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Introduccio

Aquests apunts beuen de diverses fonts, perd per sobre de tot sén el resultat d’anys
d’evolucié de les assignatures d’analisi complexa dels graus de matematiques de la UB i la
UAB. Per tant, devem part dels continguts i exercicis aqui presentats a en Joaquim Bruna,
Josep Maria Burgués, Juan Carlos Cantero, Joan Josep Carmona, Julia Cufi, Juan Jests
Donaire, Xavier Massaneda, Joan Eugeni Mateu, Joan Orobitg, Quim Ortega, i tants
d’altres. A tots ells el nostre agraiment per la seva generositat.

L’objectiu d’aquest llibre és poder servir de material pels cursos d’analisi complexa dels
graus de matematiques de les universitats catalanes, aixi com d’algun altre grau on el
contingut de la materia superi el d’'un receptari. Ens centrem doncs en fer un text amb
un enfocament didactic perd sempre rigords, mirant d’incloure el corpus basic de ’analisi
complexa, pero també amb pinzellades d’alguna aplicacié practica i de teoremes avancats
rellevants. La lectura inclou nombrosos exemples per illustrar els continguts i també
exercicis per practicar, amb les solucions disponibles per mitja electronic.

Bibliografia complementaria

A [BCO8] hi trobareu un manual d’analisi complexa completissim i en catala, i la seva
traducci6 a 'angles a [BC13].

Als llibres [Ah179], [Con78] [D’A10], [Burl2], [RT79], [SS10], podreu trobar aproximaci-
ons alternatives i llistes d’exercicis per complementar la vostra formacié. El llibre [MH99]
és una referencia molt didactica.

Agraiments

Volem agrair la collaboracié dels alumnes de ’assignatura d’Analisi Complexa i de Fourier
del grau en Matematica computacional i analitica de dades (2023-25) i del grau en Ma-
tematiques (2024-25) de la UAB per la seva paciéncia amb les actualitzacions permanents
dels apunts, i per la seva contribucié en millorar-los, especialment a Pol Abadia Conejos,
Rok Aladrovic Molina, Sergi Almendros Montoya, Guim Casadella Cors, Marc Herrero
Lazaro, Aiman Himi Ben Alilou, Lluis Panal Majo, Helena Pisa Escribano, Laia Querol
Alturo, Adria Rodriguez Estrada, Marc Roig Oliva, David Ruiz Caceres, Laia Alexandra
Sjoberg Cerezo i Ariadna Sola Lara (MatCAD’24), Albert Caire Rodriguez, Lluis Gay
Torné, Oriol Jiménez Asensi, Catalina Mascaré Catala, Sergi Prats Molino, Alex Vega
Tomas i Ferran Villarta Burés (MatCAD’25), Ainara Almenddriz Martinez, Carlos Baca
Garcia, Sonia Blanes Molina, Roger Brusau Maimé, Marcel Duran Puig, Axel Espuela Al-
varez, Nidia Esteve Gomez, Joel Fernandez Laparra, Gina Gardenes Farré, Bernat Graugés
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Introduccié

Bellver, Pep Giiell Rigall, Gabriel Guerra De Quadras, Adria Jimeno Ruiz, Judith Lara
Piqueras, Ana Loépez Bruballa, Ada Lépez Del Castillo Avilés, Marta Merino Sanchez,
Judith More Bataller, Clara Mulet Ballesta, Katia Moreno Aspiroz, Marta Noguera Segu-
ra, Arnau Nunez Martinez, Lara Angélica Olarte Bayani, Tomas Planelles Alonso, Miguel
Puelma Martinez, Marti Puig Sampera, Eric Recio Chorro, Alvaro Resa Asensio, Albert
Ricart Quilez, Marina Rubies Bedds, Adria Saz Guerra, Drus Sentis Cahué, Héctor Serrano
Asensio, Babaldeep Singh, Ainhoa Trillo Rodriguez, Clara Valls Moreso, Arnau Viladevall
Ferré, Marta Vilchez Garcia, Lluis Vivé Pons i David Xifré Palacios (Matematiques’25)
per la seva excellent labor en la deteccié d’errors matematics, tipografics i ortografics.
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1. El cos dels nombres complexos

El naixement dels nombres complexos esta intrinsecament lligat a una serie d’enfronta-
ments entre matematics italians del segle XVI, principalment Scipione del Ferro', Niccold
Fontana Tartaglia®, Girolamo Cardano?®, Lodovico Ferrari* i Rafael Bombelli®. Cardano
fou el primer en publicar en el seu Ars Magna (1545) una solucié de I'equacié de tercer
grau previament descoberta per Scipione del Ferro i redescoberta per Tartaglia, pero en
mantenir-les secretes per usar-les en duels matematics, la seva publicacié es va retardar
uns quants anys fins que Cardano va fer el pas. En la resolucié es fan servir nombres ima-
ginaris, és a dir, arrels de nombres negatius, que Bombelli va descriure i sistematitzar al
cap de poc en el seu tractat Algebra (1572). Finalment Leonhard Euler® va estandaritzar-
ne la notacié que coneixem avui dia, i va popularitzar-ne 1'is, donant per fi sortida a un
coneixement que havia quedat aparcat fins aleshores.

El metode de Cardano per resoldre una cubica, explicat avui, seria aixi: donada una
equacié de tercer grau y3 + ay? + by + ¢ = 0, la podem reescriure amb el canvi de variable
y =x — a/3 com 'equacié de Cardano (o de del Ferro-Tartaglia):

2® +pr+q=0. (1.1)
Aleshores creem dues noves variables u, v tals que

r=u-+v (12>
3uv = —p, '

tenim que

1.1
0 = u3+U3+3u2v+3uv2—|—pu+pv+q=u3+v3+q,

de manera que ens queda el sistema
3,3 _ =P
uv? = 55
ud + 03 = —q.

3

Per tant u3 i v® sén les solucions de I’equacié de segon grau:

3
27’
'Bolonya, 1465 — 1526, https://ca.wikipedia.org/wiki/Scipione_del_Ferro
*Brescia, 1499 — Venécia, 1557, https://ca.wikipedia.org/wiki/Niccolo_Fontana_Tartaglia
3Pavia, 1501 — Roma, 1576, https://ca.wikipedia.org/wiki/Girolamo_Cardano
4Bolonya, 1522 — 1565, https://ca.wikipedia.org/wiki/Lodovico_Ferrari

®Bolonya, 1526 — 1572, https://ca.wikipedia.org/wiki/Rafael_Bombelli
Basilea, 1707 — 1783 https://ca.wikipedia.org/wiki/Leonhard_Euler
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1. El cos dels nombres complexos

és a dir
_ 2 3
(0%} = {qi 1 +p}. (1.3)

Usant (1.2) trobem que

r=u+tv=Vud+ —L. (1.4)

Si anomenem

aleshores

és una soluci6 de ’equacié de Cardano (1.1).

Notem que els nombres u3 i v3 que apareixen a (1.3) poden no estar definits en els reals
quan p és gran (respecte de q). Notem també que a (1.4) larrel cibica d’un nombre real
esta univocament determinada (a R, és clar).

Si ens restringim als nombres reals i p,q € R, amb aquest metode podem trobar una
solucié de la cubica, sempre i quan % + % > 0. Sabem que sempre hi ha una solucié (pel
teorema de Bolzano”). Sabem que hi ha equacions amb tres solucions reals, i totes tres es
poden intentar descompondre usant (1.2), perod el metode com a molt en dona una. Que
esta passant? Doncs que ens cal sortir de la recta real per tornar-hi a entrar!

Sigui R el cos dels nombres reals. L’equacié 2241 = 0 no té solucions reals. Construirem
un cos més gran que R, que anomenarem C, on tindrem solucions, que consisteix en definir
un nombre i tal que 32 + 1 = 0 i fer les combinacions R-lineals de 1 i i, és a dir a 4+ bi amb
a,beR.

Construim per exemple una solucié de 22 — 7z + 6 = 0 usant el metode de Cardano.
Estem en el cas p = =71 ¢ = 6, aixi que (1.3) queda

Usant que i2 = —1, i suposant que el producte és commutatiu, trobem que (10i)? = —100,
aixi que ens atrevim a escriure I'expressié anterior com

{u, 03} = {—3 + 31%1} .

Si trobem un nombre u = a + bi tal que a® + 3a?bi — 3ab® — b3i = u® = —3 + %z’ (ara hem

suposat que C és un anell), aleshores podem prendre de (1.2) l'altra solucié v = 7/(3u), i
trobarem x. Ens cal resoldre doncs

a’ — 3ab® = -3,
3a?b — 0% =
33"

"Bernard Bolzano, Praga, 1781 — 1848, https://ca.wikipedia.org/wiki/Bernard_Bolzano
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1. El cos dels nombres complexos

Més endavant, veurem una manera rapida de trobar aquestes arrels cibiques. De moment
conformem-nos amb saber que una possible solucié és u = 1 + %z’, com pot comprovar el

_ o l P
lector. Aleshores v =1 ViR trobem

xzu—i—v:l—i-jgi—i—l—jgizz
Efectivament z = 2 soluciona 2® — 7z 4+ 6 = 0, com també ho fan z = 1i 2z = —3.

De fet, tot polinomi de coeficients reals (i de coeficients complexos!) tindra almenys una
arrel, en el que es coneix com a teorema fonamental de ’algebra. Diem que C és un cos
algebraicament tancat. Amb aquesta ampliacid, seguiran havent-hi dues arrels quadrades
per tot element del cos llevat del zero, i tres arrels ctibiques! Notem també que a (1.4)
Peleccié de l'arrel quadrada no té importancia (per conjugacié...) perd poden apareixer
tres solucions diferents, amb la precaucié que cal prendre la mateixa arrel cibica en les
dues aparicions.

En aquest capitol introduim el cos C i veiem les seves propietats basiques. Explicarem
la forma polar i com usar-la per fer operacions, pero abans ens caldra introduir I'expo-
nencial complexa per donar rigor a aquest calcul. Finalment veurem com les equacions
amb potencies tenen multiples solucions, ja siguin polinomials o exponencials, per acabar
exposant el teorema fonamental de I’algebra que demostrarem al capitol 4.

1.1. EIl cos dels nombres complexos

Si som capacos de definir i = 4/—1, aleshores i serd solucié de 2 + 1 = 0: efectivament,
(£i)2 + 1 = 0. Per tant, de la mateixa manera que si un polinomi té una arrel real a,
aleshores es pot dividir per (x — a), esperem poder escriure

22 +1=(z—1i)(z+1).

Pero de moment la identitat anterior no té cap sentit. Necessitem definir el cos dels
nombres complexos.
De moment tenim 1’element ¢ ideat: volem que sigui un nombre tal que ¢ -7 = —1.

Definici6é 1.1. Donats a,b € R, definim
a+b
com un nombre complezx. Diem doncs que, com a conjunt, tenim que
C:={a+bi: (a,b)eR?},
i anomenem nombres complexos els elements de C. Anomenem parts reals i imaginaria a

Re(a+ bi) = a i Im (a + bi) = b. .



1. El cos dels nombres complexos

z=a+ b

4. -3 4 5 6 7
= Re(z)
-1.v
_2. 1

Figura 1.1.: Part real i imaginaria d’un nombre complex. Marcarem els punts 0, 1, ¢, —1,
—¢ amb un cercle i quatre triangles en les figures del text.

Ara ens falta definir les operacions del conjunt, per tal de tenir una estructura de cos.
Notem de moment que C ~ R?, on identifiquem (a, b) € R? amb el nombre complex a + bi.
La suma doncs sera heretada de 'estructura d’espai vectorial subjacent, pero el producte
és una operacié nova que creem ad hoc per tal d’aconseguir el nostre proposit:

Definicié 1.2. Si z = a+ bi i w = ¢ + di sén dos nombres complexos, llavors definim la
seva suma com
z4+w=a+c+ (b+d)i;

i el seu producte com
z-w = ac—bd + (ad + be)i.

Sovint escriurem zw enlloc de z - w. .

Notem que amb aquesta definicid, si a, x € R, aleshores en identificar-los amb els nombres
complexos a + 07 i x + 07 respectivament trobem que la seva suma i el seu producte
coincideixen amb els habituals:

(x+0i)+(a+0i))=x+a+0i =z +a,
(x4 0i) - (a + 0i) = za + 0i = za.
A més, efectivament tenim que

i-i=0+1)(0+1i) =—-1+0i=—1.



1. El cos dels nombres complexos

zw = (ac — bd) + (ad + be)i

z+w=(a+c)+ (b+d)i

\

Figura 1.2.: Producte i suma de complexos, i oposat d’un nombre complex.

Per tant, amb aquesta definicié hem creat un conjunt amb dues operacions (suma i pro-
ducte) que estén els nombres reals amb les seves operacions habituals, i on el polinomi
22 + 1 té dues arrels. Notem que la suma és compatible amb 'estructura d’espai vectorial
de R?, perd el producte de nombres complexos no coincideix amb el producte vectorial
ni amb el producte escalar, és una operacié que no existeix a ’espai vectorial tal com el
definim habitualment.

Exemple 1.3. Podem pensar 'operacié producte en termes de la propietat distributiva
com
(1+2i)(=3+2i) = —3+2—6i+4i>=—-3—4i—4=—7—4i.

Notem que el resultat coincideix amb la definicid, i el procediment és més intuitiu. O

Podem veure facilment que el conjunt C equipat amb aquestes dues operacions satisfa
les segilients propietats, que es poden resumir amb la segiient afirmacié: els complexos
tenen estructura d’anell commutatiu.

Lema 1.4. Siguin z,w,v € C. Aleshores se satisfan les propietats respecte a la suma:

S1 Associativa de la suma: (z +w) +v =z + (w +v).
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S2 FElement neutre per la suma: si escrivim Oc = 0 + 0i, aleshores z + 0c = 0c + z = 2.
Amb la identificacid dels reals amb la inclusid dels reals en els complexos, escrivim
Oc = 0.

S3 Element oposat (de la suma): existeix un nombre complex u € C tal que u+2z = z+u =
0, que anomenem nombre oposat a z, i que escrivim com (—z) = u.

S4 Commutativa de la suma: z +w = w + 2.
També se satisfan les segiients propietats respecte al producte:
P1 Associativa del producte: (zw)v = z(wv).

P2 FElement neutre pel producte: si escrivim 1¢c := 1 + 01, aleshores z - 1¢ = 1¢ - z = 2.
Amb la identificacié dels reals amb la inclusié dels reals en els complexos, escrivim
1c = 1.

P3 Commutativa del producte: zw = wz.
P4 Distributiva del producte respecte a la suma: z(w + v) = zw + zv.

De fet, C és un cos (és a dir, tot element diferent de zero té invers respecte del producte).
Per veure-ho, primer introduim el concepte de conjugat.

Definicié 1.5 (Conjugat i modul d’un nombre complex). Si z = z + iy, el conjugat de z
és
zZ=x—1y.

|z| = A/a? + y2. .

Exemple 1.6. De les definicions podem deduir que

i el seu modul és

® 2—3t =2+ 3i.

= —1.

[ ]
.

—_
&l

=13. O

Observacié 1.7. Clarament tenim que

e 2=7% < Im(z) =0 < zeR.
e |Rez| < |z|; Imz| < |z|.
e zt+tw=2zZ+wW i Z-w =72 W.

Les primeres sén evidents, la darrera és també un simple calcul:

2-Z = (x+iy)(z —iy) = 2° +9° = |2~
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Amb aquesta relacié ja podem veure que C és efectivament un cos:

Lema 1.8. Siguin z = x + yi € C\{0}. Aleshores se satisfa la segiient propietat respecte
del producte:

P5 Element invers (del producte): ezisteiz un nombre complex u € C tal que uz = zu = 1,
que anomenem nombre invers de z, i que escrivim com z” ' = 1/z = u.

Aquest nombre és

1 x Yy . 1 _
= - o= 7
I L
2,2 o
Demostracid. Efectivament, (x + yi) - (# - ﬁz) = w‘;ﬁy + x‘l‘/dfyz =1 O

Ara ja podem definir la divisié o fraccié de dos nombres complexos z € C, w € C\{0}:

z 1
— =z —.
w w
Aixi, tenim que
1 z z
2z |22 z-zZ

Es a dir, per calcular I'invers d’un nombre complex, només hem de multiplicar numerador
i denominador pel seu conjugat.

Exemple 1.9. Tenim

e -l _ __3-10i _ _ 3-10i _ 3 _ 10,
3710 _ (3+104)(3—103) _ 94100 _ 109 _ 109
R
*iTT T Y

Lema 1.10 (Relaci6 entre x,y i 2,Z.). Siz =z +1iy i Z = x — iy, aleshores

zZ+z zZ—Z
r=Rez = 1 =Imz =
2 Y 2i
Demostracio. Es tracta de sumar i restar z amb Z, vegeu la figura 1.3. O

Observacié 1.11. Un polinomi en x, y és un polinomi en z, %z (amb coeficients complexos).
Per exemple

z+z2 (2—%2) (242 (2—%)
1= .
r+y+zxy+ 5 + % + 5 %

11 11 1 1
e e R S N O
z<2+2¢)+2(2 2i>+ T2 <4i> ? (4¢>

1.1.1. Doneu en forma a + bi:

+1

Exercicis
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Figura 1.3.: Conjugat i invers d’un nombre complex.

a) (=1 +14)2, c) S 2+ 2
e . ) <6z’—(1—2z’)> ’

'_ q) (8 +2i) — (1 —14) - ‘

b) 2+i)2 f) (B =) =3)i.

1.1.2. Demostreu o doneu un contraexemple:

a) Re(z+w) = Rez+Rew, b) Re(2w) = (Rez)(Rew), «¢) Re(Z) = 5z q

~ Rew~
1.1.3. Sigui z € C tal que Im (z) > 0. Proveu que Im (1/z) < 0. q

1.1.4. Siz=xz+1iy on x,y € R, trobeu les parts real i tmaginaria de:

a) 2%, ¢) 73 e) 7%,

b) z(z+ 1), d) Z%, f) 22 <
1.1.5. Sigui (z + iy)/(x — iy) = a + ib. Proveu que a® +b* = 1. q
1.1.6. Proveu que —1 + i satisfa 2% + 2z + 2 = 0. <
1.1.7. Escriviu Uequacié complexa z° + 522 = z + 3i com dues equacions reals. <

1.1.8. a) Si z1, 22 sén complexos amb z1 + z2 i z122 Teals negatius proveu que z1,za SON
reals.



1. El cos dels nombres complexos

b) Proveu que el vector z1 és parallel al vector zo si i només si Im (z122) = 0. a

1.1.9. Proveu analiticament i grafica que |z — 1] = |z — 1]. <

1.1.10. Demostreu que bl = 1. Quina excepcié cal fer si

lal = [b| = 17

f__c_lblzlsz'|a|=10bé

Demostreu també que

—b
‘<1si!a|<1i|b|<1.
Per acabar, si per a € D definim ¢q(2) = {===, demostreu que @, : D — D, i és bijectiva

en D i en D, i doneu-ne la inversa. 4

1.2. Els nombres complexos com a espai vectorial

Per tot nombre real A € Ri z = a + ib € C, definim Az := (Aa) + (A\b)i, és a dir que
identifiquem A amb el nombre complex A+ 07 i fem el producte de dos nombres complexos,
tal com hem descrit a la seccié anterior.

Aquesta multiplicacié per un escalar real compleix les propietats:

E1l. Compatibilitat del producte per escalar: (Ap)z = A(pz).

E2. El producte per I’element neutre és la identitat: 1z = z.

E3. Distributiva respecte a la suma real: (A + u)z = Az + pz.

E4. Distributiva respecte a la suma complexa: A(z + w) = Az + Aw.

Aqui estem suposant que \,u e R i z,w e C.

Com que el pla complex també satisfa les propietats S1-54 descrites més amunt, diem
que té estructura de R-espai vectorial. Com a R-espai vectorial, C coincideix amb R2.
L’eix de les x s’anomena eix real, i I'eix de les y s’anomena eixz imaginari. El pla format
per R? en identificar-se amb els complexos (i incorporar, per tant, 'operacié producte de
complexos) s’anomena pla complez o pla d’Argand®.

Per tant, C hereta I'estructura de R?, i és un espai normat amb ||z|c = |2, és a dir,

NI1. |z|c =0 < z = 0;
N2. |az|c = |a| |z|c, VaeR (de fet, Ya € C);
N3. |z + w|c < ||z]|c + ||lw|c (desigualtat triangular).

Donats z,w € C, definim
d(z,w) = |z —w|.

8 Jean-Robert Argand, Ginebra, 1768 — 1822, https://ca.wikipedia.org/wiki/Jean-Robert_Argand
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Amb aquesta distancia, C és un espai metric?, amb el que té una topologia.

Definicié 1.12. El pla complex hereta la topologia del pla. Per tant, el disc obert (o bola
oberta) centrat en a i de radi r és el conjunt

D,(a) = Dy(a) ={2€C:|z—a| <r}.
El disc unitat normalment es denota D := D1(0). El disc tancat és
Dy(a)={2€C:|z—a|l <r}.

Diem que un conjunt A = C és obert si per tot a € A existeix r > 0 tal que D, (a) c A.
Diem que A és tancat si A = C\A és obert.

Diem que és fitat si existeix un r > 0 tal que A < D,(0).

Diem que A és connex si no es pot obtenir com a unié de dos oberts relatius disjunts
i no buits. Diem que és arc-connex si donats dos punts a,b € A existeix un cami en A
que els uneix, i.e., existeix una aplicacié continua 7 : [0,1] — A de manera que v(0) = a
iv(1) = b. Diem que A és simplement connezx si és connex i donats dos camins entre dos
punts a, b € A es pot transformar I’un en 'altre de manera continua sense sortir del conjunt
A, i.e., existeix una homotopia de camins: una aplicacié continua 7 : [0,1]?> — A tal que
~v(0,8) = a, y(1,s) = b, v(t,0) coincideix amb el primer dels camins, i y(¢,1) coincideix
amb el segon.

Diem que A és un domini si és obert i connex. .

Observacié 1.13. Notem que ¢ i C soén oberts i tancats, pero no hi ha cap més conjunt
que sigui obert i tancat alhora.
Un conjunt és simplement connex si és connex i no té forats. .

Exemple 1.14. Recordem que tot conjunt arc-connex és connex, i que tot obert connex és
arc-connex. Pero hi ha conjunts connexos que no sén arc-connexos. Un cas paradigmatic
és la pinta: donada una successi6 {z,} < (0,1) tal que z,, — 0, el conjunt A = [0,1] U
U, #n + (0,1)i (podem anomenar-lo pinta per la seva forma) és arc-connex i, per tant,
connex. Si afegim un punt limit no accessible, per exemple B = A u {i}, aleshores B no
és arc-connex, ja que el punt afegit no pot ser connectat amb cap punt d’A, pero segueix
sent connex, ja que aquest punt no pot ser separat de la resta per un obert. O

Com que tenim una metrica (en aquest cas derivada d’una norma), podem parlar de
convergencia de successions:

Definicié 1.15. Diem que una successi6é de nombres complexos {2z}~ ; < C és convergent
si existeix z € C tal que
|zn, — 2| — 0.

9Es a dir que satisfa:
D1. d(z,w) =0 < z = w;
D2. d(z,w) = d(w, z) (simetria);
D3. d(z,w) < d(z,v) + d(v,w) (desigualtat triangular).
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Diem que z, tendeix a z, o que z és el limit de la successid, i ho escrivim com
n—o0

Zp —— 2 o bé lim z, = z.
n—0o0

Sovint ometrem la notacié n — oo en les expressions anteriors quan sigui clar pel context.

A més, (C,|-|) és complet: tota successié6 de Cauchy'® de nombres complexos és con-
vergent.

També tenim que
Rez, — Rez

Zn > 2 S (1.5)
Imz, — Im z.

1

n

(n=1)

n

(n=1)

Exemple 1.16. La successié = + i tendeix a i, ja que 1/n — 0 i — 1. O

Adverténcia 1.17. No sempre és convenient passar a part real i part imaginaria. Quan
ja es té practica amb les relacions anteriors, la majoria de vegades és millor fer servir
notacié complexa, vegeu 'exercici 1.2.2 i el teorema segiient. °

Teorema 1.18. Sigui f : C — C, una funcid continua en a € C. Si a, — a, aleshores
flan) = f(a).

Demostracid. Es deriva del resultat a R? i la identificacié de R? amb C. O

Tot seguit discutim la convergencia de series:

Definicié 1.19. Sigui {z;} < C una successié de nombres complexos, aleshores diem que

oe} n

Z zk és convergent si Z zr ¢ €s una successié convergent. En tal cas, si el limit de la
k=1 k=1 n

successio és z, escrivim

0
szzz.
k=1

0 0
Diem que Z 2y és absolutament convergent si Z |2k| < 0. .
k=1 k=1
Observacié 1.20 (Condicié necessaria de convergencia). Notem que si una série de nom-
bres complexos ), ¢, és convergent, aleshores |c,| — 0. .

Observacié 1.21. Tota serie absolutament convergent de nombres reals és convergent.
En el pla complex passa el mateix. En efecte, si D |z;| < o0, llavors > |Re zx| < o0 1 també
> |Im 2| < o0 ja que |Rezi| < |zi] 1 [Im 2| < |2/, 1 per tant

> Rez, és convergent, i
> Imz, és convergent,

de manera que Y| zj és convergent per (1.5). .

19 Augustin Louis Cauchy, Parfs, 1789 — 1857, https://ca.wikipedia.org/wiki/Augustin_Louis_Cauchy
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Teorema 1.22 (Teorema de Mertens'!). Siguin >, i@ Y By dues séries de nom-

bres complexos absolutament convergents. Llavors la serie producte de Cauchy de les
A 3 0] n s .
seéries anteriors, Yo Yn, ON Yn = 2o OkPn—k, €s absolutament convergent i

5e- (50 (5)

Demostracio. Vegeu 'exercici 1.2.5. O

Definicié 1.23. Donada una successi6 {a,} de nombres reals, definim el seu limit superior
com

lima,, = limsup a,, := i%f (sup an) .

n=k

També es compleix

lim sup a,, = sup {khiEO Qp, : Gy, ¢s una parcial de an} .
[ ]

Exemple 1.24. Fem un exemple de calcul: si tenim la successié {a,} = {0,1,0,1,0,1,0, ...},
aleshores liminf a, = 0 i limsupa, = 1. Si {b,} = {(—1)"}, aleshores liminfb, = —1, i
limsup b, = 1. O

Tot seguit recordem el criteri de I’arrel, que hauria d’haver estat introduit en cursos
anteriors.

Lema 1.25 (Criteri de l'arrel). Considerem una successié de nombres reals {a,} c R, i
sigui « = limsup {/|ay,|. Aleshores

(1) Sia <1, la série Y, a, €s convergent;
(it) Si o> 1, la série Y, a, no convergeic.
Observacié 1.26. Recordem que si existeix

limwzﬁe

0, +o0|,
T [ ]

aleshores lim,, {/|a,| existeix i també val £. Recordeu també que el reciproc no és cert:
si ap = r" DV gleshores limy, {/an = r, perdo L — . pED" VLAV e no t6
limit. De fet, si 0 < 7 < 1, tenim que limsup “2** = 4o lim inf “2+L = 0, de manera
que el criteri del quocient no és concloent respecte a la convergencia, mentre que el criteri
de I’arrel si que ho és. .

Exercicis

1.2.1. Descriviu els conjunts de punts del pla que satisfan:

"Franz Mertens, Sroda Wielkopolska, 1840 — 1927, https://ca.wikipedia.org/wiki/Franz_Mertens
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a) 1 <Im(iz) <2, ¢) |z =Rez +1, e) |z—2|>|z—3|,

b) Im*=* =0,a € C*, d) |z—1] = |z + 1|, f)lz=1+z+1 =7«

1.2.2. Suposem que a,, — a i b, — b. Demostreu que a, + b, — a+b i apb, — ab, sabent
que ambdues propietats son certes a la recta real. <

1.2.3. Digueu si les segiients successions son convergents i en cas afirmatiu calculeu el
seu limit:

'n—’_ ) b )
@) i n+1 )n—i ¢) n?2 —2;

1.2.4. Estudieu la convergencia i la convergéncia absoluta de les series:

N

0 O
— b —.
%) Z Inn’ ) Z n k
n=2 n=1
1.2.5. Demostreu el teorema de Mertens. <

1.2.6. Tota successid convergent {z,}n=0 < C satisfa que |zp+1 — zn| — 0. 4

1.3. Repas de trigonometria

A Tlestudiar calcul en diverses variables, vam aprendre que podem calcular la longitud
d’una corba diferenciable 7 : I — R?:

Ly) = /I /(1) dt.

Aixi, la corba
Ee(t) = (—t, /1= £2)

envia l'interval [—1, 1] al semicercle unitat superior. Definim 7 com la longitud d’aquesta
corba. Com que 7/(t) = (=1, —t/v/1 — t?), la definici6 és equivalent a

/1 dt
o= e
VA
que és una integral impropia convergent.
Notem que 7 és injectiva i la longitud de v([—1, ¢]) és una funci6 creixent en ¢ i continua
(de fet, derivable) en (0,7) pel teorema fonamental del calcul; per tant és exhaustiva

en [0,7]. Aixi, associem a un nombre (que anomenem angle) o € [0,7] la semirecta
oberta del pla amb extrem a l'origen de coordenades que passa pel punt ~y(¢) tal que

13
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a = longitud(y([—1,t])) = ffl \/%. Per exemple, per @ = 7 prenem ¢ = 1 ja que 7
és la longitud del semicercle. L’angle @ = 7/2 (anomenat també angle recte) correspon a
la meitat del semicercle per simetria, que correspon a t = 0, és a dir que té associada la
semirecta vertical {(0,y) : y > 0}.

Si a € (7, 2m), aleshores associem « a la semirecta oposada a ’associada a o — 7.

Si a € [2km,2(k + 1)7) amb k € Z\{0}; aleshores associem « a la semirecta associada a
a — 2km

Definicié 1.27. Donat un angle o € R, definim el seu sinus com el quocient de la co-
ordenada vertical entre el modul de qualsevol dels punts de la seva semirecta associada,
(ben definit pel teorema de Tales'?). Definim el cosinus com el quocient de la coordenada
horitzontal entre el modul de qualsevol dels punts de la seva semirecta associada. I definim
la tangent com el quocient entre sinus i cosinus. °

Observacié 1.28. Tenim
sin(m) = cos(mw/2) = sin(0) = 0,

sin(7/2) = cos(0) = 1,

cos(m) = —1.

Notem que per definicié, el sinus i el cosinus sén funcions 27-periodiques, mentre que
la tangent és m-periodica.

Lema 1.29. [Paritat de les funcions trigonomeétriques| Si x € R, aleshores
sin(—z) = —sin(z), cos(—x) = cos(x), tan(—x) = — tan(z).
Demostracid. Es conseqiiencia directa de la definicié. ]
Lema 1.30. [Teorema de Pitagores'’] Si x € R, aleshores
sin?(z) + cos®(x) = 1.

Demostracid. Aixo es deriva del fet que 2 + MQ =1. OJ
Lema 1.31 (Suma d’angles). Donats x,y € R, tenim que

cos(z + y) = cosx cosy — sinzsiny

sin(x + y) = sinx cosy + cos zsin y.

Idea. Aquest lema es pot demostrar usant geometria elemental, vegeu la figura 1.4. O

12Tales de Milet, Milet, 625 a.C. — ~545 a.C., https://ca.wikipedia.org/wiki/Tales_de_Milet
13Pitagores, Samos, 586 a.C. — ~490 a.C., https://ca.wikipedia.org/wiki/Pit%C3%A0gores
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Figura 1.4.: Demostracié visual de les férmules trigonometriques per la suma d’angles.

Lema 1.32 (Angles complementaris, suplementaris i periodicitat). Donat x € R, es com-
pleizen les identitats:
sin(m/2 — x) = cos(z), cos(w/2 — x) = sin(x), tan(m/2 — ) = tan" ! (z).
sin(m — z) = sin(x), cos(m —x) = —cos(x), tan(m —x) = — tan(z).
sin(z + 2m) = sin(x), cos(x + 27) = cos(z), tan(z + 7) = tan(z);
Demostracio. Cal combinar la suma d’angles amb les simetries de les funcions trigo-

nometriques del lema 1.29 i els valors donats a ’observacié 1.28. O

Lema 1.33 (Infinitesims). Tenim

. sinx . . 1 —cosx 1
lim =1 1 lim — =5
z—0 T z—0 T 2

Idea. Es tracta de veure usant geometria elemental que

mg SIn T < 2(1 —COS.T) < 17

x T

i després fer pas al limit. O

Teorema 1.34. Les funcions sin(x) i cos(z) son 2w-periodiques, infinitament diferencia-
bles, 1

(sin(z)) = cos(z) i (cos(z)) = —sin(x).
A més les seves séries de Taylor sén convergents a tot R, i trobem que

sin(z) = Z

k=0

ko 2k+1 2 (—1)k a2k
i cos(zx) = —_—
= (2k)

(=1
2k + 1) 7
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Idea. Per veure la diferenciabilitat n’hi ha prou amb comprovar les dues derivades, que
surten de
sin(x) cos(h) + cos(z) sin(h) — sin(z) 1 1.33

: ) — s
(sin(z)) = ]1112% sin(z + Z sin(z) _ }lli% ! L3 os(a).

L’altra es fa analogament. La convergencia s’obté usant estimacions del residu de Taylor.
O

Definicié 1.35. Es pot demostrar que la tangent és injectiva en (—m/2,7/2) i la seva
imatge és R. Per tant, per tot x € R podem definir I’arctangent arctanz com I'inic
nombre real o € (—7/2,7/2) tal que tana = z. També pel sinus tenim injectivitat en
[—7/2,7/2] i definim ’arcsinus d’un nombre x € [—1, 1], que escrivim arcsin z, com 1'dnic
nombre real a € [—7/2,7/2] tal que sina = z. Finalment el cosinus és injectiu a [0, 7],
i definim ’arccosinus d’'un nombre = € [—1,1], que escrivim arccos x, com 'inic nombre
real a € [0, 7] tal que cosa = z. Pel teorema de la funcié inversa per funcions de variable

real, sabem que les tres funcions sén C* a 'interior del seu domini. °
Exercicis
1.3.1. Demostreu tots els resultats de la seccio. 4

1.3.2. Definim el sinus i el cosinus hiperbolics de x € R com

er —e ¥ et 4+ e T

sinh(z) = — cosh(z) =

Demostra que se satisfan les sequents identitats:
a) sinh(0) =0 i cosh(0) = 1.

b) lim sinhz = lim coshz =+ i lim sinhz = —oo.
r—+00 xr—+00 xr——00

¢) sinh(—x) = —sinh(z) i cosh(—xz) = cosh(z).

d) cosh?(z) — sinh?(z) = 1.

e) cosh(z + y) = coshz coshy + sinh z sinh y

f) sinh(z + y) = sinh x coshy + cosh  sinh y.

g) (sinhz) = coshz i (cosh(z))" = sinh(z). <
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1.4. L’exponencial complexa

Per la férmula de Taylor, tenim que

=z
Z — Vr e R.
= n!
Podem fer servir aquesta mateixa expressié per tal de definir e® per z € C.

Definici6é 1.36. Per z € C, definim

3“\1

Aquesta série de nombres complexos és absolutament convergent (ja que )| i—‘,ﬂ < ), i
per tant convergent. Aixi que e® esta ben definit per a tot z € C. .

Per z € R, tenim del teorema 1.34 que
cosx = Re (e"); sinz = Tm (e).
Aixi doncs, tenim la identitat d’Euler:

e’ =cosz +isinz, Vz e R.

i la férmula inversa d’Euler:

CoST = % (eix + e*i"p) i sinz = % (em — e*“’) , Vr e R.

Notem que la corba v : R — C definida per v(z) = € retorna valors de modul 1 pel

teorema de Pitagores:
| = Vcos?x + sin®x = 1.

Per tant, la corba v “enrotlla” la recta real sobre la circumferéncia unitat, amb velocitat
constant i periodicitat 2.

Podem definir els sinus i cosinus de nombres complexos analogament usant el teorema
1.34, pero en aquest capitol només apareixen les funcions sinus i cosinus amb variable real.

Proposicié 1.37. Per a tot z € C, es compleix que

Z

e? = e”.
Demostracidé. Per definicid, tenim que
0 k
_ Zm 2"
e? = — = lim E —
n! k—o0 n!
n=0 n=0
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Com que l'aplicacié conjugada és continua, podem treure el limit a fora del conjugat
(teorema 1.18) per obtenir

n=0 n=0
O
Com a propietat fonamental de I’exponencial real, tenim que
erTY = e%eY, Vo, y € R.
L’exponencial complexa e® manté aquesta propietat.
Proposicié 1.38. Donats z,w € C, tenim que
AW _ 7w

Sin e N, trobem per tant

et = ()", i e F=()"! (1.6)

En particular, tenim que
"W = e®(cosy + isiny),

que generalitza la identitat d’Euler.
Demostracio de la proposicid. Per la definicié de 'exponencial complexa, tenim que
n—k

o0 w n k
w (z +w)" _ n \ 2"w
=y =2 2 k)
n=0 n=0k=0

on hem aplicat la férmula del binomi de Newton'? en la darrera identitat. Recordem

també que
n\ n!
k) kl'(n—k)

Pel criteri del quocient (vegeu 'observacié 1.26), tenim que 2120:0 2—? és absolutament
convergent. Podem doncs aplicar el teorema de Mertens, i trobem que

% el = i ik i ﬂ — i i #Zk w(n—k)
“\A R\ w2\ Sk (k) )

que coincideix amb ’expressié anterior.

“1saac Newton, Woolsthorpe-by-Colsterworth, Lincolnshire, 1642 — 1727, https://ca.wikipedia.org/
wiki/Isaac_Newton
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Per veure 1.6, notem que és cert per n € {0,1}. Per n > 1, suposant que és cert per
n — 1 com a hipotesi inductiva, trobem que

en? — 6(nfl)erz

_ 6(nfl)zez _ (ez)n—l % — (ez)n )
Finalment,
1=e'=¢fe™™ — % = (7).

Observacié 1.39. Una demostracié alternativa de |ei"””| = 1 per a tot z € R: Tenim

|em’| _ (ezx) (ewg) = T oI — T oI 60 =1.
Definint les potencies negatives de la manera habitual, és a dir 2% = (2*)~!, aleshores

1.6 estén a tots els enters n € Z. °

Observem (vegeu I'observacié 1.28 i el lema 1.32) que

ez =14, " =-1; e'2 =—i.

INIE]

Lema 1.40 (Férmula de De Moivre!'®). Per tot ne N i 0 € R, tenim que
cos(nf) = Re <<e’ > ) i sin(nf) = Im <<e’ ) )

-z N 2 . ; ; n
Demostracid. Aixo és una reescriptura de e = (6’9) , vegeu (1.6). O

Usant la identitat anterior, podem expressar cos(n#) i sin(nf) en termes de sin 6 i cos 6.
Vegem un exemple:

Exemple 1.41. Com que

()3 = (cos @ + isinB)> = cos® @ + 3icos? O sinf — 3cos f sin®f — isin’ 6,

™% = cos 30 + isin 36,

obtenim la identitat cos(30) = cos®# — 3 cos 6 sin? 6. O

Exercicis
1.4.1. Fent servir la formula de de Moivre, trobeu expressions de sin 30 i sin46 en termes

de sinf i cosf. 4

1.4.2. Trobar les arrels de z* +1 = 0 i fer-les servir per veure que z* + 1 = (2% — /22 +
1)(22 + 422 +1). q

15 Abraham de Moivre, Vitry-le-Francois, 16671754, https://ca.wikipedia.org/wiki/Abraham_de_
Moivre
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1.5. Representacié polar d’un nombre complex

Tot nombre complex z # 0, el podem expressar en termes del seu modul r (on r = |z]) i
I’angle 6 que forma amb l’eix real. Es a dir, podem fer un canvi de coordenades

z=xT+1iy — 719

Aquest angle 6 quedara completament determinat si imposem que es trobi en un interval
de longitud 27 fixat.

Definicié 1.42 (Coordenades polars). Donat z € C, s’anomena ’argument principal de z
i es denota per
Arg z

I'tinic angle € prenent valors —7m < 6 < 7w de manera que
Rez = |z| cos O
Imz = |z|sinf
Aleshores tenim que
2=z +iy = |2|(cosf + isinf) = |ze™.

Anomenem coordenades polars de z al parell (r,0) amb r = |z|. .

P Imz=rsind

0= Argz

Rez =rcosf

v

Figura 1.5.: Coordenades polars d’un nombre complex.

Observacié 1.43. Per trobar I'argument principal de z, podem calcular ’arctangent:

0 := arctan (%) Aleshores,

e si x > 0 (primer i quart quadrants del pla complex) definim 0 = é,
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e siz < 0iy >0 (segon quadrant), tenim que —7/2 < 6 < 0 aix{ que definim 6 = O+
i
e siz <0iy <0 (tercer quadrant), tenim que 0 < 6 < 7/2 aixi que definim 6 := § —.
e Siz =01y >0 (semieix imaginari superior) definim 0 = 7/2 i
esiz=01iy <0, prenem 0 = —7/2.

D’aquesta manera, per tot z € C\{0}, tenim que

Argz =0¢€ (—m, 7. .
Exemple 1.44. 1. La representaci6 polar de ¢ és
i=e'2.

2. Calculem la representaci6 polar de z = v/3 +

Tenim |z| = 4/3 + 1 =2, amb el que

que implica

cosf = @

. 1
sinf = 3,

amb el que 6 = /6, i per tant la representacié polar és
V34 =26, O

Proposicié 1.45. Siguin z1, 20 € C. Es compleix que e*! = €*2 si i només si 21—z € 2miZ.
En particular, la funcio exponencial complexa és una funcid periodica i el conjunt de
periodes és 2mwiZ.

Demostracié. Suposem que per a un k € Z, z1 = z + 2mwik. Llavors

Z1 zo+2mik _ 22627rik _

el =e¢ e e*2.
Reciprocament, si e*! = e?2, es compleix que €172 = 1, amb el que eRez1—Rez —
le1=22| = 11 MM (51722) — 1 ¢ a dir
cosIm(z1 —z2) = L
Per tant, Rez; = Re 29 1 Im (21 — 29) = 2km, o, equivalentment, z; — 29 € 27iZ. O
) ) ) q )
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1. El cos dels nombres complexos

Tornant a la definicié 1.42, és clar que, fixant un altre interval de longitud 27, hi ha
altres possibilitats amb ’angle 6 que ens dona la representacié polar. De fet, aqui n’hem
fixat una de concreta per fer de referencia. Aixi doncs, hi ha infinits nombres reals
(s’anomenen arguments de z) que compleixen la identitat

z = |z|e®.

Sén
Arg z + 2mk; ke Z.

Exemple 1.46.
Definicié 1.47. Un argument de z # 0 és un nombre real 6 de manera que z = |z|e®.
arg z denota tots els possibles arguments de z. o

Exemple 1.48. Sigui z = 1 — /3i. Llavors |z| = 2 amb el que

cosf = %
2
RN S PR B B S
|z| 2 2 2 3
—T<f<m
Per tant
Argz=—%; argz=—g+2k7r, kelZ. O

El producte, el quocient i la poteéncia solen ser més facils de calcular en forma polar:

Exemple 1.49.
263 . A/3ei™ = 24/36i(3+7).

3i
2e 2 i(3—m) _ 2\/561‘(3771').

V3em  3° 3
T 25 25 - 257 25 - 247 T 25 4T
<26ZZ> = 299'71 = 291 e'a = 24°¢'q .,

Notem que en multiplicar un nombre z € C per re?, el modul es multiplica per r i
I’argument augmenta en 6. Es a dir que en multiplicar dos nombres complexos, trobem
un nombre que té per modul el producte de moduls i per argument la suma d’arguments
(podem corregir per tenir 'argument principal sumant o restant 27). O

Exercicis

1.5.1. Trobeu la forma polar dels nombres segiients i dibuizeu-los.
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1. El cos dels nombres complexos
a) 3(1++/31), b) 24/3 — 2i, c) -2+ 2i, d) —1—1. a

1.5.2. Expresseu en forma cartesiana (a + ib) els segiients nombres:

a) (24 3i)(4 +1), c) 4%”-; e) (1—24)3, g) (1+i)100 4 (1 —4)100,

b) (44 2i)? d) 5+ L4 A2 h) 12i)? a
) (4 + 2i)7, ) 2437 f) o T 330 1—4

1.5.3. Fent servir el producte de (1 +i)(5 —i)* deduir la férmula de Machin'®: 7/4 =
4 arctan(1/5) — arctan(1/239). q

1.5.4. Estudiar la convergéncia de {z(}} si|zo| <1 o si|zo| > 1. <

1.5.5. Digueu si les segiients successions son convergents i en cas afirmatiu calculeu el
seu limit:

= Z n:Ar _1 ; , 1_2 n
a) = c) = g(—=1+i/n) e) Zn:( v > :
n(2 +1) B 2ni

b) zp = i(—1)", d) zp, = T f) zn = exp z .

Aqui hem escrit exp(z) = €.

1.6. Equacions amb exponencials

Exemple 1.50. Solucionem I’equaci6

Tenim
1=¢€*=¢€"e" =e*(cosy +isiny).

Com que |e¥| = 1, igualant moduls i arguments obtenim

cosy =1
l=|ef|=€¢" = =0 :>{ N = y=2km kel
siny =0
Per tant,
=1 < z=2kmi ke Z.
O
6John Machin (1706), podeu trobar més informacié a https://en.wikipedia.org/wiki/Machin-1ike_
formula.
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1. El cos dels nombres complexos

Moltes de les equacions “exponencials” es redueixen a ’anterior. Per exemple

. T
z ’65

T
e =1=c¢e€ = eF'2 =1,

Exemple 1.51. Recordem que donats z,w € C, per la proposici6 1.45 tenim 1’equivalencia

e =¢e¥ < z=w+ 2kmi per algun k € Z.

Sabent que 1 = €°, podem dir directament que

¢ = = z =0+ 2kmi,
tal com hem vist pas a pas en ’exemple anterior. O
Exercicis
1.6.1.

Resoleu les segiients equacions:

a) e =1+1, b) e =i, c) e = —1.

1.7. Arrels n-ésimes

Figura 1.6.: Arrels setenes de la unitat.

Donat n € N, si definim (, = e%, aleshores
(@:)" _ 2kmi _q
o .

Diem que {¢¥}}Z; sén les n arrels n-¢simes de la unitat.
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1. El cos dels nombres complexos

Sigui @ € C amb a # 0. Per n € N, calculem els nombres complexos z € C de manera
que
2" = a.
(Aqui no és convenient passar a notacié real i fer (z + iy)® = a). Posem z = re? amb
—m < 6 < m. Llavors

e = |ale

Igualant moduls obtenim 7" = |a| = r = {/|a|. També

iArga

el = gihrea o inf—Arga) _ | pg_ Arga =2kn, keZ.

Per tant, les solucions de z™ = a sén

, A 2%
2z = A/ ale™, amb 0y =24 T g<k<n— 1L

n n
Tenim n solucions (amb k& > n dona solucions repetides). Notem que

-Arga ,L-2k7r 7;Alrga,

zp = A/|ale’ n e'n = {/]ale’ Cﬁ,

Arga

i com que zg = {/|ale’ " n , podem escriure les arrels n-esimes d’a com

k
2k = G, 20,

vegeu la figura 1.7.

