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1. El cos dels nombres complexos 1
1.1. El cos dels nombres complexos . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Els nombres complexos com a espai vectorial . . . . . . . . . . . . . . . . . 9
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2.6. Sèries de potències de nombres complexos . . . . . . . . . . . . . . . . . . . 44
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3.3. Càlcul de les derivades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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4.2. Integració sobre corbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3. Teorema de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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5.1. Índex d’una corba tancada respecte d’un punt . . . . . . . . . . . . . . . . . 119
5.2. El teorema global de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3. Homotopia i teorema de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4. Dominis simplement connexos . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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6. Sèries de Laurent 143
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6.2. Singularitats äıllades de funcions holomorfes . . . . . . . . . . . . . . . . . . 146
6.3. Teorema dels Residus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4. Residu a l’infinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
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Introducció

Aquests apunts beuen de diverses fonts, però per sobre de tot són el resultat d’anys
d’evolució de les assignatures d’anàlisi complexa dels graus de matemàtiques de la UB i la
UAB. Per tant, devem part dels continguts i exercicis aqúı presentats a en Joaquim Bruna,
Josep Maria Burgués, Juan Carlos Cantero, Joan Josep Carmona, Julià Cuf́ı, Juan Jesús
Donaire, Xavier Massaneda, Joan Eugeni Mateu, Joan Orobitg, Quim Ortega, i tants
d’altres. A tots ells el nostre agräıment per la seva generositat.

L’objectiu d’aquest llibre és poder servir de material pels cursos d’anàlisi complexa dels
graus de matemàtiques de les universitats catalanes, aix́ı com d’algun altre grau on el
contingut de la matèria superi el d’un receptari. Ens centrem doncs en fer un text amb
un enfocament didàctic però sempre rigorós, mirant d’incloure el corpus bàsic de l’anàlisi
complexa, però també amb pinzellades d’alguna aplicació pràctica i de teoremes avançats
rellevants. La lectura inclou nombrosos exemples per il.lustrar els continguts i també
exercicis per practicar, amb les solucions disponibles per mitjà electrònic.

Bibliografia complementària

A [BC08] hi trobareu un manual d’anàlisi complexa complet́ıssim i en català, i la seva
traducció a l’anglès a [BC13].
Als llibres [Ahl79], [Con78] [D’A10], [Bur12], [R`79], [SS10], podreu trobar aproximaci-

ons alternatives i llistes d’exercicis per complementar la vostra formació. El llibre [MH99]
és una referència molt didàctica.

Agräıments

Volem agrair la col.laboració dels alumnes de l’assignatura d’Anàlisi Complexa i de Fourier
del grau en Matemàtica computacional i anaĺıtica de dades (2023-25) i del grau en Ma-
temàtiques (2024-25) de la UAB per la seva paciència amb les actualitzacions permanents
dels apunts, i per la seva contribució en millorar-los, especialment a Pol Abadia Conejos,
Rok Aladrovic Molina, Sergi Almendros Montoya, Guim Casadellà Cors, Marc Herrero
Lázaro, Aiman Himi Ben Alilou, Llúıs Panal Majó, Helena Pisa Escribano, Laia Querol
Alturo, Adrià Rodŕıguez Estrada, Marc Roig Oliva, David Ruiz Caceres, Laia Alexandra
Sjöberg Cerezo i Ariadna Solà Lara (MatCAD’24), Albert Caire Rodriguez, Llúıs Gay
Torné, Oriol Jiménez Asensi, Catalina Mascaró Català, Sergi Prats Molino, Alex Vega
Tomas i Ferran Villarta Burés (MatCAD’25), Ainara Almendáriz Mart́ınez, Carlos Baca
Garcia, Sònia Blanes Molina, Roger Brusau Maimó, Marcel Duran Puig, Axel Espuela Al-
varez, Nidia Esteve Gómez, Joel Fernández Laparra, Gina Gardeñes Farré, Bernat Graugés
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Introducció

Bellver, Pep Güell Rigall, Gabriel Guerra De Quadras, Adrià Jimeno Ruiz, Judith Lara
Piqueras, Ana López Bruballa, Ada López Del Castillo Avilés, Marta Merino Sánchez,
Judith More Bataller, Clara Mulet Ballesta, Katia Moreno Aspiroz, Marta Noguera Segu-
ra, Arnau Nuñez Mart́ınez, Lara Angélica Olarte Bayani, Tomàs Planelles Alonso, Miguel
Puelma Mart́ınez, Mart́ı Puig Sampera, Eric Recio Chorro, Álvaro Resa Asensio, Albert
Ricart Quilez, Marina Rúbies Bedós, Adrià Saz Guerra, Drus Sent́ıs Cahué, Héctor Serrano
Asensio, Babaldeep Singh, Ainhoa Trillo Rodŕıguez, Clara Valls Moreso, Arnau Viladevall
Ferré, Marta Vı́lchez Garćıa, Llúıs Vivó Pons i David Xifré Palacios (Matemàtiques’25)
per la seva excel.lent labor en la detecció d’errors matemàtics, tipogràfics i ortogràfics.
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1. El cos dels nombres complexos

El naixement dels nombres complexos està intŕınsecament lligat a una sèrie d’enfronta-
ments entre matemàtics italians del segle XVI, principalment Scipione del Ferro1, Niccolò
Fontana Tartaglia2, Girolamo Cardano3, Lodovico Ferrari4 i Rafael Bombelli5. Cardano
fou el primer en publicar en el seu Ars Magna (1545) una solució de l’equació de tercer
grau prèviament descoberta per Scipione del Ferro i redescoberta per Tartaglia, però en
mantenir-les secretes per usar-les en duels matemàtics, la seva publicació es va retardar
uns quants anys fins que Cardano va fer el pas. En la resolució es fan servir nombres ima-
ginaris, és a dir, arrels de nombres negatius, que Bombelli va descriure i sistematitzar al
cap de poc en el seu tractat Algebra (1572). Finalment Leonhard Euler6 va estandaritzar-
ne la notació que coneixem avui dia, i va popularitzar-ne l’ús, donant per fi sortida a un
coneixement que havia quedat aparcat fins aleshores.
El mètode de Cardano per resoldre una cúbica, explicat avui, seria aix́ı: donada una

equació de tercer grau y3 ` ay2 ` by` c “ 0, la podem reescriure amb el canvi de variable
y “ x´ a{3 com l’equació de Cardano (o de del Ferro-Tartaglia):

x3 ` px` q “ 0. (1.1)

Aleshores creem dues noves variables u, v tals que
#

x “ u` v

3uv “ ´p,
(1.2)

tenim que

0
(1.1)
“ u3 ` v3 ` 3u2v ` 3uv2 ` pu` pv ` q “ u3 ` v3 ` q,

de manera que ens queda el sistema
#

u3v3 “
´p3

27

u3 ` v3 “ ´q.

Per tant u3 i v3 són les solucions de l’equació de segon grau:

w2 ` qw ´
p3

27
,

1Bolonya, 1465 – 1526, https://ca.wikipedia.org/wiki/Scipione_del_Ferro
2Brescia, 1499 – Venècia, 1557, https://ca.wikipedia.org/wiki/Niccolo_Fontana_Tartaglia
3Pavia, 1501 – Roma, 1576, https://ca.wikipedia.org/wiki/Girolamo_Cardano
4Bolonya, 1522 – 1565, https://ca.wikipedia.org/wiki/Lodovico_Ferrari
5Bolonya, 1526 – 1572, https://ca.wikipedia.org/wiki/Rafael_Bombelli
6Basilea, 1707 – 1783,https://ca.wikipedia.org/wiki/Leonhard_Euler

1
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1. El cos dels nombres complexos

és a dir

tu3, v3u “

#

´q

2
˘

c

q2

4
`
p3

27

+

. (1.3)

Usant (1.2) trobem que

x “ u` v “
3
?
u3 `

´p

3
3
?
u3
. (1.4)

Si anomenem

C “
3

d

´q

2
˘

c

q2

4
`
p3

27
,

aleshores
x “ C ´

p

3C

és una solució de l’equació de Cardano (1.1).
Notem que els nombres u3 i v3 que apareixen a (1.3) poden no estar definits en els reals

quan p és gran (respecte de q). Notem també que a (1.4) l’arrel cúbica d’un nombre real
està uńıvocament determinada (a R, és clar).
Si ens restringim als nombres reals i p, q P R, amb aquest mètode podem trobar una

solució de la cúbica, sempre i quan q2

4 `
p3

27 ě 0. Sabem que sempre hi ha una solució (pel
teorema de Bolzano7). Sabem que hi ha equacions amb tres solucions reals, i totes tres es
poden intentar descompondre usant (1.2), però el mètode com a molt en dona una. Què
està passant? Doncs que ens cal sortir de la recta real per tornar-hi a entrar!

Sigui R el cos dels nombres reals. L’equació x2`1 “ 0 no té solucions reals. Construirem
un cos més gran que R, que anomenarem C, on tindrem solucions, que consisteix en definir
un nombre i tal que i2 ` 1 “ 0 i fer les combinacions R-lineals de 1 i i, és a dir a` bi amb
a, b P R.
Construim per exemple una solució de x3 ´ 7x ` 6 “ 0 usant el mètode de Cardano.

Estem en el cas p “ ´7 i q “ 6, aix́ı que (1.3) queda

tu3, v3u “

#

´3 ˘

c

9 ´
73

27

+

“

"

´3 ˘

?
´100

3
?
3

*

.

Usant que i2 “ ´1, i suposant que el producte és commutatiu, trobem que p10iq2 “ ´100,
aix́ı que ens atrevim a escriure l’expressió anterior com

tu3, v3u “

"

´3 ˘
10

3
?
3
i

*

.

Si trobem un nombre u “ a` bi tal que a3 `3a2bi´3ab2 ´ b3i “ u3 “ ´3` 10
3

?
3
i (ara hem

suposat que C és un anell), aleshores podem prendre de (1.2) l’altra solució v “ 7{p3uq, i
trobarem x. Ens cal resoldre doncs

#

a3 ´ 3ab2 “ ´3,

3a2b´ b3 “ 10
3

?
3
.

7Bernard Bolzano, Praga, 1781 – 1848, https://ca.wikipedia.org/wiki/Bernard_Bolzano
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1. El cos dels nombres complexos

Més endavant, veurem una manera ràpida de trobar aquestes arrels cúbiques. De moment
conformem-nos amb saber que una possible solució és u “ 1 ` 2?

3
i, com pot comprovar el

lector. Aleshores v “ 1 ´ 2?
3
i i trobem

x “ u` v “ 1 `
2

?
3
i` 1 ´

2
?
3
i “ 2.

Efectivament x “ 2 soluciona x3 ´ 7x` 6 “ 0, com també ho fan x “ 1 i x “ ´3.
De fet, tot polinomi de coeficients reals (i de coeficients complexos!) tindrà almenys una

arrel, en el que es coneix com a teorema fonamental de l’àlgebra. Diem que C és un cos
algebraicament tancat. Amb aquesta ampliació, seguiran havent-hi dues arrels quadrades
per tot element del cos llevat del zero, i tres arrels cúbiques! Notem també que a (1.4)
l’elecció de l’arrel quadrada no té importància (per conjugació...) però poden aparèixer
tres solucions diferents, amb la precaució que cal prendre la mateixa arrel cúbica en les
dues aparicions.
En aquest caṕıtol introdüım el cos C i veiem les seves propietats bàsiques. Explicarem

la forma polar i com usar-la per fer operacions, però abans ens caldrà introduir l’expo-
nencial complexa per donar rigor a aquest càlcul. Finalment veurem com les equacions
amb potències tenen múltiples solucions, ja siguin polinomials o exponencials, per acabar
exposant el teorema fonamental de l’àlgebra que demostrarem al caṕıtol 4.

1.1. El cos dels nombres complexos

Si som capaços de definir i “
?

´1, aleshores i serà solució de x2 ` 1 “ 0: efectivament,
p˘iq2 ` 1 “ 0. Per tant, de la mateixa manera que si un polinomi té una arrel real a,
aleshores es pot dividir per px´ aq, esperem poder escriure

x2 ` 1 “ px´ iqpx` iq.

Però de moment la identitat anterior no té cap sentit. Necessitem definir el cos dels
nombres complexos.
De moment tenim l’element i ideat: volem que sigui un nombre tal que i ¨ i “ ´1.

Definició 1.1. Donats a, b P R, definim

a` bi

com un nombre complex. Diem doncs que, com a conjunt, tenim que

C :“ ta` bi : pa, bq P R2u,

i anomenem nombres complexos els elements de C. Anomenem parts reals i imaginària a

Re pa` biq “ a i Im pa` biq “ b. ‚

3



1. El cos dels nombres complexos

−4. −3. −2. −1. 1. 2. 3. 4. 5. 6. 7.

−2.

−1.

1.

2.

3.

4.

5.

6.

0
a = Re(z)

b = Im(z)

z = a+ bi

Figura 1.1.: Part real i imaginària d’un nombre complex. Marcarem els punts 0, 1, i, ´1,
´i amb un cercle i quatre triangles en les figures del text.

Ara ens falta definir les operacions del conjunt, per tal de tenir una estructura de cos.
Notem de moment que C » R2, on identifiquem pa, bq P R2 amb el nombre complex a` bi.
La suma doncs serà heretada de l’estructura d’espai vectorial subjacent, però el producte
és una operació nova que creem ad hoc per tal d’aconseguir el nostre propòsit:

Definició 1.2. Si z “ a ` bi i w “ c ` di són dos nombres complexos, llavors definim la
seva suma com

z ` w “ a` c` pb` dqi;

i el seu producte com
z ¨ w “ ac´ bd` pad` bcqi.

Sovint escriurem zw enlloc de z ¨ w. ‚

Notem que amb aquesta definició, si a, x P R, aleshores en identificar-los amb els nombres
complexos a ` 0i i x ` 0i respectivament trobem que la seva suma i el seu producte
coincideixen amb els habituals:

px` 0iq ` pa` 0iq “ x` a` 0i ” x` a,

px` 0iq ¨ pa` 0iq “ xa` 0i ” xa.

A més, efectivament tenim que

i ¨ i “ p0 ` 1iqp0 ` 1iq “ ´1 ` 0i “ ´1.

4



1. El cos dels nombres complexos

−6. −4. −2. 2. 4. 6.

−2.

2.

4.

6.

0

z = a+ bi

w = c+ di

z + w = (a+ c) + (b+ d)i

−z = (−a) + (−b)i

zw = (ac− bd) + (ad+ bc)i

Figura 1.2.: Producte i suma de complexos, i oposat d’un nombre complex.

Per tant, amb aquesta definició hem creat un conjunt amb dues operacions (suma i pro-
ducte) que estén els nombres reals amb les seves operacions habituals, i on el polinomi
x2 ` 1 té dues arrels. Notem que la suma és compatible amb l’estructura d’espai vectorial
de R2, però el producte de nombres complexos no coincideix amb el producte vectorial
ni amb el producte escalar, és una operació que no existeix a l’espai vectorial tal com el
definim habitualment.

Exemple 1.3. Podem pensar l’operació producte en termes de la propietat distributiva
com

p1 ` 2iqp´3 ` 2iq “ ´3 ` 2i´ 6i` 4i2 “ ´3 ´ 4i´ 4 “ ´7 ´ 4i.

Notem que el resultat coincideix amb la definició, i el procediment és més intüıtiu. ♢

Podem veure fàcilment que el conjunt C equipat amb aquestes dues operacions satisfà
les següents propietats, que es poden resumir amb la següent afirmació: els complexos
tenen estructura d’anell commutatiu.

Lema 1.4. Siguin z, w, v P C. Aleshores se satisfan les propietats respecte a la suma:

S1 Associativa de la suma: pz ` wq ` v “ z ` pw ` vq.

5



1. El cos dels nombres complexos

S2 Element neutre per la suma: si escrivim 0C :“ 0 ` 0i, aleshores z ` 0C “ 0C ` z “ z.
Amb la identificació dels reals amb la inclusió dels reals en els complexos, escrivim
0C “ 0.

S3 Element oposat (de la suma): existeix un nombre complex u P C tal que u`z “ z`u “

0, que anomenem nombre oposat a z, i que escrivim com p´zq :“ u.

S4 Commutativa de la suma: z ` w “ w ` z.

També se satisfan les següents propietats respecte al producte:

P1 Associativa del producte: pzwqv “ zpwvq.

P2 Element neutre pel producte: si escrivim 1C :“ 1 ` 0i, aleshores z ¨ 1C “ 1C ¨ z “ z.
Amb la identificació dels reals amb la inclusió dels reals en els complexos, escrivim
1C “ 1.

P3 Commutativa del producte: zw “ wz.

P4 Distributiva del producte respecte a la suma: zpw ` vq “ zw ` zv.

De fet, C és un cos (és a dir, tot element diferent de zero té invers respecte del producte).
Per veure-ho, primer introdüım el concepte de conjugat.

Definició 1.5 (Conjugat i mòdul d’un nombre complex). Si z “ x` iy, el conjugat de z
és

z “ x´ iy.

i el seu mòdul és
|z| “

a

x2 ` y2. ‚

Exemple 1.6. De les definicions podem deduir que

• 2 ´ 3i “ 2 ` 3i.

• i “ ´i.

• 13 “ 13. ♢

Observació 1.7. Clarament tenim que

• z “ z ô Im pzq “ 0 ô z P R.

• |Re z| ď |z|; |Imz| ď |z|.

• z ` w “ z ` w i z ¨ w “ z ¨ w.

• z ¨ z “ |z|2.

Les primeres són evidents, la darrera és també un simple càlcul:

z ¨ z “ px` iyqpx´ iyq “ x2 ` y2 “ |z|2. ‚

6



1. El cos dels nombres complexos

Amb aquesta relació ja podem veure que C és efectivament un cos:

Lema 1.8. Siguin z “ x ` yi P Czt0u. Aleshores se satisfà la següent propietat respecte
del producte:

P5 Element invers (del producte): existeix un nombre complex u P C tal que uz “ zu “ 1,
que anomenem nombre invers de z, i que escrivim com z´1 :“ 1{z :“ u.

Aquest nombre és
1

z
:“

x

|z|2
´

y

|z|2
i “

1

|z|2
z̄.

Demostració. Efectivament, px` yiq ¨

´

x
|z|2

´
y

|z|2
i
¯

“
x2`y2

|z|2
`

xy´xy
|z|2

i “ 1.

Ara ja podem definir la divisió o fracció de dos nombres complexos z P C, w P Czt0u:

z

w
:“ z ¨

1

w
.

Aix́ı, tenim que
1

z
“

z

|z|2
“

z

z ¨ z
.

És a dir, per calcular l’invers d’un nombre complex, només hem de multiplicar numerador
i denominador pel seu conjugat.

Exemple 1.9. Tenim

• 1
3`10i “ 3´10i

p3`10iqp3´10iq “ 3´10i
9`100 “ 3

109 ´ 10
109 i.

• 1
i “ ´i

1 “ ´i. ♢
Lema 1.10 (Relació entre x, y i z, z.). Si z “ x` iy i z “ x´ iy, aleshores

x “ Re z “
z ` z

2
i y “ Im z “

z ´ z

2i
.

Demostració. Es tracta de sumar i restar z amb z, vegeu la figura 1.3.

Observació 1.11. Un polinomi en x, y és un polinomi en z, z (amb coeficients complexos).
Per exemple

x` y ` xy ` 1 “
z ` z

2
`

pz ´ zq

2i
`

pz ` zq

2
¨

pz ´ zq

2i
` 1

“ z

ˆ

1

2
`

1

2i

˙

` z

ˆ

1

2
´

1

2i

˙

` 1 ` z2
ˆ

1

4i

˙

´ z2
ˆ

1

4i

˙

.

Exercicis

1.1.1. Doneu en forma a` bi:
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1. El cos dels nombres complexos

z

z−1 = z
|z|2

z̄ = a− bi

Re z = z+z̄
2

−z̄ Im z = z−z̄
2i

1

i

Figura 1.3.: Conjugat i invers d’un nombre complex.

a) p´1 ` iq2,

b) 8i´1
i ,

c) ´1`5i
2`3i ,

d)
p8 ` 2iq ´ p1 ´ iq

p2 ` iq2
,

e)

ˆ

2 ` i

6i´ p1 ´ 2iq

˙2

,

f) pp3 ´ iq2 ´ 3qi.

1.1.2. Demostreu o doneu un contraexemple:

a) Re pz`wq “ Re z`Rew, b) Re pzwq “ pRe zqpRewq, c) Re p z
w q “ Re z

Rew . Ž

1.1.3. Sigui z P C tal que Im pzq ą 0. Proveu que Im p1{zq ă 0. Ž

1.1.4. Si z “ x` iy on x, y P R, trobeu les parts real i imaginària de:

a) z2,

b) zpz ` 1q,

c) 1
z´3 ,

d) 1
z2
,

e) z`1
2z´5 ,

f) z3. Ž

1.1.5. Sigui px` iyq{px´ iyq “ a` ib. Proveu que a2 ` b2 “ 1. Ž

1.1.6. Proveu que ´1 ` i satisfà z2 ` 2z ` 2 “ 0. Ž

1.1.7. Escriviu l’equació complexa z3 ` 5z2 “ z ` 3i com dues equacions reals. Ž

1.1.8. a) Si z1, z2 són complexos amb z1 ` z2 i z1z2 reals negatius proveu que z1, z2 són
reals.
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1. El cos dels nombres complexos

b) Proveu que el vector z1 és paral.lel al vector z2 si i només si Im pz1z̄2q “ 0. Ž

1.1.9. Proveu anaĺıticament i gràfica que |z ´ 1| “ |z̄ ´ 1|. Ž

1.1.10. Demostreu que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

“ 1 si |a| “ 1 o bé |b| “ 1. Quina excepció cal fer si

|a| “ |b| “ 1?

Demostreu també que

ˇ

ˇ

ˇ

ˇ

a´ b

1 ´ āb

ˇ

ˇ

ˇ

ˇ

ă 1 si |a| ă 1 i |b| ă 1.

Per acabar, si per a P D definim φapzq :“ a´z
1´āz , demostreu que φa : D̄ Ñ D̄, i és bijectiva

en D i en BD, i doneu-ne la inversa. Ž

1.2. Els nombres complexos com a espai vectorial

Per tot nombre real λ P R i z “ a ` ib P C, definim λz :“ pλaq ` pλbqi, és a dir que
identifiquem λ amb el nombre complex λ`0i i fem el producte de dos nombres complexos,
tal com hem descrit a la secció anterior.
Aquesta multiplicació per un escalar real compleix les propietats:

E1. Compatibilitat del producte per escalar: pλµqz “ λpµzq.

E2. El producte per l’element neutre és la identitat: 1z “ z.

E3. Distributiva respecte a la suma real: pλ` µqz “ λz ` µz.

E4. Distributiva respecte a la suma complexa: λpz ` wq “ λz ` λw.

Aqúı estem suposant que λ, µ P R i z, w P C.
Com que el pla complex també satisfà les propietats S1–S4 descrites més amunt, diem

que té estructura de R-espai vectorial. Com a R-espai vectorial, C coincideix amb R2.
L’eix de les x s’anomena eix real , i l’eix de les y s’anomena eix imaginari . El pla format
per R2 en identificar-se amb els complexos (i incorporar, per tant, l’operació producte de
complexos) s’anomena pla complex o pla d’Argand8.

Per tant, C hereta l’estructura de R2, i és un espai normat amb }z}C “ |z|, és a dir,

N1. }z}C “ 0 ô z “ 0;

N2. }az}C “ |a| }z}C, @a P R (de fet, @a P C);

N3. }z ` w}C ď }z}C ` }w}C (desigualtat triangular).

Donats z, w P C, definim
dpz, wq “ |z ´ w|.

8Jean-Robert Argand, Ginebra, 1768 – 1822, https://ca.wikipedia.org/wiki/Jean-Robert_Argand
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1. El cos dels nombres complexos

Amb aquesta distància, C és un espai mètric9, amb el que té una topologia.

Definició 1.12. El pla complex hereta la topologia del pla. Per tant, el disc obert (o bola
oberta) centrat en a i de radi r és el conjunt

Drpaq :“ Drpaq :“ tz P C : |z ´ a| ă ru.

El disc unitat normalment es denota D :“ D1p0q. El disc tancat és

Drpaq “ tz P C : |z ´ a| ď ru.

Diem que un conjunt A Ă C és obert si per tot a P A existeix r ą 0 tal que Drpaq Ă A.
Diem que A és tancat si Ac “ CzA és obert.

Diem que és fitat si existeix un r ą 0 tal que A Ă Drp0q.
Diem que A és connex si no es pot obtenir com a unió de dos oberts relatius disjunts

i no buits. Diem que és arc-connex si donats dos punts a, b P A existeix un camı́ en A
que els uneix, i.e., existeix una aplicació cont́ınua γ : r0, 1s Ñ A de manera que γp0q “ a
i γp1q “ b. Diem que A és simplement connex si és connex i donats dos camins entre dos
punts a, b P A es pot transformar l’un en l’altre de manera cont́ınua sense sortir del conjunt
A, i.e., existeix una homotopia de camins: una aplicació cont́ınua γ : r0, 1s2 Ñ A tal que
γp0, sq “ a, γp1, sq “ b, γpt, 0q coincideix amb el primer dels camins, i γpt, 1q coincideix
amb el segon.
Diem que A és un domini si és obert i connex. ‚

Observació 1.13. Notem que H i C són oberts i tancats, però no hi ha cap més conjunt
que sigui obert i tancat alhora.
Un conjunt és simplement connex si és connex i no té forats. ‚

Exemple 1.14. Recordem que tot conjunt arc-connex és connex, i que tot obert connex és
arc-connex. Però hi ha conjunts connexos que no són arc-connexos. Un cas paradigmàtic
és la pinta: donada una successió txnu Ă p0, 1q tal que xn Ñ 0, el conjunt A “ r0, 1s Y
Ť

n xn ` p0, 1qi (podem anomenar-lo pinta per la seva forma) és arc-connex i, per tant,
connex. Si afegim un punt ĺımit no accessible, per exemple B “ A Y tiu, aleshores B no
és arc-connex, ja que el punt afegit no pot ser connectat amb cap punt d’A, però segueix
sent connex, ja que aquest punt no pot ser separat de la resta per un obert. ♢

Com que tenim una mètrica (en aquest cas derivada d’una norma), podem parlar de
convergència de successions:

Definició 1.15. Diem que una successió de nombres complexos tznu8
n“1 Ă C és convergent

si existeix z P C tal que
|zn ´ z| Ñ 0.

9És a dir que satisfà:

D1. dpz, wq “ 0 ô z “ w;

D2. dpz, wq “ dpw, zq (simetria);

D3. dpz, wq ď dpz, vq ` dpv, wq (desigualtat triangular).
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1. El cos dels nombres complexos

Diem que zn tendeix a z, o que z és el ĺımit de la successió, i ho escrivim com

zn
nÑ8
ÝÝÝÑ z o bé lim

nÑ8
zn “ z.

Sovint ometrem la notació n Ñ 8 en les expressions anteriors quan sigui clar pel context.
‚

A més, pC, | ¨ |q és complet: tota successió de Cauchy10 de nombres complexos és con-
vergent.

També tenim que

zn Ñ z ô

$

&

%

Re zn Ñ Re z

Im zn Ñ Im z.
(1.5)

Exemple 1.16. La successió 1
n `

pn´1q

n i tendeix a i, ja que 1{n Ñ 0 i pn´1q

n Ñ 1. ♢

Advertència 1.17. No sempre és convenient passar a part real i part imaginària. Quan
ja es té pràctica amb les relacions anteriors, la majoria de vegades és millor fer servir
notació complexa, vegeu l’exercici 1.2.2 i el teorema següent. ‚

Teorema 1.18. Sigui f : C Ñ C, una funció cont́ınua en a P C. Si an Ñ a, aleshores
fpanq Ñ fpaq.

Demostració. Es deriva del resultat a R2 i la identificació de R2 amb C.

Tot seguit discutim la convergència de sèries:

Definició 1.19. Sigui tzku Ă C una successió de nombres complexos, aleshores diem que
8
ÿ

k“1

zk és convergent si

#

n
ÿ

k“1

zk

+

n

és una successió convergent. En tal cas, si el ĺımit de la

successió és z, escrivim
8
ÿ

k“1

zk “ z.

Diem que
8
ÿ

k“1

zk és absolutament convergent si
8
ÿ

k“1

|zk| ă 8. ‚

Observació 1.20 (Condició necessària de convergència). Notem que si una sèrie de nom-
bres complexos

ř

n cn és convergent, aleshores |cn| Ñ 0. ‚

Observació 1.21. Tota sèrie absolutament convergent de nombres reals és convergent.
En el pla complex passa el mateix. En efecte, si

ř

|zk| ă 8, llavors
ř

|Re zk| ă 8 i també
ř

|Im zk| ă 8 ja que |Re zk| ď |zk| i |Im zk| ď |zk|, i per tant
"

ř

Re zk és convergent, i
ř

Im zk és convergent,

de manera que
ř

zk és convergent per (1.5). ‚

10Augustin Louis Cauchy, Paŕıs, 1789 – 1857, https://ca.wikipedia.org/wiki/Augustin_Louis_Cauchy
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1. El cos dels nombres complexos

Teorema 1.22 (Teorema de Mertens11). Siguin
ř8

n“0 αn i
ř8

n“0 βn dues sèries de nom-
bres complexos absolutament convergents. Llavors la sèrie producte de Cauchy de les
sèries anteriors,

ř8
n“0 γn, on γn “

řn
k“0 αkβn´k, és absolutament convergent i

8
ÿ

n“0

γn “

˜

8
ÿ

n“0

αn

¸˜

8
ÿ

n“0

βn

¸

.

