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1. El cos dels nombres complexos

1.1. EIl cos dels nombres complexos

1.1.1. Doneu en forma a + bi:

. —145i : 2
a) (=1 +1i)?, ¢) St ) ' 2+ )
6i — (1 — 21)
‘ 9) (8 4+ 2i) — (1 —14)
b) B @+ ) (3 =1 = 3)i.
Solucio:
a) —2i, ¢) 1+1, e) (=253 — 204i),/4225,
b) 8 + 4, d) 33/25 — 19i/25, f) 6+ 5i.
1.1.2. Demostreu o doneu un contraexemple:
a) Re(z+w) =Rez+Rew, b) Re(zw) = (Rez)(Rew), ¢) Re(3) = gg;. <
Solucié:
a) Cert b) Fals c¢) Fals
1.1.3. Sigui z € C tal que Im (2) > 0. Proveu que Im (1/z) < 0. <

Solucié: Si z = x +iy amb y > 0 com que 1/z = (z —yi)/|z|? resulta que Im (1/2) < 0.

1.1.4. Siz =z +1iy on x,y € R, trobeu les parts real © tmaginaria de:

a) 22, c) L5, e) £k,
b) z(z+ 1), d) z%, f) 23. <
Solucié:
a) a? —y? + 2ayi ¢) (w=3—iy)/((w=3)2+y?), ) ZSrt2eobidy iy
. f) 23 — 3xy® +i(yx? —y° +
b) @ —y? +a+ Quy+y)i d) e 222y).
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1.1.5. Sigui (z + iy)/(x —iy) = a + ib. Proveu que a®> + b* = 1. <
Solucié: Notem per un canté que
(a+1ib) - (a +ib) = (a +ib) - (a — ib) = a® + b*.

Per altra banda, com que 1/z = 1/Z, tenim que

:E—I—z'yx—l—iy_:n+iy:n—iy_1
T—Wxr—1iy T—IYT+y

1.1.6. Proveu que —1 + i satisfa 2% + 2z + 2 = 0. <
Solucié: N’hi ha prou amb substituir: (—1+4)? +2(=1+1i) +2=---=0.
1.1.7. Escriviu l'equacié compleza 2> + 52% = z + 3i com dues equacions reals. <

Solucié: z2 — 3zy? + 522 — 5y —x = 0, 322y — v + 10y —y — 3 = 0.

1.1.8. a) Si z1, 22 sén complexos amb z1 + z2 i z122 Teals negatius proveu que z1,za SON
reals.

b) Proveu que el vector zy és paralilel al vector zg si i només si Im (2122) = 0. 4
Solucio:

a) Sizp = xp + Yk, tenim que y1 +y2 = 0,21 + 2 < 01 z122 —y1y2 < 0,1Yy2 + z2y1 = 0.
Llavors z1z2 + y? < 01 y1(w2 — 1) = 0. Si 1 = 0, llavors y2 = 01 21, 22 sén reals. Si
x1 = w2 tenim que z1xe > 0, llavors Re (z122) > 0 que no és possible per hipotesi.

Solucidé proposada per Tomas Planelles Alonso (amb una visié més constructivista):

Considerem el polinomi P(X) = X2 — (21 + 22) X + 2120 € R[X]. Notem que

Ap = (21 + 22)2 —4z129 2 0,

ja que z129 < 0. Aleshores, les dues arrels de P sén reals.

D’altra banda, tenim que P(z1) = P(z2) = 0 per construccié. Per tant, z; i zo sén
reals.

Comentaris: Notem que podem relaxar alguna de les hipotesi de I’enunciat; ens serveix
que 21 + 29 sigui real.
b) Volem provar que 21 || z2 <= Im(2z122) = 0.

(=) Per ser parallels resulta que zo = Az; (A real), llavors Im (z122) = zoy1 — 21y2 =
)\(CClyl - $1y1) = 0.

(=) Im (2122) = w2y1 — w1y2 = 0 tenim que x1/22 = y1/y2 i 21 || 22 quan z2 # 0 # yo.
Si xo = 0, aleshores 0 bé z0 =0 =0-21, 0 bé x1 =01 tenim 2z; = Azo € iR. Si yo = 0,
aleshores raonem analogament.
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1.1.9. Proveu analiticament i grafica que |z — 1| = |z — 1]. <

Solucié: Com que z és el simetric respecte de 'eix OX de z els dos punts estan a la

mateixa distancia de qualsevol punt de OX, en particular de 1. També podem veure que

2= 1P = (2= D= 1) = - 1%

—-b
1.1.10. Demostreu que —
1—ab

la] = [b] = 17

bl = 1. Quina excepcié cal fer si

’:15i|a|=10bé

—b

_‘<1ﬂhﬂ<1ﬂﬂ<1.
—ab B B

Per acabar, si per a € D definim @q(2) = {==, demostreu que @, : D — D, i és bijectiva
en D i en D, i doneu-ne la inversa. 4

a
Demostreu també que 1

Solucié: Suposem |a| = 1, I'altre cas es demostra igual per simetria.

a—ba ala—Db)
- = =a, a=b.
1—aba a—1>b ’ +
Si tenen modul 1 cal evitar que siguin iguals ja que en aquest cas dividim per 0.
Suposem ara |al, |b] < 1, tenim que

2

—b
a <1 e |a—b2<[l—ab]?® « |a2+[b]> <1+ |a?p]?

1—ab

i aixo equival a
(Jal* = 1)(b]* =1) >0
que és cert per ser |al, |b] < 1.
ue g : D — D es dedueix de I'apartat anterior. La bijectivitat es dedueix si veiem
2

que l'equacié w = ¢4 (2) té només una solucio, i usant que |za| = |z||a| < 1, obtenim
a—z _ w—a
w = — S w-—aw=a—2 &= ———— = 2,
1—az -1+ aw

d’on surt la bijectivitat (w e D o w e dD si z € D o z € dD altra vegada usant ’apartat
anterior).

1.2. Els nombres complexos com a espai vectorial
1.2.1. Descriviu els conjunts de punts del pla que satisfan:
a) 1 <Im(iz) < 2, ¢) |z =Rez +1, e) |z—2|>|z-3|,

b) Im % = 0,a € C*, d) |z —1] = |z +1, ) lz=1+]z+1=7 <
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Solucié:
a) {1 <Re(z) <2}; e) {Rez > 5/2};
b) z = at,t € R¥;
N £) (x/(7/2))*+(y/(3v/5/2))* = 1 que és una
_ 2 _1).
¢) Parabola z = (1/2)(y" — 1) ellipse, també podem escriure 180z2 +
d) Mediatriude 1i —i: y = —x; 196y? = 2205.

1.2.2. Suposem que a, — a i b, — b. Demostreu que a, + b, — a+b i apb, — ab, sabent
que ambdues propietats son certes a la recta real. 4

Solucié: La primera es deriva de ’estructura d’espai vectorial, i ja es va fer en cursos

anteriors.
La segona, en ser una operacio nova, cal demostrar-la:

Re (apb,) = Reay,Reb, — Ima,Imb, — ReaReb — Imalmb = Re (ab),

Im (apby,) = Reay,Imb,, + Ima,Reb, — Realmb + ImaReb = Im (ab).
Per (1.5) aixo implica

anb, — ab.

1.2.3. Digueu si les segiients successions son convergents i en cas afirmatiuv calculeu el
seu limit:

n+1 3in?
b
) n_ia C)

a) i" +

n+i n2 — 24

Solucié: a) No; b) 1, usant l'exercici 1.2.2; ¢) 3i, usant 'exercici 1.2.2.

Per exemple,
n—i—i_l—i—i/n 1_2,21-1—0_

n—i 1l-i/m  1+0

1.2.4. Estudieu la convergencia i la convergéncia absoluta de les series:
T

© % n
a) Z:me b) glg 4

Solucié: Cap convergeix absolutament. Pero sense modul, la part real i la imaginaria

son series alternades amb terme general tendint a 0. Per tant les dues series sén conver-
gents.

1.2.5. Demostreu el teorema de Mertens. q
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Solucié: Suposem «,, 3, > 0 per no escriure valors absoluts, i sigui A = Z;O:O o,
B = 27010:0 Bn. Donat ¢ > 0, existeix Ny € N tal que per N > Ny tenim que 0 <
A— ZTJLO an < 755 10<B - ZT]LO Bn < g5p- Aleshores

2N n N N N N
ZZakﬁn_kgABZZakﬁj=< Zak>B+< Zﬂj>20zk
n=0 k=0 k=07=0
13 3
SazpPtazpitce

Per altra banda,

2N n 2N 2N 2N
—zgakﬁn_k>AB—22akﬁj=(A—zak> ( m)zak
k=0 7=0

n=0 k=0 k=03=0
=0
1.2.6. Tota successio convergent {z,}n=0 < C satisfa que |zp+1 — zn| — 0. <
Solucié: Considerem wqg = zg, Wy ‘= Zpt1 — 2p per n = 1. Aleshores la successié

coincideix amb la suma parcial telescopica

de manera que z, és convergent si i només si >, _,wy ho és. En cas de ser-ho, la condici6
necessaria de convergencia (observacié ) aplicada a la serie diu que |zp4+1 — 2n| = |w,| — 0.

1.3. Repas de trigonometria

1.3.1. Demostreu tots els resultats de la seccio. q
1.3.2. Definim el sinus i el cosinus hiperbolics de x € R com

e¥ —e % et +e*

sinh(z) = 5 cosh(z) =

Demostra que se satisfan les segiients identitats:
a) sinh(0) =0 i cosh(0) = 1.

b) lim sinhz = lim coshz =+ i lim sinhz = —c0.

T—+00 r—+00 r——00
¢) sinh(—z) = — sinh(x) i cosh(—z) = cosh(z).
d) cosh?(z) — sinh?(z) = 1.
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e) cosh(z + y) = coshz cosh y + sinh z sinh y
f) sinh(z + y) = sinh x coshy + cosh  sinh y.
g) (sinhz) = coshz i (cosh(z))" = sinh(z). <

Solucié: Es pot calcular tot directament usant les propietats de la funcié = — e® per
x e R.

1.4. L’exponencial complexa

1.4.1. Fent servir la formula de de Moivre, trobeu expressions de sin 30 i sin46 en termes
de sinf 1 cos®. <

Solucié:

cos 30 4 isin 30 = (cos @ +isin )® = cos(0)> — 3 cos(0) sin(6)? + i(3 cos(#)? sin() — sin()>)

i amb aixd acabem. De manera similar sin46 = 4 cos3 6 sinf — 4 cosf sin® 0 i cos40 =
sin* @ — 6 cos? 6 sin% 6 + cos* 6.

1.4.2. Trobar les arrels de z* +1 = 0 i fer-les servir per veure que z* + 1 = (22 — /22 +
(22 + 2z +1). q

i37/4 Y L2

Solucié: Les arrels sén a = ¢™/* &, = ,B. Com que (z —a)(z —a) = 22 —

(a + @)z + aa = 22 — /22 + 1 i de manera similar per 3, els polinomis (z — a)(z — a) i

(z — B)(z — B) sbn els que es citen a I'enunciat.

1.5. Representacié polar d’un nombre complex

1.5.1. Trobeu la forma polar dels nombres segiients i dibuizeu-los.

a) 3(1+/31), b) 2¢/3 — 2i, ¢) —2+ 2, d) —1—i. a
Solucié:

a) 6(cos(m/3) + isin(m/3)); c) 2v/2(cos(3m/4) + isin(3m/4));

b) 4(cos(—n/6) + isin(—n/6)); d) v/2(cos(—3m/4) + isin(—37/4)).

1.5.2. Expresseu en forma cartesiana (a + ib) els segiients nombres:
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a) (2 + 3i)(4 + i), C) %H’ e) (1 — 2@')3, g) (1 +4)100 4 (1 — 4)100

b) (44 2i)? d) 5= Ao 42 h) AN a
) (4 +2i)7, ) 2437 f) 5 T 334 1—4

Solucié: (a) 5+ 14i; (b) 124 164; (c) 2% (d) £+ 24; (e) —11+2i; (f) £ — 2 4; (g) —2°%;
(h)—2 — 2i.

1.5.3. Fent servir el producte de (1 + i)(5 — i)* deduir la férmula de Machin': w/4 =
4 arctan(1/5) — arctan(1/239). q

Solucié: Abans de fer 'exercici cal que fem algunes observacions.

e En primer lloc que la funcié arctan(x) pren valors a (—m/2,7/2).
e En segon lloc que la funcié Arg(z) pren valors entre (—m,7].

o A més a més la igualtat Arg(z; - z2) = Arg(z1) + Arg(z2) només té sentit modul 27.
Per exemple

Arg(i(—1+1)) = Arg(—1—1) = =3n/4 + Arg(i) + Arg(—1+1i) = /2 +37w/4 = 5n /4
pero difereixen en 2.

Dit aixd observem que Arg(l + i) = /4 i esta en el primer quadrant, Arg(5 — i) =
arctan(—1/5) = — arctan(1/5) i esta en el quart quadrant, Arg((5—i)*) = —4 arctan(1/5) =
Arg(476—480i) que també esta en el quart quadrant. Resulta que (14i)(5—4)* = 4(239—1)
que estd en el quart quadrant i Arg((1 +14)(5 —)*) = arctan(—1/239) = — arctan(1,/239).
Llavors

7/4 = 4arctan(1/5) — arctan(1/239) + 27n.

Pero arctan(1/5) > arctan(1/239) d’on 0 < 4 arctan(1/5)—arctan(1/239) < 4 arctan(1/5) <
4arctan(1/y/3) = 27/3 llavors ha de ser n = 0 i tenim la igualtat.

1.5.4. Estudiar la convergéncia de {z(} si|zo| <1 o si|zo| > 1. q

Solucié: Donem per conegut que si 0 < r < 1 llavors limy, . 7™ = 01 que si r > 1

lavors lim,,_,q 7™ = 00. Aleshores si |z9] < 1 el limit és 0 i si és més gran que 1 el limit
és o0. El cas més interessant es dona quan |zg| = 1. Aleshores zg = 2™
(llevat d’un enter parell) els {2z} formen un conjunt finit de punts de la circumferéncia.
Si « és irracional és un conjunt infinit.

, i « és racional

1.5.5. Digueu si les segiients successions son convergents i en cas afirmatiu calculeu el
seu limit:

! John Machin (1706), podeu trobar més informacié a https://en.wikipedia.org/wiki/Machin-1like_
formula.
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) — _ . 1_. ’,’L
et s (1)
241 2nme
pamirr 0t (%)

Aqui hem escrit exp(z) = €.

Solucié: a) 0, b) i (alterna), ¢) m, d) 2+ ¢, e) 0, f) recorre les arrels cinquenes de la
unitat.
1.6. Equacions amb exponencials

1.6.1.

Resoleu les segiients equacions:
a) e =1+1, b) e =i, c) e = —1. <

Solucié: (a) z = Inv/2+ (% + 2km), k € Z;

(b) 2z = +4/% + 2km €1,k e NU {0}; z = +4/2km — & e~ "1,k e N\{0};
(c) z=(2k+ 1)m, ke Z;

1.7. Arrels n-ésimes

1.7.1. Calculeu:

N

a) V1, b) 344, c) V/—i, d) (~1+v3)2, ) (3+4i)2. «
sz, . . . . S _ 3w 7w 11w 157,
Solucié: (a) —1, (1+iv/3)/2; (b) £4/3, £iv/3; (c) cos@+isinf amb § = 37 Tr Lr 1om.
(d) £4/2/2(1 +iv/3); (e)£(2 +19).
1.7.2. Donat a € C, quin és el mazim de |z" + a| per a |z| < 17 a

Solucié: z = (a/|a|)/™.

1.8. Polinomis: enunciat del teorema fonamental de I'algebra

1.8.1. Resoleu (z +1)° = 2°. q
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Solucié: 1) Si z és solucié ha de passar que |z+ 1| = |z| llavors z ha d’estar a la mateixa

distancia de —1 que de 0. Llavors z es troba a la recta © = —1/2, és a dir, és de la forma
—1/2 + it. Substituim i veiem que ¢ ha de satisfer 5t* —5t2/2 + 1/16 = 0. Aquesta equacié
és biquadratica i es resol facilment. Obtenim

245 +5 5-2+5
tl— | — ]
25 25
Numericament —1/2 + 0.688¢ i —1/2 + 0.1621.
2) Fem el canvi z = 1/w, llavors (1/w + 1) = 1/w®. Si w % 0 resulta que z és soluci6 si
i només si (1 +w)® = 1, aixo vol dir que 1 + w és una arrel 5-¢sima de la unitat diferent

de 1. Aleshores ‘
l+w=wk, k=1,....4, w=¢¥/>
Llavors . L i sk
b L1 i sm@mks)
whk—1 2 21— cos(27k/5)
Com abans tenim numericament que —1/2 4+ 0.688: i —1/2 + 0.1624.
Observem que ’equacié polinomica original és de grau 4 i per tant té 4 solucions.

1.8.2. Sigui P(z) = 1+ 2z + 322+ .-+ + nz""L. Considerant el polinomi (1 — z)P(z),
demostreu que tots els zeros de P(z) estan dins del disc unitat. <

Solucié: (1 —2)P(2) =1+ z+ 22+ -+ + 271 —nz" Si z és zero de P amb 2] > 1

tenim que
nz| =142+ - +2" <1+ 2|+ 22+ + 2" <14+ (n-1)z"

ja que |z|" < |z|™ si 7 < n. Llavors n|z|” < 14 (n — 1)|z|", aix0 implica que |z|" < 1.
Contradiccié amb |z| > 1. Llavors ha de ser |z| < 1.



1. El cos dels nombres complexos

10



2. Funcions de variable complexa

2.1. Funcions

2.1.1. Escriure les segiients funcions de la forma u(z,y) + iv(x,y).

a) f(2) =1/ b) o(z) = 222_+12’% ¢) h(z) = ¢ + e .
Solucié:

a) x/(x? +y?) —iy/(x? + 9?)). ¢) 2(coshzx - cosy + isinhx - siny).

b) 222 -2y +3 4y

i :
(x—1)2+y? (x—1)2+ y?

2.1.2. Trobeu el rang de

a) f(2) = 22 si z esta en el primer quadrant,

b) g(z) =1/z per 0 < |z| <1,

c) h(z) = =223 per z tal que 0 < |z| <1 i Argz < 7/2.

Solucié:
a) el semipla superior, b) {z:|z] = 1}, c) {z:0<|z| <2}

2.1.3. Digueu on sén continues les segilients funcions

) 1 ) 3z—1

Q) ——————— C) —5

z2—2+3i 224+ 244
23 + 22

b) a1 d) 22(22> =324+ 1)72

Solucié: a) C\{2 — 3i}, b) C\{+i}, ¢) C\{—1/2 + irv/15/2}, d) C\{L,1/2}.

2.1.4. Proveu que la inversio w = f(z) = 1/z transforma

a) el cercle |z| = r en el cercle |w| = 1/r,

11
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b) el raig Argz = 0y, —m < 0y < 7, en el raig Argw = —0y,
c) el cercle |z — 1| =1 a la linia vertical x = 1/2. <
Solucié:

a) Si|z| = r lavors |1/z| = 1/r,
b) Si z = re® amb r > 0 llavors w = (1/7)e~% i I’afirmaci6 és clara.
¢) Si|z—1]=11llavors z = 1 + € = 1 + cost +isint i

1+cost—isint 1+ cost—isint
(14 cost)? + sin?t 2+ 2cost

w=1/z=

té part real igual a 1/2. Estudiant els limits laterals, per exemple, o bé trobant-ne la
inversa, podem comprovar que és exhaustiva en aquesta recta.

2.1.5. Trobeu una funcid afi que transformi el cercle |z| < 1 en el cercle lw —wp| < R
de manera que els centres es corresponguin i el diametre horitzontal es transformi en el
diametre que forma un angle o amb ’eix real. <

Solucié: Volem trobar f(z) = az + b,a,b € C de manera que f(0) = wo, f(e?) =

wo + Ret+®) Llavors b = wg i a = Re'™ i

f(2) = Re®z + wy.

2.1.6. Per l’exzponencial f(z) = €*:

a) Descriviu-ne el domini i el rang.

b) Proveu que f(—z) =1/f(z).

¢) Descriviu la imatge de Rez = 1.

d) Descriviu la imatge de Imz = 7/4.

e) Descriviu la imatge de la banda 0 < Im z < 7/4. q
Solucié:

a) Domini és C i rang és C\{0}.

b) f(=2) =e7* =1/e* =1/f(2).

c) {e!*% = e(cosy + isiny),y € R} és la circumferéncia de radi e centrada a l'origen de
coordenades.

d) {e*+/% = e%(1/2/2 4+ i1/2/2), z € R} que és el raig y = 2 amb z > 0.

12
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e) El sector circular amb angle entre 0 i 7/4 al primer quadrant.

2.1.7. La funcié de Jukovski' és w = J(z) = % (z + %), vegeu la figura 3.7. Proveu que
a) J(z) = J(1/2),

b) J porta el cercle unitat |z| = 1 a linterval real [—1,1],

c) J porta el cercle |z| =1 (r> 0,4 1) a Uellipse [ 4 5 + 5 = 1 que té
els focus a +1. <

Solucio:

a) J(1/z) = 5(1/z + t775) = J(2).
b) J(e) = 1(e + e7) = cos(t) € [-1,1].

c) Si J(re) = u(t) +iv(t) és clar que u(t) = $(r + 1/r) cos(t) i v(t) = 3(r — 1/r)sin(t).
D’aqui deduim que (u,v) de la imatge de |z| = r satisfan 1’equacié de 'ellipse que es
dona. Recordem que en una ellipse (v/a)? + (y/b)?> = 1 amb a > b els focus estan a
(£¢,0) amb ¢ = ++/a2 —b%. En el nostre cas a = 3(r + 1/r),b=3(r —1/r)ic=1.

2.1.8. Fent servir la comanda contour_plot de Sage dibuixzeu les corbes de nivell de u 1
vsif=u+1iv és

a) z, d) sin(z), g) €%,
b) 22, ¢) 1/, et
c) log(z), f) 1/22, i) log(z — 1) + log(z + 1). «

Solucié: Pel cas i) podem fer com es veu a la figura annexa

!Nikolai Jukovski, Orekhovo, 1847-1921, https://ca.wikipedia.org/wiki/Nikolai_Jukovski

13
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In [35]: var('x,y',domain="real")
z=xX+ixy
f=log(z+1)+log(z-1)
g(x,y)=f.imag_part()
h(x,y)=f.real_part()

v=contour_plot(lambda x,y: g(x,y), (x,-2,2), (y,-1,1), cmap='winter',contours=20, fill=False, colorbar=True)
u=contour_plot(lambda x,y: h(x,y), (x,-2,2), (y,-1,1), cmap='spring',contours=20, fill=False, colorbar=True)
u+v
Out[35]: —/ —T 1.50
5.4
r0.75
r3.6
1.0 T +0.00
051 :' 18
| —0.75
0.0 1 0.0
| L -1.50
—0.5 1 L1 18 n
_1'0<l T T T T T T T T 1 [T _225
-2.0 -15 -1.0 =05 00 05 10 15 20 [T736 [}
Co —t —3.00
4 54
— —L-3.75

Els altres sén encara més senzills.

2.2. Funcions multivaluades

2

1
3
2.2.1. Donada l’equacidé de Cardano z3+pz+q = 0, comprova que si C = (—g + qz + gi) ,

aleshores z1 = C — % és solucio de la cubica. Les tres arrels s’obtenen canviant ’eleccio

de larrel cubica.

Tot sequit obre GeoGebra® i dibuiza els punts p = 1+i i q = 2+0i; defineiz w = —%+§i,
C mitjangant la férmula anterior, i zy = C — 5, 22 = wC — 325 i 23 = w?C — TTel
Escull tres colors diferents per zj, i activa la seva traca. Deizant q fizat i movent p,
per exemple, comprova que els tres punts son funcio de p, i es poden determinar com a
branques continues localment de manera continua, tot i que C' presenta discontinuitats de
salt que fan que els tres zj vagin permutant la seva posicio. Per exemple, pots fizar p
en la circumferéncia de radi 4 amb la instruccié p=Punt (Circumferéncia((0, 0), 4))i
observar qué ocorre, i comparar amb el radi 2 o 3. Pots usar també la instruccio lloc
geométric. Quantes voltes cal que faci p a aquesta circumferéncia per tal que una arrel

doni la volta a lorigen de manera continua? <
Solucié:
A pa+a=(C— 5P +p(C- %) +a
3C 3C
Notem que
2 3
D \3 3 p P
C——)=C>—-pC+ — — .
(©=36) P30 T ar0e

20 entra a https://www.geogebra.org/m/jbszj89u
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Per tant,
3 2 3 3
2 +pa+q=C°— p3+q=—g+ L - P +q.
27C 2 4 27 q 2 |
21 ( -2 +4/ %4 + &
Notem ara que
3 q q?
p (45 E)
2 4 27

2.3. Logaritmes i arguments

2.3.1. Doneu exemples que mostrin la falsedat de la igualtat Log (a - b) = Loga + Logb.
(Per exemple, a = b= —1—1). a

Solucié: Log (a) + Log (b)) = 2Log(—1 — i) = 2(In(v/2) — i37/4)) = In2 — i37/2 i
Log ((—1 —i)(—1 —14)) = Log (2i) = In2 + i7/2 que s6n diferents.

2.3.2. Sigui L una determinacio del logaritme en C\(—o0,0] tal que L£(1) = 2mi. Proveu
que la funcio f(z) = L(z + 3) és continua en

D :={zeC; Re(z) > —3}.
Quant val f(3i)? q

Solucié: Notem que D+3 = {z € C; Re(z) > 0} < C\(—0,0]. Per tant, f és continua.

A més sabem que £ = Log + 2kmi. Com que 0 = Log (1) = £(1) — 2kmi = 2mi — 2k,
trobem k = 1. T per tant,

£(3i) = L(3i +3) = Log (3i + 3) + 2mi = In |3 + 3| + (Arg (3i + 3) + 2m)i = In(3v/2) + %r@'-

2.3.3. Una branca de l'argument A(z) (o del logaritme L(z)) queda fizada si donem i) el
domini ) on esta definida i) el valor de A(z) (o de L(z)) d’un punt d’Q). Conside reu
els dominis:

Q1 =C\ {re'™, r > 0}; Qy = C\ {rei”/‘l, r= 0}

Q3 =C\({zre[-1,0]} u{-1+1y, ye[0,1.5]} u{x+ 1.5{, z€[-1,0)}).
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2. Funcions de variable complexa

Completeu la segient taula.

9] Qo Q3
A1) =0 | A@G) = A1) = A(i) =
L(i) = L(i) = L(i) =
L£(2i) =
A(l) = =27 | A(i) = A1) = A(i) = .
L(i) = L(i) = L(i) =
L(2i) =
AG) = —F [ A1) = A(1) A(l) =
L(1) = L(1) L(1) =
£(2i)

Solucié: Fila 1: §; i _T?”T; _Tg”rz | 55 54 _T?”rz + In2. Fila 2: restar a tot 27. Fila 3:
—2m; =27 | 0;0 | —27; —2mi; =i + In 2.

2.3.4. FEstudieu si existeir alguna determinacio del logaritme en els conjunts seguents ¢
determineu els possibles conjunts imatge:

a) {ze C|Re z> 0}, b) {zre C|Re z>1Im z}, c) {zeC|1l< 2| <2}. «

Solucié: a) Si, < C\(—,0], per tant fr(z) = Log(z) + 2kmi és una determinacié
amb fr(Q) ={x +iy:y—2km e (—n/2,7/2)} per algun k € Z fixat.

b) Si, @ < C\(—o0,0], per tant per algun k € Z fixat, definim fx(z) = Log (z) + 2k,
que és una determinacié amb fx(Q) = {x + iy : y € (—37/4 + 2kw, /4 + 2km)}.

c) No. Si existis, existiria una branca continua de l'argument A : Dy(0)\D — R.
Aleshores f(z) = A(3z/2) sera una determinacié en JD, perd no n’existeix cap per la
proposicié 2.15.

2.3.5. Calculeu els possibles valors de
a) log(1), b) log(—1), c) log(1+1i),  d)log(1—iV3), e)log(i). <

Solucié: (a) 2kmi, k € Z; (b) (2k + 1)mi,k € Z; (c) Inv/2 +i(n/4 + 2kn), k € Z; (d)
In2+i(5n/3 + 2km), k€ Z; (e) (/2 + 2km)i, k € Z.

2.3.6. Escrivim cosz = (e¥* + e7%)/2 isinz = (e¥* — e %) /2i. Resoleu les equacions

a) e = 2i, c) e?* + % +1=0, e) cosz =sinz.

b) Log(z? — 1) = in/2, d) cosz = 2i,
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2. Funcions de variable complexa

Solucié: a) z € log(2i) és a dir z € {In(2) + in/2 + 2kmi : k € Z}

im/2 — . Per tant, 22 —1 = i, 1 z =

b) Escrivim w = 22 — 1. Trobem que w = e
+y1 410 = +v/2e'5.

c¢) Posem e* = t llavors ¢ és una arrel tercera de la unitat que no és 1, ésa dirt = e
Llavors z € {i(27/3 + 2kn) : k € Z} v {i(—27/3 + 2k~) : k € Z}

d) Posem w = €*, resolem Iequaci6 de segon grau que obtenim i resulta w = (24 +/5)i.
Per tant, z = 7/2 + 2km —iln(2 ++/5), i 2 = —7/2 + 2km — i In(+/5 — 2). Tot plegat, queda

+4i27/3

2z =+(n/2 4+ 2kr +iln(v/5 —2)), amb keZ
e) Procedim com en el cas anterior i tenim que

ze{n/4+2km,3n/4+2kn ke Z} ={n/A+kn:kelZ}.

2.4. Potencies complexes

2.4.1. Trobeu l’error en el segiient raonament de Bernoulli: (—z)? = 22, llavors 2log(—z) =
2log z. Per tant, log(—z) = log(z). a

Solucié: Recordem que log(z) = {lnr + i(0 + 2kn) : k € Z} on z = re. Es a dir,

log(z) és un conjunt de valors, és multivaluada. Recordem també que e® és 2mi periodica.
Llavors

(—2)% = 2% = e2loa(=2) — 2108(2) 5 9]og(—2)—2log(z) = 2kmi = log(—z) —log(z) = kmi.

Els arguments de z i de —z (que s6n oposats) difereixen en un miiltiple senar de 7. Si
considerem els arguments principals

|Arg(—z) — Arg(2)| = km, |Arg(—z) — Arg(z)| < 27

llavors difereixen en 7. La conclusié correcta doncs, en termes de funcions multivaluades,
és log(—=z) = log(z) + mi.

2.4.2. Calculeu els possibles valors de
a) i, b) (V3+i)h, ) 27, d) (i?)?, e) (i%)2. <

Solucié: (a) exp(—(7/2+2k)), k € Z; (b) exp (In2 + & + 2km + i(§ + 2km —In2)) k€
Z; (c) e*Te=tn2 e 7: (d) e"142F) ke Z. (e) eI+ ke Z.

2.4.3. Determinar explicitament la inversa de q(z) = 2e* + €2* en funcid de logaritmes.
Resoldre q(z) = 3, trobant totes les solucions.
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2. Funcions de variable complexa

Solucié: Sit = e* cal resoldre equaci6 t? + 2t —w = 0 d’on

e =—-14+v1l+w,

on usem ,/ per la funcié multivaluada arrel quadrada. Apliquem logaritmes i obtenim

¢ ' (w) =log(—1 ++/1+w) =Log(—1+ e%Log(Hw)) + 2kmi
que és una funcié multivaluada.

e Per la branca positiva de I'arrel tenim que

¢ 1(3) = log(—1 + 2) = log(1) = {27ni, n € Z}.

e Per la branca negativa

¢ 1(3) = log(—1 — 2) = log(—3) = {In(3) + i(7 + 27n), n € Z}.

2.4.4. Siguin ho(z),h1(2) @ ha(2) les determinacions de ’arrel cibica en = C\(—0o0,0]
tal que ho(1) = 1, hy(1) = €>™/3 § hy(1) = e*/3,

i) Descriviu hj(Q) per j = 0,1,2.

ii) Per j = 0,1,2 relacioneu h; amb Log i Arg (on Log i Arg denoten les branques
principals del logaritme i de l’argument respectivament).

i) Usant les relacions anterior, trobeu el valor de h;(i), per j = 0,1,2. <

r+iy+2kmi

Solucié: Tenim que hj(2)" = z = e per tot z € 0, on fixem y = Argz. Si

escrivim les parts real i imaginaria del logaritme tindrem
h](Z> _ equiv
amb nu = x i nv = y + 2kw. Per tant,

x y + 2km
U= — v=—.
n n

Traient-ne modul i argument tenim que

_y+2kn  Arg(z) N 2km

hj(2)] = en = |z|7  Arg (hj(2))

n n n

Responem ara les preguntes:
i) Trobem imposant que e2mIt/3 ¢ h;(€), que
ho(9) = {2 € C: Arg(2) € (—m/3,7/3)},
hi(2) ={z e C: Arg(z) € (7/3,7)},
ho(Q) ={z€C: Arg(z) € (—m,—7/3)}.
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ii) En tenir n = 3 trobem

_ 3Arg(hy())  Arg(2)

_ Arg (2) N 2k;m

Arg (h;(2)) = kj

3 3 271' 27(
En el cas z =1,
3Arg (1) Arg(l)
ko = - =0-0=0.
0 27 27
by — 3Arg (@27ri/3) B Arg (1) 1-0<=1
! 2w 21 :
ey — 3Arg (e—2m‘/3) B Arg (1) 10—
27'(' 271' °
Per tant,
1 .Arg (z 2k o (= 2k
hi(z) = |hy(z)]e"Ars () — |z|%eZAgT()+’TJ e ONVLU LY
iii)
it
1 Arg (i) | 2k o 2kw 64;81] =0,
h](l) = M;el ot = o5 T = e i i,
ei%ﬂz—isij:z

2.5. Determinacions de logaritmes i arrels de funcions

2.5.1. Sigui X un espai topologic connexr. Demostreu que si S1 i@ So son dues determina-
cions de Uarrel n-ésima de f: X — C\{0} llavors ezisteix una arrel n-ésima de la unitat
¢ tal que Sa(x) = ¢ - S1(x), per a tot x € X. a

Solucié: Sabem que Sj(z) # 0 per hipotesi. Aleshores gi 8 és continua, i

(36) -
Sa(x)

Com que Si(z) Pren per valors en les arrels de la unitat

27i 4Ami 2(n—1)7i
176"767“‘7"'76 n )

que és un conjunt finit, necessariament la funcié S»/S; és constant (la imatge continua
d’un connex és connexa).

2.5.2. Determineu els dominis de continuitat (és a dir l’obert mazimal on una funcid és
continua) de les funcions ezz, el?, 1/e*, 1/(e* — 1), de la branca principal de /1 — z i de
la branca principal de /1 + €7. <
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Solucié:

2, ,
e ¢* és continua a C.

e!/# té domini C\{0}.

1/e* té domini C, ja que el recorregut de I'exponencial és el domini de 1/z.

1/(e* — 1) té domini C\27iZ.

o 1—2z=e2"02(-2) t& domini de continuitat C\[1, +0).

o 1+ ez =eslos(14¢) ¢ domini de continuitat

C\{z:ef% > 1 Imzen+ 27k} = C\{z + i(2k + )7 : 2 = 0}.

Per aquest cas, notem que cal 1 + e* ¢ (—00,0], és a dir €* ¢ (—o0, —1].

2.5.3. Donar una determinacié de f(z) que sigui continua a la regid D donada.

a) fi(z) = (> =1, D={2eC: 2| < 1},

b) fa(z) = (°+4)"?, D =C\{iye C: |y| <2},

¢) f3(z) = (' =), D={zeC: 2| > 1},

d) fi(z) = (-3, D={2eC:|z| > 1}. 4

Solucié: a) Observem que si considerem la branca principal tenim que

(22— 1)/2 = exp (;Log(zQ - 1))

i Log té com a domini d’holomorfia tots els z € C excepte els que 2> — 1 < 0, és a dir
cal treure els z = a + bi,a,b € R tals que a® — b? + 2abi < 1. Aixd només pot passar per
ab = 0. Cas a = 0, llavors per a tot bi es compleix. Cas b = 0, cal que a®? < 1. No és la
branca que volem ja que en aquest cas

D=C\({zeC:Rez=0}u{zeC:Imz=0,|Rez| <1}).