Figura 1.7.: Arrels setenes de a = 1 + 1.

Exemple 1.52. v/i — ei™/8 ¢i7/8 oi97/8 oi131/8 Elg quatre resultats satisfan que

A= O

Exercicis

1.7.1. Calculeu:
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1. El cos dels nombres complexos

a) V-1, b) 314, ¢) Vi, d) (143012, e) (3+4i)3. «
1.7.2. Donat a € C, quin és el mazim de |2" + a| per a |z| < 17 <

1.8. Polinomis: enunciat del teorema fonamental de I'algebra

Per acabar aquest capitol, comentem un dels principals motius que fa dels complexos una
eina imprescindible: tot polinomi de coeficients reals o complexos té sempre almenys una
arrel complexa, i per tant, el grau del polinomi coincideix amb el seu nombre d’arrels
comptant multiplicitats.

Acabem de comprovar que hi ha nombres complexos que sén solucié de certs polinomis.
Per exemple, si 0 < k < n, aleshores els nombres

i2km
e n

sén tots diferents i satisfan que
2t =1.

Hem trobat doncs n arrels diferents del polinomi 2™ — 1, que anomenem arrels n-esimes
de la unitat.
En general, tot polinomi de grau n amb coeficients complexos p € C[z], és a dir

n
p(z) = Z apz",
k=0

on ay € Cia, # 0 té exactament n arrels comptant multiplicitats. Dit d’una altra manera,
existeixen n nombres {ak}’,;”;é < C (possiblement coincidents) de manera que

n—1
p(2) = an H(z — ag).
k=0
Diem que « és una arrel de multiplicitat j si existeixen exactament j subindexs k1,...,k;

tals que a = ay,,. Per exemple,
A2 41=(2+1)2=(2+9)%(2— i)

té dues arrels dobles, que sén +i. Aquest resultat es coneix com a teorema fonamental de
l’algebra, vegeu el teorema 4.31.

Notem també que el resultat aplica a polinomis de coeficients reals, p € R[z]: tot
polinomi de grau n amb coeficients reals té n arrels complexes comptant multiplicitats. A
més, com que a = ag, trobem que

P = Yzt = Y ak = Y ak - o)
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1. El cos dels nombres complexos

Per tant, si @ € C\R és una arrel de p, el seu conjugat també ho és:

p(@) = pla) =0 =0.

Treballant una mica es pot deduir que la multiplicitat d’«v i la del seu conjugat coincideixen.
Per tant, tot polinomi de grau n amb coeficients reals té j arrels de part imaginaria positiva
ag, en té j amb part imaginaria negativa ag i n — 24 arrels reals (B, de manera que

j n—2j J n—2j
p(z)=an [[G-ar)z—a) [[ (2= B8r) = an [ [(Z* = (o + @)z + onai) [ ] (2= Br),
k=0 k=0 k=0 k=0
és a dir ‘ L
p(z) = an H(22 — 2Re (ax)z + \ak\z) H (z — B).
k=0 k=0

En la darrera expressid, hem trobat una factoritzacié amb coeficients reals, on tots els
factors so6n de grau 1 o 2.

Exercicis

1.8.1. Resoleu (z +1)5 = 25. q

1.8.2. Sigui P(z) = 1+ 2z + 322 + --- + nz""L. Considerant el polinomi (1 — z)P(z),
demostreu que tots els zeros de P(z) estan dins del disc unitat. <
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2. Funcions de variable complexa

En aquest capitol introduim els conceptes de funcié de variable complexa (i parlarem de
com representar aquestes funcions) i de funcié multivaluada. Treballarem les determinaci-
ons continues d’aquestes funcions multivaluades, centrant-nos en arguments, logaritmes i
arrels. Finalment treballarem amb les series de poténcies de nombres complexos. Veurem
que és el radi de convergencia i com calcular-lo i treballarem diferents tipus de convergencia
a I'interior del disc de convergencia i a la frontera, concloent amb els criteris de Dirichlet!

i d’Abel?.

2.1. Funcions

Recordem diversos conceptes:

e Q c C ésobert si Vae Q hi har>0amb D,(a) <, on D,(a) denota el disc obert
Dr(a) ={z€C:|z—a| <r}.

e F' és tancat < C\F és obert < F' és tancat per successions (és a dir, si z, € F amb
zp — z, aleshores z € F).

Sigui 2 < C un obert. Una funcid de variable compleza és
f:Q—-C.
Podem posar f(z) = u(z) + iv(z), on denotem
u = Re f; v =Im f.

Donat z € Q1w € C tals que w = f(z), aleshores diem que w és la imatge de z per f. El
conjunt 2 és el domini de definicié de f. Si B < Q, f(B) < C és la seva imatge, és a dir

f(B) ={we C:3ze B tal que f(z) = w}.
Si prenem B = (), diem que f(2) és el rang o recorregut de f.

Exemple 2.1. Si f(z) = iz amb domini C, la imatge de Rc C és f(R) =iR = {iy:y €
R}. En general, f actua com una rotacié de 90° al voltant de I'origen en sentit antihorari.

O

! Johann Peter Gustav Lejeune Dirichlet, Diiren, 18051859, https://ca.wikipedia.org/wiki/Johann_
Peter_Gustav_Lejeune_Dirichlet
2Niels Henrik Abel, Finngy, 1802-1829, https://ca.wikipedia.org/wiki/Niels_Henrik_Abel
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2. Funcions de variable complexa

Definicié 2.2 (Limit d’una funcié en un punt). Diem que lim,_,, f(2) = £ si i només si
Ve > 0 hi ha 6 > 0 (que pot dependre d’a) de manera que per a tot z€ Q, 0 < |z —a| < J,
If(z) —{] <e. .

Definicié 2.3 (Continuitat). Una funcié f : Q@ — C és continua en 2 si és continua en
tot punt a € 2.
f és continua en a < lim f(z) = f(a).
zZ—a

Es compleix que f és continua en a si i només si Re f i Im f sén continues en a, i també
si i només si, per a tota successié {z,} amb z, — a se satisfa que f(z,) — f(a). .

Exemple 2.4. Els polinomis en z i Z sén continus. També e és continua en tot punt de

C. %

Advertencia 2.5. Arg z és continua en C\(—0,0] i NO és continua en (—c0,0].
En efecte, si ens acostem a la semirecta (—o0,0) per dalt, llavors Arg z — m, en canvi
si ens acostem per baix, tendeix a —m, amb el que si a € (—00,0), llavors

no existeix  lim Arg z. o
zZ—a

Figura 2.1.: A lesquerra, una coloracié del pla complexr amb la graella de coordenades
cartesianes enteres, mentre que a la dreta, la graella marca els cercles de
modul e, k € Z, i els eixos real i imaginari. Per la coloraci6, s’escull el color
en funcié de langle i la saturaci6 en funci6 del logaritme del modul (empal-
lideix amb moduls grans). Dibuixem des de —6 — 6i fins a 6 + 6i. Aqui, i al
llarg dels apunts, quan dibuixem en aquest domini, direm que dibuixem en
6Q, i quan dibuixem en —2 — 27 fins a 2 + 27 direm que és en 20.
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2. Funcions de variable complexa

Comentari 2.6 (Dibuixar una funcié complexa). Recordem que per dibuixar una funcid,
entenem representar el conjunt

graf f == {(z,w) € C*: f(2) = w}.
Si f : R — R es pot fer en el pla, pero per una funcié complexa necessitem quatre

dimensions reals per fer aquesta representacié. Dificilment podem arreglar-ho amb una
bona perspectiva com solem fer amb les funcions de R? en R. Coses que podem fer:

e Estudiar la imatge de conjunts especials {x = c}, {y = ¢}, {r = ¢} o {0 = ¢}, vegeu

la figura 2.2.
147
iy
5i 1SS0
o B
i. l1 e
<} >
0
\Y4 T
1-— 20
P 3 %
—3 1 bS
“ él —mi i)

Figura 2.2.: Representacio de la funcié exponencial. Representem 1’accié en bandes horit-
zontals i verticals i en rectangles parallels als eixos. Notem que té periode
2kmi, 1 que bandes horitzontals d’amplada ~ van a sectors d’obertura ~.

e Dibuixar (z,y) — [f(z,y)|i(z,y) — Arg (f(z,y)), 0 bé (z,y) — Re f(z,y) i (z,y) —
Im f(z,y).

e Fer un grafic de colors (complex plot). Es tracta d’assignar un color a cada pixel
w (figura 2.1) i aleshores pintem el punt z en funcié del color de w = f(z), vegeu les
figures 2.3, 2.4 1 2.5. o

Exemple 2.7 (La funcié exponencial). Comencem amb les imatges de rectes verticals:
sabem que a C, la funcié exponencial complexa és 2mi-periodica. Per tant, el que passi en
una banda horitzontal d’amplada 27, passa en qualsevol altra.

Donat que per la férmula d’Euler, e* = e % = ¢%(cosy + isiny), es compleix que si y
varia de 0 a 2, € dona una volta al cercle unitat T. Per tant, la imatge de tot segment
vertical de longitud 27 i part real xg es transforma en un cercle al voltant del zero de radi
e”o.

Anem a veure en que es transformen les rectes horitzontals. Recordem que ’exponencial
real envia homeomorficament R en la semirecta (0,00). Per tant, si fixem yo € R i consi-
derem els punts de la forma z = z + iyg, amb z € R, es compleix que els punts e* = ee™0
cobreixen la semirecta {e%e™° : x € R}. Vegeu les figures 2.2 i 2.3. O
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2. Funcions de variable complexa

RRN

Figura 2.3.: Grafic de colors de la funcié exponencial en coordenades cartesianes i polars en
6Q, vegeu la figura 2.1. A la imatge superior esquerra, la graella correspon als
punts d’imatge amb una coordenada entera (vegeu la figura superior dreta),
és a dir que sén corbes de nivell de les parts real i imaginaria. A la imatge
inferior esquerra, correspon als d’imatge en els eixos o bé en els cercles de radi
ek (corbes de nivell del modul i dels arguments miltiples de 7/2). Es tracta
doncs de la preimatge de les graelles representades a la figura 2.1 per la funcid
exponencial. Observem, per exemple, que cada rectangle petit de la figura
inferior esquerra és enviat a un quadrant d’un anell centrat a I'origen que té
per radis interior i exterior dues poteéncies consecutives de e. En properes
imatges obviarem la figura de la dreta.

Comentari 2.8 (Potencies). Les poténcies d’exponent natural sén funcions n a 1, és a
dir que cada imatge té n preimatges (llevat de 1’origen). La funcié 23, per exemple, fa que
els moduls menors a u decreixin, els majors a u creixin i la imatge d’una circumferéncia
centrada a l’origen dona tres voltes entorn de 'origen, vegeu la figura 2.4. o
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2. Funcions de variable complexa

o asaT Ay

Figura 2.4.: Representem el polinomi 23 en 2Q en cartesianes i polars. Notem que si w # 0,
aleshores té tres arrels cubiques, que son els vertexs d’un5 triangle equilater
centrat a l'origen. A la imatge, arrels ctibiques de w = 5e'12.

Exercicis

2.1.1. Escriure les segiients funcions de la forma u(x,y) + iv(z,y).

2
a) f(z) =1/z, b _ 22743 c) h(z) =e* +e % q
) o) = T
2.1.2. Trobeu el rang de
a) f(z) =22 si z esta en el primer quadrant,
b) g(z) =1/z per 0 < |z| <1,

c) h(z) = —22% per z tal que 0 < |z| <1 i Argz < /2. <

2.1.3. Digueu on son continues les segiients funcions

) 1 ) 3z—1
a) —— c) ———
z2—2+3i 224+ z+4°
-3
12° + 2z
b) 22417 d) 22(2z2—3z+1)_2. <

2.1.4. Proveu que la inversid w = f(z) = 1/z transforma

a) el cercle |z| =1 en el cercle |w| = 1/r,
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2. Funcions de variable complexa

Figura 2.5.: Dibuixem la funcié f(z) = 22 + 1 en el mateix domini que abans (des de
—2 — 2¢ fins a 2 + 2i). Notem que a +i, la funcié val zero.

b) el raig Argz = 0y, —m < 0y < 7, en el raig Argw = —0,

¢) el cercle |z — 1| = 1 a la linia vertical x = 1/2. <
2.1.5. Trobeu una funcié afi que transformi el cercle |z| < 1 en el cercle lw — wg| < R
de manera que els centres es corresponguin i el diametre horitzontal es transformi en el
diametre que forma un angle o amb ’eix real. <
2.1.6. Per l’exzponencial f(z) = €*:

a) Descriviu-ne el domini i el rang.

b) Proveu que f(—z) = 1/f(2).

¢) Descriviu la imatge de Rez = 1.

d) Descriviu la imatge de Imz = m/4.

e) Descriviu la imatge de la banda 0 < Imz < 7/4. q

2.1.7. La funcié de Jukovski’ ésw = J(z) = % (z + %), vegeu la figura 3.7. Proveu que

a) J(z) = J(1/2),

b) J porta el cercle unitat |z| =1 a Uinterval real [—1,1],

3Nikolai Jukovski, Orekhovo, 1847-1921, https://ca.wikipedia.org/wiki/Nikolai_Jukovski
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2. Funcions de variable complexa

c) J porta el cercle |z| =r (r> 0,4 1) a lellipse T

2 (r+3)]
els focus a +1. <

2.1.8. Fent servir la comanda contour_plot de Sage dibuixzeu les corbes de nivell de u 1
vsif=u+iv és

a) z, d) sin(z), g) €%,
1 1
b) 22, e) 1/z, h) 1t T
c) log(z), f) 1/22, i) log(z — 1) +log(z + 1). «

2.2. Funcions multivaluades

Ja hem vist que hi ha funcions com ara I'argument que prenen multiples valors:

37 7w 57 }

v
L Y
2 "2 + ek

arg(i):{..., .

També és el cas de les arrels n-esimes:
1 argz 1 Argz . 2kmw
{’f:{|zlnez n }: {]z\ne’ noe'n 1 ke{0,--- ,n—l}}.

Definici6é 2.9. Donada una funcié multivaluada en A, diem que una funcié f : B —» C
n’és una branca continua en B < A si f(z) és una eleccié d’entre les diferents opcions de
manera que aquesta eleccio sigui continua en B.

Notacio 2.10. Més endavant farem servir la notacié determinacid = branca continua. e

Per exemple, si A = {z € C: Rez > 0}, aleshores la funcié argument principal Argz és
una branca continua de 'argument en A. Qualsevol altra branca de 'argument f: A — C
que escollim consistira en fixar un k € Z i tindrem f(z) = Arg z + 2km.

En canvi, si prenem A = {z € C : Rez < 0}, aleshores I'argument principal no és una
branca continua, ja que tindrem una discontinuitat al llarg de la semirecta {x € R : x < 0}.

Exercicis

1
3
2.2.1. Donada l’equacié de Cardano z3+pz+q = 0, comprova que si C = (—g + 4/ % + g;) ,

aleshores z1 = C — % és solucio de la cubica. Les tres arrels s’obtenen canviant ’eleccio
de Uarrel cubica.
Tot sequit obre GeoGebra* i dibuiza els punts p = 1+i i q = 2+0i; defineiz w = —%+§z’,

” < - SV P _ P ;o a2 P
C mitjangant la formula anterior, i 21 = C' — 35, 22 = wC — 555 1 23 = w*C — 3-5~.

40 entra a https://www.geogebra.org/m/jbszj89u
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Escull tres colors diferents per zj, i activa la seva traca. Deizant q fixat i movent p,
per exemple, comprova que els tres punts son funcid de p, i es poden determinar com a
branques continues localment de manera continua, tot i que C' presenta discontinuitats de
salt que fan que els tres zj vagin permutant la seva posicio. Per exemple, pots fizar p
en la circumferéncia de radi 4 amb la instruccid p=Punt (Circumferéncia((0, 0), 4))i
observar qué ocorre, i comparar amb el radi 2 o 3. Pots usar també la instruccio lloc
geométric. Quantes voltes cal que faci p a aquesta circumferéncia per tal que una arrel
doni la volta a lorigen de manera continua? <

2.3. Logaritmes i arguments

SizeRiy>0,sabem que e* =y si i només si x = Iny. Volem estudiar aquesta equacid
en C. Ja sabem que I’exponencial complexa és periodica i per tant, no injectiva, doncs
e*T2hmi — % per a tot k € Z, vegeu la proposicié 1.45.

Recordem que per a cada z € C\{0} existeix un tnic 0 € (—m, 7] tal que

que s’anomena argument principal, i es denota Arg(z). Aleshores

eln|z\+zArg (2) _ eln\z|ezArg (2) _ |Z|7 = 2.

2|
Definicié 2.11. El logaritme principal de z € C\{0} es defineix com
Log (z) = In|z| + iArg (2).

Per tant Log : C\{0} — {—7 <Imz < 7w}. En general, un logaritme de z és un nombre
w € C amb e¥ = z. Escrivim log z per anomenar el conjunt de tots els logaritmes de z. e

Com hem vist a la proposicio 1.45, el logaritme és doncs
w = logz = Log z + 2kmi = In|z| + iArgz + 2kmi = In |z| + targz; keZ.

En particular, a diferéncia del que passa a R, hi ha infinits logaritmes. Per distingir-
los, escriurem “In” pel logaritme neperia definit a la recta real, i “log” per la funcié
multivaluada del pla complex.

Exemples 2.12. 1. logl =1In|1| 440 + 27ki = 2nki; ke Z.

2. log(—1) =Inl+ir + 2nki; ke Z. O

Exemple 2.13. Log(1 + i) = In|1 + | + iArg(1 +4) = In V2 + z’%.
Els altres logaritmes serien In /2 + iy + 2kmi. O
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&

Figura 2.6.: A lesquerra, la funcié logaritme principal Log en el domini C\(—o0,0]. A la
dreta la branca log = Log + 27t en el mateix domini. Totes dues representaci-
ons amb la graella cartesiana de la imatge. Observem com les circumferencies
centrades a l'origen es transformen en rectes verticals. Veiem també com, en
el logaritme principal, a 'arribar als reals negatius des del segon quadrant,
trobem una discontinuitat que es podria evitar prenent la determinacié del
logaritme representada a la dreta (pagant el preu de trobar la discontinuitat
més endavant).

Si fixem una branca de 'argument A : Q — R, llavors £(z) := In |z| + i.A(z) també ens
dona una branca del logaritme £ : Q — C. Com que 'argument principal Arg z és continu
en C\(—,0], deduim que Log z és continua en C\(—o0,0]. De fet, tenim el segiient
resultat:

Proposicié 2.14. Ezisteiz una branca continua de l'argument de z en C\r, on r és qual-
sevol semirecta de C amb extrem en el 0.
Per tant, també hi ha una branca continua del logaritme de z en C\r.

Demostracio. Posem
r={Re” : 0 < R < w}.

Escollim Az la branca de I'argument de z que pren valors en (6,60 + 27), i vegem que és
continua. Siguin z,,z9 € C\r amb z, — 29. Volem veure que Az, — Azj. Suposem
el contrari. Llavors, substituint, si és necessari la successié (z,) per una parcial, podem
suposar que existeix ¢ > 0 tal que per a tot n > 0, |Az, — Azy| > . Donat que la funcié
Az pren valors en un interval fitat, aplicant el teorema de Bolzano-Weierstrass®, podem
trobar una parcial convergent. Es a dir, hi ha z,, amb

Azp,, — a # Azp; a€[6,0+ 2n].

SKarl Weierstrass, Ostenfelde, 1815-1897, https://ca.wikipedia.org/wiki/Karl_Weierstrass
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(o # Azp, doncs per a tot n = 0, | Az, — Az| > ¢ ).
Com que l'exponencial és continua, e — @ perd també

ei'AZ"k _ Zny, 20 _ i.AzO.
lzni |l |20l
Per tant
e = A% o o — Az = 2k

per algun k € Z, i aix0 és absurd (I'inica possibilitat és k& = 0 i estem suposant que
a # Azp). ]

Proposicié 2.15. No hi ha cap branca continua de l’argument de z en JD.

Demostracid. Suposem que n’hi ha una de continua, diem-li A(z). Com que |z| = 1, tenim

c i
que si z = €%,

O N dkoeZ : A(ew) = 0 + 2kgm.
Aleshores kg = (A(e?) — 0)/2m és una funcié continua que pren valors enters, i per tant
és constant. Es a dir, kg = k. Llavors
0+ 2km = A(e) = A(1) = A(e"*™) = 27 + 2k,
fet absurd. 0

Observacié 2.16 (Propietats del logaritme). (i) Si £ és una branca continua del loga-
ritme en €, aleshores e“* = z per z € Q. Ara bé, L(e*) = z no és cert en general,

donat que per a k € Z, e* = 72" Diem doncs que £ és una inversa per la dreta

de 'exponencial en ). Podem dir el mateix de les branques continues d’arguments
i arrels.

(ii) Per z1,29 € C\{0}, com a conjunts de nimeros, tenim que
log(z1 z2) = log z1 + log 2.

Ara bé, fixada una branca £(z) del logaritme de z, pot passar que L(z122) # L(z1) +
L(z2) ja que la suma de dos arguments potser no pertany a la mateixa branca. e

Exemple 2.17. Considerem els punts —1 — 4, 1 — 4. Llavors
Log ((—1 —14)(1 —i)) = Log(—2) = In2 + iArg(—2) = In 2 + mi.

Per altra banda,

Log (—1 —14) + Log (1 — i) = (Inv/2 — %ﬁi) +(Inv2— %‘) —In2 — mi. 0
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Exercicis

2.3.1. Doneu exemples que mostrin la falsedat de la igualtat Log (a - b) = Loga + Logb.
(Per exemple, a = b= —1—1). q
2.3.2. Sigui L una determinacio del logaritme en C\(—o0,0] tal que L£(1) = 2mi. Proveu
que la funcio f(z) = L(z + 3) és continua en

D :={z€eC; Re(z) > —3}.

Quant val f(3i)? q
2.3.3. Una branca de U'argument A(z) (o del logaritme L£(z)) queda fizada si donem i) el

domini ) on esta definida i) el valor de A(z) (o de L(z)) d’un punt d’Q). Conside reu
els dominis:

Q; =C\ {re”, r > O}; Qy = C\ {rei”/‘l, r>= 0}

Q3 =C\({zre[-1,0]} u{-1+1y, ye[0,1.5]} u{x+ 1.5{, z€[-1,0)}).

Completeu la segiient taula.

Q1 QQ Qg
A1) =0 | A@) = A(i) = A(i) =
LG = | L£G) = L) —
£(20) =
A1) = =27 | A(i) = A(i) = A(i) = )
L(i) = L(i) = L(i) =
L(2i) =
Al = =3 | AQL) A1) A1)
L(1) L(1) L£(1) =
L£(2i)

2.3.4. FEstudieu si existeir alguna determinacio del logaritme en els conjunts seguents ¢
determineu els possibles conjunts imatge:

a) {ze C|Re z> 0}, b) {zre C|Re z>1Im =z}, c) {zeC|1l< 2| <2}. «

2.3.5. Calculeu els possibles valors de

a) log(1), b) log(—1), c) log(1+ 1), d) log(1—iv/3), e) log(i). <

2.3.6. Escrivim cosz = (€ + e7%*)/2 isinz = (e¥* — e7%)/2i. Resoleu les equacions
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a) e = 2i, c) e?* + e* + 1=0), e) cosz =sinz.

b) Log(z® — 1) = in/2, d) cosz = 2i,

2.4. Potencies complexes

Definici6 2.18 (Potencies complexes). Sigui z € C amb z # 0ia € C. Sabem que z = 7

per a qualsevol branca del logaritme £ i per tant, per an € Z, z" = (ecz = enlz,

Llavors definim

a e® log z a(ln |z|+iarg 2)

P a(Log z+2kmi)

= e = e °

Advertencia 2.19. L’anterior definicié és un abus de notacié en tota regla, i no ’aplica-
rem mai quan a la base escrivim el nombre e: sempre parlem de

4 = eReaezIma

ino de
e £ ealoge _ ea(1+2k7rz)’

la desigualtat sent certa sempre que a ¢ Z. Notem que aquesta definicié seria, en el fons,
circular! .

A priori, la poténcia z® pren infinits valors com arg z. Per exemple, donat que logi =
log 1 +i(5 4 2km) = i(§ + 2kn),

i eilogi _ 6i(i(g+2k7r)) _ e—(g+2k7r)

) keZ,

)
que pren infinits valors reals.

Hi ha casos en qué pren un nombre finit de valors, com /4 que pren 4 valors.

Observacié 2.20. De fet es pot comprovar que si z,a € C1i z # 0,

eaLog z62k7r1a

e Sia € Q aleshores 2% = pren un nombre finit de valors.

e El valor és tinic si i només si a € Z (és a dir, no depén de la branca del logaritme

escollit). En aquest cas tenim una potencia natural de z o de 2z~ 1.

e Sia=p/geQ, amb g > 01imed(p,q) = 1, aleshores 2P/7 pren exactament ¢ valors.

e Si a no és racional, 2% té infinits valors que difereixen en un factor e>7#e, .

Observacié 2.21. Comparem z%z? amb 24+,
o 0yb — e(a+b)Logz+27ri(ka+jb)? onk,jeZ,

a+b (a+b)Log z+2mim(a+b)

* 2z =e ,onm e Z.
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+b

Per tant, com a conjunts, 241 < 292, amb igualtat quan a € Z o b € Z.

Analogament
° (za)b _ eabLogz+27ri(ka+j)b7 onk,jeZ,

ab _ eabLog z+2mimab

* z ,onmEeEZ,

i tenim que 2% < (2)°, amb igualtat quan b € Z.
En canvi, si que és cert que

(ab)c _ eclog(ab) _ ec(logaJrlogb) = abC.

Exercicis
2.4.1. Trobeu l’error en el segiient raonament de Bernoulli: (—z)? = 22, llavors 2log(—z) =
2log z. Per tant, log(—z) = log(z). q

2.4.2. Calculeu els possibles valors de

a) i, b) (V3+i)T ¢) 27, d) (i), e) (i%)2. a

2.4.3. Determinar explicitament la inversa de q(z) = 2e* + €2* en funcid de logaritmes.
Resoldre q(z) = 3, trobant totes les solucions.

2.4.4. Siguin ho(z),h1(2) i ha(z) les determinacions de ’arrel cibica en = C\(—00,0]
tal que ho(1) =1, he(1) = e2mi/3 ha(1) = oAmif3

i) Descriviu hj(Q) per j =0,1,2.

ii) Per j = 0,1,2 relacioneu h; amb Log i Arg (on Log i Arg denoten les branques
principals del logaritme i de l’argument respectivament).

iii) Usant les relacions anterior, trobeu el valor de hj(i), per j = 0,1,2. <

2.5. Determinacions de logaritmes i arrels de funcions

Recordem que £ és una branca o determinacié del logaritme de z en €2 si £ és continua
en i
=z Vz e Q.

Definicié 2.22. Sigui X espai metric (normalment X = Q < C obert o X = [a,b] un
interval). Sigui f : X — C\{0} continua. Una determinacié del logaritme de f en X és
una funcié Ly : X — C continua tal que

eLr@ — f(x) Ve e X. .
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Com sempre, esta relacionat amb ’argument.

Definicié 2.23. Diem que Ay és una determinacié de l'argument de f en X si Ay és
continua en X i

f@) = |f(@)| 4™ vreX. .

Observacié 2.24. Si tenim una determinacié Ay de I'argument de f, llavors també tenim
una determinaci6 del logaritme de f definint

Lyp(x) = In|f(2)| + iAs(2).

També, si L és una determinacié del logaritme de f, llavors Im £; és una determinacié
de l'argument de f. Resumint, hi ha determinacié del logaritme si i només si, hi ha
determinacié de I’argument. o

Exemple 2.25. Si X = C\{0} i f(z) = z, llavors no existeix cap determinacié de
log f(z) = logz en X. (Varem veure que no hi ha cap argument continu en JD). O

Exemple 2.26. Si X = [0,1] i f(z) = '™, llavors L;(x) = 4miz és una determinacié
de log f en X (altres serien i(47x + 2km)). O

Definicié 2.27. Diem que Sy és una determinacié de Parrel n-éssima de f en X, {/f, si
Sy és continua en X i
Se(x)" = f(x) Vo e X. .

Observacié 2.28. (i) Si hi ha una determinacié L del logaritme de f, aleshores hi ha
determinacié de {/f.

Simplement definim Sy(x) = enls@),

(ii) Pot existir una determinacié de ’arrel n-essima {/f, encara que no n’hi hagi cap del
logaritme.

Per exemple, sigui f(z) = 2" per z € C\{0} =: Q. La funcié6 Sf(z) = z és una
determinacié de {/f en Q (doncs Sy(z)" = f(z)). Perd la funcié f no té determinacié
del logaritme en €.

Efectivament, suposem que existeix una determinacié del logaritme de f, que ano-
menem L i arribarem a una contradiccié: definim ¢(t) = €*™, ¢ € [0,1]. Llavors
ho(t) = 2mint i hi(t) = Lf(p(t)) sén determinacions del logaritme de la funcié ¢
en [0,1]. En efecte,

() — oLrle(t) eﬁf(e2’”t) _ f(eZﬂ'it) _ (eQﬂ'it)’l’L = (p()",

i, per altra banda
’ eho(t) — 2mint _ Qﬁ(t)n
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Per tant, per a tot ¢t € [0,1], eho® = M) amb el que existeix k € Z tal que
h1 = ho + 2kmi, vegeu la proposicié 2.30.

A més a més, com que ¢(0) = 2™ = 2™ = ©(1), es compleix que
h1(0) = L (p(0)) = Ly(p(1)) = ha(1).
Pero,

0 ="h1(0) — hi(1) = ho(0) + 2mik — (ho(1) + 2mik) = 2min - 0 — 2min - 1 # O!!

(iii) Si existeix una determinacié £ del logaritme de z en la imatge f(€2), aleshores hi ha
determinacié del logaritme de f en €.

Simplement, definim L¢(2) = L(f(2)).

Ara Dbé, el reciproc no és cert. Pot existir determinacié del logaritme de f en €,
encara que no hi hagi cap logaritme continu de z en f(€2). N’hi ha prou amb prendre
f(z) =¢€*, Lf(z) =2, Q=C, f(Q) = C*, vegeu 'exemple 2.29. .

Exemple 2.29. Sigui v : [a,b] — JD continua i wy € C tal que e*° = 7(a). Llavors
existeix una tnica determinacié del logaritme de ~, £, complint que £,(a) = wy. Es
demostra a la proposicié 5.1. En canvi, no hi ha determinacié del logaritme de dID, vegeu
la proposicié 2.15. O

Proposicié 2.30. Sigui X espai métric connex, i f : X — C\{0} continua. Si Ly i Lo
son dues determinacions del logaritme de f en X, llavors

Li(x) = Lo(z) + 2mksi; xeX
per un cert k € 7.

Demostracio. Per x € X, tenim que
1@ = f(z) =20 = 3, eZ: L4(z) — Lo(z) = kg

Com que L1 i Lo sén continues en X, aleshores la funcié k : X — Z definida per

Li(x) — Lo(z)

k =k, =
(z) 211

és continua en X. Com X és connex, llavors k(X) és un connex de Z, i per tant és un
punt, amb el que k(z) = k per a tot z € X. O
Exercicis

2.5.1. Sigui X un espai topologic connex. Demostreu que si S1 i So son dues determina-
cions de l'arrel n-ésima de f : X — C\{0} llavors existeiz una arrel n-ésima de la unitat
¢ tal que Sa(x) = (- Si(x), per a tot x € X. a
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2.5.2. Determineu els dominis de continuitat (és a dir l’obert mazimal on una funcid és
continua) de les funcions e, el/?, 1/e*, 1/(e®* — 1), de la branca principal de /1 — z i de
la branca principal de /1 + €Z. <

2.5.3. Donar una determinacid de f(z) que sigui continua a la regié D donada.

212 D={zeC:|z| <1},

( )
(Z2+D)Y2, D=C\{iyeC:|y| <2},
(=12, D={zeC:|z| > 1},
(=13, D={zeC:|z| > 1}. q

2.6. Series de poténcies de nombres complexos

Una série de poténcies de nombres complexos és una expressié de la forma

Z an(z —b)",

n=0

on {a,} és una successi6 de nombres complexos i b € C.
Per tal d’estudiar series de potéencies de nombres complexos, primer ens cal recordar
diversos conceptes i resultats.

Definicié 2.31 (Convergencia uniforme). Diem que f,, — f uniformement en A si
sup | () — F(2)] = 0.
z€A

Dit d’una altra manera, per tot ¢ > 0 existeix n. € N tal que per tot n > n. itot z€ A es
té | fn(2) — f(2)| < e. També, una serie de funcions ), - fn convergeix uniformement en
A si la successi6 Y, _ fi convergeix uniformement en A. o

Observacié 2.32. Recordem que una successié {f,} és uniformement convergent si i
només si és uniformement de Cauchy, i el mateix passa per una série Y gx. Es a dir, que
per tot € > 0 existeix un ng € N tal que per tot m = n = ng tenim que

> ok(2)

k=n

sup | fn(2) — fm(2)] <e, 1 sup < € respectivament. .

2€A 2€A

Teorema 2.33 (Criteri M de Weierstrass). Si tenim una série de funcions ), fn, on
fn A — C, de manera que |fn(2)| < M, per a tot z€ A, amb Y, M, < o, aleshores la
serie .. fn convergeiz absolutament i uniforme en A.

Demostracié. Es una aplicacié immediata de 1’observacié 2.32. O
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Teorema 2.34 (Cauchy-Hadamard®). Sigui Y, -, an(z—b)" série de poténcies de nombres
complexos. Llavors existeix un tinic R € [0, +o0] de manera que

(a) La série convergeiz absolutament per a tot z € C amb |z — b| < R.
(b) Per ze€ C amb |z — b| > R, la série és divergent.
(c) Si0<r <R, la série convergeiz absolutament i uniforme en |z —b| < r.
A més, es té
% = lim sup W.
R s’anomena radi de convergencia de la série de poténcies.

Observacié 2.35. Cal entendre bé el significat de convergencia uniforme en el teorema
anterior. Dir que per tot 7 < R hi ha convergencia uniforme en D, (b) no significa que
hi hagi convergencia uniforme en el disc de convergéncia Dg(b). El que significa és que
per tot € > 0 i tot r > 0 existeix n., tal que per tot n > n., i tot z € D,(b) es té

1f(z) = Dp_par(z — b)k| < e. Pot passar que n., LN o0, de manera que no podem
esperar convergencia uniforme en tot el disc de convergencia.

Dit d'una altra manera, la velocitat de convergencia sol empitjorar a mesura que ens
apropem a la vora del disc Dg(b). Un exemple paradigmatic d’aquest comportament és
la funcié f,,(x) = 2™, que convergeix a zero a l'interval [0, 1) de manera uniforme en [0, r]
per 7 < 1, tot i que supgc, 1 |fn(z) — 0] = 1. .

Abans de demostrar el teorema, vegem alguns exemples.

Exemples 2.36. 1. Elradi de convergencia de la serie de potencies -, 2" és R = 1.

Aqui aprofitem per recordar que, si 0 < r < 1, llavors ZSLO:O r" = —L. De la mateixa

1—r"
manera, també tenim que
1
Z 2" = T |z| < 1.
n=0 <

Aquesta identitat és molt 1util per calcular el valor de la suma d’algunes series de
potencies.

2. Calculem el radi de convergencia de la seérie de potencies
Z 272",
n=0
Tenim

1
B= lim sup V2" = 2.

Per tant, el radi de convergencia és R = 1/2, amb el que la série convergeix si
|z| < 1/2 1 és divergent si |z| > 1/2.

5Jacques Hadamard, Versalles, 1865-1963, https://ca.wikipedia.org/wiki/Jacques_Hadamard
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3. El radi de convergencia de la serie de potencies »; -, n"z" és R = 0. %
Prova del Teorema. Clarament (c) implica (a), amb el que només ens cal demostrar (c) i

(b).

(c) Si R = 0 no hi ha res a demostrar. En cas contrari, prenem p amb |z—b| <r < p < R.
Llavors 1
> — = limsup {/|a,| = inf sup {/|a,|.
R E nxk
Per tant, existeix un k € N de manera que

1
Van| < —, n=k.
p

Per veure la convergeéncia uniforme en |z — b| < r, aplicarem el criteri M de Weierstrass.
Tenim que

RS

\

r

|an(z — )| < <p> , lz—bl<r; n=k.

n
Com que r/p < 1, la serie ), <%> és convergent, amb el que pel criteri M de Weierstrass,

la nostra série de potencies convergeix absolutament i uniforme en |z — b < 7.
(b) Sigui z € C amb |z — b| > R. Prenem p > R amb |z — b| > p. Tenim que

1
<E= lim sup v/|an,|.

D=

De la definicié de limit superior, veiem que hi ha infinits nj, de manera que "{/|a,,| > 1/p.
Aleshores

|z — b[™
’ank(z — b)nk’ > 7 > 1,
amb el que la serie és divergent ja que el terme general no tendeix a zero. O

Com veiem, el calcul del radi de convergencia R ens determina tota la regié de con-
vergencia de la série (un disc obert de radi R, d’aqui que R s’anomeni radi de con-
vergencia), excepte els punts z amb |z — b| = R, és a dir, els punts de la frontera del
disc de convergencia. Per aquests punts, la série tant pot ser convergent com divergent, i
s’ha d’estudiar apart (ho farem més endavant).

Exercicis

2.6.1. Considereu la série de poténcies S(z) = > s an(z —i)". Digueu si sén certes les
seglients afirmacions.

a) S(z) pot ser divergent en z = 0 i convergent en z = —i simultaniament
b) S(z) pot ser convergent en z =1+1 i en z = 2 + i simultaniament

c) Si S(z) és convergent en z = 1+ i, aleshores també ho és en z = 2i
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d) Si S(z) és divergent en z = 2i, aleshores també ho és en z = 2 + i. <

Q0
2.6.2. Sigui f(z) = >, anz"™ una série convergent en el disc D = Dg(0). Demostreu que
n=0

21 d9 o0
/ |f(re \2 Z lan)?r?,  si 0<r <R 4
0 n=0

Q0 0
2.6.3. Sigui S1(2) = Y anz™ i So(2) = Y. anz""t. Demostreu que Sy és convergent en
n=1 =1

n=
z si i només si ho és Sa. En cas afirmatiu, tenim que S1(z) = 252(2).

2.7. Calcul del radi de convergencia

Pel criteri del quocient, observacié 1.26, podem obtenir una altra manera de calcular el
radi de convergencia d’una serie de poténcies, que en alguns casos pot ser més convenient
que aplicar el criteri de I'arrel.

Lema 2.37 (Criteri del quocient). Podem calcular el radi de convergéncia de la série de

poténcies
Z an(z —0)"

n=0
amb la férmula

R = hm |an|
|an+1|

sempre que aquest limit existeixi.
Exemples 2.38. Calculem el radi de convergencia R de les segiients series de potencies:

) Z nz". Apliquem el criteri del quocient. Tenim que
n=1

Z’I’L
) Z m Aplicant el criteri del quocient, tenim que

n=1

1/(n+1)! (n+2)!

R—hm _hénm

n 1/(n+2)!

El criteri del quocient sol ser més simple per fer els calculs, especialment quan apareixen
factorials. O

= lim(n + 2) = +o0.
n
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Adverténcia 2.39. El fet que existeixi el limit superior

|an+1|

lim sup ]
Gn

)

no implica que aquest coincideixi amb lim sup {/|a,|, vegeu I’'Observacié 1.26. .

Exemple 2.40. Per tant, per calcular el radi de convergencia R de la serie de poténcies

Z n2n22n

n=1

no podem aplicar directament el criteri del quocient. Per tal de calcular R en aquest cas,
ho podem fer:

(i) Aplicant la definicié de R amb la férmula + = limsup {/|a,|. En el nostre cas, tenim
que as, = n2™ i a, val zero si n és senar. Llavors

1
B limsup /|an| = lim %/|ag,| = lim ¥/n2" = v/2 lim X/n = V2,
amb el que R = 1//2.
(i) Fent el canvi de variables w = z* obtenim la série de poténcies Y-, n2"w". Apli-

quem el criteri del quocient per calcular el radi de convergeéncia R’ d’aquesta nova serie:

n2" 1 n
R =lim ——— = —1i
o (n+1)2n+L 2 Wl

=1/2.

Aleshores la série és convergent si |w| < 1/2 i divergent si |w| > 1/2. Es a dir, la nostra série
inicial és convergent si |22| < 1/2 < |z| < 1/4/2, 1 és divergent si |22 > 1/2 < |2| > 1/4/2.
Aixi també obtenim que R = 1/4/2. O

Exemple 2.41. Calculem el radi de convergencia R de la seérie de potencies lacunar”

IR
n=1

Aqui no tenim cap canvi de variable que ens permeti aplicar el criteri del quocient. Ales-
hores hem de fer servir la definicid

1
B lim sup A/ |an|.

Ara observem que a, sempre val zero excepte quan n = 2% que tenim que Qok = 2k,
Llavors

k
E = limsup {/|a,| = limsup \/|a2k = hm % Vok = hm2 2k =20 =1,

amb el que R = 1. O

"https://en.wikipedia.org/wiki/Lacunary_function
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2. Funcions de variable complexa

Fins ara, només hem vist exemples de calcul quan els coeficients sén reals. No hi ha
diferéncia si els coeficients sén complexos, ja que sempre estem treballant amb el modul
dels coeficients.

Exemple 2.42. Calculem el radi de convergencia de la serie de poténcies

o0

1
Z - 2™,
it

: _ 1 _ 1 _ 1
En aquest cas, tenim que a, = =, amb el que lan| = ] = U Per tant
. a . n+1)2+1
R = lim ] =hm¥=1. O
n a1l n n?+1

Exemple 2.43. Per veure un altre exemple, calcularem el radi de convergencia R de la
serie de potencies
o6} .
1 -1 —
Z(*+( )(.O)W.
n 1+
n=1

En aquest cas, tenim que

n 1+ n
ja que
1—i (1—4)2 -2 .
= = = —1.
1+1 |1+ 4|2 2
Llavors J
1 1+ n2
ran|=¢2+1=,
n n
amb el que
V1 2 1
R—lim %l _pyYE¥®r  (tD) o
W lana] on (n+ 17 +1
Exercicis

2.7.1. Calculeu el radi de convergencia de les segiients series de potencies

a) Znazn; QGR, C) i M’

n?’L
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n

& 2 & z
e) Y a" (z+1)" ae(0,1), h) Y

n/
n=0 n=0n+2

o (22)" i 3 n?(3z —2)"
f) 7;1 T ) 7;1 ( )",
g) Z (_1)” (Z _ 2>n(n+1), ]) Z (1 + (_1)n)n22"' 4

n(n+ 1)

=1 0

3
3
Il

2.8. Comportament a la frontera del disc de convergencia

Quan estudiem la convergéncia d’una serie de poteéncies de nombres complexos
n
Z an(z —b)",
n=0

amb radi de convergéncia R, sabem que la série convergeix per |z — b| < R, i que la serie
és divergent quan |z — b| > R. Que passa pels punts z amb |z —b| = R ? Llavors pot
convergir o no. Per exemple, la serie de potencies
1
2
n=1 n
té radi de convergencia R = 1. Per z = 1, la serie és divergent, i per z = —1 la serie és
alternada i, per tant, convergent (aqui quedaria estudiar els altres punts del cercle |z| = 1).
En la frontera del disc de convergéncia, tenim que z — b = Re¥, aixi que la série a

estudiar queda
Z a, R"e™.
n=0

Per tal d’estudiar la convergencia per ¢ fixat, el primer que hem de fer és mirar si el terme
general tendeix a zero o no. Es a dir, mirem si

an Rnemt

-0 quan n — 0.

En cas que no tendeixi a zero, llavors ja sabem que la serie és divergent. En cas que
tendeixi a zero, ens cal estudiar-ho millor.

Si no hem tret cap conclusié del primer pas, el segiient pas natural sol ser comprovar
si la serie decreix prou rapidament, de manera que tinguem convergencia absoluta a la
frontera, és a dir si

D lanR"| < +oo.

Aleshores pel criteri M de Weierstrass la série convergeix uniformement i absoluta en el
disc tancat Dpg(b).

Si no es compleix cap de les dues situacions anteriors, és a dir, si la serie no convergeix
absolutament en cap punt de la frontera del disc de convergencia perd no podem garantir
la divergencia arreu, aleshores ens caldra filar més prim.

50
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Lema 2.44 (Férmula de sumacié per parts). Siguin {a,},{bn} successions de nombres
complexos, i posem A, = ag+ -+ an. Llavors

Z agby = Apbpy1 — Z Ap (b1 — br).
k=0 k=0

Demostracié. Posant A_; = 0, tenim que

n n n n—1
Darby = D (Ap — A1) by = D Apbr — D Agbiga
k=0 k=0 k=0 k=0
= 2 Ap(by = brs1) + Anbpg1. O
k=0

Com a cas particular, estudiem les cues Z;”:n arbr amb m > n. En tal cas podem definir

g = Qnak, bp = bpypp 1 Ag = Z?:o a; = Z?:: aj. Aplicant la férmula de sumacié per
parts, tenim que

m—n - ~ - m—n o o~ -
D kb = Amnbmni1 — Y Ap(berr — bi).
k=0 k=0
Deduim doncs la segiient identitat:
m m
D akbk = Apmbmit + D Ang(be — bria), (2.1)
k=n k=n
on ara A, j = Z?:n a;.

Per altra banda, notem que per tota constant A € C tenim que
m
Abp1 — Aby + Y A(b — 1) = 0.
k=n

Com que Aj = Z?:o aj = Apk + An—1 (per tot k > n), prenent A = A,,_q, de (2.1) en
deduim que

Z apby = Apbmi1 — Ap_1b, + Z Ak(bk — bk+1). (2.2)
k=n k=n

Teorema 2.45 (Criteri de Dirichlet-Abel uniforme). Siguin X,Y dos conjunts. Siguin
{an}tn=1, una successid de funcions a, : X — C i {b,}n=1 una successié de funcions
bn : Y — R . Suposeu que es verifica alguna de les segiients dues condicions:

1. (criteri de Dirichlet) Existeiz M > 0 pel qual

N
Z ak(‘r) < M7
k=1

per atotxe X i N = 1.
La successio {bp}n=1 €s no negativa i decreix cap a 0 uniformement en Y (i.e.

bnr1(y) < bu(y) per a tot n > 0 i per a tot y € Y, i by(y) — 0 uniformement
enY).
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2. Funcions de variable complexa

. . N o0 . .
2. (criteri d’Abel) La série ), 4 an(x) convergeiz uniformement en X.
La successio (by,) és una successié monotona de funcions reals fitada uniformement
enY.

Aleshores, la série funcional Y | an(x)by(y) convergeiz uniformement en X x Y.

Demostracid. Demostrem el criteri de Dirichlet. Posem Sy, (z,y) = >, ar(x)bi(y), i
sigui € > 0. Pel criteri de Cauchy uniforme (vegeu 1'observacié 2.32), ens cal veure que hi
ha ng € N de manera que per a tot t € X, ye Y,

’Sn»m(xay)‘ <§g, m>n = ng.