Demostració. Vegeu l’exercici 1.2.5.

Definició 1.23. Donada una successió tanu de nombres reals, definim el seu ĺımit superior
com

lim an “ lim sup an :“ inf
k

ˆ

sup
něk

an

˙

.

També es compleix

lim sup an “ sup

"

lim
kÑ8

ank
: ank

és una parcial de an

*

.

‚

Exemple 1.24. Fem un exemple de càlcul: si tenim la successió tanu “ t0, 1, 0, 1, 0, 1, 0, . . . u,
aleshores lim inf an “ 0 i lim sup an “ 1. Si tbnu “ tp´1qnu, aleshores lim inf bn “ ´1, i
lim sup bn “ 1. ♢

Tot seguit recordem el criteri de l’arrel, que hauria d’haver estat introdüıt en cursos
anteriors.

Lema 1.25 (Criteri de l’arrel). Considerem una successió de nombres reals tanu Ă R, i
sigui α “ lim sup n

a

|an|. Aleshores

(i) Si α ă 1, la sèrie
ř

n an és convergent;

(ii) Si α ą 1, la sèrie
ř

n an no convergeix.

Observació 1.26. Recordem que si existeix

lim
n

|an`1|

|an|
“ ℓ P r0,`8s,

aleshores limn
n
a

|an| existeix i també val ℓ. Recordeu també que el rećıproc no és cert:

si an “ rn`p´1qn
?
n, aleshores limn

n
?
an “ r, però an`1

an
“ r ¨ rp´1qn`1p

?
n`1`

?
nq, que no té

ĺımit. De fet, si 0 ă r ă 1, tenim que lim sup an`1

an
“ `8 i lim inf an`1

an
“ 0, de manera

que el criteri del quocient no és concloent respecte a la convergència, mentre que el criteri
de l’arrel śı que ho és. ‚

Exercicis

1.2.1. Descriviu els conjunts de punts del pla que satisfan:

11Franz Mertens, Środa Wielkopolska, 1840 – 1927, https://ca.wikipedia.org/wiki/Franz_Mertens
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1. El cos dels nombres complexos

a) 1 ă Im pizq ă 2,

b) Im z´a
z “ 0, a P C˚,

c) |z| “ Re z ` 1,

d) |z ´ 1| “ |z ` i|,

e) |z ´ 2| ą |z ´ 3|,

f) |z ´ 1| ` |z ` 1| “ 7. Ž

1.2.2. Suposem que an Ñ a i bn Ñ b. Demostreu que an ` bn Ñ a` b i anbn Ñ ab, sabent
que ambdues propietats són certes a la recta real. Ž

1.2.3. Digueu si les següents successions són convergents i en cas afirmatiu calculeu el
seu ĺımit:

a) in `
1

n` i
, b)

n` i

n´ i
, c)

3 i n2

n2 ´ 2i
. Ž

1.2.4. Estudieu la convergència i la convergència absoluta de les sèries:

a)
8
ÿ

n“2

in

lnn
, b)

8
ÿ

n“1

in

n
. Ž

1.2.5. Demostreu el teorema de Mertens. Ž

1.2.6. Tota successió convergent tznuně0 Ă C satisfà que |zn`1 ´ zn| Ñ 0. Ž

1.3. Repàs de trigonometria

A l’estudiar càlcul en diverses variables, vam aprendre que podem calcular la longitud
d’una corba diferenciable γ : I Ñ R2:

Lpγq “

ˆ
I

|γ1ptq| dt.

Aix́ı, la corba

t ÞÑ γptq “ p´t,
a

1 ´ t2q

envia l’interval r´1, 1s al semicercle unitat superior. Definim π com la longitud d’aquesta
corba. Com que γ1ptq “ p´1,´t{

?
1 ´ t2q, la definició és equivalent a

π :“

ˆ 1

´1

dt
?
1 ´ t2

,

que és una integral impròpia convergent.
Notem que γ és injectiva i la longitud de γpr´1, tsq és una funció creixent en t i cont́ınua

(de fet, derivable) en p0, πq pel teorema fonamental del càlcul; per tant és exhaustiva
en r0, πs. Aix́ı, associem a un nombre (que anomenem angle) α P r0, πs la semirecta
oberta del pla amb extrem a l’origen de coordenades que passa pel punt γptq tal que
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1. El cos dels nombres complexos

α “ longitudpγpr´1, tsqq “
´ t

´1
ds?
1´s2

. Per exemple, per α “ π prenem t “ 1 ja que π

és la longitud del semicercle. L’angle α “ π{2 (anomenat també angle recte) correspon a
la meitat del semicercle per simetria, que correspon a t “ 0, és a dir que té associada la
semirecta vertical tp0, yq : y ą 0u.

Si α P pπ, 2πq, aleshores associem α a la semirecta oposada a l’associada a α ´ π.
Si α P r2kπ, 2pk ` 1qπq amb k P Zzt0u; aleshores associem α a la semirecta associada a

α ´ 2kπ

Definició 1.27. Donat un angle α P R, definim el seu sinus com el quocient de la co-
ordenada vertical entre el mòdul de qualsevol dels punts de la seva semirecta associada,
(ben definit pel teorema de Tales12). Definim el cosinus com el quocient de la coordenada
horitzontal entre el mòdul de qualsevol dels punts de la seva semirecta associada. I definim
la tangent com el quocient entre sinus i cosinus. ‚

Observació 1.28. Tenim

sinpπq “ cospπ{2q “ sinp0q “ 0,

sinpπ{2q “ cosp0q “ 1,

i
cospπq “ ´1.

Notem que per definició, el sinus i el cosinus són funcions 2π-periòdiques, mentre que
la tangent és π-periòdica.

Lema 1.29. [Paritat de les funcions trigonomètriques] Si x P R, aleshores

sinp´xq “ ´ sinpxq, cosp´xq “ cospxq, tanp´xq “ ´ tanpxq.

Demostració. És conseqüència directa de la definició.

Lema 1.30. [Teorema de Pitàgores13] Si x P R, aleshores

sin2pxq ` cos2pxq “ 1.

Demostració. Això es deriva del fet que t2 `
?
1 ´ t2

2
“ 1.

Lema 1.31 (Suma d’angles). Donats x, y P R, tenim que

$

&

%

cospx` yq “ cosx cos y ´ sinx sin y

sinpx` yq “ sinx cos y ` cosx sin y.

Idea. Aquest lema es pot demostrar usant geometria elemental, vegeu la figura 1.4.

12Tales de Milet, Milet, 625 a.C. – „545 a.C., https://ca.wikipedia.org/wiki/Tales_de_Milet
13Pitàgores, Samos, 586 a.C. – „490 a.C., https://ca.wikipedia.org/wiki/Pit%C3%A0gores
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sinβ sinα

co
s
α
si
n
β

cosα

cos
β

sin
α

sin
β

si
n
(α

+
β
)

cos(α+ β)

co
s
β
si
n
α

cosβ cosα

α

α

β

Figura 1.4.: Demostració visual de les fórmules trigonomètriques per la suma d’angles.

Lema 1.32 (Angles complementaris, suplementaris i periodicitat). Donat x P R, es com-
pleixen les identitats:

sinpπ{2 ´ xq “ cospxq, cospπ{2 ´ xq “ sinpxq, tanpπ{2 ´ xq “ tan´1pxq.

sinpπ ´ xq “ sinpxq, cospπ ´ xq “ ´ cospxq, tanpπ ´ xq “ ´ tanpxq.

sinpx` 2πq “ sinpxq, cospx` 2πq “ cospxq, tanpx` πq “ tanpxq;

Demostració. Cal combinar la suma d’angles amb les simetries de les funcions trigo-
nomètriques del lema 1.29 i els valors donats a l’observació 1.28.

Lema 1.33 (Infinitèsims). Tenim

lim
xÑ0

sinx

x
“ 1 i lim

xÑ0

1 ´ cosx

x2
“

1

2
.

Idea. Es tracta de veure usant geometria elemental que

a

1 ´ x2 ď
sinx

x
ď

a

2p1 ´ cosxq

x
ď 1,

i després fer pas al ĺımit.

Teorema 1.34. Les funcions sinpxq i cospxq són 2π-periòdiques, infinitament diferencia-
bles, i

psinpxqq1 “ cospxq i pcospxqq1 “ ´ sinpxq.

A més les seves sèries de Taylor són convergents a tot R, i trobem que

sinpxq “

8
ÿ

k“0

p´1qkx2k`1

p2k ` 1q!
, i cospxq “

8
ÿ

k“0

p´1qkx2k

p2kq!
.

15



1. El cos dels nombres complexos

Idea. Per veure la diferenciabilitat n’hi ha prou amb comprovar les dues derivades, que
surten de

psinpxqq1 “ lim
hÑ0

sinpx` hq ´ sinpxq

h
“ lim

hÑ0

sinpxq cosphq ` cospxq sinphq ´ sinpxq

h
L.1.33

“ cospxq.

L’altra es fa anàlogament. La convergència s’obté usant estimacions del residu de Taylor.

Definició 1.35. Es pot demostrar que la tangent és injectiva en p´π{2, π{2q i la seva
imatge és R. Per tant, per tot x P R podem definir l’arctangent arctanx com l’únic
nombre real α P p´π{2, π{2q tal que tanα “ x. També pel sinus tenim injectivitat en
r´π{2, π{2s i definim l’arcsinus d’un nombre x P r´1, 1s, que escrivim arcsinx, com l’únic
nombre real α P r´π{2, π{2s tal que sinα “ x. Finalment el cosinus és injectiu a r0, πs,
i definim l’arccosinus d’un nombre x P r´1, 1s, que escrivim arccosx, com l’únic nombre
real α P r0, πs tal que cosα “ x. Pel teorema de la funció inversa per funcions de variable
real, sabem que les tres funcions són C8 a l’interior del seu domini. ‚

Exercicis

1.3.1. Demostreu tots els resultats de la secció. Ž

1.3.2. Definim el sinus i el cosinus hiperbòlics de x P R com

sinhpxq “
ex ´ e´x

2
, coshpxq “

ex ` e´x

2
.

Demostra que se satisfan les següents identitats:

a) sinhp0q “ 0 i coshp0q “ 1.

b) lim
xÑ`8

sinhx “ lim
xÑ`8

coshx “ `8 i lim
xÑ´8

sinhx “ ´8.

c) sinhp´xq “ ´ sinhpxq i coshp´xq “ coshpxq.

d) cosh2pxq ´ sinh2pxq “ 1.

e) coshpx` yq “ coshx cosh y ` sinhx sinh y

f) sinhpx` yq “ sinhx cosh y ` coshx sinh y.

g) psinhxq1 “ coshx i pcoshpxqq1 “ sinhpxq. Ž

16



1. El cos dels nombres complexos

1.4. L’exponencial complexa

Per la fórmula de Taylor, tenim que

ex “

8
ÿ

n“0

xn

n!
, @x P R.

Podem fer servir aquesta mateixa expressió per tal de definir ez per z P C.

Definició 1.36. Per z P C, definim

ez :“
8
ÿ

n“0

zn

n!
.

Aquesta sèrie de nombres complexos és absolutament convergent (ja que
ř |z|n

n! ă 8), i
per tant convergent. Aix́ı que ez està ben definit per a tot z P C. ‚

Per x P R, tenim del teorema 1.34 que

cosx “ Re peixq; sinx “ Im peixq.

Aix́ı doncs, tenim la identitat d’Euler :

eix “ cosx` i sinx, @x P R.

i la fórmula inversa d’Euler:

cosx “
1

2

`

eix ` e´ix
˘

i sinx “
1

2i

`

eix ´ e´ix
˘

, @x P R.

Notem que la corba γ : R Ñ C definida per γpxq “ eix retorna valors de mòdul 1 pel
teorema de Pitàgores:

ˇ

ˇeix
ˇ

ˇ “

a

cos2 x` sin2 x “ 1.

Per tant, la corba γ “enrotlla” la recta real sobre la circumferència unitat, amb velocitat
constant i periodicitat 2π.
Podem definir els sinus i cosinus de nombres complexos anàlogament usant el teorema

1.34, però en aquest caṕıtol només apareixen les funcions sinus i cosinus amb variable real.

Proposició 1.37. Per a tot z P C, es compleix que

ez “ ez.

Demostració. Per definició, tenim que

ez “

8
ÿ

n“0

zn

n!
“ lim

kÑ8

k
ÿ

n“0

zn

n!
.
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1. El cos dels nombres complexos

Com que l’aplicació conjugada és cont́ınua, podem treure el ĺımit a fora del conjugat
(teorema 1.18) per obtenir

ez “ lim
kÑ8

k
ÿ

n“0

zn

n!
“ lim

kÑ8

k
ÿ

n“0

zn

n!
“ ez.

Com a propietat fonamental de l’exponencial real, tenim que

ex`y “ exey, @x, y P R.

L’exponencial complexa ez manté aquesta propietat.

Proposició 1.38. Donats z, w P C, tenim que

ez`w “ ezew.

Si n P N, trobem per tant

enz “ pezq
n , i e´z “ pezq

´1 . (1.6)

En particular, tenim que
ex`iy “ expcos y ` i sin yq,

que generalitza la identitat d’Euler.

Demostració de la proposició. Per la definició de l’exponencial complexa, tenim que

ez`w “

8
ÿ

n“0

pz ` wqn

n!
“

8
ÿ

n“0

n
ÿ

k“0

ˆ

n
k

˙

zk wn´k

n!
,

on hem aplicat la fórmula del binomi de Newton14 en la darrera identitat. Recordem
també que

ˆ

n
k

˙

“
n!

k! pn´ kq!
.

Pel criteri del quocient (vegeu l’observació 1.26), tenim que
ř8

k“0
zk

k! és absolutament
convergent. Podem doncs aplicar el teorema de Mertens, i trobem que

ez ew “

˜

8
ÿ

k“0

zk

k!

¸˜

8
ÿ

m“0

wm

m!

¸

“

8
ÿ

n“0

˜

n
ÿ

k“0

1

k! pn´ kq!
zk wpn´kq

¸

,

que coincideix amb l’expressió anterior.

14Isaac Newton, Woolsthorpe-by-Colsterworth, Lincolnshire, 1642 – 1727, https://ca.wikipedia.org/
wiki/Isaac_Newton
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1. El cos dels nombres complexos

Per veure 1.6, notem que és cert per n P t0, 1u. Per n ą 1, suposant que és cert per
n´ 1 com a hipòtesi inductiva, trobem que

enz “ epn´1qz`z “ epn´1qzez “ pezq
n´1 ez “ pezq

n .

Finalment,
1 “ e0 “ eze´z ùñ e´z “ pezq

´1 .

Observació 1.39. Una demostració alternativa de
ˇ

ˇeix
ˇ

ˇ “ 1 per a tot x P R: Tenim
ˇ

ˇeix
ˇ

ˇ

2
“ peixq peixq “ eix eix “ eix e´ix “ e0 “ 1.

Definint les potències negatives de la manera habitual, és a dir z´k “ pzkq´1, aleshores
1.6 estén a tots els enters n P Z. ‚

Observem (vegeu l’observació 1.28 i el lema 1.32) que

ei
π
2 “ i; eiπ “ ´1; ei

3π
2 “ ´i.

Lema 1.40 (Fórmula de De Moivre15). Per tot n P N i θ P R, tenim que

cospnθq “ Re
´´

eiθ
¯n¯

i sinpnθq “ Im
´´

eiθ
¯n¯

Demostració. Això és una reescriptura de einθ “
`

eiθ
˘n
, vegeu (1.6).

Usant la identitat anterior, podem expressar cospnθq i sinpnθq en termes de sin θ i cos θ.
Vegem un exemple:

Exemple 1.41. Com que

peiθq3 “ pcos θ ` i sin θq3 “ cos3 θ ` 3i cos2 θ sin θ ´ 3 cos θ sin2 θ ´ i sin3 θ,

i
ei3θ “ cos 3θ ` i sin 3θ,

obtenim la identitat cosp3θq “ cos3 θ ´ 3 cos θ sin2 θ. ♢

Exercicis

1.4.1. Fent servir la fórmula de de Moivre, trobeu expressions de sin 3θ i sin 4θ en termes
de sin θ i cos θ. Ž

1.4.2. Trobar les arrels de z4 ` 1 “ 0 i fer-les servir per veure que z4 ` 1 “ pz2 ´
?
2z `

1qpz2 `
?
2z ` 1q. Ž

15Abraham de Moivre, Vitry-le-François, 1667–1754, https://ca.wikipedia.org/wiki/Abraham_de_

Moivre
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1. El cos dels nombres complexos

1.5. Representació polar d’un nombre complex

Tot nombre complex z ‰ 0, el podem expressar en termes del seu mòdul r (on r “ |z|) i
l’angle θ que forma amb l’eix real. És a dir, podem fer un canvi de coordenades

z “ x` iy Ñ rθ.

Aquest angle θ quedarà completament determinat si imposem que es trobi en un interval
de longitud 2π fixat.

Definició 1.42 (Coordenades polars). Donat z P C, s’anomena l’argument principal de z
i es denota per

Arg z

l’únic angle θ prenent valors ´π ă θ ď π de manera que

$

&

%

Re z “ |z| cos θ

Im z “ |z| sin θ

Aleshores tenim que

z “ x` iy “ |z|pcos θ ` i sin θq “ |z|eiθ.

Anomenem coordenades polars de z al parell pr, θq amb r “ |z|. ‚

z = rθ = reiθ

|z|

Re z = r cos θ

Im z = r sin θ

θ = Arg z

Figura 1.5.: Coordenades polars d’un nombre complex.

Observació 1.43. Per trobar l’argument principal de z, podem calcular l’arctangent:
θ̂ :“ arctan

`

y
x

˘

. Aleshores,

• si x ą 0 (primer i quart quadrants del pla complex) definim θ “ θ̂,
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1. El cos dels nombres complexos

• si x ă 0 i y ě 0 (segon quadrant), tenim que ´π{2 ă θ ă 0 aix́ı que definim θ :“ θ̂`π
i

• si x ă 0 i y ă 0 (tercer quadrant), tenim que 0 ă θ ă π{2 aix́ı que definim θ :“ θ̂´π.

• Si x “ 0 i y ą 0 (semieix imaginari superior) definim θ “ π{2 i

• si x “ 0 i y ă 0, prenem θ “ ´π{2.

D’aquesta manera, per tot z P Czt0u, tenim que

Arg z “ θ P p´π, πs . ‚

Exemple 1.44. 1. La representació polar de i és

i “ ei
π
2 .

2. Calculem la representació polar de z “
?
3 ` i:

Tenim |z| “
?
3 ` 1 “ 2, amb el que

z

|z|
“

?
3

2
`
i

2
,

que implica
$

&

%

cos θ “
?
3
2

sin θ “ 1
2 ,

amb el que θ “ π{6, i per tant la representació polar és

?
3 ` i “ 2ei

π
6 . ♢

Proposició 1.45. Siguin z1, z2 P C. Es compleix que ez1 “ ez2 si i només si z1´z2 P 2πiZ.
En particular, la funció exponencial complexa és una funció periòdica i el conjunt de

peŕıodes és 2πiZ.

Demostració. Suposem que per a un k P Z, z1 “ z2 ` 2πik. Llavors

ez1 “ ez2`2πik “ ez2e2πik “ ez2 .

Rećıprocament, si ez1 “ ez2 , es compleix que ez1´z2 “ 1, amb el que eRe z1´Re z2 “

|ez1´z2 | “ 1 i eiIm pz1´z2q “ 1, és a dir

cos Im pz1 ´ z2q
Euler

“ 1.

Per tant, Re z1 “ Re z2 i Im pz1 ´ z2q “ 2kπ, o, equivalentment, z1 ´ z2 P 2πiZ.
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1. El cos dels nombres complexos

Tornant a la definició 1.42, és clar que, fixant un altre interval de longitud 2π, hi ha
altres possibilitats amb l’angle θ que ens dona la representació polar. De fet, aqúı n’hem
fixat una de concreta per fer de referència. Aix́ı doncs, hi ha infinits nombres reals θ
(s’anomenen arguments de z) que compleixen la identitat

z “ |z|eiθ.

Són
Arg z ` 2πk; k P Z.

Exemple 1.46.

i “ ei
π
2 “ ei

5π
2 “ e´i 3π

2 . ♢

Definició 1.47. Un argument de z ‰ 0 és un nombre real θ de manera que z “ |z|eiθ.

arg z denota tots els possibles arguments de z. ‚

Exemple 1.48. Sigui z “ 1 ´
?
3i. Llavors |z| “ 2 amb el que

z

|z|
“

1

2
´

?
3

2
i ñ

$

&

%

cos θ “ 1
2

sin θ “ ´
?
3
2

´π ă θ ď π

ñ θ “ ´
π

3
.

Per tant

Arg z “ ´
π

3
; arg z “ ´

π

3
` 2kπ, k P Z. ♢

El producte, el quocient i la potència solen ser més fàcils de calcular en forma polar:

Exemple 1.49.
2e3i ¨

?
3eiπ “ 2

?
3eip3`πq.

2e3i
?
3eiπ

“
2

?
3
eip3´πq “

2
?
3

3
eip3´πq.

´

2ei
π
4

¯25
“ 225ei

25π
4 “ 225ei

24π
4 ei

π
4 “ 225ei

π
4 .

Notem que en multiplicar un nombre z P C per reiθ, el mòdul es multiplica per r i
l’argument augmenta en θ. És a dir que en multiplicar dos nombres complexos, trobem
un nombre que té per mòdul el producte de mòduls i per argument la suma d’arguments
(podem corregir per tenir l’argument principal sumant o restant 2π). ♢

Exercicis

1.5.1. Trobeu la forma polar dels nombres següents i dibuixeu-los.
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1. El cos dels nombres complexos

a) 3p1 `
?
3 iq, b) 2

?
3 ´ 2i, c) ´2 ` 2i, d) ´1 ´ i. Ž

1.5.2. Expresseu en forma cartesiana (a` ib) els següents nombres:

a) p2 ` 3iqp4 ` iq,

b) p4 ` 2iq2,

c) 1
4`i ,

d) i
2`i ,

e) p1 ´ 2iq3,

f) 1
2`i ` 4´2i

3`i ,

g) p1 ` iq100 ` p1 ´ iq100,

h)
´

1`2i
1´i

¯2
. Ž

1.5.3. Fent servir el producte de p1 ` iqp5 ´ iq4 deduir la fórmula de Machin16: π{4 “

4 arctanp1{5q ´ arctanp1{239q. Ž

1.5.4. Estudiar la convergència de tzn0 u si |z0| ă 1 o si |z0| ą 1. Ž

1.5.5. Digueu si les següents successions són convergents i en cas afirmatiu calculeu el
seu ĺımit:

a) zn “
i

n
,

b) zn “ ip´1qn,

c) zn “ Argp´1 ` i{nq,

d) zn “
np2 ` iq

n` 1
,

e) zn “

ˆ

1 ´ i

4

˙n

,

f) zn “ exp

ˆ

2nπi

5

˙

.

Aqúı hem escrit exppzq “ ez.

1.6. Equacions amb exponencials

Exemple 1.50. Solucionem l’equació

ez “ 1, z P C.

Tenim
1 “ ez “ ex eiy “ expcos y ` i sin yq.

Com que |eiy| “ 1, igualant mòduls i arguments obtenim

1 “ |ez| “ ex ñ x “ 0 ñ

"

cos y “ 1
sin y “ 0

ñ y “ 2kπ; k P Z.

Per tant,
ez “ 1 ô z “ 2kπi; k P Z.

♢
16John Machin (1706), podeu trobar més informació a https://en.wikipedia.org/wiki/Machin-like_

formula.
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1. El cos dels nombres complexos

Moltes de les equacions “exponencials” es redueixen a l’anterior. Per exemple

ez “ i “ ei
π
2 ô ez´iπ

2 “ 1.

Exemple 1.51. Recordem que donats z, w P C, per la proposició 1.45 tenim l’equivalència

ez “ ew ðñ z “ w ` 2kπi per algun k P Z.

Sabent que 1 “ e0, podem dir directament que

ez “ e0 ðñ z “ 0 ` 2kπi,

tal com hem vist pas a pas en l’exemple anterior. ♢

Exercicis

1.6.1.

Resoleu les següents equacions:

a) ez “ 1 ` i, b) ez
2

“ i, c) eiz “ ´1. Ž

1.7. Arrels n-èsimes

ζ7

ζ27

ζ37

ζ47

ζ57

ζ67

ζ77 = 1

Figura 1.6.: Arrels setenes de la unitat.

Donat n P N, si definim ζn :“ e
2πi
n , aleshores

´

ζkn

¯n
“ e2kπi “ 1.

Diem que tζknu
n´1
k“0 són les n arrels n-èsimes de la unitat.
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Sigui a P C amb a ‰ 0. Per n P N, calculem els nombres complexos z P C de manera
que

zn “ a.

(Aqúı no és convenient passar a notació real i fer px ` iyqn “ a). Posem z “ reiθ amb
´π ă θ ď π. Llavors

rneinθ “ |a|eiArg a.

Igualant mòduls obtenim rn “ |a| ñ r “ n
a

|a|. També

einθ “ eiArg a ô eipnθ´Arg aq “ 1 ñ nθ ´ Arg a “ 2kπ, k P Z.

Per tant, les solucions de zn “ a són

zk “
n
a

|a|eiθk , amb θk “
Arg a

n
`

2kπ

n
, 0 ď k ď n´ 1.

Tenim n solucions (amb k ě n dona solucions repetides). Notem que

zk “
n
a

|a|ei
Arg a

n ei
2kπ
n “

n
a

|a|ei
Arg a

n ζkn,

i com que z0 “ n
a

|a|ei
Arg a

n , podem escriure les arrels n-èsimes d’a com

zk “ ζknz0,

vegeu la figura 1.7.

a

z0

z1 = ζ7z0
z2 = ζ27z0

z3 = ζ37z0

z4 = ζ47z0

z5 = ζ57z0

z6 = ζ67z0

Figura 1.7.: Arrels setenes de a “ 1 ` i.

Exemple 1.52. 4
?
i Ñ eiπ{8, ei5π{8, ei9π{8, ei 13π{8. Els quatre resultats satisfan que

z4 “ i. ♢

Exercicis

1.7.1. Calculeu:
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a) 3
?

´1, b) 31{4, c) 4
?

´i, d) p´1 `
?
3iq1{2, e) p3 ` 4iq

1
2 . Ž

1.7.2. Donat a P C, quin és el màxim de |zn ` a| per a |z| ď 1? Ž

1.8. Polinomis: enunciat del teorema fonamental de l’àlgebra

Per acabar aquest caṕıtol, comentem un dels principals motius que fa dels complexos una
eina imprescindible: tot polinomi de coeficients reals o complexos té sempre almenys una
arrel complexa, i per tant, el grau del polinomi coincideix amb el seu nombre d’arrels
comptant multiplicitats.
Acabem de comprovar que hi ha nombres complexos que són solució de certs polinomis.

Per exemple, si 0 ď k ă n, aleshores els nombres

e
i2kπ
n

són tots diferents i satisfan que
zn “ 1.

Hem trobat doncs n arrels diferents del polinomi zn ´ 1, que anomenem arrels n-èsimes
de la unitat.
En general, tot polinomi de grau n amb coeficients complexos p P Crxs, és a dir

ppzq “

n
ÿ

k“0

akz
k,

on ak P C i an ‰ 0 té exactament n arrels comptant multiplicitats. Dit d’una altra manera,
existeixen n nombres tαku

n´1
k“0 Ă C (possiblement coincidents) de manera que

ppzq “ an

n´1
ź

k“0

pz ´ αkq.

Diem que α és una arrel de multiplicitat j si existeixen exactament j sub́ındexs k1, . . . , kj
tals que α “ αki . Per exemple,

z4 ` 2z2 ` 1 “ pz2 ` 1q2 “ pz ` iq2pz ´ iq2,

té dues arrels dobles, que són ˘i. Aquest resultat es coneix com a teorema fonamental de
l’àlgebra, vegeu el teorema 4.31.
Notem també que el resultat aplica a polinomis de coeficients reals, p P Rrxs: tot

polinomi de grau n amb coeficients reals té n arrels complexes comptant multiplicitats. A
més, com que ak “ ak, trobem que

ppzq “

n
ÿ

k“0

akz
k “

n
ÿ

k“0

akzk “

n
ÿ

k“0

akzk “ ppzq.
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Per tant, si α P CzR és una arrel de p, el seu conjugat també ho és:

ppαq “ ppαq “ 0 “ 0.