Observem abans el que es veu si fem un complex_plot():
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Caldra canviar la branca del logaritme. Podem buscar una branca de 'argument que

ens vagi bé perd és més facil considerar vz2 —1 = 4/(—=1)(1 — 22) V21— 22 =
iexp(sLog(1 — 22)). Aleshores, traient els z tal que 1 — 22 < 0 resulta que el domini és
C\{z € R:|z| > 1} i aquest domini inclou el disc. Veiem el complex plot() corresponent:

Vegeu també la figura 3.8.
b) Com a funcions multivaluades (o multivalents) tenim que v22 +4 = z4/1 + 4/22,

aixo vol dir que els conjunts que determinen sén iguals. Les branques principals de cada
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expressio son:
1
V22 +4 =exp (iLog (2? +4)) , D=C\{2*+4<0}=C\{iy,yeR: |y =2}

2/1+4/22 = zexp (% Log (1 + 4/22)> , D=C\{1+4/2><0}=C\{ig,yeR: |yl <2}

on Log denota la branca principal del logaritme.

La que ens va bé és la branca principal de la segona expressio. El domini de continuitat
és llavors C\{iy,y € R : |y| < 2}.

complex_plot{sgri{x"2+4),(-5,6),(-6,6)) complex_plot{x*®sqrt{1+4/x"2),(-6,6),(-5,6))

c) Considerem f3(z) = 224/1—1/2* = i22f1(1/2?), d) Similarment podem definir

z{/1—1/z3.

2.6. Series de poténcies de nombres complexos

2.6.1. Considereu la série de poténcies S(z) = > s an(z —i)". Digueu si sén certes les
seglients afirmacions.

a) S(z) pot ser divergent en z = 0 i convergent en z = —i simultaniament
b) S(z) pot ser convergent en z =1+1 i en z = 2 + i simultaniament
c) Si S(z) és convergent en z = 1+ i, aleshores també ho és en z = 2i

d) Si S(z) és divergent en z = 2i, aleshores també ho és en z = 2 + 1. q

Solucié: Falsa. Certa. Falsa. Certa.

La darrera, per exemple, es pot justificar aixi: Si S és divergent en z = 2¢, aleshores el
radi de convergencia R < |2i — i| = 1. En particular, la série divergeix en tot z tal que
|z —i| > 1, cosa que se satisfa a z = 2 + i. L’afirmaci6 és, per tant, CERTA.
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2.6.2. Sigui f(z) = anz"™ una série convergent en el disc D = Dg(0). Demostreu que

D8

0

27 ) d9 o0
/ |f(re®)[? 9. = Z lan|>r®™,  si 0<r<R. a
0 i n=0

Solucié: Prenem una suma parcial fy = Zg:o anz". Observem que

| (re®)? = fn(re) fa(rei) = ( Z anre™) Z ) )
N .
= 2 rMRe (andmez(nfm)H).
n,m=0

Integrant, i escrivint [u + v = [u+1i [ v, tenim que

2m d9 N 2m ; d9
P 2 2 PR p i(n—m)0

Pero tenim que
/27r piln—m)o do )0 sin#m
0 2w 1 sin =m,

la qual cosa ja dona el resultat si la série és finita.
Per altra banda, com que fy convergeix uniformement a f en el disc D, (0), tenim que

21
/0 |f(7“ei0) _ fN(T€i6)|2d79 < sup |f(7°ei0) _ fN(T€i0)|2 M 0.

2T pefo0,2n]

2.6.3. Sigui S1(z) = Z apz"™ i So(z2) = Z anz""*. Demostreu que Sy és convergent en
n=1
z si i només si ho és Sy. En cas aﬁrmatzu temm que S1(z) = 252(z).

Solucié: (proposada per Clara Valls Moreso)

El cas z = 0, és trivialment cert ja que

que és convergent,
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que també és convergent i, per tant, efectivament Sy (z) = 255(z) per z = 0:
S1(0)=0=10-a; =0- S5(0).

Manca estudiar el cas general z # 0.
= Suposem que Si(z) és convergent. Per definicid, la successié de sumes parcials

N
- Yo
n=1

convergeix quan N — 0.

Observem que
N

N
S(N) 2 anz" =z Z a2l = zSéN)(z).
n=1

Com que z # 0 obtenim
N
_ sV
pot
Prenent limits, com que S1(z) és convergent i z # 0, obtenim

i My =L g™,y = S1)
]\}1310052 (Z)—Z]\}lm Sy (=) = < o,

—00 z

Aix{ Sy(z) és convergent i a més

ZSQ(Z) = Sl (2’)

< Suposem que Sy(z) és convergent. Per definicié la sucessié de sumes parcials,

N
N
n=1

convergeix quan N — 0.
Observem que:

Prenent limits

: Ny — 1 Ny — (V)
J\Pinoo S (=) A}linoozbé (2) = = hm Sy (z) < 0.

N—o

Com que S3(z) és convergent, també Si(z) és convergent i
51(2’) = ZSQ(Z).

Aix{ doncs queda provat I’enunciat.

2.7. Calcul del radi de convergéncia

2.7.1. Calculeu el radi de convergéncia de les segiients séries de poténcies
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) 2 (n+ 1)(nn: 2)..20 ) 21 nE;i—)nl)(z gyn(n+1),

) § e 5

d) ,21 (27:)n (z—1)", i) 21 n2(3z — 2)",

e) 720 a(z+1)" ac(0,1), j) 20(1 + (1)) <

Solucié: Els oberts on hi ha convergencia absoluta i uniforme en compactes sén: (a) D;

Elf)))]é?e/zx(o); (¢) Di(=i); (d) Dac(1); () C; (f) Dyy2(0); (8) D1(2); (h) D2(0); (i) Dyy5(2/3);
j) D.
Per exemple, fem i) i j).

0 o0} n
2
(i) Escrivim Z n*(3z —2)" = 2 3"n? <z - 3) , aix{ que definim a,, == 3"n?.
n=1 n=1
Calculem
(n + 1)23n+1 .
= am 3.

an+1
an

Per tant, pel criteri del quocient, el radi de convergencia és 1/3. Tenim doncs convergencia
al disc D;/3(2/3). En compactes la convergencia sera uniforme.

0
(j) Tenim que Z (1+ (=1)")"22". Notem que el coeficient s’anulla per n = 2k + 1. Es

n=0

a dir que a; = 0 si j # 4k 4 a; = 4% = j si j = 4F. Aleshores
limsup {/|a;| = limsup V] = lim sup </
J k j=4k

Com que aquest limit existeix, podem substituir limit superior per limit:

o/ limy 22
limg/j=¢e"7 34 =1
J

Per tant, el radi de convergencia és R = 1/1 = 1, i tenim convergencia al disc D.

2.8. Comportament a la frontera del disc de convergencia

2.8.1. Estudieu la convergencia de les segiients séries de poténcies:
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L n L 3n+l © n(z—i)"_l

%) ZIZ ) Zo?m—i-l ¢) 21 o °
© L2 © (_1)(n+1)

oy )3 EN
= (n+1)(n+2) = n

Solucié: (a) Conv. unif. en compactes de D i en tot arc tancat de {|z| = 1} que no

contingui z = 1.
(b) Conv. abs. i unif. a D pel criteri M de Weierstrass.
(c) Conv unif. en tot compacte de D i en tot arc tancat de |z] = 1 que no contingui
1 6271’1'/3 o e47ri/3
) .
Si anomenem S(z) == >, %, podem veure que el radi de convergencia és 1. Quan
el modul és |z| < 1 (la desigualtat estricta no cal, pero surt “gratis”), mirem d’aplicar el

criteri de Dirichlet: N

Z Z3n+1

n=0

1— 23(N+1)

1—23

2

= <
|Z‘ = |1_23‘

Per tant, si dist(23,1) > ¢, aleshores tenim una cota uniforme de les sumes parcials
27]1\;0 237+1 § podem aplicar el criteri de Dirichlet.

Concloem que per tot compacte de D\{1,e*?™/3} hi ha convergéncia uniforme. En
particular, en aquests compactes S és el limit uniforme de polinomis, que sén funcions
continues, i és, per tant, continua a D\{1, et2mi/ 31 i uniformement continua en compactes.

(d) Conv. unif. en compactes de D i en tot arc tancat de {|z| = 1} que no contingui
z=—1

Si anomenem S(z) = >0, %z", aleshores S(z) = =T(—z), on T'(z) = >0 | =
és la serie estudiada a lapartat (a). Aixi deduim que S convergeix uniformement en
compactes de D i en tot arc tancat de {|z| = 1} que no contingui z = —1.

(e) Conv unif. en compactes de D5(7). Divergeix per a tot punt de la frontera del disc:

n

. N o0 —q)n—1 . N . 4 .
Estudiem la serie S(z) = >, n(z571) Notem que el radi de convergencia és 5 i que
1 n(z—i)" 1

5n
convergeix a zero (condici6 necessaria per la convergencie d’una serie!). Per tant, la serie

és divergent a tota la circumferéncia. La convergencia és uniforme en compactes de D5 (7).

quan |z —i| = 5, aleshores el terme general de la serie té modu ’ = n que no
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2. Funcions de variable complexa

2.8.2. Demostreu el criteri d’Abel i el teorema d’Abel. Indicacié: Vegeu [BC13, Teorema
2.20] per un cas més general en regions no tangencials (angles de Stolz). <

Solucié: Deixem el criteri pel lector, i demostrem el teorema d’Abel: Apliquem el

criteri d’Abel a X = A, Y = [0, 1], per serie en X prenem a,(¢ —b)", i en Y prenem r",

i deduim que ), anr"™(¢ — b)" convergeix uniformement a X x Y. Es a dir que per tot ¢
existeix n. tal que m,n > n., ( € A, r € [0, 1], trobem

m

Z akT’k(C - b)k

k=n

< €.

Si z € C(A,b), aleshores existeixen ( € AireY tal que z = b+ r(¢ —b). Deduim que

i ap(z — b)*
k=n

que és la condicié de convergencia uniforme en C(A4,b).

Per veure 'intercanvi de limits, n’hi ha prou amb establir la continuitat del limit. Notem
que Y} _oak(z — b)¥ és continua en C i, per tant, en el con. La convergéncia uniforme de
funcions continues implica que el limit és continu: per la desigualtat triangular, per tot n
tenim que

<e,

i arr™(¢ - b)*
k=n

1f(2) = f(w)| < [f(2) = fa2)] + [fn(2) = fa(w)| + | fn(w) = fw)];

per la convergeéncia uniforme, si € > 0 existeix n tal que sup, |f(z) — fu(2)| < §; i per la
continuitat de f,, existeix ¢ tal que |z —w| < ¢ implica |f,,(2) — fo(w)| < §. Per tant,

2e

If(z) = fw)] < §+|fn(2)—fn(w)| <e. O
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3. Derivacié complexa i holomorfia

3.1. Funcions holomorfes
3.1.1. a) Demostreu la regla del producte per la derivacid.
b) Proveu que si f és C-derivable en zy llavors és continua en aquest punt.
c) Proveu que si f és C-derivable en zy, llavors
f(z) = f(z0) + f'(20)(2 = 20) + A(2) (2 — 20)
on AN(z) = 0 si z — z. a

Solucio:

2)

f(z+Az)g(z + Az) — f(2)g(2)
Az
f(z+Az)g(z + Az) — f(z + Az)g(2) + f(2 + Az)g(2) — [(2)9(2)
Az ’

prenem factor comu, passem al limit i obtenim f'(2)g(z) + f(2)¢'(2) que és la férmula
per la derivada.

b) Volem veure que lim,_,., f(2) = f(z0) quan f és derivable en zy. Tenim que

i £2) = (o)

2—20 zZ— 29

= f'(20) F 0.

Com que el denominador tendeix a zero cal que el numerador també tendeixi a zero
llavors queda provada la continuitat.

c¢) Escrivim

f(z) = f(=0)

zZ— 29

f(2) = f(20) — f'(20)(z — 20)

zZ— 2

- e+ ( ) = £ + A2

Es clar que A(z) — 0'si z — z i hem provat I'enunciat.

3.1.2. Siguin f(z) i g(z) funcions enteres. Decidiu si les segiients funcions son enteres:

29



3. Derivacié complexa i holomorfia

a) f(2)°, c) f(2)/9(2), e) f(1/z),
b) f(2)g(2), d) 5f(2) +ig(2), f) f(g(2)).

Solucié: Totes sén enteres excepte el cas ¢) quan g(z) = 01 e) quan z = 0.

3.1.3. Proveu que g(z) = 322 + 2z — 3y?> — 1 + i(6xy + 2y) és entera. Escriviu g com a
funcié de z.! <

Solucié: Si posem = = 1/2(z 4 2) iy = 1/(2i)(z — 2) veiem que f(2) = 322 +2z — 1

que és un polinomi. Es pot fer més facilment amb la indicacié del peu de pagina:

f(2) = u(2,0) +iv(2,0) =322 +22 —=3-02 =1+ i(62-0+2-0) = 322 + 2z — 1.

3.1.4. Ezisteix alguna funcid f holomorfa en el disc unitat D tal que per a tot n = 2,3, ...
1 1 1
a) f(+3) =3577 o) [ (7)] = In(n+1) ¢

b) ft5) =7 A |f () =

S|

Il
N
A

Solucié: (a) No existeix; (b) Si, per exemple f(z) = z?; (c) No existeix; (d) Si, per
exemple f(z) =1/(1+ 2).

Fem el primer amb detall, el tercer és semblant: Notem que, en cas d’existir una tal
funcié f holomorfa, aquesta sera en particular continua a 'origen. Aixi, necessariament
haurem de tenir

£(0) = f(lim 1/n) = lim f(1/n) = lim

n—w 2n + 1 -
Si és holomorfa, haura d’existir el limit
iy _ e J(2) = f0) o f(z)
f(o)_ll—{% z2—0 _ll—rf(l) z

En particular tindrem que aquest limit s’assoleix si ens acostem a 1’origen pels reals positius
i pels reals negatius. Més concretament tindrem

£0) = tim 2™ g, L

n—so 1/n  n-w2n+1 2

i, a la vegada
PR | G Vi) R
S0y =l == = i T T

Com que 1/2 # —1/2, hem arribat a una contradiccié i f no pot existir.

1Si f(2) = u(z,y) + iv(x,y) és holomorfa en un domini Q que talla la recta real i u, v sén holomorfes en
dues variables, llavors es pot provar que f(z) = u(z,0) + iv(z,0), vegeu l'exercici 4.10.10.
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3. Derivacié complexa i holomorfia

3.1.5. Doneu una branca de log(z? + 2z + 3) que sigui holomorfa a z = —1. Calculeu la
seva derivada en aquest punt. En quin domini és holomorfa la branca que heu definit? <

Solucié: Com que (—1)? +2(—1) + 3 = 2, en un entorn de —1 serem lluny dels reals

negatius i, per tant, podem escollir Log (22 + 2z + 3), per exemple.

Veiem que el polinomi p(z) = 22+22+3 = (z+1)2+2€Rsiinoméssi z+1 e RUIR
i que concretament p(z) = (z + 1)2 + 2 s’anulla a —1 + 1/2i. A partir d’aquests punts es
veura el que hem de podar per continuitat (teorema de Bolzano). Com que a z = —1 el
valor és positiu, deduim que el mateix passara a R ia —1 +i(—+/2, +4/2). Comprovant
que a z = —1 +4¢ la imatge és negativa, concloem que p és negatiu a —1 + i(—\/i, —i-\/i)c.
Per tant, el domini és C\{—1+it, |t| > v/2}. Podem veure el fenomen fent complex_plot ()
(a Pesquerra z? + 2z + 3 a la dreta el seu logaritme).

=

3.1.6. Sigui f una funcié holomorfa en un obert Q < C que satisfa |f(z) —i| < 1 per a
tot z € . Demostreu que la funcio g definida per

_1-i+ f(2)
14+i— f(2)

té logaritme holomorf en €. <

9(2)

Solucié: Primer observem que la hipotesi implica que 1 + i — f(z) # 0 per z € Q, aix{
que g és holomorfa en Q ja que f ho és. Si posem w = f(z) — i, la hipotesi ens diu que
|lw| < 1. Observem que

1—i+f(z) 1+w
T+i—f(z) 1—w

R 1+ w 1 1+w+1+m 1— |w|?
el—— ) =2 =
1—w 2\1—-w 1-w 1 —w|?

1
Re (ﬂ) >0 si|w <l
1—w

Ara, tenim que

Aixi doncs,
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3. Derivacié complexa i holomorfia

Figura 3.1.: Graella en el pla complex entre —2 — 27 i 2 + 2i.

Per tant,
g9(2) < {Re ¢ > 0} < C\(—0,0]

regié on el logaritme principal és holomorfa. Aleshores la funcié
h(z) = Log(g(2)),  z€Q
és un logaritme holomorf de g en 2.

3.1.7. Sigui f(z) = 22 +1 i 2 = (—1+/30)/2, 20 = (—1—+/3i)/2. Provar que no existeix
cap punt w en el segment que uneix z1 i zo de manera que f(z2) — f(z1) = f/(w)(22 — 21).
Que es pot dir del teorema del valor mitja per funcions complexes? <

Solucié: Tenim que 21 i 22 sén arrels terceres de la unitat llavors f(z2) — f(z1) = 23 —

23 = 1—1 = 0. Volem saber si hi ha w € Z7z3 de manera que 0 = 3w?(22—21) = 3w?(—+/37).
Pero aixo només passa si w = 0 que no pertany al segment entre z1 i zo. Llavors el teorema
del valor mitja tal com es coneix per les funcions reals no és cert en el cas complex.

3.2. Les equacions de Cauchy-Riemann

3.2.1. Representem la identitat al pla complex amb la coloracio habitual © amb la graella
entera. Per exemple, la identitat sobre el quadrat Q = {x + iy : z,y € (=2,2)} és la
primera imatge de la figura 3.2. Una de les segiients funcions, les diferencials de les quals
no s’anullen en @, representa una funcié holomorfa en Q. Quina és?
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3. Derivacié complexa i holomorfia

Solucié: Es la d).

La primera no ho pot ser ja que té les preimatges de la graella ortogonal tallen en angles
que no sén rectes. També podem observar que hi ha punts on la funcié no és continua (el
seu modul va a infinit), i que canvia 1’orientacio.

La segona la descartem per la preséncia de singularitats també: Hi ha dos punts del
quadrat on la funci6é no esta definida (el seu modul va a infinit). De fet es tracta de la
tangent complexa, i els punts sén +7/2.

La tercera no ho pot ser ja que les preimatges de la graella ortogonal tallen en angles
que no sén rectes.

Ha de ser la quarta.

3.2.2. Trobar els valors de les constants a, b, c de manera que f sigui holomorfa i expresseu-
la en termes de z.

a) f(z) =x+ay + i(bx + cy)
b) f(z) = cosz(coshy + asinhy) + isinz(coshy + bsinhy). q

Solucié: Demanem que es compleixin les equacions de Cauchy-Riemann. Llavors a)

c=1ia=-bif(z) = (1 —ia)z. b) Velem que a = b = —1 per Cauchy-Riemann i
f(2) = cos(z) + isin(z).

3.2.3. Sigui f = u+1iv holomorfa i dues vegades diferenciable en un obert < C. Proveu
que les funcions u i v son harmoniques (una funcié f(x,y) és harmonica si les seves
segones derivades parcials son continues i el seu laplacia Af = fop + fyy = 0.) <

Solucié: Usant les equacions de Cauchy-Riemann i el teorema de les derivades creuades

de Schwarz, uz; = Vyg = Ugy = —Uyy, llavors vy, + uyy = 01 w és harmonica. Amb v
podem fer el mateix.

3.2.4. Considerem u = e *(xsiny — ycosy)
a) Provar que u és harmonica.

b) Trobar una v de manera que f = u + v sigui holomorfa (s’anomena harmonica conju-
gada de u).

c¢) Trobar una expressid compacta de f(z). q

Solucié: a) Comprovem que g, + Uy, = 0 és feixuc perd elemental (podeu fer servir
Sage). b) Resolem 'equaci6 v, = u, = e”*(ycosy — (x — 1) siny) respecte de y i trobem
que v = e *(zcosy+ysiny)+C(x). Fent servir 'altra equacié de Cauchy-Riemann veiem
que C' =ct.eRi

v=e “(xcosy+ysiny) + C.
c) Fem servir que el candidat natural és f(z) = u(z,0) + iv(z,0), i obtenim f(z) =
ize”* +1iC.
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3. Derivacié complexa i holomorfia

3.2.5. Trobar els polinomis harmonics de la forma ax® + bx’y + cxy® + dy®. Trobar la
funcid harmonica conjugada i la funcié holomorfa corresponent. <

Solucié: Si imposem la condicié de ser harmonica (veure un exercici anterior) veiem

que ¢ = —3a i b = —3d. Llavors per que el polinomi de ’enunciat sigui harmonic ha
de ser u = ax® — 3dz?y — 3axy® + dy>. Ara volem trobar v de manera que f = u + iv
sigui holomorfa, cal que v, = —uy i v, = u,. De la segona equacié obtenim que v =

3az?y — 3dxy? — ay® + C(x). Imposant ara la primera equacié veiem que C(z) = dz® + K
on K és una constant d’integracié. Llavors ja tenim una f (que no és unica). Es veu
facilment que f(z) = (a +id)z> +iK, K € R (feu servir el truc de I'apartat ¢ de I’exercici
anterior, per exemple).

3.2.6. Sigui Q2 < C un domini (és a dir, un obert connex) i f una funcidé holomorfa en €.
1. Proveu que si f només pren valors imaginaris purs, aleshores f és constant.

2. Proveu que si |f| és constant, aleshores f també és constant. Equivalentment si f
només pren valors en una circumferéncia, llavors f és constant. <

Solucié: 1. (proposada per Clara Valls Moreso) Suposem que f: Q — C és una funci6

holomorfa tal que per a tot z € Q, f(z) € iR. Aix0 vol dir que la part real de f és nul-la.
Escrivim f(z) = u(x,y) + iv(z,y), on u(x,y) = 0 per a tot (z,y) € Q.
Com que f és holomorfa, les parts real i imaginaria verifiquen les equacions de Cauchy-
Riemann:

0u_8v 6u_ ov

or oy’ oy ox

Pero com que u = 0, tenim que:

ou ou

Zoo0, Z=0

ox oy ’
i per tant,

ov o

— =0, —=0

oy " Ox

Aixo implica que v és constant en 2, ja que 2 és connex (vegeu la proposici6 3.14).
2.: Suposem primer que |f| = 0. Aleshores efectivament f = 0 és constant.
Si, en canvi |f| = C' > 0, aleshores escrivint les parts real i imaginaria de f com
f = u+iv, tenim que
u? +0v*=C=C%

Derivant I'expressié respecte de les parts real i imaginaria, obtenim gracies a les equacions
de Cauchy-Riemann

{2uu$ + 2vv, = 0, {uuw + vv, = 0,
A=

2uuy + 2vv, = 0, —Uvy + vuy, = 0,
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3. Derivacié complexa i holomorfia

Ara multiplicant la primera equacié per u, la segona per v i sumant, obtenim

2
U Uy + uvvy, = 0,
{ * . =>Cux=(u2+v2)um:0=>um:0.

—uvvy + v2uy = 0,

Ara multiplicant la primera equacié per v, la segona per u i restant, obtenim

) =>Cvx=(u2+v2)vx=0=v$=0.

Uy + V20 = 0,
—u v, + uvu, = 0,

Hem vist que u; = v, = 0 a tot (2. Per les equacions de Cauchy-Riemann, tenim que la
diferencial és 0 a tot ). Com que aquest conjunt és connex, deduim que f és constant.

3.2.7. Doneu una descripcid de les funcions enteres de la forma f(x + iy) = u(zx) +
iv(z,y). <

Solucié: Vegem que la soluci6 és f(z) = az+ f amb aeRigeC.

Com que la part real de f depeén només de x, per les equacions de Cauchy-Riemann,
tenim que 0 = uy, = —v,. En particular, v(z,y) = ¥(y) + C. Altra volta per les equacions
de Cauchy-Riemann deduim que u, = vy i, per tant, u, = v,.

Prenem z( fixat. Aleshores

~

Uy (y) = vy(70,y) = uaz(0),
és a dir que v, és una funcié constant d’una variable real. Per tant, ¥(y) = Cy + D, amb

C =uyz(xo) i DeR.
Prenem ara g fixat. Aleshores

ug () = vy (2, 90) = Uy(yo) = vy(20,Y0) = va(z0),
és a dir que u, és una funci6 constant d’una variable real. Per tant, u(x) = Az + B, amb
A =uy(xzg)i BeR
Tot plegat,
f(z,y) = Az + B +1i(Cy + D) = uy(zo)(z + iy) + B + iD.

Dit d’una altra manera,

flz,y) = az + B, onaeR, iBeC.

3.2.8. (a) Determineu els nombres A € R pels quals
va(z,y) = 2sinzsinhy + 23 — Azy® + y

és la part imaginaria d’'una funcié entera fy i calculeu f).
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3. Derivacié complexa i holomorfia

(b) Sigui A € R un nombre determinat en a). Es

ovy  .0Uy
= — — 71—
INT o oy
una funcid entera? Quina relacid hi ha entre gy 1 )¢ <

Soluci6: (a) A =31 fs = ug + ivg amb ug(z,y) = —2coswcoshy — 32y + z +y° + C,
on C' € R; (b) gx és entera i igr(z) = f}(2).

3.2.9. Decidiu on no sén holomorfes les funcions segiients

1 iz3 + 2z 3z —1 22
e ) i1 ) Zr 4) (222 -3z +1)2 "
Solucié:
a) C\{2 - 3i}, b) C\{i}, o C\{-1/2  + d) C\{L,1/2}.

iv/15/2},

3.2.10. Provar que |z|?> és C-derivable en z = 0 pero enlloc més. <

Solucié: Fora de zero no es compleixen les equacions de Cauchy-Riemann perd lim, ¢ |2|?/z =

lim, .9 Z = 0 i és diferenciable al 0.
Alternativa: A la segiient seccié veurem que f(z) = zZ implica que df(z) = z i per tant
0f(z) = 0siinoméssiz=0.

3.2.11. Sigui

exp(—1/2*) siz#0
f(z) = : -
0 stz =0.
Demostreu que
a) f(z) satisfa les equacions de Cauchy-Riemann a tot punt z € C.

b) f no és continua al 0 i per tant f no és holomorfa a un entorn del 0. <

Solucié: Podem fer el calcul i la comprovacié de que es compleixen les equacions de

Cauchy-Riemann amb Sage. Fem-ho a ma i comprovem que f, +if, = 0, que equival a
les equacions de Cauchy-Riemann. Tenim que

_ 3
fx(Z) _ 671/24 <41> _ 671/z4 (42 ;x) _ 4671/24&

z z 25"

]
Analogament f,(z) = 4eV 24;. Llavors f, +if, = 0 i es compleixen les equacions. No

obstant si ens acostem a 0 seguint 1’eix de les z el limit és 0 i si ens acostem seguint el
raig A(1 +4),\ > 0 el valor de f s’acosta a infinit. Llavors f no és continua en 0 i no pot
ser holomorfa.
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3. Derivacié complexa i holomorfia

3.2.12. Siu i v s’expressen respecte a les coordenades polars (r,0), proveu que les equa-
cions de Cauchy-Riemann es poden expressar de la forma

ou_1d 2 _ 1
or radd’ or  rof
Indicacié: estudieu el limit incremental sequint argz = 0y i |z| = 19. <

Solucié: (proposada per Tomas Planelles Alonso)

Podem expressar u: R? — Riwv: R? — R en polars fent el canvi (z,y) = (r cos,rsin ).
Aplicant la regla de la cadena tenim que
ou(rsin @, rcos )

Uy 1= a = Uy cos 0 + u, sin 6,

ou(rsinf, rcosf) _
Uy = = —ugzrsinf + uyrcos o,

00

on ug i uy son les parcials respecte x i y. Notem que per v sén les mateixes expressions
canviant ug 1 uy per v, 1 vy respectivament.
Assumim que es compleixen les equacions de Cauchy-Riemann. Aleshores,

C.R.

TUp = TUgz cOS O + 11U, sin 0 TVy oS 6 — rv, sinf = vy

C.R.

TV = 1V cos 6 + rvy, sin 0 —TUy oS 0 + Tuy sinf = —ug.

Hem arribat a les relacions de ’enunciat.
Reciprocament, si es compleix la relacié de I’enunciat, escrivint sg := sinf i ¢y := cos 0,

Uy = Vg UgCh + UySe = VyCh — Vgz:Sg
<
TVp = —Ug VgCh + VySg = UgSe — UyCh.
Multiplicant la primera equacié per sg i la segona per cg i sumant-les ens queda u, =

—vz. Finalment, multiplicant la primera per ¢y i la segona per —sg i sumant-les, ens queda
Uy = vy. En resum, tenim que

S
<
Il
|
<
8

3.2.13. Quina part del pla es contreu i quina part es dilata si la transformacid es realitza
mitjancant la funcid:
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3. Derivacié complexa i holomorfia

a) w= 2% c)wzl- d) w=e*;

7

b) w= 2%+ 2z; e) w=1log(z—1). <

Solucié: a) |w'| = 2|z| < 1 si i només si |z] < 1/2 és la zona on es contreu, si |z| > 1/2

s’expandeix. b) |w'| = |2z + 2| < 1 si i només si la distancia a —1 és menor que 1/2, es
contreu en el disc de radi 1/2 al voltant de —1. ¢) Es contreu si |z| > 1. d) |u'| = €7, si
x > 0 expansid, si < 0 contraccié. e) |w'| = |1/(z —1)| < 1 fora del disc de radi 1 al

voltant de 1, és on es contreu. La zona de dilatacid és a Uinterior d’aquest. Cal treure en
els dos casos la branca que no és del domini de log(z — 1), és la branca {x < 1,y = 0}.
3.3. Calcul de les derivades

3.3.1. Sigui Q) < C un obert i f una funcié holomorfa en 2. Definim Q* = {z€ C : Z€ Q}
i f*:Q% - C donada per f*(z) = f(Z). Proveu que f* és holomorfa en Q*. <

Solucié: Primer argument: Considerem les descomposicions en parts reals i imaginaries

f* = u*+w* i f =u+iv. Segons l'enunciat, tenim que u*(z + iy) = u(z — iy) i
v¥*(z + 1y) = —v(x —iy). Comprovem les equacions de Cauchy-Riemann de f* usant les
de f:

ou* , ou , ov , ov* , ov*

A (e i) = @ —iy) = i) = G (e i)(-1) = G (i),

u* ou v ov*
i) = P — i (1) L e iy —
@+iy) = She—in)(-1) = Sw—iy) = -5
Segon argument: apliquem la regla de la cadena complexa. Considerem la funci6 conju-
gar g(z) = Z. Notem que dg = 01 dg = 1. Aleshores tenim que f* = go f o g i aplicarem
dues vegades la regla de la cadena complexa: en primer lloc

(x +iy).

Of* =0g0(fog) +0gd(fog)=00(fog)+10(fog),
aixi que només cal calcular el segon sumand. Continuant ’argument, obtenim
Of* =0(fog) =afdg+ 0fog=af0+ ofI = of.

Com que f és holomorfa, per les equacions de Cauchy-Riemann tenim que of = 0, és a
dir que f* també és holomorfa.

3.3.2. Trobeu els punts on la funcié f té derivada compleza (i calculeu-la si escau) en els
seglients casos. (Podeu fer servir si cal que f' = f;.)
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e) f(z) =z

f) f(z +iy) = coshacosy + isinhxsiny

g) cos|z|?

h) f(z)=2z+z2Z p

Solucié: (a) 0; (b) Ci f'(z) = e*(cosy + isiny); (¢) C\{0}; f'(z) = 1— Z—Q, (d)
C\{1, +V2i} i f’( ) = %; (e) I; (f) Ci f'(x +iy) = sinhx cosy + i cosh xsiny;
(g) {z=re : 12 e TN U {0}}; (h) O

Illustrem com resoldre en els casos ¢, d i g. Notem que f(z) = z + 1/z és la suma de
dues funcions holomorfes a C\{0}. Per tant, f és també holomorfa. Com que per funcions
holomorfes tenim que f' = f, (és a dir que podem derivar usant les regles habituals
respecte a la z), podem calcular

of 1
!/
1—-—.
Py = =1
En el cas f(z) = Wl(zhrz) també tenim un polinomi, que és una funcié holomorfa, al
denominador. Per tant, f és holomorfa alla on esta definida, que és el pla complex llevat
dels zeros del polinomi en qiiestié. Aixi, el domini és {z € C: (z —1)?(22 +2) # 0}, és a
dir C\{1, ++/2i}. Aqui podem derivar també usant les regles de calcul per trobar

70 2z —-1)(22+2)— (2 —1)%22  —422 4224
z) = = .
(z — 1)4(22 +2)2 (z —1)3(22 + 2)?
En el cas (g) tenim que f(z) = cos|z|? = cos(zZ) = F(2,%), on F(z,w) = cos(zw).
Aquesta funcié és la composicié de la funcié cos(z) = #, que és holomorfa, amb el

polinomi en dues variables zw, que és holomorf respecte a z i respecte a w. Per tant, F’
és holomorfa respecte a les dues variables. Per tant, les derivades de Wirtinger de f es
poden calcular usant que

of oF ,  _
L@ =)

of oF, _
Lo -0,

Les darreres derivades, en ser F' holomorfa respecte a les dues variables, es poden calcular
per les regles habituals. Aixi

oF

g(z,w) = —sin(zw)w
i oF
%(2,2) = —sin(zw)z.
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Obtenim que

of or, . _ .

aZ( z) = p ——(2,7) = —zsin(|z[?)
' of OF .

E( z) = aw(z Z) = —zsm(|z|2).

Ens interessa només saber quan s’anulla la darrera derivada. Sera doncs quan z = 0
(és a dir a I'origen) o bé quan |z|? = km, és a dir si 22 + y? = k7, amb k € N. En aquests
punts, precisament

af

f'(z) = aZ( z) = —zsin(|z|*) = 0.

3.3.3. Donat un polinomi de dues variables reals P(x,y), demostreu que identificant z =
T + 1y son equivalents:

1. P es pot expressar com un polinomi en z.
2. P és una funcio entera.
3. 0P =0 enC. q

Solucié:

1. = 3., ja que per la proposicié 3.27 tenim que 0P = 0.

3. = 2. pel teorema 3.13 és una funcié entera.

2. = 1, jaque P(z,y) = P((z + 2)/2, (2 — 2)/(2i)) = Q(z,2), on Q € C[z,w]. Pel
teorema 3.13 tenim que 0@ = 01 la proposicié 3.27 es diu que el polinomi ) és independent
de Zz.

3.4. Funcions analitiques

3.4.1. Discutir l'analiticitat de

a) 8% + 1, e) 2+ 9y +y—2+ix,

) g P (re ) viv- ).

c) %22“ (vegeu la figura 3.7), g) |2* + 22,

d) x* —y* + 2xyi, h) ’2‘24_2 q

Solucié: a) No, b) No, c) Si, excepte a z = 1, d) Si, és 22, e) No es compleixen C.R.
enlloc, f) Si, excepte a z = 0: és z + 1/z, g) No, h) No.

3.4.2. Trobeu la suma de les séries
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o0 . n . ] .
1 —+1 (3 + l)n . .
a) 21 ( 3 > ; b) ZIT; c) Zlnz silz| < 1. 4

Solucié: a) > | (H)" = 1/(1— (1 +4)/3) =1 = (1 +4)/(2 — i), b) eB®T) — 1, ¢)
z/(1 - 2)%

3.4.3. Sigui f(2) = >,,5cn2" per |z| < R on R és el radi de convergéncia de la série.
Demostreu que si f(zr) = 0 per una successio (zx)i tal que z # 0 i zx — 0 quan k — oo,
aleshores f(z) =0 (i.e. ¢, =0 per a tot n = 0). Indicacié: Calculeu f(0) i considereu la

serie f(z)/z). <

Solucié: Com que f és holomorfa (és una serie de potencies) també és continua. Ales-
hores
F(0) = f(lim z) = lim f(z) = lim 0 =0,
D’altra banda
0= f(0)=co+c10+c0* +... = co
i per tant cg = 0. Suposem ara que haguéssim demostrat que ¢cp =¢; = ... =¢, =01

anem a veure que c,+1 = 0 també. Escrivim

n+2 T — Zn+l( zn+l

f(z) = Cnr12"H + Cppoz Cntl + Cag2z +...) = 9(2).

