:

Posem fpzq “
pLzq2

1`z2
, on Lz “ ln |z| ` iAz amb Az P p0, 2πq, i integrem la funció f en la

regió “comecocos”del cas anterior.
Pel teorema dels residus, tenim que

ˆ
γ

pLzq2dz

1 ` z2
“ 2πi

´

Res pf, iq ` Res pf,´iq
¯

.

Com que z “ i és un pol d’ordre 1, tenim que

Res pf, iq “ lim
zÑi

pz ´ iqfpzq “ lim
zÑi

pLzq2

z ` i
“

pLiq2
2i

,

amb Li “ iπ2 . De manera semblant, tenim que

Res pf,´iq “ lim
zÑ´i

pz ` iqfpzq “ lim
zÑ´i

pLzq2

z ´ i
“ ´

pLp´iqq2

2i
,
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6. Sèries de Laurent

amb Lp´iq “ 3π i
2 . Llavors

Res pf, iq ` Res pf,´iq “
1

i

´

´π2

8
`

9π2

8

¯

“
π2

i
,

i per tant, ˆ
γ

pLzq2dz

1 ` z2
“ 2π3.

Es compleix que si z P γ˚
1 , z “ x` iε, aix́ı que Lz Ñ lnx si ε Ñ 0 i si z P γ˚

3 , z “ x´ iε,
de manera que Lz Ñ lnx` 2πi si ε Ñ 0.
A més,

IR “

ˆ
γ2

fpzqdz “

ˆ 2π´ε˚

ε˚

pLpReitqq2 dt

1 `R2e2it
.

Per tant, tenim que

|IR| ď

ˆ 2π

0

Rp| lnR ` it|q2dt

|1 `R2e2it|
ď 2π

RplnR ` 2πq2

R2 ´ 1
ÝÑ 0

quan R Ñ 8.
Per altra banda,

|Iε| ď

ˆ 3π
2

π
2

εp| ln ε` it|q2dt

|1 ` ε2e2it|
ď π

εp| ln ε| ` 2πq2

1 ´ ε2
ÝÑ 0 quan ε Ñ 0.

Per tant

2π3 “ lim
RÑ8

lim
εÑ0

ˆ
γ

pLzq2

1 ` z2
dz “

ˆ 8

0

ln2 x´ plnx` 2πiq2

1 ` x2
dx “

ˆ 8

0

4π2 ´ 4πi lnx

1 ` x2
dx.

Prenent part imaginària, dedüım que

ˆ 8

0

lnx

1 ` x2
dx “ 0.

6.5.8. Justifiqueu la integrabilitat (Lebesgue o impròpia Riemann) i calculeu les següents
integrals (en tots els apartats k P Z, α P R i n “ 0, 1, 2, ¨ ¨ ¨ ):

a)

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt.

b)

ˆ 8

0

sin2 x

x2
dx.

c)

ˆ 2π

0

cospntq

2 ` cos t
dt.

d)

ˆ `8

´8

x2 ´ x` 2

x4 ` 10x2 ` 9
dx.

e)

ˆ 8

´8

sinx

x2 ´ x` 1
dx. Ž
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Solució:

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt

Utilitzem que

sin t “
eit ´ e´it

2i
, cos t “

eit ` e´it

2
.

Parametritzant la circumferència unitat de la manera habitual, z “ eit, t P r0, 2πs, tenim
que

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt “

ˆ 2π

0

` eit´1{eit

2i

˘2

5 ` 2peit ` 1{eitq
dt “

ˆ
|z|“1

` z´1{z
2i

˘2

5 ` 2pz ` 1{zq

dz

iz

“ ´
1

4i

ˆ
|z|“1

pz2 ´ 1q2 dz

z2p5z ` 2z2 ` 2q
“ ´

1

8i

ˆ
|z|“1

pz2 ´ 1q2 dz

z2pz ` 1{2qpz ` 2q
.

Diem fpzq “
pz2´1q2

z2pz`1{2qpz`2q
. Aquesta funció té dues singularitats dins el disc unitat (0 i

´1{2); per tant, pel teorema dels Residus,

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt “ ´

π

4

“

Respf, 0q ` Respf,´1{2q
‰

Escrivint

fpzq “
1

z ` 1{2

pz2 ´ 1q2

z2pz ` 2q

veiem que

Respf,´1{2q “
pp´1{2q2 ´ 1q2

p´1{2q2p´1{2 ` 2q
“

3

2
.

Per altra part, escrivint

fpzq “
1

z2
gpzq, gpzq “

pz2 ´ 1q2

pz ` 1{2qpz ` 2q

veiem que
Respf, 0q “ g1p0q.

Derivant g tenim que

g1pzq “
4zpz2 ´ 1q

pz ` 1{2qpz ` 2q
´

pz2 ´ 1q2

pz ` 1{2q2pz ` 2q
´

pz2 ´ 1q2

pz ` 1{2qpz ` 2q2
,

i avaluant a 0,

g1p0q “ 0 ´ 2 ´
1

2
“ ´

5

2
.

Tornant a l’expressió de dalt, obtenim finalment

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt “ ´

π

4

“3

2
´

5

2

‰

“
π

4
.
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ˆ 8

0

sin2 x

x2
dx

Solució: π{2ˆ 2π

0

cospntq

2 ` cos t
dt

Observem que Repeintq “ cospntq i per tant serà suficient calcular

ˆ 2π

0

eint

2 ` cos t
dt .

Expressant cos t “ 1{2peit ` e´itq i parametritzant la vora del disc unitat amb ζ “ eit,
t P r0, 2πs tenim que

ˆ 2π

0

eint

2 ` cos t
dt “

1

i

ˆ 2π

0

eint

p2 ` eit`e´it

2 qeit
ieitdt “

2

i

ˆ
|ζ|“1

ζn

p4 ` ζ ` 1{ζqζ
dζ .

Factoritzant ζ2 ` 4ζ ` 1 “ pζ ` 2 ´
?
3qpζ ` 2 `

?
3q obtenim finalment

ˆ 2π

0

eint

2 ` cos t
dt “

2

i

ˆ
|ζ|“1

ζn

pζ ` 2 ´
?
3qpζ ` 2 `

?
3q
dζ .

La funció fpζq “
ζn

pζ`2´
?
3qpζ`2`

?
3q

té una única singularitat a D, al punt a “ ´2 `
?
3.

Per tant, segons el teorema dels residus,

ˆ 2π

0

eint

2 ` cos t
dt “

2

i
2πiRespf, aq “ 4πRespf, aq .

La funció gpζq “
ζn

ζ`2`
?
3
és holomorfa a un entorn de a “ ´2 `

?
3, i per tant s’expressa

com una sèrie de potències a l’entorn d’aquest punt. Aleshores, a l’entorn de a,

fpζq “
1

ζ ´ a
gpζq “

1

ζ ´ a

“

gpaq ` g1paqpζ ´ aq `
g2paq

2
pζ ´ aq2 ` ¨ ¨ ¨

‰

“
gpaq

ζ ´ aq
` g1paq `

g2paq

2
pζ ´ aq ` ¨ ¨ ¨

i per tant Respf, aq “ gpaq “
p´2`

?
3qn

2
?
3

“ p´1qn
p2´

?
3qn

2
?
3

. Amb això tenim finalment

ˆ 2π

0

eint

2 ` cos t
dt “ 4πp´1qn

p2 ´
?
3qn

2
?
3

“
2π
?
3

p´1qnp2 ´
?
3qn .

ˆ `8

´8

x2 ´ x` 2

x4 ` 10x2 ` 9
dx

Solució: 5π/12
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ˆ 8

´8

sinx

x2 ´ x` 1
dx

Solució: 2π?
3
sinp1{2qe´

?
3{2

6.5.9. Justifiqueu la convergència de

ˆ `8

0

?
x

x2 ` 3
dx

i calculeu-ne el seu valor (cal justificar tots els passos). Ž

Solució: π{
4
?
12.

6.5.10. Siguin fpzq “ ez{z2 i la recta γ “ t1 ` it; t P p´8,`8qu.

a) Calculeu (justificant tots els passos)

ˆ
γ
fpzqdz.

Indicació: integreu f sobre la vora del semidisc de centre z0 “ 1 i radi R amb Re z ď 1.

b) Dedüıu que

ˆ `8

´8

p1 ´ t2q cosptq ` 2t sinptq

p1 ` t2q2
dt “

2π

e
. Ž

Solució: (a) Per a cada R ą 0 considerem la corba tancada Γ “ γ1 ` γ2, on

γ1ptq “ 1 ` it, t P r´R,Rs,

γ2ptq “ 1 `Reit, t P rπ{2, 3π{2s.

γ2ptq “ 1 ` Reit
1 ` iR

1 ´ iR

R ´ 1

γ1ptq “ 1 ` it
0
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Com que f té una única singularitat, al punt a “ 0, el teorema dels residus ens donaˆ
γ1

fpzq dz `

ˆ
γ2

fpzq dz “ 2πi Respf, 0q.

Desenvolupat ez “ 1 ` z ` z2{2 ` ¨ ¨ ¨ a l’entorn de 0 veiem queda Respf, 0q “ 1.
Per altra part, la integral a γ2 tendeix a 0 a mesura que R es fa gran: si z “ 1 ` Reit

aleshores
|ez| “

ˇ

ˇeeR cos teiR sin t
ˇ

ˇ ď e,

ja que cos t ď 0. Per tant
ˇ

ˇ

ˇ

ˇ

ˇ

ˆ 3π{2

π{2
fp1 `Reitq iReit dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ 3π{2

π{2

e

pR ´ 1q2
Rdt “

πeR

pR ´ 1q2

efectivament tendeix a 0 quan R Ñ `8.
Per tant, passant al ĺımit també la integral

ˆ
γ1

fpzq dz “

ˆ R

´R

e1`it

p1 ` itq2
i dt

obtenim ˆ 8

´8

e1`it

p1 ` itq2
i dt “ 2πi.