Treballant una mica es pot deduir que la multiplicitat d’α i la del seu conjugat coincideixen.
Per tant, tot polinomi de grau n amb coeficients reals té j arrels de part imaginària positiva
αk, en té j amb part imaginària negativa αk i n´ 2j arrels reals βk, de manera que

ppzq “ an

j
ź

k“0

pz ´ αkqpz ´ αkq

n´2j
ź

k“0

pz ´ βkq “ an

j
ź

k“0

pz2 ´ pαk ` αkqz ` αkαkq

n´2j
ź

k“0

pz ´ βkq,

és a dir

ppzq “ an

j
ź

k“0

pz2 ´ 2Re pαkqz ` |αk|2q

n´2j
ź

k“0

pz ´ βkq.

En la darrera expressió, hem trobat una factorització amb coeficients reals, on tots els
factors són de grau 1 o 2.

Exercicis

1.8.1. Resoleu pz ` 1q5 “ z5. Ž

1.8.2. Sigui P pzq “ 1 ` 2z ` 3z2 ` ¨ ¨ ¨ ` nzn´1. Considerant el polinomi p1 ´ zqP pzq,
demostreu que tots els zeros de P pzq estan dins del disc unitat. Ž
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2. Funcions de variable complexa

En aquest caṕıtol introdüım els conceptes de funció de variable complexa (i parlarem de
com representar aquestes funcions) i de funció multivaluada. Treballarem les determinaci-
ons cont́ınues d’aquestes funcions multivaluades, centrant-nos en arguments, logaritmes i
arrels. Finalment treballarem amb les sèries de potències de nombres complexos. Veurem
què és el radi de convergència i com calcular-lo i treballarem diferents tipus de convergència
a l’interior del disc de convergència i a la frontera, concloent amb els criteris de Dirichlet1

i d’Abel2.

2.1. Funcions

Recordem diversos conceptes:

‚ Ω Ă C és obert si @a P Ω hi ha r ą 0 amb Drpaq Ă Ω, on Drpaq denota el disc obert

Drpaq “
␣

z P C : |z ´ a| ă r
(

.

‚ F és tancat ô CzF és obert ô F és tancat per successions (és a dir, si zn P F amb
zn Ñ z, aleshores z P F ).

Sigui Ω Ă C un obert. Una funció de variable complexa és

f : Ω Ñ C.

Podem posar fpzq “ upzq ` ivpzq, on denotem

u “ Re f ; v “ Im f.

Donat z P Ω i w P C tals que w “ fpzq, aleshores diem que w és la imatge de z per f . El
conjunt Ω és el domini de definició de f . Si B Ă Ω, fpBq Ă C és la seva imatge, és a dir

fpBq “ tw P C : Dz P B tal que fpzq “ wu.

Si prenem B “ Ω, diem que fpΩq és el rang o recorregut de f .

Exemple 2.1. Si fpzq “ iz amb domini C, la imatge de R Ă C és fpRq “ iR “ tiy : y P

Ru. En general, f actua com una rotació de 90˝ al voltant de l’origen en sentit antihorari.
♢

1Johann Peter Gustav Lejeune Dirichlet, Düren, 1805–1859, https://ca.wikipedia.org/wiki/Johann_
Peter_Gustav_Lejeune_Dirichlet

2Niels Henrik Abel, Finnøy, 1802–1829, https://ca.wikipedia.org/wiki/Niels_Henrik_Abel
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2. Funcions de variable complexa

Definició 2.2 (Ĺımit d’una funció en un punt). Diem que limzÑa fpzq “ ℓ si i només si
@ε ą 0 hi ha δ ą 0 (que pot dependre d’a) de manera que per a tot z P Ω, 0 ă |z´ a| ă δ,
|fpzq ´ ℓ| ă ε. ‚

Definició 2.3 (Continüıtat). Una funció f : Ω Ñ C és cont́ınua en Ω si és cont́ınua en
tot punt a P Ω.

f és cont́ınua en a ô lim
zÑa

fpzq “ fpaq.

Es compleix que f és cont́ınua en a si i només si Re f i Im f són cont́ınues en a, i també
si i només si, per a tota successió tznu amb zn Ñ a se satisfà que fpznq Ñ fpaq. ‚

Exemple 2.4. Els polinomis en z i z són continus. També ez és cont́ınua en tot punt de
C. ♢

Advertència 2.5. Arg z és cont́ınua en Czp´8, 0s i NO és cont́ınua en p´8, 0s.
En efecte, si ens acostem a la semirecta p´8, 0q per dalt, llavors Arg z Ñ π, en canvi

si ens acostem per baix, tendeix a ´π, amb el que si a P p´8, 0q, llavors

no existeix lim
zÑa

Arg z. ‚

e

e2
(√

2
2 +

√
2
2 i

)

Figura 2.1.: A l’esquerra, una coloració del pla complex amb la graella de coordenades
cartesianes enteres, mentre que a la dreta, la graella marca els cercles de
mòdul ek, k P Z, i els eixos real i imaginari. Per la coloració, s’escull el color
en funció de l’angle i la saturació en funció del logaritme del mòdul (empal-
lideix amb mòduls grans). Dibuixem des de ´6 ´ 6i fins a 6 ` 6i. Aqúı, i al
llarg dels apunts, quan dibuixem en aquest domini, direm que dibuixem en
6Q, i quan dibuixem en ´2 ´ 2i fins a 2 ` 2i direm que és en 2Q.
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2. Funcions de variable complexa

Comentari 2.6 (Dibuixar una funció complexa). Recordem que per dibuixar una funció,
entenem representar el conjunt

graf f :“ tpz, wq P C2 : fpzq “ wu.

Si f : R Ñ R es pot fer en el pla, però per una funció complexa necessitem quatre
dimensions reals per fer aquesta representació. Dif́ıcilment podem arreglar-ho amb una
bona perspectiva com solem fer amb les funcions de R2 en R. Coses que podem fer:

• Estudiar la imatge de conjunts especials tx “ cu, ty “ cu, tr “ cu o tθ “ cu, vegeu
la figura 2.2.

−πi

−π
2 i

0

π
2 i

πi

1− πi

1− π
2 i

1

1 + π
2 i

1 + πi

αi

βi

−1

−i

1

i

−e

−ei

e

ei

eαi
eβi

β − αez

Figura 2.2.: Representació de la funció exponencial. Representem l’acció en bandes horit-
zontals i verticals i en rectangles paral.lels als eixos. Notem que té peŕıode
2kπi, i que bandes horitzontals d’amplada γ van a sectors d’obertura γ.

• Dibuixar px, yq ÞÑ |fpx, yq| i px, yq ÞÑ Arg pfpx, yqq, o bé px, yq ÞÑ Re fpx, yq i px, yq ÞÑ

Im fpx, yq.

• Fer un gràfic de colors (complex plot). Es tracta d’assignar un color a cada ṕıxel
w (figura 2.1) i aleshores pintem el punt z en funció del color de w “ fpzq, vegeu les
figures 2.3, 2.4 i 2.5. ‚

Exemple 2.7 (La funció exponencial). Comencem amb les imatges de rectes verticals:
sabem que a C, la funció exponencial complexa és 2πi-periòdica. Per tant, el que passi en
una banda horitzontal d’amplada 2π, passa en qualsevol altra.

Donat que per la fórmula d’Euler, ez “ ex`iy “ expcos y ` i sin yq, es compleix que si y
varia de 0 a 2π, eiy dona una volta al cercle unitat T. Per tant, la imatge de tot segment
vertical de longitud 2π i part real x0 es transforma en un cercle al voltant del zero de radi
ex0 .

Anem a veure en què es transformen les rectes horitzontals. Recordem que l’exponencial
real envia homeomòrficament R en la semirecta p0,8q. Per tant, si fixem y0 P R i consi-
derem els punts de la forma z “ x` iy0, amb x P R, es compleix que els punts ez “ exeiy0

cobreixen la semirecta texeiy0 : x P Ru. Vegeu les figures 2.2 i 2.3. ♢
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2. Funcions de variable complexa

ez

ez

Figura 2.3.: Gràfic de colors de la funció exponencial en coordenades cartesianes i polars en
6Q, vegeu la figura 2.1. A la imatge superior esquerra, la graella correspon als
punts d’imatge amb una coordenada entera (vegeu la figura superior dreta),
és a dir que són corbes de nivell de les parts real i imaginària. A la imatge
inferior esquerra, correspon als d’imatge en els eixos o bé en els cercles de radi
ek (corbes de nivell del mòdul i dels arguments múltiples de π{2). Es tracta
doncs de la preimatge de les graelles representades a la figura 2.1 per la funció
exponencial. Observem, per exemple, que cada rectangle petit de la figura
inferior esquerra és enviat a un quadrant d’un anell centrat a l’origen que té
per radis interior i exterior dues potències consecutives de e. En properes
imatges obviarem la figura de la dreta.

Comentari 2.8 (Potències). Les potències d’exponent natural són funcions n a 1, és a
dir que cada imatge té n preimatges (llevat de l’origen). La funció z3, per exemple, fa que
els mòduls menors a u decreixin, els majors a u creixin i la imatge d’una circumferència
centrada a l’origen dona tres voltes entorn de l’origen, vegeu la figura 2.4. ‚
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2. Funcions de variable complexa

Figura 2.4.: Representem el polinomi z3 en 2Q en cartesianes i polars. Notem que si w ‰ 0,
aleshores té tres arrels cúbiques, que són els vèrtexs d’un triangle equilàter
centrat a l’origen. A la imatge, arrels cúbiques de w “ 5ei

5π
12 .

Exercicis

2.1.1. Escriure les següents funcions de la forma upx, yq ` ivpx, yq.

a) fpzq “ 1{z,
b) gpzq “

2z2 ` 3

|z ´ 1|
,

c) hpzq “ ez ` e´z. Ž

2.1.2. Trobeu el rang de

a) fpzq “ z2 si z està en el primer quadrant,

b) gpzq “ 1{z per 0 ă |z| ď 1,

c) hpzq “ ´2z3 per z tal que 0 ă |z| ă 1 i Argz ă π{2. Ž

2.1.3. Digueu on són cont́ınues les següents funcions

a)
1

z ´ 2 ` 3i
,

b)
iz3 ` 2z

z2 ` 1
,

c)
3z ´ 1

z2 ` z ` 4
,

d) z2p2z2 ´ 3z ` 1q´2. Ž

2.1.4. Proveu que la inversió w “ fpzq “ 1{z transforma

a) el cercle |z| “ r en el cercle |w| “ 1{r,
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√
e− 1

Figura 2.5.: Dibuixem la funció fpzq “ z2 ` 1 en el mateix domini que abans (des de
´2 ´ 2i fins a 2 ` 2i). Notem que a ˘i, la funció val zero.

b) el raig Argz “ θ0,´π ă θ0 ă π, en el raig Argw “ ´θ0,

c) el cercle |z ´ 1| “ 1 a la ĺınia vertical x “ 1{2. Ž

2.1.5. Trobeu una funció af́ı que transformi el cercle |z| ă 1 en el cercle |w ´ w0| ă R
de manera que els centres es corresponguin i el diàmetre horitzontal es transformi en el
diàmetre que forma un angle α amb l’eix real. Ž

2.1.6. Per l’exponencial fpzq “ ez:

a) Descriviu-ne el domini i el rang.

b) Proveu que fp´zq “ 1{fpzq.

c) Descriviu la imatge de Re z “ 1.

d) Descriviu la imatge de Im z “ π{4.

e) Descriviu la imatge de la banda 0 ď Im z ď π{4. Ž

2.1.7. La funció de Jukovski3 és w “ Jpzq “ 1
2

`

z ` 1
z

˘

, vegeu la figura 3.7. Proveu que

a) Jpzq “ Jp1{zq,

b) J porta el cercle unitat |z| “ 1 a l’interval real r´1, 1s,

3Nikolai Jukovski, Orekhovo, 1847–1921, https://ca.wikipedia.org/wiki/Nikolai_Jukovski
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c) J porta el cercle |z| “ r (r ą 0, ­“ 1) a l’el.lipse
u2

“

1
2

`

r ` 1
r

˘‰2 `
v2

“

1
2

`

r ´ 1
r

˘‰2 “ 1 que té

els focus a ˘1. Ž

2.1.8. Fent servir la comanda contour_plot de Sage dibuixeu les corbes de nivell de u i
v si f “ u` iv és

a) z,

b) z2,

c) logpzq,

d) sinpzq,

e) 1{z,

f) 1{z2,

g) ez,

h)
1

z ´ 1
`

1

z ` 1
,

i) logpz ´ 1q ` logpz ` 1q. Ž

2.2. Funcions multivaluades

Ja hem vist que hi ha funcions com ara l’argument que prenen múltiples valors:

argpiq “

"

¨ ¨ ¨ ,
´3π

2
,
π

2
,
5π

2
, ¨ ¨ ¨

*

“
π

2
` 2kπ.

També és el cas de les arrels n-èsimes:

n
?
z “

!

|z|
1
n ei

argz
n

)

“

!

|z|
1
n ei

Arg z
n ei

2kπ
n : k P t0, ¨ ¨ ¨ , n´ 1u

)

.

Definició 2.9. Donada una funció multivaluada en A, diem que una funció f : B Ñ C
n’és una branca cont́ınua en B Ă A si fpzq és una elecció d’entre les diferents opcions de
manera que aquesta elecció sigui cont́ınua en B.

Notació 2.10. Més endavant farem servir la notació determinació ” branca cont́ınua. ‚

Per exemple, si A “ tz P C : Re z ą 0u, aleshores la funció argument principal Arg z és
una branca cont́ınua de l’argument en A. Qualsevol altra branca de l’argument f : A Ñ C
que escollim consistirà en fixar un k P Z i tindrem fpzq “ Arg z ` 2kπ.
En canvi, si prenem A “ tz P C : Re z ă 0u, aleshores l’argument principal no és una

branca cont́ınua, ja que tindrem una discontinüıtat al llarg de la semirecta tx P R : x ă 0u.

Exercicis

2.2.1. Donada l’equació de Cardano z3`pz`q “ 0, comprova que si C “

ˆ

´
q
2 `

b

q2

4 `
p3

27

˙
1
3

,

aleshores z1 “ C ´
p
3C és solució de la cúbica. Les tres arrels s’obtenen canviant l’elecció

de l’arrel cúbica.
Tot seguit obre GeoGebra4 i dibuixa els punts p “ 1`i i q “ 2`0i; defineix w “ ´1

2`
?
3
2 i,

C mitjançant la fórmula anterior, i z1 “ C ´
p
3C , z2 “ wC ´

p
3wC i z3 “ w2C ´

p
3w2C

.

4o entra a https://www.geogebra.org/m/jbszj89u
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Escull tres colors diferents per zj, i activa la seva traça. Deixant q fixat i movent p,
per exemple, comprova que els tres punts són funció de p, i es poden determinar com a
branques cont́ınues localment de manera cont́ınua, tot i que C presenta discontinüıtats de
salt que fan que els tres zj vagin permutant la seva posició. Per exemple, pots fixar p
en la circumferència de radi 4 amb la instrucció p=Punt(Circumferència((0, 0), 4))i
observar què ocorre, i comparar amb el radi 2 o 3. Pots usar també la instrucció lloc

geomètric. Quantes voltes cal que faci p a aquesta circumferència per tal que una arrel
doni la volta a l’origen de manera cont́ınua? Ž

2.3. Logaritmes i arguments

Si x P R i y ą 0, sabem que ex “ y si i només si x “ ln y. Volem estudiar aquesta equació
en C. Ja sabem que l’exponencial complexa és periòdica i per tant, no injectiva, doncs
ez`2kπi “ ez, per a tot k P Z, vegeu la proposició 1.45.

Recordem que per a cada z P Czt0u existeix un únic θ P p´π, πs tal que

eiθ “
z

|z|
,

que s’anomena argument principal, i es denota Arg pzq. Aleshores

eln |z|`iArg pzq “ eln |z|eiArg pzq “ |z|
z

|z|
“ z.

Definició 2.11. El logaritme principal de z P Czt0u es defineix com

Log pzq “ ln |z| ` iArg pzq.

Per tant Log : Czt0u ÝÑ t´π ă Im z ď πu. En general, un logaritme de z és un nombre
w P C amb ew “ z. Escrivim log z per anomenar el conjunt de tots els logaritmes de z. ‚

Com hem vist a la proposició 1.45, el logaritme és doncs

w “ log z “ Log z ` 2kπi “ ln |z| ` iArgz ` 2kπi “ ln |z| ` iargz; k P Z.

En particular, a diferència del que passa a R, hi ha infinits logaritmes. Per distingir-
los, escriurem “ln” pel logaritme neperià definit a la recta real, i “log” per la funció
multivaluada del pla complex.

Exemples 2.12. 1. log 1 “ ln |1| ` i0 ` 2πki “ 2πki; k P Z.

2. logp´1q “ ln 1 ` iπ ` 2πki; k P Z. ♢

Exemple 2.13. Logp1 ` iq “ ln |1 ` i| ` iArgp1 ` iq “ ln
?
2 ` i

π

4
.

Els altres logaritmes serien ln
?
2 ` iπ4 ` 2kπi. ♢
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Figura 2.6.: A l’esquerra, la funció logaritme principal Log en el domini Czp´8, 0s. A la
dreta la branca log “ Log `2πi en el mateix domini. Totes dues representaci-
ons amb la graella cartesiana de la imatge. Observem com les circumferències
centrades a l’origen es transformen en rectes verticals. Veiem també com, en
el logaritme principal, a l’arribar als reals negatius des del segon quadrant,
trobem una discontinüıtat que es podria evitar prenent la determinació del
logaritme representada a la dreta (pagant el preu de trobar la discontinüıtat
més endavant).

Si fixem una branca de l’argument A : Ω Ñ R, llavors Lpzq :“ ln |z| ` iApzq també ens
dona una branca del logaritme L : Ω Ñ C. Com que l’argument principal Arg z és continu
en Czp´8, 0s, dedüım que Log z és cont́ınua en Czp´8, 0s. De fet, tenim el següent
resultat:

Proposició 2.14. Existeix una branca cont́ınua de l’argument de z en Czr, on r és qual-
sevol semirecta de C amb extrem en el 0.

Per tant, també hi ha una branca cont́ınua del logaritme de z en Czr.

Demostració. Posem
r “ tReiθ : 0 ď R ă 8u.

Escollim Az la branca de l’argument de z que pren valors en pθ, θ ` 2πq, i vegem que és
cont́ınua. Siguin zn, z0 P Czr amb zn Ñ z0. Volem veure que Azn Ñ Az0. Suposem
el contrari. Llavors, substituint, si és necessari la successió pznq per una parcial, podem
suposar que existeix ε ą 0 tal que per a tot n ě 0, |Azn ´ Az0| ą ε. Donat que la funció
Az pren valors en un interval fitat, aplicant el teorema de Bolzano-Weierstrass5, podem
trobar una parcial convergent. És a dir, hi ha znk

amb

Aznk
Ñ α ‰ Az0; α P rθ, θ ` 2πs.

5Karl Weierstrass, Ostenfelde, 1815–1897, https://ca.wikipedia.org/wiki/Karl_Weierstrass
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(α ‰ Az0, doncs per a tot n ě 0, |Azn ´ Az0| ą ε ).
Com que l’exponencial és cont́ınua, eiAznk Ñ eiα, però també

eiAznk “
znk

|znk
|

Ñ
z0

|z0|
“ eiAz0 .

Per tant
eiα “ eiAz0 ñ α ´ Az0 “ 2kπ

per algun k P Z, i això és absurd (l’única possibilitat és k “ 0 i estem suposant que
α ‰ Az0).

Proposició 2.15. No hi ha cap branca cont́ınua de l’argument de z en BD.

Demostració. Suposem que n’hi ha una de cont́ınua, diem-li Apzq. Com que |z| “ 1, tenim
que si z “ eiθ,

eiApzq “
z

|z|
“ z “ eiθ ñ Dkθ P Z : Apeiθq “ θ ` 2kθπ.

Aleshores kθ “ pApeiθq ´ θq{2π és una funció cont́ınua que pren valors enters, i per tant
és constant. És a dir, kθ “ k. Llavors

0 ` 2kπ “ Apei0q “ Ap1q “ Apei2πq “ 2π ` 2kπ,

fet absurd.

Observació 2.16 (Propietats del logaritme). (i) Si L és una branca cont́ınua del loga-
ritme en Ω, aleshores eLz “ z per z P Ω. Ara bé, Lpezq “ z no és cert en general,
donat que per a k P Z, ez “ ez`2kπi. Diem doncs que L és una inversa per la dreta
de l’exponencial en Ω. Podem dir el mateix de les branques cont́ınues d’arguments
i arrels.

(ii) Per z1, z2 P Czt0u, com a conjunts de números, tenim que

logpz1 z2q “ log z1 ` log z2.

Ara bé, fixada una branca Lpzq del logaritme de z, pot passar que Lpz1z2q ‰ Lpz1q`

Lpz2q ja que la suma de dos arguments potser no pertany a la mateixa branca. ‚

Exemple 2.17. Considerem els punts ´1 ´ i, 1 ´ i. Llavors

Log pp´1 ´ iqp1 ´ iqq “ Logp´2q “ ln 2 ` iArgp´2q “ ln 2 ` πi.

Per altra banda,

Log p´1 ´ iq ` Log p1 ´ iq “ pln
?
2 ´

3π

4
iq ` pln

?
2 ´

π

4
iq “ ln 2 ´ πi. ♢
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Exercicis

2.3.1. Doneu exemples que mostrin la falsedat de la igualtat Log pa ¨ bq “ Log a ` Log b.
(Per exemple, a “ b “ ´1 ´ i). Ž

2.3.2. Sigui L una determinació del logaritme en Czp´8, 0s tal que Lp1q “ 2πi. Proveu
que la funció fpzq “ Lpz ` 3q és cont́ınua en

D :“ tz P C; Re pzq ą ´3u .

Quant val fp3iq? Ž

2.3.3. Una branca de l’argument Apzq (o del logaritme Lpzq) queda fixada si donem i) el
domini Ω on està definida ii) el valor de Apzq (o de Lpzq) d’un punt d’Ω. Conside reu
els dominis:

Ω1 “ Cz
␣

reiπ, r ě 0
(

; Ω2 “ Cz

!

reiπ{4, r ě 0
)

Ω3 “ Cz ptx P r´1, 0su Y t´1 ` iy, y P r0, 1.5su Y tx` 1.5i, x P r´1,8quq .

Completeu la següent taula.

Ω1 Ω2 Ω3

Ap1q “ 0 Apiq “ Apiq “ Apiq “

Lpiq “ Lpiq “ Lpiq “

Lp2iq “

Ap1q “ ´2π Apiq “ Apiq “ Apiq “

Lpiq “ Lpiq “ Lpiq “

Lp2iq “

Apiq “ ´3π
2 Ap1q “ Ap1q “ Ap1q “

Lp1q “ Lp1q “ Lp1q “

Lp2iq “

Ž

2.3.4. Estudieu si existeix alguna determinació del logaritme en els conjunts següents i
determineu els possibles conjunts imatge:

a) tz P C | Re z ą 0u, b) tz P C | Re z ą Im zu, c) tz P C | 1 ă |z| ă 2u. Ž

2.3.5. Calculeu els possibles valors de

a) logp1q, b) logp´1q, c) logp1 ` iq, d) logp1´ i
?
3q, e) logpiq. Ž

2.3.6. Escrivim cos z “ peiz ` e´izq{2 i sin z “ peiz ´ e´izq{2i. Resoleu les equacions
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a) ez “ 2i,

b) Logpz2 ´ 1q “ iπ{2,

c) e2z ` ez ` 1=0,

d) cos z “ 2i,

e) cos z “ sin z.

2.4. Potències complexes

Definició 2.18 (Potències complexes). Sigui z P C amb z ‰ 0 i a P C. Sabem que z “ eLz

per a qualsevol branca del logaritme L i per tant, per a n P Z, zn “ peLzqn “ enLz.
Llavors definim

za :“ ea log z “ eapln |z|`i arg zq “ eapLog z`2kπiq. ‚

Advertència 2.19. L’anterior definició és un abús de notació en tota regla, i no l’aplica-
rem mai quan a la base escrivim el nombre e: sempre parlem de

ea “ eRe aeiIm a

i no de
ea ‰ ea log e “ eap1`2kπiq,

la desigualtat sent certa sempre que a R Z. Notem que aquesta definició seria, en el fons,
circular! ‚

A priori, la potència za pren infinits valors com arg z. Per exemple, donat que log i “

log 1 ` ipπ2 ` 2kπq “ ipπ2 ` 2kπq,

ii “ ei log i “ eipip
π
2

`2kπqq “ e´pπ
2

`2kπq; k P Z,

que pren infinits valors reals.

Hi ha casos en què pren un nombre finit de valors, com i1{4 que pren 4 valors.

Observació 2.20. De fet es pot comprovar que si z, a P C i z ‰ 0,

• Si a P Q aleshores za “ eaLog ze2kπia pren un nombre finit de valors.

• El valor és únic si i només si a P Z (és a dir, no depèn de la branca del logaritme
escollit). En aquest cas tenim una potència natural de z o de z´1.

• Si a “ p{q P Q, amb q ą 0 i mcdpp, qq “ 1, aleshores zp{q pren exactament q valors.

• Si a no és racional, za té infinits valors que difereixen en un factor e2πika. ‚

Observació 2.21. Comparem zazb amb za`b.

• zazb “ epa`bqLog z`2πipka`jbq, on k, j P Z,

• za`b “ epa`bqLog z`2πimpa`bq, on m P Z.
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Per tant, com a conjunts, za`b Ă zazb, amb igualtat quan a P Z o b P Z.
Anàlogament

• pzaqb “ eabLog z`2πipka`jqb, on k, j P Z,

• zab “ eabLog z`2πimab, on m P Z,

i tenim que zab Ă pzaqb, amb igualtat quan b P Z.
En canvi, śı que és cert que

pabqc “ ec logpabq “ ecplog a`log bq “ acbc.

‚

Exercicis

2.4.1. Trobeu l’error en el següent raonament de Bernoulli: p´zq2 “ z2, llavors 2 logp´zq “

2 log z. Per tant, logp´zq “ logpzq. Ž

2.4.2. Calculeu els possibles valors de

a) ii, b) p
?
3 ` iq1´i, c) 2´i, d) pi2qi, e) piiq2. Ž

2.4.3. Determinar expĺıcitament la inversa de qpzq “ 2ez ` e2z en funció de logaritmes.
Resoldre qpzq “ 3, trobant totes les solucions.

2.4.4. Siguin h0pzq, h1pzq i h2pzq les determinacions de l’arrel cúbica en Ω “ Czp´8, 0s

tal que h0p1q “ 1, h1p1q “ e2πi{3 i h2p1q “ e4πi{3.

i) Descriviu hjpΩq per j “ 0, 1, 2.

ii) Per j “ 0, 1, 2 relacioneu hj amb Log i Arg (on Log i Arg denoten les branques
principals del logaritme i de l’argument respectivament).

iii) Usant les relacions anterior, trobeu el valor de hjpiq, per j “ 0, 1, 2. Ž

2.5. Determinacions de logaritmes i arrels de funcions

Recordem que L és una branca o determinació del logaritme de z en Ω si L és cont́ınua
en Ω i

eLpzq “ z @z P Ω.

Definició 2.22. Sigui X espai mètric (normalment X “ Ω Ă C obert o X “ ra, bs un
interval). Sigui f : X Ñ Czt0u cont́ınua. Una determinació del logaritme de f en X és
una funció Lf : X Ñ C cont́ınua tal que

eLf pxq “ fpxq @x P X. ‚

41



2. Funcions de variable complexa

Com sempre, està relacionat amb l’argument.

Definició 2.23. Diem que Af és una determinació de l’argument de f en X si Af és
cont́ınua en X i

fpxq “ |fpxq| eiAf pxq @x P X. ‚

Observació 2.24. Si tenim una determinació Af de l’argument de f , llavors també tenim
una determinació del logaritme de f definint

Lf pxq :“ ln |fpxq| ` iAf pxq.

També, si Lf és una determinació del logaritme de f , llavors ImLf és una determinació
de l’argument de f . Resumint, hi ha determinació del logaritme si i només si, hi ha
determinació de l’argument. ‚

Exemple 2.25. Si X “ Czt0u i fpzq “ z, llavors no existeix cap determinació de
log fpzq “ log z en X. (Vàrem veure que no hi ha cap argument continu en BD). ♢

Exemple 2.26. Si X “ r0, 1s i fpxq “ e4πix, llavors Lf pxq “ 4πix és una determinació
de log f en X (altres serien ip4πx` 2kπq). ♢

Definició 2.27. Diem que Sf és una determinació de l’arrel n-èssima de f en X, n
?
f , si

Sf és cont́ınua en X i
Sf pxqn “ fpxq @x P X. ‚

Observació 2.28. (i) Si hi ha una determinació Lf del logaritme de f , aleshores hi ha
determinació de n

?
f .

Simplement definim Sf pxq “ e
1
n
Lf pxq.

(ii) Pot existir una determinació de l’arrel n-èssima n
?
f , encara que no n’hi hagi cap del

logaritme.

Per exemple, sigui fpzq “ zn per z P Czt0u “: Ω. La funció Sf pzq “ z és una
determinació de n

?
f en Ω (doncs Sf pzqn “ fpzq). Però la funció f no té determinació

del logaritme en Ω.