Per hipotesi, per a tota k € N

0= f(z) = 2 g(2k).

la qual cosa, ates que zx # 0, implica que g(z;) = 0 per a tots els punts de la successio.
La funci6 g és també continua al 0 i pel mateix raonament anterior veiem que

0= g(O) = Cn+1,
com voliem demostrar. Aquest raonament per induccié prova que ¢, = 0 per a tota n i

que per tant f = 0.

3.4.4. Demostreu que si dues series Y, —oan2" i 2,5 obn2" son convergents i tenen la
mateiza suma per a una successio (zx)g tal que z # 0 i 2z — 0 quan k — o aleshores
an = by per a tot n = 0. 4

Solucié: Siguin S(z) = > o ganz" i T(2) = 3,50 bn2", i considerem f(z) := S(z) —
T(z) = X,s0(@n — by)2™. Aleshores f(zx) = S(2x) — T'(2) = 0 per hipotesi. L’exercici
anterior ens implica que a, — b, = 0 per a tot n € N o, equivalentment, que f(z) =0 o
que S=T.

3.4.5. Calculeu la suma de les séries de potencies de ’exercici 2.8.1.
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Solucié: (a) —Log (1 — 2);

(b) La suma és (1 — z)(Log (1 —2) — 1)+ 1,si ze D\{1} i és 1 si z = 1;

(c) La suma és —1/3Log (1—2) —e27/3 /3Log (z—e'2™/3) —e7/3 /3Log (2 —e™7/3) —m1/3/9:
Si anomenem S(z) == >, %, a l'interior del conjunt, tenim que S’(z) = >, 2%".
Calculem-ne la primitiva: sabem que

1 A B C

= _ = +
— .3 — —2ni
== L=z % -2 e —2

§'(2)

Sumant i igualant numeradors, obtenim

—2mi 2mi

AQ+z2+22)+B(1—2)(e 3 —2)+C(1—2)(e3 —2)=1.
Substituint z = 1 obtenim

Substituint z = e% obtenim

27 4 271

B(l—e3)(es —es3 ) =1,

és a dir
1=Bes (es —1)(es —1)=3Bes,
i3B=¢%. -
Analogament 3C' = e”3 . Hem vist que
1 27 —271
e 3 e 3
35[(2) = t 3w +t —m
L=z %5 -z 3 —2z
Per tant
271 27 —27i —271

35(2) = —Log(l—z2)—e3 Li(es —z)—e 3 Lale73 —z)+C.

Notem que les determinacions del logaritme £; en els dos darrers casos es pot prendre
qualsevol determinacié a C\[0,c0), en particular podem agafar £;(z) := Log(—z) + mi.
Trobem doncs

27 —2mi —2mi

35(2) = —Log (1 — 2) —e 3 (Log(z —e 3 ) —e 3 (Log(z—e 3 )) +C.

Per tenir S(0) = 0, cal

0 =—Log (1) — ¢ % (Log (e ) —e o (Log (e )+ C =0—eF _;” - e%% +C.
Obtenim ‘ ‘
= %(e% - e%) = %mlm (e%) - 337T.

Per continuitat, aquesta funcié s’estén a tot el domini de convergencia de S.
(d) Log (1 + 2):
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Si anomenem S(z) == >, Mz", aleshores S(z) = —T(—z), on T(2) = Y0 =
és la serie estudiada a l'apartat (a). Aix{ deduim que S té suma S(z) = —T(—=2)
—(—Log (1 + 2)) = Log (1 + 2).
() st=s-
(1-%1)

Estudiem la serie S(z) = >0, 71(2_579”_1 Definim 7'(z) = >, (=0 Aleshores T

=]

5n
té el mateix radi de convergencia que S, que és R = 5. A linterior del disc tenim que
T'(z) = S(z), i
i z—a)" 1 5)
n=0 - % 5 tir—z
Per tant,
)
S(z)=T'(2) =
(2) (2) (54i—2)2
3.4.6. Considereu la série
227171
S(z) =
n=1 2n

a) Estudieu-ne la convergéncia puntual i uniforme sobre compactes.
b) Calculeu quant val la suma per tot z del disc de convergéncia.

¢) Doneu el valor de

5 L .
| n9”

Solucié: a) El radi de convergencia és 1. En la circumferéncia unitat tenim una serie

divergent quan z = +1, ja que
(£1)2~! -1
S(£1) = - = — = —0.
(+1) Z 2n Z 2n

n=1 n=1

En canvi, si z # +1, aleshores tenim que

N
2 Z2n71
n=1

Tenim, pel criteri de Dirichlet, que S(z) convergeix uniformement en qualsevol arc tancat
de dD\{+£1}, ja que ﬁ esta uniformement acotat en aquests arcs. Pel teorema d’Abel,

tenim doncs convergencia uniforme en compactes de D\{—1,1};

2|z|
ST

1—2
—|\]

b) Tal com hem fet a I’exercici 3, podem justificar que 2S(z) = ;- ;n , amb radi de
convergencia R = 1. Aleshores, en l'interior del disc tenim que

Z 2n-1_ _ ~*
— 2

n=1
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Per tant,
Log (1 — 22)

z8(z) = 5

+C,
és a dir
Log (1 —2%)+C
B 22 ’
Com que S(0) = 01 Log (1 —0?) = 0, inferim que cal C = 0 per garantir la continuitat de
S a l'origen. Per tant,

S(z) =

_Log(1-— 22)

S(z) = P

_1)» i/3)%" 2 i/3)%n—1
;( ) :2;(/) :;(/2)71
2i oo 2iLog(1—(i/3)%)

3 2(i/3)

— —Log (1 +1/9) = —In(10/9).

3.4.7. Considereu la série de poténcies

Z n(n +1)z".

n=1

a) Estudieu la seva convergéncia.
b) Calculeu la seva suma.
¢) Quant val Zn>1(—1)”n(g:1) ¢ q

Solucié: a) Pel criteri del quocient, el radi de convergencia és 1. A la frontera {|z| = 1},
tenim que

S(z) = Z n(n +1)z"
nz=1

el terme general |n(n + 1)z"| = n(n + 1) no convergeix a zero i per tant, mai podra ser

convergent. Aixi, la serie convergeix absolutament a D i ho fa de manera uniforme als
compactes continguts al disc, o el que és el mateix, convergeix absolutament en tot disc
D,(0) amb r < 1.

b) Si prenem T'(z) = >, 2" = ;== per z € D, aleshores

5 =21"(2) = 2 2 k(k —1)2F2 = 2 k(k—1)2F1 = Z (n+ 1)nz" = S(z).
(1-2) k=2 k=2 n>1
Tenim doncs que
2z
S(z) = TEE

c¢) Trobem
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3.4.8. Considereu la série de poténcies

(—1)"(2z + )"

S(z) =2mi+ )

n=1

(a) Calculeu la seva suma i el seu domini de convergéncia, especificant amb precisié
totes les funcions involucrades. Indicacié: Per especificar un logaritme, cal donar
un domini de definicid i la imatge d’un punt.

(b) Calcula la solucié (si existeir) de l'equacié S(z) = e. <

Solucié: (a) Amb el metode habitual trobem S(z) = —(z + 3) + W + C per

z € Di(—3). Igualant en z = —J amb la série donada trobem C = 2mi. La série
2

és convergent en compactes de D1(—3)\{—1}, usant altra vegada els metodes habituals.
2
També es pot resoldre per un canvi de variable w = —2z — 1, relacionant-la amb el

Log (1 — w) (Exercici 3.4.5, apartat a).

Log (22+2)
2

(b) No té solucié, ja que Im ( > € [—m, ], mentre que Im (e +z+ % — 2m') €

[—27 — %, —2m + %], de manera que no poden coincidir.

3.5. Algunes funcions holomorfes importants

3.5.1. Demostreu que:

(i) sinz i cosz son funcions enteres amb

(sinz) = cos z; (cosz) = —sinz.

(ii) cos(—z) = cos z, i també sin(—z) = —sinz per a tot z € C.

2

(i4i) cos? z + sin® z = 1.

(iv) Per a tot z,w € C, cos(z + w) = coszcosw — sin zsinw, sin(z + w) = sinz cosw +
COS ZStnw. <

Solucié: i) Sén suma de funcions exponencials compostes amb funcions C-lineals. Per

tant sén enteres. Vegem per exemple la derivada del sinus:

eiz,L' _ €_iz(*i) eiz + e—iz

./ _ _ _ )
sin’(z) = 5 5 cos(z)
ii) cos(—z) = ei(fz)*;fi(fz) = 671‘22*6” = cos(z). El sinus es veu analogament.
iii)
. . 2 . . 2 . . . .
et? _ o2 €% 4 e t® _ 20z +92— —2iz 2iz + 24+ —2iz
cos2z+sin2z=( 1 ) —l—( 1 ) — 1 ¢ +6 1 ¢ =1
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iv) Raonant de la mateixa manera tenim que

COS z cos w—sin zsinw = (eiz + e_iz> (eiw + e_iw) B (eiz - e_iz) (eiw — 6_iw)

= cos(z+w)

4 —4
i analogament pel sinus.
3.5.2.
Resoleu les segtients equacions:
a) sinz =4 b) cosz =i. <

Solucié: (a) z = w/2 + 2kw £ iarccosh 4, k € Z (dos valors per cada k); vegeu l’apartat

d) de l'exercici 2.3.6.
(b) z = m/2 + 2kmw — darcsinh 1; z = 37/2 + 2k + i arcsinh 1.

3.5.3. a) Proveu que cosZ = COSZ i que sinZz = sin z, per a tot z € C.
b) Trobeu tots els zeros de les funcions sinus i cosinus.

¢) Deduiu de (b) que, per a z1, zo € C, es verifica:
i) cOSz1 = COS 29 Si, 1 NOMES si, z9 + 21 € 27L.

ii) sinzy = sin zo si, 1 només si, 29 — 21 € 2w 0 b€ z3 + z1 € T + 27L.

d) Proveu que per a tot z =z + iy € C se satisfa:
i) sinz = sinxz coshy + i cosx sinhy (vegeu l’exercici 1.3.2).
ii) cosz = cosx coshy — isinzsinhy.
iii) |sin z|? = sin? 2 + sinh? y.
) |cos z|? = cos®x + sinh? y.

e) Sobre quines rectes esta acotada la funcid sinus? I la funcié cosinus? <

Solucié: a) Es conseqiiencia directe del fet que e* = €Z.

b) Vegeu I'apartat d) de l'exercici 2.3.6: Per fer cosz = 0, posem w = e'*, resolem
I’equaci6é de segon grau que obtenim i resulta w = +i = eT™/2 Per tant, z = +7/2 +
2km—iln(1l) = m/2+ kw. De la mateixa manera, pel sinus obtenim sinz = 0 < z = km.

c) Expressem z; = % + 521 29 = % + 257, Aleshores, per I'exercici 3.5.2,
tenim que

cos(z1) = cos e cos [ 2222} gin 2 2 sin [ 2L 22
! 2 2 2 2
21 + 29 29 — 21 . 21 + 29 . 20 — 21
= COS CcOs + sin sin
2 2 2 2
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i analogament,

cos(z2) = cos Atz cos [ L=22) gin (222 ) gin (222
2 2 2 2 2

Restant, tenim que

+ — +
cos(z1) — cos(zz) = 2sin <z1 5 z2> sin <22 5 z1> 0 — 2 5 2k

Per tant, el sinus és 2k7 periodica en C i té simetria central respecte a 7w/2+ km. El cosinus
funciona de manera similar, i resulta ser també 2km periodica en C amb simetria central
en km (vegeu la figura 3.3).

d) Es tracta d’un mer calcul usant els resultats de 1.3.2 que deixem al lector.

3.5.4. (a) Proveu que per a cada w € C\{%i}, l'equacid tan z = w t€ infinites solucions,
que son la funcio multivaluada

) 11 7 —w
arctanw = — 1o .
2 B\itw

Vegeu també que per a w = +i ’equacid no té cap solucio.

(b) Vegeu que dues determinacions continues de arctanw en un conjunt conner E

C\{%i} difercizen de kr, k € 7Z.

(¢) Vegeu que no hi ha cap determinacid continua de arctanw als anells {r < |w —i| <
R}, {r<|w+i <R}, 0<r<R<2, pero que si que n'’hi ha si 2 <r < R < +00.

sz, : _ _ sinz _ _eF—eir 2121 o 2iz
Solucié: a) Si w = tanz = cosz = WeFteTE) = i(eZEgl)" Aleshores, aillant e“** trobem
%, 1+iw 1—w

S l—iw i+ w’

%z:kg(?;w).
1 w

Per tant, podem definim la funcié multivaluada

1 L — W
arctanw = — log | - .
21 74+ w

és a dir que

També es pot resoldre tenint en compte que tan(z) = fso foo f1(2), on fi(z) = 2iz és una
funcié C-lineal bijectiva, fo(&) = e és una funcié 2mi-periodica i que pren imatge a C\{0},
de manera bijectiva en franges horitzontals semiobertes d’amplada 27 , i f3(() = —i%.
D’aqui també recuperem 'expressié de I'arctangent, pero a més a més podem argumentar

per que +i ¢ tan(C):
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Notem que f3({) = w equival a ¢ = ZL“’U = fg_l(w), 1 que si w = —i no existeix ¢ tal que
f3(¢) = —i, jaque ( — 1 # ¢ + 1. Finalment, si w = +i, aleshores necessariament tenim

que ¢ =0¢ fo(C) = fo0 f1(C). En particular, f3: C\{0,—1} — C\{£:} és bijectiva, i
tanz = fy3o foo f1(z) = +i

no pot tenir solucions.

b) Si h; sén determinacions de I'arctangent amb j € {1,2}, volem veure que h;(w) —
ho(w) = kmw. Notem que f3 : C\{0,—1} — C\{+i} és bijectiva, tal com hem vist abans.
Per tant,

tan(hy (w)) = tan(he(w)) <= fao fi(h1(w)) = fao fi(ha(w)) = *MW) = (2iha(w)
Per acabar, usem la proposicié 1.45: cal que
hl(w) = hg(’w) + k.

¢) Suposem que tan(h(w)) = w per tot we Ay ={r <|wzti|<R}ambr<Ri2<r
o bé R < 2. Aleshores, com que f3 és bijectiva en la preimatge de I’anell, trobem que per
cada w existeix un unic ¢ amb f3(¢) = w i per tant,

St I3QO) — £, (FL(R(f3(0))) = f5 (tan(h(w))) = C.

Per tant, f1o0ho f3 és una determinaci6 continua del logaritme en f5° L(4). Notem que en
I’eix imaginari tenim que

1y 71— iy 1-— Y
y) = =—",
Js ) =y = 14y
Per tant, f; '(i(—1,1)) = R, mentre que f5 (i [(—=00,—1) U (1, +0)]) = R_.
Quan r > 2 tenim que

AniRci[(—0,—1)u(1,+00)]

i per tant, fg_l(Ai) N Ry = . En canvi, si R < 2, aleshores A_ talla i(—1,1) i també
i(—o0,—1), i A4 talla i(—1,1) i també i(1,+0). Per tant, hi ha una corba en A que
té per preimatge una corba que rodeja l’origen, on no hi pot haver una determinacié de
I’argument i, per tant, no n’hi pot haver del logaritme. Aixi, hem arribat a una contradiccié
i h no pot existir.

3.5.5. Demostra que el domini de continuitat de la branca principal de l’arctangent

1 T —w
Arct = —L .
rctanw 5 og <z’+w>

és C\{iy : |y| = 1}. q
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Solucié: Vegeu el darrer apartat de I’exercici anterior:

S5 (C\{iy « |yl = 1}) = C\(—o0,0],

i aquesta regié és precisament ’obert maximal on tenim definida la branca continua del
logaritme principal.

3.5.6. a) Sigui L la determinacid del logaritme en C\(—00,0] que compleix que L(1) =
4mi.  Definim f(z) = —L(2 — 2z). Demostreu que f és holomorfa en C\[1,+00).
Calculeu f(0) @ f(—1).

b) Considereu la série de poténcies

Demostreu que S(z) = —Log(2 — 2z), per tot z € D = D;;(1/2), on Log és la
determinacid principal del logaritme.

¢) Quina relacid hi ha entre S(z) i f(z) ¢ Indicacié: Relacioneu primer L(z) amb Log (2)
per z € C\(—o0,0]. q

Solucié: El primer apartat és molt similar a I’exercici 2.3.2, ara trobem k = 2. Per tant,
L(z) = Log (2) + 4mi, i trobem f(z) :== —Log (2 — 2z) — 4mi. Per tant f(0) = —In(2) —4mi
i f(—i) = —Log (2 + 2i) — 4mi = — In(2v/2) — 12T .

Pel segon apartat,

2"(z—1/2)"
S(z) = Z —
n=1

és una seérie centrada en el punt 1/2 i amb radi de convergencia 1/2. Notem que

2 2
(22—-1) 2-2z

S'(z2) =22z —1)" =2 (22— 1)" = —

n=1 n=0

. Per tant, en el disc de convergencia trobem
S(z) = C — Log (2 — 22).

Per expressar S com a funcié continua, ens cal observar que el centre del disc és 1/2 i el
radi de convergencia és també R = 1/2. Aixi, 2 —2z = 1+ 2(1/2 — z) té part real positiva:

Re(2—-22)=1+4+2Re(1/2—-2)>1-2|1/2—-2]>1-2-1/2=0.

Per tant, té sentit prendre la branca principal del logaritme, ja que hi és continua. Per
determinar la constant, notem que

S(1/2) =0

Log (2 —2(1/2)) = Log (1) = 0.
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3. Derivacié complexa i holomorfia

Trobem C =01
S(z) = —Log (2 — 22),

tal com voliem veure.
Del primer apartat sabem que £ = Log + 4mi. Tenim doncs que

f(z) = S(z) — 4mi.

3.5.7. Sigui \/* la determinacid de l'arrel quadrada en C\[0,00) complint que \/—1 =i i

sigui f(z) = +/3z + 2.

1. Ezxpresseu /- en termes d’una determinacié del logaritme i argument.

Recordem que
Llog 2 L(n|z|+iarg 2)
Vz=e2 =e? .

2. Quina és la regio més gran of f és holomorfa? Quina és la imatge? FExisteix z tal
que f(z) = —i?

3. Qué val f(52)? q

Solucié:

1. Observem que 3z + 2 € C\[0,00) si i només si z € C\[—2/3,0). Per tant, el domini
de f és C\[—2/3, ).

Per a determinar la imatge, observem que donat que 4/—1 = i, s’ha de complir que
%H)m), k € Z. Per tant, cal que k sigui un multiple de 2 i podem triar arg z que
sigui la determinacié de I'argument en C\[0, 0) complint que arg z € (0, 27) (observeu que
si triem una altre determinacié de la forma arg z + 4mwik, k € Z, llavors les corresponents
arrels quadrades coincideixen).

2. El domini ja I'hem comentat. Com que argz € (0, 2m), %argz € (0,7) i per tant la
imatge de f és el semipla superior. En particular, no hi ha cap z tal que f(z) = —i.

3. f(53) =vi—2+2=1i=¢1.

3.5.8. Trobeu el desenvolupament en série de poténcies al voltant del punt a = 1 de la
funcié f(z) = {/z on g/ denota la determinacid de l'arrel cibica definida a C\(—o0,0] tal

que V1 = e2mif3 = 71+2n/§. a

1= e%((

Solucié: Anomenem ( = /3,

g(w) = YT+ w=(1+w)"3 en a =0, que sera valida per |w| < 1.
Aleshores

Escrivim z = 1 4+ w i desenvoluparem la funcid
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3. Derivacié complexa i holomorfia

Utilitzant la determinacié que ens indiquen, tenim que

g(0)=(1+0)"3=¥1=

gw) =21 +w) ¥ g0)= ()i = 2

gw) = o 1+ W)™ 0= 2= 2
BRI (A Y S P

-3 3) (- ) ()

En conseqiiencia

on definim

Desfent el canvi

=< (10 3 (-1 e

Observem que f(z) = ¢(f(2)) on f(z) és la determinaci6 de I'arrel ctibica tal que f(1) = 1.

3.5.9. Els polinomis de Legendre? P;(¢) son els coeficients de 2 en el desenvolupament
de Taylor

1 e}
V1—2Cz + 22 :;)PJ(C)Z

Provar que Pj(() és un polinomi de grau j i calcular Py, Py, Py i Ps.

Solucio:

(1—2Cz+ 24712 = Z(;p) (z—2¢)" iO:(m) i() )k ken—k _

oz g (e S

2 Adrien-Marie Legendre, Parfs, 1752 — 1833, https://ca.wikipedia.org/wiki/Adrien-Marie_Legendre
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Sin+ k= jamb k < n, el valor més gran de n — k és j que s’assoleix quann =51k =0
llavors P;(¢) pot tenir grau com a molt j. De fet

Pi0) = (-2 (Tt 4

J

Els polinomis que es demanen sén

2 53 3
-z, G-

]‘7 C? 2)

Els polinomis de Legendre es fan servir en moltes disciplines, en particular en 'estudi de
xarxes neuronals.
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4. Integrals de linia i teoria local de Cauchy

4.1. Corbes

4.1.1. Proveu que Uellipse 22 /a® + y?/b% = 1 és una corba diferenciable (és a dir, existeix
una parametritzacié z(t),t € I que el seu rang és Uellipse, és diferenciable, 2'(t) + 0 i z(t)
és injectiva. Diem que z(t) és una parametritzacié admissible o regular). <

Solucié: Parametritzem z(t) = acost + ibsint amb ¢ € [0, 2x]. Llavors 2/(t) % 0.

4.1.2. Parametritzeu el contorn format pel perimetre del quadrat amb vértexs —1 —i,1 —
1,1 +14, —1 4+ i sequint aquest ordre. Quina és la seva longitud? <

Solucié: En general si volem z : [a,b] — C tal que z(a) = p i 2(b) = ¢q fem

(1) = (b~ 1)+ (¢ — a)a))

En el nostre cas fem que el parametre varii als intervals [0, 1), [1, 2), [2, 3), [3,4). La longitud
és clarament 8.

4.2. Integracié sobre corbes

4.2.1. Sigui v = {z € C: |z| = 1} el cercle unitat amb l'orientacid habitual. Avalueu, per

a tots els m € Z:
/dz /|dz dz |dz|
5 2 5 2 5 1z 5 2

Solucié: Parametritzant z = y(t) = e, t € [0,27] tenim que |z| = 1, dz = iedt,

A

|dz| = dt, i per tant

/dz_/27r i?ittdt_z‘/%e“lm)tdt— 0 , S?m;ﬁl

5 2" o €em 0 2w sim = 1.
|dz_/2’r d |0 sim#0

v 2" Jooe™ |2 sim=0.

d 21 . it
z:/ =,
0

¥ 12

1

d ™ dt
M = / — = 2.

vy |Zm| 0 1
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4. Integrals de linia i teoria local de Cauchy

4.2.2. Sigui v = 0D, (0). Calculeu, per a n € Z, /z" dz. a
v

n+1
Solucié: Llavorssin = 0, és una primitiva holomorfa a C. Per tant, / Z"dz = 0.
¥

n+1
ontl
Sin < -1, p—] és una primitiva holomorfa a C\{0}. Per tant, /z” dz = 0.
n
, g
Finalment, si n = —1, parametritzem v com (t) = re®, t € [0,27]. Obtenim

dz 27 ipett
/—/ .tdt:2m'.
N 2 o rev

4.2.3. Siguiy = [i + 1,—1]. Avalueu les segiients integrals de linia:
a) f,y sin(2z) dz b) f‘z|:1 ze* dz c) f|272|:1 1dz <
Solucié: (a) (cos(2 + 2i) — cos(2i))/2; (b) 0; (c) 0.

Es poden obtenir totes mitjancant el teorema fonamental del calcul. Per exemple, la
primitiva de sin(2z) és — cos(2z)/2, aixi que

/sin(2z) dz = [~ cos(22)/2]; ), = — cos(—2i)/2 + cos(2(i + 1))/2.
.

Alternativa: també podem usar la definicié d’integral de linia: v(t) = (1—t)(1+4)+t(—1),
~(t) = —1 — 2i. Aixi

1
/sin(2z) dz = / sin(2[(1 —¢)(1 +¢) + t(—1)])(—1 — 24) dt.
o 0

Usant la regla de la cadena complexa, veiem que —cos(2[(1 —¢)(1 + 3) + t(—17)])/2 és la
primitiva de l'integrand, aixi que podem fer servir el teorema fonamental del calcul en
variable real per acabar el calcul

/sin(QZ) dz = [—cos(2[(1 — t)(1 +14) + t(—i)])/2]p = — cos(—2i)/2 + cos(2(i + 1)) /2.
.

4.2.4. Avaluar les segiients integrals.

6 2
a) / ( — + -+ 1 —3(2—2')2) dz siy és |z —i| = 4 recorreguda un cop amb
5 \(z —1) z—1

l’orientacid estandard.

b) /(:c — 2xyi)dz al llarg del contorn v : z =t + it? amb t € [0, 1].
g
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4. Integrals de linia i teoria local de Cauchy

c) /(\z —1+1i|]? = 2)dz al llarg de la semicircumferéncia v : z =1 —i+ € onte [0,n).
v
d) La funcié no analitica f(z) = 2% + iy (per qué?) al llarg de |z| = 1 recorreguda un cop

en sentit antihorari. <

Solucié: a) 1/(z —4)? i (z —i)? tenen antiderivada en un entorn obert del disc de vora

C' llavors les integrals corresponent sén zero, en canvi 1/(z — i) no i cal integrar amb una
parametritzacié. Posem z = i + 4e® amb t € [0,27). Finalment la integral val 4mi.

b) La funci6 no és holomorfa, no té antiderivada, cal substituir. Val 13/10 + i/6.

c) Sobre la corba la integral és la de (1 — z) fem la primitiva i obtenim —2i.

d) No satisfa les equacions de Cauchy-Riemann, no pot ser holomorfa i per tant tampoc
analitica. Considerem z = cost + ¢sint, substituim x = cost,y = sint calculem i obtenim
—Ti.

4.2.5. Calcular les segiients integrals al llarg del cami vy que s’indica.

1
a) /zdz per qualsevol contorn en el semipla dret que va de —3i a 3i. Quin problema
v

tenim si seqguim un contorn pel semipla esquerre? Indicacid: considerar la determinacio
principal del logaritme en la qual el logaritme no esta definit si y = 0,2 < 0.

b) /ez cos zdz per un cami d’origen a =i i final b = .
v

c) /zl/zdz per la branca principal de z'/? per un cami d’origen a = i i final b = w que
¥

no talli la semirecta (—o0,0]. q

Solucié: a) Pel costat on > 0 no tenim problema ja que 1/z té per primitiva la

branca principal del logaritme, llavors la integral val [Log(z)]%;; = Log(3i) — Log(—3i) =
mi/2—(—mi/2) = mi. Per ’altra banda cal fer la integral directament o jugar amb el teorema
integral de Cauchy. Sigui C' la circumferencia de radi 3 centrada en 'origen recorreguda
en sentit antihorari tenim que fc 1/z = 2mi. Si vy és un cami de —3i a 3i pel costat dret i
Y2 pel costat esquerre amb C' = ~; U (—72) llavors 277 = | ) % + mi. Llavors la integral de
—3t¢ a 3i pel costat esquerre és —mi. No hi ha independencia del cami.

b) La funcié és entera, una primitiva és 3 (cos(2) + sin (z))e?, llavors la integral val
—3e™ — 2 cosh (1) e’ — Lie'sinh (1) (encara podem simplificar més).

c¢) El cami esta en el domini de la branca principal de I’arrel quadrada. Tenim primitiva.
La integral val

2/3(e2los™ _ c3losi) _ 9/3(n3 — e3iAMEY) — 9/3(n3 — 1 1) = 2/3(n2 — /2(—1 +1)).
4.2.6.

Considerem la determinacidé de Uarrel v/22 — 1 que és holomorfa a C\[—1,1] i positiva a
(1,00).
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4. Integrals de linia i teoria local de Cauchy

(a) Vegeu que z + /22 — 1 omet l’eiz real negatiu si z € Q = C\(—o0, 1], de manera que
la determinacid principal Log (z + V22 — 1) esta definida a Q.

(b) Vegeu que Log (z + /22 — 1) és una primitiva de \/227_1 a Q.

(c) Avalueu

dz
——= on~ és el tros de cercle |z — 1| = /2 que va de i a —i passant
/7 T |2 =1 q p
pel semipla de la dreta (Re z > 0).

L 1 _ .
Indicacié: comproveu que /2% — 1 = ez(bog z=N)+Log (=+1)) gr05tén o C\[—1,1] de manera
continua. <

Solucié:

Observem que les expressions

V22 — 1 = e3lloa(z—1)+log(=+1))

on log w és alguna determinacié del logaritme, sén arrels de 22 — 1 en alguna regié del pla.
Si triem el logaritme principal tenim directament que

/2 1 = e%(Log (z2—1)+Log (2+1))

és holomorfa a C\(—o0, 1] i positiva a (1, +00).

Comprovem en primer lloc que efectivament aquesta és la funcié de la que ens parla
I’enunciat.

Metode 1: Si ens hi fixem, veiem que també ho és als punts reals x < —1. Escrivint
Logw = In |w| + tArg w veiem que per a comprovar aixd només cal veure que

F(2) = o3 (Arg (z=1)+Arg (2+1))
és continua a aquests punts x < —1. Si ens acostem a x pel semipla de dalt tenim que
F(x+i0%) = e3(T+m) — oim _ -1,
i si ens hi acostem pel semipla de baix tenim analogament
Flx+i07) = e3(=m=m) _ omim _ 9

Per tant hi ha continuitat de F' aquests punts. Un cop hem vist que la funcié és continua,
I'holomorfia de 'arrel /22 — 1 definida a dalt a tot C\[—1, 1] se segueix: per zg € C\[—1,1],
podem trobar § > 0 tal que si z € B(zp,), aleshores |22 — 22| < |22 — 1| per continuitat i,
en particular, 0 # 22 — 1. Aixi, com que F'(z) té només dues alternatives que sén nombres
complexos oposats, ’eleccié esta univocament determinada quan z € B(zp,d) i, donada

una determinacié del logaritme log a B(23 — 1, |23 — 1]), F ha de coincidir amb e loa(z"~1)

o bé amb el seu oposat, és a dir, F'(z) = e3108(z*=1) Ey qualsevol cas, la seva derivada és
1 2_1 F
F'(z) = pelosl® Dz _ 2P} — 2
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4. Integrals de linia i teoria local de Cauchy

Meétode 2: Prenent una determinacié del logaritme a C\[0,0), tenim que per z ¢
[—1,00) la funcié
e%(log(z—l)-‘rlog(z-i-l))

esta ben definida i, si z ¢ R tenim que log(z — 1) = Log (z — 1) + 2kmi i log(z + 1) =
Log (z 4 1) 4+ 2kmi, amb k constant en els semiplans de part imaginaria positiva i negativa.
Aleshores tenim que

6%(log(z—1)+10g(z—&—1)) _ eé(Log (2—=1)+Log (2+1))+2kmi _ F(Z)
Pero aquesta segona definici6 és continua i holomorfa a z ¢ [—1, 00), mentre que la definicié

amb logaritmes principals és continua i holomorfa a z ¢ (00, 1]. Aix{ doncs F' és holomorfa
a C\[-1,1]. A més

1, 1 1 z z
21t TR T R

F'(2) = e3(os(z—1)+log(=+1)

i el mateix podem fer amb els logaritmes principals de manera que la derivada de F' és
ﬁ a tot arreu on la tenim definida.

(a) Mirem per a quins punts z € C tenim que z + 4/22 — 1 € (—00, 0], i veurem que cap
d’aquests punts no és a 2. L’equacié

1+ a2
2x

dona per solucié z = — . Observem que tots aquests punts sén reals negatius, i per

tant queden fora d’ 2.

(b) Ara sabem que aquesta funcié és holomorfa, ja que és composicié de funcions holo-
morfes (tant Iarrel com el logaritme sén holomorfs alla on no tenen discontinuitats). Per
tant, per la regla de la cadena,

(Log (z + V2% — 1))/ =

1 oo 2 ) _ 1
prny o RO CO ety o (H F(z)) o)

(¢) L’arc d’integracié (en blau) és dins del domini on la primitiva de la funcié a integrar
és holomorfa.




4. Integrals de linia i teoria local de Cauchy

Utilitzant el teorema 4.9, és a dir, la regla de Barrow de les integrals de linia, i dient

G(z) = Log (z + V2% — 1) tenim:

dz
——— =G(—1) — G(i) = Log (=i + /(—i)2 — 1) — Log (i + V2 — 1).
| =y = 6 = Gli) = Log (=i + V(= 1)~ Log i+ v/ =)
Notem que la notacié 4/(—i)2 — 1 es refereix a una funcié avaluada en z = —i, que no

coincideix en principi (de fet, no coincideix) amb +/i2 — 1! En realitat, per ser rigorosos,
haurem de parlar de F(i) i F(—i). Aqui

2_1= 6%(Log (i—1)+Log (i+1)) _ e%(ln\/§+iArg (i—1))+Inv/2+iArg (i—1))
— exn2+i%F+if) _ 2.
Analogament, es comprova que,

(—i)2 —1=—iv2.

Llavors
/ _dz Log (—i — iv2) — Log (i + iv/2)
4 V22 =1 '
Tenim que

Log (—i — iv/2) = In| — i — iv/2| + iArg (—i — iv2) = In(1 + V/2) — zg

i analogament

Log (i + iv2) = In(1 + v2) +ig.

Finalment

/dz:1n(\/§—1)—¢”—1n(\@—1)—i”:—m.

22 —1 2 2

4.2.7. Siguin y1 == {|z| =1:Imz > 0} i v2 := {|z]| =2 : Rez,Imz > 0}. Demostreu que:

dz :
o |[ o< gl
q 25+ 2 o<1 22

z

dz e
b d / —dz
) /72 22 +1 / o]=2 %2

< 2me

< me?. q

IN
cola
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4. Integrals de linia i teoria local de Cauchy

Solucié: Afitem com a exemple la integral

smz sin z
/ i< [ 5| ldel < ML) = 2w
l2|=1 # l2|=11 #
on -y és la circumferencia unitat i
|sin z| )
M = = max | sin(z)].
R R FER

Sabem que si z = x + iy aleshores
|sin(z)|? = sin?(z) + sinh?(y).

El primer terme té 1 com a valor maxim, mentre que el segon terme és una funcié creixent
per y = 0 i parell. Donat que |z| = 1 tenim que y < 1 i per tant

]sin(z)|=\/sm( ) +sinh?y < V1 +sinh?1 =+/(2+e+e1)/2 < e,

jaque e”! <0.512.5 < e. Concloem doncs que M < e i per tant 1’afitacié queda provada.

4.2.8. (a) Sigui vy un cami en C. Proveu que si f és una funcié continua en v* llavors

Lf(z) dz = /Wf(z)dz.

(b) Deduiu que si f és una funcié continua en el cercle unitat llavors

/|_1f(z)dz=— M% <

|z|=1

Solucié: Escrivim f = u +iv i v = r + is per les parts reals i imaginaries. Aleshores

tenim que ¥ = r —is, i

b
/f m-/fwv t/wmm—wwmmmw—wwMt

zlkmwm—w<< @)t = | 73 ds

Per l'apartat b), si considerem v = e la circumferéncia unitat resseguida en sentit
antihorari, aleshores ¥ = e~ és el mateix cami resseguit en sentit horari, i

B - 2 ,
/ﬂdw=/ﬂdw=0 F(e) (—ie=") dt

és a dir que

- o s
[ fGrds = [ et G = - [ @ 5
v Y

0
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4. Integrals de linia i teoria local de Cauchy

4.3. Teorema de Cauchy

0

4.3.1. Recordeu que/ e dr = /7.

—00

0
(a) Proveu que / e (@tia)® go V7 per a tot a > 0. Indicacié: Apliqueu el teorema
—Q0
de Cauchy al rectangle [—R, R] x [0, a].

0
(b) Proveu que / e T2 cos(nx) dx = V2re 2 ne. a

—00

Solucio:

22

(a) Considerem la funci6 entera f(z) = e~* i apliquem el teorema de Cauchy a la vora

del rectangle R que donen a la Indicacid:

/mf(z)dz=0.