(b) Com que
1

1 ` it
“

1 ´ it

|1 ` it|2
“

1 ´ it

1 ` t2
,

obtenim ˆ 8

´8

e1`itp1 ´ itq2

p1 ` t2q2
dt “ 2π.

Utilitzant que
Re re1`itp1 ´ itq2s “ e

`

cos tp1 ´ t2q ` 2t sin t
˘

i igualant parts reals obtenim finalment

ˆ 8

´8

e
`

cos tp1 ´ t2q ` 2t sin t
˘

p1 ` t2q2
dt “ 2π.

6.5.11. Considereu

fpzq “
z2 ´ 2

pz2 ` 1q2pz2 ` 4q2
.

(a) Trobeu la part principal de la sèrie de Laurent al voltant de z “ 2i.

(b) Justifiqueu la convergència de ˆ `8

´8

fpxqdx

i calculeu-ne el seu valor (justifiqueu tots els passos). Ž
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Solució: (a) 1{24
pz´2iq2

`
5i{48
z´2i ; (b) ´π{24.

6.5.12. Sigui fpzq “ eiz
2
, i considereu el camı́ γR format per el segment que va de 0 a R;

l’arc del cercle |z| “ R que va de R a Reiπ{4, i el segment que va de Reiπ{4 a 0. Demostreu
que ˆ

γR

fpzqdz “ 0,

i utilitzeu-ho per a calcular les integrals de Fresnel
ˆ 8

0
cospx2qdx,

ˆ 8

0
sinpx2qdx.

Observació: Podeu utilitzar que
´8

0 e´t2 dt “
?
π
2 . Ž

Solució: Com que f és entera i γR és un camı́ tancat, aplicant el teorema de Cauchy

per un disc (per exemple en ∆ “ D2Rp0q), obtenim que
ˆ
γR

fpzqdz “ 0,

i per tant

lim
RÑ8

ˆ
γR

fpzqdz “ 0.

Per altra part, tenim que
ˆ
γR

fpzqdz “

ˆ
γ1,R

fpzqdz `

ˆ
γ2,R

fpzqdz ´

ˆ
γ3,R

fpzqdz

amb γ1,Rpxq “ x, per x P r0, Rs; γ2,Rptq “ Reit, t P r0, π{4s; i γ3,Rptq “ teiπ{4 per t P r0, Rs.
Tenim que

ˆ
γ1,R

fpzqdz “

ˆ R

0
eix

2
dx ÝÑ

ˆ 8

0
eix

2
dx “

ˆ 8

0
cospx2qdx` i

ˆ 8

0
sinpx2q dx

quan R tendeix a `8. També, com que eiπ{2 “ i, tenim que

ˆ
γ3,R

fpzqdz “

ˆ R

0
eipte

iπ{4q2 eiπ{4 dt “ eiπ{4

ˆ R

0
e´t2 , dt.

Per tant, com que eiπ{4 “
?
2
2 ` i

?
2
2 , tenim que

lim
RÑ8

ˆ
γ3,R

fpzqdz “

ˆ

?
2

2
` i

?
2

2

˙ˆ 8

0
e´t2dt “

?
2π

4
` i

?
2π

4
.

Si podem veure que

IR :“

ˆ
γ2,R

fpzqdz ÝÑ 0
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quan R Ñ 8, llavors

ˆ 8

0
cospx2qdx` i

ˆ 8

0
sinpx2q dx “

?
2π

4
` i

?
2π

4
,

aix́ı que, igualant parts reals i imaginàries, obtenim

ˆ 8

0
cospx2qdx “

ˆ 8

0
sinpx2qdx “

?
2π

4
.

Vegem que limRÑ8 IR “ 0. Com que γ2,Rptq “ Reit per t P r0, π{4s, tenim que

IR “

ˆ
γ2,R

fpzqdz “

ˆ π{4

0
eiR

2e2itiReit dt.

Llavors

|IR| ď R

ˆ π{4

0

ˇ

ˇeiR
2e2it

ˇ

ˇ dt “ R

ˆ π{4

0
e´R2 sinp2tq dt.

Aquesta integral no té primitiva elemental, aix́ı que l’acotem per una quantitat que puguem
calcular i que tendeixi a zero quan R tendeixi a infinit. Sabem que sinx ě 2x

π per x P

r0, π{2s, de manera que sinp2tq ě 4t
π per t P r0, π{4s, obtenint que

e´R2 sinp2tq ď e´4R2 t{π, t P r0, π{4s.

Per tant

|IR| ď R

ˆ π{4

0
e´4R2 t{π dt “ R

«

πe´4R2 t{π

p´4R2q

fft“π{4

t“0

“
π

R

´

1 ´ e´R2
¯

que tendeix a zero quan R tendeix a infinit.

6.5.13. (a) Sigui f una funció holomorfa en D˚ “ t0 ă |z| ă 1u. Suposem que fpanq “ 0
per una successió an P D˚ tal que an Ñ 0. Demostreu que f ” 0 o bé z “ 0 és una
singularitat essencial de f .

(b) Sigui f una funció holomorfa en D˚ tal que per a tot n ě 2, f no té zeros sobre les
corbes |z| “ 1{n i a més

ˆ
|z|“ 1

n

1

fpzq
dz ‰

ˆ
|z|“ 1

n`1

1

fpzq
dz.

Demostreu que z “ 0 és una singularitat essencial de f . Indicació: Utilitzeu el Teore-
ma de deformació i l’apartat anterior. Ž

6.5.14. Calculeu, justificant tots els passos, la integral

ˆ `8

0

xα

x2 ` x` 1
dx, ´1 ă α ă 1.
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Indicació: Considereu la funció fpzq “
zα

z2 ` z ` 1
. Definiu una determinació del logarit-

me logpzq a Czr0,`8q de manera que zα “ eαlogpzq. Finalment integreu la funció fpzq a
la mateixa regió que les integrals del tipus

ˆ `8

0
Rpxq lnpxqdx. Ž

Solució: 2π?
3 cospα pi

2
q
e´iαπ

6 .
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6. Sèries de Laurent

6.6. Principi de l’argument

6.6.1. Quines de les següents funcions són meromorfes a C?

a) z5 b) z5{2 c) e1{z d) 1{ sinpzq. Ž

Solució: a) La funció és entera, llavors meromorfa sense pols. b) No, hi ha una semi-

recta de singularitats si prenem, per exemple, l’arrel quadrada principal. c) No, a 0 hi ha
una singularitat essencial d) Śı, totes les seves singularitats (a z “ nπ) són pols simples.

6.6.2. Calculeu el nombre de zeros (comptats amb multiplicitat) amb part real positiva del
polinomi P pzq “ z6 ´ z4 ´ 2z ´ 6.
I si alternativament el polinomi fos Qpzq “ z6 ´ z4 ´ 2z ` 6? Ž

Solució: Considerem un semidisc tancat D, delimitat per la corba γ “ γ´
1 _ γ2 on

γ1ptq “ it, t P r´R,Rs; γ2ptq “ Reit, t P r´π{2, π{2s,

amb R és prou gran per a que tots els zeros de P a H` :“ tz P C | Repzq ą 0u estiguin
dins de D.
Si mirem la imatge dels extrems de γ1 veiem que

P piRq » ´R6 ´ 2iR; P p´iRq » ´R6 ` 2iR,

d’on obtenim que
ApP piRqq “ π ´ ϵ; ApP p´iRqq “ π ` ϵ,

per un cert ϵ Á 0.
D’altra banda, si calculem la imatge sencera de γ1 tenim que

P pγ1ptqq “ P pitq “ ´t6 ´ t4 ´ 6 ´ 2it.

Veiem que la part real no s’anul.la mai mentre que la part imaginària ho fa només per
t “ 0. Dedüım que P pγ1q no talla mai l’eix imaginari i només talla l’eix real una vegada,
en el punt P pγp0qq “ ´6.

Concloem per tant que l’increment de l’argument degut a γ´
1 és

∆pγ´
1 q “ π ` ϵ´ pπ ´ ϵq “ 2ϵ.

La corba γ2 és un semicercle i per tant recorre un argument de π. Donat que |γ2ptq| “ R
i R és molt gran, domina el terme de grau superior i per tant

P pγ2ptqq » γ2ptq6 “ R6e6it,

on 6t P r´3π, 3πs, ja que t P r´π{2, π{2s. Tenim doncs que

∆pγ2q “ 6 ˆ π ´ 2ϵ “ 6π ´ 2ϵ,
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on 2ϵ ve donat pel fet que P pγ2q ha de connectar P piRq i P p´iRq.
Concloem doncs que

∆pγq “ 2ϵ` 6π ´ 2ϵ “ 6π,

i que per tant,

IndpP pγq, 0q “
6π

2π
“ 3.

El Principi de l’Argument ens diu aleshores que P pzq té exactament 3 arrels dins de D
comptades amb multiplicitat. Donat que R és arbitràriament gran, P pzq té 3 arrels al
semiplà de la dreta.

Si el polinomi fos Qpzq “ z6 ´ z4 ´ 2z3 ` 6, actuaria sobre γ1ptq com

Qpγ1ptqq “ Qpitq “ ´t6 ´ t4 ` 6 ` 2it,

i per tant seguiria tallant l’eix real només per t “ 0; però aquesta vegada ho faria en
el punt Qp0q “ 6. Independentment de quantes vegades pogués tallar l’eix imaginari, la
corba imatge seria homòtopa a la de la figura 2 en Czt0u. La diferència en el càlcul resideix
en la variació de l’argument de la corba Qpγ1q que, al rodejar el zero, provoca un augment
de l’argument en gairebé 2π. En efecte,

∆pγ1q “ 2ϵ´ 2π; ∆pγ2q “ 6π ` 2ϵ,

i per tant
∆pγq “ 2π ´ 2ϵ` 6π ` 2ϵ “ 8π.

En conseqüència IndpQpγ, 0qq “ 4 i el polinomi Q té 4 zeros al semiplà de la dreta.

6.6.3. Sigui f una funció entera tal que

fpzq P R ðñ z P R.

Demostreu que f té, com a molt, un zero a tot C. Ž

Solució: Considerem un cercle γptq “ Reit amb t P r0, 2πs de radi arbitrari R ą 0.