Efectivament, suposem que existeix una determinació del logaritme de f , que ano-
menem Lf i arribarem a una contradicció: definim φptq “ e2πit, t P r0, 1s. Llavors
h0ptq “ 2πint i h1ptq “ Lf pφptqq són determinacions del logaritme de la funció φn

en r0, 1s. En efecte,

eh1ptq “ eLf pφptqq “ eLf pe2πitq “ fpe2πitq “ pe2πitqn “ pφptqqn,

i, per altra banda,
eh0ptq “ e2πint “ φptqn.
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Per tant, per a tot t P r0, 1s, eh0ptq “ eh1ptq, amb el que existeix k P Z tal que
h1 “ h0 ` 2kπi, vegeu la proposició 2.30.

A més a més, com que φp0q “ e2πi0 “ e2πi “ φp1q, es compleix que

h1p0q “ Lf pφp0qq “ Lf pφp1qq “ h1p1q.

Però,

0 “ h1p0q ´ h1p1q “ h0p0q ` 2πik ´ ph0p1q ` 2πikq “ 2πin ¨ 0 ´ 2πin ¨ 1 ‰ 0!!

(iii) Si existeix una determinació L del logaritme de z en la imatge fpΩq, aleshores hi ha
determinació del logaritme de f en Ω.

Simplement, definim Lf pzq “ Lpfpzqq.

Ara bé, el reciproc no és cert. Pot existir determinació del logaritme de f en Ω,
encara que no hi hagi cap logaritme continu de z en fpΩq. N’hi ha prou amb prendre
fpzq “ ez, Lf pzq “ z, Ω “ C, fpΩq “ C˚, vegeu l’exemple 2.29. ‚

Exemple 2.29. Sigui γ : ra, bs Ñ BD cont́ınua i w0 P C tal que ew0 “ γpaq. Llavors
existeix una única determinació del logaritme de γ, Lγ , complint que Lγpaq “ w0. Es
demostra a la proposició 5.1. En canvi, no hi ha determinació del logaritme de BD, vegeu
la proposició 2.15. ♢

Proposició 2.30. Sigui X espai mètric connex, i f : X Ñ Czt0u cont́ınua. Si L1 i L2

són dues determinacions del logaritme de f en X, llavors

L1pxq “ L2pxq ` 2πki; x P X

per un cert k P Z.

Demostració. Per x P X, tenim que

eL1pxq “ fpxq “ eL2pxq ñ Dkx P Z : L1pxq ´ L2pxq “ 2kxπ i.

Com que L1 i L2 són cont́ınues en X, aleshores la funció k : X Ñ Z definida per

kpxq :“ kx “
L1pxq ´ L2pxq

2πi

és cont́ınua en X. Com X és connex, llavors kpXq és un connex de Z, i per tant és un
punt, amb el que kpxq “ k per a tot x P X.

Exercicis

2.5.1. Sigui X un espai topològic connex. Demostreu que si S1 i S2 són dues determina-
cions de l’arrel n-èsima de f : X Ñ Czt0u llavors existeix una arrel n-èsima de la unitat
ζ tal que S2pxq “ ζ ¨ S1pxq, per a tot x P X. Ž
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2.5.2. Determineu els dominis de continüıtat (és a dir l’obert maximal on una funció és
cont́ınua) de les funcions ez

2
, e1{z, 1{ez, 1{pez ´ 1q, de la branca principal de

?
1 ´ z i de

la branca principal de
?
1 ` ez. Ž

2.5.3. Donar una determinació de fpzq que sigui cont́ınua a la regió D donada.

a) f1pzq “ pz2 ´ 1q1{2, D “ tz P C : |z| ă 1u,

b) f2pzq “ pz2 ` 4q1{2, D “ Cztiy P C : |y| ă 2u,

c) f3pzq “ pz4 ´ 1q1{2, D “ tz P C : |z| ą 1u,

d) f4pzq “ pz3 ´ 1q1{3, D “ tz P C : |z| ą 1u. Ž

2.6. Sèries de potències de nombres complexos

Una sèrie de potències de nombres complexos és una expressió de la forma

ÿ

ně0

anpz ´ bqn,

on tanu és una successió de nombres complexos i b P C.
Per tal d’estudiar sèries de potències de nombres complexos, primer ens cal recordar

diversos conceptes i resultats.

Definició 2.31 (Convergència uniforme). Diem que fn Ñ f uniformement en A si

sup
zPA

|fnpzq ´ fpzq| Ñ 0.

Dit d’una altra manera, per tot ε ą 0 existeix nε P N tal que per tot n ą nε i tot z P A es
té |fnpzq ´ fpzq| ď ε. També, una sèrie de funcions

ř

ně0 fn convergeix uniformement en
A si la successió

řn
k“0 fk convergeix uniformement en A. ‚

Observació 2.32. Recordem que una successió tfnu és uniformement convergent si i
només si és uniformement de Cauchy, i el mateix passa per una sèrie

ř

gk. És a dir, que
per tot ε ą 0 existeix un n0 P N tal que per tot m ě n ě n0 tenim que

sup
zPA

|fnpzq ´ fmpzq| ă ε, i sup
zPA

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“n

gkpzq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ε respectivament. ‚

Teorema 2.33 (Criteri M de Weierstrass). Si tenim una sèrie de funcions
ř

n fn, on
fn : A Ñ C, de manera que |fnpzq| ď Mn per a tot z P A, amb

ř

nMn ă 8, aleshores la
sèrie

ř

n fn convergeix absolutament i uniforme en A.

Demostració. És una aplicació immediata de l’observació 2.32.
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Teorema 2.34 (Cauchy-Hadamard6). Sigui
ř

ně0 anpz´bqn sèrie de potències de nombres
complexos. Llavors existeix un únic R P r0,`8s de manera que

(a) La sèrie convergeix absolutament per a tot z P C amb |z ´ b| ă R.

(b) Per z P C amb |z ´ b| ą R, la sèrie és divergent.

(c) Si 0 ď r ă R, la sèrie convergeix absolutament i uniforme en |z ´ b| ď r.

A més, es té
1

R
“ lim sup n

a

|an|.

R s’anomena radi de convergència de la sèrie de potències.

Observació 2.35. Cal entendre bé el significat de convergència uniforme en el teorema
anterior. Dir que per tot r ă R hi ha convergència uniforme en Drpbq no significa que
hi hagi convergència uniforme en el disc de convergència DRpbq. El que significa és que
per tot ε ą 0 i tot r ą 0 existeix nε,r tal que per tot n ą nε,r i tot z P Drpbq es té

|fpzq ´
řn

k“0 akpz ´ bqk| ď ε. Pot passar que nε,r
rÑR
ÝÝÝÑ 8, de manera que no podem

esperar convergència uniforme en tot el disc de convergència.
Dit d’una altra manera, la velocitat de convergència sol empitjorar a mesura que ens

apropem a la vora del disc DRpbq. Un exemple paradigmàtic d’aquest comportament és
la funció fnpxq “ xn, que convergeix a zero a l’interval r0, 1q de manera uniforme en r0, rs

per r ă 1, tot i que sup0ďxă1 |fnpxq ´ 0| “ 1. ‚

Abans de demostrar el teorema, vegem alguns exemples.

Exemples 2.36. 1. El radi de convergència de la sèrie de potències
ř

ně0 z
n és R “ 1.

Aqúı aprofitem per recordar que, si 0 ă r ă 1, llavors
ř8

n“0 r
n “ 1

1´r . De la mateixa
manera, també tenim que

ÿ

ně0

zn “
1

1 ´ z
, |z| ă 1.

Aquesta identitat és molt útil per calcular el valor de la suma d’algunes sèries de
potències.

2. Calculem el radi de convergència de la sèrie de potències
ÿ

ně0

2nzn.

Tenim
1

R
“ lim sup

n
?
2n “ 2.

Per tant, el radi de convergència és R “ 1{2, amb el que la sèrie convergeix si
|z| ă 1{2 i és divergent si |z| ą 1{2.

6Jacques Hadamard, Versalles, 1865–1963, https://ca.wikipedia.org/wiki/Jacques_Hadamard
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3. El radi de convergència de la sèrie de potències
ř

ně1 n
nzn és R “ 0. ♢

Prova del Teorema. Clarament (c) implica (a), amb el que només ens cal demostrar (c) i
(b).

(c) Si R “ 0 no hi ha res a demostrar. En cas contrari, prenem ρ amb |z´b| ď r ă ρ ă R.
Llavors

1

ρ
ą

1

R
“ lim sup n

a

|an| “ inf
k
sup
něk

n
a

|an|.

Per tant, existeix un k P N de manera que

n
a

|an| ă
1

ρ
, n ě k.

Per veure la convergència uniforme en |z ´ b| ď r, aplicarem el criteri M de Weierstrass.
Tenim que

ˇ

ˇanpz ´ bqn
ˇ

ˇ ď

ˆ

r

ρ

˙n

, |z ´ b| ď r; n ě k.

Com que r{ρ ă 1, la sèrie
ř

n

´

r
ρ

¯n
és convergent, amb el que pel criteriM de Weierstrass,

la nostra sèrie de potències convergeix absolutament i uniforme en |z ´ b| ď r.
(b) Sigui z P C amb |z ´ b| ą R. Prenem ρ ą R amb |z ´ b| ą ρ. Tenim que

1

ρ
ă

1

R
“ lim sup n

a

|an|.

De la definició de ĺımit superior, veiem que hi ha infinits nk de manera que nk

a

|ank
| ą 1{ρ.

Aleshores
ˇ

ˇank
pz ´ bqnk

ˇ

ˇ ą
|z ´ b|nk

ρnk
ą 1,

amb el que la sèrie és divergent ja que el terme general no tendeix a zero.

Com veiem, el càlcul del radi de convergència R ens determina tota la regió de con-
vergència de la sèrie (un disc obert de radi R, d’aqúı que R s’anomeni radi de con-
vergència), excepte els punts z amb |z ´ b| “ R, és a dir, els punts de la frontera del
disc de convergència. Per aquests punts, la sèrie tant pot ser convergent com divergent, i
s’ha d’estudiar apart (ho farem més endavant).

Exercicis

2.6.1. Considereu la sèrie de potències Spzq :“
ř8

n“0 anpz ´ iqn. Digueu si són certes les
següents afirmacions.

a) Spzq pot ser divergent en z “ 0 i convergent en z “ ´i simultàniament

b) Spzq pot ser convergent en z “ 1 ` i i en z “ 2 ` i simultàniament

c) Si Spzq és convergent en z “ 1 ` i, aleshores també ho és en z “ 2i
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d) Si Spzq és divergent en z “ 2i, aleshores també ho és en z “ 2 ` i. Ž

2.6.2. Sigui fpzq “
8
ř

n“0
anz

n una sèrie convergent en el disc D “ DRp0q. Demostreu que

ˆ 2π

0
|fpreiθq|2

dθ

2π
“

8
ÿ

n“0

|an|2r2n, si 0 ă r ă R. Ž

2.6.3. Sigui S1pzq “
8
ř

n“1
anz

n i S2pzq “
8
ř

n“1
anz

n´1. Demostreu que S1 és convergent en

z si i només si ho és S2. En cas afirmatiu, tenim que S1pzq “ zS2pzq.

2.7. Càlcul del radi de convergència

Pel criteri del quocient, observació 1.26, podem obtenir una altra manera de calcular el
radi de convergència d’una sèrie de potències, que en alguns casos pot ser més convenient
que aplicar el criteri de l’arrel.

Lema 2.37 (Criteri del quocient). Podem calcular el radi de convergència de la sèrie de
potències

ÿ

ně0

anpz ´ bqn

amb la fórmula

R “ lim
n

|an|

|an`1|
,

sempre que aquest ĺımit existeixi.

Exemples 2.38. Calculem el radi de convergència R de les següents sèries de potències:

(1)
ÿ

ně1

nzn. Apliquem el criteri del quocient. Tenim que

R “ lim
n

n

n` 1
“ 1.

(2)
ÿ

ně1

zn

pn` 1q!
. Aplicant el criteri del quocient, tenim que

R “ lim
n

1{pn` 1q!

1{pn` 2q!
“ lim

n

pn` 2q!

pn` 1q!
“ lim

n
pn` 2q “ `8.

El criteri del quocient sol ser més simple per fer els càlculs, especialment quan apareixen
factorials. ♢
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Advertència 2.39. El fet que existeixi el ĺımit superior

lim sup
|an`1|

|an|
,

no implica que aquest coincideixi amb lim sup n
a

|an|, vegeu l’Observació 1.26. ‚

Exemple 2.40. Per tant, per calcular el radi de convergència R de la sèrie de potències
ÿ

ně1

n2nz2n

no podem aplicar directament el criteri del quocient. Per tal de calcular R en aquest cas,
ho podem fer:
(i) Aplicant la definició de R amb la fórmula 1

R “ lim sup n
a

|an|. En el nostre cas, tenim
que a2n “ n2n i an val zero si n és senar. Llavors

1

R
“ lim sup n

a

|an| “ lim 2n
a

|a2n| “ lim
2n
?
n2n “

?
2 lim 2n

?
n “

?
2,

amb el que R “ 1{
?
2.

(ii) Fent el canvi de variables w “ z2 obtenim la sèrie de potències
ř

ně1 n2
nwn. Apli-

quem el criteri del quocient per calcular el radi de convergència R1 d’aquesta nova sèrie:

R1 “ lim
n

n2n

pn` 1q2n`1
“

1

2
lim
n

n

n` 1
“ 1{2.

Aleshores la sèrie és convergent si |w| ă 1{2 i divergent si |w| ą 1{2. És a dir, la nostra sèrie
inicial és convergent si |z2| ă 1{2 ô |z| ă 1{

?
2, i és divergent si |z2| ą 1{2 ô |z| ą 1{

?
2.

Aix́ı també obtenim que R “ 1{
?
2. ♢

Exemple 2.41. Calculem el radi de convergència R de la sèrie de potències lacunar7

ÿ

ně1

2´n z2
n
.

Aqúı no tenim cap canvi de variable que ens permeti aplicar el criteri del quocient. Ales-
hores hem de fer servir la definició

1

R
“ lim sup n

a

|an|.

Ara observem que an sempre val zero excepte quan n “ 2k, que tenim que a2k “ 2´k.
Llavors

1

R
“ lim sup n

a

|an| “ lim sup 2k
a

|a2k | “ lim
k

2k
?
2´k “ lim

k
2

´ k

2k “ 20 “ 1,

amb el que R “ 1. ♢

7https://en.wikipedia.org/wiki/Lacunary_function
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Fins ara, només hem vist exemples de càlcul quan els coeficients són reals. No hi ha
diferència si els coeficients són complexos, ja que sempre estem treballant amb el mòdul
dels coeficients.

Exemple 2.42. Calculem el radi de convergència de la sèrie de potències

8
ÿ

n“0

1

n` i
zn.

En aquest cas, tenim que an “ 1
n`i , amb el que |an| “ 1

|n`i| “ 1?
n2`1

. Per tant

R “ lim
n

|an|

|an`1|
“ lim

n

a

pn` 1q2 ` 1
?
n2 ` 1

“ 1. ♢

Exemple 2.43. Per veure un altre exemple, calcularem el radi de convergència R de la
sèrie de potències

8
ÿ

n“1

´ 1

n
`

p´1qnp1 ´ iq

1 ` i

¯

zn.

En aquest cas, tenim que

an “

´ 1

n
`

p´1qnp1 ´ iq

1 ` i

¯

“

´ 1

n
` p´1qn`1 i

¯

ja que
1 ´ i

1 ` i
“

p1 ´ iq2

|1 ` i|2
“

´2i

2
“ ´i.

Llavors

|an| “

c

1

n2
` 1 “

?
1 ` n2

n
,

amb el que

R “ lim
n

|an|

|an`1|
“ lim

n

?
1 ` n2

n
¨

pn` 1q
a

pn` 1q2 ` 1
“ 1. ♢

Exercicis

2.7.1. Calculeu el radi de convergència de les següents sèries de potències

a)
8
ÿ

n“1

nαzn; α P R,

b)
8
ÿ

n“1

pn` 1qpn` 2q . . . 2n

nn
zn,

c)
8
ÿ

n“1

pz ` iq2
n

nn
,

d)
8
ÿ

n“1

n!

p2nqn
pz ´ 1qn,
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e)
8
ÿ

n“0

an
2
pz ` 1qn a P p0, 1q,

f)
8
ÿ

n“1

p2zqn
?
n

,

g)
8
ÿ

n“1

p´1qn

npn` 1q
pz ´ 2qnpn`1q,

h)
8
ÿ

n“0

zn

n` 2n
,

i)
8
ÿ

n“1

n2p3z ´ 2qn,

j)
8
ÿ

n“0

p1 ` p´1qnqnz2
n
. Ž

2.8. Comportament a la frontera del disc de convergència

Quan estudiem la convergència d’una sèrie de potències de nombres complexos
ÿ

ně0

anpz ´ bqn,

amb radi de convergència R, sabem que la sèrie convergeix per |z ´ b| ă R, i que la sèrie
és divergent quan |z ´ b| ą R. Què passa pels punts z amb |z ´ b| “ R ? Llavors pot
convergir o no. Per exemple, la sèrie de potències

ÿ

ně1

1

n
zn

té radi de convergència R “ 1. Per z “ 1, la sèrie és divergent, i per z “ ´1 la sèrie és
alternada i, per tant, convergent (aqúı quedaria estudiar els altres punts del cercle |z| “ 1).
En la frontera del disc de convergència, tenim que z ´ b “ Reit, aix́ı que la sèrie a

estudiar queda
ÿ

ně0

anR
neint.

Per tal d’estudiar la convergència per t fixat, el primer que hem de fer és mirar si el terme
general tendeix a zero o no. És a dir, mirem si

ˇ

ˇ

ˇ
anR

neint
ˇ

ˇ

ˇ
Ñ 0 quan n Ñ 8.

En cas que no tendeixi a zero, llavors ja sabem que la sèrie és divergent. En cas que
tendeixi a zero, ens cal estudiar-ho millor.
Si no hem tret cap conclusió del primer pas, el següent pas natural sol ser comprovar

si la sèrie decreix prou ràpidament, de manera que tinguem convergència absoluta a la
frontera, és a dir si

ÿ

|anR
n| ă `8.

Aleshores pel criteri M de Weierstrass la sèrie convergeix uniformement i absoluta en el
disc tancat DRpbq.

Si no es compleix cap de les dues situacions anteriors, és a dir, si la sèrie no convergeix
absolutament en cap punt de la frontera del disc de convergència però no podem garantir
la divergència arreu, aleshores ens caldrà filar més prim.
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2. Funcions de variable complexa

Lema 2.44 (Fórmula de sumació per parts). Siguin tanu, tbnu successions de nombres
complexos, i posem An “ a0 ` ¨ ¨ ¨ ` an. Llavors

n
ÿ

k“0

akbk “ Anbn`1 ´

n
ÿ

k“0

Akpbk`1 ´ bkq.

Demostració. Posant A´1 “ 0, tenim que

n
ÿ

k“0

akbk “

n
ÿ

k“0

pAk ´Ak´1q bk “

n
ÿ

k“0

Akbk ´

n´1
ÿ

k“0

Akbk`1

“

n
ÿ

k“0

Akpbk ´ bk`1q `Anbn`1.

Com a cas particular, estudiem les cues
řm

j“n akbk ambm ą n. En tal cas podem definir

rak “ an`k, rbk “ bn`k i rAk “
řk

j“0 raj “
řn`k

j“n aj . Aplicant la fórmula de sumació per
parts, tenim que

m´n
ÿ

k“0

rakrbk “ rAm´n
rbm´n`1 ´

m´n
ÿ

k“0

rAkprbk`1 ´rbkq.

Dedüım doncs la següent identitat:

m
ÿ

k“n

akbk “ An,mbm`1 `

m
ÿ

k“n

An,kpbk ´ bk`1q, (2.1)

on ara An,k “
řk

j“n aj .
Per altra banda, notem que per tota constant A P C tenim que

Abm`1 ´Abn `

m
ÿ

k“n

Apbk ´ bk`1q “ 0.

Com que Ak “
řk

j“0 aj “ An,k ` An´1 (per tot k ě n), prenent A “ An´1, de (2.1) en
dedüım que

m
ÿ

k“n

akbk “ Ambm`1 ´An´1bn `

m
ÿ

k“n

Akpbk ´ bk`1q. (2.2)

Teorema 2.45 (Criteri de Dirichlet-Abel uniforme). Siguin X,Y dos conjunts. Siguin
tanuně1, una successió de funcions an : X Ñ C i tbnuně1 una successió de funcions
bn : Y Ñ R . Suposeu que es verifica alguna de les següents dues condicions:

1. (criteri de Dirichlet) Existeix M ą 0 pel qual
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

k“1

akpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď M,

per a tot x P X i N ě 1.
La successió tbnuně1 és no negativa i decreix cap a 0 uniformement en Y (i.e.
bn`1pyq ď bnpyq per a tot n ą 0 i per a tot y P Y , i bnpyq Ñ 0 uniformement
en Y ).
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2. Funcions de variable complexa

2. (criteri d’Abel) La sèrie
ř8

n“1 anpxq convergeix uniformement en X.
La successió pbnq és una successió monòtona de funcions reals fitada uniformement
en Y .

Aleshores, la sèrie funcional
ř8

n“1 anpxqbnpyq convergeix uniformement en X ˆ Y .

Demostració. Demostrem el criteri de Dirichlet. Posem Sn,mpx, yq “
řm

k“n akpxqbkpyq, i
sigui ε ą 0. Pel criteri de Cauchy uniforme (vegeu l’observació 2.32), ens cal veure que hi
ha n0 P N de manera que per a tot x P X, y P Y ,

ˇ

ˇSn,mpx, yq
ˇ

ˇ ă ε, m ą n ě n0.

Per la versió (2.2) de la fórmula de sumació per parts (amb a0 “ 0), tenim que

ˇ

ˇSn,mpx, yq
ˇ

ˇ “

ˇ

ˇ

ˇ

m
ÿ

k“n

akpxqbkpyq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

m
ÿ

k“n

Akpxqpbkpyq ´ bk`1pyqq `Ampxqbm`1pyq ´An´1pxqbnpyq

ˇ

ˇ

ˇ
,

on Akpxq “
řk

j“1 ajpxq, que per hipòtesi estan uniformement fitades per M .
Com que bn Ñ 0 uniformement en Y , podem trobar n0 P N, de manera que 2Mbn0pyq ă

ε per a tot y P Y . Siguin m ě n ě n0. Donat que també es compleix que la successió
tbkpxqu és decreixent, i no-negativa, obtenim que per a tot x P X, y P Y ,

ˇ

ˇSn,mpx, yq
ˇ

ˇ ď M
m
ÿ

k“n

|bkpyq ´ bk`1pyq| `Mp|bm`1pyq| ` |bnpyq|q

“ M

˜

m
ÿ

k“n

pbkpyq ´ bk`1pyqq ` pbm`1pyq ` bnpyqq

¸

“ 2Mbnpyq

ď 2Mbn0pyq ă ε.

De manera similar es pot demostrar el criteri d’Abel, usant la fórmula de sumació per
parts (2.1).

Com a conseqüència del criteri d’Abel, tenim el següent resultat que no demostrarem

Teorema 2.46 (Teorema d’Abel). Si la sèrie de potències
ř8

n“0 anpz ´ bqn convergeix
uniformement en un conjunt A Ă C, llavors també convergeix uniformement en el con

CpA, bq “ b`
ď

0ďtď1

tpA´ bq.

En particular, si la sèrie convergeix en z0 amb |z0 ´ b| “ R, llavors

lim
rÑ1´

ÿ

ně0

anr
npz0 ´ bqn “

ÿ

ně0

anpz0 ´ bqn.
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2. Funcions de variable complexa

Demostració. Vegeu l’exercici 2.8.2

Exemple 2.47. Considerem la sèrie de potències Spzq “
ř8

n“1
zn

n .
Mètode 1: El radi de convergència és R “ 1. Veiem com és comporta en |z| “ 1.

Clarament, la sèrie
ř

n
p´1qn

n és convergent pel criteri de Dirichlet. Ara bé, el criteri de
Dirichlet ens serveix també per estudiar la convergència de la sèrie

ř

n
1
ne

int. Tenim que

n
ÿ

k“1

eikt “ eit
p1 ´ eintq

1 ´ eit
“ ei

pn`1qt
2

sinpnt2 q

sinp t
2q
,

on hem fet servir que

1 ´ eit “ ei
t
2

`

e´i t
2 ´ ei

t
2

˘

“ ´2iei
t
2 sin

t

2
,

i de la mateixa manera,

1 ´ eint “ ´2iei
nt
2 sin

nt

2
.

Com que
ˇ

ˇ

ˇ
ei

pn`1qt
2

ˇ

ˇ

ˇ
“ 1, i | sinpnt2 q| ď 1, obtenim

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

eikt

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

| sinp t
2q|

ď
C

|ε|
si t P rε, 2π ´ εs.

Com que 1
n Œ 0, aplicant el criteri de Dirichlet, obtenim que la sèrie

ÿ

ně1

1

n
eint convergeix uniformement en rε, 2π ´ εs.

O equivalentment, en tot arc I tancat del cercle unitat que no contingui a z “ 1.
I per tant, aplicant el teorema d’Abel, la sèrie

ř8
n“1

zn

n és uniformement convergent en
el con treit; 0 ď r ď 1, t P rε, 2π´ εsu. Per Cauchy-Hadamard, també tenim convergència
uniforme en Drp0q si r ă 1, i per tant en tenim a tot compacte contingut en Dzt1u (sempre
el podrem recobrir per la unió d’un con i un disc de radi r ă 1.).
Si t “ 0 ens queda la sèrie

ř 1
n que ja sabem que és divergent.

Mètode 2: Treballem directament amb z P A Ă D. Volem caracteritzar els conjunts A
de manera que hi tinguem convergència uniforme. Primer mirem que hi poguem aplicar
el criteri de Dirichlet. Si z “ 1 la sèrie és divergent. Si ens situem a distància major que
ε, és a dir z P Aε :“ DzDεp1q, aleshores

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

zk

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

z
p1 ´ znq

1 ´ z

ˇ

ˇ

ˇ

ˇ

ď
2

|1 ´ z|
ď

2

ε
,

que és uniforme en Aε i en n. Com que 1
n Œ 0, podem aplicar el criteri de Dirichlet i

concloem directament que S convergeix uniformement en Aε i, per tant en tenim a tot
compacte contingut en Dzt1u. Ens hem estalviat els teoremes d’Abel i Cauchy-Hadamard.
Més endavant (a l’exercici 3.4.5) veurem Spzq “ ´Log p1 ´ zq, aix́ı que quan z Ñ 1

tenim que |Spzq| ě | lnp|1 ´ z|q| Ñ 8, i no podrem tenir convergència uniforme en cap
conjunt que s’acumuli en z “ 1. Per tant, tot conjunt on hi hagi convergència uniforme,
de fet, està contingut en Aε per ε prou petit. ♢

53



2. Funcions de variable complexa

Exercicis

2.8.1. Estudieu la convergència de les següents sèries de potències:

a)
8
ÿ

n“1

zn

n

b)
8
ÿ

n“0

zn`2

pn` 1qpn` 2q

c)
8
ÿ

n“0

z3n`1

3n` 1

d)
8
ÿ

n“1

p´1qpn`1q

n
zn

e)
8
ÿ

n“1

npz ´ iqn´1

5n
. Ž

2.8.2. Demostreu el criteri d’Abel i el teorema d’Abel. Indicació: Vegeu [BC13, Teorema
2.20] per un cas més general en regions no tangencials (angles de Stolz). Ž
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3. Derivació complexa i holomorfia

En aquest caṕıtol definim la derivació complexa i el concepte de funció holomorfa. Veurem
les propietats d’aquesta forma de derivació i ho relacionarem amb les equacions de Cauchy-
Riemann1. Treballarem també la notació de Wirtinger2 que permet fer un càlcul de
derivades complex més eficient. Finalment, veurem que les sèries de potències estudiades
al caṕıtol anterior són holomorfes. Per acabar el caṕıtol, farem una introducció de funcions
holomorfes importants, centrant-nos en les funcions trigonomètriques i en les branques de
les seves funcions inverses.

3.1. Funcions holomorfes

Sigui Ω Ă C un obert; f : Ω Ñ C, i z0 P Ω.

Definició 3.1. Diem que f és C-derivable en z0 si existeix el ĺımit

lim
zÑz0

fpzq ´ fpz0q

z ´ z0
.

En aquest cas posem

f 1pz0q “ lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“ lim

hÑ0

fpz0 ` hq ´ fpz0q

h
.

Diem que f és holomorfa en Ω, i posem f P HpΩq, si és C-derivable en tot punt z0 P Ω.
Una funció holomorfa en C es diu que és una funció entera. ‚

Observació 3.2. Només hem definit funcions holomorfes en un obert, però es poden
definir per altres conjunts. Per exemple, f és holomorfa en un compacte K si hi ha
un obert Ω amb K Ă Ω de manera que podem estendre f a tot l’obert de manera que
f P HpΩq. ‚

Observació 3.3. La definició de f 1pzq es pot escriure també com

fpzq “ fpz0q ` f 1pz0qpz ´ z0q ` opz ´ z0q,

on usem la notació

gpzq “ opzq si lim
zÑ0

gpzq

z
“ 0.