Parametritzem cadascun dels quatre costats del rectangle:
1) y1(x) = z, amb z € [-R, R]. Aqui dz = dx.
2) v2(y) = R+ iy, amb y € [0,a]. Aqui dz = idy.
3) y3(x) = x +ia, amb x € [—R, R]. Ara dz = dx.
4) v4(y) = —R + iy, amb y € [0,a]. Aqui dz = idy.
Amb aquestes parametritzacions tenim, tenint en compte I'orientacid, que 0R = 1 +
Y2 = Y3 — Ya-

—v3()

—R +ia R +ia

—y4(y) 72(y)

Aleshores
R 2 a 2\ 2 R 2 a 0\ 2
0 =/ e dx +/ e~ (F+iy) idy—/ e~ (wtia) daz—/ e (CRF)% gy
-R 0 -R 0
Observem que les dues integrals en y, corresponents als costats del rectangle, tendeixen a
0 quan R tendeix a +o0: (£R +iy)? = R? — y? + 2iyR, de manera que

—_R2 2 _R2 42

‘e—(iR-i-iy)z |
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4. Integrals de linia i teoria local de Cauchy

Aleshores

a a
_ SN2 P2 2 2 _p2 Roo
/e(iR“y)zdy‘é/eReadyzae“eR — 0.
0 0

Per tant, passant al limit la igualtat anterior obtenim

© 2 o ;)2
0 =/ e ¥dx —/ e~ @tia) go.
—Q0 —Q0

© 2 © ;)2
VT =/ e ¥ dx =/ e~ (@+ia)" go.
—a0 —a0

i per tant

(b) Utilitzem 'apartat anterior, reescalant = per a tenir x2/2. Es a dir, fem primer el
canvi x = t/v/2; dt = /2dx. Aleshores, de I'apartat (a) tenim que

* — (s +ia)?
/ e V2 dt = v/ 2m.
—Q0

Prenem ara a = n/+/2, amb n > 1 (per a tenir a > 0). Llavors
¢ t 2 n?
(74_@'@)2 = (—+ii)2 = ——n——i-itn

V2 2 2
i per tant
o0
6”2/2/ et gy — \/or.
—Q0
Prenent les parts reals d’aquesta igualtat obtenim el resultat demanat, per a n > 1. Per a
n < —1, observem que cos(nx) = cos(—nx), i per tant el valor de la integral que obtenim
per a aquest n és el mateix que prenent —n = |n|. Per a n = 0 el resultat és la indicacié
que ens donen a l’apartat (a).

4.3.2. Determineu el domini d’holomorfia de les funcions f donades i digueu perque

f|z‘:2 f(z)dz = 0.

RO R T
b) f(z) = Log(z + 3). a

Solucié: a) Es holomorfa alla on el denominador és diferent de zero, és a dir a C excepte

z = 3 + 4. El circuit d’integracié no envolta la singularitat llavors pel teorema de Cauchy
la integral és zero.

b) El domini d’holomorfia de la funcié és D = C\{z < —3,y = 0} llavors {z € C : |z| <
2} < D i la integral és zero pel teorema de Cauchy.
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4. Integrals de linia i teoria local de Cauchy

4.3.3. Sigui u : D — R wuna funcié harmonica en un disc D, és a dir, tal que Au =
400u = 0. Demostra que existeiz una funcié v : D — R harmonica tal que (u + iv) és
holomorfa. L’anomenem harmonica conjugada. Indicacié: Demostreu que les equacions
de Cauchy-Riemann per F = U +iV es poden escriure com 0F = 20U o com oU = —idV .

<

Solucié: Si F' = U + ¢V satisfa que

OF =0 «— 0U = oU = —idV = idV,

vegeu l'observaci6 3.25. Com que U i V prenen valors reals tenim que U = UiV =V, i
trobem
OF =0 «= 0U = —idV <= 0U =idV <= 0F = 20U.

Considerem u harmonica. Aleshores f = 20u és holomorfa. Pel teorema de Cauchy té
una primitiva holomorfa F' = U + iV, que ha de satisfer que 0F = 01 0F = f. Prenem
doncs v = V. Aleshores per Cauchy-Riemann tenim que

du+iv) Z Gy — 30 < a*u_%Fzg

Per veure que V és harmonica, notem que
400V = 40(—idU) = —2i00F = —2i0f = 0.
4.3.4. El teorema de Green diu que si 0 < C és un obert i U < Q és un obert fitat

prou reqular (per evemple amb frontera C) i tal que U < §, aleshores tot camp vectorial
F=(F,F):Q—R? amb F e CY(Q) satisfa que

/ (6xF2—§yF1) dm = (F1 dl’—l—FQdy).
U oU

Demostreu la formula de Green en variable complexa (4.1). <
Solucié: Suposem que f =u+ivig = U + 0. Aleshores
O / (fdz —gdz) = / ((u+ iv) (dz — idy) — (& + D) (dz + idy)) .
ou ou
Per tant,
@ = / (udzr —iudy +ivdr + vdy — udx — iudy — 0 dx + 0 dy)
oU

=/ (udx—l—vdy—fldx+%dy)+i/ (—udy +vder —udy —vdx).
oU ou
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4. Integrals de linia i teoria local de Cauchy

Apliquem ara el teorema de Green als camps (v — u,v +?) i (v — 0, —u — ). Obtenim
@z/U(—uy+vx+ﬂy+5x+i(—ux—vy—ﬂx+5y)) dm
- |t ritemg) = =i [ (fo=if,+ 00+ ig,) dm
_ _%/U (0f + 29) dm.

4.3.5. Continuant amb exercici 4.3.4, demostreu la formula de Cauchy generalitzada,
coneguda com a férmula de Cauchy-Pompeiu', que diu que si ¢ € C1(Q) i 2o € U, aleshores

#(20) L MdZ— 71T/U 09(2) dm(z).

21 Jou 2 — 20 Z— 20

Notem que el cas particular ¢ € CH(Q) ens diu ¢ = C(0¢), on C indica la transformada de

Cauchy ~
1 0
Cp(z0) == —— / K ), 4
™ JUu X — 20
Solucié: Prenem U. = U\B:(zp) amb & prou petit (tal que B.(z9) < U). Aleshores
prenent g(z) = jﬁi{), com que 0g(z) = iqi—(zzo) en U, obtenim

2@'/ 09(2) dm = (2) dz — / 6(2) dz.
U. # — 20 oU # — 20 dB:(z9) # — R0

Per passar al limit en €, notem que per € prou petit

()

i per tant

1

B:\{z0} |z — Zo\

% / 00(2) g <29, 9 / 09(2) 4.
U U

Z — 20 Z— 20

< 2|06(z0)| dm =" 2|0(z0) 2w =0,

Per altra banda, pel teorema del valor mitja,

[ ses,
aBE(ZO) S

[ PO i) [ T amiogeo)
0B (20) 0

zZ— 20 D 2

e—0

< sup |V |dz| < sup |V¢|2me — 0,

Be(20) 0Be(20) Be (20

Passant al limit, doncs, tot plegat ens queda

% /U 00) gy — (2) 4, 2mich(20).

zZ— 20 oU % T 20

'Dimitrie Pompeiu, Brosciuti, 1873-1954, https://ca.wikipedia.org/wiki/Dimitrie_Pompeiu
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4. Integrals de linia i teoria local de Cauchy

4.4. Formula integral de Cauchy

4.4.1. Avalueu, usant la formula integral de Cauchy, les segiients integrals:

a) f|z|:2 %dz" d) fz|:2 z%dizﬂ" 9) f |2|= 5 Bo2dz;
b) Jiz=1 Siniez)dz; ¢) Jizj— P h) Jies1i21 dz.
¢) Jisjo F51 1) Jimimg i amda;

Solucio:

(a) Com que 1 € Dy(0), la férmula de Cauchy per a f(z) = 22 dona

22
/ dz = 2mi 1% = 2.
|

z|=2 % —

(b) Essent 0 € D, podem aplicar la férmula de Cauchy a f(z) = sin(e?):

/ SN 1 9mif(0) = 2misin .
|z]=1

z
(¢) Descomponem en fraccions simples

112 12
22—1 2z—-1 2z2+1

/ dz 1/ dz 1/ dz . —0
- == - = =mi—mi=0.
|2]=2 22 -1 2 |2|=2 z—1 2 |z‘:22+1

Observem que
d
/ “ = 2min(y,1),
=2 7 = 1

tenim que

on v és la circumferéncia de radi 2. Analogament, l'altra integral dona 2min(y,1). Es
clar, tal com acabem de veure, que la diferencia d’indexs és 0.
(d) Les arrels de 22 + 2z + 1 = 0sén a = —1/2 +i+/3/2 1 B = @, totes dues dins el disc
D5(0). Escrivint
1 1 1 1

(z—a)(z—05) _a—ﬂ(z—a_z—ﬁ)

/ dz 1 ( dz _/ dz )
|z\:2Z2+Z+1 a—pf |2|]=2 2 — & |z|:22_ﬁ

1
= a_ﬁ(27ri—27ri) = 0.

tenim que
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4. Integrals de linia i teoria local de Cauchy

Observem que, llevat del factor 27i, aquesta integral equival a la difereéncia de dos indexs
de punts de l'interior del disc D2(0), i per tant val 0.

(e) Tenim que 22 + 2z — 3 = (2 — 1)(z + 3). L’arrel 1 és dins D2(0), perd Parrel —3 és
fora, de manera que la funci6 1/(z + 3) és holomorfa en aquest disc. Aplicant la férmula
de Cauchy a aquesta funci6 tenim:

dz 1/(z +3) o1 T
L AEES) o L
/|Z|_2 22+22-3 /Z|_2 c—1 T3 T

g) Descomponem en fraccions simples

3z —2 1 2
. _

24—z z—1 =z

Llavors tenim que

3z —2 1 2 1 2
/ j dz = / ( > dz = / dz +/ —dz = 6mi.
|2|=3 2° — % =3 \z—1 =z lzj=3 2 — 1 |2|=3 %

h)
1 1 1
dzz/ <— + )dz=2m'—12 + 0 = —m1.
/| L) SN G Yy Y ey (=1/2)

4.4.2. Sigui p un polinomi de grau n, amb tots els seus zeros continguts en Dgr(0). De-

mostreu que

/
/ P(z) dz = 2min. q
|

z|=R p(z)

Solucié: Convé expressar el polinomi com a producte de monomis. Tenimque p(z) =

CTIi,(# — a;). Aleshores calculant la derivada del producte trobem que

’z):CZ H (z — i),

k=1ie{l,...n}\k

1 obtenim

P'(2) :i 1
Z —

p(z) A

Aplicant la férmula integral de Cauchy a cada sumand obtenim el resultat demanat:

n n
z
dz = 2mi = 2mwin.
/|sz g/le_akz Zm min

k=1
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4. Integrals de linia i teoria local de Cauchy

< 2 — i) dz, i deduiu

4.4.3. Sigui a € C, |a|] < 1. Calculeu la integral de linia /
z—a

|z|=1
que

27 2
1—r?)dt
/ 2( ) =2m, peratot0<r<1lifekR. <
o 1+4+7r2—2rcos(f—t)

Solucié: Aplicant la férmula integral de Cauchy tenim que

2 1 2d d
/ < —> dzz/ : —/ %= _ 9(2mi) — 2mi = 2ni.
|z|I=1 \# —a& 2 |z|I=1 2 — @ lz]=1 #

Per altra part, sumant dins la integral i parametritzant z = e, obtenim

2 1 27 it .
[ (D e[ e [T e
Zl=1 \Z—a 2 zl=1 2(z — @) o €t(e"—a)

./271’ 1— ’a‘Q + ae*it o aeit
=1 -
o P

dt.

Observem que ae™" — @e® = 2iIm (ae~"). Per tant, prenent les parts imaginaries a la
igualtat anterior i utilitzant la igualtat que hem vist al principi obtenim,

21 2
1 —
27T=/ _— o] dt.
o T —aP

9 r <1, obtenim el resultat, ja que

Escrivint a = re*

e —al? =1+ |a]* —ae™™ —@e =1 + |a|? — 2Re (ae™™).

4.4.4. Siguin f,g € H(Q), on Q és un domini tal que D = Q. Donat a € C amb |a| # 1,
calculeu

L[ (f) ),

2t Jop\w—a aw —1

Solucié: Separem dos casos:

(i) |a|] < 1. Per la férmula de Cauchy

1 (w)

2 Jop w —a

dw = f(a).
Per altra part, com que 1/|a| > 1,

1
1 [ a) dw:?/ 9 o
271 Jop aw — 1 271 Jop w—1/a
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4. Integrals de linia i teoria local de Cauchy

(i) |a| > 1. Aqui els papers d’a i 1/a es giren; com que 1/a € D, tenim que

1
2m Jopw —a
i 1 1
271 Jop aw — 1 270 Jop w—1/a

Tot plegat

e I e ) L K P

4.4.5. Es consideren els segiient exercicis relacionats amb la Férmula Integral de Cauchy.”

2

a) Calculeu ¢ 4Z 1dz sobre la circumferéncia de radi 3 centrada en 0.
cc

, e?
b) Es cert que y§ —dz =0 si C és tancada i simple?
z

C

Solucié: a)

Obtenim

22 1 1dz i1dz dz dz
A-1% 7] 5 it 1 1) ="
|2=3| # |z=3| # =V  J]z=3[ T |2=3| # |2=3| #

b) Si C no envolta el 0 és cert. Si C envolta el zero la integral val 27wie® = 27i.

4.5. Series de poténcies

4.5.1. Desenvolupeu en serie de poténcies al voltant del punt a i doneu el radi de con-
vergencia de:

(l) 1/2’,@:1, C) m7azo} 6) 1e_zz}a:0’
b) z%e*, a =0, d) ﬁ,azo, f) H%,LL:O.
(en (e) i (f) només cal calcular els 3 primers termes). q

2De vegades es fa servir la notacié ¢ per indicar que la integral és sobre un cami tancat.

69



4. Integrals de linia i teoria local de Cauchy

( ) _ nl(=1"

Solucié: (a) Si f(z) = 1/z, aleshores si n > 1 tenim que ~w+1—, com podem

veure per induccié sobre n. Aleshores f(™ (1) = n!(—1)" per n > 0, i obtenim

fe = 2 I W= Y cape -y

n=0 n=0

El radi de convergencia és R = 1 pel criteri del quocient.

(b) Si f(z) = z%¢*, aleshores f'(2) = (2% + 22)e?, i si n = 2 tenim que f("(z2) =
(22 + 2nz + n(n — 1)) #, com podem veure per induccié sobre n. Aleshores f(0) = 0,
f'(0) =01 f™(0) = n(n —1) per n > 2, i obtenim

-y 20y -3
n=0 n=2 (n n=0 n!
El radi de convergencia és infinit pel criteri del quocient.

Aquesta seérie també es pot calcular directament sabent que e* = Zn>0 %

(c) Ara tenim que f(z) = m =L — L. Per tant,

1 1
F™ () = nl(-1)" ((Z T G 1)"“) :

i se segueix que

n+1
™ (0) = n!%
Aixi obtenim que
(2n+1 _ 1)2”
= on+1 ’
iR=1.
d) Ara tenim que f(z) = ~——3. Per tant,
(1-2)
f (Z) 9 (1 _ Z)n+3’
1 se segueix que
(n) (n + 2)'
10) = 2

Aixi obtenim que

iR=1.
Alternativament, usant el teorema de Mertens (vegeu el teorema 1.22), com que sabem

que
o0
— Z 2"

n=0
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4. Integrals de linia i teoria local de Cauchy
aleshores

1 1 1 o0 . o0 . .2200 n
et (59 (59) ¢ 5

=0 \k=0

—_

1) 2" = i (n+1)2",

n=0

i (n+ 1)2(n+ 2)

2",

1 1 1 122 @ [ n
1—2)3 (1—22 1—2z Z<Z(k“>>z

(f) Ara tenim que

n=0

1
fe) =
fl(z) = m7
" B 632 — e
(z) = e
1 o N (337 — e*)(1 + €*) — (3% — e7)4e?
fi(z) = (1+e?)> '
Obtenim que
1z 23 O(4
f(z)—5—1+@+ (7).

D’entrada no podem calcular R en no coneixer els coeficients. A la demostracié del
teorema 4.22, que dona el desenvolupament local en série de poteéncies, es demostra que si
D,(0) < Q, aleshores R > r. Per tant, com que la funcié és holomorfa a tot arreu llevat
dels pols z = im + 2kmwi per tot k € Z, deduim que R > w. A la vegada, precisament
entorn del pol i7 la funcié pren valors arbitrariament grans. Per tant la série no pot ser
uniformement convergent entorn del pol i, en particular R < 7. Aixi, tenim que R = 7.

aLog(1+z)

4.5.2. Sigui o € C, provar que si (1 + 2)® es pensa com e llavors per |z| < 1

—1 —D(a—2
(1+z)a=1—|—az~l—a(a2| ) 24 e 3)‘(04 I

(generalitzacid del binomi de Newton ).

Solucié: Podem provar per induccié que ((1+2)*)™ =a-(a—1)---(a—(n—1))(1+
2)(@=")_ D’aqui el resultat. Escrivim

<a> ala—1)(a—(n—1))

n n!

[0
i 0i =1.
=01 (%)

4.5.3. Trobeu els desenvolupament en serie de poténcies al voltant del punt a de les
seglients funcions:
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4. Integrals de linia i teoria local de Cauchy

a) f(z) =cos?z, a=0. c) Vz,a=

b) f( ) (Z+1)2,a=1.

Aqui /- és la determinacié de Uarrel cibica en C\(—o0,0] que val (=1 + i3)/2 en
z=1.

cos(2z)+1
2

Solucié: (a) Metode estandard: Tenim que f(z) = . Per tant,

f'(z) = —sin(22)
i per induccié veiem que si n > 1 tenim que
FEI(z) = (—1)"22 " cos(22)
FED(z) = (—1)"12%" sin(22).

Avaluant en a = 0 tenim que

Per tant,

Metode intelligent: Podem fer el calcul directament notant que

1 cos(2z 1 1 _1)7(22)2"
fe) =5+ ( ):2+2Z(()275)1)'

2 n=0
(b) Prenem f(z) = ﬁ = 229(2), on g(z) = ﬁ Calculem per induccié
9" (2) (z + 1)n+2

Per fer aquests calculs, normalment usem intuicié + induccié. La intuicié prové de
calcular un parell o tres de derivades i detectar els patrons: ¢'(z) = —2/(z+1)% = —2!/(z+
DD g"(2) = 6/(z +1)* = 31/(2 + 1)2*2) . Per la induccié notem en primer lloc que
és cert per n = 1 tal com hem vist. Per altra banda, si per un n € N efectivament tenim
g™ (z) = %, aleshores pel seglient nombre natural podem derivar un cop més i

_(n n 1(— n n+1
obtenim g1 (z) = ( +(2Z)J(r1;rn1+);( = Z;llf)%q)zil)?;

Un cop establerta la derivada n-ésima, és moment de calcular els valors que pren en
a=1:

, 1 es compleix el pas inductiu.

g =1/4  ¢"(1) = W
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4. Integrals de linia i teoria local de Cauchy

Notem que per n = 0 les dues expressions coincideixen.
Escrivim ara la serie de potencies:

g(z) = Z W(z_ 1"

19n+2
=0 nl2

Simplificant els factorials i multiplicant per 22 = (2 — 1)? + 2(z — 1) + 1 obtenim

F&) = (- 122z -1+ 1) Y CEVED gy

n=0

Multiplicant terme a terme i reindexant, obtenim

n — _1\n n(— n+1 n _1\n
f(Z) _ Z ( 12)n( 1) (2_1)n+ 2 2 (Qni)l <2_1>n+ Z ( +1)( 1) (Z—l)n.
n=2 nz1 n=0

Ajuntant termes,

(c) A Vexercici 7 de la llista 3 vam veure que si f(z) = +/z, aleshores tenim que

1) = (%) s - () 12

a) — a-(a—1)-....(a—(n—1))

n!

. Avaluant a z = 1 tenim que

s = (M2 = (1)

n 1 n

on ¢ = f(1) = (=1 +i+/3)/2 per hipotesi.
La serie de potencies sera doncs

()
f2) = 3 e -

n=0

Pel criteri del quocient el radi de convergencia és 1. També ho podem argumentar notant
que el domini d’holomorfia exclou necessariament l’origen.

z+1

T idpunta= -1,
-+ P

4.5.4. Considereu la funcio f(z) =
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1. “Sense fer cap calcul”, raoneu quin és el disc de convergencia de la série de poténcies
de f al voltant del punt a.

2. Calculeu la serie de poténcies de f al voltant de a. <

Solucié: (a) Sabem que f és holomorfa a tot arreu llevat dels zeros del denominador,

que s6n 0, —i i 1. El més proper a —1 és l'origen, que esta a distancia 1. Aixi doncs, com
que la funci6 és holomorfa a D1(—1) obtenim que R > 1 i com que té un pol a 'origen no
és uniformement convergent a D14.(—1) de manera que R < 1. Tenim doncs R = 1.

(b) Escrivim f(z) = =t = (2 + Dg(2), on 9(2) = oz = 21 + 2 + &
Per trobar les constants A, B i C', resolem
A(z+1i)z+ B(z—1)z+ C(z = 1)(z +14) = 1.
Avaluant a z = 0 obtenim C' =4, a z = —¢ obtenim B = _i2_1 iaz=1+trobem A = %
Tenim que
A B C
(M) () = (—
gn(@__(1ym1<@—ﬂyﬁl+(z+iw+1+zWH>’
iaz=—1 trobem

A B C
g(n)(_l) = (_1)nn! ((_2)n+1 + (_1 + Z')n+1 + (_1)n+1> ’

g™ (=1) = —n! <(Z —1)/2 + (zi-1)/2 + Z> .

on+1 (1 _ i)”'H

Les series de potencies resultants seran

i-1 —i-1 .
9(z) = Z - <2n+2 + 2(1 — i)n+1 +Z> (z+1)

és a dir

i-1 —i-1 .
f(z) = Z —<2n+2 +2(1—i)”+1 +z> (z + )"

n=0

4.5.5. a) Es pot desenvolupar /z en série de poténcies en un entorn de l’origen?
b) Quin és el disc maxim centrat a 0 on es pot desenvolupar cos(1/(z — 1)) en série de
poténcies?

z
33—z

?

1
c) I la funcio 5

Solucié: a) No hi ha cap disc al voltant de 0 on la funcié sigui holomorfa, no ho podem
fer. b) El disc més gran d’holomorfia al voltant de 0 és el disc de radi 1. ¢)

L,z 11 . 1
2—2 3-—2z 21-—2z/2 1—2/3

Cal que |z/2] < 11 |2/3] < 1. Llavors el radi de convergencia al voltant de 0 és 2.
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4. Integrals de linia i teoria local de Cauchy

4.5.6. Determinar com a minim els coeficients aq, as, as, ay de la série de Taylor de 1/(1+
z+2%) centrada a lorigen. Expliqueu perqué el radi de convergéncia és com a minim 2/3.

Solucié: Ho podem fer amb Sage, amb la comanda taylor. Fem-ho a ma.
1 0
= Z(—l)"(z+z4)”=1—z+z2—23+z5+---

n=1

14+ 2+ 24

i obtenim els coeficients demanats. Per controlar el radi de convergencia cal que trobem el
zero w de 2%+ 2+ 1 més proper a l'origen. Llavors el radi de convergencia sera |w|. Veiem si
pot haver un zero a distancia menor que 2/3. Si |z| < 2/3 llavors |z + 24| < 2/3+16/81 < 1
llavors no pot ser que z* 4+ z + 1 = 0. Aleshores el radi de convergencia és major que 2/3.
(de fet I’arrel més propera és aproximadament —0.727 4+ 0.43: i la seva distancia a Iorigen
és 0.8447 > 2/3.)

4.5.7. Vegem com el teorema 4.22 és propi de l'andlisi complexa. Una funcid de variable
real f és analitica en un interval obert I < R si es pot expressar localment com a serie
de poténcies amb coeficients reals. Demostra que si f és analitica en I aleshores hi és
derivable. Troba una funcio infinites vegades derivable en R que no hi sigui analitica.
Troba una funcio f analitica en R que tingui radi de convergencia 1.

Solucié: Si f es pot expressar com a série de potencies en un entorn de z € R, la

mateixa serie sera convergent en un disc centrat en x pel teorema de Hadamard i, per
tant, hi és holomorfa, de manera que la derivada f'(x) = of(z + 01).

La funcié f(z) = e~/ @ gs Iexemple més conegut de funcié6 C* de variable real que no
és analitica en 'origen, ja que totes les derivades sén zero i la serie no pot coincidir amb
f que és positiva en tot punt llevat de I'origen.

La funcié f(z) = ﬁ és derivable en tota la recta real, amb serie >(—1)"2?", que
té radi de convergencia 1. Els punts on ’extensié holomorfa deixa de ser continua sén
+1, justificant també aquest radi tan petit. En general, per tot punt a € R, el radi de

convergencia de la série corresponent sera la distancia a +%, és a dir vVa* + 1.

4.6. Férmula integral de Cauchy centrada per derivades i
desigualtats de Cauchy

4.6.1. Donatr >0 i ae€ C calculeu

622
I = —=dz.
/za|—r (Z - a)3 : )

Solucié: Per la férmula integral de Cauchy per derivades, si f(z) = €?* tenim que

e 27i - oa
Jooa e = 1) =
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4. Integrals de linia i teoria local de Cauchy

4.6.2. Siguin 0 < m < n enters. Calculeu

1 n
/ % dz. q
|z\=1 Zm-‘r

Solucié: Sigui f(z) = (1 + z)". Aleshores

Fm)=n-n=1)-...-(n—m+1)1+2)"""= C (14 2)"™
Aixi |
My = "
100) =
i per la formula integral de Cauchy per derivades tenim que
(1+2)" 271 (m) . n! n
/Z|1 omr T JA0) = 2mi (n —m)!m! "\m

a0
1
4.6.3. Intenteu calcular I = / md;ﬂ fent servir la formula integral de Cauchy
0 x
per deriwades (potser cal recordar la desigualtat | [ f(2)dz| < [¢|f(2)]|dz].)

a) Considereu la semicircumferéncia C en el semipla superior centrada a 0 amb radi R i

tancada pel segment de l’eix OX. Calculeu /C mdz.

b) Descomponeu C = Cy u Cy on Cy és el segment de —R a R i Cy la part restant
de C. Fent servir la desigualtat triangular per integrals donar una fita superior de

1
4
/02 1+ 2227

c) Fent servir els apartats anteriors calcular/ mdz. Que passa si R tendeix a
o] z
infinit? <

Solucié: a) La funcié f(z) = 1/(z +i)? € H(C\{—i}), és holomorfa a l'interior de la

corba C llavors ) £(2)
z
/c (4222~ /c —ig”

Per altra banda, la FIC dona per derivades

P& g o
/z—izl (z—z‘)2dz_2 f'(@) = m/2.

Ens falta veure doncs que

o )
/c G ig = / EEE
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Notem que l'integrand és holomorf en un entorn 2, on Q és el domini Q = D\B; (i) compres
entre la corba inicial C' i la bola de radi 1 centrada en i. Ara com ara no podem garantir
que existeixi una primitiva holomorfa en aquest entorn, ja que el domini 2 no és convex
(ni simplement connex, de fet).

No obstant, si que sén convexos els semiplans i les interseccions de semiplans, aixi que
definim
Up={z:Rez+Imz>1+¢},

Uy ={z:Imz—Rez>1+¢},
Us={z:-1<Imz<1}.

Aleshores, si escrivim ¢(z) = aler)g, i notant que g € H(U;), podem aplicar el teorema
de Cauchy en cada cami contingut en Uj.
Definim doncs t; = —10e, ty = /2, t3 = m + 10e i t4 = 27, 1 escrivim

i) =i+et ambt; <t <tj,
zj=1i+el,
wy =R+0t, wy=1iR, wg=-R+0:, i wyq=w.

Aleshores prenem els segments
oj = [z, w;]

i dividim el cami C' en els fragments compresos entre els punts w;, que anomenem 7;, amb
ni(0) =w; i 7;(1) = wjs.
Aleshores, per j € {1,2,3} tenim que

Lji=0jvnv(oj)-v (y)- < U,
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4. Integrals de linia i teoria local de Cauchy

i pel teorema de Cauchy en cada U; trobem

[ o) =%

J

Com que els camins es recorren en sentit antihorari, es cancellen els valors dels fragments
de cami en comd, és a dir les integrals en o; desapareixen, i obtenim

Notem que tot aquest procediment se simplificara quan coneguem el teorema de Cauchy
global. Aquest procediment modificat convenientment, permet també deduir la FIC per a
derivades no centrada de la FIC per a derivades centrada.

b)

1 1 R
g dz| < — —|d?| < == —0 siR—
/CQ 1+ 22)2 z‘ /C |1+z2|2‘ d (RZ_1)2 ot x

ja que |1+ R%e™| > R? — 1 (R gran).
c¢) Llavors

1 © 1
R—w o, (1 + 22) _o (14 22) 2.

4.6.4. Sigui o > 0 i f € H(D) complint que existeiz ¢ > 0 i per a tot |z| < 1, (1 —
12])%| f(2)| < c. Demostreu que per a tot n =0, |f™(0)] < en! (£)" (n+ a)°. q

€
a

Solucié: Sigui 0 < r < 1. Llavors sup,_, |f(2)] < (1_Cr)a. Aplicant les desigualtats de

Cauchy, obtenim que

|
(n) 0 n:.c _
|f ( )| = ’f’n(l —T‘)a SO(T)
Calculem el minim de ¢. Derivant,
() = —nle(nr" 1 —r)* —ar™(1 —r)*1) B —nle(n(l —7) — ar)
P = (1 — r)a)? T pntI(1 )l
Per tant, ¢'(r) = 0 en (0, 1) si i només si, r = 2 i es verifica que

anaa(n+a)a e\« o
chn!((lJrg) /) T<cn!<a> (n+ a)®.

4.6.5. Sigui f una funcid entera de manera que existeizen constants C, M > 0 tals que
|f(2)|e=C1*l < M per a tot z € C. Demostreu que |f'(z)|e=C1?l < CMe per a tot z € C.

Indicacié: Apliqueu la desigualtat de Cauchy al cercle centrat a z i de radi r per provar
que |f'(2)|e CFl < %ecr per a totr >0 i zeC. Avaluew ar =1/C. <
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4. Integrals de linia i teoria local de Cauchy

Solucié: Per la desigualtat de Cauchy tenim que per tot » > 0

su 2+ ref _
’f/(Z)‘ < Poe[0,2] |f( )| < % sup eC’\z+'re’9\ < %BC‘Zl—FCT‘
" T 9ef0,27] r

Per tant,

com proposa la indicacié.
Un cop vist aixo, prenem r = 1/C i trobem

1F/(2)]e €1l < CMe.

Cr , ;. .- s .
Notem que “- té un minim en r = 1/C, aixi que la cota no pot millorar, almenys

seguint aquest metode!

4.6.6. (a) Suposem que una funcid f entera satisfa que |f(z)| < M si|z| = R. Demos-
treu que els coeficients cy, de la seva série de Taylor centrada a a = 0 compleizen

M

(b) Suposem que el modul d’un polinomi P(z) esta acotat per 1 pels z al disc unitat.
Demostreu que tots els coeficients de P tenen modul acotat per 1. <

Solucié: (a) Per les desigualtats de Cauchy tenim que

RO _ M
=T S Ee
(b) Com abans tenim que
M,
S oo
‘ck‘ rk

on M, = sup,|_, |P(z)| < 1. Prenent r = 1 obtenim la fita desitjada.

4.6.7. Proveu que si f € H(D) tal que |f(2)| < |e¥*| per a tot z € D, aleshores, per a tot
n €N,

1F™(0)] < nle. 4
Solucié: Per les desigualtats de Cauchy tenim que

|2|
!7supDe LindN nle.

[F™ () <n

TTL
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4.7. Teorema de Liouville i teorema fonamental de I’'algebra

4.7.1. Suposem que f és entera. Provar que si f) (z) és fitada en el pla llavors f és un
polinomi de grau 4 com a mazim. <

Solucié: f(4) (z) fitada vol dir que el seu modul és fitat, pel teorema de Liouville

f®(2) = ce C. Integrem i obtenim un polinomi de quart grau com a maxim.

4.7.2. La funcio f(z) = 1/2% tendeiz a 0 quan z — o0 pero no és una funcié constant.
Contradiu aizo el Teorema de Liouville? q

Solucié: No el contradiu ja que 1/2% no és entera, el 0 no és del seu domini.

4.7.3. Sigui f una funcid entera. Per a |a| < R i |b| < R calculeu

) e
I‘/M_R CEPEED

Useu el resultat per demostrar el teorema de Liouville. 4

Solucié: Sia = b, I = 2wif'(a) per la férmula integral de Cauchy per derivades. Si

a # b,
1 (a—b)f(z)dz: 1 f(z)dz f(z)dz
Ia—b/z|:R(z—a)(z—b) a—b(/|z|:R z—a /|Z=R z—b)’

i concloem per la férmula integral de Cauchy que I = 225 (f(a) — f(b)).

a

4.7.4. Caracteritzeu les funcions enteres f tals que |f'(z)| < |z| per a tot z € C. a

Solucié: Es clar que f(z) = az?+ B amb a, B € Ci2|la| <1 satisfa les hipotesis. Veiem

que no hi ha més solucions.
Si |f'(2)] < |z|, prenem g(z) = f(z) — f(0) també satisfa les hipotesis i g(0) = 0. Tenim

que
1 /
/ g(lU)de
21 Jj|=g (W — 2)

Aixi que ¢” = f” és una funci6 entera i fitada. Pel teorema de Liouville, es tracta d’una

1 w R
19" (2)] = </| il 5 [dw| F=55 1.
w

27 Jyjw|=r lw — 2|

funcidé constant.

4.7.5. Sigui f una funcio entera. Usant el teorema de Liouwville proveu que
(a) Si|f] =1, llavors f és constant.
(b) SiRef =0, llavors f és constant.

(c) Silm f <1, llavors f és constant. q
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(d) SiRe f no té zeros, llavors f és constant.

Solucié: (a) Amb aquesta condicié f no té zeros, i per tant 1/f és entera. La mateixa

condicié diu que |1/f] < 1, de manera que, pel Teorema de Liouville, 1/f (i per tant f) és
constant.

(b) Considerem F(z) = e /). Tenim que |F(z)| = e R/(3) < 1, i per tant F és
constant.

(c) Analogament al cas anterior, considerem F(z) = e /(). Tenim que |F(z)| =
e™f(2) < e, de manera que F (i per tant f) és constant.

(d) Com que Re f és continua (de fet, fins i tot analitica), tenim que Re f > 0 o bé
Re f < 0. Al primer cas apliquem (b), i al segon considerem F(z) = e/(*) i fem com al cas

(b).
4.7.6. Sigui f una funcid entera tal que |f(z)| < CeR®?, per a tot z € C, on C > 0 és una
constant. Que es pot dir de f? <

Solucié: Notem que eR°? = |e*|. La funcié e™* és entera i per tant, e *f(z) és una

funcié entera i acotada per C. Per tant, és constant. Aix{ doncs, f(z) = ae®, amb |a| < C.

4.7.7. Sigui f una funcid entera tal que |f'(2)| < |f(z)| per a tot z € C. Qué podem dir

de f? <
Solucié: (proposada per Miguel Puelma Martinez)

La hipotesi sobre f implica que per a tot z € C, |f(z)| > 0, per tant f no té zeros i
aleshores f’/f € H(C). Com que a més per a tot z € C

f'(2)
f(2)

pel teorema de Liouville f//f és constant, i.e., existeix A € C tal que f' = A\f. Volem
concloure d’aqui que f és de la forma z — Ce** per a algun C' € C. Proposem dues
maneres alternatives de veure-ho.

Alternativa 1: Com que f és entera, es pot expressar en serie de potencies a tot C com

<1,

(n)

n:

+00
VzeC, f(z)= )
n=0

Per inducci6é immediata, de f’ = A\f obtenim f(™ = A" f, i per tant (x) esdevé

+00
1
VzeC, f(z) = f(0) ) < (A\2)" = f(0)e
n!
n=0
com voliem veure, amb C' = f(0) .
Alternativa 2: Si ja hem intuit que les solucions seran d’aquesta forma, 1'inic que cal
veure és que g: z — f(z)e”** és constant —o equivalentment, que té derivada 0, perque
C és connex—. Efectivament,

VzeC, ¢(2)=f(2)e™ = Af(z)e™™ =0.
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4. Integrals de linia i teoria local de Cauchy

Finalment, dels candidats a solucid, els que verifiquen |f’/f| < 1 sén

f(z)=CeM, CeC,\eD,

ja que |f'/f] = |A| per a tots els candidats.