Aquest cercle talla l’eix real en dos punts γp0q “ R, i γpπq “ ´R. Per t ‰ 0, π, γptq R R.
Per hipòtesi, només els punts reals tenen imatge real. Aix́ı doncs, la corba fpγptqq talla

l’eix real exactament en t “ 0 i t “ π, en dos punts fp˘Rq que podrien ser iguals o
diferents.
Aleshores, la corba parametritzada fpγptqq només pot donar com a molt una volta al

punt z “ 0 , és a dir
Indpfpγptq, 0qq ď 1. (*)

Pel Principi de l’Argument, tenim doncs que f pot tenir com a molt un zero a t|z| ď Ru.
Però com que R és arbitrari, això demostra que f té com a molt un zero a C.
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Nota: Per a demostrar (*) formalment, podem calcular l’́ındex amb la definció:

Indpfpγptqq, 0q “
1

2π
pap2πq ´ ap0qq,

on aptq és una determinació qualsevol de argpfpγptqq. Combinat amb el Teorema de
Bolzano, és fàcil veure que si la diferència entre els arguments és més gran de 2π, aleshores
l’argument ha de prendre tots els valors al menys dues vegades, inclosos els valors 0 i π,
que corresponen a punts de la recta real.

6.7. Teorema de Rouché

6.7.1. Demostreu que l’equació ez “ 2z ` 1 té exactament una solució en el disc unitat
obert. Indicació: Proveu que |ez ´ 1| ď e´ 1 si |z| “ 1. Ž

Solució: Apliquem el teorema de Rouché al disc unitat i les funcions fpzq “ ez ´2z´1

i gpzq “ ´2z. Per a |z| “ 1, aplicant la indicació, tindrem,

|fpzq ´ gpzq| “ |ez ´ 1| ă e´ 1 ă 2 “ |gpzq|,

i per tant
#Zpfq X D “ #Zpgq X D “ 1.

La indicació es pot provar directament amb la sèrie de l’exponencial: si |z| “ 1

|ez ´ 1| “
ˇ

ˇ

ÿ

ně1

zn

n!

ˇ

ˇ ď
ÿ

ně1

|z|n

n!
“ e|z| ´ 1 “ e´ 1.

6.7.2. Sigui f una funció holomorfa en el disc unitat tancat tal que |fpzq| ă 1, per a
|z| “ 1. Quants punts fixos té f? Ž

Solució: Apliquem el teorema de Rouché a F pzq “ fpzq ´ z i gpzq “ ´z: per a |z| “ 1

|F pzq ´ gpzq| “ |fpzq| ă 1 “ |gpzq|.

Per tant
#ZpF q X D “ #Zpgq X D “ 1.

D’aqúı veiem que f té un únic punt fix.

6.7.3. Calculeu el nombre de solucions (comptant multiplicitats) de les següents equacions
en el disc unitat:

(a) z9 ´ 2z6 ` z2 ´ 8z ´ 2 “ 0.

(b) 2z5 ´ z3 ` 3z2 ´ z ` 8 “ 0.

(c) z7 ´ 5z4 ` z2 “ 2. Ž
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Solució: (a) Apliquem el teorema de Rouché a fpzq “ z9´2z6`z2´8z´2 i gpzq “ ´8z

(el terme de f amb coeficient més gran). Per a |z| “ 1, tenim que

|fpzq ´ gpzq| “ |z9 ´ 2z6 ` z2 ´ 2| ď 1 ` 2 ` 1 ` 2 “ 6 ă 8 “ |gpzq|.

Per tant #Zpfq X D “ #Zpgq X D “ 1.
(b) Apliquem el teorema de Rouché a fpzq “ 2z5 ´ z3 ` 3z2 ´ z ` 8 i gpzq “ 8: per a

|z| “ 1,

|fpzq ´ gpzq| “ |2z5 ´ z3 ` 3z2 ´ z| ď 2 ` 1 ` 3 ` 1 “ 7 ă 8 “ |gpzq|.

Per tant #Zpfq X D “ #Zpgq X D “ 0.
(c) Apliquem el teorema de Rouché a fpzq “ z7 ´ 5z4 ` z2 ´ 2 i gpzq “ ´5z4: per a

|z| “ 1,
|fpzq ´ gpzq| “ |z7 ` z2 ´ 2| ď 1 ` 1 ` 2 “ 4 ă 5 “ |gpzq|.

Per tant #Zpfq X D “ #Zpgq X D “ 4.

6.7.4. Quants zeros té P pzq “ z4 ` 6z3 ´ 4z2 ` 1{8 en la regió
␣

z P C; 1
2 ă |z| ă 1

(

? Ž

6.7.5. Considerem P pzq “ z6 ` 3z4 ` z2 ` z ` 9.

(a) Proveu que tots els zeros de P pzq són a l’anell 1 ă |z| ă 2.

(b) Calculeu el nombre de zeros (comptats amb multiplicitat) de P pzq al primer quadrant.Ž

Solució: a) Aplicarem el teorema de Rouché dues vegades: al disc unitat D i al disc

D2p0q. Notem que P és un polinomi de grau 6, per tant té exactament 6 zeros comptats
amb multiplicitat. Comencem pel disc D2p0q. Definim gpzq “ z6 P HpCq. Hem de buscar
els zeros de la funció P P HpCq a D2p0q. Aplicarem el teorema de Rouché. Considerem
γ “ BD2p0q (corba simple). Notem que

|P pzq ´ gpzq| ď 63 ă 64 “ |gpzq|, @z P γ.

Podem aplicar el teorema de Rouché que ens assegura que el nombre de zeros de g a D2p0q

coincideix amb el nombre de zeros de P a D2p0q (comptant multiplicitats). Ara bé, g té
6 zeros a D2p0q. Per tant, P té 6 zeros a D2p0q.
D’una altra banda, considerem fpzq “ 9 P HpCq i ρ “ BD (corba simple). Notem que

|P pzq ´ fpzq| ď 6 ă 9 “ |fpzq|, @z P ρ.

Podem aplicar el teorema de Rouché que ens assegura que el nombre de zeros de f a D
coincideix amb el nombre de zeros de P a D (comptant multiplicitats). Ara bé, f no té
zeros a D. Per tant, P no té zeros a D. Observem que la desigualtat estricte anterior
sobre els punts de ρ ens assegura que P i f no s’anul¨len en ρ. En resum, hem provat
que P té 6 zeros al D2p0q, P no té zeros al D (i tampoc a |z| “ 1) i P té exactament
6 zeros al pla complex. Aix́ı, P té tots els seus zeros (és a dir, 6 zeros) a l’anell 1 ă |z| ă 2.
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b) Anem a utilitzar el principi de l’argument per calcular el nombre de zeros de P
al primer quadrant. Sigui R ą 0 i ΩR la regió que és intersecció del DRp0q amb el primer
quadrant, és a dir,

ΩR “
␣

reit, 0 ă r ă R, 0 ă t ă π{2
(

.

Per a R ą 0 prou gran (de fet R ě 2), tots els zeros de P pertanyen al disc DRp0q, i
per tant tots els zeros de P en el primer quadrant pertanyen a ΩR. Sigui γ “ BΩR “

γ1 ` γ2 ` γR, on γ1ptq “ ipR´ tq, t P r0, Rs, γ2ptq “ t, t P r0, Rs i γRptq “ Reit, t P r0, π{2s.
Notem que P no té zeros sobre R` i iR` ja que P ptq “ t6 ` 3t4 ` t2 ` t ` 9 ě 9 ą 0
i P pitq “ ´t6 ` 3t4 ´ t2 ` 9 ` it. Per tant, Im pP pitqq ‰ 0 per tot t ą 0 i per a t “ 0,
P p0q “ 9 ‰ 0. Aix́ı, si R és prou gran (la corba γR no passarà per cap zero de P ), P no té
zeros sobre la corba γ. Pel principi de l’argument tenim que el nombre de zeros de P en
el primer quadrant (comptats amb multiplicitat) és l’increment de l’argument de P sobre
γ dividit per 2π (quan R ą 0 és prou gran), és a dir, hem de mirar les voltes que dona la
corba Γ :“ P pγq al voltant de 0 (que no és res més que Ind pΓ, 0q) quan R Ñ 8. Anem a
calcular aquesta quantitat:

#pZpP q X tPrimer quadrantuq “ lim
RÑ8

IndpΓ, 0q “
1

2π
lim
RÑ8

∆γP

“
1

2π
lim
RÑ8

p∆γ1P ` ∆γ2P ` ∆γRP q.

Anem a calcular cada tros. Sobre la corba γR, si R és prou gran, P pzq « z6 i per tant,
∆γRP Ñ 6π

2 “ 3π (és a dir, la corba P pγRq dona una volta i mitja al voltant del 0
amb punt inicial P pRq i punt final P piRq). Sobre la corba γ2, tenim que P pγ2q P R i
P pγ2ptqq ě 9 “ P p0q per tot t P r0, Rs. Aix́ı, qualsevol determinació de l’argument de
P pγ2q és constant i per tant, ∆γ2P “ 0. Anem a treballar ara amb la corba γ1. Sigui
t P r0, Rs, aleshores Im pP pitqq ą 0 per tot t ą 0 i val 0 si t “ 0. Per tant, la corba P pγ1q

viu en t Im z ě 0u i només toca la recta real en t “ 0 i val P p0q “ 9. A més a més, si
R Ñ 8, P piRq « ´R6 ` iR. Aix́ı, veiem que ∆γ1P Ñ ´π quan R Ñ 8 (veieu el dibuix).

P (iR)

P (0) P (R)

P (γ1)

P (γ2)

P (γR)

Aix́ı, tenim que

Ind pΓ, 0q Ñ
1

2π
p0 ´ π ` 3πq “ 1, R Ñ 8.
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Per tant, P té un zero al primer quadrant.

6.7.6. (a) Calculeu el nombre de solucions a D de l’equació ez “ 4z ` 1.