1Georg Friedrich Bernhard Riemann, Breselenz, 1826 – 1866, https://ca.wikipedia.org/wiki/Georg_
Friedrich_Bernhard_Riemann

2Wilhelm Wirtinger, Ybbs an der Donau, 1865 – 1945, https://ca.wikipedia.org/wiki/Wilhelm_

Wirtinger
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3. Derivació complexa i holomorfia

Usarem també la notació

gpzq “ Opzq si lim sup
zÑ0

gpzq

z
ă `8.

Es pot veure fàcilment que si gpzq “ Opznq, aleshores gpzq “ opzn´1q, i que gpz2q “ Opz2nq,
per exemple. ‚

Exemple 3.4. 1. fpzq “ z és holomorfa a tot C.

2. fpzq “ z2 és holomorfa a tot C amb f 1pzq “ 2z. En efecte, tenim que

pz ` hq2 ´ z2

h
“ 2z ` h Ñ 2z si h Ñ 0.

3. fpzq “ zn P HpCq amb f 1pzq “ nzn´1.

4. fpzq “ ez P HpCq amb f 1pzq “ ez. En efecte, tenim que

fpz ` hq ´ fpzq

h
“
ez`h ´ ez

h
“ ez ¨

eh ´ 1

h
Ñ ez si h Ñ 0,

ja que

eh ´ 1

h
“

1

h

8
ÿ

n“1

hn

n!
“ 1 ` Ophq Ñ 1 quan h Ñ 0. ♢

Exemple 3.5 (Funcions no holomorfes). 1. fpzq “ z no és C-derivable en cap punt.
En efecte, tenim que

lim
hÑ0

z0 ` h´ z0
h

“ lim
hÑ0

h

h
.

Si h “ x P R, llavors h
h “ 1, però si h “ iy, tenim que h

h “ ´1 i el ĺımit anterior no
existeix.

2. fpzq “ zn no és holomorfa.

3. Re z i Im z no són holomorfes. ♢

Ja podem començar a veure que una funció holomorfa essencialment només depèn de z
(no té dependència de z, vegeu l’observació 1.11). Donarem un sentit rigorós a aquesta
afirmació a la proposició 3.27

Observació 3.6. Propietats bàsiques de les funcions holomorfes (mateixes proves que per
R).

1. Si f és C-derivable en z0, llavors f és cont́ınua en z0.

2. Si f, g són C-derivables en z0, llavors f ` g i f ¨ g també ho són, amb les regles
habituals de derivació.
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3. Derivació complexa i holomorfia

3. Si f és C-derivable en z0 amb fpz0q ‰ 0, llavors 1{f és C-derivable en z0 amb

ˆ

1

f

˙1

pz0q “ ´
f 1pz0q

`

fpz0q
˘2 .

4. Regla de la cadena: siguin Ω, G Ă C oberts; f : G Ñ Ω i g : Ω Ñ C. Si f és C-
derivable en z0 i g és C-derivable en fpz0q, aleshores la composició g˝f és C-derivable
en z0 amb

pg ˝ fq1pz0q “ g1
`

fpz0q
˘

¨ f 1pz0q. ‚

Exemple 3.7. Més exemples de funcions holomorfes:

1. Donat que fpzq “ z és una funció entera, es compleix que tots els polinomis

P pzq “ a0 ` a1z ` ¨ ¨ ¨ ` anz
n, pa0, ¨ ¨ ¨ , an P C, n ě 0q

són funcions enteres.

2. Les funcions racionals (quocients de polinomis en z) són holomorfes en

Cztzeros del denominadoru. ♢

Proposició 3.8 (Derivada de la inversa). Siguin g : Ω Ñ G i f : G Ñ Ω funcions
cont́ınues de manera que

f
`

gpzq
˘

“ z.

Si f és holomorfa en G i f 1
`

gpzq
˘

‰ 0 per a tot z P Ω, aleshores g és holomorfa en Ω amb

g1pzq “
1

f 1
`

gpzq
˘ .

Demostració. Notem que g és injectiva, és a dir que gpzq “ gpz0q implica que z “ z0.
Efectivament, tenim que

gpzq “ gpz0q ñ z “ f
`

gpzq
˘

“ f
`

gpz0q
˘

“ z0.

Per tant, per z ‰ z0, tenim que gpzq ‰ gpz0q i llavors

1 “
z ´ z0
z ´ z0

“
f
`

gpzq
˘

´ f
`

gpz0q
˘

gpzq ´ gpz0q
¨
gpzq ´ gpz0q

z ´ z0
.

Com que g és cont́ınua, tenim que w “ gpzq Ñ w0 “ gpz0q si z Ñ z0, de manera que, com
que f és holomorfa, obtenim

lim
zÑz0

gpzq ´ gpz0q

z ´ z0
“ lim

zÑz0

1
´

fpgpzqq´fpgpz0qq

gpzq´gpz0q

¯ “
1

limwÑw0

fpwq´fpw0q

w´w0

“
1

f 1pw0q
“

1

f 1pgpz0qq
.
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3. Derivació complexa i holomorfia

Corol.lari 3.9 (Derivada del logaritme). Qualsevol branca cont́ınua del logaritme L és
holomorfa amb

L1pzq “
1

z
.

Observació 3.10. Si, donat α P R, considerem la banda horitzontal oberta

Bα “ tz P C : α ´ π ă Im z ă α ` πu,

llavors la funció exponencial complexa és biholomorfa (és a dir que es tracta d’un difeo-
morfisme holomorf) entre Bα i Czeiαp´8, 0s. ‚

Finalment, vegem que tot logaritme continu en Ω d’una funció holomorfa, és també
holomorf.

Proposició 3.11. Sigui Ω Ă C un obert i f : Ω Ñ Czt0u holomorfa. Sigui Lf una
determinació del logaritme de f en Ω. Llavors Lf és holomorfa en Ω amb

L1
f pzq “

f 1pzq

fpzq
, z P Ω.

Demostració. Fixem z0 P Ω. Com que f és holomorfa, en particular és cont́ınua, de
manera que hi ha δ ą 0 de manera que

f
`

Dδpz0q
˘

Ă D

ˆ

fpz0q,
1

2
|fpz0q|

˙

“: D1.

Com que fpz0q ‰ 0, llavors D1 evita alguna semirecta amb origen el 0, i per tant existeix
una determinació Lpwq del logaritme de w en D1, que sabem que ha de ser holomorfa.
Definim

hpzq “ L
`

fpzq
˘

, z P D0 :“ Dδpz0q.

Com que f és holomorfa, llavors h és holomorfa en D0 amb

h1pz0q “ L1
`

fpz0q
˘

¨ f 1pz0q “
f 1pz0q

fpz0q
.

També h és una determinació del logaritme de f en D0. Com que D0 és connex i Lf també
és una determinació del logaritme de f en D0, aplicant la proposició 2.30, tenim que hi ha
k P Z de manera que Lf “ h` 2kπi en D0, i en dedüım que Lf és holomorfa en D0 amb

L1
f pz0q “ h1pz0q “

f 1pz0q

fpz0q
.
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3. Derivació complexa i holomorfia

Exercicis

3.1.1. a) Demostreu la regla del producte per la derivació.

b) Proveu que si f és C-derivable en z0 llavors és cont́ınua en aquest punt.

c) Proveu que si f és C-derivable en z0, llavors

fpzq “ fpz0q ` f 1pz0qpz ´ z0q ` λpzqpz ´ z0q

on λpzq Ñ 0 si z Ñ z0. Ž

3.1.2. Siguin fpzq i gpzq funcions enteres. Decidiu si les següents funcions són enteres:

a) fpzq3,

b) fpzqgpzq,

c) fpzq{gpzq,

d) 5fpzq ` igpzq,

e) fp1{zq,

f) fpgpzqq.

3.1.3. Proveu que gpzq “ 3x2 ` 2x ´ 3y2 ´ 1 ` ip6xy ` 2yq és entera. Escriviu g com a
funció de z.3 Ž

3.1.4. Existeix alguna funció f holomorfa en el disc unitat D tal que per a tot n “ 2, 3, . . .

a) f
`

˘ 1
n

˘

“ 1
2n`1?

b) f
`

˘ 1
n

˘

“ 1
n2 ?

c)
ˇ

ˇf
`

1
n

˘ˇ

ˇ “ 1
lnpn`1q

?

d)
ˇ

ˇf
`

1
n

˘
ˇ

ˇ “ n
n`1? Ž

3.1.5. Doneu una branca de logpz2 ` 2z ` 3q que sigui holomorfa a z “ ´1. Calculeu la
seva derivada en aquest punt. En quin domini és holomorfa la branca que heu definit? Ž

3.1.6. Sigui f una funció holomorfa en un obert Ω Ă C que satisfà |fpzq ´ i| ă 1 per a
tot z P Ω. Demostreu que la funció g definida per

gpzq “
1 ´ i` fpzq

1 ` i´ fpzq

té logaritme holomorf en Ω. Ž

3.1.7. Sigui fpzq “ z3 `1 i z1 “ p´1`
?
3iq{2, z2 “ p´1´

?
3iq{2. Provar que no existeix

cap punt w en el segment que uneix z1 i z2 de manera que fpz2q ´ fpz1q “ f 1pwqpz2 ´ z1q.
Que es pot dir del teorema del valor mitjà per funcions complexes? Ž

3Si fpzq “ upx, yq ` ivpx, yq és holomorfa en un domini Ω que talla la recta real i u, v són holomorfes en
dues variables, llavors es pot provar que fpzq “ upz, 0q ` ivpz, 0q, vegeu l’exercici 4.10.10.
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3.2. Les equacions de Cauchy-Riemann

Les equacions de Cauchy-Riemann ens donen una relació entre la C-derivabilitat i la R-
diferenciabilitat de f (pensada com una funció de dues variables). Una funció f “ u` iv :
Ω Ă C Ñ C la podem pensar com una funció

f : Ω Ă R2 ÝÑ R2

px, yq ÞÑ
`

upx, yq, vpx, yq
˘

.

Recordem que fpx, yq “
`

upx, yq, vpx, yq
˘

és R-diferenciable en px0, y0q, si i només si,
existeix una aplicació lineal

L : R2 ÝÑ R2
ˆ

x
y

˙

ÞÑ

ˆ

a b
c d

˙ˆ

x
y

˙

de manera que

lim
px,yqÑpx0,y0q

›

›

›

›

fpx, yq ´ fpx0, y0q ´ L

ˆ

x´ x0
y ´ y0

˙›

›

›

›

›

›px´ x0, y ´ y0q
›

›

“ 0. (3.1)

Aqúı estem identificant el nombre complex a ` ib amb el vector pa, bq, és a dir amb la

matriu columna

ˆ

a
b

˙

.

En cas que f sigui diferenciable, es compleix que

Dfpx0, y0q “ L “

ˆ

a b
c d

˙

“

ˆ

ux uy
vx vy

˙

,

on ux, uy, vx, vy denoten les derivades parcials de u i de v respectivament.

Vegem com actua L en un nombre complex:
ˆ

a b
c d

˙ˆ

x
y

˙

“ x

ˆ

a
c

˙

` y

ˆ

b
d

˙

.

Aix́ı, amb la identificació z “ x` iy “

ˆ

x
y

˙

, trobem

Lz “ xpa` icq ` ypb` idq.

Escrivint α “ a` ic i β “ b` id, trobem

Lz “ αx` βy “ α
z ` z̄

2
` β

z ´ z̄

2i
“ λz ` µz̄, (3.2)

on λ “
α´iβ
2 i µ “

α`iβ
2 . Per tant, tota aplicació R-lineal L es pot expressar com a suma

d’una aplicació C-lineal en z i una C-lineal en z̄.
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Tornant a la diferencial Dfpx0, y0q “

ˆ

ux uy
vx vy

˙

, trobem α “ ux ` ivx “ fx i β “

uy ` ivy “ fy i en tal cas ens queda

λ “
fx ´ ify

2
“:

Bf

Bz
, µ “

fx ` ify
2

“:
Bf

Bz̄
. (3.3)

Definició 3.12. Posem z “ x` iy, les derivades de Wirtinger (o operadors de Wirtinger)
són els operadors diferencials:

1. B
Bz “ 1

2

´

B
Bx ´ i B

By

¯

;

2. B
Bz “ 1

2

´

B
Bx ` i B

By

¯

.

A vegades, per abreujar escrivim Bf :“ Bzf :“ Bf
Bz i Bf :“ Bz̄f :“ Bf

Bz . ‚

Per tot el que hem vist en aquesta secció, tenim que

Dfz0pzq “ Bfpz0qz ` B̄fpz0qz̄.

Resumint, hem vist que si f és diferenciable en z0 aleshores la diferencial és C-lineal si i
només si B̄fpz0q “ 0, si i només si f és C-derivable en z0, ja que al ĺımit (3.1) podem usar
la descomposició (3.2) posant µ “ 0 i λ “ f 1pz0q.

Notem també que

Bf

Bz
“

1

2

ˆ

B

Bx
` i

B

By

˙

pu` ivq “
1

2
pux ` ivx ` ipuy ` ivyqq “

1

2
ppux ´ vyq ` ipvx ` uyqq,

i se n’extreu que

Bf “ 0 ðñ

#

ux “ vy i

uy “ ´vx,

és a dir, les funcions holomorfes compleixen les equacions de Cauchy-Riemann que enun-
ciem a continuació.

Teorema 3.13. Sigui f : Ω Ă C Ñ C, i z0 “ x0 ` iy0.

fpx` iyq “ upx` iyq ` ivpx` iyq.

Són equivalents:

(a) f és C-derivable en z0 amb f 1pz0q “ a` ic;

(b) f pensada com a funció de R2 en R2 és R-diferenciable en px0, y0q amb

Dfpx0, y0q “

ˆ

a ´c
c a

˙

.
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És a dir, f compleix les equacions de Cauchy-Riemann
"

ux “ vy
uy “ ´vx

que es poden escriure també com

B̄fpz0q “ 0.

En tal cas, notem que paq implica que f 1 “ ux ` ivx “ fx
CR
“ Bf .

Observem que per ser holomorfa en un obert, a part de complir les equacions de Cauchy-
Riemann, la funció ha de ser R-diferenciable en tot l’obert.

Proposició 3.14. Sigui Ω Ă C un obert connex. Si f P HpΩq amb f 1pzq “ 0 per a tot
z P Ω, llavors f és constant.

Observem que el resultat no té per què ser cert si Ω no és connex, encara que śı que la
funció seria constant en cada component connexa.

Demostració. Només cal observar que la hipòtesi f 1 ” 0 implica que la diferencial de f en
cada punt d’Ω és zero i per tant, el resultat és conseqüència del corresponent resultat per
a funcions diferenciables.

Exemple 3.15. 1. Considerem fpzq “ z que és diferenciable a tot R2 amb la iden-
tificació habitual de C amb R2. Si posem fpx ` iyq “ x ´ iy, llavors upx, yq “ x
i vpx, yq “ ´y, i per tant ux “ 1 ‰ ´1 “ vy i f no compleix les equacions de
Cauchy-Riemann en cap punt.

2. Si fpzq “ |z|2 “ x2 ` y2, llavors f és diferenciable a R2. Es compleix que upx, yq “

x2 ` y2 i vpx, yq “ 0, i per tant ux “ 2x, uy “ 2y i vx “ vy “ 0. Per tant, les
equacions de Cauchy-Riemann només es compleixen per x “ y “ 0 i f és només
C-derivable a l’origen. (Aquesta situació no la tractarem en aquests apunts, ja que
si f és només C-derivable en un punt, no es compleixen les propietats fonamentals
de la teoria de Cauchy).

3. Ara comprovarem que la funció

x3 ´ 3xy2 ` ip3x2y ´ y3q

defineix una funció entera.

En efecte, la funció és clarament R-diferenciable. Notem que upx, yq “ x3 ´ 3xy2,
i vpx, yq “ 3x2y ´ y3. Aleshores només ens cal comprovar que es compleixen les
equacions de Cauchy-Riemann:

"

ux “ 3x2 ´ 3y2 “ vy
uy “ ´6xy “ ´vx,

i per tant f defineix una funció entera (és a dir, holomorfa a tot C). ♢
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Observació 3.16 (Efecte de la derivada). Suposem f C-derivable a z0 amb f 1pz0q ­“ 0.
Observem que

x∇u,∇vy “ xpux, uyq, pvx, vyqy “ 0.

Per tant, com que ∇u i ∇v són diferents de zero (es pot veure usant les equacions de
Cauchy-Riemann), concloem que les corbes de nivell de u i v són ortogonals, vegeu la
figura 3.2.
De fet, podem extreure encara més informació de l’existència del ĺımit

lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“ f 1pz0q,

que es pot escriure com

fpzq ´ fpz0q “ f 1pz0qpz ´ z0q ` op|z ´ z0|q.

Concretament, per a z a prop de z0 l’aplicació w ´ w0 amb w “ fpzq i w0 “ fpz0q es
comporta com l’aplicació lineal

w ´ w0 « f 1pz0qpz ´ z0q.

Podem dir doncs que l’aplicació fpzq, en un entorn infinitesimal de z0 dilata les distàncies
en un factor de |f 1pz0q|:

|w ´ w0| « |f 1pz0q| ¨ |z ´ z0|,

i que gira els vectors que surten de z0 en un angle arg f 1pz0q:

argpw ´ w0q « argpz ´ z0q ` arg f 1pz0q,

vegeu la figura 3.2.
Una funció és conforme si l’angle entre dues corbes γ1, γ2 que coincideixen en un punt es

preserva (orientació inclosa). Diem doncs que una funció holomorfa és localment conforme
allà on f 1pzq ‰ 0: si suposem γjp0q “ z0 i γ1

jp0q ‰ 0 per j P t1, 2u, aleshores podem
justificar (exercici) que pf ˝ γjq

1p0q “ f 1pz0qγ1
jp0q i tenim que

argppf ˝ γ1q1p0qq ´ argppf ˝ γ2q1p0qq “ arg
f 1pz0qγ1

1p0q

f 1pz0qγ1
2p0q

“ arg γ1
1p0q ´ arg γ1

2p0q.

D’altra banda, usant la representació de matrius que preserven angles (és a dir les
isometries de determinant 1, anomenades SOp2,Rq, i els seus múltiples) donada a (3.2),
podem veure que la preservació dels angles de funcions amb diferencial no nul.la en un
punt donat implica l’holomorfia en aquest punt, deixem els detalls pel lector. ‚

Observació 3.17 (Jacobià i canvi de variables). Observem que com que f 1 “ fx “

ux ` ivx, tenim que

|f 1|2 “ puxq2 ` puyq2 “ puxq2 ` pvxq2 “ uxvy ´ uyvx,
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fz0 f(z0)
α

α

;

Figura 3.1.: Graella en el pla complex entre ´2 ´ 2i i 2 ` 2i.

que coincideix amb el jacobià de l’aplicació pu, vq : R2 Ñ R2. Efectivament,

Jpu, vq “ detpDpu, vqq “

ˇ

ˇ

ˇ

ˇ

ˆ

ux uy
vx vy

˙ˇ

ˇ

ˇ

ˇ

“ uxvy ´ uyvx.

Per tant, per la regla del canvi de variable, si g és cont́ınua i f és un difeomorfisme entre
un obert U i fpUq, tenim que

ˆ
U
g ˝ fpzq |f 1pzq|2 dmpzq “

ˆ
U
g ˝ fpzq |Jfpzq| dmpzq “

ˆ
fpUq

g dmpwq,

on dm indica la integral de superf́ıcie, sovint denotada dx dy (la identitat funciona amb
la integral en el sentit de Lebesgue si g és mesurable, per exemple) i si prenem gpwq “ 1,
trobem ˆ

U
|f 1pzq|2 dmpzq “

ˆ
fpUq

dmpwq “ mpfpUqq,

és a dir que podem calcular la mesura de Lebesgue del conjunt imatge integrant el quadrat
del mòdul de la derivada. ‚

Exercicis

3.2.1. Representem la identitat al pla complex amb la coloració habitual i amb la graella
entera. Per exemple, la identitat sobre el quadrat Q “ tx ` iy : x, y P p´2, 2qu és la
primera imatge de la figura 3.2. Una de les següents funcions, les diferencials de les quals
no s’anul.len en Q, representa una funció holomorfa en Q. Quina és?
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z0

z1 w0 w1

z0

Figura 3.2.: En la imatge central, trobem la graella en el pla complex en 2Q. La segona
representa fpzq “ z2 ´ 2z ` 2 en el mateix domini amb un gràfic de colors en
coordenades cartesianes (vegeu la secció 2.1). Recordem que es representa la
preimatge de la graella per la funció f . Prenem z0 “ 1 ` i, w0 “ fpz0q “ 0 i
f 1pz0q “ 2i. La tercera imatge és l’aproximació lineal w0 ` f 1pz0qpz´ z0q, que
envia z0 a w0 i produeix una rotació de π

2 i una dilatació de raó 2 entorn de
z0. En general, veiem que els angles de la graella es preserven llevat del punt
z1 “ 1 ` 0i, on s’anul.la la derivada, i l’aproximació (en aquest cas igualtat)

és de grau 2: w “ fpz1q `
f2pz1q

2 pz ´ z1q2.

a) b) c) d) Ž

3.2.2. Trobar els valors de les constants a, b, c de manera que f sigui holomorfa i expresseu-
la en termes de z.

a) fpzq “ x` ay ` ipbx` cyq

b) fpzq “ cosxpcosh y ` a sinh yq ` i sinxpcosh y ` b sinh yq. Ž

3.2.3. Sigui f “ u` iv holomorfa i dues vegades diferenciable en un obert Ω Ă C. Proveu
que les funcions u i v són harmòniques (una funció fpx, yq és harmònica si les seves
segones derivades parcials són cont́ınues i el seu laplacià ∆f :“ fxx ` fyy “ 0.) Ž

3.2.4. Considerem u “ e´xpx sin y ´ y cos yq

a) Provar que u és harmònica.
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b) Trobar una v de manera que f “ u` iv sigui holomorfa (s’anomena harmònica conju-
gada de u).

c) Trobar una expressió compacta de fpzq. Ž

3.2.5. Trobar els polinomis harmònics de la forma ax3 ` bx2y ` cxy2 ` dy3. Trobar la
funció harmònica conjugada i la funció holomorfa corresponent. Ž

3.2.6. Sigui Ω Ă C un domini (és a dir, un obert connex) i f una funció holomorfa en Ω.

1. Proveu que si f només pren valors imaginaris purs, aleshores f és constant.

2. Proveu que si |f | és constant, aleshores f també és constant. Equivalentment si f
només pren valors en una circumferència, llavors f és constant. Ž

3.2.7. Doneu una descripció de les funcions enteres de la forma fpx ` iyq “ upxq `

ivpx, yq. Ž

3.2.8. (a) Determineu els nombres λ P R pels quals

vλpx, yq “ 2 sinx sinh y ` x3 ´ λxy2 ` y

és la part imaginària d’una funció entera fλ i calculeu fλ.

(b) Sigui λ P R un nombre determinat en a). És

gλ “
Bvλ
Bx

´ i
Bvλ
By

una funció entera? Quina relació hi ha entre gλ i fλ? Ž

3.2.9. Decidiu on no són holomorfes les funcions següents

a)
1

z ´ 2 ` 3i
, b)

iz3 ` 2z

z2 ` 1
, c)

3z ´ 1

z2 ` z ` 4
, d)

z2

p2z2 ´ 3z ` 1q2
.Ž

3.2.10. Provar que |z|2 és C-derivable en z “ 0 però enlloc més. Ž

3.2.11. Sigui

fpzq “

#

expp´1{z4q si z ‰ 0

0 si z “ 0.
.

Demostreu que

a) fpzq satisfà les equacions de Cauchy-Riemann a tot punt z P C.

66
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b) f no és cont́ınua al 0 i per tant f no és holomorfa a un entorn del 0. Ž

3.2.12. Si u i v s’expressen respecte a les coordenades polars pr, θq, proveu que les equa-
cions de Cauchy-Riemann es poden expressar de la forma

Bu

Br
“

1

r

Bv

Bθ
,

Bv

Br
“ ´

1

r

Bu

Bθ
.

Indicació: estudieu el ĺımit incremental seguint argz “ θ0 i |z| “ r0. Ž

3.2.13. Quina part del pla es contreu i quina part es dilata si la transformació es realitza
mitjançant la funció:

a) w “ z2;

b) w “ z2 ` 2z;

c) w “
1

z
; d) w “ ez;

e) w “ logpz ´ 1q. Ž

3.3. Càlcul de les derivades

Ja hem vist la definició de funció holomorfa, i hem vist com aquesta condició és equivalent
a ser una funció diferenciable que satisfà les equacions de Cauchy-Riemann. Tornem ara
a visitar els operadors de Wirtinger per mirar d’arribar a unes regles de càlcul senzilles.

Exemple 3.18. Les derivades de fpzq “ z són

Bf

Bz
“

1

2
p1 ´ i ¨ iq “ 1 i

Bf

Bz̄
“

1

2
p1 ` i ¨ iq “ 0.

Les derivades de gpzq “ z̄ són

Bg

Bz
“ 0 i

Bg

Bz̄
“ 1.

♢

Observació 3.19. Es pot comprovar que tot parell de funcions diferenciables satisfà

1. Bpf ¨ gq “ Bf ¨ g ` f ¨ Bg;

2. Bpf ¨ gq “ Bf ¨ g ` f ¨ Bg. ‚

Exemple 3.20. Per inducció, les derivades de fpzq “ zn són

Bf “ nzn´1, i B̄f “ 0.

Igualment, les derivades de gpzq “ pzqm són

Bg “ 0 i B̄g “ mpz̄qm´1.

Combinant, per hpzq “ znpz̄qm trobem

Bh “ nzn´1pz̄qm i B̄h “ mznpz̄qm´1. Ž
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Lema 3.21. Siguin P pzq “
ř

n,mPN:n`mďN an,mz
npz̄qm i Qpzq “

ř

n,mPN:n`mďN bn,mz
npz̄qm

dos polinomis en variables z i z̄. Aleshores P “ Q si i només si an,m “ bn,m per tot n i
m.

Demostració. Suposem que P “ Q. Per l’exemple anterior, tenim que

n!m!an,m “ BnB̄mP p0q “ BnB̄mQp0q “ n!m!bn,m.

La implicació contrària és trivial.

Recordem com s’escriu la diferencial del producte i la regla de la cadena amb els opera-
dors de Wirtinger.

Lema 3.22. Sigui A “

ˆ

a b
c d

˙

una matriu de coeficients reals, i fA l’aplicació lineal de

R2 en R2 associada definida per fApzq “ fApx, yq “ A ¨

ˆ

x
y

˙

per z “ x ` iy. Si escrivim

les columnes d’A usant notació complexa, és a dir α “ a` ic i β “ b` id, aleshores trobem
que per tot px, yq P R2, escrivint z “ x` iy P C, tenim que

fApx, yq “
1

2
rpα ´ iβq z ` pα ` iβq zs .

A més, aquesta és l’única manera d’escriure fApzq “ w1z ` w2z amb w1, w2 P C.

Demostració. A (3.3) hem vist que efectivament fApx, yq “ 1
2 rpα ´ iβq z ` pα ` iβq zs . La

unicitat es deriva del lema anterior.

Observació 3.23. Pel lema 3.22, donada una aplicació f : C Ñ C diferenciable, aleshores
en tot punt z0 del domini i per tot vector z P C tenim que

Dfz0pzq “ Bfpz0q ¨ z ` Bfpz0q ¨ z. ‚

Lema 3.24. [Regla de la cadena] si f i g són diferenciables en un obert, aleshores

1. Bpf ˝ gq “ BfBg ` BfBg;

2. Bpf ˝ gq “ BfBg ` BfBg.

Aqúı cal entendre que si avaluem Bpf ˝ gq en un punt z del seu domini, aleshores en la
primera fórmula Bf i Bf s’avaluen en gpzq.

Demostració. Per la regla de la cadena, tenim que

Dpf ˝ gqz0pzq “ Dfgpz0q ˝Dgz0pzq “ Dfgpz0q pDgz0pzqq .

Usant el lema 3.22 i l’observació 3.23, trobem que per tot z tenim que

Bpf ˝ gqpz0q ¨ z ` Bpf ˝ gqpz0q ¨ z

“ Bfpgpz0qq ¨
`

Bgpz0q ¨ z ` Bgpz0q ¨ z
˘

` Bfpgpz0qq ¨
`

Bgpz0q ¨ z ` Bgpz0q ¨ z
˘

.