Nota: com que C és simplement connex i f no s’hi anulla, existeix una determinacié
F(z) de log f(z), com veurem a la proposicié 5.29. Usant aixo se simplifica la prova i
estalviem 'argument de compacitat.

4.8. Teorema de Morera

4.8.1. Demostreu la continuitat de f en el principi de reflexio de Schwarz. <

4.8.2. Sigui f(z) = 1/22. Comproveu que f7 f(z)dz = 0 per a tot cami tancat vy que no
passi per 0, pero f no €s analitica en 0. Contradiu aixo el corollari 4.34 del teorema de
Morera? <

Solucié: Definim F(z) = =1. F és holomorfa a C\{0} i la seva derivada és F'(z) = f(2).

Per tant, si 7 : [a,b] — C\{0} és un cami tancat, aleshores
/f(z) dz = F(y(b)) — F(y(a)) = F(v(b)) — F(y(b)) = 0.

Com que f no és continua a l’origen, tampoc pot ser analitica.

El corollari del teorema de Morera diu que si una funcié és holomorfa en un obert llevat
d’un punt pero que la funcié és continua en aquest punt, aleshores la funcié és holomorfa
en tot I'obert. En aquest cas falla la hipotesi de la continuitat i falla també la conclusid,
ja que f no és analitica a l'origen i, per tant, no és holomorfa.

4.8.3. (a) Sigui h una funcid continua a R amb suport compacte (és a dir, existeix
K < R compacte tal que h(z) =0 si x ¢ K) i sigui

H(z) = /R h(t)e “#dt

(quan ens restringim a z € R, H s’anomena transformada de Fourier de h; si prenem
iz en el lloc de z, H s’anomena transformada de Laplace’ bilateral de h). Proveu
que H és una funcio entera amb creizement exponencial: existeixen A,C > 0 tals
que |H(2)| < CeAlmal,

(b) Sigui h una funcié continua a [0,1]. Demostreu que la seva transformada de Hilbert#

1
H(z)=/0 Mdt

t—=z

és analitica per a z € C\[0, 1]. q

3Pierre-Simon  Laplace, Beaumont-en-Auge, 1749-1827, https://ca.wikipedia.org/wiki/
Pierre-Simon_Laplace
4David Hilbert, Kénigsberg, 1862-1943, https://ca.wikipedia.org/wiki/David_Hilbert
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Solucié: (a) En primer lloc comprovem que la integral és finita per a tot z € C. Sigui

A > 0 tal que supp(h) < [—A, A]. Passant el modul dins la integral tenim que

A
HE) < [ rolle
-A
Essent h continua i de suport compacte, existeix M = max |h(t)| < +0. Per altra part
€

|67itz| _ ‘efit(Re (2)+iIm (z))| — etIm (z)

Amb tot aixo tenim que
A A
|H(2)] < / Met™ (@ gt < M/ A @l gr = pr(24)eA (I,
_A _A

Per a veure que H és holomorfa utilitzarem el Teorema de Morera. Haurem de veure per
tant que H és continua i que la integral al llarg de la vora de qualsevol triangle dona O.

Que H és continua és immediat, ja que la funcié que integrem és continua i ho fem a
un conjunt compacte:

lim H(z) = lim [ h(t)e "dt = / h(t)( lim e~")dt = / h(t)e~ " dt = H(zp).
Z—20 z—=z0 J K Z—20 R

Sigui ara T' un triangle qualsevol de C. Per Fubini i pel teorema de Cauchy aplicat a les
funcions enteres f;(z) = e %* tenim que

/6TH(Z) dz = /Rh(t) (/(?Teitzdz> dt = /Rh(t)Odt = 0.

(b) Fem analogament a 'apartat anterior. Diem d(z) a la distancia de z ¢ [0,1] a
aquest interval. Passant el modul dins la integral i utilitzant que h és una funcié continua
al compacte [0, 1], veiem de seguida que la integral és finita:

1 1
H(2)| < /0 RO 4 < d(lz) /O h(o)| dt.

L

Per veure que és holomorfa apliquem de nou el teorema de Morera. Si zp ¢ [0, 1] existeix
e > 0 tal que D.(z9) n [0,1] = &. Aleshores, prenent z € D.(2p) tenim que

lim H(z) = lim /01 ht) dt = /01 lim ht) dt = /01 ht) dt = H(zp).

Z—20 220 t—z z—z20 0 — 2 t— 20

Sigui ara T un triangle completament contingut a C\[0, 1]. Observem que per als punts
t € [0,1] 'index de 0T a t és 0: Ind (0T,t) = 0.
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4. Integrals de linia i teoria local de Cauchy
Aleshores,

/aT H(z)dz = /01 (/aT tcizz) h(t) dt = /01(—2772' Ind (3T, 1)) h(t) dt = 0.

4.8.4. Sigui f holomorfa en un obert Q, i sigui zg € Q amb f'(z9) # 0. Demostreu que hi
ha rg > 0 de manera que, per 0 < € < rg, es compleix la identitat

2mi dz
f/(ZO) - /|zzo|—€ f(Z) - f(ZO) '

Indicacid: proveu primer que la funcio G definida per

o { O (E R,

z—20
f'(20) 81 2= 2

és holomorfa en Q. <

Solucié: Com que f és holomorfa, la funcié G és clarament holomorfa en Q\{zo}.
Vegem que G és continua en zg. Com que f és holomorfa en zy, tenim que

lim G(z) = lim L) =70

z—z0 zZ—20 zZ— 20

= f'(20) = G(20)-
Per tant, G € C(Q)nH (2\{20}), i aixd implica que G és holomorfa en €2 pel corollari 4.34.

Com que G(z9) = f'(z0) # 0, per continuitat, hi ha 7o > 0 de manera que G(z) # 0 per
z € Dyy(20). Llavors la funcié
1

H(z) = Bk z € Dyy(20)

és holomorfa en Q; = D, (29). Sigui ¢ > 0 amb 0 < ¢ < rg. Com que D.(z9) < O,
aplicant la férmula integral de Cauchy obtenim

H(z) = 1/_ _ H(z) dz.

211 zZ— 20

Es a dir,

271 271 dz dz
fl(z0)  Glz) /|| G()(z—z20) /|| F(z) = fz0)

4.9. Derivacid sota el signe integral i formula integral de Cauchy
per derivades

4.9.1. Avalueu, usant la férmula de Cauchy per a les derivades
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e” sin(z) o e
a —dz. b ————dxz. —0ce” qp.
) z=1 (2 — 1/2)? ) z=1 (32 —2)* ¢ /o o )
Solucié:
a) 2miq/e. b) —Tios/3) ¢) 2m.

4.10. Zeros de funcions holomorfes i principi de prolongacio

analitica

4.10.1. Trobeu els zeros, amb l’ordre corresponent, de les segiients funcions:
2
+1 1 1
a) ;_1 b) Z%sinz c) f(z)=;+;. q

Solucio:

a) Té zeros simples a =+i.
b) Té un zero d’ordre 3 a l’origen i zeros simples a km amb k € Z\{0}.

c) Té 4 zeros simples: %(il + ).

4.10.2. Trobeu la multiplicitat de z = 0 com a zero de la funcié entera f(z) = 2 cos 23 +
<

26— 2.
Solucié: (proposada per Clara Valls Moreso) Trobem la multiplicitat de z = 0 com a

zero de la funcio:
f(2) = 2cos(2?) + 25 — 2.

Recordem que:
22 24

cos(z) =1— CTIREVTIN 0(2%)

Per tant,
A6 12

cos(z3) =1 — gt Tt O(='®)
Llavors: "
2(:0s(z3) =2-—254 17 + O(zlg)
I per tant:
f(2) = 2cos(2) + 25 —2 = <2 -8+ 71122 + 0(218)> +28-2= 21122 + o(2'T)

Per tant, z = 0 és un zero de multiplicitat 12.

4.10.3. Trobeu tots els zeros de les segiients funcions holomorfes i calculeu-ne les seves

multiplicitats:
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a) f(z) =22 —1). c) f(z) = (Vz—2)"
b) f(z) = (22— 7?)sinz/z.

Aqui /. és la determinacié de l'arrel quadrada en C\(—o0,0] que val =1 en z=1. <

Solucié:

(a) Tenim que e* —1 =0siinoméssiz? = logl =2mik, k € Z, és a dir, z,‘f = ++/2mik.

Considerem primer l'arrel que correspon a k = 0, és a dir zg = 0. Prenent la serie de
I’exponencial a I’entorn del 0 tenim que e —1=224-,1 per tant 2’2(622 —1) =z,
Aixi doncs, zy = 0 és una arrel de multiplicitat 4.

Per a k # 0 les arrels sén de multiplicitat 1. Sigui z; alguna de les arrels de dalt amb
k # 0. Tenim que e = 1. Desenvolupem g¢(z) = e* — 1 a l'entorn de 2. Tenim que
g'(2) = €2z, i per tant ¢(z;,) = 221, # 0. El desenvolupament dona doncs

9(2) = glzr) + ¢'(z1) (2 — 21) = 224(2 — 23) + - -~
Per altra part, a entorn de zj tenim que z = z; + (z — z), 1 tot plegat
F(2) = [z + (2= 2)P[220(z — 2) + -] = 220(z — ) + -

la qual cosa mostra que la multiplicitat de z; és efectivament 1.
(b) La funcié sin z s’anulla als punts zp = k7, k € Z, i el factor 22 — 72 = (z —7)(2 +7)

s’anulla z4+; = 7. Considerem doncs diferents k € Z.
3 : 2
z

(i) k = 0. Tenimquesinz=z—§+~-- i per tant S 2 =1—%+~~. Amb aixo
9 9, Sin 2 9 2
(2 —7°) = -7 —&-(l—i—a)z + -

i per tant zp = 0 no és de fet un zero de la funcié donada.

(ii) k = 1. Suposem k = 1; el cas k = —1 es fa analogament. Fent Taylor a ’entorn
de z; = m, trobem que

. 1 3
sinz=—(z—m)+ 5(2—7‘(’) + o= (z—mh(z),

amb h holomorfa i h(m) # 0. Per tant

F(2) = (s = m)(e + mE=DIE) (e D)
z z
El segon factor en aquest producte és una funcié holomorfa no nul-la 'entorn de =, i per
tant z; = 7w és un zero de multiplicitat 2.
(iii) zx = km, k # 0, £1. Desenvolupant per Taylor a l’entorn de z; com al cas anterior,
tenim que

(_1)k+1

sinz = (=1)%(z — k) + i

(z—km)® +--- = (2 — km)h(2),
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amb h holomorfa i h(k7m) # 0. Aleshores

£(2) = (2 — km)E = TE)

i el segon factor en aquest producte és una funcié holomorfa i no nul-la un entorn de
zr, = km. Per tant, z; és un zero de multiplicitat 1.

(c¢) En primer lloc mirem a quina determinaci6é de I'argument arg(z) correspon l’arrel
donada. Essent el semieix de discontinuitats (—oo, 0] tenim que

arg(z) = Arg (z) + 27k, k€ Z,
on Arg(z) denota I'argument principal (amb angle a (—m,7)). Aleshores

V1= e%(ln|1|+iArg(1)+2i7rk) — ik

Ens diuen que v/1 = —1, d’on deduim que k = 1 (o qualsevol altre k senar que vulguem;
hi ha dues arrels, la que correspon als k parells, i aquesta, que correspon als k senars).
Amb aixo, 'argument triat és tal que

arg(z) € (m,3m).

Aleshores (=)
ﬁ _ e%ﬂn |z|+iarg(z)) _ |Z’€iarg2z

és un nombre complex amb arguments a (7, 37”) En particular, veiem que 4/z no pot ésser

2 (és laltra arrel que pot valdre 2, perd no aquesta), i per tant la funcié f(z) no té cap
Z€ero.

4.10.4. Sigui Q@ < C un domini. Demostreu que ’anell de funcions holomorfes H(Q2) a
una regié  és un domini d’integritat, és a dir, si f,g € H(Q) amb fg =0 aleshores f =0
0g=0. <

Solucié: En efecte, suposem que existeix zp € 21 f(z9) # 0. Llavors, per continuitat,
existeix r > 0 complint que f(z) # 0 si z € D,(29) < Q. Per hipotesi, f-¢g = 0 i, per tant,
g =0 en D,(zp). Aplicant el Principi de Prolongacié analitica, com que €2 és una regio,
es compleix que g =0 en .

Com a alternativa, raonem per contradiccié. Si f i g no sén identicament nul-les, els seus
conjunts de zeros Z(f) i Z(g) sén successions de punts aillats i, en particular, conjunts
com a molt numerables. Aleshores Z(fg) = Z(f)u Z(g) també seria numerable, en contra
de la hipotesi.

4.10.5. Sigui {an}n una successio estrictament decreizent de nombres reals a, € (0,1) i
tal que lim a, = 0. Sigui f una funcio holomorfa en D. Demostreu que:
n—o0

(a) Si f(an) € R per a tot n, aleshores f(Z) = f(z) per a tot z € D.

(b) Si a més f(az,) = f(agn+1) per a tot n, aleshores f és constant. q
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Solucié:

(a) Observem en primer lloc que la funcié h(z) = f(Z) és holomorfa a D. Amb la
intencié de Veure que ? = O con&derem primer g(z) = f(z). Com que f és holomorfa
tenim que a* =0, i per tant = (. Aleshores

oh Jg o9  —
0z 0z 0z =0=0

Per tant la funcié F'(z) = f(z) — f(2) és holomorfa a D. Per a veure que F' = 0 utilitzarem
el principi de prolongacié analitica, és a dir que el conjunt de zeros d’aquesta funcié no
pot tenir punts d’acumulacié a D, llevat que sigui 0. Observem pero que, per hipotesi,

F(an) = f(an) — f(an) = 0.

Com que {ay}, s’acumula a 0, deduim que necessariament F' = (0, com voliem.

(b) De l'apartat (a) en tenim que si € R n D aleshores f(z) € R. Per tant, mirant
la funcié només a la recta real i aplicant el teorema de Rolle tenim que existeixen punts
Bn € (aont1,a2,) tals que f(B,) = 0. Com que lim,a, = 0, necessariament també
lim, 8, = 0. Ara el principi de prolongacié analitica, aplicat a la funcié f’ € H(D),
implica que f' =0, i per tant f és constant.

4.10.6. Trobeu totes les funcions holomorfes a D tals que:
(a) |f(1/n)| < 1/2™, per a tot nombre natural n = 2.

(b) f(1/n) =In(1+n?) —3Inn per an > 1. q

Solucié: a) Es clar que f (0) = 0 per continuitat. Vegem que, de fet, f = 0. Ho farem

raonant per ’absurd, factoritzant el zero de l'origen: sabem que existeix ng 1 an, € R\{0}
amb

f(z)= Z an2" = apy 2™ + O(|z|"0 1.

n=ngo

Aixi, per z prou petit (podem prendre |z| < |a2"0(’|, amb C' determinat a la segiient linia),

tenim que

£ = fang=™ + O] 2 [ary 2] - Clefo 3 12l 7o

Combinant-ho amb la hipotesi, obtenim

1 1 no n
72 |7 (3)]= e

és a dir que
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la qual cosa contradiu que

o

lim &— = lim 2mo(eg2n)—n _ (.
n—oo 271 n—oo

b) f(z) = Log (2% + 1) i PPA.

4.10.7. Trobeu totes les funcions f holomorfes en el disc Do(0) tals que f(e'%) = 2% per
a tot 6 € [0,2m), i a més f(0) = 0. q

Solucié: Tenim que f(2) = 2% per a tots els |z| = 1. Pel principi de prolongacié
analitica, aixd obliga a que f(z) = 22 a tot el disc (ja que f(2) i 22 coincideixen en un

conjunt no numerable i amb punts d’acumulacié a Uinterior de D2(0)). A més, f(0) = 0.

4.10.8. Sigui f € H(Q) en un domini Q < C tal que fo f = f. Demostreu que o bé f és
constant, o bé €s la identitat. <

Solucié: Suposem que f no és constant. Aleshores f(£2) és un obert. Per y € f(Q)

tenim que y = f(z) i, per tant, f(y) = f(f(z)) = f(z) = y. Per tant, f és la identitat en
un obert no buit. Pel PPA, f és la identitat en (2.

4.10.9. (a) Sigui f una funcidé entera tal que existeizen constants ne N, C >0 i R >0
tals que |f(2)| < Clz|™, per a |z| = R. Demostreu que f és un polinomi de grau més petit
o0 igual que n.

(b) Deduiu que si f és una funcié entera amb ‘ 1|im |f(2)] = o0, llavors f és un polinomi.
zZ|—0

Indicaci6é: Demostreu que f només té un nombre finit de zeros ay,...,a, (comptant mul-
tiplicitats) i apliqueu Uapartat (a) a la funcid F = P/f, on P(z) = (z —ay) -+ (2 — ayn).

<

0
Solucié: (a) Escrivim f en série de potencies al voltant del 0: f(z) = Y] amz™. Per
m=1

les desigualtats de Cauchy:

(m) max |f(2)]
|am| = f ,(0)‘ <! —— . ¥r>0.
m: T

Prenem r > R, de manera que valgui 'acotacié que dona ’enunciat; aleshores,

Cr?

lam| < o

Veiem per tant que si m > n, fent r — +o00, obtenim a,, = 0. Tornant a la serie inicial,
queda
f(z) =ao+a1z+ - +a2".

(b) Per hipotesi existeix R > 0 tal que |f(z)| = 1 si |z|] = R. Mirem ara f a Dg(0).
Com que la funcié no s’anul-la la frontera del disc, el nombre de zeros que té f a Dg(0)
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és necessariament finit (recordem que el principi de prolongacié analitica diu que els zeros
sén aillats 1 per tant només es podrien acumular a la frontera).

Diem doncs aq,...,a, als zeros de f, comptats tantes vegades com la seva multiplicitat.
Aquests punts sén tots a Dr(0). Aleshores la funcié

(z—a1) - (z—ap)

f(z)

és holomorfa als punts aj, j = 1,...,n, i per tant a tot arreu.
Amb la intencié d’aplicar I'apartat (a), diem M = max; |a;| i acotem,

F(z) =

2l +laa]) - - (2l + fan]) _ (2] + M)"
£ (=)l @

Prenem R > M tal que |f(z)| > 1 si |z| = R. Aleshores, per a |z| > R tenim que

F(z)] < ¢

= C’z‘n7 C= 2n7

de manera que podem aplicar 'apartat (a) i concloure que F' és un polinomi. Com que F' no
té zeros pel teorema 4.41, concloem que F' és constant i, per tant, f = C(z—aq)--- (z—an).

4.10.10. Sigui Q < C un domini (obert connez) tal que Q "R # . Suposem que tenim
frg,he H(Q) iu,v:Q — R tals que per x + iy € Q tenim

fz +1iy) = u(x,y) + iv(z,y),

i per x € QN R tenim
u(x,0) =g(z) wv(zx,0) = h(z).

Demostreu que
f(z) =g(z) +ih(z) per a tot z € Q. 4

Solucié: Com que 2 és obert i tca la recta real, la interseccié és un obert relatiu i, per

tant, té punts d’acumulacié. Com que per tot z € 2 n R tenim que
f(x) = u(z,0) +iv(z,0) = g(z) + ih(x).
Dit d’una altra manera, per tot z € {2 n R tenim que
f(2) = g(2) + ih(z).

En ser funcions holomorfes, i coincidir en un conjunt amb punts d’acumulacié en €2, pel
PPA han de coincidir en tot €.
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4.11. El principi del modul maxim

4.11.1. Cerqueu 'enunciat del teorema de Stone’- Weierstrass i compareu-lo amb lexemple
4.538.

4.11.2. Trobeu el maxrim de:
a) |cosz| i|sinz| a [0,27] x [0, 27].

b) le?| i|e*’| alz] < 1. 4

Solucié: (a) Pel principi del modul maxim, el maxim de f(z) = |cosz| a Q = [0, 27] x
[0,27] s’assoleix a la frontera. Estudiem doncs el comportament d’aquesta funcié als
quatre costats del quadrat donat.

(i) y = 0; € [0,27]. Aqui tenim que f(x) = |cosz|, i el maxim s’assoleix als punt
x = 0,m,27. En aquests punts el valor de la funcié és 1.

(ii) = = 0,27, y € [0,27]. Aqui, per la periodicitat de cos z, tenim que f(27 + iy) =

eV +eY

fliy) = — Aquesta funcié és creixent, 1 per tant té el maxim a 2. Per tant el
e27r 4 6—271'
valor maxim en aquest segments correspon a f(27i) = f(2m + 27i) = —
) eia:e—27r + e—ime27r .
(ili) y = 2w, x € [0, 27]. Aqui f(z + 27i) = 5 . Amb aixo

(674# + 6721':1: + 621'30 + 6477) _ (647r + 6747r + 2COS(21’)).

W=
| =

| cos(z + 27i)|? =

Aixd és maxim quan cos(2z) = 1, és a dir, als punts z = 0,7, 27. El valor maxim és
aleshores | cos(2mi)| = 1 (e*™ + e727).

Com que %(62“ +e72™) > 1, el valor maxim és %(62W + e72™) i s’assoleix als punts 2i,
27 + 2w i ™+ 2mi.

El cas |sin z| es fa analogament.

(b) Pel principi del maxim

—~~

max |e*| = max |¢*| = max eR¢?.

|z|<1 |z|=1 |z|=1

Com que la funcié exponencial (real) és creixent, és clar que el maxim s’assolira al punt
del cercle on Re z sigui maxim, és a dir, al punt z = 1.

Analogament, si posem z = x + iy, tenim que
22 ‘ Re 22 x2—y?

2
max |e* | = max|e® | = maxe = maxe
|z]<1 |z|=1 |z|=1 |z|=1

2

Aqui és clar que el maxim s’assoleix quan z? és maxim i y? minim, és a dir, als punts

z = +1.

®Marshall Harvey Stone, New York City, 1903-1989, https://en.wikipedia.org/wiki/Marshall_H.
_Stone
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4.11.3. Trobeu totes les funcions holomorfes en D tals que f(1/2) = 3 i |f(2)| < 3 si
|z| < 1. q

Solucié: Només pot ser f(z) = 3 per a tot z € D pel principi del mododul maxim.

4.11.4. Es considera f(z) = e®*)22 i el disc D de radi 2 centrat a 5. Provar que f(z)
assoleix el valor mazim i minim del modul a |z — 5| = 2. Indicacié: considerar 1/f(z). <

Solucié: La funcié és holomorfa al disc donat ja que és producte d’holomorfes, llavors,

pel principi del modul maxim, el maxim de |f(z)| s’assoleix a la frontera. Com que la
funcié f(z) només és zero quan z = 0 i 0 no és del disc, la funcié f(z) no s’anulla mai en
aquest disc, llavors la funcié g(z) és holomorfa en ell i el seu modul assoleix el maxim a la
frontera. Com que el maxim de |g| = 1/|f] és el minim de |f| hem acabat.

4.11.5. Sigui f una funcié holomorfa en el disc Dr(0), R > 0. Definim

M(r) = max|f(2)], 0<r<R.

|2|=r
Demostreu que si f no és constant, aleshores M (r) és estrictament creizent a [0, R). <
Solucié: Aplicacié del principi del modul maxim.

4.11.6. Sigui f una funcio holomorfa en un obert connex Q0 i D un disc obert tal que
D < Q. Suposeu que |f(z)| = ¢ per tot z € 0D, on ¢ és una constant. Proveu que f té
almenys un zero en D o bé f és constant en ). Indicacié: Distingiu segons si ¢ = 0 o

c> 0. En el segon cas, proveu que si f no té zeros en D, aleshores f és constant en D.
<

Solucié: Suposem que f no té cap zero a D i veurem que necessariament ha de ser
constant. En aquest suposit sabem que 1/f € H(D), i pel principi del modul maxim

1 1
f(z) f(z)

Amb aix0 tenim que |f(2)| = ¢ per a tot z € D. Perod per hipotesi (i pel principi del modul
maxim), per a aquests z:

1

max =

D

= max .
oD C

£ (2)] < max|f(z)] = ¢

oD
Tot plegat |f(2)| = ¢ per a tot z € D. Com ja vam veure, tota f holomorfa de modul
constant és constant (conseqiiencia de les equacions de Cauchy-Riemann). Per tant f
és constant a D. Pero el principi de prolongacié analitica obliga a que aleshores f sigui
constant a tot 2 (la component connexa del domini de definicié de f que conté D).

4.11.7. Sigui f una funcié holomorfa i no constant en Q < C, un obert connex. Suposeu

que existeiz a € Q tal que |f(a)] < |f(2)| per a tot z € Q. Proveu que aleshores f(a) = 0.
<
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Solucié: Suposem que f(a) # 0. Aleshores 1/f seria holomorfa ja que no hi hauria cap

zero de f en Q. Per tant, pel principi del modul maxim, al tenir 1/f un extrem a 'interior
ha de ser constant, en contradiccié amb la hipotesi de ’enunciat.

4.11.8. Sigui f € H(C) no constant. Demostreu que, per a tot ¢ > 0,
{5 f()] <} ={z f(2) < o} ‘

Solucié: Feu servir el Teorema de 'aplicacié oberta.

La inclusié {z; | f(2)| < ¢} < {z; |f(2)| < ¢} és conseqiiencia de la continuitat de f.

Per veure la inclusié contraria, suposem que z € C tal que |f(z)| = ¢. Aleshores, com
que f no és constant, el teorema de l'aplicacié oberta diu que f(D; /n(z)) és un obert.
Com que conté ¢, contindra una bola centrada en ¢ i en particular conté (1 — ¢)c per un
cert £ prou petit, és a dir que existeix z, € Di(z) tal que

[f(zn)l = (L =e)le] < [£(2)].

Per construccié tenim que z, — z, i hem vist que z, € {z; |f(2)| < ¢}. Per tant, z €
{z; |f(2)] < ¢}, tal com voliem veure.
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5. Topologia en el pla complex: teoria
global de Cauchy

5.1. index d’una corba tancada respecte d’un punt

5.1.1. Considerem el cami y(t) = 4e' cos 2t, (0 <t < 67). Calculeu Ind (v, 3) i Ind (v, 1).

<

Solucié: Resolem aqui 'exercici usant només la definicié:

1
R
Y

T omi ) 2 -3

Com que la primitiva és un logaritme, per poder fer el calcul cal trencar la integral en
trossos cada vegada que z — 3 talli la semirecta dels reals positius, per exemple, en aquest
cas per poder usar alguna determinacié del logaritme log en C\[0,00). Busquem doncs
solucions de

) 2
4" cos §t —3==z

amb x > 0. En particular, tindrem que 4e" cos %t € R amb 4e” cos %t > 3. Aix0 passa
quan € = 41 i el cosinus contribueix favorablement, ja que quan cos %t = 0 la segona
condicié no pot océrrer. Vegem primer els valors de ¢ tals que y(¢) és un nombre real no
nul:

ot =0 v(t) =4cos0 =4, Im (y(t)) = Im (4ie®® cos0 — 4e’sin 0) = 4. Creua doncs
del semipla de part imaginaria negativa cap al de part imaginaria positiva.

t=m y(t) = —dcos F = —4(-1/2) = 2, Im (¥/(t)) = 4e"" cos 27 > 0. Ara també
creua de baix a dalt. Notem que no hi ha cap contradiccid, entremig ha creuat
I’origen perque s’ha anullat el cosinus!

o t=2m y(t) = —4dcos i = 4(-1/2) = =2, Im (v/(t)) < 0.
o t=23m v
t) = —4dcos & = 4(—1/2) = =2, Im (7/(t)) < 0.

(
(

ot =dm: A
(t) = —4cos 1P = —4(-1/2) = 2, Im (7/(¢)) > 0.
(
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Veiem que en estudiar I'index de « respecte a 3, no cal fer res, ja que la determinacié
del logaritme només falla als extrems d’integracio:

Ind (v,3) = - / 2~ L ogly(t) — 35
Y

omi |z —3 2w

s | i Tog (3(0) = 3)  liylo(r(0) - 3|

_ ﬁ o1 +i(2m + 27kg) — In 1 — i(2mkg)] — % 1
Per calcular els limits laterals, hem usat que la corba creua els dos cops de baix cap a dalt,
i aix0o determina l'argument en els valors propers.

Per calcular I'index al voltant de 1, ara creuarem tres vegades la semirecta [1,0), pero
el primer cami no fa cap volta,ja que roman a la part imaginaria positiva i el darrer cami
roman a la part real negativa, i cada vegada haurem acumulat un argument de 27, ja que
en tots els casos, el cami creua de la part imaginaria negativa cap a la positiva. Aixi,

d (7, 1) = 5 [ 2 = 5= (Llog((t) — ] + Dog(x(t) ~ DI + [log(t) ~ 1)1
_ QLM ([i2%x] + [i2k] + [i2kr]) = g% _3

5.1.2. Considerem el cami v(t) = (1 + e + e~")e, (0 < t < 27). Esbosseu el dibuiz
de la corba i calculeu-ne ’index en cada component connexa del complementari de la seva

imatge. Calculeu
3z—3
# dZ. <
~ ze — 52«' + 1

Solucié: La corba és una corba parametritzada en polars: 1 + e + e~ = 1 4+ 2cost,

talla 1’eix real a l'origen per t = 27/3 1t = 4n/3, enelspunt x =3 pert =0ienz =1
per t = m. Podem comprovar graficament que té index 2 respecte la component interior
i index 1 respecte la component intermitja, en particular Ind (v,1/2) = 2 i Ind (v, 2) = 1.
Finalment, trobem que

32 —3 1 1
/fdz:/ldz+2/ dz = 2mi(1-2+2-1) = 8.
v (2=3)(z-2) vE T3 v 72

5.2. El teorema global de Cauchy

5.2.1. Considerem el cami () = (2sin(2t — %), 2sin(3t)), amb t € [0,27]. Esbosseu el
cami, calculeu U'index de la corba en cada component connexa de C\v*, i trobeu el valor
de

1

62271
/ 5 dz. q
5 25+ 1
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Solucié:

Es tracta d’una corba mecanica anomenada corba de Lissajous!, vegeu https://ca.
wikipedia.org/wiki/Corba_de_Lissajous. L’index és 0 a les components que contenen
+1, és 0 a la component no fitada, i és +1 a les altres components. FEn particular,
Ind (y,7) = —11i Ind (v, —¢) = 1, mentre que Ind (v, +1) = 0. Considerem 2 = C\{£1} i
trobem que I' ~ 0 en 2. Com que

1 1 1

e=2-1 e=2-1/2j e=2-1/23
[ [ [,
- +1 N~ 21 Ny ZF1

1
definint h(z) = e=2-1/2i € H(Q)), per la FIC global trobem

1

e ; N (7 . . 2
/722_’_1 dz = 2mi (Ind (v, 7)h(i) — Ind (v, —i)h(—1i)) = _%'

5.3. Homotopia i teorema de Cauchy

5.4. Dominis simplement connexos

5.4.1. Siguin f,g € H(C) tals que f> + g> = 1. Demostra que existeiz h € H(C) tal que
f =cos(h) i g =sin(h). q

Solucié: Tenim
(f +ig)(f —ig) = 1.

Com que C és simplement connex, f +ig € H(C)i f +ig: C — C\{0}, de la proposicié
5.29 n’inferim que existeix una funcié £ : C — C tal que

£ = f(2) +ig(2).
A més, com que

)

z) —ig(z zéze*‘:(z)
IO =198 = 1)

sumant i restant convenientment trobem que

eﬁ(z) + e—ﬁ(z)

fz2) = ——5—— = cos(=iL(2)),

eﬁ(z) — e_f’(z)

g(z) = = sin(—iL(z)).

!Jules Antoine Lissajous, Versalles 1822 — 1880, https://ca.wikipedia.org/wiki/Jules_Antoine_
Lissajous

97


https://ca.wikipedia.org/wiki/Corba_de_Lissajous
https://ca.wikipedia.org/wiki/Corba_de_Lissajous
https://ca.wikipedia.org/wiki/Jules_Antoine_Lissajous
https://ca.wikipedia.org/wiki/Jules_Antoine_Lissajous

5. Topologia en el pla complex: teoria global de Cauchy

5.4.2. Demostra que si Co\Q és connexr i Q és un obert connex, aleshores tota corba
tancada v és homotopa a 0. <

Solucié: Per comencar, notem que v* i totes les components fitades de C\y* estan

contingudes en 2 per la hipotesi. Per tant, el compacte arcconnex K format per la
clausura de la unié de tots aquests conjunts, també, i esta a distancia positiva de €,
diguem-ne d.

Si la corba ~ és una poligonal i K és conver amb vertexs ordenats {pj}é\; 1, aleshores
n’hi ha prou amb connectar cada vertex p; de la corba amb un punt 2y de K per un cami
7; que comenca en zg i acaba en p; sense sortir de K, que és arcconex. Ara, per la resta
de punts de la corba interpolem entre els dos camins: si z = (1 — t)p; + tpj11, aleshores
definim «y, := (1 —t)y; + ty;j+1. A pratir d’aqui, la creacié de ’homotopia entre el cami
i el cami constant zy és un exercici elemental.

Si K no és convex, podem argumentar per inducci6 en triangles fins a arribar a un K
convex. Efectivament, si K és la unié d’'un convex i un triangle i tenim un vertex pj,
que no forma part del convex, aleshores connectem aquest vertex amb el punt mig ¢ del
segment que uneix el triangle amb el convex. Procedint com abans, Creem una homotopia
entre el cami inicial i un nou cami poligonal que té un vertex menys en la part no convexa.
Amb un nombre finit de passos haurem eliminat tots els vertexs que no sén en el convex.
Si K és la unié d’un convex i dos triangles, procedim inductivament com hem descrit.

Si v és una corba qualsevol, podem trobar una poligonal a distancia d/2 de =, i veure’n
I’homotopia es pot fer mitjancant el lema 5.22.

5.4.3. [Determinacid de Uarrel en dominis simplement connexos] Sigui Q@ < C un obert
simplement connez, i f € H(QY) amb f(z) # 0 per a tot z € Q. Llavors existeiz g € H(2)

amb

g(2)? = f(z) peratotzeQ.

A més, si 2o € Qi tenim que wi = f(20), podem escollir g de manera que g(z0) = wo.

Solucié: Prenem la determinacié del logaritme £ donada per la proposicié 5.29 i definim

5.5. Funcions harmoniques

5.5.1. Sigui v : D — R una funcié harmonica en un domini simplement connex ).
Demostra que existeix una funcio v : D — R harmonica conjugada duw (vegeu l'exercici

4.3.3). 4
Solucié: Si F'= U + iV satisfa que

OF =0 <« 0U = oU = —idV = idV,
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vegeu l'observacié 3.25. Com que U i V prenen valors reals tenim que U =U iV =V, i
trobem

OF =0 — 0U = —idV <= 0U =10V — OF = 20U.

Considerem u harmonica. Aleshores f = 20u és holomorfa. Per la proposicié 5.28 té
una primitiva holomorfa F' = U + iV, que ha de satisfer que 0F = 01 0F = f. Prenem
doncs v = V. Aleshores per Cauchy-Riemann tenim que

) B A
o(u+1iV) = ou—0U = ou— 5 —5—5—0.
Per veure que V' és harmonica, notem que
400V = 40(—ioU) = —2i00F = —2idf = 0.
5.5.2. Demostra el lema 5.35 usant les equacions de Cauchy-Riemann directament. <

Solucié: Tenim

Au = Uy + Uyy = (um)x + (Uy)y = (Uy)z’ - (Ux)y =0,

on hem usat el teorema d’igualtat de les derivades creuades. De la mateixa manera,

Av = Vg + vy = (Vz)z + (vy)y = —(uy)e + (uz)y = 0.

5.5.3. Sigui Q un domini simplement connex, i sigui @ : D — € una aplicacié de Rie-
mann, és a dir un homeomorfisme holomorf entre D ¢ Q amb inversa holomorfa, vegeu el
teorema 7.0, les derivades de les quals estenen continuament a 0D i a 0S) respectivament.
Demostreu que existeizen determinacions del logaritme i [’argument de manera que

£(¢'(%0) = Re L(&)(0) + = /8 A D H )l )

2r

Solucié: Notem que ¢’ # 0 per hipotesi, i D és simplement connex. Per la proposicié

5.29 existeix una determinacié del logaritme £ i prenem A = Im £. Com que L(¢') és
holomorfa, obtenim el resultat per la férmula de representacié de Herglotz aplicada a Lo¢'.