(b) Demostreu que l’equació ez “ 3zn té n solucions en el disc unitat (n “ 0, 1, 2, . . . ). Ž
Solució: (a)

Apliquem el T. de Rouché a les funcions gpzq “ ez ´ 4z ´ 1 i hpzq “ ´4z ´ 1.
Tenim que, per |z| “ 1:

|gpzq ´ hpzq| “ |ez| “ eRe z ď e1 “ e.

D’altra banda,
| ´ 4z ´ 1| “ |4z ` 1| ě 4|z| ´ 1 “ 4 ´ 1 “ 3.

Per tant, sobre la corba —z—=1,

|g ´ h| ď e ă 3 ď |h|.

En conseqüència, g i h tenen el mateix nombre d’arrels dins del disc unitat. Com que
´4z´1 “ 0 té una solució al disc (z “ ´1{4) doncs ez “ 4z`1 té exactament una solució
al disc unitat.
(b) Apliquem el teorema de Rouché a fpzq “ ez ´ 3zn i gpzq “ ´3zn. Per a |z| “ 1,

tenim que
|fpzq ´ gpzq| “ |ez| “ eRez ď e ă 3 “ |gpzq|.

Per tant #Zpfq X D “ #Zpgq X D “ n.
Que les arrels són diferents es veu immediatament, comprovant que fpzq i f 1pzq “

ez ´ 3nzn´1 no tenen arrels comuns.

6.7.7. Sigui a P C, 0 ă |a| ă 1, i n P N.

(a) Demostreu que l’equació
pz ´ 1qnez “ a

té exactament n arrels diferents al semiplà tz P C | Re z ą 0u. Indicació: Considereu
un disc centrat a z “ 1 i de radi R “ 1 primer, deprés mireu d’augmentar el radi
sense sortir del semiplà tancat de la dreta.

(b) Proveu que si, a més, |a| ď 1{2n, llavors totes aquestes arrels són al disc D1{2p1q. Ž

Solució: (a) Apliquem el teorema de Rouché al disc D1p1q i les funcions

fpzq “ pz ´ 1qnez ´ a

i
gpzq “ pz ´ 1qnez.

Per a |z ´ 1| “ 1, tenim que

|fpzq ´ gpzq| “ |a| ă 1 ă eRe z ď |gpzq|.
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Per tant #Zpfq X D1p1q “ #Zpgq X D1p1q “ n. Com que D1p1q és contingut al semiplà
Re z ą 0, ja tenim el que demana l’enunciat. A la vora de DRp1q X tz : Re z ą 0u, també
tenim que

|fpzq ´ gpzq| “ |a| ă 1 ď eRe z ď |gpzq|,

de manera que a tot el semiplà hi ha exactament n solucions comptant multiplicitats.
Que les arrels són diferents es veu immediatament, comprovant que fpzq i f 1pzq “

pz ´ 1qn´1ezpn` z ´ 1q no tenen arrels comuns.
(b) En cas que |a| ď 1{2n, apliquem el teorema de Rouché a D1{2p1q i les mateixes

funcions d’abans:

|fpzq ´ gpzq| “ |a| ď
1

2n
ă

1

2n
e1{2 ď

1

2n
eRe z ď |gpzq|.

Per tant #Zpfq XD1{2p1q “ #Zpgq XD1{2p1q “ n.

6.7.8. Demostreu que per a tot R ą 0 existeix npRq ě 0 tal que si n ą npRq

Pnpzq “ 1 ` z `
z2

2!
` ¨ ¨ ¨ `

zn

n!

no té zeros al disc t|z| ď Ru. Ž

Solució: Observem que Pnpzq Ñ ez uniformement en compactes del pla quan n Ñ 8.

Per tant, |Pnpzq ´ ez| és arbitràriament petit en el compacte t|z| ď Ru, si n és prou gran.
Aplicarem el Teorema de Rouché, comparant Pn i fpzq “ ez. Veiem que si |z| “ R

llavors |ez| “ eRe pzq ě e´R. Doncs sigui npRq tal que

|Pnpzq ´ ez| ă e´R per a tot n ě npRq.

Aleshores, si |z| “ R,
|Pnpzq ´ ez| ă e´R ď |ez|,

i pel Teorema de Rouché, ez i Pnpzq tenen el mateix nombre de zeros dins del disc de radi
R, sempre que n ą npRq.

6.7.9. Sigui fn una successió de funcions holomorfes en un domini Ω tals que fn Ñ f
uniformement en compactes d’Ω, per una certa funció f .

1. (Corol.lari de Hurwitz) Dedüıu que si fnpzq ‰ a per a tot z P Ω i tot n P N, aleshores,
f ” a o bé fpzq ‰ a en Ω.

2. Proveu que si fn és injectiva en Ω per a tot n ě 0, aleshores f és constant o bé f és
injectiva en Ω. Indicació: Argumenteu per reducció a l’absurd, i utilitzeu l’apartat
anterior.

3. Proveu que si f té un zero d’ordre m en a P Ω, aleshores existeix ρ0 ą 0 tal que
per tot ρ ă ρ0 i per tot n ą nρ, fn té exactament m zeros en Dρpaq comptant
multiplicitats. Ž
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Solució: Comencem observant que f és holomorfa en Ω pel Teorema de Weierstrass.

1. Immediat considerant gnpzq “ fnpzq ´ a i gpzq “ fpzq ´ a i aplicant el teorema de
Hurwitz.

2. Suposem que fpz1q “ fpz2q “ a tot i que z1 ‰ z2. Considerem D1 i D2 dos discs
tancats a Ω que continguin z1 i z2 respectivament. Aleshores, si f no és constant
igual a a, per l’apartat anterior fnpzq “ a ha de tenir almenys una solució en D1 i
una altra en D2 si n és prou gran (si no en tingues cap, fpzq “ a tampoc en tindria).
Però això contradiu que fn sigui injectiva per a tot n.

3. Prenem ρ de manera que f no tingui cap zero en l’adherència de Dρ “ Dρpaqztau.
Aleshores anomenem δ :“ infBDρ |f | ą 0. Per la convergència uniforme existeix nρ
tal que per n ą nρ tenim que supBDρ

|fn ´ f | ă δ{2 ă infBDρ |f |, i per tant podem
aplicar el teorema de Rouché.
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7.1. El teorema de l’aplicació de Riemann

7.2. Projecció estereogràfica i circumferències generalitzades

7.2.1. Sigui p la projecció estereogràfica. Demostreu que λ “ 1
1´z , i que la inversa de p

és

p´1px` iyq “
1

x2 ` y2 ` 1

`

x, y, x2 ` y2
˘

. Ž

Solució: (proposada per Marta Merino Sánchez) El segment que connecta p0, 0, 1q amb

px, y, 0q és Qptq “ p0, 0, 1q ` trpx, y, 0q ´ p0, 0, 1qs “ ptx, ty, 1 ´ tq i volem que compleixi
l’equació de l’esfera S2, on px, y, zq P S2 compleix l’equació:

x2 ` y2 ` pz ´
1

2
q2 “

ˆ

1

2

˙2

ô x2 ` y2 ` z2 “ z.

Perquè el punt Qptq pertanyi a l’esfera S2, hem de comprovar que compleixi l’equació
corresponent:

ptxq2 ` ptyq2 ` p1 ´ tq2 “ 1 ´ t.

Aquesta equació es pot desenvolupar de la següent manera:

t2x2 ` t2y2 ` p1 ´ 2t` t2q “ 1 ´ t.

Simplificant:

t2px2 ` y2 ` 1q ´ t “ 0

Aquesta equació té les solucions:

tptpx2 ` y2 ` 1q ´ 1q “ 0.

Per tant, les possibles solucions per a t són:

1. t “ 0,

2. t “ 1
x2`y2`1

.

Això implica que per a t dins de l’interval r0, 1s, hem de considerar la solució t “ 1
x2`y2`1

.

Només ens queda substituirQp 1
x2`y2`1

q “ p x
x2`y2`1

, y
x2`y2`1

, 1´ 1
x2`y2`1

q “ 1
x2`y2`1

px, y, x2`

y2 ` 1 ´ 1q
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7.2.2. Demostreu que l’equació d’una circumferència de centre α P C i radi r és

|z|2 ´ αz̄ ´ ᾱz “ r2 ´ |α|2, z P C,

i la d’una recta perpendicular a α passant per z0 P C és

ᾱz ` αz̄ “ m, z P C,

on m és una constant real que només depèn d’α i z0. Ž

Solució: (proposada per Tomàs Planelles Alonso) Sabem que l’equació d’una circum-

ferència de centre α P C i radi r P R` és

|z ´ α| “ r2.

Aix́ı,

r2 “ |z ´ α|2 “ pz ´ αqpz ´ αq “ pz ´ αqpz̄ ´ ᾱq “ |z|2 ` |α|2 ´ αz̄ ´ ᾱz,

és a dir
|z|2 ´ αz̄ ´ ᾱz “ r2 ´ |α|2.

D’altra banda, identificant C – R2 tenim que

ᾱz ` αz̄ “ 2Repᾱzq “ 2xz, αy P R.

Finalment, sigui r una recta perpendicular a α, és a dir,

r : z0 ` VectpαqK,

on z0 P C. Tenim que

z P r ðñ xz ´ z0, αy “ 0 ðñ xz, αy “ xz0, αy ðñ 2xz, αy “ 2xz0, αy “: m P R,

i.e.,
ᾱz ` αz̄ “ m.

7.3. Transformacions de Möbius

7.3.1. Donada una homografia T pzq “ az`b
cz`d , definim AT :“

ˆ

a b
c d

˙

, que està definit

mòdul constant multiplicativa. Per exemple, les matrius

ˆ

1 b
0 1

˙

,

ˆ

a 0
0 1

˙

,

ˆ

0 1
1 0

˙

cor-

responen respectivament a la translació z ÞÑ z ` b, a la dilatació z ÞÑ az i a la inversió
z ÞÑ 1{z.

a) Donades T1, T2 P M, demostreu que AT2˝T1 “ AT2AT1 (mòdul constant multiplicativa).

b) Trobeu T´1 i relacioneu-la amb AT1. Ž
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Solució: (proposada per Ada López del Castillo Avilés)

a) Per demostrar que
AT2˝T1 “ AT2AT1 ,

veurem que els dos costats de la igualtat donen el mateix. Anomenem

T1pzq “
az ` b

cz ` d
, T2pzq “

a1z ` b1

c1z ` d1

Per la primera part de la igualtat, hem de calcular la matriu de la composició:

pT2 ˝ T1qpzq “ T2pT1pzqq “
a1paz`b

cz`dq ` b1

c1paz`b
cz`dq ` d1

“
pa1a` b1cqz ` pa1b` b1dq

pc1a` d1cqz ` pc1b` d1dq
.