Per la versié (2.2) de la férmula de sumacié per parts (amb ag = 0), tenim que

on Ag(x) = Z?:l a;(x), que per hipotesi estan uniformement fitades per M.

Com que b,, — 0 uniformement en Y, podem trobar ny € N, de manera que 2Mb,,,(y) <
€ per a tot y € Y. Siguin m > n = ng. Donat que també es compleix que la successié
{br(z)} és decreixent, i no-negativa, obtenim que per a tot x € X, ye Y,

NgE

‘Smm(x,y)’ Gk(%‘)bk(y)’

k

n

NgE

Ap (@) (0k(y) = b1 () + A (@)bins1(y) — An—1(2)bn(y)],
k

n

S (2, 9)] < M Y- b (y) — brr ()] + M (Jbms1 ()] + 1bn ()
k=n

=M ( 3 (bk(y) —bk1(y))  +  (bm+1(y) + bn(y))> = 2Mb,(y)
k

=n

< 2Mby,(y) < e.

De manera similar es pot demostrar el criteri d’Abel, usant la férmula de sumaci6é per
parts (2.1). O

Com a conseqiiencia del criteri d’Abel, tenim el segiient resultat que no demostrarem

Teorema 2.46 (Teorema d’Abel). Si la série de poténcies Y, an(z — b)" convergeiz
uniformement en un conjunt A c C, llavors també convergeix uniformement en el con

C(Ab)=b+ [ ] t(A—b).

0<t<1

En particular, si la série convergeix en zg amb |z9 — b| = R, llavors

lim Z anr’(zo — b)" = Z an(z0 — b)".

n=0 n=0
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2. Funcions de variable complexa

Demostracio. Vegeu 'exercici 2.8.2 O

Exemple 2.47. Considerem la serie de potencies S(z) = 3170, =

n=1 n
Meétode 1: El radi de convergencia és R = 1. Veiem com és comporta en |z| = 1.

Clarament, la serie (_T?" és convergent pel criteri de Dirichlet. Ara bé, el criteri de
Dirichlet ens serveix també per estudiar la convergencia de la serie ), - Lot Tenim que

nt

Zn] Gikt _ it (1 —e™) _ilotne sin(%)

1—eit sin(%)’

on hem fet servir que

it it t cqt ot
—e =e2(e 12—62)2—21612S1n§,

i de la mateixa manera,

; cunt .ont
1—e™ = —2ie'2 sin 5

(n+1)t

L

=1,i|sin(%)| < 1, obtenim

2

Com que % . 0, aplicant el criteri de Dirichlet, obtenim que la seérie

Com que |e

|sm sl < ] site e 2 —e].
2

Z lemt convergeix uniformement en [e, 27 — €.
n=1
O equivalentment, en tot arc I tancat del cercle unitat que no contingui a z = 1.

I per tant, aplicant el teorema d’Abel, la série Y, 2 £~ ¢és uniformement convergent en
el con {re’; 0 <r <1, te[e,2m —¢]}. Per Cauchy-Hadamard, també tenim convergencia
uniforme en D,.(0) si 7 < 1, i per tant en tenim a tot compacte contingut en D\{1} (sempre
el podrem recobrir per la unié d’un con i un disc de radi r < 1.).

Sit =0 ens queda la seérie )| % que ja sabem que és divergent.

Metode 2: Treballem directament amb z € A < D. Volem caracteritzar els conjunts A
de manera que hi tinguem convergencia uniforme. Primer mirem que hi poguem aplicar
el criteri de Dirichlet. Si z = 1 la serie és divergent. Si ens situem a distancia major que
g, és a dir z € A. := D\D.(1), aleshores

n
2.7
k=1

que és uniforme en A, i en n. Com que % . 0, podem aplicar el criteri de Dirichlet i
concloem directament que S convergeix uniformement en A. i, per tant en tenim a tot
compacte contingut en D\{1}. Ens hem estalviat els teoremes d’Abel i Cauchy-Hadamard.

Més endavant (a 'exercici 3.4.5) veurem S(z) = —Log (1 — z), aixi que quan z — 1
tenim que |S(z)| = |In(|1 — z|)| — o0, i no podrem tenir convergencia uniforme en cap
conjunt que s’acumuli en z = 1. Per tant, tot conjunt on hi hagi convergencia uniforme,
de fet, esta contingut en A. per € prou petit. O

(1—2")
1—2

<2 <
T—z €

[ DO
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Exercicis

2.8.1. Estudieu la convergencia de les segiients séries de poténcies:

0 peu 0 Z3n+1 0 n(z _ i)n—l

%) 21? ¢) ZO 3n+ 1 ¢) 21 o i
0 Ln+2 ) (_1)(n+1)

b)  — d) A
7;0 (n+1)(n+2) 7;1 n

2.8.2. Demostreu el criteri d’Abel i el teorema d’Abel. Indicacié: Vegeu [BC13, Teorema
2.20] per un cas més general en regions no tangencials (angles de Stolz). <
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3. Derivacié complexa i holomorfia

En aquest capitol definim la derivacié complexa i el concepte de funcié holomorfa. Veurem
les propietats d’aquesta forma de derivacié i ho relacionarem amb les equacions de Cauchy-
Riemann'. Treballarem també la notacié de Wirtinger? que permet fer un calcul de
derivades complex més eficient. Finalment, veurem que les séries de poténcies estudiades
al capitol anterior sén holomorfes. Per acabar el capitol, farem una introduccié de funcions
holomorfes importants, centrant-nos en les funcions trigonometriques i en les branques de

les seves funcions inverses.
3.1. Funcions holomorfes
Sigui 2 < C un obert; f: Q — C, i 2y € €.

Definicié 3.1. Diem que f és C-derivable en zy si existeix el limit

i F) = o)

z—z0 2 — 20
En aquest cas posem
. f(z) = f(z0) .. f(zo+h)— f(20)
/ = 1 —_—m 1 .
fz0) zi»Hzlo z— 2y B h

Diem que f és holomorfa en 2, i posem f € H(Q), si és C-derivable en tot punt zy € €.
Una funcié holomorfa en C es diu que és una funcid entera. .

Observacié 3.2. Només hem definit funcions holomorfes en un obert, perd es poden
definir per altres conjunts. Per exemple, f és holomorfa en un compacte K si hi ha
un obert 2 amb K < ) de manera que podem estendre f a tot I’obert de manera que
f e H (Q) °

Observaci6 3.3. La definicié de f’(z) es pot escriure també com

f(z) = f(20) + f'(20)(z = 20) + o(z — =),

on usem la notacio
g(z) =o0(z) si lim 9) _ 0.
z—0 Zz

!Georg Friedrich Bernhard Riemann, Breselenz, 1826 — 1866, https://ca.wikipedia.org/wiki/Georg_
Friedrich_Bernhard_Riemann

Wilhelm Wirtinger, Ybbs an der Donau, 1865 — 1945, https://ca.wikipedia.org/wiki/Wilhelm_
Wirtinger
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Usarem també la notacié

g(z) =0(z) si limsup g(;) < +00.
z—0
Es pot veure facilment que si g(z) = O(z"), aleshores g(z) = 0(2"1), i que g(z?) = O(z*")

per exemple. °

)

Exemple 3.4. 1. f(z) = z és holomorfa a tot C.
2. f(z) = 22 és holomorfa a tot C amb f’(z) = 2z. En efecte, tenim que

(z + h)? — 22

Y =2z2+h—2z sih—0.

3. f(z)=2"€ H(C) amb f'(z) = nz""1.

4. f(z) =e* € H(C) amb f’(z) = e*. En efecte, tenim que

flz+h)—f(z) eth—er el —1 -
- — ; — - e si h—0,
ja que
ho1 1 & awn
eh :E27:1+O(h)—>1 quan h — 0. O
n=1""

Exemple 3.5 (Funcions no holomorfes). 1. f(z) = Z no és C-derivable en cap punt.
En efecte, tenim que

. z0+h—72 I h

i = lim —

h—0 h h—0 h
Si h =x € R, llavors % = 1, pero si h = iy, tenim que % = —1 i el limit anterior no
existeix.

2. f(z) = Z" no és holomorfa.

3. Rez i Imz no sén holomorfes. O

Ja podem comencar a veure que una funcié holomorfa essencialment només depén de z
(no té dependeéncia de Z, vegeu 'observacié 1.11). Donarem un sentit rigorés a aquesta
afirmacié a la proposicié 3.27

Observacié 3.6. Propietats basiques de les funcions holomorfes (mateixes proves que per
R).

1. Si f és C-derivable en zg, llavors f és continua en zg.

2. Si f,g son C-derivables en zg, llavors f 4+ g i f - g també ho sén, amb les regles
habituals de derivacié.
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3. Si f és C-derivable en zg amb f(zp) # 0, llavors 1/f és C-derivable en zy amb

() (o - - L0,
£ (f(Zo))Q'
4. Regla de la cadena: siguin QG < C oberts; f: G —> Qig: Q2 — C. Si fésC-

derivable en z( i g és C-derivable en f(zp), aleshores la composicié go f és C-derivable
en zg amb

(g0 f)(20) = ¢'(f(20)) - f'(20)- .
Exemple 3.7. Més exemples de funcions holomorfes:
1. Donat que f(z) = z és una funcié entera, es compleix que tots els polinomis
P(z)=ap+ a1z + -+ anz", (ag, - ,a,€C,n=0)
son funcions enteres.
2. Les funcions racionals (quocients de polinomis en z) sén holomorfes en

C\{zeros del denominador}. O

Proposicié 3.8 (Derivada de la inversa). Siguin g : @ — G i f : G — Q funcions
continues de manera que

fla(2)) = =
Si f és holomorfa en G i f' (g(z)) # 0 per a tot z € ), aleshores g és holomorfa en ) amb

My L
96 = Fue)

Demostracié. Notem que g és injectiva, és a dir que g(z) = g(z¢) implica que z = z.
Efectivament, tenim que

9(z) = g(z0) = z=f(9(2)) = f(9(20)) = 2.

Per tant, per z # zp, tenim que g(z) # g(z0) i llavors

L 220 _ fl9() = flg(z0)) (=) — g(20)

z— 29 9(2) — g(20) z— 2

Com que g és continua, tenim que w = g(z) — wo = g(z0) si z — zp, de manera que, com
que f és holomorfa, obtenim

lim 9(2) —g(z0) , 1 1 1 1

22z zZ—Z z2—zo [ f(9(z))—f(g(20)) . Fw)—f(wo) w ol
O ' O( sJ(Z)—LcJ(zo)0 ) T f'(wo) — f'(9(20))
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3. Derivacié complexa i holomorfia

Corollari 3.9 (Derivada del logaritme). Qualsevol branca continua del logaritme L és
holomorfa amb

Observacidé 3.10. Si, donat « € R, considerem la banda horitzontal oberta
By={zeC:a—nm<Imz < a+n},

llavors la funcié exponencial complexa és biholomorfa (és a dir que es tracta d’un difeo-
morfisme holomorf) entre B, i C\e'*(—00,0]. .

Finalment, vegem que tot logaritme continu en {2 d’una funcié holomorfa, és també
holomorf.

Proposicié 3.11. Sigui Q < C un obert i f : Q@ — C\{0} holomorfa. Sigui L; una
determinacio del logaritme de f en €. Llavors Ly és holomorfa en £ amb

f'(2)
L(z) = =, z €.
d f(2)
Demostracio. Fixem zg € . Com que f és holomorfa, en particular és continua, de
manera que hi ha § > 0 de manera que

F(Dstea)) < D flaa) 517G ) = D

Com que f(zp) # 0, llavors D; evita alguna semirecta amb origen el 0, i per tant existeix
una determinacié L£(w) del logaritme de w en Dj, que sabem que ha de ser holomorfa.
Definim

h(z) = L(f(z)), z € Dy := Ds(20).

Com que f és holomorfa, llavors h és holomorfa en Dy amb

1) = £ (7)) - /o) = £

També h és una determinacié del logaritme de f en Dy. Com que Dy és connex i L també
és una determinacio6 del logaritme de f en Dy, aplicant la proposicié 2.30, tenim que hi ha
k € Z de manera que Ly = h + 2kmi en Dy, i en deduim que Ly és holomorfa en Dy amb

f'(20)
f(z0)

L (20) = W' (20) =
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Exercicis

3.1.1. a) Demostreu la regla del producte per la derivacid.
b) Proveu que si f és C-derivable en zy llavors és continua en aquest punt.

c) Proveu que si f és C-derivable en zy, llavors

f(2) = f(20) + f'(20)(2 = 20) + A(2) (2 — 20)

on A(z) = 0 si z — z. <

3.1.2. Siguin f(z) i g(z) funcions enteres. Decidiu si les seglients funcions son enteres:

a) f(2)°, c) f(2)/9(2), e) f(1/z),
b) f(2)g(2), d) 5f(2) +ig(2), f) f(g(2)).

3.1.3. Proveu que g(z) = 32 + 22 — 3y> — 1 +i(6xy + 2y) és entera. Escriviu g com a
funcio de z.° <

3.1.4. Ezxisteix alguna funcio f holomorfa en el disc unitat D tal que per a totn = 2,3, ...

o) f(£3) =t ? ) [f () = w7
b) f(+5) = 77 Q) 1f )=t :
3.1.5. Doneu una branca de log(z% + 2z + 3) que sigui holomorfa a z = —1. Calculeu la

seva derivada en aquest punt. En quin domini és holomorfa la branca que heu definit? <

3.1.6. Sigui f una funcié holomorfa en un obert Q < C que satisfa |f(z) —i| < 1 per a
tot z € Q). Demostreu que la funcio g definida per

_1-i+f(2)
1+i— f(2)

té logaritme holomorf en €. <

9(2)

3.1.7. Sigui f(z) = 23 +1i2 = (—1++/30)/2, 22 = (=1 —+/3i)/2. Provar que no existeix
cap punt w en el segment que uneix z1 i zo de manera que f(z2) — f(z1) = f(w)(z2 — 21).
Que es pot dir del teorema del valor mitja per funcions complexes? <

38i f(2) = u(z,y) + iv(z,y) és holomorfa en un domini Q que talla la recta real i u, v sén holomorfes en
dues variables, llavors es pot provar que f(z) = u(z,0) + iv(z,0), vegeu l'exercici 4.10.10.
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3.2. Les equacions de Cauchy-Riemann

Les equacions de Cauchy-Riemann ens donen una relacié entre la C-derivabilitat i la R-
diferenciabilitat de f (pensada com una funcié de dues variables). Una funci6 f = u+ v :
Q c C — C la podem pensar com una funcié

f:QcR? — R?
(@,y) = (u(zy) v(@,y).

Recordem que f(z,y) = (u(z,y),v(z,y)) és R-diferenciable en (zo,yo), si i només si,
existeix una aplicacié lineal

de manera que

. Y—Yo
1 = 0. 3.1
(937?;)—1’1?315072,!0) H($ —Z0,Y — yO)H (31

)= seom -2 (2700

Aqui estem identificant el nombre complex a + ib amb el vector (a,b), és a dir amb la

. a
matriu columna b
En cas que f sigui diferenciable, es compleix que

a b Uy U
D =L = = v
f(l‘anO) < c d ) ( ve vy > ’
on Uy, Uy, Vg, vy denoten les derivades parcials de v i de v respectivament.

Vegem com actua L en un nombre complex:

a b T\ __ (¢ n b
c d y ) c Y\a )
Aixi, amb la identificacié z = x + iy = < 5 ), trobem

Lz = z(a+ic) + y(b +id).

Escrivint o = a +ici 8 = b+ id, trobem

24z zZ—z
2 +8 21

Lz=azx+ by =« = Az + uz, (3.2)

on \ = a;i'g ip= %lﬁ Per tant, tota aplicacié R-lineal L es pot expressar com a suma

d’una aplicacié C-lineal en z i una C-lineal en Zz.
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Up Uy

Tornant a la diferencial D f(xo,yo) = < >, trobem o = u; + v, = fp 1 8 =

Uy Uy
uy + vy = fy i en tal cas ens queda

fo—ify _ Of _fatify O (3.3)

A== T 2 oz

Definicié 3.12. Posem z = z + iy, les derivades de Wirtinger (o operadors de Wirtinger)
sén els operadors diferencials:

o _1(o0 _ ;2.
L 0z 2(690 Z&y)’

o _1(0 4 ;0
2. 5—2(%4—@%).

A vegades, per abreujar escrivim 0f = 0, f = g’; i0f =0sf = a. o

Per tot el que hem vist en aquesta seccid, tenim que

Dfzy(2) = 0f(20)z + 0f (20)Z.

Resumint, hem vist que si f és diferenciable en zy aleshores la diferencial és C-lineal si i
només si 0f(zp) = 0, si i només si f és C-derivable en zp, ja que al limit (3.1) podem usar
la descomposicié (3.2) posant =01 X = f'(20).

Notem també que

of 1

aZ_2<a —{—'a)(u—i-iv):;(ux-l-ivx—f-i(uy-l-ivy)):;((Ux_vy)+i(vx+uy))v

IR S
ox oy

i se n’extreu que

Ug = Uy i

é’sz(z){

Uy = — Vg,

és a dir, les funcions holomorfes compleixen les equacions de Cauchy-Riemann que enun-
ciem a continuacié.

Teorema 3.13. Sigui f: Qc C— C, i zg = 29 + iyo.
[z +1y) = u(z + 1y) +iv(x + iy).
Son equivalents:
(a) f és C-derivable en zg amb f'(z0) = a + ic;

(b) f pensada com a funcié de R?* en R? és R-diferenciable en (xq,vo) amb

Df(zo,y0) = < v )

C a
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Es a dir, f compleix les equacions de Cauchy-Riemann
Uy = Uy
Uy = —Vp

df(z0) = 0.

que es poden escriure també com

En tal cas, notem que (a) implica que f' = uy +iv, = fr = Of.

Observem que per ser holomorfa en un obert, a part de complir les equacions de Cauchy-
Riemann, la funcié ha de ser R-diferenciable en tot 1'obert.

Proposicié 3.14. Sigui Q < C un obert connex. Si f € H(Q) amb f'(z) = 0 per a tot
z €, llavors f és constant.

Observem que el resultat no té per que ser cert si {2 no és connex, encara que si que la
funcid seria constant en cada component connexa.

Demostracié. Només cal observar que la hipotesi f' = 0 implica que la diferencial de f en
cada punt d’ €2 és zero i per tant, el resultat és conseqiiencia del corresponent resultat per

a funcions diferenciables. O
Exemple 3.15. 1. Considerem f(z) = Z que és diferenciable a tot R? amb la iden-
tificacié habitual de C amb R?. Si posem f(z + iy) = x — 4y, llavors u(z,y) = x
iv(z,y) = —y, i per tant u, = 1 # —1 = vy i f no compleix les equacions de

Cauchy-Riemann en cap punt.

2. Si f(2) = |2|? = 2% + y?, llavors f és diferenciable a R2. Es compleix que u(x,y) =
%+ y* i v(z,y) = 0, i per tant u, = 2z, uy = 2y i vy = vy, = 0. Per tant, les
equacions de Cauchy-Riemann només es compleixen per z = y = 0 i f és només
C-derivable a l'origen. (Aquesta situaci6 no la tractarem en aquests apunts, ja que
si f és només C-derivable en un punt, no es compleixen les propietats fonamentals
de la teoria de Cauchy).

3. Ara comprovarem que la funcié
23 — 3zy? +i(3x%y — 3)

defineix una funcié entera.

En efecte, la funci6 és clarament R-diferenciable. Notem que u(z,y) = 2% — 3xy?,

i v(x,y) = 3z%y — y>. Aleshores només ens cal comprovar que es compleixen les

equacions de Cauchy-Riemann:

uy = 322 — 3y% = Uy
Uy = =6y = —vg,

i per tant f defineix una funci6 entera (és a dir, holomorfa a tot C). O
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Observacié 3.16 (Efecte de la derivada). Suposem f C-derivable a zg amb f’(z9) % 0.
Observem que
(Vu, Vo) = ((ug, ty), (vz,vy)) = 0.

Per tant, com que Vu i Vv sén diferents de zero (es pot veure usant les equacions de
Cauchy-Riemann), concloem que les corbes de nivell de u i v sén ortogonals, vegeu la
figura 3.2.

De fet, podem extreure encara més informacié de ’existéncia del limit

lim f(2) = f(20)

220 Z— 20

= f'(=0),
que es pot escriure com

f(z) = f(z0) = f'(20)(z = 20) + o(|z — 20])-

Concretament, per a z a prop de zg 'aplicacié w — wy amb w = f(z) i wyp = f(z0) es
comporta com ’aplicacié lineal

w—wo ~ f'(20)(z — 20)-

Podem dir doncs que l'aplicacié f(z), en un entorn infinitesimal de zy dilata les distancies
en un factor de |f’(20)|:
lw —wol| ~ |f'(20)] - |z = 20l

i que gira els vectors que surten de zp en un angle arg f(zo):
arg(w — wp) ~ arg(z — zg) + arg f'(20),

vegeu la figura 3.2.

Una funcié és conforme si I’angle entre dues corbes 71, 2 que coincideixen en un punt es
preserva (orientacié inclosa). Diem doncs que una funcié holomorfa és localment conforme
alla on f'(z) # 0: si suposem 7;(0) = 2o i 7;(0) # 0 per j € {1,2}, aleshores podem
justificar (exercici) que (f o7;)'(0) = f'(20)7;(0) i tenim que

R

D’altra banda, usant la representacié de matrius que preserven angles (és a dir les
isometries de determinant 1, anomenades SO(2,R), i els seus multiples) donada a (3.2),
podem veure que la preservacié dels angles de funcions amb diferencial no nulla en un
punt donat implica I’holomorfia en aquest punt, deixem els detalls pel lector. .

arg((f 071)'(0)) — arg((f ©12)'(0)) = arg

Observacié 3.17 (Jacobia i canvi de variables). Observem que com que [ = f, =
Uy + 1V, tenim que

17 = (u2)® + (uy)® = (u0)® + (v2)” = uavy — uyvs,
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20 f

Figura 3.1.: Graella en el pla complex entre —2 — 2¢ i 2 + 24.

que coincideix amb el jacobia de I'aplicacié (u,v) : R? — R2. Efectivament,

J(u,v) = det(D(u,v)) = ‘(“ “y> = Ugly — Uy

Vg Uy

Per tant, per la regla del canvi de variable, si g és continua i f és un difeomorfisme entre
un obert U i f(U), tenim que

/U g0 F(2)|f(2) dim(z) = /U g0 F(2) [ (2)] dm(z) = / g dm(w),

)

on dm indica la integral de superficie, sovint denotada dx dy (la identitat funciona amb
la integral en el sentit de Lebesgue si g és mesurable, per exemple) i si prenem g(w) = 1,
trobem

/ ()P dm(z) = / dm(w) = m(f(U)),
U f(U)

és a dir que podem calcular la mesura de Lebesgue del conjunt imatge integrant el quadrat
del modul de la derivada. .

Exercicis

3.2.1. Representem la identitat al pla complexr amb la coloracié habitual i amb la graella
entera. Per exemple, la identitat sobre el quadrat Q = {x + iy : z,y € (=2,2)} és la
primera imatge de la figura 3.2. Una de les segiients funcions, les diferencials de les quals
no s’anullen en Q, representa una funcié holomorfa en Q. Quina €s?
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Figura 3.2.: En la imatge central, trobem la graella en el pla complex en 29Q. La segona
representa f(z) = 22 — 2z + 2 en el mateix domini amb un grafic de colors en
coordenades cartesianes (vegeu la secci6 2.1). Recordem que es representa la
preimatge de la graella per la funcié f. Prenem zo = 1 + 4, wo = f(z0) =01
f(20) = 2i. La tercera imatge és 'aproximacié lineal wg + f'(z0)(z — 20), que
envia zg a wp i produeix una rotacié de § i una dilatacié de ra6 2 entorn de
zo. En general, veiem que els angles de la graella es preserven llevat del punt
z1 = 1 + 04, on s’anulla la derivada, i 'aproximacié (en aquest cas igualtat)

és de grau 2: w = f(21) + @(2 —2)%

d)
3.2.2. Trobar els valors de les constants a, b, ¢ de manera que f sigui holomorfa i expresseu-
la en termes de z.

a) f(z) =x+ay +i(bx + cy)

b) f(z) = cosz(coshy + asinhy) + isinx(coshy + bsinhy). q
3.2.3. Sigui f = u+iv holomorfa i dues vegades diferenciable en un obert 2 < C. Proveu
que les funcions u i v sén harmoniques (una funcié f(xz,y) €és harmonica si les seves
segones derivades parcials son continues i el seu laplacia Af = fiz + fyy = 0.) <
3.2.4. Considerem u = e *(zsiny — ycosy)

a) Provar que u és harmonica.
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b) Trobar una v de manera que f = u+ v sigui holomorfa (s’anomena harmonica conju-
gada de ).

¢) Trobar una expressid compacta de f(z). a

3.2.5. Trobar els polinomis harmonics de la forma ax® + bx’y + cxy® + dy>. Trobar la

funcio harmonica conjugada i la funcié holomorfa corresponent. <

3.2.6. Sigui Q = C un domini (és a dir, un obert connex) i f una funcid holomorfa en €.
1. Proveu que si f només pren valors imaginaris purs, aleshores f és constant.

2. Proveu que si |f| és constant, aleshores f també és constant. Equivalentment si f

només pren valors en una circumferéncia, llavors f és constant. <
3.2.7. Doneu una descripcid de les funcions enteres de la forma f(x + iy) = u(zx) +
iv(zx,y). <

3.2.8. (a) Determineu els nombres A € R pels quals
va(z,y) = 2sinzsinhy + 23 — Azy® + y
és la part imaginaria d’'una funcié entera fy i calculeu f.
(b) Sigui A € R un nombre determinat en a). Es

ovy  .0uy

INT o Z&y

una funcio entera? Quina relacid hi ha entre gy 1 f)? 4

3.2.9. Decidiu on no sén holomorfes les funcions segiients

1 23 3z -1 2
a) ————, ) M, ) 5, d) z P
2 —2+3i 2211 22+ z+4 (222 =32+ 1)?
3.2.10. Provar que |z|?* és C-derivable en z = 0 pero enlloc més. <

3.2.11. Sigui

_ Jexp(=1/zY) siz#0
f(z)_{o siz=0.

Demostreu que

a) f(z) satisfa les equacions de Cauchy-Riemann a tot punt z € C.
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b) f no és continua al 0 i per tant f no és holomorfa a un entorn del 0. <

3.2.12. Siu i v s’expressen respecte a les coordenades polars (r,0), proveu que les equa-
cions de Cauchy-Riemann es poden expressar de la forma

ou 1o0v ov 1 0u

o rade or  rab
Indicacié: estudieu el limit incremental sequint argz = 0y i |z| = 19. <

3.2.13. Quina part del pla es contreu i quina part es dilata si la transformacid es realitza
mitjancant la funcid:

a) w=2?; ¢) w= 17. d) w=¢€*;
z

b) w=2%+2z; e) w=1log(z—1). <

3.3. Calcul de les derivades

Ja hem vist la definicié de funcié holomorfa, i hem vist com aquesta condicié és equivalent
a ser una funcié diferenciable que satisfa les equacions de Cauchy-Riemann. Tornem ara
a visitar els operadors de Wirtinger per mirar d’arribar a unes regles de calcul senzilles.

Exemple 3.18. Les derivades de f(z) = z sén

of 1 . . of 1 .
5—2(1 i-i)=1 i 52—2(1+z i) =0.
Les derivades de g(z) = z s6n
g g
9 _ 9 1.
0z 0 0z

Observacié 3.19. Es pot comprovar que tot parell de funcions diferenciables satisfa
L o(f-g)=0f g+ [0y
2.0(f-9)=0f-g+f-0g. .
Exemple 3.20. Per induccid, les derivades de f(z) = 2" sén
of =nz""1, i of = 0.
Igualment, les derivades de g(z) = (Z)™ sén
0g =0 i 0g = m(z
Combinant, per h(z) = 2"(2)™ trobem

oh = nz""H(z)™ i oh = mz"(z)™ L. <
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Lema 3.21. Siguin P(2) = 3, menensmen @nm?™ (2)™ i Q(2) = X, menensmen bnm2™(2)™

dos polinomis en variables z 1 Z. Aleshores P = Q) si i només si apm = by m per tot n i
m.

Demostracio. Suposem que P = (). Per 'exemple anterior, tenim que
nlmlay m = "0 P(0) = 0"0"Q(0) = n!m!by m.
La implicacié contraria és trivial. ]
Recordem com s’escriu la diferencial del producte i la regla de la cadena amb els opera-

dors de Wirtinger.

Lema 3.22. Sigui A = <(CI Z) una matriu de coeficients reals, © fa Uaplicacio lineal de

R? en R? associada definida per fa(z) = fa(z,y) = A- (‘;) per z = x + iy. Si escrivim
les columnes d’A usant notacio compleza, és a dir o = a+ic i 8 = b+1id, aleshores trobem

que per tot (z,y) € R?, escrivint z = x + iy € C, tenim que

Fale,) = 3 @~ i6) 2 + (a+i8)3).

A més, aquesta és Iinica manera d’escriure fa(z) = wiz + wez amb wi,ws € C.

Demostracid. A (3.3) hem vist que efectivament fa(z,y) = 3 [(« —i8) z + (o + i) %] . La
unicitat es deriva del lema anterior. O

Observacié 3.23. Pel lema 3.22, donada una aplicacié f : C — C diferenciable, aleshores
en tot punt zg del domini i per tot vector z € C tenim que

Df.y(2) = 0f(20) - 2 + 0f (20) - 2. .
Lema 3.24. [Regla de la cadena] si f i g son diferenciables en un obert, aleshores
1. 0(f o g) = 0fog +3f0g;
2. 0(fog)=0fdg+ of0g.

Aqui cal entendre que_si avaluem O(f og) en un punt z del seu domini, aleshores en la
primera formula 0f i Of s’avaluen en g(z).

Demostracio. Per la regla de la cadena, tenim que
D(f ©9)z(2) = Dfyz) © Dz (2) = D fy(z0) (Do (2)) -
Usant el lema 3.22 i I'observacié 3.23, trobem que per tot z tenim que
o(fog)(z0) 2+ 0(fog)(z0) Z
= 0f(9(20)) - (99(20) - z + 0g(20) - Z) + 0f(g(20)) - (0g(20) - z + 0g(20) - 7).

Per la unicitat del lema 3.22, trobem les igualtats dels coeficients que acompanyen z i dels
que acompanyen z, és a dir 11 2. O
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Observacié 3.25. En particular, prenent f(z) = z i combinant el lema anterior amb
I’exemple 3.18, trobem que

1. 99 = dg; .
2. 0g = dg;
Lema 3.26. Siguin g = (g1,92) :C > C xC i f: C x C — C funcions diferenciables. Si
escrivim o o \Tof of
sl alamEl]
w=sm ] s )

on identifiquem (z,w) = (x1 + ixe, T3 + ix4) ~ (21,22, X3, x4), aleshores

1. 0(f 0 g) = 0.10g1 + Ouwfigs + 0=f0g1 + 0w fOga;
2. (fog)=0.f091 + Owfdga + Ozfg1 + O fOga.

Demostracio. La demostracié és analoga a la del lema 3.24, tenint en compte que com a
aplicacions a ’espai euclidia, la matriu que correspon a D fo Dg es pot descompondre com

((9(Uf,’l)f)> . <a(uglvvg1)> + (6(uf,vf)) ) <a(u92’vg2)>

8(1‘1,1‘2) 5(%1,%2) 5(.%'3,.@4) 5(1’1,1}2) ’

on f =wuy+ivy, gj = ug, +vg;. A cada sumand apliquem el mateix raonament que en el
lema anterior. O

Proposicié 3.27. Si F': C — C es pot expressar com F(z) = f(z,Z) on f és una funcié
diferenciable que és C-derivable respecte a les dues variables, és a dir
f:CxC — C
(z,w) —  f(z,w)

amb af =01 gf = 0, aleshores

i les derivades 2 7 i gf; es poden calcular pels metodes habituals.

Demostracié. Prenem g(2) = (g1(2),92(2)) = (2,%), que satlsfa que dg1 = 1, dga = 0,
dg1 =0, dga = 1, vegeu 'exemple 3.18. A part, %sz( Z)=01i<% (z z)=0. A1X1 pel lema
3.26, trobem que

1. 0F =0,f 1+ 0wf-0+0-0+0-

=

2. OF =0,f -0+ 0pf-14+0-T+0-

ol
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i la proposicio se segueix. O

Exemples 3.28. El lema anterior ens diu que si expressem una funcié com a producte,
composicié, etcetera, de funcions holomorfes en z i Z, aleshores només ens cal derivar
independentment cada una de les parts tal com fariem amb un polinomi, amb l’altra
variable actuant com una constant (malgrat no ser-ho!). Aixi, per exemple,

o Si f(2) = 22 + 223 + 272, aleshores 0f (2) = 22 + 3222 + 22,1 0f(2) = 2> + 22Z.

o Si f(z) = e#t°5(3) aleshores df(z) = €215(2) | 9f(2) = e*+o05(2) . (—sin(z)). O

Exercicis

3.3.1. Sigui Q2 < C un obert i f una funcié holomorfa en 2. Definim Q* = {z € C : Z€ Q}
i f*: Q% - C donada per f*(z) = f(Z). Proveu que f* és holomorfa en *. q

3.3.2. Trobeu els punts on la funcié f té derivada compleza (i calculeu-la si escau) en els
seglients casos. (Podeu fer servir si cal que f' = f;.)

a) f(z) = |z e) f(z) = ||

b) f(z+iy) = e"(cosy + isiny) f) f(& +iy) = coshzcosy + isinhasiny

¢) f2) =2+ g) cos 2|

d) f(2) = ey h) f(z) =2+ 22 <

3.3.3. Donat un polinomi de dues variables reals P(x,y), demostreu que identificant z =
T + 1y son equivalents:

1. P es pot expressar com un polinomi en z.

2. P és una funcio entera.

3. 0P =0 en C. 4

3.4. Funcions analitiques

Definicié 3.29. Si 2 és un obert, una funcié f : Q — C és una funcid analitica en € si
per a cada punt a € €, existeix un disc D,(a) < €, tal que f és la suma d’una seérie de
poteéncies Y., an(z —a)" en D,(a). .

Veurem a continuacié que tota funcié analitica és holomorfa
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Teorema 3.30 (Derivacié d'una serie de potencies). Sigui S(z) = >~ an(z — b)" una
série de poténcies amb radi de convergéncia R > 0. Llavors la serie derivada

©¢]
Z nan(z — b)" 1
n=1

té el mateizx radi de convergéncia. A més, S és holomorfa en |z —b| < R amb
0
S'(z) = ). nan(z = )", |z —b| < R.
n=1

Observacié 3.31. Iterant el resultat del teorema, obtenim que tota serie de potencies
és infinitament derivable en |z — b < R, i totes les seves derivades sén holomorfes en
|z —b| < R.

Per induccié, iterant la formula anterior es verifica que

fB) =Y nn—1)...(n—k+an(z—b)"* ze Dg(b),

n=~k

i, en particular,
A
kT

ag k>=0.

Prova del teorema 3.30. Prenent h(z) = S(z + b), podem suposar que b = 0, i ens queda
la série de potencies
Z anz".

n=0

El radi de convergencia de Y, na,2""! és el mateix que el de >, na,z" (ja que el producte
per un numero no canvia el radi de convergencia, vegeu l’exercici 2.6.3) que, com que

lim ¢/n =1, és
I . : v 1
y i limsup /|an| - ¥/n = limsup {/|a,| = =

Dit d’una altra manera, les dues series tenen el mateix radi de convergencia.
Posem

o0
g(z) = Z nay 2", |z| < R.
n=1

Fixem zp amb |z9| < R, i volem provar que S és holomorfa en zy amb S’(z9) = g(zp). Cal
provar doncs que

S(2) = S(z0)

Z— 20

lim

Z2—20

—g(z0)| = 0.

Notem que les seéries convergeixen uniformement en z, zo € D,(0) per p < R, pero en dividir
per z — zg podriem perdre la convergencia uniforme i, per tant, no podem permutar limit
i suma a la lleugera.
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Si z € Dr(0)\{z0}, llavors,

S(z) — S(z0) = 2" — 2y =
0 n—1
- 2 —g(ZO)ZZan Y —nzy :ZanAn;
0 n=1 0 n=1
on Ay =0iperan=2,
n—1 n—1 n—1
n—1l-m_m n—1 n—1-m_m n—1 n—1l-m /_m m
A, = Z 24 z nzy = (2§ z 27 = 24 (2™ — 25")
m=0 m=0 m=0
n—1 m—1 n—1 m—1
=(z — 20) Z Zpmimm Z 2R R = (2 — 2p) Z P
m=1 k=0 m=1 k=0

Per tant, si triem |29| < p < R, per a |z| < pin > 2, es compleix que

n—1 m—1 n—1 m—1
|An| <[z — 20| Dtz F e <z =20 ) D o
m=1 k=0 m=1 k=0
= n—2 nn—1) , - 2 n—2
=|z — 20| Z m|p :\z—zo\Tp < |z — zo|n"p" .

m=1

Tot plegat ens dona que si |z| < p,

LEES N

ee}
< |z — 2o Z n?|an|p" 2.
zZ— 20

n=2

N N N 0 2 n—2 o) 2 n . .
Pero les series de potencies Y, n°|a,|z i), _gn°lap|z" tenen el mateix radi de
convergencia, i el radi d’aquesta darrera serie és

1 1

T = - =R>p.
limsup, (?laa])®  limsup,(Jan])*

Aix{ doncs, >0, n?|ay,|p"? = C < w i, per tant,

lim S(z) = S(z0) _ g(z0)| < lim C|z — 2| =0,
z—20 zZ— 2p z—20
com voliem demostrar. O

A partir del teorema acabat de provar, sabem que tota série de poteéncies és holomorfa
en el seu disc de convergencia i que es deriva fent-ho terme a terme. Amb aix0, podem
calcular el valor de la suma de diverses series. Per exemple, sabem que

[oe}
1

T35 = (=1)"2", |z| < 1.

n=0
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3. Derivacié complexa i holomorfia

Derivant, obtenim

1 S _
n=1
Per tant,
Py ee}
—m = Z (—1)nnzn7 |Z| < 1.
n=1

Observem que la classe de funcions analitiques en un obert 2 < C és trivialment tancada
per la suma. Es compleix que també és tancada respecte al producte, com a conseqiiéncia
del teorema de Mertens:

Teorema 3.32. Siguin f i g les sumes de les séries de poténcies Z an(z —a)" Z bp(z —a)"
n=0 n=0
en D,(a), respectivament, amb r menor que ambdds radis de convergéncia.

Llavors la serie producte de Cauchy d’aquestes dues,

Z (Z apby,— k) (z—a)"

convergeir absolutament en D,(a) i la seva suma és f - g en Dy(a).
En particular, el producte de dues funcions analitiques en un obert de C és analitica en
aquest obert.

Exercicis

3.4.1. Discutir analiticitat de

a) 8% + 1, e) 2> +y* +y—2+ix,
2
b : _r (- Y
)Z+2 f) <x+x2+y2>+z<y x2+y2>’
3 .
2z +
c) Lzll(vegeu la figura 3.7), g) |2 + 2,
Z_
2
Z +z
d) z* —y* + 2xyi, h) Btz 5 a

3.4.2. Trobeu la suma de les series

0 -\ N 0 0
1 (3
a) Z( ;—Z> ; Z +Z c) an” silz| < 1. q

3.4.3. Sigui f(z) = X5 cn2" per |z| < R on R és el radi de convergéncia de la série.
Demostreu que si f(zr) = 0 per una successio (zx)i tal que z # 0 i zx, — 0 quan k — o0,
aleshores f(z) =0 (i.e. ¢, =0 per a tot n = 0). Indicacié: Calculeu f(0) i considereu la

serie f(z)/z). <
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3. Derivacié complexa i holomorfia

3.4.4. Demostreu que si dues series Y, —oan2™ i 25, 50bn2" son convergents i tenen la
mateiza suma per a una successio (zx)r tal que zi # 0 i 2z — 0 quan k — o0 aleshores
an = by, per a tot n = 0. q

3.4.5. Calculeu la suma de les séries de potencies de l'exercici 2.8.1.

3.4.6. Considereu la série

a) Estudieu-ne la convergéncia puntual i uniforme sobre compactes.
b) Calculeu quant val la suma per tot z del disc de convergéncia.

¢) Doneu el valor de

3.4.7. Considereu la série de potencies

Z n(n +1)z".

n=1
a) Estudieu la seva convergéncia.

b) Calculeu la seva suma.
¢) Quant val anl(_l)n% 9 )

3.4.8. Considereu la série de potencies

S(z) =2mi + Z (=1)"(2z + l)n.

n=1 n

(a) Calculeu la seva suma i el seu domini de convergéncia, especificant amb precisié
totes les funcions involucrades. Indicacié: Per especificar un logaritme, cal donar
un domini de definicid i la imatge d’un punt.

(b) Calcula la solucid (si existeix) de l’equacid S(z) = e. q
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3. Derivacié complexa i holomorfia

3.5. Algunes funcions holomorfes importants

L’exponencial complexa: ja haviem vist que ve definida per

D _n

z
ezzexpz:Z—, z e C.
n!

n=0

La serie té radi de convergencia R = +00, i per tant e® defineix una funcié entera amb

S on & 1 & 2k
(62)/ _ Z 7Zn71 _ Z 721171 _ Z 22
| — | |
= n! = (n—1)! = k!
La identitat
eFtW = % . eV, z,weC

també es pot veure de la segiient manera:
Per a € C, considerem la funcié f,(z) = e*e® ~.
enteres, la funcié f, és entera amb

Com que és producte de funcions
fi(z) = e e * + e (—e?%) = 0.

Per tant f, és constant en C, és a dir que f,(2) = fu(a) = €%, aixi que

Posant a = z + w obtenim el resultat.
De la identitat anterior, tenim que e e~
també

z

=1, i deduim que e* # 0 per a tot z € C, i

Recordem també que
(i) € = €, per a tot z € C.
(i) |e¥| =1 per a tot t € R.
Definicié 3.33 (Funcions trigonometriques). Per z € C, definim
ei* 4 =iz oi% _ iz

Ccos 2 1= ———; sing i= ———
2 ’ 20

vegeu la figura 3.3. Fent servir el desenvolupament en serie de potencies de €7, tenim que

B NG C D EE S )
n!

1 |
= 23 =, (2n + 1)!

També

Per tant, sinz i cosz estenen les corresponents funcions sinz i cosz de R a tot el pla
complex. .
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3. Derivacié complexa i holomorfia

5

Figura 3.4.: Cosinus hiperbolic i sinus hiperbolic en 60Q.

Figura 3.5.: Tangent i branca principal de 'arctangent en 6Q, vegeu l'exercici 3.5.5.
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3. Derivacié complexa i holomorfia

2342241
z—1

Figura 3.7.: % (z + %) i en 2Q, presenten singularitats, vegeu 'exercici 2.1.7.

Figura 3.8.: Determinaci6 principal de v/22 — 11 de iv/1 — 22 en 2Q, vegeu 'exercici 2.5.3.
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3. Derivacié complexa i holomorfia

Adverténcia 3.34. Ara sin z i cos z no sén fitades! Per exemple

e_t — et

Ly T (i) = oo,
sin(it) s = ti)rg)|s1n(zt)\ +00

Exercicis

3.5.1. Demostreu que:

(i) sinz i cosz son funcions enteres amb
(sinz) = cos z; (cosz) = —sinz.

(ii) cos(—z) = cosz, i també sin(—z) = —sinz per a tot z € C.
(iii) cos® z +sin® z = 1.

(iv) Per a tot z,w € C, cos(z + w) = coszcosw — sin zsinw, sin(z + w) = sinz cosw +

COS zZStnw. q

3.5.2.

Resoleu les segiients equacions:

a) sinz =4 b) cosz =i. a

3.5.3. a) Proveu que cosZ = COSZ i que sinZ = sin z, per a tot z € C.
b) Trobeu tots els zeros de les funcions sinus i cosinus.
¢) Deduiu de (b) que, per a z1, zo € C, es verifica:
i) COsz) = COS 23 Si, © NOMES Si, 2o + z1 € 277L.
ii) sinz) = sin zg si, 1 noMEés si, z9 — 21 € 2w 0 bé z3 + z1 € T + 27 Z.
d) Proveu que per a tot z =z + iy € C se satisfa:
i) sinz = sinx coshy + icosxsinhy (vegeu l'exercici 1.3.2).
i) cosz = cosx coshy — isinzsinhy.
ii) | sin 2|2 = sin? 2 4 sinh? y.
) | cos z|? = cos® x + sinh? y.

e) Sobre quines rectes esta acotada la funcid sinus? I la funcid cosinus? <
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3. Derivacié complexa i holomorfia

3.5.4. (a) Proveu que per a cada w € C\{£i}, l'equacid tan z = w té infinites solucions,
que son la funcio multivaluada

) 11 7 —w
arctanw = — 1o .
2 B\itw

Vegeu també que per a w = +i ’equacic no té cap solucid.

(b) Vegeu que dues determinacions continues de arctanw en un conjunt conner E
C\{xi} difereizen de kr, k € Z.

(c) Vegeu que no hi ha cap determinacié continua de arctanw als anells {r < |w —i| <
R}, {r<|w+i <R}, 0<r<R<2, pero que si que n’hi ha si 2 <r < R < +00.

3.5.5. Demostra que el domini de continuitat de la branca principal de l’arctangent

1 T — W
Arct = —L )
rctanw 5 og (Z’—i—’w)

és C\{iy : |y| = 1}. q

3.5.6. a) Sigui L la determinacid del logaritme en C\(—00,0] que compleix que L(1) =
4mi.  Definim f(z) = —L(2 — 2z). Demostreu que f és holomorfa en C\[1,+00).
Calculeuw f(0) i f(—1).

b) Considereu la série de poténcies

Demostreu que S(z) = —Log(2 — 2z), per tot z € D = D;;(1/2), on Log és la
determinacié principal del logaritme.

¢) Quina relacio hi ha entre S(z) i f(z)? Indicacié: Relacioneu primer L(z) amb Log (2)
per z € C\(—00,0]. q

3.5.7. Sigui \/- la determinacid de l’arrel quadrada en C\[0,00) complint que \/—1 =i i
sigui f(z) = /32 + 2.
1. Ezxpresseu /- en termes d’una determinacid del logaritme i argument.

Recordem que

\/; _ e%logz _ 6%(1n\z|+iargz)

2. Quina és la regic més gran of f és holomorfa? Quina és la imatge? Existeir z tal
que f(z) = —i?

3. Qué val f(52)? q
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3. Derivacié complexa i holomorfia

3.5.8. Trobeu el desenvolupament en serie de poténcies al voltant del punt a = 1 de la
funcié f(z) = {/z on /. denota la determinacidé de l'arrel cibica definida a C\(—o0,0] tal

que Y1 = &27/3 = —14;‘\/5' 4

3.5.9. Els polinomis de Legendre? P;(¢) son els coeficients de 2 en el desenvolupament
de Taylor

1 N pad
V1—2Cz + 22 ;)Pj({)z.

Provar que Pj(() és un polinomi de grau j i calcular Py, Py, Py i Ps.