Notem que aquesta sera per radis menors que 1, pero es pot estendre per continuitat a
radi 1.

5.5.4. FEl problema de Dirichlet consisteiz en trobar una funcié harmonica en un domini
obert Q) que sigui continua fins la seva frontera 02 i amb un valor prefizat a 0€2. Suposem
que @1 i P2 son harmoniques a 2 i continues fins a 082 i que ¢1 = P2 a la vora 0S). Provar
que si § és simplement connex, aleshores ¢1 = ¢o en tot punt d’2. Indicacié: trobar
la funcié v harmonica conjugada de ¢1 — @2 i aplicar el principi del maxim (minim) a
¢1 — P2 + 1v. <
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5. Topologia en el pla complex: teoria global de Cauchy

Solucié: Considerem la funcié conjugada v de ¢1 — ¢2 (existeix pel problema anterior).

Aleshores la funcié e®1~?2%% &g holomorfa en €. Pel principi del modul maxim i minim,
els extrems s’assoleixen a la vora, on tenim que

|€¢1*¢2+iv| =1.
Per tant, la funcié és constant i també ho sera ¢1 — ¢o.

5.5.5. Una distribucid estacionaria T de la temperatura en una regio ) és una funcio
harmonica i continua fins la frontera. Trobeu la temperatura T a Uinterior d’un disc de
radi 1 si sabem que la temperatura val Im z als dos primers quadrants de la circumferéncia
de frontera i 0 a la resta de punts de la vora. En particular veieu que la temperatura al

centre del disc és 1/m. q

Solucié: Per I'exercici anterior, estem buscant la solucié del problema de Dirichlet amb

dada de frontera f(x + iy) = yxy>o0. Pel teorema 5.40, i argumentant per continuitat,
trobem

1 1 T 1
F£(0) = 2W/m F(2) P, 0)|d2| = %/O sintdt =~
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6. Series de Laurent

6.1. Series de Laurent i singularitats

6.1.1. Calcular la série de Laurent de

z—1
—= a0 —4| < 4.
a) z(z—4)3a <|lz—4| <
b) 1/e972) per |z| > 1. q
Solucié:

m rey el P (“ﬁl) e (1‘4+<i—4> -

1 1 1 1 1& L (z—4)r
(z — 4)3 <1_41+(z—4)/4> T (z—4)3 (1_42(_1) 4n >:

3 1 11 11 (z — 4)n3
e - - - -1 n+17'
1(z—4)7 "16(z—42 64:—4 2, (1)

Nota: amb Sage podem fer servir taylor.
b) Esta centrada al zero,

1 z—1 -1 o
(-2 — ¢ € n>07
L sin z cos 3z
6.1.2. Per a la funcid f(z) = ————
z

1. Trobar els primers termes no nuls de la part central de la seva série de Laurent a
z=0.

2. Calcular ¢ f(z)dz si es recorre |z| =1 un cop i en sentit antihorari. q
Solucié: a) Si fem servir la identitat 2 cosasinb = sin(a+b) —sin(a —b) podem escriure

sin z cos 3z = 3(sin(4z) — sin(2z)) llavors

sin zcos 3z =

N |
N
s
—
SN—
3
|
TN~
TS
S|
SN—
| o
S
= I
= =
|
s
—
SN—
3
|
/Sr\
[\
S|
S~—
| o
3
- |
= =
~
Il
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6. Séries de Laurent

Llavors
1 43 _ 23 42n—1 _ 22n—1
f(z)==— (22— 22+ ()t ) o
224 3! ;s (2n —1)!
1 141 Z (_1)71—1 42n—1 _ 22n—1 o
=—— —-= z
23 3z = 2 (2n —1)!
b) La integral és 2mi(—14/3).
1
6.1.3. Trobeu el desenvolupament en série de Laurent de f(z) = prmmil les corones:
z(z —
(a) {ze C:0< |z <1}, b)) {zeC:0<|z—-1 <1}, (¢){z € C: |z] > 1} i
(d) {zeC:|z—1] > 1}. q

Solucié: a) {ze C:0 < |z| < 1}, el centre és z =0

1 1

1 1
=——Q+z+22+ - )=—-—1—2-2" -
z1—=z z z

b) {zeC:0<|z—1| <1}, el centre és z =1

1 1 B 1
z—1z—14+41 z-1

(1—(z=D)+(z=1)2—(z=1)2+---) = . i Tt Z(—l)"“(z—l)".

n=0

c) {ze C:|z| > 1}, sigui w = 1/z, desenvolupem al voltant de w = 0 (z amb centre a
)

1 w? 5 w111
z(z—l)_l—w_w(nzlow)_22+z3+z4+”'

d) {zeC:|z—1] > 1}. Aqui posem z —1 =1/w i

1 w? 1 1 1

2z—1) 14w (2—1)2_(2—1)3+(z—1)4

1
6.1.4. Sigui f(z) = m, donar les series de Laurent per les tres corones cen-
z—1)(z —
trades a 0 alla on f és analitica (|z] < 1,1 < |z| <3 i|z| > 3). a

. . . 1 1 1 .
Solucié: Primer veiem que ———— = — . Tenim casos

1
(z—1)(z—3) 2z—-1 2z-3

1
e Sifz] <1, ——=—)» 2"
z-1 go
1 1 1 1
Sifz| >1 = == —.
o Sill Tz—1 2(1-1/2) zzz”
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6. Séries de Laurent

1 1 1 1 z"
o Si|z] <3, = —= :ffzi‘
z—3 31—2/3 3n>03”
1 1 1 n
e Si|z] >3, = N Yy
z—3 z2(1-3/2) z ="
Combinem aquestes expressions i obtenim
a) Si|z| <1
1 1 11 n 1 1
O FRE D (R
(2= 1)(z=3) n=0 3503 n>0 3
b)Sil<|z| <3
1 o lwl 1ot
(z—1)(z —3) 24 64 3
c) Si |z] > 3,
1 1 143!
(z—1)(z—3) 2 2"

6.1.5. Donar els primers termes de la série de Laurent de
) f(z) = : 2] >0
a = 2% cos er |z .
3z b

b) f(z) =

1
z_lper0<|z]<R.

Solucié: a) La singularitat es dona quan z = 0, fem el canvi z = 1/w, llavors

F(2) = £ /w) = —g cos(w/3) = -5 D (- . Z o1

= 32n2n| =z 320 (20)! 220 1)”

b) Veiem que les singularitats es donen quan e* = 1. Aixd passa si e?™% = 1 que equival

azr =0, y=2kmr. Com que el terme no nul més proper al zero i que anulla el denominador
és +2mi tenim que R = 27 i la serie de Laurent la tenim per 0 < |z| < 27

1 1 1 1
e —1 z24+22/20 42330+ z142/2+22/30 -
1
;(1—(z/2—|—z2/3'+ VA (2/24+ 223+ )2 — (/24 2%/3! + -

)3_|_) =

NN NS DS SV

Tz A TR o
Nota: els coeficients (multiplicats per n!) de la serie de z/(e* — 1) sén els famosos nombres
de Bernoulli, molt importants en teoria de nombres.
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6. Séries de Laurent

0 n

6.1.6. Quina és la corona (o anell) de convergencia de Z % ? <

n=—ow
Solucié: Estudiem la part regular i la part singular.
e Regular. 1+ 2/2+ 22/2% + 23/2% + ...
e Singular 1/2z +1/222% +1/2323 + ...
Fem servir el criteri del quocient per trobar el radi de convergencia:

e Per la part regular volem que z sigui tal que lim |¢,41/cn| < 1. Tenim que

n+1 2n+1
Cor1| (/2T o<1,
Cn (zn/2m)
Hi ha convergencia si |z| < 2.
e Per la part singular fem el mateix
1 2n+1 n+1
Cort| |2 2Dy o <.
Cn (1/2nzm)

Hi ha convergencia si |z| > 1/2.

L’anell de convergencia és R = {ze C:1/2 < |z| < 2}.

6.2. Singularitats aillades de funcions holomorfes

6.2.1. Construccio de funcions
1. Trobar una funcio f que tingui un pol d’ordre 2 a z = 141 i singularitats essencials
az=0,1.

2. Trobar una funcid f que tingui una singularitat evitable a z = 0, un pol d’ordre 6 a

z =1 i una singularitat essencial a z = 1. <

Solucié: a) Per exemple

_ 1 1z | 1/(z—1)
f(Z)—i(Z_l_i)Q—i-e +e .

b) Per exemple
22+ 2z 1 (s—i
- /(z=1)
A e PO R P AR

6.2.2. Sigui f analitica amb zero d’ordre n a zg 1 g analitica amb zero d’ordre m a zy. Si
h(=) = £()/9(z) proveu que
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6. Séries de Laurent

a) Sin>m h(z) té un zero d’ordre n —m a 2,
b) sin <m h(z) té un pol d’ordre m —n a zp,

c) sin=m h(z) és holomorfa i no nulla a 2. <

Solucié: Per hipotesi f(z) = ap(z—20)"+- - 19(2) = em(z — 20)™+- - - amb ay, ¢ + 0.
Aleshores
an(z — 20)" an(z — 20)"

h(z) = onle—20)™ Zo)m)\(z) = o= 20" (do+di(z—20) +--+)

amb A(z) holomorfa a zy amb A(z9) = do £ 0. D’aqui es dedueix a) b) i c¢).)

6.2.3. Determineu les singularitats de les funcions segiients. Si a és una singularitat
evitable de f, calculeu el valor que cal donar a f(a) per a qué f sigui holomorfa en un
entorn d’a, i si a és un pol de f, determineu la part singular de f en a (la part de la série
amb indexs negatius).

a) f(z) = zcos(1/2). ) 1) = G ‘
22 +1 ‘
b) f(z) = A1

Solucié: (a) L’'tunica possible singularitat és a z = 0, ja que la funcié cos z és entera.

2n 2
Utilitzem la serie del cosinus: cosw = ) Y _1-2 4. Prenentw =1 /z obtenim
n=0 (2’/1)' 2
(=D 1 (=n" 1
f(z) ==z — = —.
;0 (2n)! 227 go (2n)! z2n—1

Per tant, el punt z = 0 és una singularitat essencial.

(b) Tenim una funci6 racional, i per tant les tniques singularitats sén els zeros del

denominador: z=01z = 1.
+ 22

1
(z—1)

z = 0. La funcié g(z) := és holomorfa a un entorn de 0 i té g(0) = 1 # 0. Per

tant, tenim que

i deduim que f té un pol de multiplicitat 3 a z = 0. Trobem la part singular del desenvo-
lupament a partir del desnvolupament de g a I'entorn de 0: si g(z) = ag + a1z +azz?+- -
aleshores

1 2
Z)=—=lagtaz+az"+-|=—+—5+—+-
f(z) = zlao + a1z + az ] .
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6. Séries de Laurent

Cal doncs trobar ag = ¢(0), a1 = ¢’(0) i az = ¢”(0)/2. Utilitzant 'expressi6 de g i derivant,
veiem que aquests valors sén ag = 1, a; = 2 i ag = 4, de manera que la part singular de
la serie de Laurent al pol z = 0 és

1 2 4
28 22 2
52
z = 1. Procedim com al cas z = 0. La funcié h(z) = és holomorfa a I’entorn de

3
1, amb valor h(1) = 2. Tenim doncs que z = 1 és un pol de multiplicitat 2:
F(2) = g h(2)
“ = (z—1)2 2

i la part singular de la serie de Laurent a aquest punt sortira de mirar el desenvolupament
de h a I’entorn del punt 1. Derivant h i avaluant al punt 1 tenim que

h(z)=2—4(z—1)+ -,

i per tant la part singular de la serie de Laurent a aquest punt és

2 4

(z—1)2 2—-1"

(c) La funci6é 1 — e* és entera; per tant les singularitats de f es troben només alla on
e —1 =0, és a dir, als punts z; = 2mik, k € Z.
Mirem quin tipus de singularitat tenim a cada punt zi.Desenvolupant e* al punt z

tenim que

z z z e 2 1 2

e =ek+e’“(z—zk)+7(z—zk) +---=1+1(z—zk)+§(z—zk) +
i per tant

ez—lz(z—zk)[1+%(z—zk)+---]:(z—zk)g(z),

amb ¢ holomorfa a ’entorn de zj i amb g(z;) =1 # 0. Amb aix0 veiem que

1 1
(z — 2)* g%(2)

i 1/g? és una funcié holomorfa a I’entorn del punt zz, amb 1/¢g%(z;) = 1 # 0.
Per tant z; és un pol de multiplicitat 2. La part singular la trobem mirant el desenvo-
lupament a I’entorn de z de la funcié h = 1/¢%. Tenim que h(z) = 1. Derivant,

f(z) =

2

N

g/(zk) = -1,

ja que, pel que veiem al desenvolupament de g, tenim que g(zx) = 11 ¢'(2;) = 1/2.
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6. Séries de Laurent

Per tant 1
= — (1 — — + -,
f6) = gl =) + ]
i la part singular de la serie de Laurent a aquests punts és
1 1

(z—21)?% z2—z

6.2.4. Sigui f € H(D,(a)\{a}). Suposem que existeix una successid (zy),, tal que z, — a
1

n—0 n

1 1
lim |e/G7)| =0, ‘f <2’n+>’ stog mel
n
Determineu el tipus de singularitat que té la funcidé f en el punt a. <

Solucié: Determinem el tipus de singularitat mirant el comportament de f al voltant

del punt a.
La primera condicié diu que lim Re f(z,) = —o0, i per tant la singularitat no és evitable.
n—0oo

Per altra part, els punts z, + 1/n tendeixen a a, i en aquest punts la funcié té un modul
proper a 1; aix0 exclou que a pugui ser un pol. Si ho fos tindriem lim |f(z)| = +o0, i per
zZ—a

tant, per a tot M > 0 existiria e > 0 tal que
|f(z)] = M, peratotzamb 0<]|z—al<e.

Aix0 donaria, per a n prou avancat,

1
n - >M7
e+ )]

en contra de la hipotesi.
Per tant, a és una singularitat essencial.

6.2.5. a) La funcid tan(1/z) té una singularitat aillada al 09 De quin tipus?

b) Sigui 0 singularitat aillada de f(z). Suposem que |f(z)] < |z|7 on 0 < a < 1.
Demostreu que 0 és una singularitat evitable. <

Solucié: a) tan(1/z) = sin(1/z)/cos(1/z), tenim singularitat a z = 0, les altres sin-

gularitats sén quan cos(1/z) = 0, és a dir, quan 1/z = 7/2 4+ nn, llavors les tenim quan
z=1/(m/2 4+ nm) = z,. Aix0 és una successi6 de singularitats que tendeixen a 0. Llavors
la singularitat z = 0 no és aillada. Els pols a z, sén simples. En efecte

. (2= 2zn)sin(1/z) . (2= zp) ) 2 9
1 = (-1)" lim ———= = (—-1)" lim ——— = 0
o cos(1/z) ( o cos(1/z) (=1) o sin(1/z) ot
isin>1
—zn " gin(1 — 2y n 2 — 2y n—1
it L€y T e e cmic)
z—zn cos(1/z) 2=z, cos(1/z) 2=z, sin(1/z)
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i els pols sén simples als z,. La singularitat a z = 0 és essencial. Si no fos essencial hi ha
un enter k > 0 tal que f(z) = by/2F +bgp_1/2¥"1+--- amb by # 0, llavors g(z) = 2K f(2) =
br 4+ bx_12 + - -+ és holomorfa i no nulla en un cert disc |z| < 7. Llavors f(z) = g(2)/2* és
holomorfa a 0 < |z| < r i contradiu que 0 sigui punt d’acumulacié de punts singulars.

b) Volem veure si b, = 0 per a qualsevol n. Recordem que

1

b, =
" 9

§ st

Pero

# f(w)w"‘ldw‘<§5 )] ldu
Cr Cr

27
<l dul = [ e et P e = 2
0

T

que tendeix a zerosir - 0jaquen >1i0 < « < 1. Llavors b, = 0.

6.3. Teorema dels Residus

6.3.1. Existeiz alguna funcié f amb pol simple a zy tal que Res(f,z0) = 07 Qué passa si
el pol és d’ordre 2, pot passar que Res(f,zg) = 0% q

Solucié: a) Si f té pol simple a z llavors la part by /(z — zp) de la seva seérie de Laurent

és no nulla, llavors by #+ 0 i by = Res(f,z9) £+ 0. b) Si que pot passar, per exemple
f(z) =1/2% té residu 0 a z = 0.

6.3.2. Cualculeu els residus de les funcions segiients en els punts indicats:

a) f(z)zez%l, 2o = 0.
b) f(z):1:4ez;20:0- 5

Solucié: (a) 1; (b) 1/6

1/z

6.3.3. Calculeu / dz pels diferents valors d’a € C tals que |a] # 1. <

=12 — @

Solucié: Sia =0, I =2mi;si|a] > 1, I = 27i(1 —e'/%); 510 < |a| < 1, I = 27i.

6.3.4. Decidiu si son certes o falses les segiients afirmacions. Doneu els arguments que
provin les aftrmacions.

1. Si f,g tenen un pol a zy llavors f + g té un pol a zp.
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6. Séries de Laurent

2. 51 f,g tenen un pol a zy i en els dos casos el residu és no nul llavors f - g té un pol
a zo amb residu no nul.

3. Si f té una singularitat essencial a z = 0 1 g un pol d’ordre finit a z = 0 llavors
f + g té singularitat essencial a z = 0.

4. Si f té un pol d’ordre m a z = 0 llavors f(2%) té un pol d’ordre 2m. <

Solucié: a) Falsa, exemple f(z) = 1/z,9(z) = —1/=z.

b) Falsa, exemple f(z) = 1/z = g(2).
c¢) Per ser la singularitat de f essencial resulta

b
f(z) = Z z% + Part regular

n=1

amb infinits b, no nuls. I per ser la de g d’ordre finit k

n

— + Part regular.

Q
—

N
~—

I
L=
IS e}
S

n=1
Llavors .
b b
(f+9)(2) = — + Z . _;C’n + Part regular
n>k z n=1 <

i f+ g té singularitat essencial a 0.
d) L’enunciat diu que f(z) = h(z)/z™ amb h holomorfa tal que h(z) + 0. Llavors

F(2%) = h(z%)/z*"
i Pordre del pol de f(2?) a 0 és 2m.

6.3.5. Suposem que f és holomorfa amb un zero d’ordre m a zy. Proveu que g(z) =
1(2)/f(2) té un pol simple a zp amb Res(g, z0) = m. q

Solucié: Si f té zero d’ordre m a zp resulta que existeix h amb f(z) = (z — 29)"h(2)

amb h(zg) #+ 0 i holomorfa. Llavors

P _mie— )" ) 12— )W) m ()
f(2) (z — 20)™h(2) z—20 h(z)’

Com que h(zp) £ 0 el quocient h’/h és analitic a zp i Res(f’/f,z0) = m.

6.3.6. a) Proveu que si g(z) té un zero simple a zy, llavors 1/g(z) té un pol simple a z.
b) Proveu que Res(1/g,z0) = 1/¢'(20).

¢) Sigui f(z) = 1/sin(z), trobeu els seus pols i proveu que son simples. Trobeu els residus.<
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Solucié: a) Per tenir zero simple a zq resulta g(z) = >}, - an(z — 20)" amb a1 # 0.

Llavors
1 1 e ar )
g(2) al(z—ZO)(l—i-g—f(z—zo)%—...) B z—zo(l (al( 0)+”')+(a1( 0)F--))

iel pol de 1/g(z) a z és simple.

b) El residu és 1/a; i a; = ¢'(z20).

¢) Mirem els zeros de sinz, sén a z = nw per n € Z. Llavors, per 'apartat anterior
Res(1/sinz,nm) = 1/cos(nm) = (—1)".

6.3.7. Trobeu i classifiqueu les singularitats aillades de cadascuna de les funcions segtients.
Calculeu el residu a cada singularitat.

3
22 +1
) 1E) = 2y
1
b = .
) 9() = ——
¢) h(z) =cos(1—1/z). q
Solucié: a) La funcié f té singularitats a z = 0,—1. Quan z = —1 la singularitat

és evitable ja que lim,_,_1 f(z) = 3 % oo, llavors Res(f,—1) = 0. Com que f té un pol
d’ordre 2 a 'origen, Res(f,0) = ¢/(0), amb g(z) = 22f(z). Derivem

3 /

z2+1
g’(2)=< 1) = -1

zZ+ 2=0

i Res(f,0) = —1.
b) Els pols sén a z = 2wni. Estudiem lim,_,o5i(z — 27ni)g(2). Resulta
. . 0 : 1
zl}gnz(z B 27””)9(2) B 6 B z—lgl;rlm 67 =1

on hem fet servir la regla de ’'Hopital. Llavors Res(g(z),2mni) = 1.
c) La singularitat és a z = 0. Tenim que

cos(l —1/z) = cos(1) cos(1/z) + sin(1) sin(1/z) =
=cos(1)(1 —1/(22%) +---) +sin(1)(1/z — 1/(62%) +---) = -+ +sin(1)/z + - --

i el residu que voliem calcular és sin(1).

1

6.3.8. Aval
va ueu¢ z+D(E-1(z=2)(z—-3)(z—4)(z—5)
3 recorrequda en sentit antihorari. <

dz alllarg de la corba |z—3| =
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Solucié: L’interior de la corba d’integracié conté els pols simples z = 1,2,3,4,5.

Calculem els residus en aquests punts fent servir que per un pol simple Res(f,zg) =
lim,_,,, (2 — 20) f(z). Llavors

1

1 -1
= — 2) = —
Res(f,1) Res(f,2) = 45 144

1 _
48’ Res(f, 3) = Ev Res(f, 4) =

1
%7 Res(f, 5) =

i la integral val mi/360.

6.3.9. Avalueu les segiients integrals

sin z iz
a dz dz.
) ﬁz_5 2’2 —4 C) ¢z|—3 22(2 — 2)(2’ + 52) * °

1
b)?f S S—
|2|=8 2 +z+1

Solucié: a) Té pols simples a z = +2, calculem els residus i valen els dos sin(2)/4,

aplicant la férmula del residus veiem que la integral és misin(2).

b) Els pols sén simples i sén les arrels cibiques de la unitat diferents de 1, és a dir
wy = 23§ Wy = e 2m/3 Els residus sén +1/(w1 — wg) respectivament. Llavors la
integral és 0.

c) Els pols a U'interior de la corba |z| = 3 sén z = 21 z = 0. El primer és un pol simple
amb residu (2 — 5i)/116. A z = 0 tenim un pol d’ordre 2 llavors per calcular el residu
hem d’anar més en compte.

Res(f,0) = (sz(z))/z:O == 131_0(5)l

Finalment tenim que la integral és

. <e2i(2 —5i) 12— 5z'> _

7” 58 50

Nota: Amb Sage podem fer f.maxima methods() .residue(z,a)

1
6.3.10. Calculeu la integral de la funcio f(z) = 1—%% sobre la vora del disc D7(0). «
inz

Solucié: Segons el teorema dels residus

/6D7(0) f(z) dz = QWi;Res(f, a),

o a recorre els pols de f dins el disc D7(0).
Els pols de f sén els punts on 1+4sin z = 0, és a dir, els punts de la forma z = —7/2+4 27k,
k € Z. D’aquesta familia, nomes a1 = —7/2 1 ag = 37/2 s6n dins els disc D7(0). Per tant

/ f(2) dz = 2mi (Res(f,a1) + Res(f,a2)) .
0D7(0)
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6. Séries de Laurent

Per trobar els valors d’aquests residus mirem quin és el desenvolupament de Laurent a
cadascun dels punts.
Punt aq. Desenvolupant la funcio sin z a ’entorn d’aquest punt tenim

1 1
sin z = —1+§(Z—a1)2—a(2—a1)4+... ,
i per tant
1 1
1+sinz = 5(2 —ap)? - I(Z —a))t+ - = (z—a1)’h(2),

on h(z) és holomorfa a 'entorn de a1 i a més h(ay) = 1/2, h'(a1) = 0.
Amb aixo tenim, a ’entorn de ay:

1 1+2
o) h(z)

f(z) =

Aquest segon factor és holomorf a I’entorn de a1, aix{ que té un desenvolupament en serie
de la forma

1
F(z) = hz_z)z =Dy +bi(z—a1) +ba(z —ar)* + -
Aixi doncs, localment a ’entorn de a;
bo by
= bo 4 -+
f(Z) (z—a1)2+z—a1+ 2 +
i per tant Res(f,a1) = by = F'(a1). Derivant tenim que
h(z) — (1 n
ERELCEIEDOY
(h(2))
1 avaluant a a; .
=F =——=2.
Res(f, a1) (a1) e
Punt az. Procedint de manera analoga es veu que Res(f,a2) = 2.

Tot plegat
/ f(2) dz =2mi(2+2) = 8ni .
0D7(0)

6.3.11. Per at > 0, sigui C; la circumferéncia de centre it, que passa pels punts —2 i 2.
Calculeu

ei7rz+1
f(t)z/ ———dz, perat#2. <
C Z(Z_t)

Solucié: La circumferencia de centre it que passa per +2 té radi ry = |it —2| = /4 + t2.
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Els pols de f s6n zp =01 21 = t, i els residus respectius

e+l 2

Res(f7 0) = (0 _ t) = _¥7
it 1
Res(f,t) = c t+ :

Observem que zp = 0 sempre és dins el disc D, (it):
0 —it] =t <7 = /4 + 2.
Per altra part z; € Dy, (it) si i només si

It —it] = tV/2 < ry = V4 + 12,

és a dir, si i només si t < 2.
Separem per tant dos casos:
(i) t <2. Aqui

f(t) = 2mi[Res(f,0) + Res(f,1)] = 2711'[—% +—

(ii) t > 2. Ara |
f(t) =2miRes(f,0) = —?.
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6. Séries de Laurent

6.4. Residu a l'infinit
5z —1

2j=2 2(2 = 1)
Uinfinit. 4

6.4.1. Trobar el valor la integral dz calculant el residu de lintegrand a

Solucié: La funcié f que integrem té dos singularitats aillades, a z = 0,1. Llavors la
integral és 27mi(Res(f,0) + Res(f,1)) = —2mi Res(/f,0). Fem el canvi z = 1/w llavors

1 5(1/w)—1 5—w

w? (Lw)((1/w) =1)  w(l —w)

Res(f, ) = — Res <11]?1__7“”w,0> — 5.

La integral és llavors igual a 10ms.

2 .2
6.4.2. Sigui a € R, calculeu, estudiant el residu a l'infinit, I = §£ %dz on C és
c 2(22 +a?)

una corba simple que envolta les singularitats de l'integrand. <

Solucié: Sabem que I = —27i Res(f, 00) = 2mi Res(f(1/w)/w?,0). Tenim que

if l B aw? —1
w2’ \w)  (a?w?+ 1w’
Llavors Res(f(1/w)/w?, 0) = —11i I = —2mi.

6.4.3. Avaluar§£ e'/*sin(1/z)dz. 4
|21=1

Solucié:
1 1 1. 1
w2l <w> = ¢ sinw) ~ o

i el residu a l'infinit és —1. Llavors la integral és 27i.

6.5. Aplicacié al calcul d’integrals

t

6.5.1. Perr > 0, considerem la corba 7y, : [0, 7] — C definida per v, (t) = re', i sigui

Demostreu que lim, o I(r) = 0. <
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Solucié: Provarem que |I(r)| — 0 quan r — c0. Parametritzant la corba, tenim que

™ eireit ) T
I(r) = —jre dt =i e dt.
rett
0 0

Per tant -
11(r)| < / et dt.
0
Com que ‘
eire” _ eircostfrsint7
llavors ,
eire” — ‘eircost’ e—rsint _ e—rsint.
Per tant -
[I(r)| < / e st gt
0
Posem

™ ) /2 ) T )
/ efrsmt dt = / efrsmt dt + / efrsmt dt
0 0 /2

Fent el canvi s = m — t, i fent servir que sin(m — s) = sin s, veiem que

T ) 0 ) /2 )
/ e~Tsint gy / e—rsm(w—s) (—ds) _ / e~Tsins go
/2 /2 0

/2
9 / e—rsint dt
0

Per tant

T~
=
A

Fent servir la desigualtat

2
sint>—t,  telo, g],
s
tenim ) -
e~ Tsint 677%, te [07 5]
Per tant,
/2 . f%t =32
II(r)] <2/ e~ 7 tdt = [—ne ]
0 T
t=0
T (1—e7)—0
r
quan r — +00.
22

6.5.2. Considereu la funcié f(z) = CEDICETE

(a) Determineu les singularitats de f.
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6. Séries de Laurent

(b) Calculeu la part principal del desenvolupament de Laurent al voltant de z = 2i.

/0 " )

1 calculeu-ne el seu valor. q

(c) Justifiqueu la convergéncia de

Solucié: (a) La funci6é f(z) és racional i té com a uniques singularitats les arrels del
denominador. Factoritzant 22 + 9 = (2 + 3i)(z — 3i) i 22 + 4 = (2 + 2i)(z — 2i) veiem que
aquestes sén z = +3i¢ (pols simples), z = +2i (pols d’ordre 2).

(b) Tenim que

22 1

TG = CBiG )12 -2~ -2

on

22 22

h(z) = =
) = i s T2E - (R4 9)( 120
és holomorfa a un entorn de z = 2i i amb h(2i) # 0. Desenvolupant en serie aquesta funcié
a 'entorn d’aquest punt tindrem doncs

h"(2i)

h(z) = h(2i) + B/ (2i)(z — 2i) + (z—2i)> + - - -,

i per tant

h(2i) R'(2i)  h"(2i)
&= mmt oot
Aleshores, la part principal del desenvolupament de Laurent de f al voltant de z = 2i sera
h(2i) n'(2i)
(z—20)2  2—2

Directament de la definicié de h tenim que

: 44° 1
" G~

Derivant tenim també que

2z 22 z
h(z) = 1— _
(2) (z2—|—9)(z—|—2i)2[ 219 aiai)
d’on veiem que
4i 4 2, 13
h/ 2 = 1 _— ] = .
@) =3 (4@)2[ 5~ 3~ 2000

Tot plegat, la part principal buscada és

1 137

)= _ 20 _ 200
2(2) = o T oo
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6. Séries de Laurent

(¢) La funcié f(x) és acotada a [0, +0), i per tant només cal estudiar-ne la convergencia
a 00. Pel criteri de comparacié per pas al limit veiem que la integral demanada té el mateix

e}
caracter que / —» €s a dir, és convergent:
x

lim 7]‘(1‘) im 2 =
e—o 1/zt  z—o (22 +9) (22 +4)2

1.

Per calcular la integral utilitzarem el teorema dels residus a la funcié f(z) i el cami
tancat v = y1 + 72, on y1(x) = z, x € [ R, R] és el segment [—R, R] = R i y,(t) = Re",
t € [0, 7] és la semicircumferéncia que va de R a —R passant pel semipla superior.

Yo (t) = Re't

Les singularitats de f tancades per v, si R és prou gran, sén z = 2i, 3¢, i per tant, pel
teorema dels residus,

/f(z) dz = 2mi(Res(f, 2i) + Res(f, 31)).
Y

[ﬂf(z)dz = /_];f(x)da:

/ f(2)dz = / i F(Re™)iRe™dt.
Y2 0

Tenim

Com que

it
max lim |f(Re )|

2 AL,
te[0,27w] R—00 1/R4

veiem que la integral a v, tendeix a 0 quan R — oo:

m , . m , 1
/ f(Re™) Z'Re”dt’ < / |f(Re™)|Rdt < C?TR@
0 0

Tornant a la igualtat de dalt i passant al limit quan R — oo tenim doncs que

/_00 f(x) dz = 2mi(Res(f, 2i) + Res(f, 31)).
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6. Séries de Laurent

A Tapartat (b) hem vist que
13

2007
De manera analoga, factoritzant el denominador de f com hem fet anteriorment, veiem
que

Res(f,2i) =

. (3i)2 3
Res(f.30) = G an(GiE v 42 ~ 500

Per tant,
13 3

© T
do = 2mi(——> — 2y = T
/_OO fla)da = 2mi(50 = =0) = 100

Com que la funcié f és parell,

| rwde=2 [ s

@ s
/0 flx)dx = 200"

i per tant, finalment

6.5.3. Demostreu que
+oo 2 -
—dr = —. a
/_ » 1+t V2
Solucié: Considerem la funcié f(z) = ﬁ% que és holomorfa a tot C excepte en les

arrels quartes de —1, que sén pols simples de f. Aquestes singularitats son
ap = GtR3) g =0,1,2,3.
Si R > 1, sigui v = 1 + vr el semicercle

vr(t) = Re'

Com que només ag i a; es troben a 'interior del semicercle, pel teorema dels residus, tenim
que

/f(z)dz = 2mi(Res (f,a0) + Res (f,a1)).

118
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Calculem aquests residus. Com que sén pols simples,

Res (f,a0) = lim (z - a0)f(2) = a? Jlim ('i ; ZZ) - 420_
De manera semblant, tenim que
Res (f,a1) = Zlilgll(z —a1)f(z) = 41@1.
Aleshores
Res (fa0) + Res (fran) = + (7% + %) = =i 22,
Per tant

[{f(z)dz V2T

Per altra banda, posant Ig = f’m f, tenim que

™ R I2
- = dz = —d Ig.
V2 /»yf(z)z /R1+w4 v

Si veiem que Ir — 0 quan R — oo, llavors fent R — o0 en la identitat anterior, obtindrem
el resultat desitjat (donat que és una integral impropia convergent)

+00 42 -
[
o 1+x V2

™ 2,24t .
Ip = / R peitar,
0

Tenim

1 4+ R4e2it

4 dt TR3
Ig| <R3 < - 0.
IR| /0 11+ R%e2t| ~ RT—1

I:=/00d$.
0 1+$5

Solucié: Considerem la funcié f(z) =
amb n = 5. Obtenim

Per tant

6.5.4. Calculeu

<

H%’ i integrem aquesta funcié en el recinte y

. - 2 ) us)
/f(z)dz =2miRes (f,e's) = 2mi lim (2 —€'5)f(2) = -t
gl

z—e'5 D

Posant v = Re per t € [0, %’r], tenim que

[/f(z)dp/[oﬂ]f(z)dw/m f(z)dz—/[O’ReT]f(z)dz.
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Tenim
R qx

dz = — 1 — 0.
o (z)dz /0 T+ a5 quan R — ©

2mi

Ara, el segment [0, Re%] ve parametritzat per o(t) = te’s per t € [0, R]. Llavors

R R
1 ) s} dt s}
- f(z)dz = ¢ dt=e¢ — BT quan R — 0.
27mi 27i 1 t5
[0,Re5 ] 0 1+ (te’s)? o L+

Si veiem que

lim/ f(z)dz =0,
R—w J. o

llavors obtindrem )
27TZ 4mi 2w

—e 5 =(1—e5 )l

5
Per tant y
/OO de 27 _ 2mies -
o 14+2% 5% (1-e%) 5% —1) OSsin(a/5)

Finalment, com que

27 .
5 iRedt
dz = —_—
/7R J(2)dz /0 1+ Roe>t’

/VR f(2)dz

6.5.5. Donat a € (0,1) calculeu el valor de la integral

0 a
/ — do. <
0 1+

Solucié: Aplicant el criteri de comparacié per pas al limit amb la funcié 1/22~% veiem

tenim ) R
s
<?m—>o quan R — oo.

que aquesta integral impropia és convergenlt:.