Per la unicitat del lema 3.22, trobem les igualtats dels coeficients que acompanyen z i dels
que acompanyen z, és a dir 1 i 2.
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Observació 3.25. En particular, prenent fpzq “ z̄ i combinant el lema anterior amb
l’exemple 3.18, trobem que

1. B g “ Bg; ‚

2. B g “ Bg;

Lema 3.26. Siguin g “ pg1, g2q : C Ñ C ˆ C i f : C ˆ C Ñ C funcions diferenciables. Si
escrivim

Bzf “
1

2

„

Bf

Bx1
´ i

Bf

Bx2

ȷ

, Bzf “
1

2

„

Bf

Bx1
` i

Bf

Bx2

ȷ

,

Bwf “
1

2

„

Bf

Bx3
´ i

Bf

Bx4

ȷ

, i Bwf “
1

2

„

Bf

Bx3
` i

Bf

Bx4

ȷ

,

on identifiquem pz, wq “ px1 ` ix2, x3 ` ix4q „ px1, x2, x3, x4q, aleshores

1. Bpf ˝ gq “ BzfBg1 ` BwfBg2 ` BzfBg1 ` BwfBg2;

2. Bpf ˝ gq “ BzfBg1 ` BwfBg2 ` BzfBg1 ` BwfBg2.

Demostració. La demostració és anàloga a la del lema 3.24, tenint en compte que com a
aplicacions a l’espai euclidià, la matriu que correspon a Df ˝Dg es pot descompondre com

ˆ

Bpuf , vf q

Bpx1, x2q

˙

¨

ˆ

Bpug1 , vg1q

Bpx1, x2q

˙

`

ˆ

Bpuf , vf q

Bpx3, x4q

˙

¨

ˆ

Bpug2 , vg2q

Bpx1, x2q

˙

,

on f “ uf ` ivf , gj “ ugj ` vgj . A cada sumand apliquem el mateix raonament que en el
lema anterior.

Proposició 3.27. Si F : C Ñ C es pot expressar com F pzq “ fpz, zq on f és una funció
diferenciable que és C-derivable respecte a les dues variables, és a dir

f :C ˆ C Ñ C
pz, wq ÞÑ fpz, wq

amb Bf
Bz “ 0 i Bf

Bw “ 0, aleshores

BF pzq “
Bf

Bz
pz, zq i BF pzq “

Bf

Bw
pz, zq,

i les derivades Bf
Bz i Bf

Bw es poden calcular pels mètodes habituals.

Demostració. Prenem gpzq “ pg1pzq, g2pzqq “ pz, zq, que satisfà que Bg1 “ 1, Bg2 “ 0,
Bg1 “ 0, Bg2 “ 1, vegeu l’exemple 3.18. A part, Bf

Bz
pz, zq “ 0 i Bf

Bw
pz, zq “ 0. Aix́ı, pel lema

3.26, trobem que

1. BF “ Bzf ¨ 1 ` Bwf ¨ 0 ` 0 ¨ 0 ` 0 ¨ 1;

2. BF “ Bzf ¨ 0 ` Bwf ¨ 1 ` 0 ¨ 1 ` 0 ¨ 0,
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i la proposició se segueix.

Exemples 3.28. El lema anterior ens diu que si expressem una funció com a producte,
composició, etcètera, de funcions holomorfes en z i z, aleshores només ens cal derivar
independentment cada una de les parts tal com faŕıem amb un polinomi, amb l’altra
variable actuant com una constant (malgrat no ser-ho!). Aix́ı, per exemple,

• Si fpzq “ z2 ` zz3 ` zz2, aleshores Bfpzq “ 2z ` 3zz2 ` z2, i Bfpzq “ z3 ` 2zz.

• Si fpzq “ ez`cospzq, aleshores Bfpzq “ ez`cospzq i Bfpzq “ ez`cospzq ¨ p´ sinpzqq. ♢

Exercicis

3.3.1. Sigui Ω Ă C un obert i f una funció holomorfa en Ω. Definim Ω˚ “ tz P C : z P Ωu

i f˚ : Ω˚ Ñ C donada per f˚pzq “ fpzq. Proveu que f˚ és holomorfa en Ω˚. Ž

3.3.2. Trobeu els punts on la funció f té derivada complexa (i calculeu-la si escau) en els
següents casos. (Podeu fer servir si cal que f 1 “ fx.)

a) fpzq “ |z|4

b) fpx` iyq “ expcos y ` i sin yq

c) fpzq “ z ` 1
z

d) fpzq “ 1
pz´1q2pz2`2q

e) fpzq “ |z|

f) fpx` iyq “ coshx cos y ` i sinhx sin y

g) cos |z|2

h) fpzq “ z ` zz̄ Ž

3.3.3. Donat un polinomi de dues variables reals P px, yq, demostreu que identificant z “

x` iy són equivalents:

1. P es pot expressar com un polinomi en z.

2. P és una funció entera.

3. B̄P “ 0 en C. Ž

3.4. Funcions anaĺıtiques

Definició 3.29. Si Ω és un obert, una funció f : Ω Ñ C és una funció anaĺıtica en Ω si
per a cada punt a P Ω, existeix un disc Drpaq Ă Ω, tal que f és la suma d’una sèrie de
potències

ř8
n“0 anpz ´ aqn en Drpaq. ‚

Veurem a continuació que tota funció anaĺıtica és holomorfa
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Teorema 3.30 (Derivació d’una sèrie de potències). Sigui Spzq “
ř

ně0 anpz ´ bqn una
sèrie de potències amb radi de convergència R ą 0. Llavors la sèrie derivada

8
ÿ

n“1

nanpz ´ bqn´1

té el mateix radi de convergència. A més, S és holomorfa en |z ´ b| ă R amb

S1pzq “

8
ÿ

n“1

nanpz ´ bqn´1, |z ´ b| ă R.

Observació 3.31. Iterant el resultat del teorema, obtenim que tota sèrie de potències
és infinitament derivable en |z ´ b| ă R, i totes les seves derivades són holomorfes en
|z ´ b| ă R.
Per inducció, iterant la fórmula anterior es verifica que

f pkqpzq “

8
ÿ

n“k

npn´ 1q . . . pn´ k ` 1qanpz ´ bqn´k z P DRpbq,

i, en particular,

ak “
f pkqpbq

k!
, k ě 0.

‚

Prova del teorema 3.30. Prenent hpzq “ Spz ` bq, podem suposar que b “ 0, i ens queda
la sèrie de potències

ÿ

ně0

anz
n.

El radi de convergència de
ř

n nanz
n´1 és el mateix que el de

ř

nanz
n (ja que el producte

per un número no canvia el radi de convergència, vegeu l’exercici 2.6.3) que, com que
lim n

?
n “ 1, és

1

R1
“ lim sup n

a

|an| ¨ n
?
n “ lim sup n

a

|an| “
1

R
.

Dit d’una altra manera, les dues sèries tenen el mateix radi de convergència.
Posem

gpzq “

8
ÿ

n“1

nan z
n´1, |z| ă R.

Fixem z0 amb |z0| ă R, i volem provar que S és holomorfa en z0 amb S1pz0q “ gpz0q. Cal
provar doncs que

lim
zÑz0

ˇ

ˇ

ˇ

ˇ

Spzq ´ Spz0q

z ´ z0
´ gpz0q

ˇ

ˇ

ˇ

ˇ

“ 0.

Notem que les sèries convergeixen uniformement en z, z0 P Dρp0q per ρ ă R, però en dividir
per z ´ z0 podŕıem perdre la convergència uniforme i, per tant, no podem permutar ĺımit
i suma a la lleugera.
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Si z P DRp0qztz0u, llavors,

Spzq ´ Spz0q

z ´ z0
´ gpz0q “

8
ÿ

n“1

an

ˆ

zn ´ zn0
z ´ z0

´ nzn´1
0

˙

“

8
ÿ

n“1

anAn,

on A1 “ 0 i per a n ě 2,

An “

n´1
ÿ

m“0

zn´1´m
0 zm ´ nzn´1

0 “

n´1
ÿ

m“0

`

zn´1´m
0 zm ´ zn´1

0

˘

“

n´1
ÿ

m“0

zn´1´m
0 pzm ´ zm0 q

“pz ´ z0q

n´1
ÿ

m“1

zn´1´m
0

m´1
ÿ

k“0

zm´1´k
0 zk “ pz ´ z0q

n´1
ÿ

m“1

m´1
ÿ

k“0

zn´2´k
0 zk.

Per tant, si triem |z0| ă ρ ă R, per a |z| ă ρ i n ě 2, es compleix que

|An| ď|z ´ z0|

n´1
ÿ

m“1

m´1
ÿ

k“0

|z0|n´2´k|z|k ď |z ´ z0|

n´1
ÿ

m“1

m´1
ÿ

k“0

ρn´2

“|z ´ z0|

˜

n´1
ÿ

m“1

m

¸

ρn´2 “ |z ´ z0|
npn´ 1q

2
ρn´2 ď |z ´ z0|n2ρn´2.

Tot plegat ens dona que si |z| ă ρ,

ˇ

ˇ

ˇ

ˇ

Spzq ´ Spz0q

z ´ z0
´ gpz0q

ˇ

ˇ

ˇ

ˇ

ď |z ´ z0|

8
ÿ

n“2

n2|an|ρn´2.

Però les sèries de potències
ř8

n“2 n
2|an|zn´2 i

ř8
n“2 n

2|an|zn tenen el mateix radi de
convergència, i el radi d’aquesta darrera sèrie és

1

lim supnpn2|an|q
1
n

“
1

lim supnp|an|q
1
n

“ R ą ρ.

Aix́ı doncs,
ř8

n“2 n
2|an|ρn´2 “ C ă 8 i, per tant,

lim
zÑz0

ˇ

ˇ

ˇ

ˇ

Spzq ´ Spz0q

z ´ z0
´ gpz0q

ˇ

ˇ

ˇ

ˇ

ď lim
zÑz0

C|z ´ z0| “ 0,

com voĺıem demostrar.

A partir del teorema acabat de provar, sabem que tota sèrie de potències és holomorfa
en el seu disc de convergència i que es deriva fent-ho terme a terme. Amb això, podem
calcular el valor de la suma de diverses sèries. Per exemple, sabem que

1

1 ` z
“

8
ÿ

n“0

p´1qnzn, |z| ă 1.
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Derivant, obtenim

´
1

p1 ` zq2
“

8
ÿ

n“1

p´1qnnzn´1, |z| ă 1.

Per tant,

´
z

p1 ` zq2
“

8
ÿ

n“1

p´1qnnzn, |z| ă 1.

Observem que la classe de funcions anaĺıtiques en un obert Ω Ă C és trivialment tancada
per la suma. Es compleix que també és tancada respecte al producte, com a conseqüència
del teorema de Mertens:

Teorema 3.32. Siguin f i g les sumes de les sèries de potències
ÿ

ně0

anpz ´ aqn i
ÿ

ně0

bnpz ´ aqn

en Drpaq, respectivament, amb r menor que ambdós radis de convergència.
Llavors la sèrie producte de Cauchy d’aquestes dues,

8
ÿ

n“0

˜

n
ÿ

k“0

akbn´k

¸

pz ´ aqn

convergeix absolutament en Drpaq i la seva suma és f ¨ g en Drpaq.
En particular, el producte de dues funcions anaĺıtiques en un obert de C és anaĺıtica en

aquest obert.

Exercicis

3.4.1. Discutir l’analiticitat de

a) 8z̄ ` i,

b)
z

z̄ ` 2
,

c)
z3 ` 2z ` i

z ´ 1
(vegeu la figura 3.7),

d) x2 ´ y2 ` 2xyi,

e) x2 ` y2 ` y ´ 2 ` ix,

f)

ˆ

x`
x

x2 ` y2

˙

` i

ˆ

y ´
y

x2 ` y2

˙

,

g) |z|2 ` 2z,

h)
|z|2 ` z

2
. Ž

3.4.2. Trobeu la suma de les sèries

a)
8
ÿ

n“1

ˆ

1 ` i

3

˙n

; b)
8
ÿ

n“1

p3 ` iqn

n!
; c)

8
ÿ

n“1

nzn si |z| ă 1. Ž

3.4.3. Sigui fpzq :“
ř

ně0 cnz
n per |z| ă R on R és el radi de convergència de la sèrie.

Demostreu que si fpzkq “ 0 per una successió pzkqk tal que zk ‰ 0 i zk Ñ 0 quan k Ñ 8,
aleshores fpzq ” 0 (i.e. cn “ 0 per a tot n ě 0). Indicació: Calculeu fp0q i considereu la
sèrie fpzq{z). Ž
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3.4.4. Demostreu que si dues sèries
ř

ně0 anz
n i

ř

ně0 bnz
n són convergents i tenen la

mateixa suma per a una successió pzkqk tal que zk ‰ 0 i zk Ñ 0 quan k Ñ 8 aleshores
an “ bn per a tot n ě 0. Ž

3.4.5. Calculeu la suma de les sèries de potències de l’exercici 2.8.1.

3.4.6. Considereu la sèrie

Spzq “
ÿ

ně1

z2n´1

2n
.

a) Estudieu-ne la convergència puntual i uniforme sobre compactes.

b) Calculeu quant val la suma per tot z del disc de convergència.

c) Doneu el valor de

ÿ

ně1

p´1qn

n9n
. Ž

3.4.7. Considereu la sèrie de potències

ÿ

ně1

npn` 1qzn.

a) Estudieu la seva convergència.

b) Calculeu la seva suma.

c) Quant val
ř

ně1p´1qn
npn`1q

2n ? Ž

3.4.8. Considereu la sèrie de potències

Spzq “ 2πi`
ÿ

ně1

p´1qnp2z ` 1qn

n
.

(a) Calculeu la seva suma i el seu domini de convergència, especificant amb precisió
totes les funcions involucrades. Indicació: Per especificar un logaritme, cal donar
un domini de definició i la imatge d’un punt.

(b) Calcula la solució (si existeix) de l’equació Spzq “ e. Ž
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3.5. Algunes funcions holomorfes importants

L’exponencial complexa: ja hav́ıem vist que ve definida per

ez “ exp z :“
8
ÿ

n“0

zn

n!
, z P C.

La sèrie té radi de convergència R “ `8, i per tant ez defineix una funció entera amb

pezq1 “

8
ÿ

n“0

n

n!
zn´1 “

8
ÿ

n“1

1

pn´ 1q!
zn´1 “

8
ÿ

k“0

zk

k!
“ ez.

La identitat
ez`w “ ez ¨ ew; z, w P C

també es pot veure de la següent manera:
Per a P C, considerem la funció fapzq “ ez ea´z. Com que és producte de funcions

enteres, la funció fa és entera amb

f 1
apzq “ ez ea´z ` ez p´ea´zq “ 0.

Per tant fa és constant en C, és a dir que fapzq “ fapaq “ ea, aix́ı que

ez ea´z “ ea.

Posant a “ z ` w obtenim el resultat.
De la identitat anterior, tenim que ez e´z “ 1, i dedüım que ez ‰ 0 per a tot z P C, i

també
1

ez
“ e´z.

Recordem també que

(i) ez “ ez, per a tot z P C.

(ii) |eit| “ 1 per a tot t P R.

Definició 3.33 (Funcions trigonomètriques). Per z P C, definim

cos z :“
eiz ` e´iz

2
; sin z :“

eiz ´ e´iz

2i
,

vegeu la figura 3.3. Fent servir el desenvolupament en sèrie de potències de ez, tenim que

sin z “
ÿ

ně0

pin ´ p´iqnq

2i

zn

n!
“

8
ÿ

n“0

p´1qn

p2n` 1q!
z2n`1.

També

cos z “

8
ÿ

n“0

p´1qn

p2nq!
z2n.

Per tant, sin z i cos z estenen les corresponents funcions sinx i cosx de R a tot el pla
complex. ‚
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Figura 3.3.: A l’esquerra, la funció cosinus, a la dreta el sinus en 6Q.

Figura 3.4.: Cosinus hiperbòlic i sinus hiperbòlic en 6Q.

Figura 3.5.: Tangent i branca principal de l’arctangent en 6Q, vegeu l’exercici 3.5.5.
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Figura 3.6.: Arrel quadrada principal i arrel cúbica principal en 6Q.

Figura 3.7.: 1
2

`

z ` 1
z

˘

i z3`2z`i
z´1 en 2Q, presenten singularitats, vegeu l’exercici 2.1.7.

Figura 3.8.: Determinació principal de
?
z2 ´ 1 i de i

?
1 ´ z2 en 2Q, vegeu l’exercici 2.5.3.
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Advertència 3.34. Ara sin z i cos z no són fitades! Per exemple

sinpitq “
e´t ´ et

2i
ñ lim

tÑ8
| sinpitq| “ `8.

‚

Exercicis

3.5.1. Demostreu que:

(i) sin z i cos z són funcions enteres amb

psin zq1 “ cos z; pcos zq1 “ ´ sin z.

(ii) cosp´zq “ cos z, i també sinp´zq “ ´ sin z per a tot z P C.

(iii) cos2 z ` sin2 z “ 1.

(iv) Per a tot z, w P C, cospz ` wq “ cos z cosw ´ sin z sinw, sinpz ` wq “ sin z cosw `

cos zsinw. Ž

3.5.2.

Resoleu les següents equacions:

a) sin z “ 4 b) cos z “ i. Ž

3.5.3. a) Proveu que cos z “ cos z i que sin z “ sin z, per a tot z P C.

b) Trobeu tots els zeros de les funcions sinus i cosinus.

c) Dedüıu de (b) que, per a z1, z2 P C, es verifica:

i) cos z1 “ cos z2 si, i només si, z2 ˘ z1 P 2πZ.
ii) sin z1 “ sin z2 si, i només si, z2 ´ z1 P 2πZ o bé z2 ` z1 P π ` 2πZ.

d) Proveu que per a tot z “ x` iy P C se satisfà:

i) sin z “ sinx cosh y ` i cosx sinh y (vegeu l’exercici 1.3.2).

ii) cos z “ cosx cosh y ´ i sinx sinh y.

iii) | sin z|2 “ sin2 x` sinh2 y.

iv) | cos z|2 “ cos2 x` sinh2 y.

e) Sobre quines rectes està acotada la funció sinus? I la funció cosinus? Ž
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3. Derivació complexa i holomorfia

3.5.4. (a) Proveu que per a cada w P Czt˘iu, l’equació tan z “ w té infinites solucions,
que són la funció multivaluada

arctanw :“
1

2i
log

ˆ

i´ w

i` w

˙

.

Vegeu també que per a w “ ˘i l’equació no té cap solució.

(b) Vegeu que dues determinacions cont́ınues de arctanw en un conjunt connex E Ă

Czt˘iu difereixen de kπ, k P Z.

(c) Vegeu que no hi ha cap determinació cont́ınua de arctanw als anells tr ă |w ´ i| ă

Ru, tr ă |w ` i| ă Ru, 0 ă r ă R ă 2, però que śı que n’hi ha si 2 ă r ă R ă `8.

3.5.5. Demostra que el domini de continüıtat de la branca principal de l’arctangent

Arctanw :“
1

2i
Log

ˆ

i´ w

i` w

˙

.

és Cztiy : |y| ě 1u. Ž

3.5.6. a) Sigui L la determinació del logaritme en Czp´8, 0s que compleix que Lp1q “

4πi. Definim fpzq :“ ´Lp2 ´ 2zq. Demostreu que f és holomorfa en Czr1,`8q.
Calculeu fp0q i fp´iq.

b) Considereu la sèrie de potències

Spzq “
ÿ

ně1

p2z ´ 1qn

n
.

Demostreu que Spzq “ ´Log p2 ´ 2zq, per tot z P D :“ D1{2p1{2q, on Log és la
determinació principal del logaritme.

c) Quina relació hi ha entre Spzq i fpzq? Indicació: Relacioneu primer Lpzq amb Log pzq

per z P Czp´8, 0s. Ž

3.5.7. Sigui
?

¨ la determinació de l’arrel quadrada en Czr0,8q complint que
?

´1 “ i i
sigui fpzq “

?
3z ` 2.

1. Expresseu
?

¨ en termes d’una determinació del logaritme i argument.

Recordem que
?
z “ e

1
2
log z “ e

1
2

pln |z|`i arg zq.

2. Quina és la regió més gran of f és holomorfa? Quina és la imatge? Existeix z tal
que fpzq “ ´i?

3. Què val fp i´2
3 q? Ž
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3.5.8. Trobeu el desenvolupament en sèrie de potències al voltant del punt a “ 1 de la
funció fpzq “ 3

?
z on 3

?
. denota la determinació de l’arrel cúbica definida a Czp´8, 0s tal

que 3
?
1 “ e2πi{3 “ ´1`i

?
3

2 . Ž

3.5.9. Els polinomis de Legendre4 Pjpζq són els coeficients de zj en el desenvolupament
de Taylor

1
a

1 ´ 2ζz ` z2
“

8
ÿ

j“0

Pjpζqzj .

Provar que Pjpζq és un polinomi de grau j i calcular P0, P1, P2 i P3.

Ž

4Adrien-Marie Legendre, Paŕıs, 1752 – 1833, https://ca.wikipedia.org/wiki/Adrien-Marie_Legendre
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4. Integrals de ĺınia i teoria local de Cauchy

En aquest caṕıtol expliquem com la integració del càlcul en diverses variables aplica al
pla complex. Veurem en particular com integrar sobre corbes amb notació complexa,
el teorema fonamental del càlcul per funcions amb primitives holomorfes, i una extensió
d’aquest resultat anomenat teorema de Cauchy, on l’holomorfia es demana ja no a la
primitiva si no a la pròpia funció a integrar, i a més es pot relaxar la hipòtesi de C-
derivabilitat en un punt äıllat del domini per demanar-hi tan sols continüıtat. Aquest
resultat ens portarà a la fórmula integral de Cauchy:

fpaq “
1

2πi

ˆ
|w´z|“r

fpwq

pw ´ aq
dw, per a tot a P Drpzq,

la pedra angular de la teoria local de l’anàlisi complexa, coneguda com a teoria local de
Cauchy.
Un cop demostrada la fórmula integral de Cauchy, deduirem un munt de propietats de

les funcions holomorfes f P HpΩq:

• Propietat de la mitjana: l’avaluació fpzq coincideix amb la mitjana de la funció en
una bola centrada en z.

• Analiticitat: podem expressar f localment com a sèrie de potències.

• Desigualtats de Cauchy: |f pnqpaq| ď n!
rn sup|z´a|“r |fpzq|, n ě 0.

• Teorema de Liouville1: si f P HpCq és fitada, és constant.

• Teorema fonamental de l’àlgebra: tot polinomi de coeficients complexos té almenys
una arrel.

• Teorema de Morera2: si g P CpΩq integra 0 en vores de triangles, aleshores és
holomorfa.

• Fórmula integral de Cauchy per derivades f pnqpaq “ n!
2πi

´
|w´z|“r

fpwq

pw´aqn`1 dw.

• Ordre dels zeros: si fpaq “ 0 aleshores fpzq “ gpzqpz ´ aqn amb g holomorfa i
gpaq ‰ 0.

• Principi de prolongació anaĺıtica: si els zeros de f tenen un punt d’acumulació en
Ω, aleshores f ” 0.

1Joseph Liouville, Saint-Omer, 1809–1882, https://ca.wikipedia.org/wiki/Joseph_Liouville
2Giacinto Morera, Novara, 1856–1909, https://ca.wikipedia.org/wiki/Giacinto_Morera
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• Principi del mòdul màxim: si el màxim absolut de |f | en Ω s’assoleix a l’interior,
aleshores f és constant.

Algunes d’aquestes propietats, com ara la de la mitjana, les desigualtats de Cauchy o el
teorema de Liouville, de fet, es compleix per tota funció harmònica (vegeu l’exercici 3.2.3)
i es poden estendre a Rd amb d ě 3, però les demostracions aqúı presentades apliquen
només al cas de variable complexa.

4.1. Corbes

Definició 4.1. Sigui Ω Ă C un obert. Una corba en Ω és una aplicació γ : ra, bs Ñ Ω
cont́ınua.
La imatge (recorregut) de γ és γ˚ “ γpra, bsq Ă Ω. Observeu que podria tenir intersec-

cions. El punt γpaq s’anomena punt inicial , i γpbq punt final .
Diem que és una corba tancada si γpaq “ γpbq.
Diem que és una corba simple si γ és injectiva (és a dir, no té interseccions).
Diem que γ : ra, bs Ñ C és una corba de classe C1 si γptq “ γ1ptq ` iγ2ptq, amb

γ1, γ2 P C1pra, bsq (en particular és derivable per la dreta en a i per l’esquerra en b). En
aquest cas, definim

γ1ptq “ γ1
1ptq ` iγ1

2ptq.

Diem que és una corba C1 a trossos si hi ha una partició de l’interval ra, bs, diguem
a “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ b, de manera que γ|rtk´1,tks és de classe C1 per k “ 1, . . . , n.

Farem servir el nom de camı́ per indicar una corba C1 a trossos. ‚

Definició 4.2. Una reparametrització de γ és una corba η : rc, ds Ñ Ω de manera que
η “ γ ˝ φ, on φ : rc, ds Ñ ra, bs és un homeomorfisme. En aquest cas, els recorreguts
coincideixen, és a dir, η˚ “ γ˚, només canvia la velocitat en què la recorrem. Per exemple,
una reparametrització de la corba γptq “ eit, t P r0, 2πs és ηptq “ e2it, t P r0, πs.
En el cas de camins, les reparametritzacions són a més a més, de classe C1 a trossos, i

demanarem que φ i φ´1 també siguin C1 a trossos.
La corba inversa de γ és la corba γ´ : ra, bs Ñ Ω definida per γ´ptq “ γpa ` b ´ tq (és

a dir, recorre la imatge en sentit contrari). ‚

Definició 4.3 (Suma de camins). Escrivim la suma de camins: γ _ η (recorrem primer γ
i després η). ‚

Definició 4.4 (Longitud d’una corba). Si γ P C1, la longitud de γ és

Lpγq “

ˆ b

a
|γ1ptq| dt.

Si γ és un camı́ (corba C1 a trossos), llavors, seguint la notació de la Definició 4.1, definim

Lpγq “

n
ÿ

k“1

ˆ tk

tk´1

|γ1ptq| dt. ‚
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Definició 4.5 (Integrals de funcions amb valors complexos). Sigui f : ra, bs Ñ C integrable
(en sentit de Riemann o de Lebesgue). Definim

ˆ b

a
fptq dt “

ˆ b

a
Re

`

fptq
˘

dt` i

ˆ b

a
Im

`

fptq
˘

dt. ‚

Lema 4.6. [Propietats de la integral] Si f, g : ra, bs Ñ C són integrables, aleshores:

(i) la integral és C-lineal: si α, β P C, llavors
ˆ b

a
pαfptq ` βgptqq dt “ α

ˆ b

a
fptq dt` β

ˆ b

a
gptq dt,

(ii) se satisfà la desigualtat triangular per integrals:

ˇ

ˇ

ˇ

ˇ

ˆ b

a
fptq dt

ˇ

ˇ

ˇ

ˇ

ď

ˆ b

a
|fptq| dt.

Demostració. Deixem la primera propietat com a exercici pel lector.
Per A P C, podem posar |A| “ eiθA, és a dir, ´θ P argpAq. Llavors, prenent A “´ b

a fptq dt i aplicant (i), tenim que

0 ď

ˇ

ˇ

ˇ

ˇ

ˆ b

a
fptq dt

ˇ

ˇ

ˇ

ˇ

“ eiθ
ˆ b

a
fptq dt “

ˆ b

a
eiθfptq dt.

Com que ˆ b

a
eiθfptq dt ě 0 ñ

ˆ b

a
eiθfptq dt “ Re

ˆˆ b

a
eiθfptq dt

˙

,

de manera que, fent servir la definició de la integral d’una funció amb valors complexos,
veiem que

ˇ

ˇ

ˇ

ˇ

ˆ b

a
fptq dt

ˇ

ˇ

ˇ

ˇ

“ Re

ˆˆ b

a
eiθfptq dt

˙

“

ˆ b

a
Re

´

eiθfptq
¯

dt.

Com que Re
´

eiθfptq
¯

ď

ˇ

ˇ

ˇ
eiθfptq

ˇ

ˇ

ˇ
“ |fptq|, obtenim el resultat.

Exercicis

4.1.1. Proveu que l’el.lipse x2{a2 ` y2{b2 “ 1 és una corba diferenciable (és a dir, existeix
una parametrització zptq, t P I que el seu rang és l’el.lipse, és diferenciable, z1ptq ­“ 0 i zptq
és injectiva. Diem que zptq és una parametrització admissible o regular). Ž

4.1.2. Parametritzeu el contorn format pel peŕımetre del quadrat amb vèrtexs ´1 ´ i, 1 ´

i, 1 ` i, ´1 ` i seguint aquest ordre. Quina és la seva longitud? Ž
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4. Integrals de ĺınia i teoria local de Cauchy

4.2. Integració sobre corbes

Sigui Ω Ă C un obert, f : Ω Ñ C cont́ınua, i γ : ra, bs Ñ Ω corba de classe C1. Definim
les integrals de camı́

ˆ
γ
fpzq dz :“

ˆ b

a
f
`

γptq
˘

γ1ptq dt i

ˆ
γ
fpzq |dz| :“

ˆ b

a
f
`

γptq
˘

|γ1ptq| dt.

En cas que γ sigui un camı́ (corba C1 a trossos), ho partim a trossos:

ˆ
γ
fpzq dz “

n
ÿ

k“1

ˆ tk

tk´1

f
`

γptq
˘

γ1ptq dt i

ˆ
γ
fpzq |dz| :“

n
ÿ

k“1

ˆ tk

tk´1

f
`

γptq
˘

|γ1ptq| dt.