4 Adrien-Marie Legendre, Parfs, 1752 — 1833, https://ca.wikipedia.org/wiki/Adrien-Marie_Legendre
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4. Integrals de linia i teoria local de Cauchy

En aquest capitol expliquem com la integracié del calcul en diverses variables aplica al
pla complex. Veurem en particular com integrar sobre corbes amb notacié complexa,
el teorema fonamental del calcul per funcions amb primitives holomorfes, i una extensié
d’aquest resultat anomenat teorema de Cauchy, on I’holomorfia es demana ja no a la
primitiva si no a la propia funcié a integrar, i a més es pot relaxar la hipotesi de C-
derivabilitat en un punt aillat del domini per demanar-hi tan sols continuitat. Aquest
resultat ens portara a la férmula integral de Cauchy:
fla) = 1/ de, per a tot a € D,(z),
271 |lw—z|=r (U} - CL)

la pedra angular de la teoria local de I'analisi complexa, coneguda com a teoria local de
Cauchy.

Un cop demostrada la férmula integral de Cauchy, deduirem un munt de propietats de
les funcions holomorfes f € H():

e Propietat de la mitjana: I'avaluacié f(z) coincideix amb la mitjana de la funcié en
una bola centrada en z.

e Analiticitat: podem expressar f localment com a serie de potencies.
e Desigualtats de Cauchy: |f™(a)| < % SUP|,_q|—r [/ (2)], n = 0.
e Teorema de Liouville': si f € H(C) és fitada, és constant.

e Teorema fonamental de I’algebra: tot polinomi de coeficients complexos té almenys
una arrel.

e Teorema de Morera?: si g € C(f) integra 0 en vores de triangles, aleshores és
holomorfa.

e Férmula integral de Cauchy per derivades f(™(a) = 2”7'1 f|w—z\:r % dw.

e Ordre dels zeros: si f(a) = 0 aleshores f(z) = g(z)(z — a)” amb g holomorfa i
g(a) #0.

e Principi de prolongacié analitica: si els zeros de f tenen un punt d’acumulacié en
Q, aleshores f = 0.

! Joseph Liouville, Saint-Omer, 1809-1882, https://ca.wikipedia.org/wiki/Joseph_Liouville
2Giacinto Morera, Novara, 1856-1909, https://ca.wikipedia.org/wiki/Giacinto_Morera
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4. Integrals de linia i teoria local de Cauchy

e Principi del modul maxim: si el maxim absolut de |f| en Q s’assoleix a l'interior,
aleshores f és constant.

Algunes d’aquestes propietats, com ara la de la mitjana, les desigualtats de Cauchy o el
teorema de Liouville, de fet, es compleix per tota funcié harmonica (vegeu l'exercici 3.2.3)
i es poden estendre a R% amb d > 3, perod les demostracions aqui presentades apliquen
només al cas de variable complexa.

4.1. Corbes

Definicié 4.1. Sigui Q2 < C un obert. Una corba en Q és una aplicacié ~ : [a,b] — Q
continua.

La imatge (recorregut) de 7 és v* = v([a,b]) = Q. Observeu que podria tenir intersec-
cions. El punt v(a) s’anomena punt inicial, i v(b) punt final.

Diem que és una corba tancada si y(a) = v(b).

Diem que és una corba simple si v és injectiva (és a dir, no té interseccions).

Diem que v : [a,b] — C és una corba de classe C' si y(t) = y1(t) + iy2(t), amb
71,72 € CY([a,b]) (en particular és derivable per la dreta en a i per 'esquerra en b). En
aquest cas, definim

V() = 7(t) + i)

Diem que és una corba C' a trossos si hi ha una particié de Iinterval [a,b], diguem
a=ty <ty < <t, =0b, de manera que 7|y, , ] és de classe Cl per k =1,...,n.
Farem servir el nom de cami per indicar una corba C! a trossos. °

Definicié 4.2. Una reparametritzacié de v és una corba n : [¢,d] — Q de manera que
n =0, on ¢ : [c,d — [a,b] és un homeomorfisme. En aquest cas, els recorreguts
coincideixen, és a dir, n* = v*, només canvia la velocitat en que la recorrem. Per exemple,
una reparametritzacié de la corba y(t) = €%, t € [0,27] és n(t) = €2, t € [0, 7].

En el cas de camins, les reparametritzacions sén a més a més, de classe C! a trossos, i
demanarem que ¢ i ¢~ ! també siguin C! a trossos.

La corba inversa de v és la corba v~ : [a,b] — Q definida per v~ (¢t) = v(a + b —t) (és
a dir, recorre la imatge en sentit contrari). .

Definicié 4.3 (Suma de camins). Escrivim la suma de camins: v n (recorrem primer ~
i després 7). .

Definicié 4.4 (Longitud d’una corba). Si~y e C*, la longitud de v és

b
Lm=/wwm

Si 7y és un cami (corba C! a trossos), llavors, seguint la notacié de la Definicié 4.1, definim

Lo =Y [ Wl .
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Definicié 4.5 (Integrals de funcions amb valors complexos). Sigui f : [a,b] — C integrable
(en sentit de Riemann o de Lebesgue). Definim

b b b
/f(t)dtz/ Re(f(t))dt—l—i/ Im (f(t)) dt. .

Lema 4.6. [Propietats de la integral] Si f, g : [a,b] — C sdn integrables, aleshores:

(i) la integral és C-lineal: si o, 3 € C, llavors
b b b
[ @ty sgmdi—a [ swyane s [ o

(ii) se satisfa la desigualtat triangular per integrals:

[ 1w i< [ )t

Demostracio. Deixem la primera propietat com a exercici pel lector.
Per A € C, podem posar |A| = €A, és a dir, —0 € arg(A). Llavors, prenent A =

f; f(t)dt i aplicant (i), tenim que

/abf(t)dt‘ :eie/abf(t)dtI/abewf(t)dt_

/beief(t)dt>o - /be”f(t)dt:Re (/be“’f(t)dt),

a

0<

Com que

de manera que, fent servir la definicié de la integral d’una funcié amb valors complexos,

veiem que /ab £t dt‘  Re (/ab e £ (1) dt) — /ab Re <€i9f(t)>dt.

Com que Re (ewf(t)) <

ewf(t)‘ = |f(t)|, obtenim el resultat. O

Exercicis

4.1.1. Proveu que Uellipse 22 /a® + y?/b*® = 1 és una corba diferenciable (és a dir, existeix
una parametritzacid z(t),t € I que el seu rang és Uellipse, és diferenciable, 2'(t) # 0 i z(t)
és injectiva. Diem que z(t) és una parametritzacio admissible o regular). <

4.1.2. Parametritzeu el contorn format pel perimetre del quadrat amb vértexs —1 — 4,1 —
1,1 +14, —1 4+ i sequint aquest ordre. Quina €és la seva longitud? <
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4.2. Integracié sobre corbes

Sigui Q < C un obert, f : Q — C continua, i v : [a,b] — Q corba de classe C'. Definim
les integrals de cami

b b
/ f(2) dz = / F®) A Wd / £(2)|dz] = / £ () W ()] de.

En cas que v sigui un cami (corba C! a trossos), ho partim a trossos:

f(2)dz = ; tkf ) (#)dt i )|dz| == " dt.
/7< kZ/ (1) 7 / ) |dz] = Z (1)

tkl

Exemple 4.7 (Exemple de dificultat de calcul). Sigui v(t) = €%, t € [0,27], i sigui

f(z) = €*. Llavors
27 . )
/ezdz=/ e et dt = 7
¥ 0

Més endavant, al Corollari 4.10, veurem que aquesta integral dona zero. Fer el calcul
directe d’aquest tipus d’integrals pot ser una tasca dificil, encara que de vegades es pot
calcular facilment. Per exemple, si y(t) = a + ¢, t € [0,27] i k € Z (donem k voltes al
cercle de radi 1 centrat en el punt a: si K > 0 anem en sentit contrari a les agulles del
rellotge, i al revés si k < 0), llavors

d 2 kzkt
/ ° :/ P dt = 2mik. .
Ny Z—a 0 e

Proposicié 4.8 (Propietats).

1. Donat un cami -y, tenim que

/ (M (2) + pg(z)) dz = )\/f(z)dz + u/g(z)dz, A\ peC.

o

2. Si recorrem la corba en sentit invers, el signe canvia, és a dir,

[y_ f(z)dz = —/yf(z)dz.

3. Sivy és Ct a trossos (cami), llavors

)< [N = 3 [ i@l

En particular, si |f| < M per a tot z € v*, llavors ‘f fdz‘ < M L(y).
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4. Sin és una reparametritzacic C' de v, llavors

A F(2)dz = + /n f(2)dz,

on el signe és positiu si la reparametritzacio preserva el sentit i negatiu en cas con-
trars.

Demostracio. 1. Exercici.
2. Tenim que v~ (t) = y(a + b —t). Llavors

b b
[ @z = [ 16 @) 0y @dt =~ [ 1asb-0)Yia b=t

Fent el canvi de variable s = a + b — ¢, obtenim

/Y_ fz)dz = —/baf(’Y(S))V/(S)(—ds) = —/abf(’y(S))’yl(s)ds - _/vf(z)dz'

3. Directe a partir de la definici6 de la integral sobre una corba i la propietat (ii) del
lema 4.6.

4. Tenim que 7 = Yo ¢, i com que estem treballant amb corbes C!, 'aplicacié bijectiva
¢ : [¢,d] — [a,b] també ha de ser de classe C'. Si ¢(c) = a (la reparametritzacié preserva
el sentit), llavors

d d
/nf(z)dz=/c f(n(®)n' () dt:/c f(’y(go(t)))y(gp(t))(p(t)dt‘

Llavors, fent el canvi de variable s = ¢(t), obtenim

/nf(z)dz :/abf(’Y(S))V,(S)ds= /vf(z)dz'

Si, en canvi, la reparametritzacié no preserva el sentit, és a dir, si ¢(c) = b, aleshores
podem combinar aquesta demostracié amb ’apartat 2 per obtenir el signe canviat. ]

El segiient resultat correspondria a una versiéo de la regla de Barrow del calcul per
integrals sobre corbes.

Teorema 4.9. Sigui 2 < C un obert i f continua en Q. Suposem que existeiz F' primitiva
holomorfa de f (és a dir, F' = f). Aleshores, per a tot cami v en ), es compleizx

/ f(2)dz = F(v(b) — F(+(a)).
;

Demostracio. Tenim que

/ 2z = Y / S ) wd =Y / " P (1) 7 (1) dt.
i

k=1"tk—1 k=1"tk—1
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Si posem g(t) = u(t) + iv(t) == F(y(t)), com que (F o~)'(t) = F'(v(t)) v (t), es compleix
que (F o) (t) = ¢'(t) = u/(t) + '(t), de manera que, aplicant la regla de Barrow usual
a R, obtenim

/f

M: I M:

tr n tr tr
/ (Fo)(t)dt = Z t)dt +i Z
th1

tk1 tkl

M:

(u(tr) = u(tr—1)) +i Q) (v(ts) = v(tx-1))

k

b) —u(a) +i(v(b) —v(a

—_
I
—_

Il
S
~

~
S~—
Il
Q
—~
=
SN—
\
<
—~
S
S~—
Il
T
—~
2
—~
=
S—
~—
\
!
—~
2
—~~
S
S~—
~—

Corollari 4.10. [Consegiiéncies]

o Si~y és un cami tancat en Q i f té primitiva holomorfa en Q, aleshores

Lf@ﬂz=

Per exemple, si y(t) = e, t € [0,27], llavors f7 e*dz = 0.

o Si f té primitiva holomorfa en §2, llavors f,y f(2)dz no depén del cami~ : [a,b] — €.
Només depén dels punts inicials i finals (no cal ni parametritzar la corba). Per
exemple, si vy és un cami que va de 1 a 2i, aleshores

472t N4
2 1 1
N RCEE:
. 1, 1 1)1
4.2.1. Sigui v = {z € C: |z| = 1} el cercle unitat amb l'orientacid habitual. Avalueu, per
a tots elsme Z:
/ dz / |dz| / dz / |dz|
m? —m Toml? Toml d
y 2™ y 2™ v 2™ 4 2™

4.2.2. Sigui v = 0D, (0). Calculeu, per a n € Z, /z” dz. a
v

Exercicis

4.2.3. Sigui vy = [i + 1,—i]. Avalueu les segiients integrals de linia:

a) fw sin(2z) dz b) f‘z|=1 ze” dz c) f|z_2|:1 S dz <

4.2.4. Avaluar les segiients integrals.
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6 2
a) ( — + - +1-—3(z —i)2> dz si vy és |z — 1| = 4 recorreqguda un cop amb
(z—14)?  z—1i

lorientacid estandard.

(z — 2zyi)dz al llarg del contorn ~y : z =t + it> amb t € [0,1].

(|2 = 1 +i|? — 2)dz al llarg de la semicircumferéncia v : z =1 —i+ € ont e [0, 7).

d) La funcié no analitica f(z) = 2% + iy (per qué?) al llarg de |z| = 1 recorreguda un cop
en sentit antihorari. <

4.2.5. Calcular les segiients integrals al llarg del cami v que s’indica.

1 S . . .
a) /dz per qualsevol contorn en el semipla dret que va de —3i a 3i. Quin problema
z
.
tenim si seqguim un contorn pel semipla esquerre? Indicacid: considerar la determinacio

principal del logaritme en la qual el logaritme no esta definit si y = 0,2 < 0.

b) /ez cos zdz per un cami d’origen a =1 i final b = .
¥

c) /z1/2dz per la branca principal de z/2 per un cami d’origen a = 1 i final b = w que
¥

no talli la semirecta (—o0,0]. q

4.2.6.
Considerem la determinacidé de Uarrel /22 — 1 que és holomorfa a C\[—1,1] i positiva a
(1,0).

(a) Vegeu que z ++/2%2 — 1 omet leiz real negatiu si z € Q = C\(—o0, 1], de manera que
la determinacid principal Log (z + /22 — 1) esta definida a Q.

(b) Vegeu que Log (z + /22 — 1) és una primitiva de \/% a .

(c) Avalueu on 7y és el tros de cercle |z — 1| = /2 que va de i a —i passant

/ dz

Y \/ 22 - ]. ’
pel semipla de la dreta (Re z > 0).

Indicacié: comproveu que v/z? —1 = ez(Log (z=D)+Log (z41) gresten g C\[—1,1] de manera

continua. <

4.2.7. Siguin y1 = {|z| =1:Imz >0} i v2 == {|z]| = 2: Rez,Imz = 0}. Demostreu que:
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dz :
o|f 2« o[ s
b 22 2 2]=1 22

dz e’
b) / = d) / —dz
yo Z5 T 1 |z|]=2 %
4.2.8. (a) Sigui~y un cami en C. Proveu que si f és una funcid continua en vy* llavors

/vf(z)dz=ly(z)dz.

(b) Deduiu que si f és una funcié continua en el cercle unitat llavors
——dz
/ F(2)dz = —/ e ;
|z|=1 |z|=1 z

4.3. Teorema de Cauchy

N

< 2me

< we?. <

/N
wly

N

Si Q < C és un obert, U < Q és un obert fitat prou regular (per exemple amb frontera
Cl) i tal que U < ©, i tenim dues funcions f,g € C1(Q), pel teorema de Green® (vegeu
Iexercici 4.3.4) se satisfa la formula de Green en variable complexa:

_ i -
/U(&f+ag) dm—z/aU(fdz—gdz). (4.1)
Aqui, entenem que [, fdz = fabf(’y(t))fy/i(t)dt = [, f(dz — idy) per alguna corba v

que parametritzi 0U en sentit antihorari, on indiquem [ Fydz = fab Fi(y(t)y;(¢) dt i
analogament per f7 F>dy. Aixi doncs, prenent f = 0, podem deduir que si g € H(Q2),

aleshores
/ g(z)dz = 0.
oU

A continuacié obtindrem un resultat lleugerament més general sense fer us de la férmula
de Green. El primer resultat, anomenat teorema de Cauchy-Goursat* o també teorema
de Cauchy per triangles, és un resultat clau per tal de provar el teorema de Cauchy per
un disc o per oberts convexos. Aquests resultats seran suficients per a veure la férmula
integral de Cauchy i les conseqiiencies de la teoria local.

Teorema 4.11 (Cauchy-Goursat). Sigui Q < C un obert, pe Q i f € C(Q) n H(Q\{p}).

Llavors
/ f(z)dz=0
oT

3George Green, Nottingham, 17931841, https://ca.wikipedia.org/wiki/George_Green

‘Edouard Jean-Baptiste Goursat, Parfs, 1858-1936, https://ca.wikipedia.org/wiki/%C3%89douard_
Goursat

per a tot triangle T' < Q.
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4. Integrals de linia i teoria local de Cauchy

Observacio6 4.12.

1. Ens cal tenir tot el triangle ple T dins d’ (2. Es a dir, si la frontera del triangle 0T
envolta un forat d’ €2, llavors no s’aplica.

2. En cas que f sigui holomorfa a tot () excepte un punt p, perd f no és continua en p,
tampoc s’aplica. .

Demostrem abans un cas particular:

Proposicié 4.13. Sigui Q < C un obert i f € H(Q). Llavors [, f(z)dz = 0 per a tot
triangle T < €.

Demostracié. Tenim orientada la frontera 071 del nostre triangle en sentit contrari a les
agulles del rellotge. Fent servir els punts mitjos de cada segment, partim el nostre triangle
T en 4 triangles T1,T5,T5,T,. Totes les fronteres 07; d’aquests triangles venen orientades
en sentit contrari a les agulles del rellotge, de manera que el triangle del mig té els costats
orientats en sentit contrari als costats comuns dels altres triangles (aixi quan es fa la suma
de les integrals sobre la frontera d’aquests 4 triangles, les integrals en els segments del mig
es cancellen, al calcular-se un en un sentit, i Paltre en sentit contrari). Es convenient que
us feu el dibuix. Llavors

ATf:AT1f+AT2f+/6T3f+ 3T4f.

L(OT)) = SLET):  diam(T)) = o diam(T),  1<j <4

Observem que

Anomenem T = T;, a un triangle dels 4 que maximitzi el valor absolut de la integral

1 ’
(31(1) j

Repetim el procés amb T per tal d’obtenir un altre triangle 72 amb propietats analogues.
De manera inductiva, obtenim una successié {T®)} de triangles que satisfan

1<j<4

Llavors

() TO >7@ 5. o7k 5
(i)
il
oT (k) T (k+1)

L(oT™®) i també diam(T*+Y)) = L diam(T®).

(it) L (eT*+V)) =1
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Tot aixo implica que

(a)

/6Tf‘ <t /a:r’w f';

(b) L(0T™) = 27" L(AT) i també diam(T™) = 27" diam(T).

De (b) se segueix que diam(T™) — 0, aixi que juntament amb (i), tenim una successié
decreixent de compactes en un espai metric complet amb diametres que tendeixen a zero.

Llavors
(7" = {z0}.
k

Aquest resultat és com el teorema dels intervals encaixats, i se sol veure en assignatures
anteriors del grau de matematiques.

Fixem ¢ > 0. Com que f és holomorfa en zg, podem trobar § > 0 de manera que
Ds(z) € Q1
f(z) — f(20)

— — f'(0)
z— 20

<eg, 0<|z—2 <0

En altres paraules, tenim que
If(2) = f(20) — f'(20)(z — 20)| <€z — 20], 0<|z—2 <4 (4.2)

Prenem n prou gran de manera que diam(7™) = 2~ "diam(T) < 6. Com que z € T,
se segueix que T < Dg(zp).

Com que la funcié go(z) = f(z0) + f'(20)(z — 20) té primitiva holomorfa (ja que és un
polinomi holomorf), tenim que

i per tant

[ gl = [ (1) - w2z
oT(n) oT(n)
Aplicant (4.2) obtenim

/ f(z)dz
oT ™)

Per tant, per (a), veiem que

/ (f(2) = f(20) = f'(20)(2 — 20)) dz| .
oT(n)

< 5/ |z — 20| |dz| < e diam(T™) L(oT™)
oT (™)

= 4 " diam(T") L(oT).

(2)dz| < ediam(T") L(2T).

oT

Com que € > 0 és arbitrari i diam(7") i L(07T) son fixes, se segueix que

/a (=0,

tal com voliem veure. O
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Demostracio del teorema de Cauchy-Goursat. En cas que el punt p, on no sabem si f és
holomorfa, es trobi fora del triangle ple T', simplement podem agafar una regié ' amb
p ¢ Q' de manera que T < Q. Com que f € H(), aplicant la proposicié 4.13 obtenim
Jop f(2)dz = 0.

En cas que el punt p es trobi en el triangle ple T', sempre ens reduirem al cas que p sigui
un dels vertexs del triangle. Anem doncs a fer aquest cas primer.

Si p és un dels vertexs del triangle, fixem € > 0, i partim el triangle T" en dues parts.
Una que sigui un petit triangle 7. de diametre < ¢ amb vertex p, i 'altra part quedaria
un trapezi Z. Com que el trapezi el podem partir en dos triangles, i el punt p queda fora
dels dos triangles plens, aplicant el cas anterior tenim que

/aZf(z)dz ~0.

f(z)dz = / f(z)dz + f(z)dz = f(z)dz.
oT 0z 0T oT.

Llavors

Com que f és continua en €2, en particular és continua en el compacte T, aixi que hi
ha una constant positiva M de manera que |f(z)| < M per a tot z € T. En particular,
|f(2)] < M per atot z€ T, i M no depen de . Llavors

f(z)dz

oT:

< / If(2)]|dz] < M L(JT.) < 3M e.
oT-

Com que ¢ és arbitrari, deduim que

/a Iz =0.

Si p es troba en 0T, llavors ajuntem p amb el vertex del triangle que no es troba en el
segment que conté p, per formar dos triangles, i pel cas anterior obtenim que |, o f(2)dz =
0.

Si p es troba a 'interior del triangle T, ajuntem aquest punt amb tots els vertexs del
triangle formant tres triangles, i aplicant el cas anterior veiem que |, or f(2)dz = 0. O

Teorema 4.14 (Teorema de Cauchy per un disc). Sigui D un disc obert i f € C(D). Si
fe H(D\{p}) amb p € D, llavors f té primitiva holomorfa en D, i

Af(z)dz =0

per a tot cami tancat v en D.

Demostracio. Pel teorema 4.9, només cal provar que f té primitiva holomorfa en D. Fixem
a € D, i definim

F(z) = f(w) dw, ze D,
[a,2]
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4. Integrals de linia i teoria local de Cauchy

on [a, z] és el segment que uneix a amb z.
Sigui zp € D i anem a provar que F' és holomorfa en zy amb F'(zg) = f(z0). Ens cal

provar que

F(z0 + h) — F(20)

li
11m h

|h|—0

— f(ZO) = 0

Considerem el triangle 07" amb vertexs a, zg + h, zop amb |h| prou petit per tal que
zo + h e D. Com que tot el triangle ple T" es troba dins del disc D, aplicant el teorema de

Cauchy-Goursat, obtenim que
/ fw)dw = 0.
or

d dw — dw =
/[asz+h] f(w) v ~/[Zo+h,zo] f(w> v /[a,zo] f(w) v O,

aixi que, tenint en compte la definicié de F', tenim que

Es a dir,

F(Zo+h)—F(Zo)_—/

f(w)dw = / f(w)dw.
[z0+h,z0] [z0,20+h]

Per tant, com que f(z9) = %f[z(] 2o+h] f(20)dw, arribem a la desigualtat

1

< —
N ‘h| [zo,zo-l—h]

— f(20) |f(w) = f(20)| |dw].

’F(Zo—i—h)—F(Zo)
h

Fixem ¢ > 0. Com que f és continua en zp, hi ha ¢ > 0 de manera que |f(w) — f(z20)] <€
si |lw — 29| < 0. Prenent doncs h amb |h| < §, obtenim

< |%’L([zo,zo +h]) =e¢,

‘F(ZO""}L)_F(ZO) _f(zO)

ja que la longitud del segment [zg, zo + h] és |h|. O

Observacié 4.15. Per tal de poder fer aquesta prova, ha estat clau el fet que podem triar
h de manera que el triangle amb vertexs a, zo + h, zg es trobi dins de D. Aixo mateix ho
podem fer si agafem un obert convex. Recordem que un obert 2 < C es diu convez si per
tot parell de punts a,b € Q el segment [a,b] = Q. Aleshores, la mateixa prova ens serveix
canviant el disc obert D, per qualsevol obert convex €2, de manera que obtenim el segiient
resultat. °

Teorema 4.16 (Teorema de Cauchy per oberts convexos). Sigui < C un obert convex,
i feC(Q)n HQ\{p}) amb p e Q. Llavors f té primitiva holomorfa en Q, i

Lf(z)dz — 0

per a tot cami tancat v en €.
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Exercicis
0

4.3.1. Recordeu que/ R

—00

a0
(a) Proveu que / e~ (@Fia)? gy AT per a tot a > 0. Indicacié: Apliqueu el teorema
—0o0
de Cauchy al rectangle [—R, R] x [0, a].

0
(b) Proveu que / e 72 cos(nx) dr = 2re ™2 nel. a

—00

4.3.2. Determineu el domini d’holomorfia de les funcions f donades i digueu perqué

f|z\:2 f(z)dz = 0.

) 10= 2 110
b) f(z) = Log(z + 3). q

4.3.3. Sigui v : D — R wuna funcio harmonica en un disc D, és a dir, tal que Au =
400u = 0. Demostra que existeir una funcié v : D — R harmonica tal que (u + iv) és
holomorfa. L’anomenem harmonica conjugada. Indicacié: Demostreu que les equacions
de Cauchy-Riemann per F = U +1iV es poden escriure com 0F = 20U o com oU = —idV .

<

4.3.4. El teorema de Green diu que si @ < C és un obert 1 U < ) és un obert fitat
prou reqular (per exemple amb frontera C') i tal que U < 2, aleshores tot camp vectorial
F=(F,F):Q—R2? amb F e CYQ) satisfa que

/ (6xF2—6yF1) dm = (F1 da:—i—ngy).
U oU

Demostreu la formula de Green en variable complexa (4.1). 4

4.3.5. Continuant amb exercici 4.3.4, demostreu la formula de Cauchy generalitzada,
coneguda com a férmula de Cauchy-Pompeiu®, que diu que si ¢ € C1(Q) i 2o € U, aleshores

d(z0) = = #z) dz — 1 /U 0] dm(z).

21t Jou 2 — 20 T z— 20

Notem que el cas particular ¢ € CL(2) ens diu ¢ = C(0¢), on C indica la transformada de

Cauchy -
Cip(z0) = —1/U H(2) dm(z). q

™ Z— 20

°Dimitrie Pompeiu, Brosciuti, 1873-1954, https://ca.wikipedia.org/wiki/Dimitrie_Pompeiu
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4.4. Formula integral de Cauchy

Hem vist les versions locals del teorema de Cauchy, provant el teorema de Cauchy per a un
triangle i el teorema de Cauchy en oberts convexos. El proper resultat és la férmula integral
de Cauchy i obtindrem les consequéncies més importants de la teoria local: desenvolupa-
ment local en series de potencies d’una funcié holomorfa, zeros de funcions holomorfes
(factoritzaci6 local), principi de prolongacié analitica, desigualtats de Cauchy, teorema
de Liouville, teorema fonamental de ’algebra, teorema de ’aplicacié oberta i principi del
modul maxim.

Teorema 4.17 (Férmula integral de Cauchy (versié local)). Sigui Q@ < C un obert i

fe H(Q). Suposem que D,(a) = Q. Llavors

1 f(z)
d ) - )
f(20) /% z |20 —a|l <r

- 2mi zZ— 20

on vy (t) = a+ret, 0 <t <2r.

Observacié 4.18. Ens cal tenir tot el disc tancat D,(a) dins d’€2. Aleshores, el resultat
no s’aplicaria necessariament si, per exemple, @ = D = {z € C : |z] < 1} i y(t) = €%,
t € [0,27]. El teorema, ara com ara exclouria fins i tot el cas que f fos continua en D
(ens caldria tenir f holomorfa en un obert que contingui ﬁ), tot i que aquest cas es pot
demostrar per pas al limit. .

Observaci6 4.19. Moltes vegades al llarg del text, farem us de la notacid f‘z_a‘:r f(z)dz

per indicar que estem integrant sobre la corba o,4(t) = a +re', t € [0, 2] (fent només una
volta al cercle). Aixi, la férmula integral de Cauchy es pot escriure com

f(20) ! /Z(l'_r /(z) dz, |z0 —al <.

21 zZ— 20

Demostracié. Com que D, (a) < £, hi har; > r de manera que D, (a) € D := D, (a) < Q.
Fixem zp € €2, i definim la funcié

f(z) = f(20)
0= T si ze€ D\{z}
1 (20) si z = z.

Clarament g és holomorfa en D\{zp}. Vegem que g és també continua en zg, ja que al ser
f holomorfa, aleshores
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Aix{ doncs, tenim que g € C(D) n H(D\{z20}). Com que v, < D, pel teorema de Cauchy
per un disc se segueix que

1
% . g(Z) dz = 0.
Es a dir,
1 1
/ f<2>dz_l/ fz0) 4. o
27 ), 2 — 20 2mi ), 2 — 20
Per tant,

1 (2) _ 1 dz
o2 %z—zodz_f(zo) ( '/%z—zo>'

Per acabar la prova, ens cal veure que

[\
|
3

1 dz
— =1 D, (a). 4.3
i) Ton =l weD (13)

Recordem que si 29 = a i 7.-(t) = a+7e” per t € [0,27], aleshores (4.3) es compleix, vegeu
I'exemple 4.7. Volem veure que aixo segueix sent cert per a qualsevol altre punt de D,.(a).
Observem primer que

1 dz 1 2m irett dt B

2mi |, z—2  2mi Jy  reit + (a— 20)

1 2”7‘eit+(a—zo)dt 1/27r (a — zp)dt
21 Jo  rett + (a — 2p) 27 o rett + (a— zp)

_q 1/27r (a — zp)dt
B 2 Jo  rett + (a— z0)

Per tant, només cal provar que

I::/Q“W—zo)dtzo.
0

rett + (a — zp)

Si 29 = a no hi ha res a provar. Llavors suposem que zo # a. Sin(t) = e~ amb t € [0, 27],
tenim n* = JD i 1/(t) = —ie~*. Aleshores,

e 2 dt _ (a—=) dw
=l 0)/0 elt(r+ (a—z0)e ) i /n r+ (o~ zo)w

1

Ara, posant h(w) = (r + (a — zp)w) ™", només ens cal provar que

[ hwydw =0,
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seguint la notacié introduida a ’observacié 4.19, i aix0 ens ho dona el teorema de Cauchy
per un disc, si podem veure que h és holomorfa en un disc centrat al 0 de radi R > 1.
Ara bé, h és holomorfa a tot C excepte en el punt wy = 704> 1 com que |wo| > 1, podem
trobar tal R, aixi que ja hem provat el que es demanava. ]

Observacié 4.20. Aplicant el teorema de Cauchy per oberts convexos, fent servir la
mateixa prova, podem demostrar el segiient resultat:
Sigui 2 < C un obert convex, v cami tancat d’Q i f € H(2). Aleshores

e *
= I
27i § Z— 20 dz = f(z0) Ind(7, 20), 20 77,
on 1 )
z
Ind —_
nd (7, 20) 2772'[,2—20

és I'index de 7y respecte al punt zg. Més endavant, veurem la interpretacié geometrica de
I'index com també algunes propietats (essencialment compta el niimero de voltes que fa
al voltant del punt zp). .

Fins al final del capitol, estudiem les conseqiiencies directes de la formula integral de
Cauchy. Comencem per la propietat de la mitjana.

Lema 4.21 (Propietat de la mitjana). Sigui Q < C un obert, f € H() i suposem que

D,(a) € Q. Llavors
1 27

— fla+re')dt.
27

fla) =
Demostracid. Per la féormula integral de Cauchy, tenim que

1 O

28 J,—aj=r 2 —Q

fla) =

Parametritzant la corba fent z = a + re®, t € [0, 27], ens queda

L[ fla+ret) . . 12 i+
f(a)=2—m, ; Tzre” dtzg ; fla+re")dt.
O
Exercicis
4.4.1. Avalueu, usant la formula integral de Cauchy, les segiients integrals:
S Jo dz . 3:-2
a) f|z|=2 ﬁd'z’ d) f\z|:2 z2+§+1’ g) f |z|= 3z§—z
N d .
b) Ji.pen sinfe?) g e) Jieo 7i5s ) fioe1r 7221_1612, P
C) f |z|= 2z2 17 f) fz 2|=2 COS(erT)dz;
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4.4.2. Sigui p un polinomi de grau n, amb tots els seus zeros continguts en Dg(0). De-
mostreu que

/
/ P(z) dz = 2min. q
|

z|=R p(Z)

4.4.3. Sigui a € C, |a| < 1. Calculeu la integral de linia /

2 1
( — ) dz, i deduiu
|z|=1 z

z—a
que

2w 2
1—r2)dt
/ 2( ) =27, peratot0<r<1ifeR. <
o L1+72—2rcos(d—t)

4.4.4. Siguin f,g € H(Q), on Q és un domini tal que D < Q. Donat a € C amb |a| # 1,

calculeu
1
S RCCOECAPY 4
2t Jop \w —a aw —1

4.4.5. Es consideren els segiient exercicis relacionats amb la Férmula Integral de Cauchy.®

2

a) Calculeu 55 4z71dz sobre la circumferéncia de radi 3 centrada en 0.
cc =

, e?
b) Es cert que 95 —dz =0 si C és tancada i simple?
Cc <

4.5. Series de poténcies

Teorema 4.22 (Desenvolupament local en série de potencies). Sigui Q@ < C un obert.
Tota funcié holomorfa en Q és localment una série de poténcies. Concretament, si Ry =
dist(a, C\Q?), aleshores

0
f(z) = Z an(z —a)", per tot |z —a| < R,
n=0

1 f(w)

a, = — ————dw er tot r < R,
" 2mi (w—a)n+t P “

w—al|=r

1 el radi de convergéncia de la série és magjor o igual a Ry.

Combinant aquest resultat amb el teorema 3.30, veiem que f és holomorfa en 2 si i
només si f hi és analitica.

5De vegades es fa servir la notacié ¢ per indicar que la integral és sobre un camf tancat.
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Demostracid. Per 0 < r < R, tenim que D,(a) < . Aplicant la férmula integral de

Cauchy obtenim
1 f(w)
= — d — :
f(2) 5] /w_a_r w, |z —a| <r

w—z

Volem escriure aquesta integral com una serie de potencies. Tenim que

1 1 B 1
w—z (w—a)—(z—a) (w—a)(l—%)
Ara, observem que per w amb |w — a| = r, tenim que
z—a| _ |z — al -1,
w—a r
i per tant
1 B i (z—a)n
1-(22) S\w—a
Llavors
o i (z—a)"
w—z_nzo(w—a)”“'

Introduint aquesta expressié en la formula integral de Cauchy, obtenim

1 = (z—a)"
9= (B0 )

n=0
Ara volem intercanviar l'ordre d’integracié amb el sumatori. Aixo ho podem fer si la
serie de funcions Y}~ fn convergeix uniformement en {|w — a| = r}, on
(z—a)"

fa(w) = f(w)

Per w amb |w — a| = r, tenim que
|z —al” Cr (lz—al\"
< — < — (] .
| fr(w)] <w:|gl_a;<|_r\f(w)l> o S "

z—a] \"
r

Com que |z—a| < r, llavors ), ( < o0, aixi que aplicant el criteri M de Weierstrass,

se segueix que la serie ), -, fn convergeix uniformement en {|w — a| = r}. Intercanviant
doncs la integracié amb el sumatori, tenim que per |z — a| < r,

B & 1 _ ) w | (z—a)"
f(2) _nZO <2m /|w—a|=7‘ (w —a)ntl d )( )" O

Corollari 4.23. Sigui Q < C un obert i f € H(QQ). Aleshores f € C*(Q) i totes les seves
derivades son holomorfes.

Demostracio. Com que aix0 ja ho sabem per series de potencies, és conseqiiencia del
resultat anterior. O
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Exercicis

4.5.1. Desenvolupeu en serie de poténcies al voltant del punt a i doneu el radi de con-
vergencia de:

a) 1/Z, a=1, C) Wl(z_g); a=0, 6) 1ejz’ a =0,
b) 2,’2675’&:07 d) ﬁ,azo, f) H%’LLZO,
(en (e) i (f) només cal calcular els 3 primers termes). 4

aLog(1+z)

4.5.2. Sigui a € C, provar que si (1 + z)® es pensa com e llavors per |z| < 1

~1 —1)(a—2
(1+z)a=1+az+a(a2l )2, ola 3)‘(04 ) 4.

(generalitzacid del binomi de Newton ).

4.5.3. Trobeu els desenvolupament en série de poténcies al voltant del punt a de les
seglients funcions:

a) f(z) =cos?z, a=0. c) ¥z, a=1.

2

b) f(z) = (Zj_l)m a=1

Aqui /- és la determinacié de Uarrel cibica en C\(—o0,0] que val (=1 + in/3)/2 en
z = 1. <

z+1
(z—=1)(z+1)z
1. “Sense fer cap calcul”, raoneu quin és el disc de convergéncia de la série de poténcies
de f al voltant del punt a.

4.5.4. Considereu la funcid f(z) = i el punta=—1.

2. Calculeu la série de poténcies de f al voltant de a. <

4.5.5. a) Es pot desenvolupar +/z en série de poténcies en un entorn de l’origen?
b) Quin és el disc maxim centrat a 0 on es pot desenvolupar cos(1/(z — 1)) en série de
poténcies?

z
33—z

1
c) Ila funcio ) ?
4.5.6. Determinar com a minim els coeficients ay, ag, as,as de la série de Taylor de 1/(1+
2+ 2%) centrada a lorigen. Expliqueu perqué el radi de convergéncia és com a minim 2/3.

4.5.7. Vegem com el teorema 4.22 és propi de l'andlisi complexa. Una funcid de variable
real f és analitica en un interval obert I — R si es pot expressar localment com a serie
de poténcies amb coeficients reals. Demostra que si f és analitica en I aleshores hi €és
derivable. Troba una funcid infinites vegades derivable en R que no hi sigui analitica.
Troba una funcio f analitica en R que tingui radi de convergéncia 1.
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4.6. Férmula integral de Cauchy centrada per derivades i
desigualtats de Cauchy

, (n) ., . .
Com que també sabem que a, = ! n!(a) (vegeu l'observacié 3.31), obtenim el segiient

resultat

Lema 4.24 (Férmula integral de Cauchy centrada per derivades). Sigui Q < C un obert,
fe H(Q) isiguiaeir >0 de manera que Dy(a) < Q. Llavors

n! f(w)
L ST A7
2m1 |lw—a|=r (w - a)nJrl b

™ (a)

Notem que el requisit que la circumferencia estigui centrada en a sera relaxat en el
corollari 4.38.

Exemple 4.25. Calculem
/ ze®
I = —5 dz.
|z—1|=1 (z—1)

La funcié f(z) = ze* és entera. Llavors, per la férmula integral de Cauchy per derivades,
tenim que

I= /z—1|—1 (f(z)dz — 2mi f'(1) = 4dmie.

z—1)2
9

Lema 4.26 (Desigualtats de Cauchy). Sigui Q < C un obert, f € H(S), i sigui a € Q i
r > 0 de manera que D,(a) < Q. Llavors

n! M,
7™ (a)] < an, n =0,
on M, = SUP|z—a|=r ’f<2)|
Observacié 4.27. En particular, tenim que |f(a)| < sup|,_q— | f(2)]- .

Demostracid. Aplicant la férmula integral de Cauchy per derivades, tenim que

£ (q) = n! f(iw)nﬂ dw.

a 271 |lw—al|=r (’U) - a)

Per tant

" n! flw n!
@l g [ e = g [ g

n! n! M,
éWMTL(ﬂw—cd:r}): -

Tn

O
Observaci6 4.28. La desigualtat no es pot millorar. Per exemple, sigui f(z) = 2", a =0
ir =1 En aquest cas, M = My = sup,|_; |f(2)] = 1, i també tenim que f™(0) = nl,
aixi que | (™ (0)] = n! M.
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Exercicis

4.6.1. Donatr >0 i ae€ C calculeu

€2z
I= —=dz.
/z—a|—r (Z - a)g : )

4.6.2. Siguin 0 < m < n enters. Calculeu

1 n
/ % dz. q
|z\=1 Zm-‘r

e¢]
1
4.6.3. Intenteu calcular I = / mdx fent servir la férmula integral de Cauchy
0 x
per derwades (potser cal recordar la desigualtat | [ f(2)dz| < [¢|f(2)]|dz].)

a) Considereu la semicircumferéncia C en el semipla superior centrada a 0 amb radi R i
1
tancada pel segment de l'eix OX. Calculeu | ——=dz.
betsed /C (1+22)2
b) Descomponeu C = C1 u Cy on Cy és el segment de —R a R i Co la part restant
de C. Fent servir la desigualtat triangular per integrals donar una fita superior de

1
- 4
/02 1+ 222"

1
c) Fent servir els apartats anteriors calcular/ g dz. Que passa si R tendeix a
C (1 +z )
infinit? <

4.6.4. Sigui o > 0 i f € H(D) complint que existeixr ¢ > 0 i per a tot |z| < 1, (1 —
12| f(2)| < ¢. Demostreu que per a tot n =0, | f™(0)] < en! (£) (n+ a)e. <

4.6.5. Sigui f una funcid entera de manera que existeizen constants C, M > 0 tals que
|f(2)|e C1*l < M per a tot z € C. Demostreu que |f'(z)|e=C1?l < CMe per a tot z € C.

Indicacié: Apliqueu la desigualtat de Cauchy al cercle centrat a z i de radi r per provar
que |f'(z)|e CFl < %ecr per a totr >0 i zeC. Avalueuw ar =1/C. <

4.6.6. (a) Suposem que una funcic f entera satisfa que |f(z)| < M si|z| = R. Demos-
treu que els coeficients cy, de la seva série de Taylor centrada a a = 0 compleizen

M

(b) Suposem que el modul d’un polinomi P(z) esta acotat per 1 pels z al disc unitat.
Demostreu que tots els coeficients de P tenen modul acotat per 1. <

4.6.7. Proveu que si f € H(D) tal que |f(2)| < |e**| per a tot z € D, aleshores, per a tot
neN,

F™(0)] < nle. :
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4.7. Teorema de Liouville i teorema fonamental de I’'algebra

Teorema 4.29 (Teorema de Liouville). Tota funcid entera i fitada és constant.

Demostracié. Sigui z € C. Per a tot R > 0, tenim que Dgr(z) c 2 =C1i f e H(C). Com
que |f(w)| < M per a tot w € C, aplicant les desigualtats de Cauchy amb n = 1, obtenim

1M
"(2)] < —5— —0
7)<
quan R — o, ja que M no depen de R. Per tant f/(z) = 0 per a tot z € C, i f és
constant. ]

Corollari 4.30. Si f és entera amb Re f = 0, llavors f és constant.

Demostracié. En efecte, considerem la funcié entera g(z) = e~7(?). Llavors
l9(z)| = e "B < =1,

de manera que g és entera i fitada. Pel teorema de Liouville, g és constant, i per tant f
és constant. O

Teorema 4.31 (Teorema fonamental de 1’algebra). Sigui P un polinomi (holomorf) no
constant. Hi ha zp € C amb P(z) = 0.

Demostracid. Suposem que P(z) # 0 per a tot z € C. Aleshores la funcié f(z) = ﬁ és

entera. Si veiem que és fitada, aplicant el teorema de Liouville arribariem a contradiccié.
Si P(2) = an2™ + an_12""' + -+ 4+ a1z + ag, llavors

1

[P@E)] = 2" |an + T2 4o 4+ 2 — oo

quan |z| — +o0, aixi que lim|,|_, [f(2)| = 0, fet que clarament implica que f és fitada.
Com que f és entera i fitada, pel teorema de Liouville, f ha de ser constant, de manera
que P és constant !! O

Corollari 4.32. Tot polinomi de grau n té exactament n arrels complexes (comptant
multiplicitats).

Demostracio. Sabem que P té un zero, diem «;. Llavors P(z) = (z — a1)Pi(2), on P és
un polinomi de grau n — 1, que també té un zero si n > 2. Iterant aquest procés obtenim
el resultat. O

Exercicis

4.7.1. Suposem que f és entera. Provar que si f¥ (z) és fitada en el pla llavors f és un
polinomi de grau 4 com a maxim. 4

4.7.2. La funcié f(z) = 1/2% tendeiz a 0 quan z — o pero no és una funcid constant.
Contradiu aizo el Teorema de Liouville? <
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4.7.3. Sigui f una funcid entera. Per a |a| < R i |b| < R calculeu

I CR
I‘/|z|=R<z—a><z—b>d'

Useu el resultat per demostrar el teorema de Liouville. <
4.7.4. Caracteritzeu les funcions enteres f tals que |f'(2)| < |z| per a tot z € C. <

4.7.5. Sigui f una funcid entera. Usant el teorema de Liouville proveu que
(a) Si|f] =1, llavors f és constant.
(b) SiRef =0, llavors f és constant.
(c) Silm f <1, llavors f és constant. q

(d) SiRe f no té zeros, llavors f és constant.

4.7.6. Sigui f una funcid entera tal que |f(z)| < CeR®?, per a tot z € C, on C > 0 és una
constant. Que es pot dir de f? <

4.7.7. Sigui f una funcid entera tal que |f'(2)| < |f(z)| per a tot z € C. Qué podem dir
de f? <

4.8. Teorema de Morera

Teorema 4.33 (Teorema de Morera). Sigui Q@ < C un obert i f € C(2). Si per a tot
triangle T < Q, es té
f(z)dz =0,
or
llavors f és holomorfa en Q.

Demostracio. Si resseguim la prova del teorema de Cauchy per un disc, veiem que hem
provat que si D < € és un disc obert, f € C(D) i fan = 0 per a tot triangle T' < D,
llavors f té primitiva holomorfa en D.

Fixem zp € €2, i prenem r > 0 de manera que D,(z9) < Q. Llavors f té primitiva F
holomorfa en D, (z), aixi que f = F’ és holomorfa en 2. O

Corollari 4.34. Sigui Q < C un obert i f € C(Q) n H(Q\{p}). Llavors f € H(Q).

Demostracid. Pel teorema de Cauchy-Goursat, tenim que |, orf = 0 per a tot triangle
T < €, i aplicant el teorema de Morera, se segueix que f és holomorfa en ). U
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Teorema 4.35 (Principi de reflexié de Schwarz”). Sigui Q un domini simétric respecte
de Ueiz real, i anomenem Qy = Qn{Imz >0} i Q- = QN {Imz < 0}. Sigui g € H(Qy)
tal que per tot x € R n Q existeix g(x) = lima, 5., 9(2) i g(x) € R. Aleshores la funcio

g(z) sizeQy
f(2) =<g(x) sizeRNQ
ﬁ siz€Q_

satisfa que f € H(Q).