Considerem la funcié f(z) = % = 1617;2’ on el logaritme és 'associat a ’argument
Az € (0,27). Donats €, R > 0 considerem també la corba vy = -1 +~2 —y3 — 4 diferenciable
a trossos i tancada formada pels trossos:

e vi(x) =z + ie, amb z € [0, R].

e 12(0) = Re??, amb 0 € [6,21 — 6], on & és Pargument del punt z = = + ie (§ =
arctan(R/e).

e v3(x) = & —ie, amb z € [0, R].

o 74(0) = e, amb 0 € [r/2,37/2].
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Com que la funcié f té els dos pols a1 = i, as = —i dins la regié tancada per ~, el
teorema dels residus dona:

R eaﬁ(erie) 2m—9 ea[,(ReiQ) 0 R ea[l(xfie)
—d ————iRe"dl — ——=dx—

/0 1+ (x + i€)? x+/§ 1—|—(Re’9)2l c /0 1+($—i6)2x

35 eaﬁ(eew

mieewdﬁ = 2mi|Res(f, i) + Res(f, —i)]

|
_—

a

Essent f(z) = % veiem que

eaLi 0iT/2
R 1) = =
i) =75 = o
ea[,(—i) eai37r/2
Res(f. —i) = -
es(f i) = T = T

aixi que | |
2mi (Res(fv Z) + Res(f’ *’L)) = 7'((6(“71—/2 _ 6(1137r/2) ]

Per altra part és clar que les integrals dels trossos 2 i 4 tendeixen a 0 quan ¢ — 0 i
R — 400, ja que passant els moduls a dins de la integral tenim:

2r—8 al(Re') ) 27 ,alnR 1+a
/ £ _iRe"df| < / T pap— TR
5 1+ (Rew)Q 0

Pel que fa al tros corresponent a 73 tenim que

R eaﬁ(x—ie) o9) ea(lnz’-‘riQﬂ) ) ©  La
lim lim 7,2d:c = / 72d:z = 627”“/ 5 dr .
R—-we—0 Jo 1+ (x — ie) 0 1+2 o l+=z

Tot plegat tenim doncs

omiay [ ¢ air/2 @i3m/2
(1 —e*™) T, 2dm=7r(e —e )
0 X

d’on deduim que

©  ga eMim/2 _ paidm/2
/ s dv=m 2mia
o l+=z 1—e
Podem comprovar que aquest és un nombre real positiu efectuant la divisio:
etiT/2 _ 6ai37r/2 B eaiw(e—aiw/Q _ eazﬁr/2) B Sin(aﬂ'/Q) B Sil’l(aﬂ'/Q)
1 —e2mia  — eaim(g—air _eaim)  gin(am)  2sin(am/2)cos(an/2)
B 1
~ 2cos(an/2)
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6.5.6. Calcular
/ © dx
. <4
0o vr(l+2?)
Solucid: Considerem la funcié

1 Lpre

e — e2

0= qrmy VE-ed®

amb Lz = In|z| + iAz, amb Az € (0,27). Llavors aquesta branca de 4/z és holomorfa a
C\[0, +0). En aquest cas, prenem R > 1 prou gran, i 0 < ¢ < 1/2 prou petit, i integrem

f en el recinte “comecocos”~y de la figura

Tenim v = 71 + 72 — 3 — 74, amb

m(z) = x + ic; x € [0, R*];
Yo(t) = Re't; te[e*,2m —e*]
v3(x) = x — ie; x € [0, R*];
. T 37
t) = ee't; te[=,—].
74( ) ge ’ € [27 2 ]

amb R* — o0 quan R — o0, i també €* — 0 quan € — 0.

Les singularitats de f a l'interior del recinte v sén z = ¢ i z = —i, que sén pols de f
d’ordre 1. Pel teorema dels residus, tenim que

/vﬁ(fi%) — o (Res (f,4) + Res (f, _i)>'
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Com que z =7 és un pol d’ordre 1, tenim que

1 1
R N i . i _
es (f,4) = lim(z — i) f(2) = lim D) - Vio
amb
\/ZT = e% Li = ez%
De manera semblant, tenim que
1

Res (f,—i) = lim (2 +1)f(z) = lim

z——1 z——1 \/E(Z — Z) -

amb
i = en £(=1) — o5 A=) 2T
Llavors
1/1 1 1 o
Res (f,i) + Res (f, —i) = Z<W — \/jz> = Z(eﬂz
1 , -
= z ) (eZZ — e_lZ) =e '2
Per tant,

Per altra banda, tenim que

Lf@MZ=/;ﬂ@w+IR—/1ﬂdw—Ja

73

amb . ‘
2m—e Z'Rezt dt

m:ﬁj@0=

3m o
2 ice™ dt

ek V Ret(1 + R2e2it)

- L &= [ e s ez

2

Tenim

27
|IR| < R/ L < 271-@
VRJo N+R2e® SR

quan R — co. També

3
|Ia|<€/2 dt - <7I'\/g —0
Ve z |14 e%e| 1—¢?

Per tant,

— 0

quan € — 0.

qug;qg( : (z)dz — /7 3 f(z)dz> = V2.
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Ara, pel teorema de la convergencia dominada, tenim que

R* dx R dx
Cl== | swa+@rion /0 vz (1 +22)’

Y1
quan € — 0, ja que, per z > 0, tenim que A(x + i) — 0 quan € — 0, i per tant

/v + ie = e%ﬁ(eris) _ e%(ln\m+is|+i¢4(z+i€)) N e% Inz _ \/5 quan € — 0.

També, com que per z > 0, tenim que A(x — ic) — 27 quan £ — 0, tenim que

—Vze™ = —\/z quan € — 0.

/% —ie = e%ﬁ(w—ie) _ e%(ln|x—is\+iA(1’—i5)) e% (In z4-277)

Per tant, usant el TCD

da - _/OR da

R*
z)dz = ,
ng() /0 Vo —ie (1 + (z —ie V(14 22?)
quan € — 0. Tot plegat, tenim que

lim lim ( : f(z)dz—LSf(Z)dZ> = 2/000\/5(?7%2)7

R—00e—0

d’on obtenim

© dx _77\/5
/0 Ve(l+a?) 2

6.5.7. Calcular
/Oo Inz
— dz. 4
0 1 +x

Solucio:

2
Posem f(z) = (1622 ,on Lz =1In|z| +iAz amb Az € (0,27), i integrem la funcié f en la
regié “comecocos”del cas anterior.

Pel teorema dels residus, tenim que

/W(lﬁj-)i(iz = 2mi (Res (f,1) + Res (f, _Z)>

Com que z = i és un pol d’ordre 1, tenim que

(L2)? _ (Li)?

Res (£,) = lim(z — i)/(2) = lim = — =

Z—>1

I

amb Li = 5. De manera semblant, tenim que

(L2)? _  (L(=4)”

- ’

21

Res (f,—i) = lim (2 + 1) f(z) = lim

Z—>—1
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amb L£(—i) = 22, Llavors

Res(f,1) + Res(f,—i) = n

i per tant,

/ (Lz)%dz Y
gl

1+ 22

Es compleix que si z € 7, 2 = x + ¢, aixi que Lz - Inxsic - 0isize i, z = —ie,
de manera que Lz — Inx + 27i si € — 0.

A més,
2mr—e* (E(Relt))2 dt
Ip = dz = —
R /72 f(z)d= /5* 1+ R2e2i

Per tant, tenim que

™ R(|In R + it|)%dt <o BN R+ omr)?

Ig| < : < — 0
[ Ir| 0 |1+ R2e2it| TR
quan R — 0.
Per altra banda,
3
2 g(|Ilne + it|)%dt e(|lne| + 27)?2
| I | </ T+ 262 <7 2 —0 quan € — 0.

Per tant

27 = lim lim 5
R—o0e—0 v 1+ 2

X.

(Lz)? dZ:/OO lnzx—(lnx2+27ri)2dx:/oo47r2—47rimx
0 1+ 0 1+2

Prenent part imaginaria, deduim que
© Inx
[
0 1+

6.5.8. Justifiqueu la integrabilitat (Lebesque o impropia Riemann) i calculeu les segiients
integrals (en tots els apartats ke Z, « e R in=0,1,2,---):

2T
sin?t 22—z +2
dt. d d
a)/ 5+ 4cost )/OO A+ 1002 +9°°
sin? z sinx
b dx.
)/ 72 & 6) /001‘2*$+1d‘r' N

) /2” cos(nt)
c
24+ cost
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27 2
3 t
Solucié: / st
o ©+4cost

Utilitzem que A A A A
ezt _ it ezt + e—zt
2

int c t
sint = ———— cost =
2i
Parametritzant la circumferéncia unitat de la manera habitual, z = €%, t € [0, 2], tenim

que
[t e [ (") / ()
o b+dcost  Jo 5420t +1/et) T J 21 5+2(z+ 1/2) iz
1 (z2-1)%dz 1 (22 —1)%2dz
i 2252+ 222 +2)  8iJm 222+ 1/2)(2+2)
Diem f(z) = i) G Aquesta funcié té dues singularitats dins el disc unitat (0 i

22(z+1/2)(z+2) "
—1/2); per tant, pel teorema dels Residus,

/27T ﬂdt - —%[Res(f, 0) + Res(f, —1/2)]
0

5+ 4cost
Escrivint ) ( - 1)2
1@ = a2
veiem que ) )
(=127 -1)* 3
Rest/, =12 = Cimy—iar )~ 2
Per altra part, escrivint
1 (P12
f(z)_?g(z)v g( )_(Z+1/2)(Z+2)

veiem que
Res(fv 0) = gl(o)
Derivant g tenim que
by 4z(z2 1) (22 —1)? (22 —1)2
IO = e+ G122+ G+

i avaluant a 0,

1 5
0)=0-2— - =2,
g'(0) 5 5

Tornant a ’expressié de dalt, obtenim finalment

T sin?t T
——dt = ——
o 9+4cost 4
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© sin? x
2
0 X

Solucié: /2
/27r cos(nt) it
o 2-+cost

Observem que Re(e

nt) = cos(nt) i per tant serd suficient calcular

2 int
e
JaE
0o 2+4cost
Expressant cost = 1/2(e® + e~) i parametritzant la vora del disc unitat amb ¢ = €%,
t € [0, 27] tenim que

2 int 2 int n
1 ; 2
/ edt:./ o .z'e”dt;/ S S
o 2-+cost 1 Jo (2+%)e” i Jic)=1 (44 C+1/0)¢

Factoritzant ¢* + 4¢ + 1 = (( + 2 — v/3)({ + 2 + v/3) obtenim finalment

2w emt B 2 Cn
/0 2+costdt B i/|<|:1 (<+2_\/§)(§+2+\/§)dg '

.y o C
La funcié f(¢) = EE NS TTTE
Per tant, segons el teorema dels residus,

té una tnica singularitat a D, al punt a = —2 + /3.

2 int 2
/0 ﬁdt = g2m'Res(f, a) = 4wRes(f,a) .

La funcié g(¢) = ﬁ és holomorfa a un entorn de a = —2 + /3, i per tant s’expressa
com una serie de poténcies a 'entorn d’aquest punt. Aleshores, a ’entorn de a,

f©) =759 = 7@ + @ —a) + 5= (=) +--]
g@) . . 4"
=g tI@+ -+

2V Amb aix0 tenim finalment

2v/3

2 eint B B n(2*\/§)n_2l_ " B N
/0 oot = A=) Brw _\/g( ™2 —/3)".

i per tant Res(f,a) = g(a) = CATE) (_1)n(2_\/3§)n

TO 242
SV EIIE T RY dx
. T+ 1022+ 9

Solucié: 5m/12
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0 .
S r
ey
_prt—x+1
Solucié: % sin(1/2)e_‘/§/2

6.5.9. Justifiqueu la convergéncia de

+00
/ Ve dzx
0

2243

i calculeu-ne el seu valor (cal justificar tots els passos). <
Solucié: m/v/12.

6.5.10. Siguin f(z) = €*/2% i la recta v = {1 +it; t € (—o0, +0)}.

L f(2)dz.

Indicacié: integreu f sobre la vora del semidisc de centre zg = 1 i radi R amb Rez < 1.

a) Calculeu (justificant tots els passos)

O (1 — ¢ 2t sin(t 2
b) Deduiu que / (1-¢ )(Cfi(_t;; tsin( )dt = g.
—0

Solucié: (a) Per a cada R > 0 considerem la corba tancada I' = 71 + 72, on

7 (t) =1+ it, te[-R,R],
vo(t) =1+ Re®,  te[n/2,3m/2].

—1+R
Y2(t) = 1+ Re®
B
yi(t) =1+t
R—1 0
— 1—iR

128



6. Séries de Laurent

Com que f té una unica singularitat, al punt a = 0, el teorema dels residus ens dona

(z)dz + (z)dz = 27i Res(f,0).

At 72

Desenvolupat € = 1 + z + 22/2 + --- a I'entorn de 0 veiem queda Res(f,0) = 1.
Per altra part, la integral a 75 tendeix a 0 a mesura que R es fa gran: si z = 1 + Re®
aleshores
z’ _ RcosteiRsint‘ <e
~ &

e lee

ja que cost < 0. Per tant

3m/2 ] ]
/ F(1+ Re)iRe™ dt

3m/2
</ —° _Rdt = melt
/2 7

2 (R=1) (R—1)?

efectivament tendeix a 0 quan R — +00.
Per tant, passant al limit també la integral

R l+it
(2)dz = / ————idt
At

a2’
obtenim '
0 elJr'Lt J
— tdt = 2.
| arapid=m
(b) Com que
11—t 1—it
L+iat [1+at)2 142
obtenim

dt = 2.

/OO 61+it(1 _ lt)2
— (1 +t%)?
Utilitzant que A

Re[elT%(1 —it)?] = e(cost(l — t?) 4 2t sin t)

i igualant parts reals obtenim finalment

dt = 2.

/OO e(cost(l —t?) + 2tsint)
o (1+t2)?
6.5.11. Considereu

22 -2
(22 +1)2(22 + 4)%

(a) Trobeu la part principal de la série de Laurent al voltant de z = 2i.

f(z) =

(b) Justifiqueu la convergéncia de
+a0

f(x)dx

i calculeu-ne el seu valor (justifiqueu tots els passos). <
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Solucié: (a) (Zl_/g?)g + iifg; (b) —m/24.

6.5.12. Sigui f(z) = 6”2, 1 considereu el cami vr format per el segment que va de 0 a R;
Uarc del cercle |z| = R que va de R a Rei™/4 i el segment que va de Re'™* ¢ 0. Demostreu
que

f(z)dz =0,
TR

1 utilitzeu-ho per a calcular les integrals de Fresnel

oe} 0
/ cos(z?)dz, / sin(z?)dz.
0 0

VT

Observacié: Podeu utilitzar que fooo e~ dt = o 4

Solucié: Com que f és entera i yp és un cami tancat, aplicant el teorema de Cauchy

per un disc (per exemple en A = Dyr(0)), obtenim que

i per tant

Per altra part, tenim que

RCUE [, RO /7 RELE /7 REL

amb v r(z) = z, per x € [0, R]; 72,r(t) = Re' te [0,7/4]; i3 Rr(t) = te'™/4 per t € [0, R].

Tenim que
R 9 o, 0 0
(z)dz =/ e dm—»/ e dx =/ cos(wQ)da;—ki/ sin(z?) dz
0 0 0 0

im/2

71,R

quan R tendeix a +00. També, com que e

R ; im/4y\2 . R 2

= 1, tenim que

73,R 0 0
Per tant, com que e™/* = g + i@, tenim que
2 2 *© V2 V2
lim (2)dz = (\f + Z\F> / e Par = YT 4 VT
R—>® /., 4 2 2 0 4 4

Si podem veure que

Ig :=/ f(z)dz — 0
Y2,R
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quan R — oo, llavors
0 0 /2 /2
/ cos(z?)dx + z/ sin(z?) dz T YT
0 0

aixi que, igualant parts reals i imaginaries, obtenim

I
+

e¢] o0
V2
/ cos(z?)dx = sin(z?)dx = Tﬂ
0 0

Vegem que limp_,o, Iz = 0. Com que o g(t) = Re® per t € [0,7/4], tenim que

Ip = f(z)dz = / e i Relt dt.
Y2,R 0

|IR’ R / ’LR2 24t

Aquesta integral no té primitiva elemental, aixi que I’acotem per una quantitat que puguem
calcular i que tendeixi a zero quan R tendeixi a infinit. Sabem que sinx > 27”“ per z €
[0,7/2], de manera que sin(2t) > % per t € [0, 7/4], obtenint que

Llavors

dt = R / Sln(?t dt.

e R sin(2t) AR t/7 t e [0,7/4].
Per tant
/4 re AR t/m b=/t m 2
Ip| <R ST AL = R | S -7 (1=<)
[R| /0 € (-4R%) | R ‘

que tendeix a zero quan R tendeix a infinit.

6.5.13. (a) Sigui f una funcié holomorfa en D* = {0 < |z| < 1}. Suposem que f(a,) =0
per una successid a, € D* tal que a, — 0. Demostreu que f =0 o bé z = 0 és una
singularitat essencial de f.

(b) Sigui f una funcié holomorfa en D* tal que per a tot n = 2, f no té zeros sobre les

corbes |z| = 1/n i a més
1 1
—d —dz.
/| Ok /| T

1
=551

Demostreu que z = 0 és una singularitat essencial de f. Indicacié: Utilitzeu el Teore-
ma de deformacio i lapartat anterior. <

6.5.14. Calculeu, justificant tots els passos, la integral

+00 &
————dz, —-l<a<l.
0 22+ax+1
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Z&

24241
alog(z)

Indicaci6: Considereu la funcié f(z) = . Definiu una determinacio del logarit-

me log(z) a C\[0,+00) de manera que 2% = e . Finalment integreu la funcié f(z) a

la mateiza regio que les integrals del tipus

+a0
/ R(z)In(x)dx. <
0

2 —ial

Solucié: ——=F——¢e %6
V3cos(all)
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6.6. Principi de I'argument
6.6.1. Quines de les segiients funcions son meromorfes a C¥

a) 2° b) 252 c) el? d) 1/sin(z).

A

Solucié: a) La funcié és entera, llavors meromorfa sense pols. b) No, hi ha una semi-

recta de singularitats si prenem, per exemple, I’arrel quadrada principal. ¢) No, a 0 hi ha
una singularitat essencial d) Si, totes les seves singularitats (a z = nm) sén pols simples.

6.6.2. Calculeu el nombre de zeros (comptats amb multiplicitat) amb part real positiva del
polinomi P(z) = 26 — 2* — 22 — 6.
I si alternativament el polinomi fos Q(z) = 28 — 24 — 22+ 672 <

Solucié: Considerem un semidisc tancat D, delimitat per la corba v = v; v 72 on
y1(t) =it,te [-R,R];  7o(t) = Re®, t e [-n/2,7/2],

amb R és prou gran per a que tots els zeros de P a H, := {z € C | Re(z) > 0} estiguin
dins de D.
Si mirem la imatge dels extrems de y; veiem que

P(iR) ~ —R% — 2iR;  P(—iR) ~ —R® + 2iR,

d’on obtenim que
A(P(iR)) =7 — ¢ A(P(—iR)) = 7 + ¢,

per un cert € = 0.
D’altra banda, si calculem la imatge sencera de v; tenim que

P(y1(t)) = P(it) = —t° —t* — 6 — 2it.

Veiem que la part real no s’anulla mai mentre que la part imaginaria ho fa només per
t = 0. Deduim que P(v1) no talla mai I’eix imaginari i només talla I’eix real una vegada,
en el punt P(y(0)) = —6.

Concloem per tant que I'increment de ’argument degut a v, és

Alyy)=m+e—(m—¢€) = 2e.

La corba 75 és un semicercle i per tant recorre un argument de 7. Donat que |y2(t)| = R
i R és molt gran, domina el terme de grau superior i per tant

P(n(t) = 12(1)° = RO,
on 6t € [—3m, 37], ja que t € [—7/2,7/2]. Tenim doncs que

A(y2) =6 x T — 2¢ = 67 — 2¢,
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on 2¢ ve donat pel fet que P(72) ha de connectar P(iR) i P(—iR).
Concloem doncs que
A(7y) = 2¢ + 67 — 2¢ = 6,
i que per tant,
o,

o
El Principi de ’Argument ens diu aleshores que P(z) té exactament 3 arrels dins de D
comptades amb multiplicitat. Donat que R és arbitrariament gran, P(z) té 3 arrels al
semipla de la dreta.

Ind(P(v),0)

6

Si el polinomi fos Q(z) = 2% — 2* — 223 4 6, actuaria sobre 7 () com

Qm (1) = Q(it) = —t® —t* + 6 + 2it,

i per tant seguiria tallant ’eix real només per t = 0; perdo aquesta vegada ho faria en
el punt Q(0) = 6. Independentment de quantes vegades pogués tallar I’eix imaginari, la
corba imatge seria homotopa a la de la figura 2 en C\{0}. La diferéncia en el calcul resideix
en la variacié de 'argument de la corba Q(71) que, al rodejar el zero, provoca un augment
de 'argument en gairebé 27. En efecte,

A(y1) = 2e —2m;  A(y2) = 67 + 2¢,
i per tant
A(y) = 21 — 2e + 67 + 2¢ = 8.

En conseqiiencia Ind(Q(v,0)) = 4 i el polinomi @ té 4 zeros al semipla de la dreta.

6.6.3. Sigui f una funcid entera tal que
f(z)ER < z€eR.

Demostreu que f té, com a molt, un zero a tot C. <

Solucié: Considerem un cercle v(t) = Re amb t € [0,27] de radi arbitrari R > 0.

Aquest cercle talla eix real en dos punts v(0) = R, i y(7) = —R. Per t # 0,7, v(t) ¢ R.
Per hipotesi, només els punts reals tenen imatge real. Aixi doncs, la corba f(y(t)) talla
leix real exactament en t = 0 it = 7, en dos punts f(+R) que podrien ser iguals o
diferents.
Aleshores, la corba parametritzada f((¢)) només pot donar com a molt una volta al
punt z =0, és a dir
Ind(f(4(),0)) < 1. *)

Pel Principi de I’Argument, tenim doncs que f pot tenir com a molt un zero a {|z| < R}.
Pero com que R és arbitrari, aixo demostra que f té com a molt un zero a C.
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Nota: Per a demostrar (*) formalment, podem calcular 'index amb la definci:

Id(f(1(£)),0) = ——(a(27) — a(0)),

:27r

on a(t) és una determinacié qualsevol de arg(f(y(t)). Combinat amb el Teorema de
Bolzano, és facil veure que si la diferéncia entre els arguments és més gran de 27, aleshores
I’argument ha de prendre tots els valors al menys dues vegades, inclosos els valors 0 i ,
que corresponen a punts de la recta real.

6.7. Teorema de Rouché

6.7.1. Demostreu que l'equacio e = 2z + 1 té exactament una solucio en el disc unitat
obert. Indicacié: Proveu que |e* — 1] <e—1 si|z| = 1. 4

Solucié: Apliquem el teorema de Rouché al disc unitat i les funcions f(z) = e*—2z—1

ig(z) = —2z. Per a |z| = 1, aplicant la indicacié, tindrem,

1f(z) —9(z) = le* =1 <e—1<2=]g(2)],

i per tant
#7(f) "D =#2Z(g) "D =1

La indicaci6 es pot provar directament amb la seérie de 'exponencial: si |z| = 1

|ez—1|=|2£|<szem—l:e—l
! n! '

n=1 " n>=1
6.7.2. Sigui f una funcié holomorfa en el disc unitat tancat tal que |f(2)| < 1, per a
|z| = 1. Quants punts fixos té f ¢ q

Solucié: Apliquem el teorema de Rouché a F(z) = f(z) —z1ig(z) = —z: pera |z| =1

[F(2) —9(2)] = [f ()] <1 =lg(2)]

Per tant
#Z(F)nD=#Z(g) nD=1.

D’aqui veiem que f té un unic punt fix.

6.7.3. Calculeu el nombre de solucions (comptant multiplicitats) de les segiients equacions
en el disc unitat:

(a) 2% —225+22-82-2=0.
(b) 22° — 2% + 322 — 2+ 8 = 0.

(c) 27 =524 + 22 =2. q
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Solucié: (a) Apliquem el teorema de Rouché a f(z) = 22 —2254+22-82—21i g(2) = -8z

(el terme de f amb coeficient més gran). Per a |z| = 1, tenim que
1f(2) —g(2)| =122 =2+ 22 =2/ <1424+ 1+2=6<8=|g(2)|.

Per tant #Z(f) nD = #Z(g) nD = 1.
(b) Apliquem el teorema de Rouché a f(z) = 22° — 22 + 322 — 2 + 8 i g(2) = 8: per a
2| =1,

1f(2) —g(2)] = 22° —2° + 32 — 2| <2+ 1+3+1=T7<8=g(2)|.

Per tant #Z(f) nD = #Z(g) nD = 0.

(c) Apliquem el teorema de Rouché a f(z) = 27 — 52* + 22 — 21 g(z) = —5z% per a
e 1f(2) —g(2)| = 2"+ 22 =2| <1+1+2=4<5=]g(2)].
Per tant #Z(f) nD =#Z(g) nD = 4.
6.7.4. Quants zeros té P(z) = 2 + 623 — 422 + 1/8 en la regi6 {z € C; 3 <[z| <1}? <
6.7.5. Considerem P(z) = 20 + 32 + 22 + 2 4+ 9.

(a) Proveu que tots els zeros de P(z) son a lanell 1 < |z| < 2.

(b) Calculeu el nombre de zeros (comptats amb multiplicitat) de P(z) al primer quadrant.<

Solucié: a) Aplicarem el teorema de Rouché dues vegades: al disc unitat D i al disc

D5(0). Notem que P és un polinomi de grau 6, per tant té exactament 6 zeros comptats
amb multiplicitat. Comencem pel disc Do(0). Definim g(z) = 2% € #(C). Hem de buscar
els zeros de la funcié6 P € H(C) a Dy(0). Aplicarem el teorema de Rouché. Considerem
v = 0D(0) (corba simple). Notem que

[P(2) —g(2)| < 63 <64 =[g(2)], Vzer.

Podem aplicar el teorema de Rouché que ens assegura que el nombre de zeros de g a D2(0)
coincideix amb el nombre de zeros de P a D2(0) (comptant multiplicitats). Ara bé, g té
6 zeros a D2(0). Per tant, P té 6 zeros a D2(0).

D’una altra banda, considerem f(z) =9 € H(C) i p = dD (corba simple). Notem que

[P(z) = f()| <6 <9=[f(2)], Vzep.

Podem aplicar el teorema de Rouché que ens assegura que el nombre de zeros de f a D
coincideix amb el nombre de zeros de P a D (comptant multiplicitats). Ara bé, f no té
zeros a . Per tant, P no té zeros a . Observem que la desigualtat estricte anterior
sobre els punts de p ens assegura que P i f no s’anul-len en p. En resum, hem provat
que P té 6 zeros al Dy(0), P no té zeros al D (i tampoc a |z| = 1) i P té exactament
6 zeros al pla complex. Aixi, P té tots els seus zeros (és a dir, 6 zeros) a l'anell 1 < |z| < 2.
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b) Anem a utilitzar el principi de l'argument per calcular el nombre de zeros de P
al primer quadrant. Sigui R > 0 i Q la regi6 que és interseccié del Dg(0) amb el primer
quadrant, és a dir,

Qp={re", 0<r <R, 0<t<m/2}.

Per a R > 0 prou gran (de fet R > 2), tots els zeros de P pertanyen al disc Dg(0), i
per tant tots els zeros de P en el primer quadrant pertanyen a Qg. Sigui v = 0Qpr =
Y1+ Y2 +9r, ony1(t) = i(R—1t), te[0,R], y2(t) =t, t € [0, R]ivr(t) = Re¥, t € [0,7/2].
Notem que P mno té zeros sobre Ry i iR, ja que P(t) = t0 +3t* + 2+t 4+9 > 9 > 0
i P(it) = —t% + 3t* — t2 4+ 9 + it. Per tant, Im (P(it)) # 0 per tot t > 0 i per a t = 0,
P(0) =9 # 0. Aixi, si R és prou gran (la corba yr no passara per cap zero de P), P no té
zeros sobre la corba 7. Pel principi de 'argument tenim que el nombre de zeros de P en
el primer quadrant (comptats amb multiplicitat) és l'increment de ’argument de P sobre
~ dividit per 27 (quan R > 0 és prou gran), és a dir, hem de mirar les voltes que dona la
corba I" := P(v) al voltant de 0 (que no és res més que Ind (I",0)) quan R — 0. Anem a
calcular aquesta quantitat:

1
#(Z(P) n {Primer quadrant}) = lim Ind(I'",0) = — lim A,P
R—® 21 R—w
1

=5 }%EO(A“P +A,P+A,P).
Anem a calcular cada tros. Sobre la corba g, si R és prou gran, P(z) ~ 25 i per tant,
Ay, P — 65 = 37 (és a dir, la corba P(yg) dona una volta i mitja al voltant del 0
amb punt inicial P(R) i punt final P(iR)). Sobre la corba 72, tenim que P(v2) € R i
P(y2(t)) = 9 = P(0) per tot t € [0,R]. Aixi, qualsevol determinacié de 'argument de
P(7v2) és constant i per tant, A,,P = 0. Anem a treballar ara amb la corba ;. Sigui
t € [0, R], aleshores Im (P(it)) > 0 per tot ¢ > 0 i val 0 si t = 0. Per tant, la corba P(~;)
viu en { Imz > 0} i només toca la recta real en ¢ = 0 i val P(0) = 9. A més a més, si
R — w0, P(iR) ~ —RS +iR. Aixi, veiem que A, P — —m quan R — o (veieu el dibuix).

P(R)

Aixi, tenim que

1
Ind(I,0) > o —(0~7+3m) =1, R— .
™
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Per tant, P té un zero al primer quadrant.
6.7.6. (a) Calculeu el nombre de solucions a D de l’equacio €* = 4z + 1.

(b) Demostreu que l’equacid e* = 3z™ té n solucions en el disc unitat (n =0,1,2,...). «
Solucié: (a)
Apliquem el T. de Rouché a les funcions g(z) = e* —4z — 11 h(z) = —4z — 1.
Tenim que, per |z| = 1:

D’altra banda,
| —4z—1| =42+ 1| =4]z| -1=4-1=3.

Per tant, sobre la corba —z—=1,
lg—h| <e<3<|hl|

En conseqiiéncia, g i h tenen el mateix nombre d’arrels dins del disc unitat. Com que
—4z—1 = 0 té una soluci6 al disc (z = —1/4) doncs e* = 4z + 1 té exactament una solucié
al disc unitat.
(b) Apliquem el teorema de Rouché a f(z) = e* — 32" i g(2) = —32". Per a |z| = 1,
tenim que
£(2) = g(2)] = |e*] = & < e < 3 = |g(2)].

Per tant #Z(f) nD = #Z(g) nD = n.
Que les arrels sén diferents es veu immediatament, comprovant que f(z2) i f'(z) =
e? — 3n2""! no tenen arrels comuns.

6.7.7. SiguiacC,0<la| <1, ineN.

a) Demostreu que l’equacio

(a) q q
z—1)"e" =a
( )

té exactament n arrels diferents al semipla {z € C | Re z > 0}. Indicacié: Considereu
un disc centrat a z = 1 i de radi R = 1 primer, deprés mireu d’augmentar el radi
sense sortir del semipla tancat de la dreta.

(b) Proveu que si, a més, |a| < 1/2", llavors totes aquestes arrels son al disc Dyj(1). <

Solucié: (a) Apliquem el teorema de Rouché al disc D;(1) i les funcions
f)=(E=-1)"e—a
9(2) = (= 1)e.

Per a |z — 1| = 1, tenim que

1f(z) = g(2)| = la] <1 <% < [g(2)].
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Per tant #Z(f) n D1(1) = #Z(g) n D1(1) = n. Com que Di(1) és contingut al semipla
Rez > 0, ja tenim el que demana l’enunciat. A la vora de Dr(1) n {2z : Rez > 0}, també
tenim que

f(2) = g(2)| = la] <1 <" < g(2)],

de manera que a tot el semipla hi ha exactament n solucions comptant multiplicitats.
Que les arrels sén diferents es veu immediatament, comprovant que f(z) i f'(z) =
(z — 1) !e*(n + 2 — 1) no tenen arrels comuns.
(b) En cas que |a| < 1/27", apliquem el teorema de Rouché a D;/y(1) i les mateixes
funcions d’abans:

1 1 1
|f(2) —g(2)] = |a| < on < 2761/2 < 27€Rez < g(2)]-

Per tant #Z(f) N Dl/Q(l) = #Z(g) M D1/2(1) =n.
6.7.8. Demostreu que per a tot R > 0 existeir n(R) = 0 tal que sin > n(R)
2 oM

z
Pn(Z)=1+Z+§+"'+ﬁ

no té zeros al disc {|z| < R}. q

Solucié: Observem que P, (z) — e® uniformement en compactes del pla quan n — o0.

Per tant, |P,(z) — €*| és arbitrariament petit en el compacte {|z| < R}, si n és prou gran.
Aplicarem el Teorema de Rouché, comparant P, i f(z) = e*. Veiem que si |z] = R

llavors |e?| = eRe(?) > e~ £ Doncs sigui n(R) tal que
|P,(2) — €| < e~ per a tot n = n(R).

Aleshores, si |z| = R,
Palz) — "] < e R < |ef],
i pel Teorema de Rouché, e* i P,,(z) tenen el mateix nombre de zeros dins del disc de radi

R, sempre que n > n(R).

6.7.9. Sigui f, una successio de funcions holomorfes en un domini 2 tals que fr, — f
uniformement en compactes d’§2, per una certa funcio f.

1. (Corollari de Hurwitz) Deduiu que si f,(z) # a per a tot z € Q i tot n € N, aleshores,
f=aobéf(z)#aenQ.

2. Proveu que si f é€s injectiva en ) per a tot n = 0, aleshores f és constant o bé f és
injectiva en ). Indicacié: Argumenteu per reduccié a ’absurd, i utilitzeu ’apartat
antertor.

3. Proveu que si f té un zero d’ordre m en a € S), aleshores existeir pg > 0 tal que
per tot p < po i per tot n > n,, fn té exactament m zeros en Dp(a) comptant
multiplicitats. <
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6. Séries de Laurent

Solucié: Comencem observant que f és holomorfa en €2 pel Teorema de Weierstrass.

1. Immediat considerant ¢,(z) = fn(2) —a i g(2) = f(z) — a i aplicant el teorema de
Hurwitz.

2. Suposem que f(z1) = f(z2) = a tot i que 21 # z3. Considerem D; i Dy dos discs
tancats a ) que continguin z; i zs respectivament. Aleshores, si f no és constant
igual a a, per 'apartat anterior f,(z) = a ha de tenir almenys una solucié en Dy i
una altra en Dj si n és prou gran (si no en tingues cap, f(z) = a tampoc en tindria).
Pero aixo contradiu que f,, sigui injectiva per a tot n.

3. Prenem p de manera que f no tingui cap zero en I’adheréncia de D, = D,(a)\{a}.
Aleshores anomenem ¢ := infyp, [f| > 0. Per la convergeéncia uniforme existeix n,
tal que per n > n, tenim que supgp, |fn — fl < 0/2 < infyp, | f], i per tant podem
aplicar el teorema de Rouché.
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7. Representacié Conforme

7.1. El teorema de I'aplicacié de Riemann

7.2. Projeccié estereografica i circumferencies generalitzades

7.2.1. Sigui p la projeccié estereografica. Demostreu que A = flz, 1 que la inversa de p

és |

22 +y?+1
Solucié: (proposada per Marta Merino Sdnchez) El segment que connecta (0,0,1) amb

(x,y,0) és Q(t) = (0,0,1) + t[(z,y,0) — (0,0,1)] = (tx,ty,1 —t) i volem que compleixi

I'equaci6 de I'esfera S?, on (z,%,2) € S? compleix I’equacié:

p Yz +iy) = (:U,y,:vQ + y2) ) 4

1 1\?
x2+y2+(z2)2=<2> o Pryi+l=z

Perque el punt @Q(t) pertanyi a 'esfera S2, hem de comprovar que compleixi 'equacié
corresponent:

(tz)? + (ty) >+ (1 —t)> =1—t.
Aquesta equacié es pot desenvolupar de la seglient manera:
e+t + (1 —20+12) =1t
Simplificant:
2@+ y?+1) -t =0
Aquesta equacio té les solucions:

tit(x® +y*+1)—1) = 0.

Per tant, les possibles solucions per a t sén:

1. t=0,
_ 1
2. 1= oy
Aix0 implica que per a ¢ dins de l'interval [0, 1], hem de considerar la soluci6 ¢ = ﬁyzﬂ
. o 1 _ x y 1 _ 1
Només ens queda substituir Q(m2+y2+1) = (m2+y2+1, T L x2+y2+1) = $2+y2+1(

v +1-1)
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7. Representacié Conforme

7.2.2. Demostreu que l’equacid d’una circumferencia de centre o € C i radi r és
12> —az—az=12—|a]?!, zeC,
i la d’una recta perpendicular a o passant per zg € C és
az+az=m, zeC,
on m és una constant real que només depen d’a i zg. <

Solucié: (proposada per Tomas Planelles Alonso) Sabem que ’equacié d’una circum-

feréncia de centre o € C i radi r € R, és

|z — af =72

Aixi,

P=lz—a=z-a)z—a)=(z-a)(Z—a) = |z]* + |a|® — az — az,
és a dir
12> —az —az =1 — |af®.