Per la segona part de la igualtat hem de calcular el producte de les, dues matrius:

AT2AT1 “

„

a1 b1

c1 d1

ȷ „

a b
c d

ȷ

“

„

a1a` b1c ba1 ` db1

c1a` d1c d1d` bc1

ȷ

.

Ja veiem que és el mateix.
b) Calculem T´1:

w “
az ` b

cz ` d
ùñ w ¨ pcz ` dq “ az ` b ùñ dw ´ b “ z ¨ pa´ cwq ùñ

dw ´ b

a´ cw
“ z.

Per tant la inversa és:

T´1pwq “
dw ´ b

´cw ` a
.

Notem que coincideix amb la inversa matricial mòdul constant multiplicativa (el determi-
nant!).

7.3.2. Demostreu que tota T P M es pot escriure com a composició de dilatacions, trans-
lacions i inversions. Ž

Solució: (proposada per Marta Merino Sánchez) Utilitzem la següent nomenclatura

per

• la dilatació Dapzq “ az,

• la translació Tbpzq “ z ` b

• la inversió Ipzq “ 1
z

Tenim que T pzq “ az`b
cz`d

Si suposem que c ‰ 0, llavors fem la divisió i tenim que

az ` b

cz ` d
“
a

c
`
bc´ ad

c
pcz ` dq´1
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Per tant, ho podem escriure com la composició següent

T “ Ta
c

˝D bc´ad
c

˝ I ˝ Td ˝Dc

Ara, si c “ 0, tenim que T pzq “ a
dz` b

d , i per tant ho podem escriure com la composició
següent

T “ T b
d

˝Da
d
.

Solució alternativa: (proposada per Tomàs Planelles Alonso) Identifiquem, mòdul cons-
tant multiplicativa, l’aplicació T pzq “ az`b

cz`d , on ad´ bc ‰ 0 amb la matriu

AT “

ˆ

a b
c d

˙

com en l’exercici 7.3.1.
Com que AT és invertible ja que det pAT q “ ad ´ bc ‰ 0 tenim que AT és producte de

matrius elementals. Si relacionem cada matriu elemental amb una de les tres homografies
elementals —translacions, dilatacions i inversions— ja ho tindrem ja que el producte de
matrius correspon, sota la identificació anterior, a la composició d’homografies.
Recordem quines són les matrius elementals de M2pCq: Siguin µ, λ P C˚ “ Czt0u,

P p1, 2q :“

ˆ

0 1
1 0

˙

, Dp1, λq :“

ˆ

λ 0
0 1

˙

, Dp2, λq :“

ˆ

1 0
0 λ

˙

,

Ep1, 2, µq :“

ˆ

1 µ
0 1

˙

i Ep2, 1, µq :“

ˆ

1 0
µ 1

˙

.

Clarament, P p1, 2q, Dp1, λq i Ep1, 2, µq són les corresponents a les homografies elemen-
tals. D’altra banda, al tenir una correspondència mòdul constant multiplicativa, tenim
que les matrius

Dp2, λq i

ˆ

λ´1 0
0 1

˙

s’identifiquen amb la mateixa homografia, λ´1z. Aix́ı doncs, només queda veure qui és
Ep2, 1, µq. Fixem-nos, però, que

P p1, 2qEp1, 2, µqP p1, 2q “ Ep2, 1, µq.

Per tant, substituint les matrius Dp2, λq i Ep2, 1, µq si cal, la descomposició d’AT ens
dona una descomposició de T en homografies elementals.

7.3.3. Trobeu una descomposició en dilatacions, translacions i una inversió de la trans-
formació

T pzq “
2z ` i

p1 ´ iqz ` 3i
. Ž
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Solució: (proposada per Tomàs Planelles Alonso) Tal i com s’ha vist a l’exercici 7.3.2,

tenim que

T pzq “
2z ` i

p1 ´ iqz ` 3i
“ 1 ` i`

3 ´ 2i

p1 ´ iqz ` 3i
.

Per tant, seguint la notació de la solució de l’exercici 7.3.2,

T “ T1`i ˝D3´2i ˝ I ˝ T3i ˝D1´i.

7.3.4. Demostreu que tota T P M envia circumferències generalitzades a circumferències
generalitzades. Ž

Solució: (proposada per Tomàs Planelles Alonso) Com que tota homografia es pot

descompondre en translacions, dilatacions i inversions i les dilatacions i translacions porten
rectes a rectes i circumferències a circumferències, només hem de comprovar com actua la
inversió sobre circumferències generalitzades.
Sigui T pzq “ 1{z i r una recta d’equació

ᾱz ` αz̄ “ m

on α P C˚ i m P R, vegeu l’exercici 7.2.2. Recordem que, si escrivim w :“ T pzq “ z´1,
aleshores

w “ |w|2z̄,

i.e.,
z “ |z|2w̄.

Aix́ı, si m ‰ 0,
ᾱz ` αz̄ “ m ðñ ᾱw̄ ` αw “ |w|2m.

Podem arreglar-ho un pèl més per tal de tenir exactament l’equació descrita a l’apartat
(a) de l’exercici 7.2.2:

|w|2 ´

´ ᾱ

m

¯

w̄ ´

´ ᾱ

m

¯

w “

∣∣∣ ᾱ
m

∣∣∣2 ´

∣∣∣ ᾱ
m

∣∣∣2 ,
que és l’equació d’una circumferència de centre ᾱ{m i radi |α{m|, en particular passa per
l’origen i la tangent a l’origen té el pendent conjugat al de la recta original.
Si m “ 0, per a tot z ‰ 0 tenim que

ᾱw̄ ` ¯̄αw “ 0,

que és una recta perpendicular a ᾱ (i també conté T p0q “ 8). Per tant, té el pendent
conjugat al de la recta original.
És a dir, T envia rectes a circumferències generalitzades. D’altra banda, sigui C una

circumferència d’equació
|z|2 ´ αz̄ ´ ᾱz “ r2 ´ |α|2,
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on α P C i r P R`. Tenim que, escrivint w :“ T pzq, si r2 ´ |α|2 ‰ 0,

|z|2 ´ αz̄ ´ ᾱz “ r2 ´ |α|2 ðñ 1 ´ αw ´ ᾱw̄ “ |w|2pr2 ´ |α|2q.

Aix́ı,

|w|2 ´

ˆ

ᾱ

|α|2 ´ r2

˙

w ´
ᾱ

|α|2 ´ r2
w̄ “

1

r2 ´ |α|2
,

és a dir, obtenim una circumferència. Si la circumferència original talla la circumferència
unitat en dos punts, aleshores les imatge d’aquests dos punts són els seus conjugats, i
per tant la circumferència imatge té també dos punts de tall conjugats als primers. Si
l’original fos tangent exterior, aleshores la imatge seria tangent interior amb punt de
tangència conjugat.

Si r2 ´ |α|2 “ 0, és a dir que 0 P C, aleshores per tot z ‰ 0 tenim que

¯̄αw ` ᾱw̄ “ 1,

una recta (i també conté T p0q “ 8). Notem que aquesta recta té el pendent conjugat al
de la tangent a l’origen de la recta original.
En resum, T envia circumferències generalitzades a circumferències generalitzades. Per

tant, tota T P M envia circumferències generalitzades a circumferències generalitzades.

7.3.5. Sigui fpzq “ z´1
z`1 . Quina és la imatge per f de

a) la recta real, b) BD2p0q, c) BD, d) l’eix imaginari.

I per gpzq “ z´i
z`i? Ž

Solució:

a) fpRq “ Rzt1u, gpRq “ BDzt1u,

b) fpBD2p0qq “ BD4{3p5{3q (talla R en angle recte a 3 i 1{3),

gpBD2p0qq “ tcercle que talla BD perpendicularment a 3˘4i
5 u

c) fpBDq “ teix imaginariu Y t8u, gpBDq “ teix imaginariu Y t8u,

d) fpiRq “ BDzt1u, gpiRq “ Rzt1u.

7.3.6. Troba l’homografia que envia pi, 0,´1q a p´i, 0,8q. Ž

Solució: T pzq “
zp´1´iq

z`1 .

7.3.7. Demostra el corol.lari 7.16. Ž
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Solució: Sigui T1 l’homografia que envia pz1, z2, z3q a p0, 1,8q, i T2 la que envia

pw1, w2, w3q a p0, 1,8q. Aleshores T “ T´1
2 ˝ T1 envia pz1, z2, z3q a pw1, w2, w3q. Falta

veure que és única. Si n’hi hagués una altra S, aleshores T2 ˝ S ˝ T´1
1 fixa p0, 1,8q i, per

tant, és la identitat, de manera que S “ T´1
2 ˝ T1 “ T .

7.3.8. Troba una homografia que envïı D a tIm z ą 0u. Ž

Solució: Per exemple, p1, i,´1q ÞÑ p0, 1,8q, i queda T pzq “ ´i z´1
z`1 .

7.3.9. Sigui a P C, a ‰ 0 i definim

T1pzq “
z ´ 1

2z ´ i
, T2pzq “

z ` 1

iz ´ 1
, T3pzq “

iz

p1 ` iq ´ z
, T pzq “

z

az ` 1
.

Trobeu
T´1
3 ˝ T2 ˝ T1, Tm,m P Z. Ž

Solució: (proposada per Ada López del Castillo Avilés) Considerem les matrius asso-

ciades a cada transformació, tenint en comte que en el cas de T3 ens demana la inversa,
llavors tenim:

AT1 “

„

1 ´1
2 ´i

ȷ

, AT2 “

„

1 1
i ´1

ȷ

, A´1
T3

“

„

1 ` i 0
1 i

ȷ

.