Demostracié. Que f € C(f2) és un exercici (vegeu lexercici 4.8.1). Per veure que f és
holomorfa n’hi ha prou amb veure que integra zero en triangles, en el sentit del teorema
de Morera.

Notem que f € H(Q_) per la regla de la cadena (vegeu 'observacié 3.25, el lema 3.24 i
I’exemple 3.18), doncs per z € _ tenim que

0f(2) = 0f () = 39()(2) = dg(z) -1 = 0.
Per veure que la integral
f(z)dz=0
oT
s’anulla en triangles que intersequin amb la recta real, n’hi ha prou amb veure que s’anulla
en quadrilaters convexos continguts en Q_ U (2 " R) o en Q4 U (2 N R) i amb un costat
contingut en la recta real. Ara, aquesta integral s’anulla en quadrilaters continguts en §)_
o en 4 per 'holomorfia de f en aquests dos dominis (i de Cauchy-Goursat), i per pas al
limit obtenim el mateix per quadrilaters convexos amb un costat contingut en (2nR). O

Teorema 4.36 (Teorema de Weierstrass). Sigui Q2 < C un obert, i sigui { f,} una successio
de funcions de H(SY) de manera que f, — [ uniformement sobre els compactes d’SQ.
Llavors f € H(Q), i f), — f" uniformement sobre els compactes d’SQ.

Demostracié. Com que f, € H(Q2) < C(Q) i f, — f uniformement sobre compactes, se
segueix que f € C'(Q2). Llavors, pel teorema de Morera, per provar que f € H(2), ens cal
veure que

f(z)dz=0
oT

per a tot triangle T' < . Fixem T < € triangle. Com que f,, — f uniformement en el
compacte 07T, podem passar el limit a fora de la integral en el calcul que segueix,

/ f(z)dz=/ lim f,(2)dz = lim | f,(2)dz =0,
oT ar "

noJor

ja que, al ser f, holomorfes en 2, aplicant el teorema de Cauchy-Goursat, tenim que

/ann(z)dz=O

"Karl Hermann Amandus Schwarz, Sobieszéw, 1843-1921, https://ca.wikipedia.org/wiki/Hermann_
Schwarz
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Finalment, per veure que f’ = lim, f; i que la convergencia és uniforme en compactes,

n’hi ha prou amb veure que ho és en K. = {z € Q : dist(z,Q°) = ¢} n D1(0) per € > 0.
Aleshores (sempre que K. # &), usem la férmula integral de Cauchy per a derivades amb
radi r = /2, i obtenim

sup |f'(z0) — fl(z0)| " sup -

z| < =sup |f — fn]| — 0,
20€K< 20eKc 2m

(2 — 20)? T K.

/ f(2) = fa(2) d 1 n—00
|z—z0|="r

suposant que ¢ és prou petit (fa falta ja que quan z € 0D, (zp) tenim que |z| < |z + 7 <

% +5 < % 1, per tant, z € Ky si, per exemple € < 1). O
Exercicis
4.8.1. Demostreu la continuitat de f en el principi de reflexié de Schwarz. <

4.8.2. Sigui f(z) = 1/22. Comproveu que f7 f(z)dz = 0 per a tot cami tancat v que no
passi per 0, pero f no és analitica en 0. Contradiu aixo el corollari 4.34 del teorema de
Morera? <

4.8.3. (a) Sigui h una funcid continua a R amb suport compacte (és a dir, existeix
K < R compacte tal que h(z) =0 si x ¢ K) i sigui

H(z) z/Rh(t)e_itzdt

(quan ens restringim a z € R, H s’anomena transformada de Fourier de h; si prenem
iz en el lloc de z, H s’anomena transformada de Laplace® bilateral de h). Proveu

que H és una funcid entera amb creizement exponencial: existeizen A,C > 0 tals
que |H (2)| < CeAlm=l,

(b) Sigui h una funcié continua a [0,1]. Demostreu que la seva transformada de Hilbert”

1
H(z) = /0 ht) g

t—z

és analitica per a z € C\[0, 1]. q

4.8.4. Sigui f holomorfa en un obert , i sigui zo € Q amb f'(z0) # 0. Demostreu que hi
ha rog > 0 de manera que, per 0 < e < rg, es compleiz la identitat

27 dz
f/(ZO) - /|z—z0|—s f(Z) - f(ZO) '

Indicacid: proveu primer que la funcio G definida per

fE)—fz0)
G(z) = z—20 sz 7 20
f(z0)  siz=2

és holomorfa en Q. <

8Pierre-Simon  Laplace, Beaumont-en-Auge, 1749-1827, https://ca.wikipedia.org/wiki/
Pierre-Simon_Laplace
9David Hilbert, Kénigsberg, 1862-1943, https://ca.wikipedia.org/wiki/David_Hilbert
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4.9. Derivacio sota el signe integral i formula integral de Cauchy
per derivades

Sigui < C un obert i f € H(Q). Suposem que D,(a) < Q. Llavors, per la férmula
integral de Cauchy, tenim que

1 f(z)
= — d — :
f(20) Gl z, |20 —a] <7
També tenim la férmula integral de Cauchy per derivades.
|
() (q) = e
f (a) 271 |z—al|=r (Z - a)nJrl -

Observem aqui una diferéncia: podem aplicar la féormula integral de Cauchy per a tot
20 € Dy(a); 1 en canvi en la versié per derivades només tenim ’enunciat per a zp = a, que
és el centre del disc. Aixi doncs, una qiiestié que ens apareix de manera natural és si en
la férmula integral de Cauchy per derivades, també podem agafar zp € D, (a) igual que en
la férmula de Cauchy. La resposta és que si, i sera conseqiiencia del segiient resultat.

Teorema 4.37 (Derivacié sota el signe d’integracié). Siguin Q1,Qo < C oberts i v :
[a,b] — Qo un cami en Q. Sigui F' : Q1 x v([a,b]) — C una funcid continua. Si F(-,z)
és holomorfa en Q1 per a cada z € v* = y([a,b]), llavors la funcidé definida per

f(w)z/F(w,z)dz, w e
¥
és holomorfa en 1 amb
oF
f(w) = /vaw(w,z) dz, w € Q.

Abans de passar a la prova d’aquest teorema, apliquem-lo per provar la versié desitjada
de la féormula integral de Cauchy per derivades.

Corol'lari 4.38 (Férmula integral de Cauchy per derivades). Sigui < C un obert i
fe H(Q). Suposem que D,(a) < Q. Llavors, per n € N,

F™(z) = n'/ &) dz |z0 — al <,
|z—al|="r

2mi (z — zo)nt1t 7

Demostracié. Suposem que D,(a) < Q. Llavors, com que f és holomorfa en €, per la
férmula integral de Cauchy, tenim que

wzi f(z)dz= F(w,z)dz we D,(a
S =g | STgde= [ Pwedn weD@,
. 1 f()

F(w,z)

T 2mi (z—w)
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Passarem a aplicar el teorema de derivacié sota el signe integral amb Qq = D,.(a), Qo = Q
i la corba y(t) = a + re®, t € [0,27]. Tenim que v* = 4[0,27] = {2 : | — a| = r}. Com
que w € D,(a) i |z —a| = r, llavors clarament F' és continua en D,(a) x [0, 27], i també,
per z € v[0, 27| fixat, la funcié F,(w) = F(w, z) és holomorfa en w. Aix{ doncs, aplicant
el teorema de derivacié sota el signe integral, se segueix que

, 1 z
f(w) = /|z—a|=r Lkdz, w € Dy(a).

© 2mi (z —w)

Iterant aquesta formula, obtenim que

f(”)(w)—n!/_ _ Ldz |lw—al| <r.

2 (z —w)ntl 7

Per provar el teorema 4.37, és suficient demostrar el seglient cas particular.

Proposicié 4.39. Sigui Q@ < C un obert i F' : Q x [a,b] — C continua. Si F(w,s) és
holomorfa en w per a tot s € [a,b], llavors la funcié

b
flw) = / F(w,s)ds
és holomorfa en Q0 amb

b
f(w) = gF(w,s) ds, weQ.
0 Ow

Demostrem ara el teorema de derivacié sota el signe integral a partir de la proposicio
anterior.

Demostracié del teorema 4.37. Podem suposar que «y és de classe C'. Llavors

A Flw2)d: = [ " F(w,y(s)) 7 (s)ds = / " G, 5) s,

on G(w, s) = F(w,v(s)) 7 (s) que és clarament continua en 2 x [a,b] degut a la hipotesi
sobre F'. També G és holomorfa en w per a tot s € [a, b]. Per tant, aplicant la proposicio,
se segueix que f és holomorfa en 1 amb

b
Faw) = [ 2 w,(s) 7' (s) ds = / OF .2 de. -
Y

W 0w ow

Demostracio de la proposicio. Podem suposar a = 01 b = 1. Per n > 1, considerem la
suma finita de funcions

= k
f"(w):%ZF(U”ﬁ)’ we Q.
k=1
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Com que, per hipotesi, les funcions F'(w, %) sén holomorfes en w i en tenim una suma
finita, se segueix que les funcions f;,, sén holomorfes en 2.

Per veure que f és holomorfa en €2, provarem que f,, — f uniformement sobre els com-
pactes d’§2, aixi que aplicant el teorema de Weierstrass (vegeu el teorema 4.36), obtindrem
que f e H(Q).

Sigui K < ) compacte. Recordem que una funcié continua en un compacte és unifor-
mement continua. Per tant, al ser F' continua en el compacte K x [0,1], donat £ > 0, hi
ha § > 0 de manera que

sup |F(w, s1) — F(w,sz)' <eg, si |s1 — s9| <. (4.4)
weK

1 _ k _ k=1
Observem que, com que - = = — “ =

fulw) = F (w, ) ds.
AR

, tenim que

També

Aleshores, sin>1/0iwe K,

|[fa(w) = f(w)] =

on hem aplicat (4.4), ja que per s € [%1, %] Obtenim ‘s — §| < % <, ja que hem triat
n > 1/4. Per tant,

sup | fn(w) — f(w)| <e, n > 1/6,
weK

provant que f, — f uniformement en compactes d’ 2, i per tant f és holomorfa en 2 pel
teorema de Weierstrass.

Fixem ara w € € i prenem r > 0 de manera que D,(w) < §. Per la férmula integral
de Cauchy per derivades (la versié on prenem el centre del disc, que ja tenim provada),
tenim que

fw) = - L)de _ ! 1w>2 (/OIF(Z,S) ds> dz.

; 2mi |z—w|=r (Z - w) a 2m1 |z—w|=r (Z -

Finalment, aplicant el teorema de Fubini obtenim
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4. Integrals de linia i teoria local de Cauchy

ja que com que fixat s € [0, 1], la funcié6 Fs(w) = F(w,s) és holomorfa, per la férmula
integral de Cauchy per la derivada, tenim que

or / 1 Fi(2) z = = Flans) z
aw( s) = Fy(w) = 211 Auﬁ—r (2 —w)? ! 2mi /|Zw|_7' (2 —w)? =

Per tal de justificar I’aplicacié del teorema de Fubini, cal provar que

[F(z,5)|
= / (27r /z w|=r |Z_w|2 ‘d2|> s < 0

Com que F és continua en 2% [0, 1], en particular és continua en el compacte 0D, (w) x [0, 1]
i, per tant, fitada en aquest compacte. Llavors hi ha una constant M > 0 de manera que
|F(z,s)] < M per a tot z amb |z —w| =r1itot s € [0,1]. Llavors

1 1 M
-5 2// [Pz, 5)ldel ds < 51y
™= Jo |z—w|=r r

2nrds < o0. O
0

Exercicis

4.9.1. Avalueu, usant la férmula de Cauchy per a les derivades

a L z L(z) - o —if et?
/ /|z=1 (z — 1/2)2d . b) /Z|=1 (32—2)4d ' ¢) /0 e e do. <

4.10. Zeros de funcions holomorfes i principi de prolongacié
analitica

Tot seguit estudiem el conjunt de punts on una funcié holomorfa donada val zero, ’ano-
menat conjunt de zeros de la funcié. Sigui Q@ < C un obert i f € H(2), i escrivim

Z(f) = {z e Q: f(z) = 0}.

Proposicié 4.40. Sigui Q < C un obert connex i f € H(S). Si existeix a € Q de manera
que £ (a) = 0 per a tot n e N U {0}, llavors f = 0.

Demostracio. Sigui
Az{zeQ:f(”)(z) =0 peratotneNuU{0}}.

Tenim que A és no buit ja que a € A. Vegem que A és relativament tancat en 2. Donada
una successié {by} < A amb by — b € Q, volem provar que b € A. Com que cada ) és
continua i by € A, tenim que

ﬂ%m:fwmgmyﬂ%quw:o = beA.
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Per tant A és tancat en €. Vegem que A és obert. Sigui b € A. Com que tota funcié

holomorfa és localment una série de poténcies, podem trobar > 0 amb D, (b) i

n

O f(n)
flz)=> / ,(b) (z—=b)"=0, zeD.(b).
n=0 :

Com que f(z) = 0 per a tot z € D,(b), se segueix que D,(b) < A aixi que A també és
obert.

Com que €2 és connex, i A és no buit, i obert i tancat en €2 a la vegada, se segueix que
A=Qif=0en Q. O

Teorema 4.41. Sigui Q < C un obert connez i f € H(Q) amb f # 0. Per a tot zg € Z(f)
hi ha un dnic m € N (anomenat l'ordre o multiplicitat del zero zy) de manera que

f2)=(z-20)"9(2), zeQ,
on g € H(Q) amb g(z) # 0.

Demostracio. Com que tota funcié holomorfa és localment una serie de potencies, podem

trobar r > 0 amb D, (zy) < Qi tal que
0
f(2)=Dlan(z—2)",  z€ D).
n=0

Sabem que ag = f(z0) = 0. Sigui m el minim nombre natural amb a,, # 0 (aquest minim

C C oy . . (n) .
existeix per la proposicié anterior, ja que a, = fTEZO)) Tenim que

f(z) = Z an(z —20)" = (2 — 20)" h(2), z € Dy(20),

nzm

amb

h(z) =am + am+1(z - ZO) + am-&-Q('Z - ZO>2 +oee = Z am+k(2 - ZO)kv S DT(ZO)
k=0

que és holomorfa en D, (zp) amb h(zp) # 0. Finalment, definint

f(z)

G si ze Q\{z0}

9(z) =

h(zo) si z =z,

tenim que lim,_,., g(z) = am = h(20) # 0, g és holomorfa en Q\{zp} i g és continua en zo
i, per tant, holomorfa en tot §2, vegeu el corollari 4.34. O

Exemple 4.42. Trobem la multiplicitat de z = 0 com a zero de la funcié

f(z) = 6sin(23) + 2 — 623,
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Tenim que
‘ 3,5 -
smz=z—§+§+(9(z ),
vegeu 1’Observacio 3.3. Per tant,
9 15
sin(23) = 2% — % + ZET + 0z,

aixi que
6215
f(Z) = 6811’1(23) + 29 - 62’3 = T + 0(2520)7
i per tant z = 0 té ordre o multiplicitat 15.

O

Corollari 4.43. Sigui Q < C un obert connex i f € H(Q) amb f # 0. Llavors els zeros
de f son aillats.

Demostracid. Sigui zp € Z(f). Pel teorema anterior existeix m € N tal que f(z) =
(z —20)"g(z) amb g € H(Q) i g(z0) # 0. Per continuitat, hi ha ¢ > 0 de manera que
g(z) # 0 per z € Do(2), aixi que f(z) # 0 si z € Ds(zp) amb z # 2. O

Recordem que zp és un punt d’acumulacié d’un conjunt A si hi ha una successié
(zn)n < A\{20} amb z, — 2.

Teorema 4.44 (Principi de prolongaci6 analitica). Sigui Q < C un obert connex i f €
H(Q). Si Z(f) té un punt d’acumulacic en 2, aleshores f =0 en Q.

Demostracio. Sigui zg €  punt d’acumulacié de Z(f), és a dir, hi ha z, € Z(f) amb
zn, — z0. Com que f és continua, llavors f(zp) = lim,, f(z,) = 0,1 29 € Z(f), pel que z
és un zero de f que no és aillat. Com que sabem que els zeros d’una funcié holomorfa no
idéenticament nulla sén aillats, aixo implica que f = 0. O

Corollari 4.45. Sigui Q@ < C un obert connex i f : @ — C una funcié holomorfa, no
idénticament zero. Llavors el conjunt de zeros de f és un conjunt finit o numerable.

Demostracié. Podem escriure Q = J, Ky, on K, = {z € C; d(z,C\Q2) > 1} n D,(0).
Llavors, per a cada n, K, és compacte (tancat i fitat a C). Donat que f no és idénticament
zero, els zeros sén aillats, i es compleix en particular que Z(f) n K, és finit (si no hi hauria
un punt d’acumulacid), aixi que

Z(f) = J2(f) n Kn)

n

és finit o numerable en ser unié numerable de conjunts finits. O

Observacié 4.46. En cas que f tingui un ntmero infinit de zeros, aquests s’han d’acu-
mular a la frontera d’ Q2. Si f és entera, llavors els zeros s’acumulen a {oo}. Per exemple,
els zeros de f(z) = sinz sén k7 per k € Z. .
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El principi de prolongacié analitica s’aplica moltes vegades en la forma segiient:

Corol'lari 4.47 (Principi de prolongacié analitica, versi6 2). Sigui Q < C un obert connex
i f,ge H(Q). Si{zeQ: f(z) = g(z)} té un punt d’acumulacié en 2, aleshores f = g en
Q.

Demostracio. Apliquem el principi de prolongacié analitica a la funcié holomorfa h = f—g,
i obtenim el resultat, ja que Z(h) = {z € Q: f(z) = g(2)}. O

En particular, si 2 és connex i f,g € H(Q) coincideixen en, per exemple, un obert, o bé
un arc, o una recta, o un cercle, o un segment; llavors f = g en €.

Exemple 4.48. Cerquem totes les funcions f € H(DD) amb f(1) = -

% o7 beratot n e N
amb n > 1. Observem que

1 1 1 1\2 1
R
n n*+1 n(1+n2) n 1+(n)
% n%ﬂ, i deduim
que f,g € H(D) amb f(%) = g(%) Com que % — 0 e DiD és connex, llavors aplicant el
principi de prolongacié analitica, obtenim que

Llavors la funcié g(z) = ﬁ% és holomorfa en D i compleix que g(=) =

52
= = e D.
) =9 = g
9
Exercicis
4.10.1. Trobeu els zeros, amb l'ordre corresponent, de les segiients funcions:
2
+1 1 1
a) ;_1 b) 2’sinz c) f(z):;—i-; q

4.10.2. Trobeu la multiplicitat de z = 0 com a zero de la funcid entera f(z) = 2 cos 23 +
6
2> —2. N

4.10.3. Trobeu tots els zeros de les segiients funcions holomorfes i calculeu-ne les seves
multiplicitats:

a) f(z) =22 —1). c) f(z) = (Vz—2).
b) f(z) = (22 — w?)sin z/z.

Aqui /- és la determinacié de 'arrel quadrada en C\(—o0,0] que val =1 en z =1. <
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4.10.4. Sigui Q@ < C un domini. Demostreu que ’anell de funcions holomorfes H(Q2) a
una regid Q és un domini d’integritat, és a dir, si f,g € H(2) amb fg =0 aleshores f =0
0g=0. q

4.10.5. Sigui {an}n una successid estrictament decreizent de nombres reals a, € (0,1) i
tal que lim a, = 0. Sigui f una funcié holomorfa en . Demostreu que:
n—aoo

(a) Si f(an) € R per a tot n, aleshores f(z) = f(z) per a tot z € D.

(b) Si a més f(az,) = f(agn+1) per a tot n, aleshores f és constant. q

4.10.6. Trobeu totes les funcions holomorfes a D tals que:
(a) |f(1/n)| < 1/2", per a tot nombre natural n = 2.

(b) f(1/n) =In(1+n3) —3Inn per an > 1. q

4.10.7. Trobeu totes les funcions f holomorfes en el disc Do(0) tals que f(e) = €9 per
a tot 0 €[0,2m), i a més f(0) = 0. q

4.10.8. Sigui f € H(Q2) en un domini Q < C tal que fo f = f. Demostreu que o bé f és
constant, o bé és la identitat. <

4.10.9. (a) Sigui f una funcié entera tal que existeizen constants n € N, C >0 i R >0
tals que | f(z)| < C|z|™, per a |z| = R. Demostreu que f és un polinomi de grau més petit
o igual que n.

(b) Deduiu que si f és una funcid entera amb ‘ l|im |f(2)| = 0, llavors f és un polinomi.
Z|—00

Indicaci6é: Demostreu que f només té un nombre finit de zeros aq,. .., a, (comptant mul-
tiplicitats) i apliqueu Uapartat (a) a la funcidc F' = P/f, on P(z) = (z —a1) -+ (2 — ay).

<

4.10.10. Sigui Q < C un domini (obert connez) tal que Q "R # . Suposem que tenim
frg,he HQ) iu,v:Q — R tals que per x + iy € Q tenim

f(z +iy) = u(x,y) +iv(x,y),

i per x € QN R tenim
u(z,0) = g(z) v(z,0) = h(x).

Demostreu que
f(z) = g(z) +ih(z) per a tot z € Q. q
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4.11. El principi del modul maxim

Una caracteristica de les funcions holomorfes és que no poden tenir maxims absoluts en el
seu domini de definicié. Podem observar el contrast amb l'analeg real: existeixen moltes
funcions derivables amb maxims absoluts en 'interior del domini de definicié com, per
exemple, la funcié f : (—1,1) — R definida per f(z) = 1 — 22 que té un maxim absolut
en z = 0.

Teorema 4.49 (Principi del modul maxim). Sigui 2 < C un obert connex i f € H(2).
Si |f| té un mazim absolut en Q, llavors f és constant.

Demostracio. Sigui zg € Q amb |f(2)| < |f(z0)] per a tot z € Q. Posem

A={zeQ:|f(2)] = |f(20)l}.

Es compleix que A és no buit ja que zg € A. Com que 2 és connex, si veiem que A és
obert i tancat en 2, tindrem que A = Q, que implica que |f| és constant i, per I'exercici
3.2.6, també f és constant. Ja sabem que A és tancat en 2, ja que |f| és continua i
A = (|f)""(zo) amb wo = |f(20)|-

Vegem que A és obert. Donat a € A, volem trobar r > 0 de manera que D,(a) c A.
Sigui r > 0 tal que D, (a) < Q. Per la propietat de la mitjana, es compleix llavors que

1 27

f(a) f(a+ se)dt, 0<s<r.

:EO

Per tant, com que a € A, obtenim

@) < o

S on

27 )
/0 FlatseM)dt < |f(z0) = |f(@), O<s<r

Com que |f| és continua i |f(a + se)| < |f(a)| per a tot t € [0, 27], es verifica que
If(a)] = |f(a+ se™)|, Vtel0,2n], 0<s<r.
Es a dir, D,(a) C A. O

Passem ara a veure algunes conseqiiencies, que quan les apliquem, seguirem dient que
apliquem el principi del modul maxim.

Corollari 4.50. Sigui Q < C regid fitada, i f € H(Q) n C(Q). Llavors el mazim de |f|
s’assoleix a la frontera 0€).

Demostracié. Com que 2 és fitat, llavors ) és un tancat i fitat de C i per tant compacte.
Com que | f| és continua en el compacte 2, llavors |f| té un maxim absolut en un punt a de
Q. Si a € Q, pel principi del modul maxim, llavors |f| és constant, aixi que, en particular,
| f| assoleix el maxim en tot punt w € 0€2. O
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Corollari 4.51. Sigui Q < C un obert connex i f € H(Q). Si |f| té un mazxim local en
Q, llavors f €s constant.

Demostracid. Per hipotesi, hi ha a € Q i r > 0 de manera que |f(2)| < |f(a)| per a tot
z € Dy(a). Com que f € H(D;(a))i|f| té un maxim absolut en D, (a), pel principi del
modul maxim, se segueix que f és constant en D,.(a) i, al ser £ connex, aplicant el principi
de prolongacié analitica obtenim que f és constant en (2. O

Lema 4.52 (Lema de Schwarz). Sigui f : D — D una funcié holomorfa tal que f(0) = 0.
Aleshores
|f(2)] < |z| pertot zeD,

i |f(0)] < 1. Si es compleiz la igualtat |f(z0)| = |z0] en algun punt zp € D\{0} o bé la
igualtat |f'(0)| = 1, aleshores f(z) = Az per algun X\ € JD.

@ és analitica, i |g(z)| < - Pel

Demostracié. Suposem f # 0. Sabem que g(z) =
principi del modul maxim,

en D,(0).

S| =

l9(2)] <

Fent r — 1 deduim la primera desigualtat. A més, |f'(0)| = |g(0)| < 1.

Si es produeix alguna igualtat | f(z0)| = |z0| amb 2o € D\{0} (respectivament | f/(0)| = 1),
aleshores ¢ assoleix un extrem del modul en zy (respectivament en 0) i, per tant, g és
constant. U

Exemple 4.53. Vegem que, per a tot polinomi holomorf P, tenim que

1
P(z)—=| >
(2) =2

sup
|z[=1

Aquest resultat ens diu que la funcié % no es pot aproximar uniformement per polinomis

holomorfs en el compacte S' = {|z| = 1}.
Observem primer que

sup |P(z) — —| =

J2/=1

Aleshores, si aquest suprem és estrictament menor que 1, tenim que, en ser la funcié
h(z) = zP(z) — 1 entera, pel principi del modul maxim

h(0)] < sup [h(z)] <1,

|z|=1
pero aixo no és possible ja que h(0) = —1. Per tant
1
sup [P(z) — —| = 1. O
|21=1 “
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Una altra propietat rellevant de les funcions holomorfes (no constants) és que envien
oberts a oberts. Aquesta propietat no val per a funcions de variable real (tan regulars
com vulguem). Per exemple, la imatge de la funcié f(z) = 22 de I'interval obert (—1,1)
és [0,1) que no és obert.

Teorema 4.54 (Teorema de I'aplicaci6 oberta). Sigui Q < C un obert connex i f € H(Q)
no constant. Aleshores f és oberta. Es a dir, si U és un obert d’QY, llavors f(U) és obert.

Demostracid. Sigui U < 2 obert, i zp € U. Per veure que f(U) és obert, volem trobar un
entorn de wyg := f(29) dins de f(U). Considerem la funci6

9(z) = f(z) — wo, z € €.

Com que g(z9) = 01 els zeros de les funcions holomorfes sén aillats, al ser f no constant,
podem trobar r > 0 de manera que D,(z9) € U amb g(z) # 0 per a tot z € D,(z0)\{z0}

Sigui y(t) = 2o+ 7€ amb 0 < ¢ < 27, de manera que v* = 0D,.(2g). Llavors 0 ¢ (go~)*,
on g o« denota la imatge per g de la corba . Per tant

0 = inf |g(z)| > 0.
zEY*

Es a dir,
9(z) =6, |z—z| =

Passarem a provar que Ds/s(wo) < f(U).

Suposem que w ¢ f(U). Aixo implica que la funcié

1
h(z) = ——— 4.5
O ()
és holomorfa en U. Pel principi del modul maxim, tenim que
[h(20)| < sup |h(z)]. (4.6)
zEY*

(Aquesta desigualtat també es pot obtenir fent servir la propietat de la mitjana, per
exemple). Com que |g(2)| = d per z € v*, tenim que
1 1 - 1
[f(z) —w| — [f(2) —wo + (wo —w)| ~ [g(2)] = Jw —wo

< 1 e ~*
X < . < :
6 — |w — w K
Per tant,
1 4.5 4.6 1 o

= |h(z0)] € 7 = |w—wo|> g,

|w — w [h(z0)] d — |w — wo| [0 = wol 2
és a dir que w ¢ Dj/o(wp). Concloem doncs que f és oberta. O
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Exercicis

4.11.1. Cerqueu l’enunciat del teorema de Stone!’-Weierstrass i compareu-lo amb l'exem-
ple 4.55.

4.11.2. Trobeu el maxim de:
a) |cosz| i|sinz| a [0,27] x [0, 27].
b) |e7| i|e*| a2 < 1. 4

4.11.3. Trobeu totes les funcions holomorfes en D tals que f(1/2) = 3 i |f(z)| < 3 si
|z| < 1. <

4.11.4. Es considera f(z) = e°*)22 i el disc D de radi 2 centrat a 5. Provar que f(2)
assoleix el valor mazim i minim del modul a |z — 5| = 2. Indicacié: considerar 1/f(z). <

4.11.5. Sigui f una funcié holomorfa en el disc Dr(0), R > 0. Definim

M(r) = max |f(2)], 0<r<R.

|2|=r

Demostreu que si f no és constant, aleshores M(r) és estrictament creizent a [0, R). <

4.11.6. Sigui f una funcio holomorfa en un obert connex Q0 © D un disc obert tal que
D < Q. Suposeu que |f(z)| = ¢ per tot z € 0D, on ¢ és una constant. Proveu que f té
almenys un zero en D o bé f és constant en ). Indicacié: Distingiu segons si ¢ = 0 o

c> 0. En el segon cas, proveu que si f no té zeros en D, aleshores f és constant en D.
<

4.11.7. Sigui f una funcié holomorfa i no constant en Q < C, un obert connex. Suposeu

que existeiz a € Q tal que |f(a)|] < |f(2)| per a tot z € Q. Proveu que aleshores f(a) = 0.
<

4.11.8. Sigui f € H(C) no constant. Demostreu que, per a tot ¢ > 0,

{z [f() <c} ={z |f(z) < ¢ <

0Marshall Harvey Stone, New York City, 1903-1989, https://en.wikipedia.org/wiki/Marshall_H.
_Stone
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5. Topologia en el pla complex: teoria
global de Cauchy

Un cop hem estudiat la teoria local de Cauchy, el proper objectiu és estudiar propietats
globals de les funcions holomorfes. Mitjancant la versié global del teorema de Cauchy,
estudiarem la relacié entre ’holomorfia d’una funcié i la topologia del domini on esta
definida. Per a donar aquesta versié global, cal estudiar un concepte topologic, el de cami
homoleg a zero. Veurem aplicacions importants de la teoria global, entre les que es troben
el teorema dels residus, que ens permetra calcular molts dipus d’integrals, o el principi de
I’argument i teorema de Rouché que controlen els zeros de les funcions holomorfes.

5.1. index d’una corba tancada respecte d’un punt

Comencem amb la nocié d’index d’una corba tancada v respecte d’un punt zy, Ind (v, 2¢).
Intuitivament, Ind (v, z9) compta el nimero de voltes que ha de donar sobre si mateix un
observador collocat en el punt zy per a resseguir la corba, vegeu la figura 5.2.

Abans de donar la definicid, necessitem el segiient resultat:

Proposicié 5.1. 1. Siguin a,wg € C i v > 0 complint que D,(a) < C\{0}. Sigui
20 € Dy (a) tal que e® = zy. Llavors ezisteir una unica determinacié del logaritme
en Dy(a), L, tal que L(zp) = wo.

2. Sigui v : [a,b] — C\{0} continua i wg € C tal que e = v(a). Llavors existeiz una
unica determinacié del logaritme de v, 4, complint que ¥(a) = wg. A més, si~y és
7' (@)

diferenciable, aleshores i també ho és i 4 (t) = 0N

Demostracio. Provem 1. La unicitat és immediata, ja que dues determinacions del logarit-
me només poden diferir en un multiple de 27 per la proposicié 2.30. Per veure 'existencia,
sigui a = |a|e’®. Llavors D,(a) c C\e*(—0,0] i si £ és una determinacié del logaritme
a C\e"(—, 0], llavors D, (a) és una determinacié del logaritme a D, (a). Es compleix,
doncs, que si denotem k = wo%gzo) € Z, la funcié L(z) = {(z) + 2mik és una determinacié
del logaritme en D, (a) tal que L(29) = wo.

Provem ara 2. Com abans, la unicitat és evident. Per demostrar ’existéncia, sense
perdua de generalitat, podem suposar que a = 01 b = 1. Sigui ¢ = %infte[()’l] |v(t)| > 0.
Donat que 7y és uniformement continua en [0, 1], existeix 6 > 0 tal que |y(t) —v(s)| < ¢
per a tot s,t € [0,1] tal que [t — s| < 4.

Siguin > 1 tal que % < disiguiz, =v(E), perak =0,1,---n—1. Llavors |z, —2zp41| < €

n

([, 51) < De(zr) < C\{0}, perak =0,1,--+ ,n— 1.

n’> n
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Aplicant l'apartat 1, sigui £ 1'inica determinacié del logaritme en D.(zp) tal que
Lo(z0) = wo. I, recurrentment, per a k = 1,---n — 1, sigui £; 'inica determinacié
del logaritme en D.(zy) tal que L (zx) = Lx—1(2k).

Llavors si k = 1,---n — 1, Lx_1 = L en D.(2) N Ds(zx). Per tant, la funcié §(t) =
Li(y(t)), si % <t < %, k=0,---n—1, és la determinacié del logaritme de v complint
"A}/(O) = wyp.

Finalment, si v és diferenciable, com a conseqiiéncia de la construccié de 4 i del fet
que les determinacions del logaritme sén holomorfes, es verifica que 4 és diferenciable i si
B <t < B Navors 4/(1) = L4(v(0)' () = 28 O
Definicié 5.2 (fndex d’una corba tancada respecte a un punt). Sigui v : [a,b] — C una
corba tancada en C i z € C\y*. Llavors, I'index de v respecte a z es defineix per:

Y2(b) — ’AYZ (a)

Ind (v, 2) == 57

9

on 4, és qualsevol determinaci6 del logaritme de 7, : [a,b] — C\{0}, definida per ~,(t) =
~(t) — z, vegeu la figura 5.1. .

7= (D)

v(b)

Figura 5.1.: Construccié de 4, com a logaritme de v, = v — 2. Notem que en aquest cas
tenim Ind (v, 2) = 1, ja que 9, augmenta en 27i al recérrer el cami, és a dir
que Pargument de y(t) — z augmenta en 27 al recérrer el cami ~.

Observacié 5.3. 1. Donat que dues determinacions del logaritme de v, difereixen en
un multiple de 27, I'index esta ben definit.
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2. L’index Ind (v, z) és un nombre enter. En efecte, donat que 7 és una corba tancada,
7. també ho és i, per tant, e7=(") = ~,(b) = 7, (a) = €7@, Llavors,

¥2(0) — 42 (a)
271

Ind (v, 2) := eZ.

Aquest valor doncs, pot ser positiu, negatiu o zero: una volta és positiva si es realitza
en el sentit contrari a les agulles del rellotge i és negativa si es fa en el sentit de gir
de les agulles del rellotge, vegeu la figura 5.3. .

z1*

Figura 5.2.: Tenim Ind (v, z1) = 0, ja que des de z; podem observar tot el cami sense haver
de “girar” sobre nosaltres mateixos. En canvi, Ind (v, 2z2) = 1 perque ens cal
fer una volta si som a 2z, i Ind (y, 23) = 2 perque ens cal fer dues voltes per
resseguir el cami amb la mirada si ens situem a z3. Vegeu ’observacio 5.3.

Observacié 5.4 (Calcul geometric de 'index). Fixem una semirecta L amb origen zy que
no travessi punts on el cami té interseccions. Per cada vegada que el cami ~y passa per
L en sentit positiu, li sumem 1, i si passa en sentit negatiu, li restem 1. Veure figures
5.3-9.5. o

Figura 5.3.: Podem observar els camins verds que intersequen en sentit positiu o antihorari
i els vermells en negatiu o horari, vegeu ’observacié 5.4.
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Proposicié 5.5 (Expressi6 integral de I'index). Sigui Q < C un obert, v un cami tancat
en iz & v*. L’index de v respecte a zg ve definit com

1 dz

2mi

Ind (v, 20) := :
v Z— 20

En particular, si v~ denota el cami invers de y (és a dir, recorrequt en sentit invers),

tenim que

Ind (y~, 2) = —Ind (v, 2), z¢N".

Demostracié. Sense perdua de generalitat, podem suposar que v és de classe C' ja que,
altrament, descompondriem el cami i la integral en un nombre finit de trossos. Llavors si
v : [a,b] - C 14, és una determinacié del logaritme de v, = z + v : [a,b] — C\{0}, es
verifica que

_'?z(b)_:)/z(co_ 1 b“ ! — 1 ' 7’(t) = ! d(
Ind(%z)—m—w/a(%)(t)dt_m . V(t)_zdt_m/wg—z' -

A continuacié ens mirem 'index Ind (y, z) com una funcié de z.
Proposicié 5.6 (Propietats de la funci6 index). Sigui v un cami tancat. Llavors:
a) La funcié Ind (v, z) : C\y* — Z és continua;
b) Ind (v, 2) és constant en cada component connexa de C\y*;
¢) Ind (v, z) = 0 si z pertany a la component no fitada de C\vy*.

Demostracio. (a) Per z,zp € C\v*, tenim que

1 1 1
5 / ( — )dw’
21 S\ =z w— 2

|z — 2| dw
/7 (w —2)(w — 20)

- or
Volem veure que aquesta quantitat tendeix a zero quan z — zg. Sigui

‘Ind (v,2) — Ind (v, zo){ =

1
§ = 5 dist(z0,7").
Clarament tenim que |w — zo| = 2§ si w € v*. Llavors, per |z — zg| < 0, tenim també
*

|lw—z| = |w— 20| — |z — 20| =20 — 0 =, w e y*.

Per tant, si |z — 29| <, tenim que

|z_zg|/ |dw| |2 — 20l
Ind —Ind < < L(v)-
| 1l (’Y,Z) n (/y?ZO)| 2ﬂ- 5 |w — z‘ |’UJ — Zo‘ 47'('62 (’Y)
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/3 Q

Figura 5.4.: Per a calcular I'index de 7 respecte a z;, tracem una semirecta partint del
punt i sumem interseccions amb la corba en sentit positiu i restem les de
sentit negatiu, tal com illustra la figura 5.3.

Figura 5.5.: Trobem Ind (v, z1) = 141 = 14+1—1+1 = 2 per dues semirectes diferents. Aix{
mateix calculem Ind (v, 22) = 1, Ind (7,23) = 0, Ind (v, 24) = 2 1 Ind (v, 25) =
—1.
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Com que aquesta quantitat tendeix a zero quan z — 2, ja hem provat la continuitat de
la nostra funcié.

(b) Com que la funcié Ind (v, z) és continua i pren valors en Z, és constant en cada
component connexa.

(c) Sabem que és constant en aquesta component. Prenem R > 0 prou gran de manera
que v* < Dgr(0) i també R > L(y) on L(v) és la longitud de «. Si |z| > 2R, llavors
|lw—z| = |z| — |w| = 2R — R = R per w € v*, i per tant
1 |dw| 1 1

<

Ind < — < —5L —.
[fnd (7, 2) 2 )y lw—=z " 27R ) < 27

Com que Ind (v, z) ha de ser un enter, I"inica possibilitat és que valgui 0, i com que 'index
és constant en aquesta component, val zero en tot punt d’aquesta. ]
Exercicis

5.1.1. Considerem el cami y(t) = 4e' cos 2t, (0 <t < 67). Calculew Ind (v, 3) iInd (v, 1).

<

5.1.2. Considerem el cami v(t) = (1 + e + e7")e, (0 < t < 27). Esbosseu el dibuiz
de la corba i calculeu-ne ’index en cada component connexa del complementari de la seva

tmatge. Calculeu
3z —3
ﬁ dZ. <
~ ze — 52 + 1

5.2. El teorema global de Cauchy

Recordem la férmula integral de Cauchy per oberts convexos: Sigui {2 < C un obert convex
isigui f e H(Q2). Llavors

fetd ) = 5 [ Lde zgy
ol

per a tot cami tancat v en €2, vegeu el teorema 4.17 i 'observacié 4.20.

Exemple 5.7. Sigui 7 la corba en forma de infinit o “ulleres”, anomenada lemniscata de
Bernoulli! (vegeu la figura 5.6), amb —1/2 i 1/2 un a dins de cada part. Com que la funcié

f(2) = cos(5z) és entera (holomorfa a tot C), tenim que

/ f(w) dw = 2mi cos 0Ind (y,0) = 27i cos 0 = 274,
w

.

i també

/wa—(ui)/Q dw = 2mi cos(%) Ind (v,1/2) = 2mi COS(%) (-1) = —V2mi. 0
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Figura 5.6.: Lemniscata de Bernouilli.

#a!

I'=m+m7
Figura 5.7.: Una cadena formada per dos camins.

Volem obtenir versions més generals tant del teorema de Cauchy com de la férmula
integral de Cauchy, que siguin valides per oberts no necessariament convexos, com també
per unions de camins.

Definicié 5.8 (Cadenes i cicles). Una cadena és una combinacié lineal de camins

k
=>nv nel,
-1

on 7; és un cami per a tot 1 < i < k. Vegeu la figura 5.7 per exemples de cadenes.
La imatge o recorregut de I' és I'* = 7f U --- U v},
Si f e C(I'*), definim la integral per linealitat

/Ff=n1/%f+-~-+nk/%f-

Diem que I' és un cicle si ; és un cami tancat per a tot 1 <1 < k.

! Jacob Bernoulli, Basilea, 16541705, https://en.wikipedia.org/wiki/Jacob_Bernoulli
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V2

Figura 5.8.: Vegeu 'observaci6 5.11.

L’index d’un cicle T' respecte d’un punt zg ¢ I'* és

k
1 dz
Ind(F7ZO)=%AZ_ZO = > niInd (v, 2). .

i-1

Degut a la definicié, aquest index té les mateixes propietats que I'index d’una corba: és
un enter, és constant en cada component connexa de C\I'*, i val zero en la component no

fitada.

Exemple 5.9. Considerem les corbes 1 (t) = 4e' i y5(t) = €' per t € [0,27]. Formem el
cicle

I'=y+ (=) =71
Tenim Ind (T", 67) = 0, ja que estem a la component no fitada. També
Ind (T, 2) = Ind (71,2) — Ind (72,2) =1 —0 = 1.
Ind (T',0) = Ind (71,0) — Ind (72,0) =1 —1 = 0. O
Definicié 5.10 (Homologia). Sigui < C un obert i I' un cicle en Q. Diem que I' és

homoleg a 0 en € si
Ind (Tya) =0 Va ¢ Q.

Posem I' ~ 0 en 2 per indicar que I' és homoleg a 0 en 2. o

Exemple 5.11. En la figura 5.8, els camins v; i 72 no sén homolegs a 0 en 2. En canvi,
el cicle I' = 1 + 2 si que ho és. O
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Definicié 5.12. Sigui Q < C un obert, i siguin I'y i I'y cicles en . Diem que I'y és
homoleg a I's en Q si I'y — I'y és homoleg a 0 en 2. En aquest cas, fem servir la notacié
I'i T’y en Q. .

Teorema 5.13 (Teorema de Cauchy global). Sigui Q@ < C un obert, f € H(RY), i sigui I’
un cicle en  homoleg a 0 en Q. Llavors

(a) Férmula integral de Cauchy global:

f(z) Ind (T m/ P dw, Vze Q\I'.

/F F(2)dz =

Observacié 5.14. Si tenim un cicle I' en  de manera que [ f = 0 per a tota f € H(Q),
llavors si prenem un punt a ¢ €, la funcié f,(z) = Zi

1
Ind (T’ ) =0, Ya ¢ Q.
nd (T a) = 2m/pz—a 27Tz/f af

Per tant, el fet que I' sigui homoleg a 0 en €2 és una condici6é necessaria per tal que valgui
el teorema de Cauchy. o

(b) teorema de Cauchy global:

Prova de (b) a partir de (a). Fixem a € Q\I'*, i definim la funcié F(z) = (z —a) f(z), que
és holomorfa en €. Aplicant la férmula integral de Cauchy, com que F'(a) = 0, tenim que

L[ peyas= L [ £

2w Jr 2w Jrz—a

dz = F(a)Ind (I';a) = 0.

Prova de (a). Considerem la funcié F' : Q x  — C definida per

fw)—f(z)

2 S1 z #w

F(z,w) =
1'(2) si z=w.
Llavors F' és continua en  x Q (vegeu la demostraci6 al final de la prova), i per a tot
w € Q, la funcié Fy,(z) = F(z,w) és holomorfa en 2 (clarament és holomorfa en Q\{w}
i continua en €2, i sabem que aquestes dues condicions, aplicant el teorema de Cauchy-

Goursat i el Teorema de Morera (concretament usant el corollari 4.34), impliquen que és
holomorfa a tot ). Pel teorema de derivacié sota el signe integral, la funcié

z)=/F(z,w)dw, ze
r

és holomorfa en Q.
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Ara volem estendre aquesta funcié a tot C, per tal d’obtenir una funcié entera. Consi-
derem ’obert no buit
U={weC\I'*: Ind (T',w) = 0}.

Observeu que donat que hem vist que Ind(T',-) és constant en cada component connexa
de C\I'*, U és la unié d’algunes d’aquestes components connexes que sén obertes, i entre
elles esta la component connexa no fitada de C\I'*. A més, com que I' és homoleg a 0 en
Q, tenim que Ind (T', a) = 0 per a tot a € C\(2, de manera que C\Q2 c U, i per tant

QuU=C.

=/ f(w) dw, zeU.
Tw—=2

Per z € U n (), fent servir la definicié d’index obtenim que

fwu))—ﬁ /f—z a (Z)/Fwdiuz

:/Ff_w)zdw—QWif(z)Ind(F,Z) =9(2),

Definim

ja que Ind (T", z) = 0 per z € U. Per tant, la funci6 G : C — C definida per

g(z) si zeQ
G(z) =
g(z) si zeU

esta ben definida a tot C i és entera.

Vegem que és fitada. Prenem R > 0 prou gran de manera que I'* < {|(| < R}.
Observem que, si |z| > 2R, llavors z pertany a la component no fitada de C\I'*, aix{ que
Ind (T, z) = 0, que implica que z € U. Per tant, si |z| > 2R, tenim que

~ |/ (w)] L(T)

G =) < [ (1w < 0 H, (5.1
on M = sup,ers | f(w)| 1 L(T") és la suma de les longituds dels camins del cicle. Per tant, G
és fitada en {|z| > 2R}. Com que G és continua, G també és fitada en el compacte Dg(0),
de manera que G és una funcié entera i fitada. Pel teorema de Liouville, G' és constant.
Ara bé, (5.1) també ens diu que lim|, |, G(z) = 0 que, al ser G constant, implica que
G=0.

Aixi doncs, per z € Q\I'*, tenim que

OZG(Z'):QM 27rz/fw) i 27rz/f—z f(z)Ind (T, 2). O

211 w—z
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Demostracio de la continuitat de F'. Comprovem que la funciéo F : 2 x 2 — C definida
per
7f(w13:£(z) si z#w
F(Z7 'U}) =
f'(z) si 2z =w,
és continua en 2 x Q.

En efecte, sigui A = {(z,w) € Q x Q; z = w} la diagonal, que és un tancat relatiu en
Q x Q. Llavors, F' és continua en 2 x Q\A i ens queda comprovar que F' és també continua
en els punts de la diagonal.