D’altra banda, identificant C =~ R? tenim que
az + az = 2Re(az) = 2(z,a) e R.
Finalment, sigui r una recta perpendicular a «, és a dir,
7 29 + Vect(a)t,
on zg € C. Tenim que
zer = (z—z20,a) =0 < (z,a) ={20,a) < 2(z,a) = 2(zp,a) =:m e R,

i.e.,
az + oz =m.

7.3. Transformacions de Maobius

cz+d’

7.3.1. Donada una homografia T(z) = %£b. definim Ap := (c d

¢ b) , que esta definit

modul constant multiplicativa. Per exemple, les matrius <(1] l{) , (g (1)> , <(1) (1)) cor-

responen respectivament a la translacio z — z + b, a la dilatacio z — az i a la inversio
z—1/z.

a) Donades Ty, Ty € M, demostreu que Ar,or, = Ap, A, (modul constant multiplicativa).

b) Trobeu T~! i relacioneu-la amb Ar,. a
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7. Representacié Conforme

Solucié: (proposada per Ada Lépez del Castillo Avilés)
a) Per demostrar que

ATQOTl = AT2 AT17
veurem que els dos costats de la igualtat donen el mateix. Anomenem

az+b a'z+ U

T _ 4o
cz+d’ 2(2) dz+d

Tl(z) =

Per la primera part de la igualtat, hem de calcular la matriu de la composicié:

o () + v (d'a+bec)z+ (a'b+b'd)
TyoT = To(T = ——cztd .
(TzeT)(z) = To(Ti(2)) c’(gjis)+d’ (ca+dc)z + (b + d'd)

Per la segona part de la igualtat hem de calcular el producte de les dues matrius:

Ao A — a Vl|la b [da+bc b +dV
LA Ty g e d|l T |da+de dd+bl|”
Ja veiem que és el mateix.

b) Calculem T 1:

az+b

dw—0b
= = w-(cz+d)=az+b=dw—-b=2z2(a—cw) = v = 2.
cz+d a— cw
Per tant la inversa és: p 5
T (w) = 22
—Ccw + a

Notem que coincideix amb la inversa matricial modul constant multiplicativa (el determi-
nant!).

7.3.2. Demostreu que tota T € M es pot escriure com a composicio de dilatacions, trans-

lacions 1 inversions. 4

Solucié: (proposada per Marta Merino Sdnchez) Utilitzem la segiient nomenclatura
per

e la dilatacié D,(z) = az,
e la translacié Ty(z) = 2z + b
e la inversi6 I(z) = 1

Tenim que T(z) = 2+

Si suposem que ¢ # 0, llavors fem la divisié i tenim que

az+b:g+bc—ad(cz+d)_1
cz+d ¢ c
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7. Representacié Conforme

Per tant, ho podem escriure com la composicié segilient

T=TaoDpeasoloTyjoD,

Ara, sic =0, tenim que T'(z) = §z+ g, i per tant ho podem escriure com la composicié
segiient

T=T,0Da.
d d
Solucid alternativa: (proposada per Tomas Planelles Alonso) Identifiquem, modul cons-
tant multiplicativa, aplicacié T'(z) = Zjis, on ad — bc # 0 amb la matriu

a b
ar= (2 )
com en l'exercici 7.3.1.

Com que A és invertible ja que det (Ar) = ad — be # 0 tenim que Ap és producte de
matrius elementals. Si relacionem cada matriu elemental amb una de les tres homografies
elementals —translacions, dilatacions i inversions— ja ho tindrem ja que el producte de
matrius correspon, sota la identificacié anterior, a la composicié d’homografies.

Recordem quines son les matrius elementals de Ms(C): Siguin p, A € C* = C\{0},

P(1,2) i ((1’ é) D\ = (g ?) D(2,)) = (é g)

B(1,2,p) = <é q> i B(2,1,p) = (i ?>.

Clarament, P(1,2), D(1,) i E(1,2, ) sén les corresponents a les homografies elemen-
tals. D’altra banda, al tenir una correspondencia modul constant multiplicativa, tenim

que les matrius
. Ao
D(2,\) i ( 0 1>

s’identifiquen amb la mateixa homografia, A™'z. Aix{ doncs, només queda veure qui és
E(2,1, ). Fixem-nos, pero, que

P(1,2)E(1,2, 1) P(1,2) = E(2,1, p).

Per tant, substituint les matrius D(2,\) i F(2,1, u) si cal, la descomposicié d’Ar ens
dona una descomposicié de T' en homografies elementals.

7.3.3. Trobeu una descomposicio en dilatacions, translacions i una inversio de la trans-

formacio

22 41
T()= ="
@) = a3 °
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7. Representacié Conforme

Solucié: (proposada per Tomas Planelles Alonso) Tal i com s’ha vist a l'exercici 7.3.2,

tenim que
2+ 32
T()=——"' gy
&) = a9 3 Tz 13

Per tant, seguint la notacié de la solucié de 'exercici 7.3.2,

T = T1+i o Dg_gi olo T3z‘ [¢] Dl—i'

7.3.4. Demostreu que tota T € M envia circumferéncies generalitzades a circumferéncies
generalitzades. <

Solucié: (proposada per Tomdas Planelles Alonso) Com que tota homografia es pot

descompondre en translacions, dilatacions i inversions i les dilatacions i translacions porten
rectes a rectes i circumferencies a circumferencies, només hem de comprovar com actua la
inversié sobre circumferéncies generalitzades.

Sigui T'(z) = 1/z i r una recta d’equacié

az+az=m

on a € C* i m € R, vegeu I'exercici 7.2.2. Recordem que, si escrivim w := T(z) = 271,

aleshores
w = |w|*z,
ie.,
z = |z|?w.
Aixi, si m # 0,
az+az=m < aw+ ow = |w/*m.

Podem arreglar-ho un pel més per tal de tenir exactament 1’equacié descrita a ’apartat

(a) de D'exercici 7.2.2:
ot = ()= ()w =l =15l

que és l'equacié d’una circumferéncia de centre a/m i radi |a/m|, en particular passa per
lorigen i la tangent a l’origen té el pendent conjugat al de la recta original.
Sim = 0, per a tot z # 0 tenim que

que és una recta perpendicular a & (i també conté T'(0) = o). Per tant, té el pendent
conjugat al de la recta original.
Es a dir, T" envia rectes a circumferencies generalitzades. D’altra banda, sigui C' una
circumferencia d’equacié
12> —az —az =12 — |af?,
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7. Representacié Conforme

onaeCireR,. Tenim que, escrivint w := T'(2), si r? — |a|? # 0,

?—az—az=1>—|a)? <= 1-aw—aw = |w*(r*-|al?).

2 L B a _— 1
vl <|a|2—r2>“’ P —2" " P (ap

és a dir, obtenim una circumferéncia. Si la circumferencia original talla la circumferencia
unitat en dos punts, aleshores les imatge d’aquests dos punts sén els seus conjugats, i
per tant la circumferencia imatge té també dos punts de tall conjugats als primers. Si
loriginal fos tangent exterior, aleshores la imatge seria tangent interior amb punt de
tangencia conjugat.

Si 72 — |a|? = 0, és a dir que 0 € C, aleshores per tot z # 0 tenim que

|z

Aixi,

oaw + aw =1,

una recta (i també conté T'(0) = o). Notem que aquesta recta té el pendent conjugat al
de la tangent a 'origen de la recta original.

En resum, T envia circumferencies generalitzades a circumferéncies generalitzades. Per
tant, tota T' € M envia circumferencies generalitzades a circumferencies generalitzades.

7.3.5. Sigui f(z) = Quina és la imatge per f de

B z+1

a) la recta real, b) 0D5(0), c) oD, d) leiz imaginari.
I per g(z) = j—;; ? q
Solucié:

R) = R\{1}, g(R) = oD\{1},

0D2(0)) = 0D4/3(5/3) (talla R en angle recte a 31 1/3),
344y
5

a)

I

b) f(

9(0D5(0)) = {cercle que talla oD perpendicularment a
I
I

c)
d)

0D) = {eix imaginari} U {0}, g(dD) = {eix imaginari} U {0},
iR) = OD\{1}, g(iR) = R\{1}.

7.3.6. Troba I’homografia que envia (i,0,—1) a (—i,0,00). a

Solucié: T(z) = 219

7.3.7. Demostra el corollari 7.16. q
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Solucié: Sigui 77 'homografia que envia (z1,22,23) a (0,1,00), i Ty la que envia
(w1, w2, w3) a (0,1,00). Aleshores T = Ty ' o T} envia (21,22,23) a (w1, ws, w3). Falta
veure que és Unica. Si n’hi hagués una altra S, aleshores To 0 .S o T ! fixa (0,1,00) i, per
tant, és la identitat, de manera que S = T2_1 oTy =T.

7.3.8. Troba una homografia que envii D a {Imz > 0}. <
Solucié: Per exemple, (1,7,—1) — (0,1,00), i queda T'(z) = —ZZ}
7.3.9. Sigui a € C,a # 0 ¢ definim
z—1 z+1 1z z
T = T: = T = —
1) = 9, ) = 7 Bl = iy =2 TR = o
Trobeu
TytoTyoTy, T™ meZ. a

Solucié: (proposada per Ada Lopez del Castillo Avilés) Considerem les matrius asso-

ciades a cada transformacid, tenint en comte que en el cas de T3 ens demana la inversa,

llavors tenim:
1 -1 1 1 1 1+4¢ 0

Per ’exercici 7.3.1, hem de resoldre el producte de les matrius, vigilant 'ordre:
—1
ATglngoTl = AT3 A, Ay .
Llavors, fent els calculs, tenim:

~ 343 —2i
AT;.ATQ.Ale[ ¢ Z].

2—-27 —-1—1

Ara per T™: La matriu associada de T(z) és:

10
St

]

Per induccié acabem veient que:

Si calculem T2, notem:
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7.3.10. Trobeu totes les T € M que tinguin per punts fixos 0 i —i. <
Solucié: (proposada per Ada Lépez del Castillo Avilés i Miguel Puelma Martinez) Un
punt fix és aquell que:

az+b
cz+d

=z=c?+2(d—a)—-b=0.

Volem trobar a, b, ¢, d tals que T'(0) = 01 T'(—i) = —i. Ho reeescribim com
c?+z2(d—a)—b=c(z+0)(z+i) = cz® + 2(d — a) — b= c2* + ciz.

Com que la matriu d’una homografia esta determinada modul constant multiplicativa,
podem dividir tots els coeficients per ¢ sempre que ¢ # 0 i suposar que ¢ = 1. Aixi, si
¢ # 0, veiem que els valors que satisfan la igualtat sén b =0, c =11 (d — a) = 4, per tant
les transformacions que busquem sén:

az
T(2) = ——m— er a tot a € C.
(2) z+ (i +a) P

Si ¢ = 0, aleshores (d —a) = 01 b = 0, la transformacié que busquem és:
T(z) ==z

(tot i que en aquest cas 0 i —i no sén els uinics punts fixos).

Alternativa: enlloc de factoritzar el polinomi al principi del raonament, es pot substituir
directament la primera identitat amb 7°(0) = 0 per trobar b = 0 i T'(—i) = —i per trobar
—c—i(d—a)=0.

7.3.11. Trobeu T € M tal que T(1 —i) =1+14,T(2) =4, T(1+1i) = —i. q

Solucié: (proposada per Miguel Puelma Martinez)

Pel lema 7.15, sabem que hi ha homografies S,U € M tals que S(1 —1i) =0, S(2) =1,
S(1+i) = o0, U(1+i) = 0, U(i) = 1i U(—i) = 0. Per tant, T := U~ '0S és una homografia
que compleix per construccié les condicions de 'enunciat. Recordem que ’homografia que
envia z1 — 0, z9 — 11 23 — 00 té matriu

<Z2 —23 —(22— 23)Z1>
29 — 21 —(2‘2 — 21)2’3 ’

Substituint els valors, s’obté

C(1—-i2 (2 201-i)
AS‘(1+1 —21) ' AU_<—1 —i >

Per tant, només cal calcular
o, (A2 -0)\ 1—i 20\ [—5—1i 6+4i
AT_AUAS_(l 2i T+i —21)  \~1+i 4+2i)°
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on les igualtats sén a GLg(C)/C*Iy =: PGLy(C) —el grup projectiu lineal—, i.e., modul
constants multiplicatives. Obtenim que

(=5 —1)z+ 6 +4i

(—1+i)z+4+2i

T(z) =

7.3.12. Siguin Cy i Cy dues circumferéncies generalitzades i z1 € Cy,\Cq, 22 € Cy\Cs.
Demostreu que existeix T € M tal que T (Cy) = Co i T(21) = z9. Podeu fer servir
UEzercici 1.1.10. Trobeu una d’elles en el cas particular

Ci={z:|z—1=1},xn1=1,Co={z:zi = z},290 = 1.

Solucié: (proposada per Tomas Planelles Alonso)

Considerarem primer uns quants casos i després els ajuntarem tots. Cal tenir present els
resultats de l’exercici 7.3.4. Sigui r una recta, 0D, (a) una circumferénciai z; ¢ 0D, (a)ur.

e Si considerem la recta r, notem que 0 ¢ r — z; —és a dir, estem en el cas m # 0
per la recta r — z; de l'exercici 7.3.4—. Per tant, la imatge de r per I oT_,, és una
circumferencia per lexercici 7.3.41 (I o T_,,)(21) = .

e Si considerem la circumferéncia i z; = o considerem T' := Dy o T, aleshores,
T(0D,(a)) = dD i T(c0) = o0.

e Si considerem la circumferéncia i z; # o0 aleshores tenim que I o T, verifica (I o
T .)(z1) = © i, ja que 0 ¢ 0D,(a) — 21 —6s a dir, estem en el cas r? — |a|? #
0 per la circumferencia 0D,(a) — z; de lexercici 7.3.4-, I o T_,,(0D,(a)) és una
circumferencia de radi r’ i centre /. Aleshores, Dy 0T 0T 0T (0Dy(a)) =D
i DyjproT goloT  (z1)=o0.

En resum, donada qualsevol circumferéncia generalitzada i qualsevol punt que no per-
tany a la circumferencia generalitzada, existeix una homografia que porta aquesta cir-
cumferencia generalitzada al disc D i el punt a l'infinit. Com que tota homografia és
invertible, tenim el que voliem demostrar.

Pel cas concret procedim igual. Tenim que C7 = dD1(1) i z1 = 1. Aixi, T_1(Cy) = D
i, per 'exercici 7.3.4, I(0D) = dD, d’altra banda, I o T_1(z1) = I(0) = c0. Hem arribat a
on voliem. En segon lloc, 'equacié de Cy és

(1-49)z+(1+1i)z=0.
Com que z9 = i considerem r := T_;(C3) que és una recta del mateix pendent que passa
pel —i, per tant, té equacié
(1-9)z+(1+1i)z=2.
Aixf, per lexercici 7.3.4, I(r) = 0D, 5(1/2 + i/2). Aleshores, (D 50T 15010
T_)(C2) = 0D i (D 50T 15501 0T ;)(22) = co. Per tant,
(Dﬁ 0T _yjp_jppolo T,i)_1 oloT 4

és I'’homografia que busquem. Usant que T, = T_,, D! = Dy i I=' = I podem
calcular-la facilment.
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7.4. Rao doble i simetria

7.4.1. Sigui T € M tal que T(Dg(a)) = Dr(a). Demostreu que els punts fizos de T estan
a 0Dg(a) o bé son simétrics respecte 0Dg(a). a

7.5. Automorfismes
7.5.1. Demostra que tota representacio conforme de Cy en Co és una homografia. <

Solucié: Sigui f : Cy — Co una representacié conforme, que per tant és holomorfa i

bijectiva a tot z € Cy. Si f(o0) = o0, aleshores f|c : C — C també és una representacié
conforme i, per tant, f(z) = az+bamb a # 0 pel teorema 7.24. Si, en canvi, f(®0) = ¢ # 0,
considerem g(z) = ﬁ Com que f és bijectiva, f(z) # c al pla complex i, per tant,
g : C — Cesta ben deffnida, és holomorfa i bijectiva. Altra vegada pel teorema 7.24 tenim
que g(z) = az + b amb a # 0 i per tant

1

/) = atb  ©
Si ¢ = 0, aleshores ja hem acabat jaque b-0—1-a =a # 0. Si no,
1+ caz + be
& ==
que és una homografia perqueé ca-b —a - (1 + bc) = —a # 0.
7.5.2. Troba tots els automorfismes T de D tals que T(1/2) = 1/3. q

7.5.3. Trobeu totes les representacions conformes del disc unitat en ell mateix que envien
1/2 a 0. N’existeir alguna que envii 0 a —i/2¢ 10 a —i/4? Utilitzeu T per trobar una

representacio conforme S que envii D a 0Da(i) tal que S(1/2) =i i S(0) = 0. <
Solucié: Sén T'(z) = e2=1. Si prenem 6 = /2, obtenim T'(z) = i2=1, amb T'(0) =
—i/2. No n’hi ha cap de les altres, ja que sigui qui sigui 6, sempre tenim que |7'(0)| =
Bl =12
= = 1/2.

Per trobar S cal usar f(z) = 2z + 4. Aleshores foT(1/2) =i,i foT(0) = 0. Prenem
doncs S = foT.

7.5.4. Demostreu que el lloc geométric de les imatges de qualsevol punt b € D per les
transformacions que fixzen la imatge d’un altre punt, és a dir

{fweD:w=T(b) amb T € Aut(D), T'(a) = a},

€s una circumferéncia. <
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Solucié: Notem que donada T' € Aut(D), T'(a) = a, per la unicitat tenim que T 0T =
eT,. per algun . Per tant, escrivint
Ty = Ty o (€T,),
podem parametritzar el conjunt
F={weD:w=T(b)amb T e Aut(D), T(a) = a}

en termes d’aquest angle:
F={wgeD:w="Tyb)}.

Com que ‘
T, (b)

és una circumferéncia centrada a l'origen, F' és la imatge d’aquesta circumferéncia per 15,
, . . . N -1 - _

que és una homografia i envia circumferencies que no passen per 7, () = 1/a ¢ D a

circumfereéncies.

7.6. Altres transformacions conformes

7.6.1. Quina és la imatge del primer quadrant per z3? <
Solucié: Els tres primers quadrants ('interior de la clausura, per ser precisos).

7.6.2. Quina transformacid pot enviar una banda horitzontal a a un semipla? <

Solucié: L’exponencial.

7.6.3. Trobeu una aplicacié de Riemann del sector {0 < Argz < 7/8}. a
‘o ZB—i
Solucié: §8+§.

A

7.6.4. Es pot enviar el semipla superior a un triangle mitjancant una homografia?
Solucié: No, perque es preserven els angles a tot el pla. Cal una altra representacié.

7.6.5. Proveu que no existeix cap representacid conforme del semipla de la dreta en Dy(1)
que envit 1 — 1,0 — 0410 —1+71. <

7.6.6. Demostreu que les transformacions conformes del semipla superior Hy := {Im z >

0} en D son de la forma ew% per alguna a € Hy 7 algun 0 € R. <

7.6.7. Trobeu una transformacio de Mébius que envii el primer quadrant a Dy = D H, .
Utilitzeu-la per a trobar una transformacio conforme de Hy a {|Rez| <1,Imz > 0}. «
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7. Representacié Conforme

sz, . sz, . Coz—1 . 1+67riz
Soluci6: Possible soluci6: Primera pregunta: 2. Segona: (1—67”'2) .

7.6.8. Trobeu una representacic conforme de {0 < Rez < 7/2} en D.

_Z‘eZiz 1

—ie2iz 41

Solucio6: Possible solucio:

7.6.9. Trobeu una representacio conforme d’Qdq en .

a) N =DnHy, Qo =H,.

b) Q =D, Qy = H, nD".

c) % =Dn{Rez>1/2}, Qy =D n (—iH,).

d) 4 =Hy, Q2 ={|Rez| <1, Imz > 0}.

e) \=Dn(—iHy), Qo =Dn{|z+1/2] > 1/2}.

f) =D 5(1) n D 5(—1), Q2 =D, que deizi invariant el segment (—i,1).
g) 1 =D\[0,1), €23 = C\[0,0).

h) Q1 = {|Imz| < 7/2}\((—20,0] U [In2, +0)), Qo = D.
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8.1. Qiiestions generals. Escenari i notacid.

8.1.1. Proveu que I' = 0 en un flux potencial (suposeu que la funcid potencial és de classe
C? com a minim,). q

Solucié: Per ser flux potencial tenim que V = (Vi,V2) = Vo = (¢, ¢y) llavors si

apliquem el teorema de Green a C' = 0f) tenim

515 Vide + Vady = 55 Pzdr + pydy = /(«pyx — $pay)dzdy = 0.
C C Q

8.1.2. Proveu que per fluxos definits en un domini 2 < C que satisfan les quatre hipotesis
anteriors, la velocitat potencial p(x,y) és una funcid harmonica. <

Solucié: Estem suposant I' = Q = 0 és a dir que V = Vg i que (V1), + (V2), = 0.
Llavors
Paz T Py = (V1)o + (Va)y =0

i ¢ és harmonica.

8.1.3. Proveu que ®'(z) = V(z) = V1 +iVa. <

Solucié:

P'(2) = (@ + 1) = P + Wy = pg — iy = g + gy = Vi + V5.

8.2. Fluxos basics.

8.2.1. Superposicié. Sumant diferents potencials complexos es poden descriure fluros més
sofisticats. Un exemple important s’obté sumant una font al punt —a amb una pica al punt
a:

®(z) = klog(z + a) — klog(z — a) = klog <z —|—a> :

Z—a

Trobeu expressic de V, V, ¢ i 1. Dibuizeu les linies de corrent (¢ = c). <
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_\\\.

Figura 8.1.: Superposicié amb a = 1.

Solucié: ¢(z) = k:(log

+ . < .
+iarg (%)) = ¢ + 1. La condicié ¥ = c equival a

que Im(2£2)/Re(£+2) és constant. Pero
z+a  (z+a)(z—a) |zP—ad’+a(z—2) |2|°—a® —2iay
z—a  |z—a2 |z —al? B |z —al?

i les corbes de flux venen donades per equacions de la forma |z|? — a? = Cy. O bé
22+ (y—C/2)* = a® + C?*/4

que sén circumferencies que passen pels punts —a i a. Pel flux resulta

1 1 -2 2 —a?
V-3 k(= — - P S
Z4+a ZzZ-—a (z—a)(z+a) |z — al?|z + a|?
i 2k
V= ——a(x2 —y? —a® + 2zyi).

|z — al?|z + al?

Tenim olk

a
V= —| | .
|z —al|z + a
8.2.2. En l’exercici anterior, fema — 0 i k — o0 de manera que 2ka = p sigus finit. Veure
que al limit obtenim el potencial complexr ®(z) = pu/z que s’anomena doblet o dipol. Ve
a ser una font i una pica separades per una distancia infinitesimal. La quantitat 2mp
s’anomena moment del doblet. Trobeu ’expressié de V, V, ¢ 1 . Dibuizeu les linies de
corrent (Y = c). q
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Solucié: Fem el limit quan a tendeix a zero i k = p1/2a. Tenim

"
lim —1
ali% 2a 8

zZ+a _Q_Iim/‘(bg(%)), _ i pz—a(z—a)—(-1)(z+a) u
0 a0 2 a—022z+a (z+a)? z

zZ—aQa

T — 1y .
Com que ®(2) = p-5—= 5 resulta que p(z,y) = pa/ (@ +y) 1 ¥(z,y) = —py/(a® +y*).m
Les linies de flux (1) = ¢) sén les corbes de nivell de y/(z? + 32), és a dir les donades per
equacions z2 + y? + Cy = 0 que podem escriure com 22 + (y + C/2)? = C?/4. Es tracta
de circumferencies amb centre a I’eix OY que passen per 1'origen.
— 2

—— T z foo o .. [
V&)=t = = = P2 2 -1
=~ = T TR Y R Vo
El dibuix del flux és:
1 [—
7, 2\
" \\ 2
N\ 7 ﬁ) /
7
== { Ny
7=
0.5 .
INN==7l\
14, . — i .
1 0.5 0 0.5 1
; , . : I'+:iQ
8.2.3. Font-remoli. Estudiar el flur amb funcid potencial ®(z) = 57 log(z — a).
Discutiu segons els valors de T (circullacid o intensitat) i Q (poténcia). Feu dibuizos de
les linies de camp segons els signes de I' i Q). <
It
Solucié: Per simplificar 'estructura sigui A = a + i = ;WEQ. Llavors

®(z) = (alog|z — a| — Barg(z — a)) + i(Slog |z — a| + aarg(z — a))

¢ =alog|z —al — farg(z — a), ¥ = plog|z — a| + carg(z — a).

Com que ®'(z) =

resulta que
z—a

yﬁ &' (2)dz =T +iQ
C
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és un circuit al voltant de a recorregut en sentit antihorari. Pel camp tenim que

=T A Al
V=0(z) = —a), V=
(2) "l (z—a) F—ap
Veiem que la d 6 de V en cada punt z btg nt i dilatant la dire radial z —a
segons el que diu la constant A = re~ = (Q iT") /27, Veure les figur djuntes.
6
/ Q(o r>
L — . 7
- — -
by
» &= = F \ P
ded terr)
D/ 0 wl? @,I‘Lo
—
1/‘/\}\ /D /g z—
%?h w
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8.3. Obstacles

8.3.1. Modifiquem el flux amb potencial donat per f(z) = log(z + 2) que és una font
sortint des del punt z = —2 (vist en un exemple/exercici anterior). Per aixo considerem
la modificacio donada pel potencial

O(2) = f(2) +j© =log(z +2) + log (; + 2).

a) Descomposeu ® en fluros coneguts.

b) Calculeu ®'(2) i confirmeu el que es demostra a lapartat anterior.

c) Vegeu que per z amb |z| molt gran resulta ®'(z) ~ i que llavors lluny de z = —2
z

el flux associat a © és com una font sortint de z = —2.

d) Mostreu amb un grafic com eviten el disc unitari les linies de fluz (feu servir contour_plot

i streamline_plot). q
Solucié: a) Abans de res observem que si z = re' llavors log(z) = logr — i =
logr +i(—0) = log(z). Llavors log(1/z +2) = - -- = log(2) — log z + log(z + 1/2) i

®(z) = log(z + 2) + log(z + 1/2) — log(z) + log(2).
Analitzem els quatre sumands
e log(z + 2) és la font sortint original al punt —2.
e log(z + 1/2) és una font sortint al punt —1/2 dins de la circumferéncia invariant.
e —log(z) és una font entrant a 'origen.

e log(2) és un terme constant que no afecta a les trajectories (les corbes de nivell no
canviem de forma, només de nivell d’energia’).

Podem fer un esquema grafic com es veu a la figura:
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i

=TT ks -
V/zbr 0

b) '(z) =

! ! ! 1 ‘ha dit ab
PO + T2 que correspon al que s’ha dit abans.

¢) Quan |z| — o resulta que ®(z) ~ log(z + 2) i la seva derivada s’acosta a —. Des
de molt lluny el flux es veu com una font lineal des del punt z = —2.

d) El grafics adjunts amb streamline plot i amb contour_plot mostren clarament
el comportament.
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r2.4

16

r 0.8

[TTTTTITTITI]IT]

r 0.0

T
|
o
[e]

r—1.6

- 2.4

8.4. Expressié general (recapitulacio).

8.4.1. Pels z on V(z) = ®/(z) = 0 diem que hi ha un punt estacionari del corrent (per
exemple és aquell punt d’un riu on una fulla petita s’ha quedat aturada pero que al seu
voltant circula l'aigua).

a) Per ®(z) = z" el 0 és un punt estacionari d’ordre n — 1. Feu un dibuiz amb les linies
de flux i les linies equipotencials superposades per n = 2,3, 4.

b) Podeu deduir experimentalment quin angle formen les linies equipotencials i les linies
de flux?

¢) Proveu que si un punt estacionari a és un zero d’ordre n — 1 llavors les linies equipo-
tencials i de corrent (¢ = ct.,i) = ct.) formen un angle 7/2n en el punt estacionari
(feu-lo com a minim pel cas ®'(2) = C2""1,C € C). Quin angle formen una linia de
corrent i una linia equipotencial quan es creuen en un punt no estacionari?

Solucié: a) Fem els grafics de les corbes de nivell per ¢ (equipotencials, vermell) i per
¥ (corrent, blau) per 2", n =1,2,3,4.:
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1 7075  [T075 1 7075
15
050 (050 Htoso ||
1.0
0.5 0.5 |
o025 [to025 -
025 ||
h =
04— [T 0.00 I~ 0.00 0 —+ 0.00 0.0
+—0.25 F-0.25 L _0.25 —0.5
0.5 A 0.5
F-1.0
t -0.50 L —0.50 L —0.50
F-1.5
L 075 l-07s 14 Ll _o75 U
- _ 14 - T 15
0.5
15 15 I =
M H —t 0.0 1.0
10 1.0 M -
|| L 051 -t -0.5
| 0.5
0.5 o5 Ll 10
1 0.0 I 0.0 0 t-15 |too0
I -2.0
-0.5 -0.5 05
0.5 1 -25
-1.0 -1.0
-3.0 F-1.0
-15 -15 35
L L 11 — Llas

b) Mirant els grafics es dedueix que ha de ser m/2n.
c¢) Fem el cas ®(z) = 2" Si z = re? llavors ®(z) = 7"® = r"(cosnd + isinnd).
Aleshores
©o(r,0) = r" cosné, Y(r,0) = r"sinnd.

Les linies de corrent i les linies equipotencials que passen 0 sén aquelles que ¢ = 0 =
respectivament. Es a dir, les equipotencials per 0 son aquelles que cosnf = 0 que equival
anb = /2 + kr iles linies de corrent les corbes donades per nf = r.

e Equipotencials, ¢ =0: § = 7/2n+ kn/n, k=0,...,2n — 1.
e Linies de corrent, ¥ =0: § =rn/n, k=0,...,2n — 1.

Es clar que els angles entre linies de corrent i linies equipotencials consecutives és 7/2n.
El cas general es pot fer amb arguments de continuitat (no és simple).
En un punt no estacionari I’angle que formen les linies de flux i les equipotencials és /2
(s6n ortogonals).

8.4.2. Discutir el moviment del fluid amb potencial complex igual a

a) <I>(z)=F+ZQlog(z_a) ona,beCiQ,T'eR..

271 z—0b

r
b) ®(z) =az+ %log(z) on a,I" > 0.
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c) ®(z) =az+ % log(z) on a,@ > 0.

P r
d) (z) = — + —1 I'>0.
) () = 52+ o loa(z) onp, «
Solucié:
a) Tenim pols a a i b on hi ha fonts-remolins. En efecte si C' = (I' + iQ)/2mi llavors
' =C Zia - ﬁ) isi v, 17 sén petits circuits al voltant de a, b respectivament

}5 ®'(2)dz =T +1Q, }5 ®'(2)dz = —T —iQ.
72 72

Tenim fonts-remolins (a, I, Q) i (b, —T', —Q). Per exemple, si I'; Q > 0 de a surt girant en
sentit antihorari i a b arriba girant en sentit horari. Si ® = ¢ + i i C' = « + i llavors

Q—Barg a , Y =aarg £-a + Blog
z—b z—b z—b

z a

Ak

v = alog

z

Si denotem S peie les corbes de corrent ¥ = k venen donades per
z—
1 = Q +k

que son espirals logaritmiques entre a i b. També tenim que

V:F—ZQ ] a,_,b _ V:|F—|—ZQ| la — b| ‘
—2mi (z—a)(z—0b) 27 |z —allz =]
SIS
=
==~
3-%

J

e s

—
>
[

)
NS

-1.0-0500 05 1.0 15 2.0

30 1 1~)
T ( )

)

N7,

\

0

R =1

N
)

T~

b) Aqui a z = 0 hi ha un remoli i quan z — oo el flux potencial és com az, flux constant.
De fet

i1 r .
q)/(Z) =a+ —_— =a+ ﬁel(GJrﬂ/Q), VOO = Q.

[\
3
-~
w
3
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Veiem que a z = I'i/2wa tenim un punt estacionari (on la velocitat es fa zero). Amb aixo
podem fer un esbog del flux, veure la figura segiient.

\9/ . W-/
/P/lm_/;/ \\._/

0.5 1

\

-1
T T T T T
1 0.5 0 0.5 1
—T 4.8
] — 7 ul= 4.8
1.5 1 E_ 4.0 15 :/ \ \ E o 2.4
H ] \ — 16
1 e ] ~_ V| B
— 1 */ 32 0.8
2.4 -
1 — 2.4
0.5 1 ] . 0.0
/-\ T 16 116 —0.8
N\~ Lo.8 L os -16
-0.5 E + 0.0 0.0 -4
] -32
] -0.8 -0.8
14 L] - -4.0

1 ©os o o5 1
c¢) En aquest cas sumen un flux lineal (az) i una font/pica (Q/27 log(z)). Tenim

1 .
<I>'(z)=a+%;, V=a+%ew, Vo =a.

Veure figura segiient:
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d) Es la superposicié d’'un dipol i un remoli. Hi ha un pol a z = 0. Observem que
1 1
P'(2) = —2£—2 + 273 Llavors ®'(z) = 0 per z = ip/T". Veure les figures segiients:
T2

z
Suma d’un doblet i un remoli. Punt estacionari a ip/I":

—

WA 7A=Y .

N

)
i

%’/ TR A==
il

—2.0 -15 -1.0 -~

0 0.

/
/
NS
&
Z—\\
3\
&
—

.‘5 I '1-
Suma d’un doblet i un remoli. Punt estacionari a ip/T". A dalt o a baix segons els signes
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V}v

2 -15 -1 05 0 05 1 15 \_// ! 15 -1 05 0 05 1 15 2
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8.4.3. Discutir el moviment del fluid amb potencial complex

)

nin

)

depil:

R? r
P(z) =V |z+ — | + =—log(z), amb I', V), R > 0.
z 211

Particularment estudieu els casosI' < 4mRVy, I' > 4w RVy i I’ = 4w RV}y. Dibuizeu exemples
de cadascun dels casos. <

Solucié: Es la superposiciéo d’un flux lineal a l'infinit que ‘supera’ la circumferencia

|z| = R i un remolf al zero. Es un flux molt interessant ja que cobreix tots els possibles
fluxos que tenen a |z| = R com a linia de flux i a l'infinit tenen potencial complex que
s’acosta a Vpz (veure Markushevich II, p. 193). Tenim

2 T 2 T
(z) = Vo ’I“+R— cosf+ —0+1i( W r—R— sinf — —logr | .
T 2w T 2

Llavors
R? r
o(z,y) =W (7"+ —) cosf + —0
T 2
2

) r
Y(x,y) =V (7“— —) sinf — %logr

r
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2

Quan |z| = R resulta que ¢y = —I'log R/2m que és constant, llavors |z| = R és una linia
de corrent i el flux es pot pensar com un flux que circula al voltant de I’obstacle cilindric
donat per |z| = R. Ja em dit que a Uinfinit és el flux amb velocitat constant Vj.

Els punts estacionaris o d’estancament es donen quan ®’(z) = 0 i aixd passa quan

2
' (2) =V (1 - R2> + Ll = 0. Com que z # 0 aix6 passa quan
z 2mi z

2 r
i les linies de flux venen donades per Vy | r — > sinfd — — logr = .
r

1
— 2Y7/2Pp2 _ 12 ;
= o (J_r\/mw VZR? T +1F>.

Tenim tres casos interessants

z

o I' = 47VhR. En aquest cas hi ha un tnic punt estacionari a z = il'/(47Vp) = iR que
esta a la circumferencia |z| = R.

e ' < 47VHR. Ara tenim com a punts estacionaris z1, zo que sén també a |z| = R, la
seva part imaginaria és I'/47V)) i les parts reals sén simetriques respecte de 'eix OY.

e I' > 47V R. Ara tenim un punt estacionari dins de |z| = R i un altre fora, sén

1
2 _ 2172 p2 ;
o (J_r\/r 1672V2R +r> i

Podem veure els grafics per cada cas a la figura segiient:

21,22 =
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g

@
N )

-1 0
J' 24k, T>o

8.4.4. Donar un potencial complex que té fonts-remolins {(ar; Qk,T'x) : k =1,...,n b
velocitat Voo = Ve'* a Uinfinit.

n

Solucié: ®(z) = Ve "z + Z kT z.Qk log(z — a
= 2

=
~
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