Per l’exercici 7.3.1, hem de resoldre el producte de les matrius, vigilant l’ordre:

AT´1
3 ˝T2˝T1

“ A´1
T3
AT2AT1 .

Llavors, fent els càlculs, tenim:

A´1
T3

¨AT2 ¨AT1 “

„

3 ` 3i ´2i
2 ´ 2i ´1 ´ i

ȷ

.

Ara per Tm: La matriu associada de T(z) és:

AT “

„

1 0
a 1

ȷ

.

Si calculem T 2, notem:

AT 2 “

„

1 0
a 1

ȷ

¨

„

1 0
a 1

ȷ

“

„

1 0
2a 1

ȷ

.

Per inducció acabem veient que:

Am
T “

„

1 0
ma 1

ȷ

.
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7.3.10. Trobeu totes les T P M que tinguin per punts fixos 0 i ´i. Ž

Solució: (proposada per Ada López del Castillo Avilés i Miguel Puelma Mart́ınez) Un

punt fix és aquell que:

az ` b

cz ` d
“ z ùñ cz2 ` zpd´ aq ´ b “ 0.

Volem trobar a, b, c, d tals que T p0q “ 0 i T p´iq “ ´i. Ho reeescribim com

cz2 ` zpd´ aq ´ b “ cpz ` 0qpz ` iq ùñ cz2 ` zpd´ aq ´ b “ cz2 ` ciz.

Com que la matriu d’una homografia està determinada mòdul constant multiplicativa,
podem dividir tots els coeficients per c sempre que c ‰ 0 i suposar que c “ 1. Aix́ı, si
c ‰ 0, veiem que els valors que satisfan la igualtat són b “ 0, c “ 1 i pd´ aq “ i, per tant
les transformacions que busquem són:

T pzq “
az

z ` pi` aq
per a tot a P C.

Si c “ 0, aleshores pd´ aq “ 0 i b “ 0, la transformació que busquem és:

T pzq “ z

(tot i que en aquest cas 0 i ´i no són els únics punts fixos).
Alternativa: enlloc de factoritzar el polinomi al principi del raonament, es pot substituir

directament la primera identitat amb T p0q “ 0 per trobar b “ 0 i T p´iq “ ´i per trobar
´c´ ipd´ aq “ 0.

7.3.11. Trobeu T P M tal que T p1 ´ iq “ 1 ` i, T p2q “ i, T p1 ` iq “ ´i. Ž

Solució: (proposada per Miguel Puelma Mart́ınez)

Pel lema 7.15, sabem que hi ha homografies S,U P M tals que Sp1 ´ iq “ 0, Sp2q “ 1,
Sp1`iq “ 8, Up1`iq “ 0, Upiq “ 1 i Up´iq “ 8. Per tant, T :“ U´1˝S és una homografia
que compleix per construcció les condicions de l’enunciat. Recordem que l’homografia que
envia z1 ÞÑ 0, z2 ÞÑ 1 i z3 ÞÑ 8 té matriu

ˆ

z2 ´ z3 ´pz2 ´ z3qz1
z2 ´ z1 ´pz2 ´ z1qz3

˙

.

Substituint els valors, s’obté

AS “

ˆ

1 ´ i 2i
1 ` i ´2i

˙

i AU “

ˆ

2i 2p1 ´ iq
´1 ´i

˙

.

Per tant, només cal calcular

AT “ A´1
U AS “

ˆ

´i ´2p1 ´ iq
1 2i

˙ˆ

1 ´ i 2i
1 ` i ´2i

˙

“

ˆ

´5 ´ i 6 ` 4i
´1 ` i 4 ` 2i

˙

,
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on les igualtats són a GL2pCq{C˚I2 “: PGL2pCq —el grup projectiu lineal—, i.e., mòdul
constants multiplicatives. Obtenim que

T pzq “
p´5 ´ iqz ` 6 ` 4i

p´1 ` iqz ` 4 ` 2i
.

7.3.12. Siguin C1 i C2 dues circumferències generalitzades i z1 P C8zC1, z2 P C8zC2.
Demostreu que existeix T P M tal que T pC1q “ C2 i T pz1q “ z2. Podeu fer servir
l’Exercici 1.1.10. Trobeu una d’elles en el cas particular

C1 “ tz : |z ´ 1| “ 1u, z1 “ 1;C2 “ tz : z̄i “ zu, z2 “ i.

Ž

Solució: (proposada per Tomàs Planelles Alonso)

Considerarem primer uns quants casos i després els ajuntarem tots. Cal tenir present els
resultats de l’exercici 7.3.4. Sigui r una recta, BDrpaq una circumferència i z1 R BDrpaqYr.

• Si considerem la recta r, notem que 0 R r ´ z1 —és a dir, estem en el cas m ‰ 0
per la recta r ´ z1 de l’exercici 7.3.4—. Per tant, la imatge de r per I ˝ T´z1 és una
circumferència per l’exercici 7.3.4 i pI ˝ T´z1qpz1q “ 8.

• Si considerem la circumferència i z1 “ 8 considerem T :“ D1{r ˝ T´a, aleshores,
T pBDrpaqq “ BD i T p8q “ 8.

• Si considerem la circumferència i z1 ‰ 8 aleshores tenim que I ˝ T´z1 verifica pI ˝

T´z1qpz1q “ 8 i, ja que 0 R BDrpaq ´ z1 –és a dir, estem en el cas r2 ´ |α|2 ‰

0 per la circumferència BDrpaq ´ z1 de l’exercici 7.3.4–, I ˝ T´z1pBDrpaqq és una
circumferència de radi r1 i centre α1. Aleshores, D1{r1 ˝ T´α1 ˝ I ˝ T´z1pBDrpaqq “ D
i D1{r1 ˝ T´α1 ˝ I ˝ T´z1pz1q “ 8.

En resum, donada qualsevol circumferència generalitzada i qualsevol punt que no per-
tany a la circumferència generalitzada, existeix una homografia que porta aquesta cir-
cumferència generalitzada al disc BD i el punt a l’infinit. Com que tota homografia és
invertible, tenim el que voĺıem demostrar.
Pel cas concret procedim igual. Tenim que C1 “ BD1p1q i z1 “ 1. Aix́ı, T´1pC1q “ BD

i, per l’exercici 7.3.4, IpBDq “ BD, d’altra banda, I ˝ T´1pz1q “ Ip0q “ 8. Hem arribat a
on voĺıem. En segon lloc, l’equació de C2 és

p1 ´ iqz̄ ` p1 ` iqz “ 0.

Com que z2 “ i considerem r :“ T´ipC2q que és una recta del mateix pendent que passa
pel ´i, per tant, té equació

p1 ´ iqz̄ ` p1 ` iqz “ 2.

Aix́ı, per l’exercici 7.3.4, Iprq “ BD1{
?
2p1{2 ` i{2q. Aleshores, pD?

2 ˝ T´1{2´i{2 ˝ I ˝

T´iqpC2q “ BD i pD?
2 ˝ T´1{2´i{2 ˝ I ˝ T´iqpz2q “ 8. Per tant,

pD?
2 ˝ T´1{2´i{2 ˝ I ˝ T´iq

´1 ˝ I ˝ T´1

és l’homografia que busquem. Usant que T´1
a “ T´a, D

´1
r “ D1{r i I´1 “ I podem

calcular-la fàcilment.
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7.4. Raó doble i simetria

7.4.1. Sigui T P M tal que T pDRpaqq “ DRpaq. Demostreu que els punts fixos de T estan
a BDRpaq o bé són simètrics respecte BDRpaq. Ž

7.5. Automorfismes

7.5.1. Demostra que tota representació conforme de C8 en C8 és una homografia. Ž

Solució: Sigui f : C8 Ñ C8 una representació conforme, que per tant és holomorfa i

bijectiva a tot z P C8. Si fp8q “ 8, aleshores f |C : C Ñ C també és una representació
conforme i, per tant, fpzq “ az`b amb a ‰ 0 pel teorema 7.24. Si, en canvi, fp8q “ c ‰ 8,
considerem gpzq “ 1

fpzq´c . Com que f és bijectiva, fpzq ‰ c al pla complex i, per tant,
g : C Ñ C està ben definida, és holomorfa i bijectiva. Altra vegada pel teorema 7.24 tenim
que gpzq “ az ` b amb a ‰ 0 i per tant

fpzq “
1

az ` b
` c.

Si c “ 0, aleshores ja hem acabat ja que b ¨ 0 ´ 1 ¨ a “ a ‰ 0. Si no,

fpzq “
1 ` caz ` bc

az ` b
,

que és una homografia perquè ca ¨ b´ a ¨ p1 ` bcq “ ´a ‰ 0.

7.5.2. Troba tots els automorfismes T de D tals que T p1{2q “ 1{3. Ž

7.5.3. Trobeu totes les representacions conformes del disc unitat en ell mateix que envien
1{2 a 0. N’existeix alguna que envïı 0 a ´i{2? I 0 a ´i{4? Utilitzeu T per trobar una
representació conforme S que envïı BD a BD2piq tal que Sp1{2q “ i i Sp0q “ 0. Ž

Solució: Són T pzq “ eiθ 2z´1
2´z . Si prenem θ “ π{2, obtenim T pzq “ i2z´1

2´z , amb T p0q “

´i{2. No n’hi ha cap de les altres, ja que sigui qui sigui θ, sempre tenim que |T p0q| “
|´1|

2 “ 1{2.
Per trobar S cal usar fpzq “ 2z ` i. Aleshores f ˝ T p1{2q “ i, i f ˝ T p0q “ 0. Prenem

doncs S “ f ˝ T .