Fixem un punt a € Q i considerem un disc D, (a) Q. Siguin z # w € D,(a). Llavors
es verifica
f(z) — f(w)

zZ— W

/[ Q) Fac

— f'(a)

|F(z,w) — F(a,a) :‘

_ ‘f(z) — f(a)z — (f(w) — f'(a)w)

z—w
1
Jz—wl

|2 = wl

<

sup |f'(¢) = f'(a)l-

|Z - w| Cew,z]

Observeu que donat que F(z,z) = f/(z), aquesta desigualtat val també si z = w. Tenint
en compte que f’' és continua en a, i per tant,

im  sup [£(Q)— f(a)] = 0,

(z,w)ﬂ(a,a) CE [w,z]

obtenim que
lim F(z,w) = F(a,a) = f'(a). O

(z,w)—(a,a)
Vegem ara una aplicacié immediata del teorema anterior.

Corollari 5.15. Sigui Q < C un obert, i f € H(Q). Siguin I'y i Ty cicles en Q. Si
I'y ~ 'y en Q, llavors

f(z)dz = f(2)dz.
I I

Demostracié. Com que el cicle I't —I'y és homoleg a 0 en €2, aplicant el teorema de Cauchy
global, tenim que

0= / f(z)dz = f(z)dz— | f(2)d=. O
I1—Ts Iy 2

Exemple 5.16. Considerem ’anell
Q={zeC:r<|z| <R}

Per 71,79 amb r < r; < 73 < R, considerem els cercles 71 (t) = r1e® i y2(t) = roe® per
t €[0,2x]. Com que I' = 1 — 3 &~ 0, tenim que 71 i 2 sén corbes homologues en €2, i per
tant
(2)dz = f(2)dz
71 Y2
per a tota funcié f holomorfa en €. %
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Corollari 5.17 (Férmula integral de Cauchy per derivades-versié global). Sigui Q@ < C
un obert, f € H(), i sigui T cicle en Q homoleg a 0. Llavors
n n! f(w)
f( )<Z) Ind (F, Z) = — /F W dw, Vz e Q\F*

21

Demostracié. Com que I'index és constant en cada component connexa d’ Q\I'*, només cal
aplicar la versi6 global de la formula integral de Cauchy, i derivar sota el signe integral. [

Exercicis

5.2.1. Considerem el cami y(t) = (2sin(2t — §),2sin(3t)), amb t € [0,27]. Esbosseu el
cami, calculeu U'index de la corba en cada component connexa de C\v*, i trobeu el valor

de

1

ez271
/ 3 dz. N
5 25+ 1

5.3. Homotopia i teorema de Cauchy

Definicié 5.18 (Homotopia). Siguin 79,71 : [a,b] — Q corbes tancades. Diem que
Yo 1 71 sén homotopes en  (posem 7y ~ 71 en 2) si existeix una aplicacié continua
H : [a,b] x [0,1] — Q de manera que

(i) H(t,0)
(il) H(t,1
(iii) H

Observem que la condicié (iii) ens diu que les corbes 74(t) := H(t, s) sén tancades per
a tot s € [0,1].
Essencialment, si vy ~ 71 en €2, llavors la corba g s’ha de poder deformar continuament

cap a la corba ; sense passar per cap punt que no sigui d’2 (veure 'exemple de la Figura
5.9).

Yo(t) per a tot t € [a, b];

~1(t) per a tot t € [a, b];

(a,s) = H(b,s) per a tot s € [0, 1]. .

Definicié 5.19 (Corba homotopa a 0 o contractible). Diem que una corba v és homotopa
a 0 en Q o contractible en 2 (posem 7y ~ 0 en 2) si v és homotopa a una corba constant
(és a dir, a un punt). .

Observaci6 5.20. Evidentment, el concepte de corbes homotopes també té sentit per cor-
bes que no siguin tancades pero tinguin els mateixos extrems. Quan es parla d’homotopia
de corbes no tancades d’extrems fixats, se sol imposar que I’homotopia sigui continua,
compleixi (i) i (ii) de la definicié 5.18, perd que en lloc de la condicié (iii) compleixi que
les corbes v5(t) := H(t,s) tinguin el mateix punt inicial i final que 7y i 71, és a dir,
vs(a) = yo(a) 1 vs(b) = v0(b) per a tot s € [0, 1]).

Es pot veure facilment que dues corbes d’extrems fixats vy i 1 s6n homotopes en € si
i només si vy v y; és homotopa a 0 en €, vegeu la definici6 4.3. .
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* O
V2

Figura 5.9.: Tenim y; ~ 72, 73 ~ 0. Tenim en canvi que 1 % ¥3, 71 # 01 y2 # 0.

Proposicié 5.21. Sigui Q < C un obert, i siguin yo,71 : [a,b] — Q dues corbes tancades
en €1 de manera que yg ~ y1 en §2. Llavors

Ind (70, 2) = Ind (71, 2) Vz ¢ Q.

Es a dir, si Y0 ~ 71 en €2, aleshores vy és homologa a v; en ). En particular, v ~ 0 en
Q2 implica que 7y és homologa a 0 en Q. Ara bé, el reciproc no és cert (veure la figura 5.10
per un exemple d’una corba en un obert 2 homologa a 0, perd no homotopa a 0 en £2).

Demostrem primer un resultat d’invariancia de 'index sota pertorbacions, conegut in-
formalment com el teorema de ’arbre, la persona i el gos.

Lema 5.22. Siguin v, n : [a,b] — C dues corbes tancades i sigui z € C. Si
(@) —n@®)] <[z =@  Vte[a,b],
llavors Ind (7, z) = Ind (1, 2).

Demostracié. Observem que la hipotesi implica que z ¢ v* = v[a,b]. També tenim que
z ¢ n* ja que per t € [a,b] tenim

[z =n@)] = [z =) + (v(t) =n(®))| = |z =v(&)| = |7 (t) —n(t)] > 0.
A més a més, per a t € [a,b], escrivint v, (t) = y(t) — z i n.(t) = n(t) — z tenim que

72 (t) = n2(D)] < |7:(2)].

Tot plegat ens dona que 0 ¢ v¥ i la corba tancada o, = Z—Z verifica

z

1—a.(t) <1 Vt € [a, b].
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Q=C\ {a,b}

Figura 5.10.: El cami v és homoleg a 0 en 2 ja que Ind (v,a) = 0 = Ind (v, b), perd v # 0
en {2, ja que no és contractible.

Sigui 4, una determinacié del logaritme de v, i £ una determinaci6 del logaritme en D1 (1).
Llavors, &, := L o a, és una determinacié del logaritme d’a, i, per tant, 7, = 9, + &, és
una determinaci6 del logaritme de 7,. En conseqiiéncia,

1=(0) = 7=(a) = (32(b) = 4z(a)) + (42(b) — d2(a))
2(b) — Az(a) = 2milnd (v, 2).

27miInd (n, 2)

Il
>

Aqui hem usat que, com que 7 i v sén corbes tancades, també ho és «, i, en particular,

G, (b) = L(az(b)) = L(az(a)) = a;(a). O]

Demostracio de la proposicié 5.21. Sigui H una homotopia entre vg i v;. Volem veure que
Ind (49, 2) = Ind (1, 2) per a tot z € C\Q2. Sigui z € C\{Q}. Com que [a,b] x [0, 1] és
compacte, H([a,b] x [0,1]) també i H és uniformement continua. Per tant,

(1) €= d(za H([G, b] x [07 1])) = inf(t,s)e[a,b]x[[),l] ‘Z - H(ta S)’ >0
(2) Existeix n > 1 tal que per a tot ¢ € [a,b] i tots s1, s2 € [0,1] tals que |s1 — so| < £,

|H(t,s1) — H(t, s2)| <e.
Per a cada s € [0, 1], considerem la corba tancada s en Q definida per vs(t) = H (¢, s),
si t € [a,b]. Llavors, (1) i (2). ens donen que per a tot ¢ € [a,b], i tot s1,s2 € [0,1] amb

51— so| < 2,
V51 (8) = Y2 (0] < |2 — 75, ().

132



5. Topologia en el pla complex: teoria global de Cauchy

Aplicant el lema anterior, deduim que Ind (vs,, 2) = Ind (vs,, 2), per a tot si,s2 € [0,1]
amb |s; — s2| < 1. En particular,

Ind (y&-1,2) = Ind (Y&, 2),
perak =1,---,n. Per tant,

Ind (70, z) = Ind (71, 2). O

Com que tota corba homotopa a zero en €2, és homologa a zero en ), a partir del teorema
de Cauchy global, obtenim la segiient versié homotopica.

Teorema 5.23 (Versié homotopica del teorema de Cauchy). Sigui Q < C un obert i vy un
cami tancat en Q homotop a 0 en Q. Si f € H(QY), aleshores

(a) J, f(2)dz = O;
(b)

f(2)Ind (v, 2) = 21/ f(w) dw, Vz e Q\v*.

™

Com a culminacié de la teoria, tenim els seglients corollaris, amb gran quantitat d’apli-
cacions, com veurem en els capitols segiients.

Teorema 5.24 (Teorema de deformacid). Sigui Q < C un obert, f € H(RY), i siguin Yo, 1
camins tancats homotops en ). Llavors

z)dz = z)dz.
[ 1 /%f()

Demostracid. Tenim que I' = g — 71 és un cicle en Q. Si z ¢ ), per la proposicié 5.21
tenim que Ind (7p,2) = Ind (71, 2), aixi que Ind (T',z) = 0 per a tot z ¢ Q, i per tant el
cicle I" és homoleg a 0 en ). Pel teorema de Cauchy global obtenim que

/Ff(z)dz=0 = /%f(z)dz= vlf(z)dz. O

Corollari 5.25 (Teorema de la independencia del cami). Sigui Q@ < C un obert, i siguin
0,71 camins amb extrems fixos i homotops en Q0 (vegeu 'observacio 5.20). Si f € H(2),

aleshores
/f(z)dz=/ f(2)dz.
Y0 o

Demostracio. El cami v := y9 v 77 és tancat (ull: en aquest cas, estem considerant el
cami que primer recorre 7o i després la corba 7, en sentit contrari) i homotop a 0 en €,
vegeu l'observacio 5.20. Aleshores el resultat és conseqiiecia del teorema anterior. O
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5.4. Dominis simplement connexos

Com ja hem mencionat en seccions anteriors, un domini simplement connex és intuiti-
vament un obert connex del pla “sense forats”. En aquests tipus de dominis, tota la
teoria anterior pren una forma especial ja que, per exemple, totes les corbes tancades sén
contractibles, una propietat que, de fet, es pot prendre com a definicio.

Definicié 5.26. Un obert Q c C és simplement connex si és connex i tota corba tancada
en {2 és homotopa a 0 en €. °

De fet, si Cy, := C U {0}, aleshores sén equivalents:
e () és simplement connex,
e tot cicle en 2 és homoleg a 0 en €, i
e Cyp\Q2 és connex

Vegeu [BC13, proposici 6.4], per exemple, on la definicié de partida és la tercera, per veure
I’equivaléncia de la segona i la tercera. Que la primera implica la segona és la proposicié
5.21. Que la tercera implica la primera es pot veure usant arguments elementals, vegeu
Pexercici 5.4.2. Per exemple, sabem que 2 = C\{0} és connex, pero no simplement connex.
Aqui tenim C\Q = {0} que és connex. En canvi C,,\Q2 = {0} U {0} que no és connex.
Notem que la definicié de simplement connex en dimensions superiors o en espais arc-
connexos sol ser analoga a la segona de les anteriors.

Teorema 5.27 (Teorema de Cauchy per dominis simplement connexos). Sigui Q2 < C un
obert simplement connez, f € H() i vy un cami tancat en Q. Llavors f7 f(z)dz =014
també val la formula integral de Cauchy.

Demostracio. Com que € és simplement connex, podem usar directament la versié ho-
motopica del teorema de Cauchy. 0

Proposicié 5.28 (Existeéncia de primitives en dominis simplement connexos). Sigui 2 < C
un obert simplement connez, i f € H(). Llavors f té primitiva holomorfa en €.

Demostracid. Fixem un punt a € 2. Com que €2 és un obert connex, llavors és arc-connex,
de manera que donat z € €, hi ha una corba que uneix a amb z en Q3. Com que volem que
sigui derivable a trossos, podem suposar que es tracta d’una poligonal L, , < €. Definim

F(z) = f(w) dw, z €.
La,z

Donat h amb |h| prou petit, considerem el cami tancat v format per la poligonal L, ., el
segment [z,z + h] i la poligonal L, . (recorreguda en sentit contrari). Com que € és
simplement connex, pel teorema de Cauchy tenim que

0=Lf(w)dwzF(z)+/[Zyz+h]f(w)dw—F(z+h).

3Recordem que no és cert en general que un conjunt connex sigui arc-connex.
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A partir d’aqui acabem la prova, veient que F' és holomorfa amb F'(z) = f(z), igual com
vam fer en el teorema de Cauchy per un disc, vegeu el teorema 4.14. O

Proposicié 5.29 (Determinacié del logaritme en dominis simplement connexos). Sigui
Q < C un obert simplement connezx, i f € H(Q) amb f(z) # 0 per a tot z € Q. Llavors
existeiz g € H () amb

e9?) = f(2) per a tot z € Q.

A més, si zg € Q) i tenim que €*° = f(zy), podem escollir g de manera que g(zp) = wp.

Demostracié. Com que f(z) # 0 per a tot z € Q, llavors la funcié f//f és holomorfa en
Q2. Per la proposicié anterior, té primitiva holomorfa G. Considerem la funci6 H(z) =
e%(®) € H(Q) amb H(z) # 0 per a tot z € Q. Llavors la funcié f/H és holomorfa en Q
amb derivada donada per
f/H _ fH/

gy =TT
Perd H = HG' = Hf'/f aixi que f'"H — fH' = 0. Per tant f/H és igual a una constant
c# 0en (. Es a dir,

f(Z) _ CeG(z) _ eG(z)+c’

per alguna constant . Agafant g(2) = G(z) + ¢’ + 2kmi per un k € Z apropiat, tenim que
g(2z0) = wo 1 la proposicié queda provada. O

Com a exemple, veiem que en la regi6 2 = C\E, on F és una espiral que surt del 0
fins a l'infinit, hi ha determinacié holomorfa del logaritme de z (ja que € és simplement
connex, la funcié f(z) = z€ H(),1 f(z) # 0 en ).

Comentari 5.30. El fet que tota funcié holomorfa tingui primitiva en €2, o que tota
funcié holomorfa sense zeros en () tingui determinaci6 del seu logaritme en (), caracteritza
els dominis simplement connexos (vegeu [BC13, teorema 6.22]), encara que quan tenim un
obert connex (2, la millor manera de comprovar si és simplement connex és mirar si Cq,\§2
és connex o no. o

Exercicis
5.4.1. Siguin f,g € H(C) tals que f> + g> = 1. Demostra que existeiz h € H(C) tal que
f =cos(h) i g =sin(h). q

5.4.2. Demostra que si C,\S2 és connex i Q0 és un obert connex, aleshores tota corba
tancada v és homotopa a 0. <

5.4.3. [Determinacio de l'arrel en dominis simplement connezos] Sigui @ < C un obert
simplement connez, i f € H(QL) amb f(z) # 0 per a tot z € Q. Llavors existeix g € H()
amb

g(2)% = f(z) peratot z€Q.

A més, si zg € Qi tenim que wi = f(20), podem escollir g de manera que g(z9) = wo.
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5.5. Funcions harmoniques

En aquesta seccié farem servir la notacié introduida a la seccié 3.2.
Definicié 5.31 (Funcié harmonica). Diem que f : Q@ — C és una funcié harmonica si
feC?(Q)iel seu laplacia

Af = (02)*f +(3,)°f = 0.

Diem que f :  — C és una funci6 antiholomorfa si f € C1() i

of =0. o

Exemple 5.32. Les funcions lineals f(z + iy) = = + y sén evidentment harmoniques.
Pero hi ha altres polinomis harmonics. Per exemple, f(z2) = f(z +iy) = 22 —y? = Re (2?)
i f(z) =22y = Im (22). O

Observacié 5.33 (Calcul del laplacia amb les derivades de Wirtinger). Notem que si
f € C?(), aleshores

400f = 20(0xf — i0yf) = 0u0nf + 10y0uf — 1040y f — 10,0, f = AF,

on hem usat el teorema d’igualtat de les derivades creuades per cancellar els termes amb
Oz 1 0y. Analogament trobem que

400f = Af. .

En particular, hem demostrat el segiient resultat.

Lema 5.34. [Holomorfia implica harmonicitat] Una funcié f : Q — C és harmonica si i
només si f € C*(Q) i )
00f =0,

si i només si f € C*(Q) i )
00f =0.
En particular, f és harmonica si i només si f € C*(Q) i 0f € H(Q).

Lema 5.35. Sigui f € H(QY). Aleshores les seves parts reals i imaginaries sén harmoniques.

Demostracié. Notem que 00f = 0. Per tant, pel lema 5.34, la funcié f és harmonica. Perd
Af=0siinoméssi Au=0i Av=0,onu=Refiv=Inmf. O

Anem a veure com podem obtenir el resultat en direccié contraria. Evidentment no és
suficient que u : 2 — Riv: Q — R siguin harmoniques per tal que u + v sigui holomorfa,
ja que si no serien condicions equivalents. Pero per tota u harmonica i de valors reals si
que podem trobar v tal que u + iv sigui holomorfa. Comencem per veure en primer lloc
que podem descompondre tota funcié harmonica com a suma de la seva part holomorfa i
la seva part antiholomorfa en dominis simplement connexos.
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Lema 5.36. [Descomposicid en parts holomorfa i antiholomorfa Sigui Q@ un domini sim-
plement connex, i sigui f : Q@ — C una funcié harmonica. Aleshores existeizen dues
funcions F,G € H(Q) tals que

f=F+G.

A més, la descomposicic és unica modul constants additives.

Demostracid. Pel lema 5.34 tenim que df € H(2). Per la proposicié 5.28 podem trobar
una primitiva holomorfa F': Q — C, és a dir tal que

OF =0 i OF = df.
Anomenem G = f — F. Aleshores
oG EP oG =a(f —F) =0.

Per veure la unicitat, notem que si f = F+G = F+G amb F G, f’, Ge H(Q), aleshores
tenim que

i per tant o
(F—F) =0(F-F)=0F+G—-F-G)=0d(f—f)=0.
La proposicié 3.14 ens permet concloure que F' — F=ceC. A més,
G-G=(f-F)—(f-F)=—=¢ O

Si f : Q — C és harmonica, aleshores és analitica real, és a dir que per tot zg = a+1ib € €2
existeixen coeficients a, ,, i un radi r tals que

flz+1y) = Z anm(x —a)"(y —b)™ per (x —a)® + (y — b)? <

n,m=0

De fet, tenim una forma més concreta, i és que els polinomis aproximadors sén harmonics
i per tant, en expressar el polinomi en termes de z i Z no poden apareixer termes creuats
tipus (z — 20)"(z — 20)™ amb n, m > 0:

Lema 5.37 (Expressi6 en séries de potencies). Si f : Q@ — C és harmonica, llavors per
cada zy € Q existeizen coeficients an, by, € C tals que, si R := dist(zp,)¢), aleshores

f(z) = Z an(z — 20)" + 2 b (z — 20)™  per |z — 29| < R.

n=0 m=1
La convergéncia és uniforme i absoluta en compactes de Dr(zp).

Demostracio. Sigui r = dist(zp, 2¢). Aleshores f és harmonica en H(D,(zp)). Pel lema
5.36, existeixen F,G € H(D,(z0)) tals que f = F + G. Pel teorema 4.22, F i G es poden
expressar en forma de series de potencies amb radi de convergencia major o igual a 7.
Absorbint els termes independents en ag = F'(z0) + G(z0), obtenim el resultat. O
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Teorema 5.38 (Existencia de la conjugada harmonica). Sigui Q un domini simplement
connex, i sigui u : 2 — R una funcio harmonica. Aleshores existeir una funcid harmonica
v: ) — R que anomenem harmonica conjugada de u tal que

u+iv e H(Q).
A més, v és unica modul una constant real additiva.

Demostracié. Pel lema 5.36, existeixen F,G € H(Q) tals que u = F + G. En particular,
V:i=ImF =ImG,

i escrivim U = Re F i U = ReG.
En primer lloc veiem que U = U + ¢. Efectivament, com que U i U prenen valors reals,
tenim que U = U i el mateix passa amb U, aixi que

F-G=U+iV-U—-iV=U-UEeR,
de manera que
F-G=F-G,
aixi que
(F-G) =0(F-G)=0F—G="2"3F-G)=0.

La proposicié 3.14 ens permet concloure que U-U=F—-G=ceR.
Definim ara v = 2V. Com que U = U + ¢, trobem v = F + G = 2U —ciu +iv =
2F —ce H(Q). O

Per acabar aquesta pinzellada de funcions harmoniques, ens interessem per com queda la
férmula integral de Cauchy en aquest context. Per simplificar les expressions, estudiarem
el cas a = 0, és a dir que treballem amb discs centrats a I'origen.

Definicié 5.39. El nucli de Poisson® és la funcié

|22 — |20l
P(Z,ZO) = W

El nucli de Herglotz® és la funci6

H(z, 20) = (”ZU>. .

zZ— 20
Notem que els dos nuclis estan relacionats per la formula

(z + 20)(z — 20)
|z — 22

Re H(z,z0) = Re ( ) = P(z, 2p). (5.2)

4Siméon Denis Poisson, Pithiviers, 1781-1840, https://ca.wikipedia.org/wiki/Sim%C3%A90on_Denis_
Poisson

®Gustav Herglotz, Wallern, 1881-1953, https://ca.wikipedia.org/wiki/Gustav_Herglotz
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Teorema 5.40 (Férmula integral de Poisson). Sigui f : Dg(a) — C una funcié harmonica,
i sigui r < R. Aleshores per tot zg € D,(a) tenim que
Flzo) = o 7P )ldz|
20) = —— 2)P(z —a,zy — a)|dz]|.
2mr oD (a)

Demostracio. Comencem per comprovar que aquesta férmula val per funcions holomorfes
en Dg(0). Efectivament, la férmula integral de Cauchy diu que

1 ()
fe) =g [, e

Per altra banda, com que Tgf_('?% és holomorfa en z € D,(0) ja que el denominador no

s’anulla, i pel teorema de Cauchy per un disc, tenim que

/ 7‘]6(2) dz = / 7;(2)7 dz = 0.
oD,(0) 2(2 = 20) oD, (0) T? — 202
Per tant,

o /@) f@m N, L B )&
f(z0) = 27‘ri/&Dr(0) <z —z z(z—zo)> o 6Dr(0)f(2) (Z -2 (2- ZO)) 2

Notem que

z 20 z2(z —20) — Zo(z — 20) B |22 — |20]? B

_ = = =P .
z2—20 (2= 20) |z — 20]? |z — 20]? (2, 20)
Deduim que
feo) = gz | 1Pt 2 T 2 L[ PG, )
20) = — re re', zg) ——— = — 2)P(z,2) |dz
007 omi J, P20 et 27 Jop, (0) 0 ’

tal com voliem veure.
Si f és harmonica, aleshores considerem la descomposicié f(z+a) = F(z)+G(z) donada
en Dr(0) pel lema 5.36. Trobem que

f(z0) = F(z0 —a) + G(z0 — a)

1 1
= — F(2)P(z,z0 — a dz+/ G(2)P(z,z0 —a)l|dz
27 o PP =@l 45 [ GGz~ )l
1 -
= — F(z) +G(2)P(z,20 — a) |dz|,
27 (F) D20 =) 6
1 concloem la demostracié amb el canvi de variable z = w — a. O

Com a conseqiiencia veiem com podem recuperar el valor d’una funcié holomorfa en
termes de la seva part imaginaria a la frontera (es pot obtenir una expressié analoga
també amb la part real).
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Corol'lari 5.41 (Férmula de representacié de Herglotz). Donada una funcié f € H(Q),
si v =Im f, aleshores per tot r < dist(a, 2°) tenim que

7

f(z0) = Re f(a) + /aD ( )v(z)H(z—a,zo—a) |dz|.

277

Demostracio. Pel teorema 4.37 de derivacié sota el signe d’integracié, trobem que tota
funcié continua f € C(0D,(a)) dona lloc a una funcié holomorfa en el disc D,(a) en
integrar contra el nucli de Herglotz. En particular, si definim per zg € D, (a) la funcié

7
g(z9) == — v(z)H(z —a,zyg — a)|dz|,
) =g [ e )|d]
aquesta és holomorfa en D, (a). Per zy € D,(a) trobem doncs que

1 52) 1
Im g(20) = ~—
2mr oD, (a)
i per la férmula integral de Poisson (vegeu el teorema 5.40) tenim que

Img=wv en D,(a).

Com que ’harmonica conjugada de v és tnica llevat d’una constant additiva, trobem que
f =g+ camb ceR. En particular, avaluant en a tenim que

1 i
=@ =gl =5 [ J@PE-a0lE - g [ @ a0l
T JoD,(a) T JoD,(a) 0
1
= — u(z) |dz| = Re f(a).
2r D (a)
Observacié 5.42. En la demostracié anterior, veiem que
1 dz
g(z0) = / v(z)H(z —a,zp —a) —,
2w oDy (a) z
i per tant, utilitzant el teorema de derivacié sota el signe integral, obtenim
"(20) = 1/ v(2)0,H(z — a,zp — a) de_ 1 v(2)0,H(z —a,zp — a) |dz|
g 0) — o aDT(a) 20 5 <0 > = 2 aDT(a) 20 s <0 .
Per tant, .
, i z—a
g'(20) = — v(2) —— |dz|. .
™ Jon, (@) (2 — 20)?
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Exercicis

5.5.1. Sigui v : D — R una funcio harmonica en un domini simplement connex ().
Demostra que existeiz una funcid v : D — R harmonica conjugada du (vegeu l’exercici
4.3.8). q

5.5.2. Demostra el lema 5.35 usant les equacions de Cauchy-Riemann directament. <

5.5.3. Sigui Q un domini simplement connezx, i sigui @ : D — € una aplicacié de Rie-
mann, €s a dir un homeomorfisme holomorf entre D i Q0 amb inversa holomorfa, vegeu el
teorema 7.0, les derivades de les quals estenen continuament a 0D i a 02 respectivament.
Demostreu que existeizen determinacions del logaritme i l’argument de manera que

i

£ (20) = Re £()(0) + 5 [ A ) 20l :

5.5.4. El problema de Dirichlet consisteiz en trobar una funcié harmonica en un domini
obert ) que sigui continua fins la seva frontera 02 i amb un valor prefixat a 092. Suposem
que ¢1 1 o son harmoniques a ) i continues fins a 0 i que ¢1 = ¢2 a la vora 02. Provar
que si ) és simplement connex, aleshores ¢1 = ¢o en tot punt d’€). Indicacié: trobar
la funcié v harmonica conjugada de ¢1 — ¢po i aplicar el principi del mazim (minim) a
P1 — P2 + 1. N

5.5.5. Una distribucid estacionaria T de la temperatura en una regié ) és una funcio
harmonica it continua fins la frontera. Trobeu la temperatura T a linterior d’un disc de
radi 1 si sabem que la temperatura val Im z als dos primers quadrants de la circumferéncia
de frontera i 0 a la resta de punts de la vora. En particular veieu que la temperatura al
centre del disc és 1/m. <
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6. Series de Laurent

En aquest capitol veurem com son les singularitats aillades de les funcions holomorfes i
estudiarem els desenvolupaments en serie entorn d’una singularitat. Obtindrem el teorema
dels residus, que ens permetra calcular integrals definides i indefinides que altrament serien
complicades.

6.1. Series de Laurent i singularitats

Veurem tot seguit que tota funcié holomorfa en un anell té un desenvolupament en seérie de
Laurent!, que té una expressié formal similar a les series de potencies, considerant també
exponents negatius.

Sigui @ € C, i siguin 0 < r < R < . Considerem ’anell

Q={zeC:r<|z—a| <R}

Observem que a €, s6n holomorfes les funcions 1, (z —a), (z—a)?,. .., (2 —a)", perd també
ho sén les funcions (z —a)~!, (z —a)72,...,(z —a)™".

Definicié 6.1 (serie de Laurent). Anomenem série de Laurent al voltant d’a € C a una
serie de la forma

0¢] ee] ee]
E cn (z—a)" E E (z—a)"
(z —a)”
n=—o n=1 n=0

La part amb exponents negatius s’anomena la part singular de la serie de Laurent. .

Observem que f2(z) = Y>>, ¢, (2 —a)™ és una serie de poténcies que tindra un radi de
convergencia Ry, de manera que fo € H(Dg,(a)).

Considerem ara la série que correspondria a les poteéncies negatives, amb w = Zia, és a
dir, estudiem la serie g(w) = Zle c_p,w". Aquesta és també una serie de potencies, que
tindra el seu radi de convergencia Rj i, en particular, convergira uniformement en |w| < r,
per a tot r < Ry. Aleshores

convergira si < Ry, ésadir, si|z—a| > 3. T amés amés, laserie que defineix fi(2)

[e=al al
convergeix uniformement en {|z —a| = 1/r}, on r < R;.

'Pierre Alphonse Laurent, Parfs, 1813-1854, https://ca.wikipedia.org/wiki/Pierre_Alphonse_
Laurent
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6. Séries de Laurent

Ajuntant les dues parts de la serie de Laurent f(2) = >, _; cn(2 — a)", veiem que f és
holomorfa en ’anell {R% < |z —a| < Ry} (sempre que 1/R; < R2). El reciproc d’aquesta
afirmacié també és certa: tota funcié holomorfa en un anell s’expressa com una serie de
Laurent.

Teorema 6.2. [Ezisténcia i unicitat] Sigui @ = {z € C:r <|z—a] <R} amb0 <r <
R < o, i sigui f € H(Q). Aleshores hi ha una unica série de Laurent amb

f(z):ch(z—a)”, z €.

nez

A més, la série convergeix absolutament i uniforme en els compactes d’). En particular,

1 f(w)

o = _ S
"2mi f gy (W — @)

dw per qualsevol p € (1, R). (6.1)

Demostracio. Considerem les series fa(2) = > ogcn (2 —a)" 1 f3(w) = > o cnw™ amb
¢, donat per (6.1) (observem que el valor de p escollit no afecta, ja que sirT < p; < p2 < R,
els cercles 7,,(t) = a + pje' per t € [0, 27] sén homolegs en (2, vegeu I'exemple 5.16), amb

-1
radis de convergencia Ry = (lim SUpP, 10 A/ \cn|) i Rz = (lim SUP,, 10 A/ |c_n|)

Notem en primer lloc que sin € Z ir < p < R, aleshores

:® 1/ M\dw\ < SupaDip(“)m.
|

Per tant,

T /supap, ) Il 4
— < limsup 4——"— = —,
2 n—+0 P P

1 .
— < limsup ./ sup |flp = p.
R3s  novoo A\loD,(a)

Com que p € (r, R) és arbitrari, deduim que

1
<r 1 R < Rs.

Ry = — <
1 s

Les series fa i f3 convergeixen absolutament i uniforme en compactes dels seus discs de
convergéncia Dg,(a) i Dg,(0) respectivament. Fent el canvi w = (z — a)~! en la segona
serie deduim que

fi(z) = f3(w) = Z en(z—a)"
n<l
és convergent absolutament i uniforme en compactes de Dp, (a)c. Per tant, f1 + f2 és
convergent absolutament i uniforme en compactes d’€2 tal com voliem veure.
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6. Séries de Laurent

Resta demostrar que f = fi + fo i que la série és tnica. Comencem per veure la
coincidéncia. Fixem z € Q. Prenem 71,79 amb r < 7 < |z —a| < ro < R, i considerem els
cercles

1 (t) = a+ re, Yo(t) = a + rae’, t € [0, 27].
Definim el cicle I' = 75 — ;. Com que I' és homologa a 0 en l'anell €, i Ind (I, 2) = 1,
aplicant la férmula integral de Cauchy global, obtenim

1 (w) 1 f(w) 1 f(w)
:27”,/ dw = — dw 4 d

w— z 27m Ny W= Z 21 oWz

Ara desenvoluparem en serie cadascuna de les dos integrals, de la mateixa manera que
vam fer quan vam provar que tota funcié holomorfa és localment una serie de potencies,
i ja haurem acabat. En primer lloc, per w € 43, i com que |z —a| < 12 = |w — al, tenim

que m:“’ |ZT 9 < 1. Per tant

I Z (z —a)k
_ . _ g)k+1’
w—z = (w—a)

i la convegencia de la serie és uniforme en ~5 pel criteri M de Weierstrass. Per tant,
podem treure el sumatori fora de la integral per obtenir

1 w 1 w
- f(_ldwz Z(z_a)km/wal_w(w{(a))kﬂdw=f2(z).

by W k>0

Per a la segona integral, procedim analogament: observem que, per w € 7{ tenim que

k: 1

_2 (z —a)k

k=1

Aplicant el criteri M-de Weierstrass, aquest cop en 77, deduim que la serie anterior con-
vergeix uniformement en 7} i per tant podem treure el sumatori fora de la integral per
obtenir

_L f(w) w:oo; L W) (w—a)*Ldw | = .
27Ti/ylw—zd k;(z_a)k (M/'w_a'_nf()( ) d) fi(2).

Vegem ara la unicitat. Prenem p amb r < p < R. Recordem que, per k € Z, tenim que

1 . 0 si k#-1
2m'/|za_p(z_“> d'z_{ 1 si k=-1

Si f(2) = Y4z br(z — a)k convergeix uniformement en els compactes d’Q (aixo serd aix{
per Cauchy-Hadamard), llavors podem treure el sumatori fora de la integral en el calcul

que segueix, per obtenir

1 f(w) k—
- S\ b o (n+1)d _ bn
270 Jjwy—aj=p (W — a) "*1 Z o /w a|:p(w @) v ’

que determina el coeficient b,, = ¢, de manera tnica. ]
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Exercicis

6.1.1. Calcular la série de Laurent de

z—1
40 —4 4.
@) z(z—4)3a <le =
b) 1/e172) per |z| > 1. )
i 3
6.1.2. Per a la funcid f(z) = w
z

1. Trobar els primers termes no nuls de la part central de la seva série de Laurent a

z=0.
2. Calcular ¢ f(z)dz si es recorre |z| = 1 un cop i en sentit antihorari. <
1
6.1.3. Trobeu el desenvolupament en série de Laurent de f(z) = prr les corones:
z(z —
(a) {ze C:0< |z <1}, () {zeC:0<|z—1] <1}, (¢){z € C: |z| > 1} i
(d) {zeC:|z—1| > 1}. a
. 1 .
6.1.4. Sigui f(z) = m, donar les series de Laurent per les tres corones cen-
z—1)(z —
trades a 0 alla on f és analitica (|z] < 1,1 < |z| <3 i|z| > 3). <

6.1.5. Donar els primers termes de la série de Laurent de

a) f(z) = 2% cos <312> per |z| > 0.

b) f(z)

262_1per0<]z]<R. 4
a0 Zn

6.1.6. Quina és la corona (o anell) de convergencia de Z ol ? <

n=—u

6.2. Singularitats aillades de funcions holomorfes

Definicié 6.3. Les singularitats d’'una funcié holomorfa sén els punts on f no és holo-
morfa. Es a dir, si f € H(Q\F), llavors els punts de E s’anomenen les singularitats de
f-

Una singularitat zy d’una funcié holomorfa f es diu aillada si hi ha r > 0 de manera
que f € H(D;(20)\{z0})- .

Per exemple, les funcions
sin z 1 1/2

) 72a
z z
sén holomorfes a C\{0}, i tenen una singularitat aillada en z = 0.
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6. Séries de Laurent

Definicié 6.4 (Singularitat evitable). Sigui zp una singularitat aillada d’una funcié ho-
lomorfa f. Diem que 2y és una singularitat evitable de f si hi hae >0ige H(Dg(zo))
amb

f(z) =g(2)  Vze De(20)\{20}- .

Es a dir, una singularitat evitable seria una singularitat “ficticia”, ja que podriem rede-
finir la funcié de manera que sigui holomorfa al voltant del punt. Es clar que si zp és una
singularitat aillada de f, i existeix lim,_,,, f(z), llavors 2y és una singularitat evitable de
f (simplement definint f(z9) = lim,_,,, f(z) ). Ara bé, existeix un criteri encara més feble
per determinar quan una singularitat aillada és evitable.

Proposicié 6.5. Sigui zg singularitat aillada d’una funcié holomorfa f. Llavors zy és
evitable si i només si

lim (z — 20) f(z) = 0.

220
Demostracid. Tenim que f € H(D;(z0)\{20}). Si 20 ¢s una singularitat evitable, llavors
hihae>01ige H(D:(z)) amb f(z) = g(2) per z € D:(20)\{z20}. Per tant

lim (z — 20) f(2) = lim (2 — 20)g(2) = 0- g(z0) = 0.
zZ—20 Z—20
Suposem ara que lim,_,, (z—z20)f(z) = 0, i provarem que 2y és una singularitat evitable
de f. Definim
h(z) = { (z—20)f(2) si z# 2

10 si z=z

Llavors h és holomorfa en D, (z0)\{z0}. Com que lim,_,,,(z — z0)f(z) = 0, la funcié h
és continua en zp, de manera que se segueix que h és holomorfa en D, (zy) (veure una de
les conseqiiencies del teorema de Morera). Com que h(zg) = 0, pel teorema 4.41 hi ha
g € H(D,(2)) amb h(z) = (z—20)g(z). En particular, f(z) = g(z) per z # 29, de manera
que zp és una singularitat evitable de f. O

A partir d’aquesta proposicié ja podem veure que la funcié f(z) = % té una singula-
ritat evitable en z = 0. En canvi, les singularitats en z = 0 de les funcions Z% i % no sén
evitables.

Definicié 6.6 (Pol). Sigui zp una singularitat aillada d’una funcié holomorfa f. Diem
que zg és un pol de f si
lim |f(z)| = 4+o0. .
z—20
Exemple 6.7. La funcié Zi? té un pol en z = 0. En canvi, la singularitat en z = 0 de la
funcié f(z) = e'/* no és evitable ni és un pol, ja que si z = —z, tenim que e~ /% — 0 quan
x — 0, 1 en canvi, per z = ix, tenim que |el/ix] =1. O

Definicié 6.8 (Singularitat essencial). Una singularitat aillada d’una funcié holomorfa
que no és evitable ni és un pol, es diu que és una singularitat essencial. .
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6. Séries de Laurent

Figura 6.1.: A T'esquerra la funcié ;15, amb un pol d’ordre 2 a lorigen; a la dreta f(z) =
e!/*, amb una singularitat essencial a 1’origen.

Tornem al cas en que una funcié f holomorfa en Dg(20)\{z0} tingui un pol en el punt
20. Donat que lim,_,, | f(2)| = o0, existeix 0 < r < Riperatot 0 < |z—z| <7, f(z) # 0.
Si definim en Q = D, (z) la funcié

1 . ”

—— si z# 2

z

oz =1 1)

0 si z=2 |,

es compleix que lim,_,, o = 0, que prova que g és continua en zy. Per tant, g €
C(2) n H(Q\{z0}), que implica que g € H(€2). Com que g(zp) = 0, pel teorema 4.41 hi ha
m € N de manera que g(z) = (z —29)™¢g1(z), on g1 € H(2) amb ¢1(z9) # 0. En particular,
g1(2) # 0 en un entorn de 2y, de manera que podem desenvolupar en seérie de poteéncies al
voltant de zy la funcié 1/¢;,

1 0

D Ar(z = 20)".

MO

Llavors, per z en un entorn de zg amb z # zp, tenim que

B 11 - L

I&) = = 7 (Z_ZO)mezoAk( 0)
A Ay Am—1 ;
=) + (o) T +"‘—(z—z0) + G(2),

on (G és una serie de potencies al voltant de zg, i Ag # 0.
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6. Séries de Laurent

Definicié 6.9. Donada una funcié f amb un pol en zy, anomenem ordre del pol zy al
nombre natural m tal que podem escriure

+00

fz)= ), ez —20),

k=—m
amb c_,, # 0. .

Per exemple, la funcié f(z) = Z% té un pol d’ordre 2 en z = 0.
També veiem que zg és un pol de f d’ordre m, si

lim |(z — zo)kf(z)’ = 400, per atot k<m,

z2—20
1 existeix el limit

em = lim (z — 20)" f(z) # 0.

zZ—20

Si tenim una singularitat aillada d’una funcié holomorfa f, podem veure quin tipus de
singularitat és mitjancant la serie de Laurent de f en 0 < |z — zg| < 7.

Lema 6.10 (Classificaci6 de singularitats aillades en termes de la série de Laurent). Sigui
f holomorfa en {0 < |z — zo| <} amb série de Laurent donada per

[ee}
f(z) = Z cn (2 — 20)", 0<|z—2| <
n=—oo
(i) zo €s evitable si c_,, =0 per a tot n > 1;
(ii) zo és un pol d’ordre m si c_, =0 per a tot n >m i c_p, # 0;

(iii) zo €s una singularitat essencial si hi ha infinits c_, # 0 per n > 0.

El segiient resultat ens dona una idea del que passa al voltant d’una singularitat essencial
d’una funcié holomorfa.

Teorema 6.11 (Casorati’-Weierstrass). Sigui f holomorfa en D,(20)\{20}. Si 20 és una
singularitat essencial de f, llavors

£ (De(z0)\(=0})

és dens en C per a tot 0 <e < r.

Demostracid. Sigui € amb 0 < ¢ < r. Suposem que f(D:(20)\{z0}) no és dens en C.
Aleshores hi ha wg € C it > 0 de manera que

|f(z) —wo| =t si 0<|z—2 <e. (6.2)

2Felice Casorati, Pavia, 18351890, https://ca.wikipedia.org/wiki/Felice_Casorati
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En particular, f(z) # wq i per tant la funcié
1
O .
9(2) 7 —wy

és holomorfa en D.(z9)\{z0}. La condicié (6.2) ens diu també que g és fitada, de manera
que lim,_,.,(z — 20)g(2z) = 0, que implica que {zp} és una singularitat evitable de g per la
proposicié 6.5. Llavors existeix

Si a = 0, llavors lim,_,, | f(2)| = +00, de manera que zp seria un pol de f, en contradicci6
amb la nostra hipotesi. Finalment, si a # 0, llavors

1
lim f(z) =wo + —
(0]

z—20

de manera que zp seria una singularitat evitable de f, en contradiccié amb el fet que zg
és una singularitat essencial de f. O

Un resultat més avancat (teorema gran de Picard?), ens diu que al voltant d’una sin-
gularitat essencial, una funcié holomorfa pren tots els valors complexos excepte potser
un.

Exercicis

6.2.1. Construccio de funcions

1. Trobar una funcid f que tingui un pol d’ordre 2 a z = 1+ 14 i singularitats essencials
az=0,1.

2. Trobar una funcié f que tingui una singularitat evitable a z = 0, un pol d’ordre 6 a
z =1 1 una singularitat essencial a z = 1. <

6.2.2. Sigui f analitica amb zero d’ordre n a zg 1 g analitica amb zero d’ordre m a zy. Si
h(z) = f(2)/9(z) proveu que

a) Sin>m h(z) té un zero d’ordre n —m a zp,

b) sin<m h(z) té un pol d’ordre m —n a zp,

c) sin=m h(z) és holomorfa i no nulla a 2. <
6.2.3. Determineu les singularitats de les funcions segiients. Si a és una singularitat
evitable de f, calculeu el valor que cal donar a f(a) per a qué f sigui holomorfa en un

entorn d’a, i si a és un pol de f, determineu la part singular de f en a (la part de la série
amb indexs negatius).

3Charles Emile Picard, Parifs, 1856-1941, https://ca.wikipedia.org/wiki/Charles_%C3%89mile_
Picard
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a) f(z) = zcos(1/z). c) f(z) = (1_1z)2 4
22 +1 )
RS T poy 5

6.2.4. Sigui f € H(D,(a)\{a}). Suposem que existeix una successid (zy),, tal que z, — a
1

1 1
lim |ef(n)| = 0, ‘f <2n+>’<1—, n € N.

n—0o0 n n

Determineu el tipus de singularitat que té la funcié f en el punt a. <

6.2.5. a) La funcid tan(1/z) té una singularitat aillada al 09 De quin tipus?

b) Sigui 0 singularitat aillada de f(z). Suposem que |f(z)] < 2|7 on 0 < a < 1.
Demostreu que 0 és una singularitat evitable. <

6.3. Teorema dels Residus

L’objectiu és calcular el valor de fy f quan ~ és un cami tancat en 2, pero la funcié f no
és holomorfa en tot €2, sindé que té singularitats aillades.

Definicié 6.12. Sigui f holomorfa amb una singularitat aillada en un punt a. Sigui

f(2) =D ealz —a)"

nez

el desenvolupament en serie de Laurent de f al voltant del punt a. El residu de f en a és

Res(f,a) = c_1. .
Proposicié 6.13. Siguir >0 ia€ C i sigui f € H(D,(a)\{a}). Llavors

/ f(2)dz = 2miRes (f,a) Vo<e<r.

|z—al=¢e

Demostracié. Aixo és una conseqiiencia immediata del teorema 6.2 i de la definicié de
residu. O

Observacié 6.14 (Calcul de residus). Es clar que si z = a és una singularitat evitable de
f, lNavors Res (f,a) = 0.
Si z = a és un pol simple de f, llavors

Res (f,a) = lim(z — a) f(2).

zZ—a
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6. Séries de Laurent

Suposem que z = a és un pol de f d’ordre m. En aquest cas, obtenim el desenvolupament

de Laurent
0

flz) = Z cn(z—a), O0<l|z—a|l<r.

n=—m

Llavors, per 0 < |z — a| < r, tenim que
g(z) =(z—a)"f(z) =com +tcm-n(z—a)+ - +c1(z — )™t eo(z—a)" ...

de manera que el residu de f en el punt a és el coeficient (m—1)-éssim del desenvolupament
en série de potencies de la funcié g, que sabem que és

9" Y (a)
(m—1)!"

Per tant, si z = a és un pol de f d’ordre m, llavors

L)L, ‘

Exemple 6.15. Considerem la funcié

Res(f,a) =

eZ

f(z)=m7

que té singularitats en els punts zp = 11 23 = —1, que sén pols d’ordre 2. Llavors, si
g(z) = (2 — 1)2f(2) = (25;71)2, tenim que

Res (f,1) =4'(1) = 0.

Sih(z) =(z+1)2f(z) = ﬁ, llavors h/(z) = % i

Res (f, —1) = B(—1) = % o

Teorema 6.16 (Teorema dels residus). Sigui 2 < C un obert, i sigui f € H(Q\A), on
A < Q no té punts d’acumulacié en Q. Si T és un cicle en Q\A que és homoleg a 0 en €,
llavors

/Ff(z)dz = 2mi Z Ind (T, a) Res (f,a).

acA

Demostracié. Vegem primer que la suma té un nombre finit de termes diferents de zero.
Posem

K =T% U {zeC\I'*; Ind (T, z) # 0}.

Comprovem que K és compacte. Observem primer que K < ), doncs per hipotesi
Ind(I",z) = 0 per a tot z € C\Q. Si I'* < Dg(0), llavors C\Dg(0) esta contingut en
la component connexa no fitada de C\I'*, on es verifica que Ind (I',-) = 0. Per tant,
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K < Dg(0) i, en particular, K és fitat. Per altra banda, cada component connexa de
C\I'* és un obert i K és el complementari de les components connexes de C\I'* on I'index
val zero, es a dir, K és tancat i, en consequencia, K és compacte.