Exemple 4.7 (Exemple de dificultat de càlcul). Sigui γptq “ eit, t P r0, 2πs, i sigui
fpzq “ ez. Llavors ˆ

γ
ez dz “

ˆ 2π

0
ee

it
ieit dt “ ?

Més endavant, al Corol.lari 4.10, veurem que aquesta integral dona zero. Fer el càlcul
directe d’aquest tipus d’integrals pot ser una tasca dif́ıcil, encara que de vegades es pot
calcular fàcilment. Per exemple, si γptq “ a ` eikt, t P r0, 2πs i k P Z (donem k voltes al
cercle de radi 1 centrat en el punt a: si k ą 0 anem en sentit contrari a les agulles del
rellotge, i al revés si k ă 0), llavors

ˆ
γ

dz

z ´ a
“

ˆ 2π

0

ik eikt

eikt
dt “ 2πik. Ž

Proposició 4.8 (Propietats).

1. Donat un camı́ γ, tenim que

ˆ
γ

`

λfpzq ` µgpzq
˘

dz “ λ

ˆ
γ
fpzqdz ` µ

ˆ
γ
gpzqdz, λ, µ P C.

2. Si recorrem la corba en sentit invers, el signe canvia, és a dir,

ˆ
γ´

fpzq dz “ ´

ˆ
γ
fpzq dz.

3. Si γ és C1 a trossos (camı́), llavors

ˇ

ˇ

ˇ

ˇ

ˆ
γ
fpzqdz

ˇ

ˇ

ˇ

ˇ

ď

ˆ
γ

|fpzq| |dz| “

n
ÿ

k“1

ˆ tk

tk´1

|fpγptqq| |γ1ptq| dt.

En particular, si |f | ď M per a tot z P γ˚, llavors
ˇ

ˇ

ˇ

´
γ fdz

ˇ

ˇ

ˇ
ď M Lpγq.
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4. Si η és una reparametrització C1 de γ, llavors
ˆ
γ
fpzqdz “ ˘

ˆ
η
fpzqdz,

on el signe és positiu si la reparametrització preserva el sentit i negatiu en cas con-
trari.

Demostració. 1. Exercici.
2. Tenim que γ´ptq “ γpa` b´ tq. Llavors

ˆ
γ´

fpzq dz “

ˆ b

a
f
`

γ´ptq
˘

pγ´q1ptq dt “ ´

ˆ b

a
f
`

γpa` b´ tq
˘

γ1pa` b´ tq dt.

Fent el canvi de variable s “ a` b´ t, obtenim

ˆ
γ´

fpzq dz “ ´

ˆ a

b
f
`

γpsq
˘

γ1psqp´dsq “ ´

ˆ b

a
f
`

γpsq
˘

γ1psqds “ ´

ˆ
γ
fpzqdz.

3. Directe a partir de la definició de la integral sobre una corba i la propietat (ii) del
lema 4.6.
4. Tenim que η “ γ ˝φ, i com que estem treballant amb corbes C1, l’aplicació bijectiva

φ : rc, ds Ñ ra, bs també ha de ser de classe C1. Si φpcq “ a (la reparametrització preserva
el sentit), llavors

ˆ
η
fpzqdz “

ˆ d

c
f
`

ηptq
˘

η1ptq dt “

ˆ d

c
f
´

γ
`

φptq
˘

¯

γ1
`

φptq
˘

φ1ptqdt.

Llavors, fent el canvi de variable s “ φptq, obtenim

ˆ
η
fpzqdz “

ˆ b

a
f
`

γpsq
˘

γ1psqds “

ˆ
γ
fpzqdz.

Si, en canvi, la reparametrització no preserva el sentit, és a dir, si φpcq “ b, aleshores
podem combinar aquesta demostració amb l’apartat 2 per obtenir el signe canviat.

El següent resultat correspondria a una versió de la regla de Barrow del càlcul per
integrals sobre corbes.

Teorema 4.9. Sigui Ω Ă C un obert i f cont́ınua en Ω. Suposem que existeix F primitiva
holomorfa de f (és a dir, F 1 “ f). Aleshores, per a tot camı́ γ en Ω, es compleix

ˆ
γ
fpzqdz “ F

`

γpbq
˘

´ F
`

γpaq
˘

.

Demostració. Tenim que

ˆ
γ
fpzqdz “

n
ÿ

k“1

ˆ tk

tk´1

f
`

γptq
˘

γ1ptq dt “

n
ÿ

k“1

ˆ tk

tk´1

F 1
`

γptq
˘

γ1ptq dt.
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4. Integrals de ĺınia i teoria local de Cauchy

Si posem gptq “ uptq ` ivptq :“ F pγptqq, com que pF ˝ γq1ptq “ F 1
`

γptq
˘

γ1ptq, es compleix
que pF ˝ γq1ptq “ g1ptq “ u1ptq ` iv1ptq, de manera que, aplicant la regla de Barrow usual
a R, obtenim

ˆ
γ
fpzqdz “

n
ÿ

k“1

ˆ tk

tk´1

pF ˝ γq1ptq dt “

n
ÿ

k“1

ˆ tk

tk´1

u1ptq dt` i
n
ÿ

k“1

ˆ tk

tk´1

v1ptq dt

“

n
ÿ

k“1

puptkq ´ uptk´1qq ` i
n
ÿ

k“1

pvptkq ´ vptk´1qq

“ upbq ´ upaq ` ipvpbq ´ vpaqq “ gpbq ´ gpaq “ F
`

γpbq
˘

´ F
`

γpaq
˘

.

Corol.lari 4.10. [Conseqüències]

• Si γ és un camı́ tancat en Ω i f té primitiva holomorfa en Ω, aleshores

ˆ
γ
fpzqdz “ 0.

Per exemple, si γptq “ eit, t P r0, 2πs, llavors
´
γ e

zdz “ 0.

• Si f té primitiva holomorfa en Ω, llavors
´
γ fpzqdz no depèn del camı́ γ : ra, bs Ñ Ω.

Només depèn dels punts inicials i finals (no cal ni parametritzar la corba). Per
exemple, si γ és un camı́ que va de 1 a 2i, aleshores

ˆ
γ
z3dz “

„

z4

4

ȷ2i

1

“

ˆ

p2iq4

4
´

1

4

˙

“
15

4
.

Exercicis

4.2.1. Sigui γ “ tz P C : |z| “ 1u el cercle unitat amb l’orientació habitual. Avalueu, per
a tots els m P Z:

ˆ
γ

dz

zm
,

ˆ
γ

|dz|

zm
,

ˆ
γ

dz

|zm|
,

ˆ
γ

|dz|

|zm|
. Ž

4.2.2. Sigui γ “ BDrp0q. Calculeu, per a n P Z,
ˆ
γ
zn dz. Ž

4.2.3. Sigui γ “ ri` 1,´is. Avalueu les següents integrals de ĺınia:

a)
´
γ sinp2zq dz b)

´
|z|“1 ze

z2 dz c)
´

|z´2|“1
1
z dz Ž

4.2.4. Avaluar les següents integrals.
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a)

ˆ
γ

ˆ

6

pz ´ iq2
`

2

z ´ i
` 1 ´ 3pz ´ iq2

˙

dz si γ és |z ´ i| “ 4 recorreguda un cop amb

l’orientació estàndard.

b)

ˆ
γ
px´ 2xyiqdz al llarg del contorn γ : z “ t` it2 amb t P r0, 1s.

c)

ˆ
γ
p|z ´ 1 ` i|2 ´ zqdz al llarg de la semicircumferència γ : z “ 1 ´ i` eit on t P r0, πs.

d) La funció no anaĺıtica fpzq “ x2 ` iy (per què?) al llarg de |z| “ 1 recorreguda un cop
en sentit antihorari. Ž

4.2.5. Calcular les següents integrals al llarg del camı́ γ que s’indica.

a)

ˆ
γ

1

z
dz per qualsevol contorn en el semiplà dret que va de ´3i a 3i. Quin problema

tenim si seguim un contorn pel semiplà esquerre? Indicació: considerar la determinació
principal del logaritme en la qual el logaritme no està definit si y “ 0, x ď 0.

b)

ˆ
γ
ez cos zdz per un camı́ d’origen a “ i i final b “ π.

c)

ˆ
γ
z1{2dz per la branca principal de z1{2 per un camı́ d’origen a “ i i final b “ π que

no talli la semirecta p´8, 0s. Ž

4.2.6.

Considerem la determinació de l’arrel
?
z2 ´ 1 que és holomorfa a Czr´1, 1s i positiva a

p1,8q.

(a) Vegeu que z `
?
z2 ´ 1 omet l’eix real negatiu si z P Ω “ Czp´8, 1s, de manera que

la determinació principal Log pz `
?
z2 ´ 1q està definida a Ω.

(b) Vegeu que Log pz `
?
z2 ´ 1q és una primitiva de 1?

z2´1
a Ω.

(c) Avalueu

ˆ
γ

dz
?
z2 ´ 1

, on γ és el tros de cercle |z ´ 1| “
?
2 que va de i a ´i passant

pel semiplà de la dreta (Re z ą 0).

Indicació: comproveu que
?
z2 ´ 1 “ e

1
2

pLog pz´1q`Log pz`1qq s’estén a Czr´1, 1s de manera
cont́ınua. Ž

4.2.7. Siguin γ1 :“ t|z| “ 1 : Im z ě 0u i γ2 :“ t|z| “ 2 : Re z, Im z ě 0u. Demostreu que:
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a)

ˇ

ˇ

ˇ

ˇ

ˆ
γ1

dz

z2 ` 2

ˇ

ˇ

ˇ

ˇ

ď π

b)

ˇ

ˇ

ˇ

ˇ

ˆ
γ2

dz

z2 ` 1

ˇ

ˇ

ˇ

ˇ

ď π
3

c)

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“1

sin z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2πe

d)

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z|“2

e´z

z2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď πe2. Ž

4.2.8. (a) Sigui γ un camı́ en C. Proveu que si f és una funció cont́ınua en γ˚ llavors

ˆ
γ
fpzq dz “

ˆ
γ
fpzq dz.

(b) Dedüıu que si f és una funció cont́ınua en el cercle unitat llavors

ˆ
|z|“1

fpzq dz “ ´

ˆ
|z|“1

fpzq
dz

z2
. Ž

4.3. Teorema de Cauchy

Si Ω Ă C és un obert, U Ă Ω és un obert fitat prou regular (per exemple amb frontera
C1) i tal que U Ă Ω, i tenim dues funcions f, g P C1pΩq, pel teorema de Green3 (vegeu
l’exercici 4.3.4) se satisfà la fórmula de Green en variable complexa:ˆ

U

`

Bf ` B̄g
˘

dm “
i

2

ˆ
BU

pf dz̄ ´ g dzq . (4.1)

Aqúı, entenem que
´

BU f dz “
´ b
a fpγptqqγ1ptq dt “

´
γ f pdx ´ idyq per alguna corba γ

que parametritzi BU en sentit antihorari, on indiquem
´
γ F1 dx “

´ b
a F1pγptqqγ1

1ptq dt i

anàlogament per
´
γ F2 dy. Aix́ı doncs, prenent f “ 0, podem deduir que si g P HpΩq,

aleshores ˆ
BU
gpzq dz “ 0.

A continuació obtindrem un resultat lleugerament més general sense fer ús de la fórmula
de Green. El primer resultat, anomenat teorema de Cauchy-Goursat4 o també teorema
de Cauchy per triangles, és un resultat clau per tal de provar el teorema de Cauchy per
un disc o per oberts convexos. Aquests resultats seran suficients per a veure la fórmula
integral de Cauchy i les conseqüències de la teoria local.

Teorema 4.11 (Cauchy-Goursat). Sigui Ω Ă C un obert, p P Ω i f P CpΩq X HpΩztpuq.
Llavors ˆ

BT
fpzqdz “ 0

per a tot triangle T Ă Ω.
3George Green, Nottingham, 1793–1841, https://ca.wikipedia.org/wiki/George_Green
4Édouard Jean-Baptiste Goursat, Paŕıs, 1858–1936, https://ca.wikipedia.org/wiki/%C3%89douard_

Goursat
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4. Integrals de ĺınia i teoria local de Cauchy

Observació 4.12.

1. Ens cal tenir tot el triangle ple T dins d’Ω. És a dir, si la frontera del triangle BT
envolta un forat d’ Ω, llavors no s’aplica.

2. En cas que f sigui holomorfa a tot Ω excepte un punt p, però f no és cont́ınua en p,
tampoc s’aplica. ‚

Demostrem abans un cas particular:

Proposició 4.13. Sigui Ω Ă C un obert i f P HpΩq. Llavors
´

BT fpzqdz “ 0 per a tot
triangle T Ă Ω.

Demostració. Tenim orientada la frontera BT del nostre triangle en sentit contrari a les
agulles del rellotge. Fent servir els punts mitjos de cada segment, partim el nostre triangle
T en 4 triangles T1, T2, T3, T4. Totes les fronteres BTi d’aquests triangles venen orientades
en sentit contrari a les agulles del rellotge, de manera que el triangle del mig té els costats
orientats en sentit contrari als costats comuns dels altres triangles (aix́ı quan es fa la suma
de les integrals sobre la frontera d’aquests 4 triangles, les integrals en els segments del mig
es cancel.len, al calcular-se un en un sentit, i l’altre en sentit contrari). És convenient que
us feu el dibuix. Llavorsˆ

BT
f “

ˆ
BT1

f `

ˆ
BT2

f `

ˆ
BT3

f `

ˆ
BT4

f.

Observem que

LpBTjq “
1

2
LpBT q; diampTjq “

1

2
diampT q, 1 ď j ď 4.

Anomenem T p1q “ Tj1 a un triangle dels 4 que maximitzi el valor absolut de la integral
de camı́:

ˇ

ˇ

ˇ

ˇ

ˆ
BT p1q

f

ˇ

ˇ

ˇ

ˇ

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
BTj

f

ˇ

ˇ

ˇ

ˇ

ˇ

, 1 ď j ď 4.

Llavors
ˇ

ˇ

ˇ

ˇ

ˆ
BT
f

ˇ

ˇ

ˇ

ˇ

ď 4

ˇ

ˇ

ˇ

ˇ

ˆ
BT p1q

f

ˇ

ˇ

ˇ

ˇ

.

Repetim el procés amb T p1q per tal d’obtenir un altre triangle T p2q amb propietats anàlogues.
De manera inductiva, obtenim una successió tT pkqu de triangles que satisfan

(i) T p1q Ą T p2q Ą ¨ ¨ ¨ Ą T pkq Ą . . . ;

(ii)
ˇ

ˇ

ˇ

ˇ

ˆ
BT pkq

f

ˇ

ˇ

ˇ

ˇ

ď 4

ˇ

ˇ

ˇ

ˇ

ˆ
BT pk`1q

f

ˇ

ˇ

ˇ

ˇ

;

(iii) L pBT pk`1qq “ 1
2 LpBT pkqq i també diampT pk`1qq “ 1

2 diampT pkqq.
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Tot això implica que

(a)
ˇ

ˇ

ˇ

ˇ

ˆ
BT
f

ˇ

ˇ

ˇ

ˇ

ď 4n
ˇ

ˇ

ˇ

ˇ

ˆ
BT pnq

f

ˇ

ˇ

ˇ

ˇ

;

(b) L pBT pnqq “ 2´n LpBT q i també diampT pnqq “ 2´n diampT q.

De (b) se segueix que diampT pnqq Ñ 0, aix́ı que juntament amb (i), tenim una successió
decreixent de compactes en un espai mètric complet amb diàmetres que tendeixen a zero.
Llavors

č

k

T pkq “ tz0u.

Aquest resultat és com el teorema dels intervals encaixats, i se sol veure en assignatures
anteriors del grau de matemàtiques.
Fixem ε ą 0. Com que f és holomorfa en z0, podem trobar δ ą 0 de manera que

Dδpz0q Ă Ω i
ˇ

ˇ

ˇ

ˇ

fpzq ´ fpz0q

z ´ z0
´ f 1pz0q

ˇ

ˇ

ˇ

ˇ

ă ε, 0 ă |z ´ z0| ă δ.

En altres paraules, tenim que

|fpzq ´ fpz0q ´ f 1pz0qpz ´ z0q| ă ε |z ´ z0|, 0 ă |z ´ z0| ă δ. (4.2)

Prenem n prou gran de manera que diampT pnqq “ 2´ndiampT q ă δ. Com que z0 P T pnq,
se segueix que T pnq Ă Dδpz0q.

Com que la funció g0pzq “ fpz0q ` f 1pz0qpz ´ z0q té primitiva holomorfa (ja que és un
polinomi holomorf), tenim que ˆ

BT pnq

g0pzqdz “ 0,

i per tant
ˇ

ˇ

ˇ

ˇ

ˆ
BT pnq

fpzqdz

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˆ
BT pnq

pfpzq ´ g0pzqqdz

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˆ
BT pnq

pfpzq ´ fpz0q ´ f 1pz0qpz ´ z0qq dz

ˇ

ˇ

ˇ

ˇ

.

Aplicant (4.2) obtenim
ˇ

ˇ

ˇ

ˇ

ˆ
BT pnq

fpzqdz

ˇ

ˇ

ˇ

ˇ

ă ε

ˆ
BT pnq

|z ´ z0| |dz| ď ε diampT pnqqLpBT pnqq

“ ε 4´n diampT qLpBT q.

Per tant, per (a), veiem que
ˇ

ˇ

ˇ

ˇ

ˆ
BT
fpzqdz

ˇ

ˇ

ˇ

ˇ

ă εdiampT qLpBT q.

Com que ε ą 0 és arbitrari i diampT q i LpBT q són fixes, se segueix queˆ
BT
fpzqdz “ 0,

tal com voĺıem veure.
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4. Integrals de ĺınia i teoria local de Cauchy

Demostració del teorema de Cauchy-Goursat. En cas que el punt p, on no sabem si f és
holomorfa, es trobi fora del triangle ple T , simplement podem agafar una regió Ω1 amb
p R Ω1 de manera que T Ă Ω1. Com que f P HpΩ1q, aplicant la proposició 4.13 obtenim´

BT fpzqdz “ 0.
En cas que el punt p es trobi en el triangle ple T , sempre ens reduirem al cas que p sigui

un dels vèrtexs del triangle. Anem doncs a fer aquest cas primer.
Si p és un dels vèrtexs del triangle, fixem ε ą 0, i partim el triangle T en dues parts.

Una que sigui un petit triangle Tε de diàmetre ă ε amb vèrtex p, i l’altra part quedaria
un trapezi Z. Com que el trapezi el podem partir en dos triangles, i el punt p queda fora
dels dos triangles plens, aplicant el cas anterior tenim que

ˆ
BZ
fpzqdz “ 0.

Llavors ˆ
BT
fpzqdz “

ˆ
BZ
fpzqdz `

ˆ
BTε

fpzqdz “

ˆ
BTε

fpzqdz.

Com que f és cont́ınua en Ω, en particular és cont́ınua en el compacte T , aix́ı que hi
ha una constant positiva M de manera que |fpzq| ď M per a tot z P T . En particular,
|fpzq| ď M per a tot z P Tε, i M no depèn de ε. Llavors

ˇ

ˇ

ˇ

ˇ

ˆ
BTε

fpzqdz

ˇ

ˇ

ˇ

ˇ

ď

ˆ
BTε

|fpzq| |dz| ď M LpBTεq ă 3M ε.

Com que ε és arbitrari, dedüım que

ˆ
BT
fpzqdz “ 0.

Si p es troba en BT , llavors ajuntem p amb el vèrtex del triangle que no es troba en el
segment que conté p, per formar dos triangles, i pel cas anterior obtenim que

´
BT fpzqdz “

0.
Si p es troba a l’interior del triangle T , ajuntem aquest punt amb tots els vèrtexs del

triangle formant tres triangles, i aplicant el cas anterior veiem que
´

BT fpzqdz “ 0.

Teorema 4.14 (Teorema de Cauchy per un disc). Sigui D un disc obert i f P CpDq. Si
f P HpDztpuq amb p P D, llavors f té primitiva holomorfa en D, i

ˆ
γ
fpzqdz “ 0

per a tot camı́ tancat γ en D.

Demostració. Pel teorema 4.9, només cal provar que f té primitiva holomorfa enD. Fixem
a P D, i definim

F pzq “

ˆ
ra,zs

fpwq dw, z P D,
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4. Integrals de ĺınia i teoria local de Cauchy

on ra, zs és el segment que uneix a amb z.
Sigui z0 P D i anem a provar que F és holomorfa en z0 amb F 1pz0q “ fpz0q. Ens cal

provar que

lim
|h|Ñ0

ˇ

ˇ

ˇ

ˇ

F pz0 ` hq ´ F pz0q

h
´ fpz0q

ˇ

ˇ

ˇ

ˇ

“ 0.

Considerem el triangle BT amb vèrtexs a, z0 ` h, z0 amb |h| prou petit per tal que
z0 ` h P D. Com que tot el triangle ple T es troba dins del disc D, aplicant el teorema de
Cauchy-Goursat, obtenim que ˆ

BT
fpwqdw “ 0.

És a dir, ˆ
ra,z0`hs

fpwqdw `

ˆ
rz0`h,z0s

fpwqdw ´

ˆ
ra,z0s

fpwqdw “ 0,

aix́ı que, tenint en compte la definició de F , tenim que

F pz0 ` hq ´ F pz0q “ ´

ˆ
rz0`h,z0s

fpwqdw “

ˆ
rz0,z0`hs

fpwqdw.

Per tant, com que fpz0q “ 1
h

´
rz0,z0`hs

fpz0qdw, arribem a la desigualtat

ˇ

ˇ

ˇ

ˇ

F pz0 ` hq ´ F pz0q

h
´ fpz0q

ˇ

ˇ

ˇ

ˇ

ď
1

|h|

ˆ
rz0,z0`hs

|fpwq ´ fpz0q| |dw|.

Fixem ε ą 0. Com que f és cont́ınua en z0, hi ha δ ą 0 de manera que |fpwq ´ fpz0q| ă ε
si |w ´ z0| ă δ. Prenent doncs h amb |h| ă δ, obtenim

ˇ

ˇ

ˇ

ˇ

F pz0 ` hq ´ F pz0q

h
´ fpz0q

ˇ

ˇ

ˇ

ˇ

ă
ε

|h|
L
`

rz0, z0 ` hs
˘

“ ε,

ja que la longitud del segment rz0, z0 ` hs és |h|.

Observació 4.15. Per tal de poder fer aquesta prova, ha estat clau el fet que podem triar
h de manera que el triangle amb vèrtexs a, z0 ` h, z0 es trobi dins de D. Això mateix ho
podem fer si agafem un obert convex. Recordem que un obert Ω Ă C es diu convex si per
tot parell de punts a, b P Ω el segment ra, bs Ă Ω. Aleshores, la mateixa prova ens serveix
canviant el disc obert D, per qualsevol obert convex Ω, de manera que obtenim el següent
resultat. ‚

Teorema 4.16 (Teorema de Cauchy per oberts convexos). Sigui Ω Ă C un obert convex,
i f P CpΩq XHpΩztpuq amb p P Ω. Llavors f té primitiva holomorfa en Ω, i

ˆ
γ
fpzqdz “ 0

per a tot camı́ tancat γ en Ω.
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Exercicis

4.3.1. Recordeu que

ˆ 8

´8

e´x2
dx “

?
π.

(a) Proveu que

ˆ 8

´8

e´px`iaq2dx “
?
π per a tot a ą 0. Indicació: Apliqueu el teorema

de Cauchy al rectangle r´R,Rs ˆ r0, as.

(b) Proveu que

ˆ 8

´8

e´x2{2 cospnxq dx “
?
2πe´n2{2, n P Z. Ž

4.3.2. Determineu el domini d’holomorfia de les funcions f donades i digueu perquè´
|z|“2 fpzqdz “ 0.

a) fpzq “
cos z

z2 ´ 6z ` 10
,

b) fpzq “ Logpz ` 3q. Ž

4.3.3. Sigui u : D Ñ R una funció harmònica en un disc D, és a dir, tal que ∆u “

4B̄Bu “ 0. Demostra que existeix una funció v : D Ñ R harmònica tal que pu ` ivq és
holomorfa. L’anomenem harmònica conjugada. Indicació: Demostreu que les equacions
de Cauchy-Riemann per F “ U ` iV es poden escriure com BF “ 2BU o com BU “ ´iB̄V .

Ž

4.3.4. El teorema de Green diu que si Ω Ă C és un obert i U Ă Ω és un obert fitat
prou regular (per exemple amb frontera C1) i tal que U Ă Ω, aleshores tot camp vectorial
F “ pF1, F2q : Ω Ñ R2 amb F P C1pΩq satisfà que

ˆ
U

pBxF2 ´ ByF1q dm “

ˆ
BU

pF1 dx` F2 dyq .

Demostreu la fórmula de Green en variable complexa (4.1). Ž

4.3.5. Continuant amb l’exercici 4.3.4, demostreu la fórmula de Cauchy generalitzada,
coneguda com a fórmula de Cauchy-Pompeiu5, que diu que si ϕ P C1pΩq i z0 P U , aleshores

ϕpz0q “
1

2πi

ˆ
BU

ϕpzq

z ´ z0
dz ´

1

π

ˆ
U

B̄ϕpzq

z ´ z0
dmpzq.

Notem que el cas particular ϕ P C1
c pΩq ens diu ϕ “ CpB̄ϕq, on C indica la transformada de

Cauchy

Cψpz0q :“ ´
1

π

ˆ
U

B̄ψpzq

z ´ z0
dmpzq. Ž

5Dimitrie Pompeiu, Broscăut, i, 1873–1954, https://ca.wikipedia.org/wiki/Dimitrie_Pompeiu
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4. Integrals de ĺınia i teoria local de Cauchy

4.4. Fórmula integral de Cauchy

Hem vist les versions locals del teorema de Cauchy, provant el teorema de Cauchy per a un
triangle i el teorema de Cauchy en oberts convexos. El proper resultat és la fórmula integral
de Cauchy i obtindrem les consequències més importants de la teoria local: desenvolupa-
ment local en sèries de potències d’una funció holomorfa, zeros de funcions holomorfes
(factorització local), principi de prolongació anaĺıtica, desigualtats de Cauchy, teorema
de Liouville, teorema fonamental de l’àlgebra, teorema de l’aplicació oberta i principi del
mòdul màxim.

Teorema 4.17 (Fórmula integral de Cauchy (versió local)). Sigui Ω Ă C un obert i
f P HpΩq. Suposem que Drpaq Ă Ω. Llavors

fpz0q “
1

2πi

ˆ
γr

fpzq

z ´ z0
dz, |z0 ´ a| ă r,

on γrptq “ a` reit, 0 ď t ď 2π.

Observació 4.18. Ens cal tenir tot el disc tancat Drpaq dins d’Ω. Aleshores, el resultat
no s’aplicaria necessàriament si, per exemple, Ω “ D “ tz P C : |z| ă 1u i γptq “ eit,
t P r0, 2πs. El teorema, ara com ara exclouria fins i tot el cas que f fos cont́ınua en D
(ens caldria tenir f holomorfa en un obert que contingui D), tot i que aquest cas es pot
demostrar per pas al ĺımit. ‚

Observació 4.19. Moltes vegades al llarg del text, farem us de la notació
´

|z´a|“r fpzq dz

per indicar que estem integrant sobre la corba σaptq “ a` reit, t P r0, 2πs (fent només una
volta al cercle). Aix́ı, la fórmula integral de Cauchy es pot escriure com

fpz0q “
1

2πi

ˆ
|z´a|“r

fpzq

z ´ z0
dz, |z0 ´ a| ă r.

‚

Demostració. Com que Drpaq Ă Ω, hi ha r1 ą r de manera que Drpaq Ă D :“ Dr1paq Ă Ω.
Fixem z0 P Ω, i definim la funció

gpzq “

$

&

%

fpzq ´ fpz0q

z ´ z0
si z P Dztz0u

f 1pz0q si z “ z0.

Clarament g és holomorfa en Dztz0u. Vegem que g és també cont́ınua en z0, ja que al ser
f holomorfa, aleshores

lim
zÑz0

gpzq “ lim
zÑz0

fpzq ´ fpz0q

z ´ z0
“ f 1pz0q “ gpz0q.
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Aix́ı doncs, tenim que g P CpDq X HpDztz0uq. Com que γr Ă D, pel teorema de Cauchy
per un disc se segueix que

1

2πi

ˆ
γr

gpzq dz “ 0.

És a dir,
1

2πi

ˆ
γr

fpzq

z ´ z0
dz ´

1

2πi

ˆ
γr

fpz0q

z ´ z0
dz “ 0.

Per tant,
1

2πi

ˆ
γr

fpzq

z ´ z0
dz “ fpz0q

ˆ

1

2πi

ˆ
γr

dz

z ´ z0

˙

.