7.5.4. Demostreu que el lloc geomètric de les imatges de qualsevol punt b P D per les
transformacions que fixen la imatge d’un altre punt, és a dir

tw P D : w “ T pbq amb T P AutpDq, T paq “ rau,

és una circumferència. Ž
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Solució: Notem que donada T P AutpDq, T paq “ ra, per la unicitat tenim que T
ra ˝ T “

eiθTa. per algun θ. Per tant, escrivint

Tθ “ T
ra ˝ peiθTaq,

podem parametritzar el conjunt

F “ tw P D : w “ T pbq amb T P AutpDq, T paq “ rau

en termes d’aquest angle:
F “ twθ P D : w “ Tθpbqu.

Com que
eiθTapbq

és una circumferència centrada a l’origen, F és la imatge d’aquesta circumferència per T
ra,

que és una homografia i envia circumferències que no passen per T´1
ra p8q “ 1{ā R D a

circumferències.

7.6. Altres transformacions conformes

7.6.1. Quina és la imatge del primer quadrant per z3? Ž

Solució: Els tres primers quadrants (l’interior de la clausura, per ser precisos).

7.6.2. Quina transformació pot enviar una banda horitzontal a a un semiplà? Ž

Solució: L’exponencial.

7.6.3. Trobeu una aplicació de Riemann del sector t0 ă Arg z ă π{8u. Ž

Solució: z8´i
z8`i

.

7.6.4. Es pot enviar el semiplà superior a un triangle mitjançant una homografia? Ž

Solució: No, perquè es preserven els angles a tot el pla. Cal una altra representació.

7.6.5. Proveu que no existeix cap representació conforme del semiplà de la dreta en D1p1q

que envïı 1 ÞÑ 1, 0 ÞÑ 0 i 8 ÞÑ 1 ` i. Ž

7.6.6. Demostreu que les transformacions conformes del semiplà superior H` :“ tIm z ą

0u en D són de la forma eiθ z´a
z´ā per alguna a P H` i algun θ P R. Ž

7.6.7. Trobeu una transformació de Möbius que envïı el primer quadrant a D` “ DXH`.
Utilitzeu-la per a trobar una transformació conforme de H` a t|Re z| ă 1, Im z ą 0u. Ž
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Solució: Possible solució: Primera pregunta: z´1
z`1 . Segona:

´

1`eπiz

1´eπiz

¯2
.

7.6.8. Trobeu una representació conforme de t0 ă Re z ă π{2u en D. Ž

Solució: Possible solució: ´ie2iz´1
´ie2iz`1

7.6.9. Trobeu una representació conforme d’Ω1 en Ω2.

a) Ω1 “ D X H`, Ω2 “ H`.

b) Ω1 “ D, Ω2 “ H` X Dc
.

c) Ω1 “ D X tRe z ą 1{2u, Ω2 “ D X p´iH`q.

d) Ω1 “ H`, Ω2 “ t|Re z| ă 1, Im z ą 0u.

e) Ω1 “ D X p´iH`q, Ω2 “ D X t|z ` 1{2| ą 1{2u.

f) Ω1 “ D?
2p1q XD?

2p´1q, Ω2 “ D, que deixi invariant el segment p´i, iq.

g) Ω1 “ Dzr0, 1q, Ω2 “ Czr0,8q.

h) Ω1 “ t|Im z| ă π{2uzpp´8, 0s Y rln 2,`8qq, Ω2 “ D. Ž
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8. Fluids

8.1. Qüestions generals. Escenari i notació.

8.1.1. Proveu que Γ “ 0 en un flux potencial (suposeu que la funció potencial és de classe
C2 com a mı́nim). Ž

Solució: Per ser flux potencial tenim que V “ pV1, V2q “ ∇φ “ pφx, φyq llavors si

apliquem el teorema de Green a C “ BΩ tenim

˛
C
V1dx` V2dy “

˛
C
φxdx` φydy “

ˆ
Ω

pφyx ´ φxyqdxdy “ 0.

8.1.2. Proveu que per fluxos definits en un domini Ω Ă C que satisfan les quatre hipòtesis
anteriors, la velocitat potencial φpx, yq és una funció harmònica. Ž

Solució: Estem suposant Γ “ Q “ 0 és a dir que V “ ∇φ i que pV1qx ` pV2qy “ 0.

Llavors
φxx ` φyy “ pV1qx ` pV2qy “ 0

i φ és harmònica.

8.1.3. Proveu que Φ1pzq “ Vpzq “ V1 ` iV2. Ž

Solució:

Φ1pzq “ pφ` iψq1 “ φx ` iψx “ φx ´ iφy “ φx ` iφy “ V1 ` iV2.

8.2. Fluxos bàsics.

8.2.1. Superposició. Sumant diferents potencials complexos es poden descriure fluxos més
sofisticats. Un exemple important s’obté sumant una font al punt ´a amb una pica al punt
a:

Φpzq “ k logpz ` aq ´ k logpz ´ aq “ k log

ˆ

z ` a

z ´ a

˙

.

Trobeu l’expressió de V, V , φ i ψ. Dibuixeu les ĺınies de corrent (ψ “ c). Ž
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Figura 8.1.: Superposició amb a “ 1.

Solució: Φpzq “ kplog

ˇ

ˇ

ˇ

ˇ

z ` a

z ´ a

ˇ

ˇ

ˇ

ˇ

` i arg

ˆ

z ` a

z ´ a

˙

q “ φ ` iψ. La condició ψ “ c equival a

que Imp z`a
z´aq{Rep z`a

z´aq és constant. Però

z ` a

z ´ a
“

pz ` aqpz̄ ´ aq

|z ´ a|2
“

|z|2 ´ a2 ` apz̄ ´ zq

|z ´ a|2
“

|z|2 ´ a2 ´ 2iay

|z ´ a|2

i les corbes de flux venen donades per equacions de la forma |z|2 ´ a2 “ Cy. O bé

x2 ` py ´ C{2q2 “ a2 ` C2{4

que són circumferències que passen pels punts ´a i a. Pel flux resulta

V “ Φ1pzq “ k

ˆ

1

z̄ ` a
´

1

z̄ ´ a

˙

“
´2ka

pz̄ ´ aqpz̄ ` aq
“ ´2ka

z2 ´ a2

|z ´ a|2|z ` a|2
.

i

V “ ´
2ka

|z ´ a|2|z ` a|2
px2 ´ y2 ´ a2 ` 2xyiq.

Tenim

V “
2|ka|

|z ´ a||z ` a|
.

8.2.2. En l’exercici anterior, fem a Ñ 0 i k Ñ 8 de manera que 2ka “ µ sigui finit. Veure
que al ĺımit obtenim el potencial complex Φpzq “ µ{z que s’anomena doblet o dipol. Ve
a ser una font i una pica separades per una distància infinitesimal. La quantitat 2πµ
s’anomena moment del doblet. Trobeu l’expressió de V, V , φ i ψ. Dibuixeu les ĺınies de
corrent (ψ “ c). Ž
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Solució: Fem el ĺımit quan a tendeix a zero i k “ µ{2a. Tenim

lim
aÑ0

µ

2a
log

ˆ

z ` a

z ´ a

˙

“
0

0
“ lim

aÑ0

µplog
´

z`a
z´a

¯

q1

2
“ lim

aÑ0

µ

2

z ´ a

z ` a

pz ´ aq ´ p´1qpz ` aq

pz ` aq2
“
µ

z
.

Com que Φpzq “ µ
x´ iy

x2 ` y2
resulta que φpx, yq “ µx{px2 `y2q i ψpx, yq “ ´µy{px2 `y2q.m

Les ĺınies de flux (ψ “ c) són les corbes de nivell de y{px2 ` y2q, és a dir les donades per
equacions x2 ` y2 ` Cy “ 0 que podem escriure com x2 ` py ` C{2q2 “ C2{4. Es tracta
de circumferències amb centre a l’eix OY que passen per l’origen.

V “ Φ1pzq “ ´
µ

z2
“ ´µ

z2

|z|4
“ ´

µ

|z|4
px2 ´ y2 ` 2ixyq, V “

µ

|z|2
.

El dibuix del flux és:

8.2.3. Font-remoĺı. Estudiar el flux amb funció potencial Φpzq “
Γ ` iQ

2πi
logpz ´ aq.

Discutiu segons els valors de Γ (circul.lació o intensitat) i Q (potència). Feu dibuixos de
les ĺınies de camp segons els signes de Γ i Q. Ž

Solució: Per simplificar l’estructura sigui λ “ α ` iβ “
Γ ` iQ

2πi
. Llavors

Φpzq “ pα log |z ´ a| ´ β argpz ´ aqq ` ipβ log |z ´ a| ` α argpz ´ aqq

i
φ “ α log |z ´ a| ´ β argpz ´ aq, ψ “ β log |z ´ a| ` α argpz ´ aq.

Com que Φ1pzq “
λ

z ´ a
resulta que

˛
C
Φ1pzqdz “ Γ ` iQ
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on C és un circuit al voltant de a recorregut en sentit antihorari. Pel camp tenim que

V “ Φ1pzq “
λ̄

|z ´ a|2
pz ´ aq, V “

|λ|

|z ´ a|2
.

Veiem que la direcció de V en cada punt z s’obté girant i dilatant la direcció radial z ´ a
segons el que diu la constant λ̄ “ re´iδ “ pQ` iΓq{2π. Veure les figures adjuntes.

156



8. Fluids

8.3. Obstacles

8.3.1. Modifiquem el flux amb potencial donat per fpzq “ logpz ` 2q que és una font
sortint des del punt z “ ´2 (vist en un exemple/exercici anterior). Per això considerem
la modificació donada pel potencial

Φpzq “ fpzq ` f

ˆ

1

z̄

˙

“ logpz ` 2q ` log

ˆ

1

z̄
` 2

˙

.

a) Descomposeu Φ en fluxos coneguts.

b) Calculeu Φ1pzq i confirmeu el que es demostra a l’apartat anterior.

c) Vegeu que per z amb |z| molt gran resulta Φ1pzq «
1

z ` 2
i que llavors lluny de z “ ´2

el flux associat a Φ és com una font sortint de z “ ´2.

d) Mostreu amb un gràfic com eviten el disc unitari les ĺınies de flux (feu servir contour_plot
i streamline_plot). Ž

Solució: a) Abans de res observem que si z “ reiθ llavors logpzq “ log r ´ iθ “

log r ` ip´θq “ logpz̄q. Llavors logp1{z̄ ` 2q “ ¨ ¨ ¨ “ logp2q ´ log z ` logpz ` 1{2q i

Φpzq “ logpz ` 2q ` logpz ` 1{2q ´ logpzq ` logp2q.