Com que A no té punts d’acumulacié en €, és finit o numerable i, en particular,

B={aeA:Ind(Tya) #0} =K n A,
és finit ja que el compacte K < €) no pot contenir punts d’acumulacié. Per tant
B ={ay,...,an}.

Considerem els discs oberts D; := D, (a;),i =1,...,n amb D; n (A\{a;}) = & de manera
que

(i) De,(ai) = Q, i=1,...,m;
(ii)) De(ai)) nT* =g, i=1,...,n;

(iii) D¢, (a;) N Dg,(a;)) = &  peri #j.

Per i = 1,...,n, siguin v;(t) = a; + g€, t € [0,27], cercles de centre a; i radi ¢;, i
considerem el cicle .
Azf—Zni%, n; = Ind (T, a;).
i=1

Llavors A és un cicle en Q\A. Vegem que és homoleg a 0 en 2\ A. Hem de veure que
Ind (A,z) =0 per atot z ¢ (Q\A).

Si z ¢ Q, llavors Ind (T, z) = 0, ja que I" és homoleg a 0 en Q. També, per i =1,...,n,
tenim que Ind (75, 2) = 0, ja que z pertany a la component no fitada de C\v, de manera
que Ind (A, z) = 0.

Si z € A\B, llavors Ind (T',z) = 0 per la definicié6 del conjunt B. A més, també
Ind (y5,2) = 0 per a tot i« = 1,...,n ja que z es troba a lexterior del cercle ~;. Per
tant, Ind (A, z) = 0.

Si z € B, llavors z = ay per algun 1 < k£ < n. Com que Ind (v;,ar) = 0si i # k, i
Ind (g, ax) = 1, tenim que

Ind (A, z) = Ind (A, ax) = Ind (T, ag) — Z n; Ind (73, ag)
i=1
=Ind (T',ar) — ng = Ind (T', ax) — Ind (T, ax) = 0.

Aix{ doncs, tenim una funcié f e H(2\A), i A és un cicle en Q\A que és homoleg a 0 en
O\A. Pel teorema de Cauchy global, tenim que

/A f(z)dz = 0.
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Es a dir,
0= /Af(z)dz _ /Ff(z)dz—;ni /%f(z)dz.

Per la proposicié 6.13, tenim que

f(2)dz = 2miRes (f,a;),
Yi

de manera que, com que n; = Ind (T, a;), tenim que
/ f(z)dz = 2mi Z Ind (T, a;) Res (f, a;). O
r i=1

Moltes vegades aplicarem el teorema dels residus quan tinguem una funcié holomorfa
amb un nombre finit de singularitats {a1,...,a,} dins d’una corba 7 tancada simple, aix{
que els indexos d’aquests punts valen 1. En aquest cas el teorema dels residus ens diu que

/f(z)dz = 27i Z Res (f, a;).

=1

Exercicis

6.3.1. Euxisteiz alguna funcié f amb pol simple a zy tal que Res(f,z0) = 07 Qué passa si
el pol és d’ordre 2, pot passar que Res(f,z0) =07 a

6.3.2. Cualculeu els residus de les funcions segiients en els punts indicats:

1
W) () = s, 20 =0
1+¢€?
b) f(Z)Z A 7Z0:0- N
1/z
6.3.3. Calculeu / P dz pels diferents valors d’a € C tals que |a| # 1. <
|z|=1 < —

6.3.4. Decidiu si son certes o falses les segiients afirmacions. Doneu els arguments que
provin les aftrmacions.

1. Si f,g tenen un pol a zy llavors f + g té un pol a zp.

2. Si f,g tenen un pol a zg i en els dos casos el residu és no nul llavors f - g té un pol
a zo amb residu no nul.

3. Si f té una singularitat essencial a z = 0 ¢ g un pol d’ordre finit a z = 0 llavors
f + g té singularitat essencial a z = 0.
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4. Si f té un pol d’ordre m a z = 0 llavors f(z%) té un pol d’ordre 2m. <

6.3.5. Suposem que f és holomorfa amb un zero d’ordre m a zy. Proveu que g(z) =
11(2)/f(2) té un pol simple a zop amb Res(g, z0) = m. <

6.3.6. a) Proveu que si g(z) té un zero simple a zy, llavors 1/g(z) té un pol simple a z.
b) Proveu que Res(1/g,z0) = 1/¢'(20).

¢) Sigui f(z) = 1/sin(z), trobeu els seus pols i proveu que son simples. Trobeu els residus.<

6.3.7. Trobeu i classifiqueu les singularitats aillades de cadascuna de les funcions segiients.
Calculeu el residu a cada singularitat.

241
a) f(z) = m

1
) (=) = .
c) h(z) =cos(l —1/z). q
6.3.8. Aval 95 L dz al llarg de [ ba |z—3| =
.3.8. Avalueu (z+1)(2—1)(z—2)(z—3)(z—4)(z—5)Za arg de la corba |z =
3 recorrequda en sentit antihorari. <

6.3.9. Awvalueu les segiients integrals

sin z iz
a ——dz dz.
)ﬁws%—4 Q)%kgﬁw—axz+&>z )

1
b ——d
)ﬁz=822+z+1 :

6.3.10. Calculeu la integral de la funcidé f(z)

1+ 2

= 1oz sobre la vora del disc D7(0). <

6.3.11. Per at > 0, sigui C; la circumferéncia de centre it, que passa pels punts —2 i 2.
Calculeu

e’i7’l’Z+1
f(t)z/ ———dz, perat#2. <
o, 2(z —t)
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6.4. Residu a l'infinit

Una funcié holomorfa en un domini que contingui un entorn de U'infinit i tal que f(0) =
lim, o f(2) = 00 es pot entendre que hi té un pol. Si f(o0) € C, parlarem d’una singula-
ritat evitable, i si 3f (o0), d’una singularitat essencial. El teorema dels residus ens permet
també relacionar el residu en aquesta singularitat amb els residus en C.

Definicié 6.17. Sigui f holomorfa en C\FE amb un conjunt finit de singularitats aillades
F, isigui I" una corba simple orientada positivament i tal que conté E. Aleshores el residu
de f a linfinit és

2mi

1
Res(f,©) = /f(z) dz. .
r
Pel teorema dels residus, si A és el conjunt de pols de f, tenim que

Res(f,0) = — Z Ind (T", @) Res(f,a).
acA

Lema 6.18. Sigui f holomorfa en C\E amb un conjunt finit de singularitats aillades E.
Aleshores el residu de f a linfinit €s

Res(f,%0) — — Res (u;f <i}) ,0) .

Demostracio. Fem el canvi de variable w = 1/z. Sigui C} la circumferencia de radi ¢,
recorreguda en sentit antihorari. Si R és tal que C'r conté totes les singularitats, aleshores
trobem

—2mi Res(f, ) = ; f(z)dzz/_ f<i}> _ujLQw,

1/R

on 01_/ r s la corba inversa de C g, vegeu la definici6 4.2. Canviant-ne l'orientacié trobem

R = o [ 7 () 2 e (G () 0):

tal com voliem veure. O
Exercicis
_ 5z —1 ) ..
6.4.1. Trobar el valor la integral ﬁdz calculant el residu de l'integrand a
|l2|=2 #{Z =
Uinfinit. <
a? — 2?
6.4.2. Sigui a € R, calculeu, estudiant el residu a linfinit, I = §£ ——5.dz on C és
c 2(22 +a?)
una corba stmple que envolta les singularitats de l'integrand. <
6.4.3. Avaluar§£ e'/*sin(1/z)dz. q
|z]=1

156



6. Séries de Laurent

6.5. Aplicacié al calcul d’integrals

El teorema dels residus es pot fer servir per calcular diverses integrals reals. Farem diversos
exemples tipics.

Exemple 6.19. Tenim una funcié racional R sense singularitats en |z| = 1, i volem
calcular

27
Iz/ R(sint, cost) dt.
0

Fent el canvi z = €%, podem posar

‘ et _ ot L1 eit 4 it 2+ %
sint = - = — cost = =
21 21 2 2

Com que dz = ie't dt, llavors dt = %, de manera que

I—l/R z—%z—i—% dz
s 2 2 2’

on v és el cercle |z| = 1. Ara apliquem el teorema dels residus i ja esta.

Per exemple,
2m dt
/0 2 +sint’
Fent el canvi z = €%, tenim que

/2” dt / 1 dz / 2 J
— = — — = ———— az.
0 2+sint 2l=1 9 4 (zfé) iz lo|=1 2% + diz — 1

2i
La funcio 5
(z) = 22 +4iz—1
té singularitats en els punts o = (—2++/3)ii 3 = (—2—+/3)i. Tenim que |a| < 1i |3] > 1,
aixi que aplicant el teorema dels residus, tenim que

2
—————dz = 2mi .
/|Z:1 P E— dz = 2mwiRes (f, )
Com que « és un pol simple de f, tenim que
2 2 1
Res(f,a) = lim(z — a) f(2) = lim = = .
(o) = lim (=~ a)f(2) = im =5 = = =

Per tant,

2

dt 2 2
e = ———dz = 2miR _

/o 2 +sint /|z—122+4iz—1 z =2miRes (f, )
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Exemple 6.20. Calcul d’integrals del tipus
w .
/ f(z) e dx
—Q0

on f no té cap pol en 'eix real.
Per exemple, donat k > 0, calculem

L coszx
/ ﬁdaj.
0o & +k

© coszw 1 [® coszx 1 © el
S L L R ).
/0 22+ k2 2/_Oox2+k2 YT e(/_oozn2+k‘2 :c)

Aixi doncs, calcularem
[0} T
/ Faell
——dz.
2 2
_o T+ k

eZZ

1) = 2y

Tenim

Considerem la funcié

Aquesta funcio és holomorfa a tot C, excepte en els punts ki, —ki que sén pols de f d’ordre
1. Prenem R > 0 molt gran, de manera que R > k. Integrem la funci6é f en el semicercle
7 format pel segment 71(z) = z, amb x € [-R, R] i 2(t) = Re®, t € [0,7]. Com que

72(t) = Re"

v

-R 0 R
Figura 6.2.: Camins per I’exemple 6.20.

només el punt ki es troba en 'interior del semicercle, pel teorema dels residus, tenim que
/ f(2)dz = 2mwiRes (f, ki).
~

Calculem ara el residu de f en el punt ki. Com que és un pol d’ordre 1, tenim que

et? ezkz

N i o _ _&
Res (f, ki) ZLTIICIZ(Z ki) f(z) zLHinZ‘f‘ki i’
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aixi que

Tenim

Fent R — o0, obtenim

R eia:
dz = — dx.
/%f(z)z /_Rx2+k2 T
il

0 ei:c ] ) i
[ e o = o [ st Fe

on

Ip = L f(2)dz.

Si veiem que limp_,o Ig = 0, obtenim

© el T © coszx T
— —dz=-¢F = — =" _do = —e k.
/_OO x? + k? k /0 z? + k2 2k

Provem doncs que limg_,o, Ig = 0. Tenim que
T eiReit o
— .}
Tn= /0 Recmt gz et

Llavors

; it
e [
0 |R2621t+k2|

Com que \eiReit\ = e BNt fent servir que |R%e?* + k2| > R? — k%, i que sint > 0 per
t € [0, 7], velem que
R 4 . TR
Inl< —— €_Rsmtdt <—— 50
|1z| RZ—12 J, R2 _ k2
quan R — o0, provant el resultat desitjat. O

Exemple 6.21. Si f té algun pol en ’eix real, evitem el pol. Per exemple, calculem

w .
Sinx
dx.
0 X

Integrant per parts, es pot veure que aquesta integral impropia és convergent (encara que
no és absolutament convergent). Considerem la funcié
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Vr(t) = Re'

Figura 6.3.: Camins per I’exemple 6.21.

que és holomorfa en C\{0}. Integrem f en el cami 7 de la segiient figura. Pel teorema de

Cauchy, tenim que
/f(z)dz = 0.
.

Per altra banda, com que v =1 + yg + 72 — Ve, amb v1(z) = x per x € [e, R]; 72(y) =y
per y € [-R, —¢]; yr(t) = Re® per t € [0, 7] i v-(t) = ee® per t € [0, 7], tenim que

0= /f(z)dz = / f(z)dz + (2)dz+ [ f(z)dz— [ f(2)d=.

Ve
R eix
/ f(z)dz =/ — dx.
7 € €T

També, després de fer el canvi x = —y, tenim que

—€ iy R —iz
(z)dz = / e dy = —/ °  da.
Y2 7R y € €

Fent R — o0 ie — 0, obtenim

400 eiz +00 e—ix
O—/ dar—/ dr+ lim I —lim I,

Tenim

amb

Es compleix que

+00 iz +00 _—ix 400 ix —ix +00 3
e e e’ —e . sinx
—dx — dxr = gdaz:% dz.
0 T 0 T 0 L 0 T

A més, limp_, o, Igr = 0, vegeu 'exercici 6.5.1.
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Tot plegat ens dona que

Vegem ara que

e—0 z

lim/ (Gt N
Ye

Efectivament, com que, per |z| = ¢, per 0 < € < 1, tenim que

<ell = ef <.

~

e —1 el —1
<

z 2|

(aquestes desigualtats es poden veure a partir del desenvolupament en serie de ’exponen-
cial). Llavors
e —1
/ (=1 .
: z

que tendeix a zero quan ¢ tendeix a zero.
Aix0 implica que

1z d T itdt
lim Iazlim/ edzzlim/ —Zzlim de, = T1i.
Ye z Ye =

e—0 e—0 e—0 e—0 /g cett

< e Long(v:) = eme,

Per tant

+o0
/ s1n:vdx:£ o
0 2

Exemple 6.22. Si R és una funcié racional sense pols a l’eix real amb lim, ,, zR(z) = 0
(és a dir, R = P/Q amb grau ) > grau P + 2), podem calcular

/+OO R(x) dx,

—00

vegeu 'exercici 6.5.3.

Exemple 6.23. Calcul de

/OO dx
—_— n = 2.
0 ].+£Un

Aquesta integral és convergent ja que n > 1. Considerem la funcié

B 1
142

f(2)

que és holomorfa a tot C excepte en les solucions de z™ + 1 = 0, és a dir, en

akzei(%Jr%Tw), k=0,1,...,n—1.
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Vr(t) = Re'

Figura 6.4.: Camins per ’exemple 6.23.

Integrem la funcié f en el “formatget”~ del dibuix, amb R > 1 gran. Només el pol ag es
troba en l'interior del cami ~, de manera que, pel teorema dels residus,

/f(z)dz = 2mi Res (f, ag).
.

Exemple 6.24. Per 0 < a < 1, podem calcular

[,
o ¢

on @ no té cap pol en R amb lim,_,o, 2Q(z) = 0.
En aquest cas, considerem la funcié

f(z) _ Q(Z) Z—a, 5T = e—oz[lz’

amb Lz = In|z| + iAz, amb Az € (0,27). Llavors z=¢ és holomorfa a C\[0,+). En
aquest cas, integrem f en el recinte “comecocos”~y de la figura
Tenim v =71 + g — 72 — Ve, amb

m(z) = x + ig; x € [0, R*];
r(t) = Re'; te[e¥,2m —e¥]
Yo(x) = x — ic; x € [0, R*];
; 3
w -t re| 35
vegeu l’exercici 6.5.5. O

Exemple 6.25. Calcular integrals del tipus

e}
/ R(z) Inz dz,
0

on R no té cap pol en R" isi R = P/Q, grau@ > grauP + 2.
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Figura 6.5.: Camins per I'exemple 6.24.

Observem, primer, que si raonem com en els casos anteriors i agafem la funci6 g(z) =
R(z) Lz on Lz = In|z| + iAz amb Az € (0,27), i integrem la funci6 g en la regié “come-
cocos”del cas anterior, es compleix que z € v, z = x + ie, aixi que Lz —» Inz sie — 0isi
Z €73, 2 = x — i€, de manera que Lz — Inx + 27i si ¢ — 0. Tot plegat ens dona que si
z=wx+1ie,amb x >0, g(x +ic) > R(x)Inzx,ig(x —ic) > —R(x)(Inx + 27i) quan € — 0
i no podem calcular la integral desitjada.

Per aquest motiu, agafem la funcié

f(2) = R(2) (L2)%,

on Lz = In|z| + iAz amb Az € (0,27), i integrem la funcié f en la regié “comecocos”del

cas anterior. O
Exercicis
6.5.1. Perr > 0, considerem la corba v, : [0,7] — C definida per ~,.(t) = re®, i sigui
(%1
I(r) = .

Yr <
Demostreu que lim,_,o, I(r) = 0. q

52

6.5.2. Considereu la funcidé f(z) = CEDICETE

(a) Determineu les singularitats de f.
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(b) Calculeu la part principal del desenvolupament de Laurent al voltant de z = 2i.

/000 f(x)dx

1 calculeu-ne el seu valor. 4

(¢) Justifiqueu la convergéncia de

6.5.3. Demostreu que

6.5.4. Calculeu

0
d
I::/ . 5
0o 1+=x
6.5.5. Donat a € (0,1) calculeu el valor de la integral

©  ga
/ — dz. <
0 1 + 1'2

6.5.6. Calcular

o
|
/ T <
o 1+z22

6.5.8. Justifiqueu la integrabilitat (Lebesque o impropia Riemann) i calculeu les segiients
integrals (en tots els apartats ke Z, « e R in=0,1,2,---):

27
sin?¢ 22—z +2
dt. d d
a)/ 5+ 4cost )/OO A+ 102 +9°
sin? sinx
b dx.
)/ 72 Z 6) /w$2_$+1d$, N
/2” cos(nt)
c)
2+cost

6.5.9. Justifiqueu la convergéncia de

6.5.7. Calcular

+00
/ Ve dx
0

x2 4+ 3

i calculeu-ne el seu valor (cal justificar tots els passos). <
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6.5.10. Siguin f(z) = €*/2% i la recta v = {1 +it; t € (—0, +0)}.

/7 F(2)d=.

Indicacid: integreu f sobre la vora del semidisc de centre zg = 1 i radi R amb Rez < 1.

a) Calculeu (justificant tots els passos)

TO (1 —¢2 t) + 2tsin(t 2
b) Deduiu que / ( ) cos( )2+2 sin >dt - 4
% (1+1¢2) e
6.5.11. Considereu
22 -2

1(z) = (22 +1)2(22 +4)%

(a) Trobeu la part principal de la série de Laurent al voltant de z = 2i.

(b) Justifiqueu la convergéncia de
+oo

f(z)de

—00

i calculeu-ne el seu valor (justifiqueu tots els passos). <

6.5.12. Sigui f(z) = 6”2, i considereu el cami vy format per el segment que va de 0 a R;
Uarc del cercle |z| = R que va de R a Re'™/* i el segment que va de Re'™* a 0. Demostreu
que

f(z)dz =0,

YR
1 utilitzeu-ho per a calcular les integrals de Fresnel

e ¢] e 0]
/ cos(z?)dz, / sin(z?)dz.
0 0

Observacié: Podeu utilitzar que fooo et dt = @ a

6.5.13. (a) Sigui f una funcié holomorfa en D* = {0 < |z| < 1}. Suposem que f(a,) =0
per una successié ap € D* tal que ap, — 0. Demostreu que f =0 o bé z = 0 és una
singularitat essencial de f.

(b) Sigui f una funcié holomorfa en D* tal que per a tot n = 2, f no té zeros sobre les

corbes |z| = 1/n i a més
1 1
—dz 7&/ dz.
/|;—711 f(z) =-1- f(2)

=31

Demostreu que z = 0 és una singularitat essencial de f. Indicacié: Utilitzeu el Teore-
ma de deformacio i l'apartat anterior. <
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6.5.14. Calculeu, justificant tots els passos, la integral

+00 &
————dz, —-l<a<l.
0 22+z+1

Z&

24241
alog(z)

Indicaci6: Considereu la funcié f(z) = . Definiu una determinacio del logarit-

me log(z) a C\[0,+00) de manera que 2% = e . Finalment integreu la funcié f(z) a

la mateiza regio que les integrals del tipus

+a0
/ R(z)In(x)dx. <
0

6.6. Principi de I'argument

El principi de 'argument i el teorema de Rouché es fan servir per calcular el nombre de
zeros 1 pols d’una funcié holomorfa (excepte per pols) dins d’una corba tancada.

Definicié 6.26. Sigui 2 < C un obert. Diem que f : Q — C és meromorfa en € si
fe HO\E), on E c Q esta format per punts aillats, i aquestes singularitats de f sén
pols. En aquest cas, posem f e M(Q). o

Teorema 6.27 (Principi de 'argument). Sigui Q < C un obert i f € M(S2). Denotem per
Z el conjunts dels zeros de f en ), i per E el conjunt de pols de f en Q). Sigui v un cami
tancat en Q\(Z U E), homoleg a 0 en Q. Llavors

1P
2mi J f(2)

dz = Y Ind (y,2)m(f,2) — Y Ind (v,p) m(f,p),
2€Z

pelE
on m(f,z) és la multiplicitat del zero z, i m(f,p) denota l’ordre del pol p.

Observacié 6.28. S’anomena el principi de 'argument, ja que si I'(t) = f(y(¢)) és la
corba imatge, llavors
1 [ ()

2mi ) f(2)

aixi que, si v és una corba tancada simple, llavors el nombre de zeros menys el nombre
de pols de f en l'interior de v (comptant multiplicitats) és igual al nombre de voltes que
dona la corba imatge f(7) al voltant del zero, que seria la variacié de 'argument al llarg
de f(v) dividit per 2.

En efecte, tenim que

e 1 PO 1 [P
Ind(r’0>_27ri/pw—0_27riaf(’y(t))_27ri/7 dz. .

dz =Ind (T, 0),
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Demostracid del teorema 6.27. Observem que si f és holomorfa en Q\FE, llavors la funcié
h = f'/f és holomorfa en Q\(F U Z). Aplicant el teorema dels residus, tenim que

L f'(z) 7 = es L,w n w
3w ) f T 2 R <f’ >Id(% )

webuZ

e Si zp és un zero de f de multiplicitat m, llavors f(z) = (2 — 20)™ g(2), on g és holomorfa
en un entorn de zg amb g(zg) # 0. Llavors, en un entorn de zy tenim que

fe)_ m g

flz)  z—20 g(2)’

Com que g(z) # 0 en un entorn de zg, llavors ¢’/g és holomorfa en aquest entorn, de
manera que

Res(f//fv ZO) =

e Si pp és un pol de f d’ordre m, llavors §(z) = (z — po)™ f(z) és holomorfa en un entorn
de po amb §(po) # 0. Llavors, procedint com abans obtenim

ReS(f//f, pO) =-—-m.

Per tant
L (2 ) . (£2)m
ori |, 702) dz = u%lZRes 3 w | Ind (y,w I;Res 7 Ind (v, p) .
= 2 Ind (v, w)m 2 Ind (v, p) m(f,p).
weZ pelE

Exemple 6.29. Aplicant el principi de 'argument calculem el nombre de zeros (comptant
multiplicitats) del polinomi Q(z) = z* 4+ 223 — 2z 4+ 10 al primer quadrant.

'RA

7

72

3

>

Figura 6.6.: Camins per I’exemple 6.29.

Volem aplicar el principi de 'argument a la corba v = v1 4+ 2 + 3 formada per:
m(z) ==z, x € [0, R]
Yo(t) = Re™, te[0,m/2]
—v3(y) =1y,  ye[0,R].
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on R > 0 és prou gran per englobar les arrels de ) al primer quadrant Qq, que sén un
nombre finit. Pel principi de ’argument,

#2(Q) 0 Q1 = Y Ind (v, w) m(Q,w) = Ind(Q ©,0).

wezZ

En el que raonarem a continuacié, provarem també que el polinomi @) no té cap zero a y*.
Mirem doncs quantes voltes fa la corba QQo~y al voltant de 0, vegeu la figura 6.7. Estudiem
cada tros de 7.

A

Q(2)

Figura 6.7.: Imatge per @) dels camins de 'exemple 6.29.

La corba Q(v1(z)) = Q(z) és continguda a R4, ja que
Q(z) =z +2x(z? —1)+10> 10 -2 =8 > 0.

Tenim doncs que @ no s’anul-la a 77 1 Q(71) és un segment al semieix real positiu, que va

de Q(0) a Q(R).

Seguidament

Q(2(t)) = Q(RQZt) (Ren) <1 + R2eit B (Rezit)3 + (Rle?t)4> )

Per tant, quan R és molt gran, Q(v2(t)) no s’anul-la i és una petita pertorbacié de R*e!.
Com que t € [0,7/2] tenim que 4¢ € [0, 27].
Pel tercer tros tenim que

Q(3(y) = Qiy) = (y* +10) — 2i(y° + ),

i en particular Q(iR) és un punt amb part imaginaria negativa. Observem que per a y > 0,

ReQ(iy) > 0, ImQ(iy) < 0.
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Per tant Q(y3(y)) va del punt Q(iR) cap a Q(0) restant sempre dins del quart quadrant.
Amb tot aix0 tenim que el nombre de voltes que fa Q o~y al voltant de 0 és 1; pel principi
de I’argument

#2(Q) n Q1 = nd(Qo,0) = 1. 0

Exercicis

6.6.1. Quines de les segiients funcions son meromorfes a C?

a) 2° b) 22 c) ell? d) 1/sin(z).

A

6.6.2. Calculeu el nombre de zeros (comptats amb multiplicitat) amb part real positiva del
polinomi P(z) = 25 — 24 — 22 — 6.
I si alternativament el polinomi fos Q(z) = 2% — 2* — 22 + 67 q

6.6.3. Sigui f una funcid entera tal que
f(z)eR < z€eR.

Demostreu que f té, com a molt, un zero a tot C. <

6.7. Teorema de Rouché

Teorema 6.30. [Teorema de Rouché’] Sigui @ = C un obert i f,g € M(Q). Sigui vy cami
tancat simple homoleg a 0 en Q2. Suposem que f i g no tenen pols en v*. Si

1f(2) —g(2) <lg(2)|,  zen*
aleshores
Zf_Pf:Zg_Pga

on Zy, Zg denoten el nombre de zeros (comptant multiplicitats) de f i g en Uinterior de
v, © Py, Py el nombre de pols (comptant l'ordre) de f i g en Uinterior de .

Observacié 6.31. Cal que la desigualtat sigui estricta. També, al ser + simple, tenim
que Ind (v, z) val 0 0 1 per z ¢ v*. .

Demostracié del teorema 6.30. Notem que f i g tampoc no poden tenir zeros en v* per
la hipotesi imposada (en cas contrari, tindriem |g(2)| < |g(z)] !!).

Tenim F' = f/g € M(Q). Si suposem, per simplificar, que els pols d’una funcié no
coincideixen amb els zeros de 'altra, aleshores

{zeros de F'} = {zeros de f} u {pols de g}; {pols de F'} = {zeros de g} u {pols de f}.

“Eugene Rouché, Someire, 1832-1910, https://ca.wikipedia.org/wiki/Eug%C3%A8ne_Rouch%C3%A9
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f(z)
9(z)
I' = F(y) € Dy(1), aixi que I no dona cap volta al voltant del 0, i per tant Ind (T",0) = 0.

Pel principi de ’argument

Per la hipotesi, tenim que ) — 1‘ < 1 per z € v*, de manera que la corba imatge

0=Ind(F,O) ZZF—PFZZf+Pg—(Zg+Pf),

d’on obtenim el resultat. Quan hi ha coincidencies, aleshores comptant els ordres de zeros
i pols arribem a la mateixa conclusio. ]

La majoria de les vegades apliquem el teorema de Rouché en un cercle {|z —a| = R} ia
funcions f, g holomorfes en un entorn de Dg(a). En aquest cas, si | f(2)—g(2)| < |g(2)| per
|z — a| = R, se segueix que f i g tenen el mateix nombre de zeros comptant multiplicitats
en el disc obert Dgr(a). Aixo ens pot servir per determinar els zeros de f en el disc, si
podem triar una funcié g de la qual es pugui determinar facilment el nombre de zeros.

Exemple 6.32. Trobem el nombre de zeros del polinomi P(z) = 27 —22°% + 623 — 2 + 1
en el disc unitat D.

Prenem la funcié g(z) = 62% que té 3 zeros comptant multiplicitats en D. Tenim que
lg(z)| = 6 si |z] = 1. Llavors

1P(2) —g(2)| = |27 =225 — 24+ 1| < |2|" + 2|1z2P + |2] + 1 = 5 < 6 = |g9(2)], siz| = 1.

Pel teorema de Rouché, P i g tenen el mateix nombre de zeros (comptant multiplicitats)
en D, aixi que P té 3 zeros en D. O

Exemple 6.33. Trobem quants zeros té P(z) = 2* — 62 + 3 en I'anell {1 < |z| < 2}.
Primer, trobem els zeros de P dins del disc {|z| < 2}. Prenem g¢(2) = 2* que té 4 zeros
comptant multiplicitats en {|z| < 2}. Tenim que

|P(2) —g(2)] = | =62+ 3| <6lz| +3 =15 <16 = |g(2)| si|z] = 2.

Com abans, aquesta desigualtat també implica que P no té zeros en |z| = 2. Pel Teorema
de Rouché, P i g tenen el mateix nombre de zeros en {|z| < 2}, de manera que P té 4
zeros en {|z| < 2}.

Ara, busquem els zeros de P en el disc unitat {|z| < 1}. Prenem h(z) = —6z que té un
zero en el disc unitat. Tenim que

|P(z) —h(z)| = 2" +3| <|2|* +3=4<6=|n(z)] silz| =1

Pel Teorema de Rouché, P té un zero en el disc unitat {|z| < 1}.
En conclusid, el polinomi P té 3 zeros en l'anell {1 < |z| < 2}. O

Teorema 6.34 (Teorema de Hurwitz’). Sigui f, una successié de funcions holomorfes
en un domini S tals que f, — [ uniformement en compactes d’S), per una certa funcio
f. Siper atotan =0, f, no s’anulla en cap punt d’S), aleshores o bé f =0 o be f no
s’anulla en Q.

® Adolf Hurwitz, Hildesheim, 1859-1919, https://ca.wikipedia.org/wiki/Adolf_Hurwitz
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Demostracié. Comencem observant que f és holomorfa en €2 pel Teorema de Weierstrass.
Suposem que f no és identicament 0, perd f(a) = 0 per un cert a € . Aleshores, com que
els zeros de f han de ser aillats (al ser f no idénticament nulla), tenim que f(z) # 0 en
un cert disc puntejat D, (a)\{a} = Q. Sigui 0 < m = min|,_4—, | f(2)| que existeix perque
f és continua i el cercle és un compacte i sigui n prou gran per garantir que

[fn(z) = F(2)] <m

per a tot z en {|z —a| = r}, fet que es dona per la convergencia uniforme. Aleshores, sobre
la corba {|z — a| = r},

[fn(2) = F(2) < m < |f(2)],
i pel Teorema de Rouché, f,, i f tenen el mateix nombre de zeros dins {|z — a| = r}. Pero
aix0 és una contradiccié ja que f en té un, i f, no en té cap per hipotesi. O
Exercicis
6.7.1. Demostreu que l'equacio e = 2z + 1 té exactament una solucid en el disc unitat

obert. Indicacié: Proveu que |e* — 1| <e—1 si|z| = 1. q

6.7.2. Sigui f una funcié holomorfa en el disc unitat tancat tal que |f(2)| < 1, per a
|z| = 1. Quants punts fixos té f?¢ 4

6.7.3. Calculeu el nombre de solucions (comptant multiplicitats) de les segiients equacions
en el disc unitat:

(a) 27 —225+22-82-2=0.

(b) 22° — 2% +322 — 2+ 8 = 0.

(c) 27 =524 + 22 =2. q
6.7.4. Quants zeros té P(z) = 2 + 623 — 422 + 1/8 en la regi6 {z € C; 3 <[2| <1}? <
6.7.5. Considerem P(z) = 2%+ 324 + 22 + 2 + 9.

(a) Proveu que tots els zeros de P(z) son a Uanell 1 < |z| < 2.

(b) Calculeu el nombre de zeros (comptats amb multiplicitat) de P(z) al primer quadrant.<
6.7.6. (a) Calculeu el nombre de solucions a D de l'equacio e* = 4z + 1.

(b) Demostreu que l’equacid e* = 3z™ té n solucions en el disc unitat (n =0,1,2,...). «
6.7.7. SiguiacC,0<|a| <1, ineN.

(a) Demostreu que l’equacio
z—1)"* =a
(z—1)

té exactament n arrels diferents al semipla {z € C | Re z > 0}. Indicacié: Considereu
un disc centrat a z = 1 i de radi R = 1 primer, deprés mireu d’augmentar el radi
sense sortir del semipla tancat de la dreta.
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(b) Proveu que si, a més, |a| < 1/2", llavors totes aquestes arrels son al disc Dyj(1). <

6.7.8. Demostreu que per a tot R > 0 existeir n(R) = 0 tal que sin > n(R)

2 n
z z
Pn(2)=1+z+§+-~-+ﬁ

no té zeros al disc {|z] < R}. a

6.7.9. Sigui f, una successid de funcions holomorfes en un domini Q2 tals que fr, — f
uniformement en compactes d’§2, per una certa funcio f.

1. (Corollari de Hurwitz) Deduiu que si fn(z) # a per a tot z € i tot n € N, aleshores,
f=aobéf(z)#aen

2. Proveu que st f, és injectiva en §2 per a tot n = 0, aleshores f és constant o bé f és
injectiva en €. Indicacié: Argumenteu per reduccio a ’absurd, i utilitzeu ’apartat
anterior.

3. Proveu que si f té un zero d’ordre m en a € ), aleshores existeir pg > 0 tal que
per tot p < po i per tot n > n,, fn té exactament m zeros en Dp(a) comptant
multiplicitats. 4
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7.1. El teorema de I'aplicacié de Riemann

Les funcions holomorfes també es poden veure com a transformacions entre regions del
pla complex. Les que ens ocupen en aquest capitol sén les que sén bijectives, a més
d’holomorfes.

Definicié 7.1. Siguin U,V < C dos oberts connexos. Diem que f : U — V és una repre-
sentacid conforme (o transformacio conforme) entre U i V si f és holomorfa i bijectiva.
Aleshores diem que U i V' sén conformement equivalents. .

El nom de representacié conforme fa referéncia a la preservacié dels angles.
Lema 7.2. Si f: U — C és una funcié holomorfa i zg € U, aleshores
f és localment injectiva en zg <= f'(20) # 0 <= f preserva els angles en z.

Demostracio. La primera equivaléncia és resultat del teorema de la funcié inversa i de
I’analiticitat de les funcions holomorfes, es pot usar Rouché per exemple. La segona es
deriva de 'observacié 3.16 i de I'existencia d’un ordre, vegeu el teorema 4.41, deixem els
detalls pel lector. O

Tot seguit veiem que les representacions conformes sén biholomorfes.

Proposicié 7.3. Si f: U — V és holomorfa i bijectiva, aleshores f és biholomorfa, és a
dir que f~1:V — U també és holomorfa.

Demostracié. La funcié f és oberta pel teorema de I’aplicacié oberta, de manera que f~*
és continua. Aleshores la biholomorfia es dedueix de la proposici6 3.8. 0

Observacié 7.4. Les representacions conformes també s’anomenen a vegades funcions bi-
holomorfes per la proposicié 7.3. En la literatura també se les anomena funcions conformes
o funcions univalents. o

Advertencia 7.5. Hem vist que totes les representacions conformes f : U — V satisfan
que

e f/(2) #0, peratot zeU, i
e preserven angles en tots els punts de U.

Pero el reciproc no és cert: la funcié exponencial f(z) = e satisfa que f’(z) # 0 per tot
z € C i, de fet, preserva els angles, pero f : C — C\{0} no és una representacié conforme
ja que no és injectiva. .
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El segiient resultat és un dels més remarcables de I'analisi complexa:

Teorema 7.6 (Teorema de 'aplicacié de Riemann). Tot domini U simplement connex
del pla diferent de C és conformement equivalent al disc unitat D, és a dir, existeir una
representacio conforme f entre U i D, vegeu la figura 7.1.

A més, si imposem la imatge d’un punt i ’argument de la derivada, per exemple f(zp) =
04 f'(z0) € RT, aleshores f és tunica.

Qy
0
A o

Q3

Figura 7.1.: El teorema de Riemann assegura que tots els dominis simplement connexos
son conformement equivalents.

Observacié 7.7. El comportament de ¢ := f~! : D — U quan ens acostem a la frontera
de D pot ser molt complicat si U no és una corba. Aquest estudi és fascinant i dona lloc
al camp de la teoria geometrica de funcions (GFT per les sigles en angles de ‘geometric
function theory’). .

Observaci6é 7.8. Notem que la condicié U # C del teorema de ’aplicacié de Riemann és
necessaria. Efectivament, la no existencia de representacié conforme en el cas U = C és
conseqiiencia immediata del teorema de Liouville. °

La demostracié de 'existencia és un pel delicada, el lector interessat la pot trobar per
exemple en [BC13, Capitol 9] o a 'apendix A. Tot seguit demostrem la unicitat.
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Demostracio de la unicitat al teorema de aplicacié de Riemann. Suposem que existeixen
dues representacions conformes f, g : U — D satisfent les condicions de I’enunciat. Consi-
derem h = go f~1: D — D. Notem que 'origen n’és un punt fix:

h(0) = g(f~'(0)) = g(z0) = 0.

A més, h és holomorfa i envia el disc unitat a ell mateix. Per tant, pel lema de Schwarz
(vegeu el lema 4.52), tenim que

|h(2)| < |z| per atot z € D.
Perd h~! satisfa les mateixes hipotesis i, per tant,
| (w)| < |w| per a tot we D.
Aixi, escrivint w = h(z) trobem que
h(2)] < |2| = [ (w)] < |w] = |h(2)],

i les desigualtats han de ser igualtats. Hem demostrat doncs que

h(z) = Az
Com que
/
9'(20)
A= HK(0)= eR,,
( ) f’(Zo) +
deduim que A\ = 1 i, per tant, h és la identitat, és a dir que f = ¢ tal i com voliem
veure. O

Com és natural, la majoria de les representacions conformes no poden calcular-se expli-
citament. Pero algunes si, i poden combinar-se per a construir-ne moltes d’altres. Algunes
sén particularment importants en aquesta i en moltes altres arees de les matematiques i
la fisica (geometria, electromagnetisme, algebra,...) i les estudiarem aqui.

7.2. Projeccid estereografica i circumferéncies generalitzades

Com veurem a la propera seccio, el treball de certes transformacions conformes anome-
nades homografies se simplifica en considerar el pla complex compactificat Co,. Aquest
s’anomena sovint esfera de Riemann, ja que la projeccié estereografica (vegeu la figu-
ra 7.2) ens proporciona un homeomorfisme entre el pla complex compactificat i I'esfera
S? ={peR: |(p—(0,0,3) = 3. La projecci6 estereografica p : S* — R? envia
(z,y,2) € S?\(0,0,1) — (Az, A\y) ~ A(z + iy), de manera que (Az, \y,0), (z,y,2) i (0,0,1)
estiguin alineats, i envia el pol nord (0,0,1) a Uinfinit.
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Figura 7.2.: La projeccié estereografica.

Observacié 7.9. Es pot veure que la projeccié estereografica envia circumferencies de S?
que passen pel pol nord a rectes (per I'infinit) i circumferéncies de S? que no passen pel
pol nord a circumferéncies del pla complex.

La demostracio es pot fer com segueix: si la circumferencia inicial passa pel pol nord,
aleshores el conjunt de rectes que uneixen el pol nord amb els punts de la circumferéncia for-
men un pla que passa pel pol nord, diguem-li II. Aleshores, la imatge de la circumferéncia
per la projeccié esterografica és la interseccié de II amb el pla XY, que efectivament és
una recta (vegeu la figura 7.3).

Si la circumferencia inicial C; no passa pel pol nord, es tracta de la interseccié de S?
amb un pla II que no passa pel pol nord, i la seva projeccié és la interseccié del con que
formen les rectes pel pol nord als punts de la circumferencia amb el pla XY. Aquesta
interseccid és una conica. Si anomenem p; el punt de C; amb maxima coordenada vertical
i po el punt de minima coordenada vertical, ¢; la recta que passa per IV i p;, aleshores la
conica projectada es tracta d’una circumferencia si i només si ’'angle o que forma II amb
Uy és igual a I'angle 8 que forma el pla XY amb ¢, ja que seran ellipses de la mateixa
excentricitat per simetria. Notem que (3 és el complementari de I'angle entre 'eix Z i
l1. A la vegada, aquest és complementari de I’angle v que formen l'eix Z amb la recta
que passa per l'origen i p1, ja que els triangles inscrits en una semicircumferencia sén
rectangles. Finalment, treballant al pla Il que formen /1 i /9, 'angle a veu el mateix arc
de circumferencia de S2 A 11 que 7 i, per arc capag, sén iguals (vegeu la figura 7.4). .

Definicié 7.10. Anomenem circumferéncies generalitzades de Cy a les circumferéncies o
rectes de C. En el cas de les rectes, diem que oo pertany a la circumferéncia generalitzada.
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Figura 7.3.: La projeccid estereografica envia circumferéncies pel pol nord a rectes.

Figura 7.4.: La projecci6 estereografica envia circumferencies que no passen pel pol nord
a circumferencies, vegeu 1’observacio 7.9.

En la literatura també s’anomenen cercles generalitzats ja que corresponen als cercles
de T’esfera S2, perd pot crear confusié amb el cercle com a sinonim de disc, aixi que aqui
evitarem aquesta denominacié.

Lema 7.11. L’equacid d’una circumferencia generalitzada £ és
AzZ+ BzZ+ Bz +C =0,

amb A,C € R i B e C de manera que |B|?> > AC. En particular { és una circumferéncia
si i només si A # 0, i té centre —B/A i radi R = 1/|B|2A+AC.

Demostracio. Vegeu 'exercici 7.2.2. O

177



7. Representacié Conforme

Exercicis
7.2.1. Sigui p la projeccio estereografica. Demostreu que A = ﬁ, i que la inversa de p
és
-1 : 2., .2
r+wy)=—-7-5I(T,y, 27 + . q
Pt ) = g ey (Bret )

7.2.2. Demostreu que l’equacid d’una circumferéncia de centre o € C i radi r és
12> —az —az =712 —|af?, zeC,
i la d’una recta perpendicular a o passant per zg € C és
az+az=m, ze€C,

on m és una constant real que només depén d'a i z. <

7.3. Transformacions de Maobius

Una transformacié de Mébius' o homografia és una funcié de la forma

T(z) = ZZZI;, amb (a,b,c,d) € C* i tal que ad — be # 0.

Denotem el conjunt de totes les homografies per M. Entenem que T(—d/c) = o
i T(0) = a/c, en el sentit que si ¢ = 0 tenim que T(0) = oo. Aleshores T és un
homeomorfisme en C,, := C u {00} amb la topologia generada pels oberts de C i els
entorns oberts d’infinit {|z| > r}. De fet, les homografies sén representacions conformes
de Cy en ell mateix (aqui treballem amb funcions meromorfes bijectives a Cy, entenent
que una funcié és meromorfa a linfinit si f o ¢ ho és a 'origen al precompondre amb
la carta ¢(z) = 1/z). Es pot veure addicionalment que sén les iniques amb aquesta
propietat, vegeu l’exercici 7.5.1.

Observacié 7.12. Tota homografia T' és globalment bijectiva en Cg, i la seva inversa és
T~ € M definida per
dw—b
T Hw) = ——.
—cw + a
El lector pot comprovar aquest fet facilment. Per tant, M amb 'operacié composicié té
estructura de grup. Notem també que
ad — bc

d
5 #0 peratot z# 0, ——. .
c

T'(z) = (cz+d)

Les homografies basiques soén les

!August Ferdinand Mdobius, Schulpforte, 1790-1868, https://ca.wikipedia.org/wiki/August_
Ferdinand_M/,C37,B6bius
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Translacions: T(z) = z+ b, be C.

Girs: T(z) = ez, 0 e R.

Homotécies: T'(z) = Az, Ae Ry.

Inversions: T(z) = 1 = |z2| .

La combinacié d’un gir i una homotecia s’anomena a vegades dilatacié complexa, T(z) =
Az, A € C*. Tota homografia es pot obtenir com a composicié d’homografies basiques,

W

vegeu ’exercici 7.3.2.

Figura 7.5.: Homografies basiques: translacié amb b = 2—1i/2, gir d’angle 0 = arctan(4/3),
homotecia de raé6 A = 3 i inversié.

Proposicié 7.13. Tota homografia envia circumferencies generalitzades a circumferencies
generalitzades.
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Demostracié. Vegeu 'exercici 7.3.4. O
Ql Q4
c’ B B"
/ Ty T T3
c A
o
. B
A B/ C// AH A/// C/N

Figura 7.6.: Les homografies envien circumferencies generalitzades a circumferencies gene-
ralitzades, i preserven l’orientacié.

En conseqiiencia, les components connexes dels complementaris de les circumferencies
generalitzades sén conformement equivalents mitjancant les homografies corresponents
segons 'orientacio, vegeu la figura 7.6.

Figura 7.7.: La inversié preserva els eixos i la circumferéncia unitat, pero els Unics punts
fixos sén +1.

Exemple 7.14. La inversi6 T(z) = 1/z envia la circumferéncia unitat a ella mateixa
(amb una simetria axial respecte la recte real), el disc unitat a D° i les rectes iR U {o0}} i
R U {0} s6n invariants, intercanviant 0 i 00, vegeu la figura 7.7. A més és una involucid,
és a dir que T2%(z) = 2. Les circumferéncies ¢ que passen per l'origen van a rectes que
tallen 0D en els punts conjugats dels punts de tall £ n D, i viceversa. Les rectes per
lorigen van a la seva recta conjugada. Finalment, les circumferéncies que no passen
per lorigen van a circumferencies que no passen per l'origen. Si aquesta és interior al
cercle unitat, aleshores la seva imatge estara al complementari. Si talla la circumferéencia
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unitat, aleshores la seva imatge també, pels punts de tall conjugats. La tangeéncia interior
a 0D esdeve tangencia exterior de la imatge en el punt de tangencia conjugat. Notem
que el centre de la circumferéncia imatge no és, en general, la imatge del centre de la
circumferencia. O

Lema 7.15. Donats tres punts diferents z1, 29,23 € Co, existeiz una unica homografia
T tal que T(z1) = 0, T(22) = 1 i T(z3) = 00. Per tant, si C és l"unica circumferéncia
generalitzada que passa pels tres punts, aleshores T(C) = R.

Demostracio. Si cap d’ells no és infinit, prenem

T(Z):Z—Zl'ZQ—Zg

Z—23 29—21

Si un d’ells és infinit, s’utilitza la mateixa definicié eliminant els factors que el contenen.

Per exemple, si z; = oo, prenem
z2 — 23
T(z) = ——.

Z — Zz3
Per la unicitat, notem que si S és una altra homografia, aleshores S oT~! fixa 0, 11 0.

En particular, si SoT71(z) = Zzzjs, trobem que

T(0)=0 = b=0

T(0) =0 = ¢=0
T(1)=1,6=0,¢c=0 = a=d.
Per tant, S o T~ ! és la identitat i S = T. O

Corollari 7.16. Donades dues ternes de punts diferents (21, 22, 23), (w1, we, w3) € C3,
existeix una unica homografia T € M tal que T'(z;) = w;. En particular, si T té tres punts
fizos, només pot ser la identitat.