Analitzem els quatre sumands

• logpz ` 2q és la font sortint original al punt ´2.

• logpz ` 1{2q és una font sortint al punt ´1{2 dins de la circumferència invariant.

• ´ logpzq és una font entrant a l’origen.

• logp2q és un terme constant que no afecta a les trajectòries (les corbes de nivell no
canviem de forma, només de nivell d’energia’).

Podem fer un esquema gràfic com es veu a la figura:
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b) Φ1pzq “
1

z ` 2
`

1

z ` 1{2
´

1

z
que correspon al que s’ha dit abans.

c) Quan |z| Ñ 8 resulta que Φpzq « logpz ` 2q i la seva derivada s’acosta a 1
z`2 . Des

de molt lluny el flux es veu com una font lineal des del punt z “ ´2.
d) El gràfics adjunts amb streamline plot i amb contour plot mostren clarament

el comportament.
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8.4. Expressió general (recapitulació).

8.4.1. Pels z on Vpzq “ Φ1pzq “ 0 diem que hi ha un punt estacionari del corrent (per
exemple és aquell punt d’un riu on una fulla petita s’ha quedat aturada però que al seu
voltant circula l’aigua).

a) Per Φpzq “ zn el 0 és un punt estacionari d’ordre n ´ 1. Feu un dibuix amb les ĺınies
de flux i les ĺınies equipotencials superposades per n “ 2, 3, 4.

b) Podeu deduir experimentalment quin angle formen les ĺınies equipotencials i les ĺınies
de flux?

c) Proveu que si un punt estacionari a és un zero d’ordre n ´ 1 llavors les ĺınies equipo-
tencials i de corrent (φ “ ct., ψ “ ct.) formen un angle π{2n en el punt estacionari
(feu-lo com a mı́nim pel cas Φ1pzq “ Czn´1, C P C). Quin angle formen una ĺınia de
corrent i una ĺınia equipotencial quan es creuen en un punt no estacionari?

Solució: a) Fem els gràfics de les corbes de nivell per φ (equipotencials, vermell) i per

ψ (corrent, blau) per zn, n “ 1, 2, 3, 4.:
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b) Mirant els gràfics es dedueix que ha de ser π{2n.
c) Fem el cas Φpzq “ zn. Si z “ reiθ llavors Φpzq “ rneiθ “ rnpcosnθ ` i sinnθq.

Aleshores
φpr, θq “ rn cosnθ, ψpr, θq “ rn sinnθ.

Les ĺınies de corrent i les ĺınies equipotencials que passen 0 són aquelles que φ “ 0 “ ψ
respectivament. És a dir, les equipotencials per 0 són aquelles que cosnθ “ 0 que equival
a nθ “ π{2 ` kπ i les ĺınies de corrent les corbes donades per nθ “ rπ.

• Equipotencials, φ “ 0: θ “ π{2n` kπ{n, k “ 0, . . . , 2n´ 1.

• Ĺınies de corrent, ψ “ 0: θ “ rπ{n, k “ 0, . . . , 2n´ 1.

És clar que els angles entre ĺınies de corrent i ĺınies equipotencials consecutives és π{2n.
El cas general es pot fer amb arguments de continüıtat (no és simple).
En un punt no estacionari l’angle que formen les linies de flux i les equipotencials és π{2

(són ortogonals).

8.4.2. Discutir el moviment del fluid amb potencial complex igual a

a) Φpzq “
Γ ` iQ

2πi
log

ˆ

z ´ a

z ´ b

˙

on a, b P C i Q,Γ P R..

b) Φpzq “ az `
Γ

2πi
logpzq on a,Γ ą 0.
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c) Φpzq “ az `
Q

2π
logpzq on a,Q ą 0.

d) Φpzq “
p

2πz
`

Γ

2πi
logpzq on p,Γ ą 0. Ž

Solució:

a) Tenim pols a a i b on hi ha fonts-remolins. En efecte si C “ pΓ ` iQq{2πi llavors

Φ1 “ C
´

1
z´a ´ 1

z´b

¯

i si γa i γb són petits circuits al voltant de a, b respectivament

˛
γ2

Φ1pzqdz “ Γ ` iQ,

˛
γ2

Φ1pzqdz “ ´Γ ´ iQ.

Tenim fonts-remolins pa,Γ, Qq i pb,´Γ,´Qq. Per exemple, si Γ, Q ą 0 de a surt girant en
sentit antihorari i a b arriba girant en sentit horari. Si Φ “ φ` iψ i C “ α ` iβ llavors

φ “ α log

ˇ

ˇ

ˇ

ˇ

z ´ a

z ´ b

ˇ

ˇ

ˇ

ˇ

´ β arg

ˆ

z ´ a

z ´ b

˙

, ψ “ α arg

ˆ

z ´ a

z ´ b

˙

` β log

ˇ

ˇ

ˇ

ˇ

z ´ a

z ´ b

ˇ

ˇ

ˇ

ˇ

.

Si denotem
z ´ a

z ´ b
“ ρeiθ les corbes de corrent ψ “ k venen donades per

log ρ “
Q

Γ
ρ` k

que són espirals logaŕıtmiques entre a i b. També tenim que

V “
Γ ´ iQ

´2πi

ā´ b̄

pz̄ ´ āqpz̄ ´ b̄q
, V “

|Γ ` iQ|

2π

|a´ b|

|z ´ a||z ´ b|
.

b) Aqúı a z “ 0 hi ha un remoĺı i quan z Ñ 8 el flux potencial és com az, flux constant.
De fet

Φ1pzq “ a`
Γ

2πi

1

z
, V “ a`

Γ

2πr
eipθ`π{2q, V8 “ a.
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Veiem que a z “ Γi{2πa tenim un punt estacionari (on la velocitat es fa zero). Amb això
podem fer un esboç del flux, veure la figura següent.

c) En aquest cas sumen un flux lineal (az) i una font/pica (Q{2π logpzq). Tenim

Φ1pzq “ a`
Q

2π

1

z
, V “ a`

Q

2πr
eiθ, V8 “ a.

Veure figura següent:
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d) És la superposició d’un dipol i un remoĺı. Hi ha un pol a z “ 0. Observem que

Φ1pzq “ ´
p

2π

1

z2
`

Γ

2πi

1

z
. Llavors Φ1pzq “ 0 per z “ ip{Γ. Veure les figures següents:

Suma d’un doblet i un remoĺı. Punt estacionari a ip{Γ:

Suma d’un doblet i un remoĺı. Punt estacionari a ip{Γ. A dalt o a baix segons els signes
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de p i Γ:

8.4.3. Discutir el moviment del fluid amb potencial complex

Φpzq “ V0

ˆ

z `
R2

z

˙

`
Γ

2πi
logpzq, amb Γ, V0, R ą 0.

Particularment estudieu els casos Γ ă 4πRV0, Γ ą 4πRV0 i Γ “ 4πRV0. Dibuixeu exemples
de cadascun dels casos. Ž

Solució: És la superposició d’un flux lineal a l’infinit que ‘supera’ la circumferència

|z| “ R i un remoĺı al zero. És un flux molt interessant ja que cobreix tots els possibles
fluxos que tenen a |z| “ R com a ĺınia de flux i a l’infinit tenen potencial complex que
s’acosta a V0z (veure Markushevich II, p. 193). Tenim

Φpzq “ V0

ˆ

r `
R2

r

˙

cos θ `
Γ

2π
θ ` i

ˆ

V0

ˆ

r ´
R2

r

˙

sin θ ´
Γ

2π
log r

˙

.

Llavors

φpx, yq “ V0

ˆ

r `
R2

r

˙

cos θ `
Γ

2π
θ

ψpx, yq “ V0

ˆ

r ´
R2

r

˙

sin θ ´
Γ

2π
log r
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i les ĺınies de flux venen donades per V0

ˆ

r ´
R2

r

˙

sin θ ´
Γ

2π
log r “ β.

Quan |z| “ R resulta que ψ “ ´Γ logR{2π que és constant, llavors |z| “ R és una ĺınia
de corrent i el flux es pot pensar com un flux que circula al voltant de l’obstacle ciĺındric
donat per |z| “ R. Ja em dit que a l’infinit és el flux amb velocitat constant V0.
Els punts estacionaris o d’estancament es donen quan Φ1pzq “ 0 i això passa quan

Φ1pzq “ V0

ˆ

1 ´
R2

z2

˙

`
Γ

2πi

1

z
“ 0. Com que z ­“ 0 aixó passa quan

z “
1

4πV0

ˆ

˘

b

16π2V 2
0 R

2 ´ Γ2 ` iΓ

˙

.

Tenim tres casos interessants

• Γ “ 4πV0R. En aquest cas hi ha un únic punt estacionari a z “ iΓ{p4πV0q “ iR que
està a la circumferència |z| “ R.

• Γ ă 4πV0R. Ara tenim com a punts estacionaris z1, z2 que són també a |z| “ R, la
seva part imaginària és Γ{4πV0 i les parts reals són simètriques respecte de l’eix OY.

• Γ ą 4πV0R. Ara tenim un punt estacionari dins de |z| “ R i un altre fora, són

z1, z2 “
1

4πV0

ˆ

˘

b

Γ2 ´ 16π2V 2
0 R

2 ` Γ

˙

i.

Podem veure els gràfics per cada cas a la figura següent:
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8.4.4. Donar un potencial complex que té fonts-remolins tpak;Qk,Γkq : k “ 1, . . . , nu i
velocitat V8 “ V eiα a l’infinit. Ž

Solució: Φpzq “ V e´iαz `

n
ÿ

k“1

Γk ` iQk

2πi
logpz ´ akq.
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