Exemple 7.17 (Exemple fonamental). Volem representar conformement D en H := {z :
Re z > 0}. Per fer-ho, busquem una homografia que envii (—1,7,1) — (0,7,0), de manera
que per preservar 'orientacid, sabem que enviara D a H, vegeu la figura 7.8. Raonant com
al lemma 7.15, la condicié (—1,1) — (0,00) obliga a que tinguem

z+1
T(z) = .
(2) =c—
Per fixar 7, cal
41
z:T(i):cZ,+ =ci < c=-1
1—1
Per tant,
1+2
T(z) =
(2)=1—,
i la seva inversa és T~ (w) = ;}”—;%

181



7. Representacié Conforme

T(z) = 1
E— < >

Figura 7.8.: L’homografia T'(z) = }Z envia el disc unitat al semipla de la dreta.

En particular, D va a l’eix imaginari pur, i el disc unitat va al semipla de part real
positiva, vegeu la figura 7.10. També envia el complementari de D al semipla de part real
negativa. La imatge dels semicercles D n {Imz > 0} i D n {Imz < 0} s6n el primer i el
quart quadrants respectivament. De fet, correspon a una rotacié de 90° de S? respecte
Ieix que passa per p~1(i) i p~1(—i). ¢

Figura 7.9.: L’homografia T'(z) = % i la seva inversa, vegeu l'exemple 7.17. Notem que
T té pol simple en z = 1 i zero simple en z = —1, i que les corbes de nivell

son circumferéncies generalitades que passen pel pol.

Observacié 7.18. T no és I'inica homografia que envia D en H, de fet n’hi ha infinites.
Perd si que és 'inica que ho fa enviant els punts (—1,7,1) a (0,4, o). .

Exercicis

7.3.1. Donada una homografia T(z) = gjig, definim Ap :=

a b . ,
. d) , que esta definit

modul constant multiplicativa. Per exemple, les matrius ((1) 11)), (8 2) , <0 ) cor-
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.,.‘

Lostg N

A

?

Figura 7.10.: Accié de 'homografia T'(z) = 2

1—2

responen respectivament a la translacio z — z + b, a la dilatacié z — az i a la inversio
z—1/z.

a) Donades Ty, Ty € M, demostreu que Ar,or, = Ap, A, (modul constant multiplicativa).

b) Trobeu T~! i relacioneu-la amb Ar,. a

7.3.2. Demostreu que tota T’ € M es pot escriure com a composicid de dilatacions, trans-
lacions 1 inversions. <

7.3.3. Trobeu una descomposicié en dilatacions, translacions i una inversié de la trans-

formacio

T() = — 2 .
(1 —4)z+ 3i

7.3.4. Demostreu que tota T € M envia circumferéncies generalitzades a circumferéncies
generalitzades. <

7.3.5. Sigui f(z) = Z=. Quina és la imatge per f de

z+1
a) la recta real, b) 0D2(0), c) D, d) Ueix imaginari.
I per g(z) = 2—;; ? a
7.3.6. Troba I’homografia que envia (i,0,—1) a (—i,0,00). a
7.3.7. Demostra el corollari 7.16. <
7.3.8. Troba una homografia que envii D a {Imz > 0}. <
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7.3.9. Sigui a € C,a # 0 1 definim

z—1 z+1 12 z
T = T = T: = T(z) =
16) = 9,5 ) = o= 1) = =2 T = 5
Trobeu
TytoThoTy, T™ mecZ. <
7.3.10. Trobeu totes les T € M que tinguin per punts fixos 0 i —i. q
7.3.11. Trobeu T € M tal que T(1 —i) =1+14,T(2) =4, T(1 +1i) = —i. q

7.3.12. Siguin Cy i Co dues circumferéncies generalitzades i z1 € Cy,\Cq, 22 € Cy\Cs.
Demostreu que ezisteiz T € M tal que T (C1) = Cy i T'(21) = z2. Podeu fer servir
UEzercici 1.1.10. Trobeu una d’elles en el cas particular

Ci={z:]z=1=1},z1=1,Co={z:zi = z},20 = i.

7.4. Rao doble i simetria

Definicié 7.19 (Raé doble). La rad doble dels punts zp, 21, 22, 23 € Co, que denotem per
(20, 21, 22, 23), es defineix com

(20, 21, 22, 23) == T'(20),
onT e M éstal que T'(z1) =0, T'(22) =11 T(23) = o0. .

Com hem vist al lema, 7.15, si tots ells sén finits, tenim que

20 — 1 22— 23

(20, 21, 22, 23) 1= :
20— 23 22— 21

Definicié 7.20 (Simetria). Diem que dos punts z i z* sén simetrics respecte una circum-
feréncia generalitzada C' si existeix una homografia T que envia C' en Ry, = R U {00} tal
que T'(z*) = T'(z). .

Observem que la simetria respecte una recta correspon al concepte classic de conjugacio.
Aixi mateix, és facil veure que z i z* sén conjugats respecte el cercle unitat si i només si
* 1 _ =

Z¥ =3 =, vegeu la figura 7.11.

El segiient lema ens indica que el concepte de simetria no depén de I’homografia escollida.

Lema 7.21. Es pot veure que, si z1, z2, 23 son punts diferents d’una circumferéncia gene-
ralitzada C, aleshores z i z* son simeétrics respecte C' si i només si

(2%, 21, 22, 23) = (2, 21, 22, 23).
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LR

IS
e
I\

Figura 7.11.: Simetria respecte la recta real (conjugacid), respecte una recta qualsevol
(simetria axial) i respecte una circumferencia.

Demostracié. Siguin z1, 22,23 € C, i anomenem S(z) = (z, 21, 22, 23), ’homografia que
determina la ra6 doble. Notem que S(C) = Ry. Si S(2*) = S(z), aleshores efectivament
soén simetrics per definicid.

Per veure la implicacié contraria, suposem que tenim 7" € M tal que T(C) = Ry i
T(z*) = T(z). Discutim dos casos:

e SiT(z*) e R, aleshores T'(2*) = T'(z*) = T'(z) i per l'injectivitat tenim que z = z* €
C, de manera que
(Za 21, 22, 23) = (Z*a 21y %2, Z3) € Ra

i concloem S(z*) = S(z) tal i com voliem veure.

e Si, en canvi, T(z*) ¢ R, aleshores tenim un conjunt numerable de circumferéncies
generalitzades que passen per T'(z*) 1 T'(z), que, en passar per complexos conjugats,
sén simetriques respecte R i, per tant, tallen R en angles rectes. Les seves preimat-
ges per T o S~! han de tallar també en angles rectes la recta real i, per tant, sén
una famfilia infinita de circumfereéncies generalitzades simetriques respecte R. Com
que sén simetriques respecte R, i la familia inclou totes les circumferéncies genera-
litzades per S(z) i S(z*), que sén punts diferents, necessariament aquests dos punts
sén conjugats (n’hi ha prou amb considerar la recta que els uneix i qualsevol altra
circumfereéncia).

O]

Exercicis

7.4.1. Sigui T € M tal que T(Dgr(a)) = Dgr(a). Demostreu que els punts fizos de T estan
a 0Dg(a) o bé son simétrics respecte 0Dg(a). q

7.5. Automorfismes

D’especial rellevancia son les representacions conformes d’un conjunt en si mateix ja que,
amb 'operacié composicié, tenen una estructura de grup. A continuacié veurem que en
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els casos senzills, com D, C o C,,, aquestes poden trobar-se explicitament.

Teorema 7.22. Tota representacio conforme de D en D és una homografia de la forma

92— a
z = _— .1

per algun a €D ¢ 6 € R.

Definicié 7.23. Amb l'operacié composicié, aquestes homografies formen un subgrup de
M anomenat automorfismes de D, abreujat com Aut(D), vegeu la figura 7.12. o

Figura 7.12.: Al centre, automorfisme identitat del disc unitat representat en polars (inclou

radis d’angle k7/8), a l'esquerra, automorfisme del disc T'(z) = =% amb

a = % + % i a la dreta el seu automorfisme invers T1.

Demostracio del teorema 7.22. L’exhaustivitat i injectivitat estan fetes a I’exercici 1.1.10.
Per tant, tota homografia T' de la forma (7.2) és una representacié conforme del disc en ell
mateix. Per veure que és I'inica possible, suposem que f és una representacié conforme
de D en D, sigui a € D tal que f(a) = 0 i prenem 6 := Arg (f'(a)). Definim T,(z) = {=%.
Notem que, com que

T'(2) 1—-az+a(z—a) 1—|al?
z = =
@ (1 —az)? (1—az)?’
deduim que

1

Ta(a) =0 i T;(a) = m > 0.
Per altra banda, e~ f també és una representacié conforme del disc en ell mateix i
(e f)'(a) = ee”| f'(a)| > 0.

Per la unicitat del teorema de I’aplicacié de Riemann, les dues representacions coincideixen,
és a dir que
—i0 p
€ f = Ta;

i per tant f té la forma (7.2). O
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Teorema 7.24. Tota representacio conforme de C en C és una homografia de la forma
T(z) =az+b (7.2)

per alguns a,b € C, a # 0. Amb l'operacié composicio, aquestes homografies formen un
subgrup de M anomenat automorfismes de C, abreujat com Aut(C).

Demostracio. El lector pot comprovar facilment que az + b és una representacié conforme
de C en C.

Anem a veure que, donada una representacié conforme f : C — C, podem trobar a i
b de manera que f(z) = az + b. En primer lloc, considerem g(z) = f(1/z), que té una
singularitat a l'origen.

Vegem que la singularitat no és essencial. Notem primer que f(D) n g(D) = ¢J per la
bijectivitat de f. Com que f(ID) és un obert pel teorema de P’aplicacié oberta, la imatge de
D per g no és densa en el pla complex. Pel teorema de Casorati-Weierstrass la singularitat
no és essencial.

Aixi doncs la part singular de la série de Laurent de g a C* té un nombre finit de termes.
Per la unicitat de les series de Laurent, aquesta ha de coincidir amb la serie de poteéncies
de f aplicada a 1/z i, per tant, només té la part singular i una constant. Deduim que
f és un polinomi. Finalment, la injectivitat implica que f és un polinomi de grau 1 pel

teorema fonamental de 1’algebra. O
Exercicis

7.5.1. Demostra que tota representacio conforme de Coy en Cy €s una homografia. <
7.5.2. Troba tots els automorfismes T de D tals que T(1/2) = 1/3. <

7.5.3. Trobeu totes les representacions conformes del disc unitat en ell mateix que envien
1/2 a 0. N’existeix alguna que envii 0 a —i/2% 10 a —i/4? Utilitzeu T per trobar una
representacio conforme S que envii D a 0D (i) tal que S(1/2) =14 i .S(0) = 0. <

7.5.4. Demostreu que el lloc geométric de les imatges de qualsevol punt b € D per les
transformacions que fixen la imatge d’un altre punt, és a dir

{fweD:w=T(b) amb T € Aut(D), T'(a) = a},

€s una circumferéncia. <

7.6. Altres transformacions conformes

A diferencia de les homografies, que sén biholomorfes a tot el pla ampliat, altres funcions
son conformes quan es restringeixen a certes regions del pla. A continuacié en veiem
algunes de les més comuns.
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23 21
— E—
22 A 2,4 A
. —_— —
2 - Z
4 < (N > < 4
0 0 0

Figura 7.13.: Acci6 de les poténcies en sectors.

Poteéncies

Comencem per veure com es comporten les poténcies. Fixem la branca de 'argument

A : C\{0} — [0,27), que dona lloc a

Log(—z) + i izeC\|0,0
£(z) = In|e] + iA(z) = { o8 (77 Fim stz e CY0.0)

In(z) si z € (0,00),
que és una branca continua del logaritme en C\[0,0) i envia els reals positius als reals.
Aleshores, donat un nombre real positiu s > 0, indiquem per

és a dir que ara z° ja no és multivaluada, siné que en fixem una eleccid, i per = € (0, )
tenim que z° € (0,00) és la funcié de variable real usual.

Per tal que sigui bijectiva, cal considerar-la en sectors oberts d’angle o < min{27/s, 27},
que la funcié envia de manera conforme a un sector obert d’angle f = sa < 2w. Per
exemple, f(z) = z'/? és una representacié conforme de {z : 0 < Arg(z) <7} en {z:0 <
Arg(z) < 5}, ona =i =7/2, vegeu la figura 7.13.

|
=

f 2
: _— A

Figura 7.14.: Volem trobar una representacié f:{; — H.

Exemple 7.25. Volem trobar la representacié conforme del semicercle €21 en el semipla
superior H, vegeu la figura 7.14. Per fer-ho, sabem de I’exemple 7.17 que 'homografia
1+2

T'(z) = {—= envia el semicercle al primer quadrant, i el primer quadrant és conformement

equivalent al semipla superior per I'accié de z2. Per tant, podem prendre

o= (122

vegeu la figura 7.15. O
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H
LD A
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‘d @ D 142 o T n, ........ @ b
1—z Z/
X

Figura 7.15.: Representacié f : {21 — H obtinguda per composicio.

L’exponencial

L’exponencial també és localment injectiva, ja que la seva derivada mai s’anulla. Global-
ment, és injectiva en bandes horitzontals obertes d’amplada menor o igual a 27, vegeu la
figura 7.16. Per tant, envia bandes horitzontals obertes d’amplada menor o igual a 27 a
sectors d’angle igual a aquesta amplada. Si 'amplada és 7 seran semiplans. Si 'amplada
és 2w, es tractara del pla complex menys una semirecta.

147

Figura 7.16.: Accié de la funcié exponencial en bandes horitzontals i en rectangles paral-
lels als eixos. Bandes horitzontals d’amplada ~ van a sectors d’obertura +.

Exemple 7.26. Tot seguit veiem com trobar ’aplicacié de Riemann d’una banda horit-
zontal, vegeu la figures 7.17 1 7.18. La banda {z +iy : 0 < y < 7} s’envia per l’exponencial

fi(z) = €* al semipla de part imaginaria positiva. Multiplicant per —i, fa(z) = —iz s’envia
a el semipla de part real positiva. Finalment, f3(z) = jT_%, vegeu 'exemple 7.17, l'envia
al disc unitat. Aix{ doncs, f3o fao fi(z) = Z:i és una aplicacié de Riemann de la banda
horitzontal donada. O
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i: i
* A
™ 3
.................... A . ] Q3 z—1 Q4
ez Q —1z ] z+1
Ql RN 2 — 0® > — 4 O >
< o> 1~1< ---- ® Pl
v 0 ¥ v
—i —i

e*—i
e*+1

Figura 7.18.: Aplicacié de Riemann T'(z) = de la banda 2y, amb la coloracié de la

disc unitat a la dreta.

Exemple 7.27. Sigui {2 un domini fitat tancat per dos arcs de circumferencia que interse-
quen en dos punts diferents a i b, vegeu la figura 7.19. Per trobar I'aplicacié de Riemann,
podem considerar f1(z) = %(C:%Z’ on ¢ és qualsevol punt de I’arc que va de a a b deixant la
regié  a I'esquerra, és a dir resseguint el domini en sentit antihorari. Aleshores la imatge
del primer arc és la semirecta dels reals positius, i la imatge d’§2 és un sector d’obertura

a on a < 27 és 'angle que formen els arcs de circumferéncia en a.

Aleshores fa(z) = 2™ l'envia al sector {z : 0 < Arg(z) < ©}. Prenent f3(z) = —iz
obtenim el semipla de part real positiva, que s’envia al disc unitat mitjangant f4(z) = z;i
Per tant, fy o fso fa o fi és una aplicacié de Riemann d’€2. ¢

z—a  c—b QQ - A
z—b c—a 2o
_— _— Q3 —
———>—
= 0 1
0 1

Figura 7.19.: Aplicacié de Riemann d’una lent (serveix també per segments circulars i
lanules).
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Exercicis

7.6.1. Quina és la imatge del primer quadrant per 232 <
7.6.2. Quina transformacié pot enviar una banda horitzontal a a un semipla? <
7.6.3. Trobeu una aplicacié de Riemann del sector {0 < Arg z < 7/8}. <
7.6.4. Es pot enviar el semipla superior a un triangle mitjancant una homografia? <

7.6.5. Proveu que no existeix cap representacio conforme del semipla de la dreta en D1(1)
que envii 1 — 1, 0+— 0700 +— 14 13. <

7.6.6. Demostreu que les transformacions conformes del semipla superior Hy := {Imz >

0} en D sén de la forma e* =2 per alguna a € Hy i algun 0 € R. <

7.6.7. Trobeu una transformacié de Mdbius que envii el primer quadrant a Dy = D H, .
Utilitzeu-la per a trobar una transformacié conforme de Hy a {|Rez| <1, Imz > 0}. «

7.6.8. Trobeu una representacio conforme de {0 < Rez < w/2} en D. <

7.6.9. Trobeu una representacio conforme d’Q2q en .

a) 0 =DnHy, Qo =H,.

b) Q =D, Q= H, nD".

c) 1 =Dn{Rez>1/2}, Qo =D n (—iHy).

d) 4 =Hy, Q2 ={|Rez| <1, Imz > 0}.

e) U =Dn (—iHy), Qo =D n{|z+1/2| > 1/2}.

f) =D (1) n D 5(-1), Q2 =D, que deizi invariant el segment (—i,1).

g) Q1 =D\[0,1), Qy = C\[0,00).

h) Q1 = {|Imz| < 7/2}\((—0,0] U [In2, +00)), Qo = D. <
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8. Fluids

La solucié de molts problemes importants en dinamica de fluids, també anomenada hi-

drodinamica o aerodinamica s’obté sovint fent servir metodes de variable complexa.

8.1. Qiiestions generals. Escenari i notacid.

1. El fluzx del fluid és bidimensional. En el nostre model suposem que les caracteristiques

del flux sén identiques per tot pla parallel. Aix0 ens permet fixar I'atencié només
en un pla, considerem el pla z. Les figures construides en aquest pla s’interpreten
com seccions transversals de cilindres. En la figura, el disc representa la seccié d’'un
cilindre de I'espai.

—_—

T, —_\=E

'__’__*_—. V
Obsdacle

. Bl flux és estacionari o uniforme. Considerem que la velocitat del fluid en un punt no
varia amb el temps, només depen de la posicié (x,y). Veieu per exemple un mapa de
vents de la Terra a https://earth.nullschool.net/, cal esperar un bona estona
per veure com canvia la distribucié. En petita escala temporal podem pensar que és
un flux estacionari.

. Les components de la velocitat deriven d’un potencial. Denotem per V(z,y) =
(V1,V2) les components de la velocitat del fluid en el punt (z,y). Suposarem que
existeix una funcié ¢(z,y), que anomenem velocitat potencial, de manera que

Ve =gradp = V.
En aquest cas el flux es diu que és irrotacional o potencial. Es pot demostrar® que

aquesta condicio és equivalent a

XA
tV = 2 0.
rotV oy + P 0

'Ho podeu fer com exercici
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Figura 8.1.: Mapa de vents.

4. Fl fluid és incompressible. La densitat, o massa per unitat de volum, és constant.

Si V,, és la component normal de la velocitat al llarg d’un circuit tancat C' (vegeu la
figura 8.2) aquesta condicié equival a

Q= / V,ds = / (=Vadz + Vidy) = 0.
C C

Aixo expressa que la quantitat de fluid dins C' és constant (entra el mateix que surt).
Aquesta condicié és equivalent a

vy o0Vs

divV = == + =2 = 0.

ox oy
A la quantitat @ se 'anomena flux del vector V a través del contorn C. En fluids
més generals la quantitat ) pot ser no nulla.

En general, per fluxos que no necessariament provenen d’un potencial, a la quantitat

r :=/(V1dac+V2dy) = / Vids
C C

on C' és una corba tancada, V; la component tangencial de V en C' (vegeu la figura 8.2) i
ds l’element de longitud, se 'anomena circullacio del flux al voltant de C.
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1.8 1 e —————
=

= —————

. ——

1.2 4 — —
/
Vi
e

m,v\,) = Ve 3+ ‘,n
Vn

Figura 8.2.: Component tangent V; i normal V,, del flux respecte a un circuit.

Sigui ¢ (x,y) una funcié harmonica conjugada de la velocitat potencial ¢(z,y) definida
al < C (és a dir que ¢, = ¥y, ¢y = —1,), a la funcié analitica en 2 donada per

®(2) = ¢(z,y) + i(z,y)
se 'anomena, potencial complez.
Notacié 8.1. Fixem la segiient notacié pel capitol:
o O(z) = ¢(z) + i)(z) s’anomena potencial complex

e  és la funcio potencial ( o velocitat potencial) i ¢ la funcid de corrent.

Les corbes ¢ = ¢ sén les linies equipotencials 1 ¢ = c les linies de corrent o de flux
(s6n ortogonals).

El camp del flux, o velocitat de corrent, V satisfa

V(z) = Ve =V, +iVh = &/(2),
V=|V|=|¥|, a=—arg(®),
V = gradep.

Els punts on ®'(z) = 0 s’anomenen punts estacionaris o d’estancament (en aquests
punts la velocitat és zero). .

Observacié 8.2 (Comandes amb Sage.). Per dibuixar les linies de corrent i les linies
equipotencials caldra la comanda contour_plot i per dibuixar els camps (amb fletxes de
direccid) plot_vector_field o streamline_plot. )
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Exercicis
8.1.1. Proveu que I' = 0 en un flux potencial (suposeu que la funcid potencial és de classe

C? com a minim,). q

8.1.2. Proveu que per fluxos definits en un domini 2 < C que satisfan les quatre hipotesis
anteriors, la velocitat potencial p(x,y) és una funcid harmonica. <

8.1.3. Proveu que ®'(z) = V(z) = Vi +iVa. q

8.2. Fluxos basics.

Exemple 8.3 (Flux uniforme). Ve donat pel potencial ®(z) = Voe %z, amb Vp,d € R.
Trobem la seva expressié. Recordem que V = ®/(z) = Ve 9 = Voed', V =V, per
tant,

¢ = Re(®(2)) = Re(Voe % (z + iy)) = Vo(cosd - + sind - y).
Y = Im(®(2)) = Im(Voe ™% (x + iy)) = Vo(—sind - = + cosd - ).

Les linies de flux ¢ = ¢ sén rectes amb pendent tand i § és ’angle que formen les linies
de flux amb l’eix real. O

Exemple 8.4 (Font al punt z = a). Aqui ®(z) = klog(z —a), k € R. Quan k£ > 0
s’anomena font, si k < 0 una pica (sumidero, sink).

0.5 1

-
NN

-1.5

=

o
o
o
-
-
«
N}
o
o
o
-
-
«n
N}

— k - k
Trobem l'expressié de V, V', ¢ i4. Tenim que ®'(z2) = —— =k S (x—
zZ—a |z —al?  |z—al?
a1 + i(y — a2)). Llavors
V(ry) = ) Vi) =
z,y) = ——=(r—a,y—a x,y) = )
Y |Z—CL|2 1LY 2)s Y |Z—(l|

Les direccions de flux que dona V segueixen la direccié de z — a, si & > 0 surten, una
font, i si k < 0 entren, una pica. Com que ® = klog(z —a) = k(In|z — a| + targ(z — a))
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tenim que ¥ (x,y) = karg(z — a) i les corbes ¢ = ¢ s6n linies que surten de a com es veu
a lesquerra de la figura 8.3. Observem que

kd
I'+1iQ = / ' (2)dz = / © — 9kni.
C C

zZ—a

Aleshores I' = 01 Q = 2kw. No té circullacié i la poténcia és 2k. %

Exemple 8.5 (Flux amb circullacid). Estudiem el cas ®(z) = —iklog(z —a) k € R.
Veurem que la velocitat del flux és inversament proporcional a la distancia al punt a.
Diem que en el punt a hi ha un remoli de forga k.

— ke — ki
Procedim com en el cas anterior. Tenim que ®'(z) = — Zf e ! (x—
zZ—a |z—al?> |z —al?
: k .
ay +i(y —ag)) = m(—(y —ag) + i(x — a1)). Llavors
k k
V(x,y) = (_(y_a2)7$_a1)7 V(.ﬁU,y) =

|z —af? 2 —al’

Les direccions de flux que dona V segueixen direccions de circumferéncies amb centre a,
si k > 0 en direccié antihoraria i si k& < 0 en direccié horaria, en els dos casos és un remoli.

Com que & = —kilog(z—a) = —ki(log|z—a|+iarg(z—a)) = k(arg(z—a)—ilog(|z—al))
tenim que ¥ (x,y) = —klog|z — a| i les corbes ¢ = ¢ s6n circumferéncies centrades a a tal
com es veu a la dreta de la figura 8.3. Observem que si C envolta a, aleshores

—ikd
F+iQ:/<I>’(z)dz:/ CE _ ok
C C

Z—a

Aleshores I' = 2knw i Q = 0. La circullacié és 2k7 i la poténcia és 0. %

Exercicis

8.2.1. Superposicié. Sumant diferents potencials complexos es poden descriure fluros més
sofisticats. Un exemple important s’obté sumant una font al punt —a amb una pica al punt
a:

Z—a

®(z) = klog(z + a) — klog(z — a) = klog <z i a) :
Trobeu expressic de V, V, ¢ i 1. Dibuizeu les linies de corrent (¢ = c). <

8.2.2. En l’exercici anterior, fema — 0 i k — o0 de manera que 2ka = p sigui finit. Veure
que al limit obtenim el potencial complex ®(z) = pu/z que s’anomena doblet o dipol. Ve
a ser una font i una pica separades per una distancia infinitesimal. La quantitat 2mp
s’anomena moment del doblet. Trobeu l’expressio de V, V, ¢ i 1. Dibuizeu les linies de
corrent (VY = c). q

8.2.3. Font-remoli. Estudiar el flur amb funcid potencial ®(z) = — log(z — a).

Discutiu segons els valors de T (circullacid o intensitat) i Q (poténcia). Feu dibuizos de
les linies de camp segons els signes de I" 7 Q). <
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Figura 8.4.: Superposicié amb a = 1.

8.3. Obstacles

Un problema important en la teoria de fluids és determinar el model de corrent que es
mou inicialment a velocitat uniforme V4 i que ha d’evitar un obstacle. La idea general
és considerar un potencial complex de la forma ®(z) = Vpz + G(z) on G(z) compleix
que lim,_,o, G'(z) = 0. Aix0 vol dir que lluny de I'obstacle el corrent ve donat per Vjz.
De vegades cal també que aquest nou potencial ® tingui la frontera de ’obstacle com a
trajectoria.

Exemple 8.6. Estudiem el corrent del fluid amb potencial complex donat per

O(2) =V (z—l— a—Q)

z

amb Vp,a € R.
Ja veiem que és una superposicié d’un flux lineal (quan z és gran) i un doblet (quan z
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prop de zero).

a2 ' 2
“”‘%@O+MJ+WO HJ)
CL2
= 1 —_—
v %x(+mJ
2
Y = Voy (1 - a—2)
2
a222
V=6 -1 (1- 75
0222
Vol Il
Vv | 0| |Z|4

Comprovem ara que |z| = a és una linia de corrent: observem que els punts de C' =
{z =2 +iy : |2|* = a®} satisfan ¥ (z,y) = ct. En efecte, si z € C llavors

¥(2) = Voy(1 — a*/a®) = 0

i C és la corba de nivell zero, és una linia de flux. Al la figura 8.5 es pot veure el flux per
Vo =a? = 3.

e
T ———————
= ——
——
—ana—
| ka‘/ﬁ&'_‘
: =A_—:~\ \:& /____/',;

==~

Figura 8.5.: Flux per ®(z) = 3(z + 3/z).

O

Teorema 8.7. Si f(z) és un potencial complex amb singularitats fora de |z| > R llavors

ﬂd=f®+f<m)

z
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és un potencial complex tal que |z| = R és una linia de flux (corrent) i que té les mateizes
singularitats que f(z) a la regid |z| > R.

Recordem que si f(z) és analitica en una regié € tal que Q = Q llavors g(z) = f(z) és
analitica i ¢'(z) = f/(2).

Demostracid. Si |z| = R llavors ®(z) = f(z) + f(R?z/|z]?) = f(z) + f(z) € R. Llavors
¥ (z) = 0 per tot z de la circumferéencia |z| = R, llavors aquesta circumferéncia és linia de
flux. Sigui p punt singular de f, per hipotesi |p| > R, llavors |R?/z| < R i p no és punt
singular de f (R?/z). Les singularitats de ® fora de la circumferéncia sén les que provenen
de f imno de la part afegida. O

Exercicis

8.3.1. Modifiquem el flux amb potencial donat per f(z) = log(z + 2) que és una font
sortint des del punt z = —2 (vist en un exemple/exercici anterior). Per aixo considerem
la modificacié donada pel potencial

(1 71N\
D(z) = f(2) + f <Z> =log(z +2) + log <Z + 2).
a) Descomposeu ® en fluxos coneguts.

b) Calculeu ®'(2) i confirmeu el que es demostra a lapartat anterior.

1
c) Vegeu que per z amb |z| molt gran resulta ®'(z2) ~ n t que llavors lluny de z = —2
z

el flux associat a ® és com una font sortint de z = —2.

d) Mostreu amb un grafic com eviten el disc unitari les linies de flux (feu servir contour_plot
i streamline_plot). q

8.4. Expressio general (recapitulacio).

Proposicié 8.8. Si ®(z) = ¢(z) +i)(z) aleshores

Fz%%dSz%(Vldaz—i—ngy)zﬁd@

C c c

9 =§1§ V,ds = yf (—Vadz + Vidy) = 515 i
C c c

I'+iQ = / ' (2)dz.
C

Si ®'(z) esta definida a linterior de C' i té un nombre finit de punts singulars {py},
aleshores

i que llavors

T +iQ = 2mi ) Res(®'(2), pr).
k
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Demostracid. Tenim que ®'(2) = @, + i), = Vi — iVa = 1, — i¢,. Aleshores

Q= ychnds = ygc(—ngm + Vidy) = éj@[)xdaz + Pydy = yidd)

= yﬁ Vids = 55 (Vidz + Vady) = 55 padx + pydy = yg de.
C C C C

Ara bé
D' (2)dz = (¢g + ithe) (dx + idy) = prdr — Pedy + i(1hedx + ©pdy) =
= pzdx + pydy + i(Yydx + Pydy) = do + idip.
i podem concloure que
I'+:Q = / P (2)dz.
C
La darrera afirmacié de I'exercici és conseqiiencia del teorema dels residus. O

Proposicié 8.9. Sia és un pol d’ordre finit de ®'(z), per ®(z) hi ha un entorn al voltant
de a de manera que

Cn p 1 I'+1:Q
P(2) = —" + log(z — a) + co + —a)+ .
(2) (z —a)" 2rz —a 2mi og(z—a) + otz —a)
Demostracid. Per tenir ®'(z) un pol d’ordre finit integrant obtenim el resultat. g

Llavors, segons el que hem vist al llarg del capitol, diem que

I'+1 . , . . .
o O(z2) = 27r7,Q log(z — a) determina en a una font-remoli de poténcia @ i intensitat

I, la denotem per (a;@Q,T'). Quan @ = 0 és un remoli, i quan I' = 0 és una font
(Q > 0) o una pica (Q < 0).

1
o O(z) = P determina en a un doblet de moment p, el denotem per (a;p) (p

2tz —a
determina la direcci6 la direccié del doblet que passa per a).

c_ . .
o O(z2) = ﬁ determina un multiplet d’ordre 2k en el punt a.?
z—a
s
?La notacié i comportament a 1’00 és similar, si ®(2) = cp2™ + -+ + 2£z + ;ZQ log(z) + co + an
s Yi¥2 z

direm que el terme en log(z) determina una font-remoli de poténcia —@ i intensitat —I, el terme en z
un doblet de moment p i els de z* multiplets d’ordre 2k.
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Exercicis

8.4.1. Pels z on V(z) = ®/(z) = 0 diem que hi ha un punt estacionari del corrent (per
exemple és aquell punt d’un riu on una fulla petita s’ha quedat aturada pero que al seu
voltant circula l'aigua).

a) Per ®(z) = 2" el 0 és un punt estacionari d’ordre n — 1. Feu un dibuiz amb les linies
de fluzx i les linies equipotencials superposades per n = 2,3, 4.

b) Podeu deduir experimentalment quin angle formen les linies equipotencials i les linies

de flux?

¢) Proveu que si un punt estacionari a és un zero d’ordre n — 1 llavors les linies equipo-
tencials i de corrent (@ = ct.,v = ct.) formen un angle 7/2n en el punt estacionari
(feu-lo com a minim pel cas ®'(z) = Cz"~1,C € C). Quin angle formen una linia de
corrent i una linia equipotencial quan es creuen en un punt no estacionari?

8.4.2. Discutir el moviment del fluid amb potencial complex igual a

I'+iQ
= — lo
211

a) ®(z) g(i:z> onabeCiQ,I'eR..

r
b) ®(z) = az + —log(z) on a,I' > 0.
2mi

c) ®(z) =az + % log(z) on a,@ > 0.

r
d) ®(z) = %—i—ﬁlog(z) on p,I' > 0. q

8.4.3. Discutir el moviment del fluid amb potencial complex

R? r
O(2) =Wy |2+ — | + =——log(z), amb I', V, R > 0.
z 27

Particularment estudieu els casosI' < AnRVy, I' > 47w RV, i I’ = 4w RV}y. Dibuizeu exemples

de cadascun dels casos. <
8.4.4. Donar un potencial complex que té fonts-remolins {(ay; Qr,Tx) : k = 1,...,n} i
velocitat Vo, = V' a Uinfinit. <
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A. El Teorema de l'aplicaciéo de Riemann

Recordem l'enunciat del Teorema que ens ocupa.

Teorema A.1 (Teorema de l'aplicacié6 de Riemann). Sigui U & C un obert simplement
connex. Llavors existeir una representacid conforme f : U — D. A més, si escollim zy € U
i demanem que f(z0) =0 i f'(20) > 0 (és a dir que f'(z0) € Ry ), aleshores f és unica .

La demostracié de la unicitat és senzilla, vegeu la Seccié 7.1. En aquest apendix de-
mostrarem ’existeéncia de la representacié conforme. Tot i que el teorema va ser enunciat
per Riemann, la demostracié complerta s’atribueix a Koebe!. Es una demostraci6 elegant
que fa servir diverses de les eines que hem desenvolupat en aquests apunts. Addicional-
ment, perd, necessitem també el concepte de familia normal i el teorema de Montel?, que
enunciem a continuacio.

Families normals i el Teorema de Montel

Sigui U < C un obert del pla complex, i F una familia de funcions holomorfes en U.
Diem que F és una familia normal si tota successié de funcions de F te una parcial que
convergeix uniformement en compactes de U. Observem que pel teorema de Weierstrass
(vegeu el teorema 4.36), el limit ha de ser una funcié holomorfa, tot i que no necessariament
ha de ser membre de la familia F.

Comprovar si una familia de funcions és normal acostuma a fer-se fent servir el teorema
de Montel. La versié feble d’aquest resultat diu el segiient.

Teorema A.2 (Teorema de Montel, versi6 feble). Sigui U < C un obert i F una familia de
funcions holomorfes en U. Suposem que F és uniformement fitada, és a dir, que existeix
M > 0 tal que

|f(2)] < M, peratota feFitotzelU.

Aleshores, la familia F és normal.

El lector interessat pot trobar una demostracié a [SS10, Sect. 3].

Demostracié del Teorema de I'aplicacié de Riemann

La demostracié consta de tres passos diferents que farem per separat.

Pas 1. Vegem primer que existeiz un subconjunt V. D que conté l'origen i una repre-
sentacid conforme F : U — V amb F(z) = 0.

'Paul Koebe, Luckenwalde, 1882-1945, https://ca.wikipedia.org/wiki/Paul_Koebe
2Paul Montel, Nica, 1876-1975, https://ca.wikipedia.org/wiki/Paul_Montel
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Demostracid. Per fer-ho, escollim un nombre « € C tal que « ¢ U (existeix perqueé U no
és tot el pla). Aleshores z —a # 0 a U i per tant, donat que U és simplement connex,
existeix una determinacié del logaritme de z — a en U (vegeu el teorema 5.29). Es a dir,
existeix una funcié holomorfa £(z) tal que e£(®) = 2 — a. De l'equacié veiem que £ és
necessariament injectiva, pero a més, veiem que

L(z) # L(z0) + 2mi, per atot ze U,

ja que, altrament, exponenciant aquesta expressié obtindriem z = 2y, que implicaria que
L(z) = L(z0), una contradiccié. De fet, £(U) omet tot un disc centrat en L£(zp) + 2mi
ja que si no fos aixi, existiria una successié (z,) en U tal que L(z,) — L(20) + 2mi. De
nou, exponenciant aquesta expressié, i donat que 'exponencial és continua, tindriem que
zn, — 2o 1 per tant L£(z,) — L(zp), una contradiccid.

Aixi doncs hem vist que existeix un disc D centrat a L(zg9) + 2mi tal que £(U) no
interseca D. Considerem ara I’homografia

z — L(20)

T(z) = z — (L(20) + 2mi)’

que envia el punt £(zp) + 27 a linfinit i £(zg) a lorigen, i el disc D que lenvolta al
complementari d’un disc.

Com que L és injectiva, T o £ també ho és, i per tant T o L : U — T(L(U)) és una
representacié conforme. A més, per construccié, T'(L(U)) és un conjunt fitat. Només ens
cal doncs compondre T o £ amb una homotecia adequada, per obtenir una representacié
conforme de U en un subconjunt de D que conté 'origen i tal que F'(z9) = 0. O

Del pas anterior deduim que podem suposar, sense perdua de generalitat, que U és un
subconjunt obert de ID. Considerem la familia F de funcions holomorfes i injectives d’U
en D fixant 'origen, és a dir

F ={f:U — D] f injectiva, holomorfa i f(0) = 0}.

Observem que la identitat pertany a F, i per tant F no és buida. A més, aquesta familia
és uniformement fitada per construccid, ja que totes les funcions van a parar al disc unitat.
El teorema de Montel (vegeu el teorema A.2) ens diu, doncs, que F és una familia normal.

Pas 2. Vegem que F conté una funcid f que mazimitza |f'(0)| = s := supper |h'(0)] = 1.

Demostracié. Observem primer que |f/(0)| esta uniformement acotada, per a f € F. Aixo
es pot veure aplicant la desigualtat de Cauchy (vegeu el lema 4.26) a f’ en un petit disc
centrat a l'origen. En conseqiiéncia, podem definir

s =sup|f'(0)] > 1,
feF

on la desigualtat ve donada pel fet que la identitat pertany a F. Escollim una successié
(fn) © F tal que |f}(0)] — s, quan n — 00. Donat que F és normal, aquesta successié té
una parcial que convergeix uniformement en compactes de U a una funcié f. Pel teorema
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de Weierestras (vegeu el teorema 4.36), f és holomorfa en U i |[f/(0)] = s = 1. Aix0 ens
diu que f no és constant i, com que les funcions f, sén injectives, el teorema de Hurwitz
(vegeu el teorema 6.34 i 'exercici 6.7.9) ens diu que f també és injectiva. Per continuitat,
també veiem que |f(z)| < 1 per a tot z € U i, pel principi del modul maxim (vegeu el
teorema 4.49), se segueix que |f(2)| <1 (ja que U és obert). Clarament també tenim que
f(0) = 0, la qual cosa implica que f € F i que |f’(0)| = s, tal i com voliem demostrar. [

Pas 3. Vegem que, de fet, f és una representacio conforme de U en D.

Demostracio. Ja sabem que f és holomorfa i injectiva, per tant només ens queda demostrar
que és exhaustiva. La idea és veure que, si no fos aixi, podriem trobar una funcié F' € F
amb |F'(0)| > |f/(0)| = s, la qual cosa és una contradiccié.

Suposem doncs que existeix a € D tal que f(z) # a per a tot z € U. Considerem
lautomorfisme de D que intercanvia els punts a i 0 (vegeu 'exercici 1.1.10)

a—z

z) = .
#a(2) 1—-az

Com que U és simplement connex, també ho és (¢, o f)(U) i, a més, no conté l'origen.
Per tant, existeix una branca holomorfa de I’arrel quadrada (de la identitat) en U, vegeu
Iexercici 5.4.3, i que és injectiva. Considerem ara la composicié

Fzgpg(a)OgO@aOf,

i procedim a veure que F' € F. Clarament F és holomorfa i F'(0) = 0. Totes les funcions
envien el disc unitat a ell mateix i, per tant, F' també ho fa. De la mateixa manera, F' és
injectiva ja que totes les components ho sén, i aixi concloem que F' € F.
Considerem ara h(u) = u?, la inversa de g, i escrivim
f= QD;thOgo;(}l)OFZZ ®oF.
Observem que ® envia D a ell mateix (no injectivament), amb ®(0) = 0. Pel lema de
Schwarz (vegeu el lema 4.52), es compleix que |®'(0)| < 1. Perd aleshores, usant la regla

de la cadena,
s =[f(0)] = |®(0)F(0)] < [F'(0)]

que contradiu la maximalitat de |f'(0)|] en F. Deduim doncs que f és exhaustiva i per
tant una representacié conforme de U en D fixant l'origen. O

Multiplicant f per la constant |f/(0)|/f'(0), de modul 1, obtenim f amb les mateixes
propietats i satisfent f'(0) > 0.

Per acabar, observem que en el pas 1, hem pogut escollir una traslacié que ens portés el
punt zg € U escollit a ’origen. Es aquesta composici6 final, la que satisfara les condicions
del teorema. O
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Observacions sobre la unicitat

La manera com s’expresen les condicions d’unicitat a ’enunciat del teorema, poden ser
tal vegada obscures. Seria potser més aclaridor entendre-les de la segiient manera:

Teorema. Si U < C és un obert simplement connezx, aleshores existeir una representacio
conforme f: U — D. A més, f és unica modul postcomposicio per automorfismes de D.

En altres paraules, dues representacions conformes, f i g, de U en D han de complir que
f =T og, per un automorfisme 7" del disc unitat, és a dir

42— 20
ezt -
1—72yz

T(z) =

per algun zg € D i algun ¢t € R. Aix0 ens diu que per escollir f tenim tres graus de llibertat
reals que poden utilitzar-se, per exemple, per decidir la imatge d’algun punt (aixod sén
dos — parts real i imaginaria), i Pargument d’alguna altra quantitat com la derivada en
un punt (el tercer grau, que seria el que s’aconseguiria amb la rotacié e). La condicié
habitual de f’(0) > 0 és equivalent a demanar arg f’(0) = 0, i pot aconseguir-se sempre
multiplicant per una constant de modul 1, és a dir component amb una rotacié.
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propietats de la integral, 83
punt

d’estancament, 195
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final, 82

inicial, 82
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radi de convergencia, 45
rang, 29
real, eix, 9
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de Barrow, 85
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regles de derivacio, 56
remoli, 197
reparametritzacio, 82
representacié conforme, 173
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Rouché
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de Laurent, 143
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Schwarz
Hermann, 104
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simplement connex, 10, 134
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Stone, Marshall H., 117
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suma de complexos, 4

sumacié per parts, formula de, 51

Tales de Milet, 14
tancat, 10
tangent, 14

funcié, 76
Tartaglia, Niccolo Fontana, 1
topologia de C, 10
transformacié conforme, 173
transformada de Hilbert, 105
transformada de Laplace, 105
translacié, 179
triangular, desigualtat, 9

per integrals, 83
trigonometria, 13

univalent, funcio, 173

variable, 70
velocitat de corrent, 195

Weierstrass
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Wirtinger, Wilhelm, 55



INDEX

212



Bibliografia

[Ahl79] Lars Ahlfors. Complex Analysis: An Introduction to the Theory of Analytic Func-
tions of One Complex Variable. McGraw-Hill Science/Engineering/Math, 3rd
edition, 1979.

[BCO8] Joaquim Bruna and Julia Cufi. Analisi compleza, volume 49. Univ. Autonoma
de Barcelona, 2008.

[BC13] Joaquim Bruna and Julia Cufi. Complex Analysis: Translated from the Catalan
by Ignacio Monreal. EMS Press, May 2013.

[Burl2] R. Burckel. An Introduction to Classical Complex Analysis: Vol. 1, volume 64.
Birkhauser, 2012.

[Con78] John B Conway. Functions of One Complex Variable, volume 11 of Graduate
Texts in Mathematics. Springer, 2°4 edition, 1978.

[D’A10] John P D’Angelo. An introduction to complex analysis and geometry, volume 12.
American Mathematical Soc., 2010.

[MH99] Jerrold E. Marsden and Michael J. Hoffman. Basic complex analysis, volume 72.
Cambridge University Press, 3rd edition, 1999.

[RT79] Walter Rudin et al. Analisis real y complejo. 1979.

[SS10] Elias M Stein and Rami Shakarchi. Compler analysis, volume 2. Princeton
University Press, 2010.

213



	Introducció
	El cos dels nombres complexos
	El cos dels nombres complexos
	Els nombres complexos com a espai vectorial
	Repàs de trigonometria
	L'exponencial complexa
	Representació polar d'un nombre complex
	Equacions amb exponencials
	Arrels n-èsimes
	Polinomis: enunciat del teorema fonamental de l'àlgebra

	Funcions de variable complexa
	Funcions
	Funcions multivaluades
	Logaritmes i arguments
	Potències complexes
	Determinacions de logaritmes i arrels de funcions
	Sèries de potències de nombres complexos
	Càlcul del radi de convergència
	Comportament a la frontera del disc de convergència

	Derivació complexa i holomorfia
	Funcions holomorfes
	Les equacions de Cauchy-Riemann
	Càlcul de les derivades
	Funcions analítiques
	Algunes funcions holomorfes importants

	Integrals de línia i teoria local de Cauchy
	Corbes
	Integració sobre corbes
	Teorema de Cauchy
	Fórmula integral de Cauchy
	Sèries de potències
	Fórmula integral de Cauchy centrada per derivades i desigualtats de Cauchy
	Teorema de Liouville i teorema fonamental de l'àlgebra
	Teorema de Morera
	Derivació sota el signe integral i fórmula integral de Cauchy per derivades
	Zeros de funcions holomorfes i principi de prolongació analítica
	El principi del mòdul màxim

	Topologia en el pla complex: teoria global de Cauchy
	Índex d'una corba tancada respecte d'un punt
	El teorema global de Cauchy
	Homotopia i teorema de Cauchy
	Dominis simplement connexos
	Funcions harmòniques

	Sèries de Laurent
	Sèries de Laurent i singularitats
	Singularitats aïllades de funcions holomorfes
	Teorema dels Residus
	Residu a l'infinit
	Aplicació al càlcul d'integrals
	Principi de l'argument
	Teorema de Rouché

	Representació Conforme
	El teorema de l'aplicació de Riemann
	Projecció estereogràfica i circumferències generalitzades
	Transformacions de Möbius
	Raó doble i simetria
	Automorfismes
	Altres transformacions conformes

	Fluids
	Qüestions generals. Escenari i notació.
	Fluxos bàsics.
	Obstacles
	Expressió general (recapitulació).

	El Teorema de l'aplicació de Riemann
	Index