Per acabar la prova, ens cal veure que

1

2πi

ˆ
γr

dz

z ´ z0
“ 1, z0 P Drpaq. (4.3)

Recordem que si z0 “ a i γrptq “ a` reit per t P r0, 2πs, aleshores (4.3) es compleix, vegeu
l’exemple 4.7. Volem veure que això segueix sent cert per a qualsevol altre punt de Drpaq.
Observem primer que

1

2πi

ˆ
γr

dz

z ´ z0
“

1

2πi

ˆ 2π

0

ireit dt

reit ` pa´ z0q
“

“
1

2π

ˆ 2π

0

reit ` pa´ z0q

reit ` pa´ z0q
dt´

1

2π

ˆ 2π

0

pa´ z0q dt

reit ` pa´ z0q

“ 1 ´
1

2π

ˆ 2π

0

pa´ z0q dt

reit ` pa´ z0q
.

Per tant, només cal provar que

I :“

ˆ 2π

0

pa´ z0q dt

reit ` pa´ z0q
“ 0.

Si z0 “ a no hi ha res a provar. Llavors suposem que z0 ‰ a. Si ηptq “ e´it, amb t P r0, 2πs,
tenim η˚ “ BD i η1ptq “ ´ie´it. Aleshores,

I “ pa´ z0q

ˆ 2π

0

dt

eitpr ` pa´ z0qe´itq
“ ´

pa´ z0q

i

ˆ
η

dw

r ` pa´ z0qw
.

Ara, posant hpwq “ pr ` pa´ z0qwq´1, només ens cal provar que

ˆ
|w|“1

hpwqdw “ 0,
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seguint la notació introdüıda a l’observació 4.19, i això ens ho dona el teorema de Cauchy
per un disc, si podem veure que h és holomorfa en un disc centrat al 0 de radi R ą 1.
Ara bé, h és holomorfa a tot C excepte en el punt w0 “ r

z0´a , i com que |w0| ą 1, podem
trobar tal R, aix́ı que ja hem provat el que es demanava.

Observació 4.20. Aplicant el teorema de Cauchy per oberts convexos, fent servir la
mateixa prova, podem demostrar el següent resultat:
Sigui Ω Ă C un obert convex, γ camı́ tancat d’Ω i f P HpΩq. Aleshores

1

2πi

ˆ
γ

fpzq

z ´ z0
dz “ fpz0q Indpγ, z0q, z0 R γ˚,

on

Indpγ, z0q :“
1

2πi

ˆ
γ

dz

z ´ z0

és l’́ındex de γ respecte al punt z0. Més endavant, veurem la interpretació geomètrica de
l’́ındex com també algunes propietats (essencialment compta el número de voltes que fa γ
al voltant del punt z0). ‚

Fins al final del caṕıtol, estudiem les conseqüències directes de la fórmula integral de
Cauchy. Comencem per la propietat de la mitjana.

Lema 4.21 (Propietat de la mitjana). Sigui Ω Ă C un obert, f P HpΩq i suposem que
Drpaq Ă Ω. Llavors

fpaq “
1

2π

ˆ 2π

0
fpa` reitq dt.

Demostració. Per la fórmula integral de Cauchy, tenim que

fpaq “
1

2πi

ˆ
|z´a|“r

fpzq

z ´ a
dz.

Parametritzant la corba fent z “ a` reit, t P r0, 2πs, ens queda

fpaq “
1

2πi

ˆ 2π

0

fpa` reitq

reit
ireit dt “

1

2π

ˆ 2π

0
fpa` reitq dt.

Exercicis

4.4.1. Avalueu, usant la fórmula integral de Cauchy, les següents integrals:

a)
´

|z|“2
z2

z´1dz;

b)
´

|z|“1
sinpezq

z dz;

c)
´

|z|“2
dz

z2´1
;

d)
´

|z|“2
dz

z2`z`1
;

e)
´

|z|“2
dz

z2`2z´3
;

f)
´

|z´2|“ 3
2

cospzq

z2pz2´π2q
dz;

g)
´

|z|“3
3z´2
z2´z

dz;

h)
´

|z`1|“1
1

z2´1
dz. Ž
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4.4.2. Sigui p un polinomi de grau n, amb tots els seus zeros continguts en DRp0q. De-
mostreu que

ˆ
|z|“R

p1pzq

ppzq
dz “ 2πin. Ž

4.4.3. Sigui a P C, |a| ă 1. Calculeu la integral de ĺınia

ˆ
|z|“1

ˆ

2

z ´ a
´

1

z

˙

dz, i dedüıu

que

ˆ 2π

0

p1 ´ r2q dt

1 ` r2 ´ 2r cospθ ´ tq
“ 2π, per a tot 0 ď r ă 1 i θ P R. Ž

4.4.4. Siguin f, g P HpΩq, on Ω és un domini tal que D Ă Ω. Donat a P C amb |a| ‰ 1,
calculeu

1

2πi

ˆ
BD

ˆ

fpwq

w ´ a
´

agpwq

aw ´ 1

˙

dw. Ž

4.4.5. Es consideren els següent exercicis relacionats amb la Fórmula Integral de Cauchy.6

a) Calculeu

˛
C

z2

z4 ´ 1
dz sobre la circumferència de radi 3 centrada en 0.

b) És cert que

˛
C

ez

z
dz “ 0 si C és tancada i simple?

4.5. Sèries de potències

Teorema 4.22 (Desenvolupament local en sèrie de potències). Sigui Ω Ă C un obert.
Tota funció holomorfa en Ω és localment una sèrie de potències. Concretament, si Ra “

distpa,CzΩq, aleshores

fpzq “

8
ÿ

n“0

anpz ´ aqn, per tot |z ´ a| ă Ra,

amb

an “
1

2πi

ˆ
|w´a|“r

fpwq

pw ´ aqn`1
dw, per tot r ă Ra

i el radi de convergència de la sèrie és major o igual a Ra.

Combinant aquest resultat amb el teorema 3.30, veiem que f és holomorfa en Ω si i
només si f hi és anaĺıtica.

6De vegades es fa servir la notació
¸

per indicar que la integral és sobre un camı́ tancat.
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Demostració. Per 0 ă r ă Ra, tenim que Drpaq Ă Ω. Aplicant la fórmula integral de
Cauchy obtenim

fpzq “
1

2πi

ˆ
|w´a|“r

fpwq

w ´ z
dw, |z ´ a| ă r.

Volem escriure aquesta integral com una sèrie de potències. Tenim que

1

w ´ z
“

1

pw ´ aq ´ pz ´ aq
“

1

pw ´ aq

´

1 ´
pz´aq

w´a

¯ .

Ara, observem que per w amb |w ´ a| “ r, tenim que
ˇ

ˇ

ˇ

ˇ

z ´ a

w ´ a

ˇ

ˇ

ˇ

ˇ

“
|z ´ a|

r
ă 1,

i per tant

1

1 ´

´

z´a
w´a

¯ “

8
ÿ

n“0

ˆ

z ´ a

w ´ a

˙n

.

Llavors
1

w ´ z
“

8
ÿ

n“0

pz ´ aqn

pw ´ aqn`1
.

Introduint aquesta expressió en la fórmula integral de Cauchy, obtenim

fpzq “
1

2πi

ˆ
|w´a|“r

˜

8
ÿ

n“0

fpwq
pz ´ aqn

pw ´ aqn`1

¸

dw.

Ara volem intercanviar l’ordre d’integració amb el sumatori. Això ho podem fer si la
sèrie de funcions

ř

ně0 fn convergeix uniformement en t|w ´ a| “ ru, on

fnpwq “ fpwq
pz ´ aqn

pw ´ aqn`1
.

Per w amb |w ´ a| “ r, tenim que

|fnpwq| ď

ˆ

max
w:|w´a|“r

|fpwq|

˙

|z ´ a|n

|w ´ a|n`1
ď
Cr

r

ˆ

|z ´ a|

r

˙n

.

Com que |z´a| ă r, llavors
ř

n

´

|z´a|

r

¯n
ă 8, aix́ı que aplicant el criteriM de Weierstrass,

se segueix que la sèrie
ř

ně0 fn convergeix uniformement en t|w ´ a| “ ru. Intercanviant
doncs la integració amb el sumatori, tenim que per |z ´ a| ă r,

fpzq “

8
ÿ

n“0

˜

1

2πi

ˆ
|w´a|“r

fpwq

pw ´ aqn`1
dw

¸

pz ´ aqn.

Corol.lari 4.23. Sigui Ω Ă C un obert i f P HpΩq. Aleshores f P C8pΩq i totes les seves
derivades són holomorfes.

Demostració. Com que això ja ho sabem per sèries de potències, és conseqüència del
resultat anterior.
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Exercicis

4.5.1. Desenvolupeu en sèrie de potències al voltant del punt a i doneu el radi de con-
vergència de:

a) 1{z, a “ 1,

b) z2ez, a “ 0,

c) 1
pz´1qpz´2q

, a “ 0,

d) 1
p1´zq3

, a “ 0,

e) ez

1´z , a “ 0,

f) 1
1`ez , a “ 0.

(en (e) i (f) només cal calcular els 3 primers termes). Ž

4.5.2. Sigui α P C, provar que si p1 ` zqα es pensa com eαLogp1`zq llavors per |z| ă 1

p1 ` zqα “ 1 ` αz `
αpα ´ 1q

2!
z2 `

αpα ´ 1qpα ´ 2q

3!
z3 ` ¨ ¨ ¨

(generalització del binomi de Newton).

4.5.3. Trobeu els desenvolupament en sèrie de potències al voltant del punt a de les
següents funcions:

a) fpzq “ cos2 z, a “ 0.

b) fpzq “ z2

pz`1q2
, a “ 1.

c) 3
?
z, a “ 1.

Aqúı 3
?
. és la determinació de l’arrel cúbica en Czp´8, 0s que val p´1 ` i

?
3q{2 en

z “ 1. Ž

4.5.4. Considereu la funció fpzq “
z ` 1

pz ´ 1qpz ` iqz
i el punt a “ ´1.

1. “Sense fer cap càlcul”, raoneu quin és el disc de convergència de la sèrie de potències
de f al voltant del punt a.

2. Calculeu la sèrie de potències de f al voltant de a. Ž

4.5.5. a) Es pot desenvolupar
?
z en sèrie de potències en un entorn de l’origen?

b) Quin és el disc màxim centrat a 0 on es pot desenvolupar cosp1{pz ´ 1qq en sèrie de
potències?

c) I la funció
1

2 ´ z
`

z

3 ´ z
?

4.5.6. Determinar com a mı́nim els coeficients a1, a2, a3, a4 de la sèrie de Taylor de 1{p1`

z` z4q centrada a l’origen. Expliqueu perquè el radi de convergència és com a mı́nim 2{3.

4.5.7. Vegem com el teorema 4.22 és propi de l’anàlisi complexa. Una funció de variable
real f és anaĺıtica en un interval obert I Ă R si es pot expressar localment com a sèrie
de potències amb coeficients reals. Demostra que si f és anaĺıtica en I aleshores hi és
derivable. Troba una funció infinites vegades derivable en R que no hi sigui anaĺıtica.
Troba una funció f anaĺıtica en R que tingui radi de convergència 1.
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4. Integrals de ĺınia i teoria local de Cauchy

4.6. Fórmula integral de Cauchy centrada per derivades i
desigualtats de Cauchy

Com que també sabem que an “
f pnqpaq

n! (vegeu l’observació 3.31), obtenim el següent
resultat

Lema 4.24 (Fórmula integral de Cauchy centrada per derivades). Sigui Ω Ă C un obert,
f P HpΩq i sigui a P Ω i r ą 0 de manera que Drpaq Ă Ω. Llavors

f pnqpaq “
n!

2πi

ˆ
|w´a|“r

fpwq

pw ´ aqn`1
dw.

Notem que el requisit que la circumferència estigui centrada en a serà relaxat en el
corol.lari 4.38.

Exemple 4.25. Calculem

I “

ˆ
|z´1|“1

zez

pz ´ 1q2
dz.

La funció fpzq “ zez és entera. Llavors, per la fórmula integral de Cauchy per derivades,
tenim que

I “

ˆ
|z´1|“1

fpzq

pz ´ 1q2
dz “ 2πi f 1p1q “ 4πi e.

♢

Lema 4.26 (Desigualtats de Cauchy). Sigui Ω Ă C un obert, f P HpΩq, i sigui a P Ω i
r ą 0 de manera que Drpaq Ă Ω. Llavors

|f pnqpaq| ď
n!Mr

rn
, n ě 0,

on Mr “ sup|z´a|“r |fpzq|.

Observació 4.27. En particular, tenim que |fpaq| ď sup|z´a|“r |fpzq|. ‚

Demostració. Aplicant la fórmula integral de Cauchy per derivades, tenim que

f pnqpaq “
n!

2πi

ˆ
|w´a|“r

fpwq

pw ´ aqn`1
dw.

Per tant

|f pnqpaq| ď
n!

2π

ˆ
|w´a|“r

|fpwq|

|w ´ a|n`1
|dw| “

n!

2π rn`1

ˆ
|w´a|“r

|fpwq| |dw|

ď
n!

2π rn`1
Mr L pt|w ´ a| “ ruq “

n!Mr

rn
.

Observació 4.28. La desigualtat no es pot millorar. Per exemple, sigui fpzq “ zn, a “ 0
i r “ 1. En aquest cas, M “ M1 “ sup|z|“1 |fpzq| “ 1, i també tenim que f pnqp0q “ n!,

aix́ı que |f pnqp0q| “ n!M . ‚
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Exercicis

4.6.1. Donat r ą 0 i a P C calculeu

I “

ˆ
|z´a|“r

e2z

pz ´ aq3
dz. Ž

4.6.2. Siguin 0 ď m ď n enters. Calculeuˆ
|z|“1

p1 ` zqn

zm`1
dz. Ž

4.6.3. Intenteu calcular I “

ˆ 8

´8

1

p1 ` x2q2
dx fent servir la fórmula integral de Cauchy

per derivades (potser cal recordar la desigualtat |
´
Γ fpzqdz| ď

´
Γ |fpzq||dz|.)

a) Considereu la semicircumferència C en el semiplà superior centrada a 0 amb radi R i

tancada pel segment de l’eix OX. Calculeu

ˆ
C

1

p1 ` z2q2
dz.

b) Descomponeu C “ C1 Y C2 on C1 és el segment de ´R a R i C2 la part restant
de C. Fent servir la desigualtat triangular per integrals donar una fita superior de
ˇ

ˇ

ˇ

ˇ

ˆ
C2

1

p1 ` z2q2
dz

ˇ

ˇ

ˇ

ˇ

.

c) Fent servir els apartats anteriors calcular

ˆ
C1

1

p1 ` z2q2
dz. Que passa si R tendeix a

infinit? Ž

4.6.4. Sigui α ą 0 i f P HpDq complint que existeix c ą 0 i per a tot |z| ă 1, p1 ´

|z|qα|fpzq| ď c. Demostreu que per a tot n ě 0, |f pnqp0q| ď cn!
`

e
α

˘α
pn` αqα. Ž

4.6.5. Sigui f una funció entera de manera que existeixen constants C,M ą 0 tals que
|fpzq|e´C|z| ď M per a tot z P C. Demostreu que |f 1pzq|e´C|z| ď CMe per a tot z P C.
Indicació: Apliqueu la desigualtat de Cauchy al cercle centrat a z i de radi r per provar
que |f 1pzq|e´C|z| ď M

r e
Cr per a tot r ą 0 i z P C. Avalueu a r “ 1{C. Ž

4.6.6. (a) Suposem que una funció f entera satisfà que |fpzq| ď M si |z| “ R. Demos-
treu que els coeficients ck de la seva sèrie de Taylor centrada a a “ 0 compleixen

|ck| ď
M

Rk
.

(b) Suposem que el mòdul d’un polinomi P pzq està acotat per 1 pels z al disc unitat.
Demostreu que tots els coeficients de P tenen mòdul acotat per 1. Ž

4.6.7. Proveu que si f P HpDq tal que |fpzq| ď |eiz| per a tot z P D, aleshores, per a tot
n P N,

|f pnqp0q| ď n! e. Ž
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4.7. Teorema de Liouville i teorema fonamental de l’àlgebra

Teorema 4.29 (Teorema de Liouville). Tota funció entera i fitada és constant.

Demostració. Sigui z P C. Per a tot R ą 0, tenim que DRpzq Ă Ω “ C i f P HpCq. Com
que |fpwq| ď M per a tot w P C, aplicant les desigualtats de Cauchy amb n “ 1, obtenim

|f 1pzq| ď
1!M

R
ÝÑ 0

quan R Ñ 8, ja que M no depèn de R. Per tant f 1pzq “ 0 per a tot z P C, i f és
constant.

Corol.lari 4.30. Si f és entera amb Re f ě 0, llavors f és constant.

Demostració. En efecte, considerem la funció entera gpzq “ e´fpzq. Llavors

|gpzq| “ e´Refpzq ď e0 “ 1,

de manera que g és entera i fitada. Pel teorema de Liouville, g és constant, i per tant f
és constant.

Teorema 4.31 (Teorema fonamental de l’àlgebra). Sigui P un polinomi (holomorf) no
constant. Hi ha z0 P C amb P pz0q “ 0.

Demostració. Suposem que P pzq ‰ 0 per a tot z P C. Aleshores la funció fpzq “ 1
P pzq

és
entera. Si veiem que és fitada, aplicant el teorema de Liouville arribaŕıem a contradicció.
Si P pzq “ anz

n ` an´1z
n´1 ` ¨ ¨ ¨ ` a1z ` a0, llavors

|P pzq| “ |z|n
ˇ

ˇ

ˇ
an `

an´1

z
` ¨ ¨ ¨ `

a0
zn

ˇ

ˇ

ˇ
ÝÑ `8

quan |z| Ñ `8, aix́ı que lim|z|Ñ8 |fpzq| “ 0, fet que clarament implica que f és fitada.
Com que f és entera i fitada, pel teorema de Liouville, f ha de ser constant, de manera
que P és constant !!

Corol.lari 4.32. Tot polinomi de grau n té exactament n arrels complexes (comptant
multiplicitats).

Demostració. Sabem que P té un zero, diem α1. Llavors P pzq “ pz ´ α1qP1pzq, on P1 és
un polinomi de grau n´ 1, que també té un zero si n ě 2. Iterant aquest procés obtenim
el resultat.

Exercicis

4.7.1. Suposem que f és entera. Provar que si f p4qpzq és fitada en el pla llavors f és un
polinomi de grau 4 com a màxim. Ž

4.7.2. La funció fpzq “ 1{z2 tendeix a 0 quan z Ñ 8 però no és una funció constant.
Contradiu això el Teorema de Liouville? Ž
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4.7.3. Sigui f una funció entera. Per a |a| ă R i |b| ă R calculeu

I “

ˆ
|z|“R

fpzq

pz ´ aqpz ´ bq
dz.

Useu el resultat per demostrar el teorema de Liouville. Ž

4.7.4. Caracteritzeu les funcions enteres f tals que |f 1pzq| ď |z| per a tot z P C. Ž

4.7.5. Sigui f una funció entera. Usant el teorema de Liouville proveu que

(a) Si |f | ě 1, llavors f és constant.

(b) Si Re f ě 0, llavors f és constant.

(c) Si Im f ď 1, llavors f és constant. Ž

(d) Si Re f no té zeros, llavors f és constant.

4.7.6. Sigui f una funció entera tal que |fpzq| ď CeRe z, per a tot z P C, on C ą 0 és una
constant. Què es pot dir de f? Ž

4.7.7. Sigui f una funció entera tal que |f 1pzq| ă |fpzq| per a tot z P C. Què podem dir
de f? Ž

4.8. Teorema de Morera

Teorema 4.33 (Teorema de Morera). Sigui Ω Ă C un obert i f P CpΩq. Si per a tot
triangle T Ă Ω, es té ˆ

BT
fpzq dz “ 0,

llavors f és holomorfa en Ω.

Demostració. Si resseguim la prova del teorema de Cauchy per un disc, veiem que hem
provat que si D Ă Ω és un disc obert, f P CpDq i

´
BT f “ 0 per a tot triangle T Ă D,

llavors f té primitiva holomorfa en D.
Fixem z0 P Ω, i prenem r ą 0 de manera que Drpz0q Ă Ω. Llavors f té primitiva F

holomorfa en Drpz0q, aix́ı que f “ F 1 és holomorfa en z0.

Corol.lari 4.34. Sigui Ω Ă C un obert i f P CpΩq XHpΩztpuq. Llavors f P HpΩq.

Demostració. Pel teorema de Cauchy-Goursat, tenim que
´

BT f “ 0 per a tot triangle
T Ă Ω, i aplicant el teorema de Morera, se segueix que f és holomorfa en Ω.
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4. Integrals de ĺınia i teoria local de Cauchy

Teorema 4.35 (Principi de reflexió de Schwarz7). Sigui Ω un domini simètric respecte
de l’eix real, i anomenem Ω` “ Ω X tIm z ą 0u i Ω´ “ Ω X tIm z ă 0u. Sigui g P HpΩ`q

tal que per tot x P R X Ω existeix gpxq :“ limΩ`QzÑx gpzq i gpxq P R. Aleshores la funció

fpzq :“

$

’

&

’

%

gpzq si z P Ω`

gpxq si x P R X Ω

gpz̄q si z P Ω´

satisfà que f P HpΩq.

Demostració. Que f P CpΩq és un exercici (vegeu l’exercici 4.8.1). Per veure que f és
holomorfa n’hi ha prou amb veure que integra zero en triangles, en el sentit del teorema
de Morera.
Notem que f P HpΩ´q per la regla de la cadena (vegeu l’observació 3.25, el lema 3.24 i

l’exemple 3.18), doncs per z P Ω´ tenim que

B̄fpzq “ Bf̄pzq “ Bgp̄¨qpzq “ B̄gpz̄q ¨ 1 “ 0.

Per veure que la integral ˆ
BT
fpzq dz “ 0

s’anul.la en triangles que intersequin amb la recta real, n’hi ha prou amb veure que s’anul.la
en quadrilàters convexos continguts en Ω´ Y pΩ X Rq o en Ω` Y pΩ X Rq i amb un costat
contingut en la recta real. Ara, aquesta integral s’anul.la en quadrilàters continguts en Ω´

o en Ω` per l’holomorfia de f en aquests dos dominis (i de Cauchy-Goursat), i per pas al
ĺımit obtenim el mateix per quadrilàters convexos amb un costat contingut en pΩXRq.

Teorema 4.36 (Teorema de Weierstrass). Sigui Ω Ă C un obert, i sigui tfnu una successió
de funcions de HpΩq de manera que fn Ñ f uniformement sobre els compactes d’Ω.
Llavors f P HpΩq, i f 1

n Ñ f 1 uniformement sobre els compactes d’Ω.

Demostració. Com que fn P HpΩq Ă CpΩq i fn Ñ f uniformement sobre compactes, se
segueix que f P CpΩq. Llavors, pel teorema de Morera, per provar que f P HpΩq, ens cal
veure que ˆ

BT
fpzq dz “ 0

per a tot triangle T Ă Ω. Fixem T Ă Ω triangle. Com que fn Ñ f uniformement en el
compacte BT , podem passar el ĺımit a fora de la integral en el càlcul que segueix,ˆ

BT
fpzq dz “

ˆ
BT

lim
n
fnpzq dz “ lim

n

ˆ
BT
fnpzq dz “ 0,

ja que, al ser fn holomorfes en Ω, aplicant el teorema de Cauchy-Goursat, tenim queˆ
BT
fnpzq dz “ 0.

7Karl Hermann Amandus Schwarz, Sobieszów, 1843–1921, https://ca.wikipedia.org/wiki/Hermann_
Schwarz
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4. Integrals de ĺınia i teoria local de Cauchy

Finalment, per veure que f 1 “ limn f
1
n i que la convergència és uniforme en compactes,

n’hi ha prou amb veure que ho és en Kε “ tz P Ω : distpz,Ωcq ě εu X D 1
ε
p0q per ε ą 0.

Aleshores (sempre que Kε ‰ ∅), usem la fórmula integral de Cauchy per a derivades amb
radi r “ ε{2, i obtenim

sup
z0PKε

ˇ

ˇf 1pz0q ´ f 1
npz0q

ˇ

ˇ

L.4.24
“ sup

z0PKε

1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
|z´z0|“r

fpzq ´ fnpzq

pz ´ z0q2
dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

r
sup
Kε{2

|f ´ fn|
nÑ8
ÝÝÝÑ 0,

suposant que ε és prou petit (fa falta ja que quan z P BDrpz0q tenim que |z| ď |z0| ` r ď
1
ε ` ε

2 ď 2
ε i, per tant, z P Kε{2 si, per exemple ε ă 1).

Exercicis

4.8.1. Demostreu la continüıtat de f en el principi de reflexió de Schwarz. Ž

4.8.2. Sigui fpzq “ 1{z2. Comproveu que
´
γ fpzq dz “ 0 per a tot camı́ tancat γ que no

passi per 0, però f no és anaĺıtica en 0. Contradiu això el corol.lari 4.34 del teorema de
Morera? Ž

4.8.3. (a) Sigui h una funció cont́ınua a R amb suport compacte (és a dir, existeix
K Ă R compacte tal que hpxq “ 0 si x R K) i sigui

Hpzq “

ˆ
R
hptqe´itzdt

(quan ens restringim a z P R, H s’anomena transformada de Fourier de h; si prenem
iz en el lloc de z, H s’anomena transformada de Laplace8 bilateral de h). Proveu
que H és una funció entera amb creixement exponencial: existeixen A,C ą 0 tals
que |Hpzq| ď CeA|Im z|.

(b) Sigui h una funció cont́ınua a r0, 1s. Demostreu que la seva transformada de Hilbert9

Hpzq “

ˆ 1

0

hptq

t´ z
dt

és anaĺıtica per a z P Czr0, 1s. Ž

4.8.4. Sigui f holomorfa en un obert Ω, i sigui z0 P Ω amb f 1pz0q ‰ 0. Demostreu que hi
ha r0 ą 0 de manera que, per 0 ă ε ă r0, es compleix la identitat

2πi

f 1pz0q
“

ˆ
|z´z0|“ε

dz

fpzq ´ fpz0q
.

Indicació: proveu primer que la funció G definida per

Gpzq “

#

fpzq´fpz0q

z´z0
si z ‰ z0

f 1pz0q si z “ z0

és holomorfa en Ω. Ž

8Pierre-Simon Laplace, Beaumont-en-Auge, 1749–1827, https://ca.wikipedia.org/wiki/

Pierre-Simon_Laplace
9David Hilbert, Königsberg, 1862–1943, https://ca.wikipedia.org/wiki/David_Hilbert
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4.9. Derivació sota el signe integral i fórmula integral de Cauchy
per derivades

Sigui Ω Ă C un obert i f P HpΩq. Suposem que Drpaq Ă Ω. Llavors, per la fórmula
integral de Cauchy, tenim que

fpz0q “
1

2πi

ˆ
|z´a|“r

fpzq

z ´ z0
dz, |z0 ´ a| ă r.

També tenim la fórmula integral de Cauchy per derivades.

f pnqpaq “
n!

2πi

ˆ
|z´a|“r

fpzq

pz ´ aqn`1
dz.

Observem aqúı una diferència: podem aplicar la fórmula integral de Cauchy per a tot
z0 P Drpaq; i en canvi en la versió per derivades només tenim l’enunciat per a z0 “ a, que
és el centre del disc. Aix́ı doncs, una qüestió que ens apareix de manera natural és si en
la fórmula integral de Cauchy per derivades, també podem agafar z0 P Drpaq igual que en
la fórmula de Cauchy. La resposta és que śı, i serà conseqüència del següent resultat.

Teorema 4.37 (Derivació sota el signe d’integració). Siguin Ω1,Ω2 Ă C oberts i γ :
ra, bs Ñ Ω2 un camı́ en Ω2. Sigui F : Ω1 ˆ γpra, bsq Ñ C una funció cont́ınua. Si F p¨, zq

és holomorfa en Ω1 per a cada z P γ˚ :“ γpra, bsq, llavors la funció definida per

fpwq “

ˆ
γ
F pw, zq dz, w P Ω1

és holomorfa en Ω1 amb

f 1pwq “

ˆ
γ

BF

Bw
pw, zq dz, w P Ω1.

Abans de passar a la prova d’aquest teorema, apliquem-lo per provar la versió desitjada
de la fórmula integral de Cauchy per derivades.

Corol.lari 4.38 (Fórmula integral de Cauchy per derivades). Sigui Ω Ă C un obert i
f P HpΩq. Suposem que Drpaq Ă Ω. Llavors, per n P N,

f pnqpz0q “
n!

2πi

ˆ
|z´a|“r

fpzq

pz ´ z0qn`1
dz, |z0 ´ a| ă r,

Demostració. Suposem que Drpaq Ă Ω. Llavors, com que f és holomorfa en Ω, per la
fórmula integral de Cauchy, tenim que

fpwq “
1

2πi

ˆ
|z´a|“r

fpzq

z ´ w
dz “

ˆ
|z´a|“r

F pw, zq dz, w P Drpaq,

on

F pw, zq “
1

2πi

fpzq

pz ´ wq
.
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Passarem a aplicar el teorema de derivació sota el signe integral amb Ω1 “ Drpaq, Ω2 “ Ω
i la corba γptq “ a ` reit, t P r0, 2πs. Tenim que γ˚ “ γr0, 2πs “ tz : |z ´ a| “ ru. Com
que w P Drpaq i |z ´ a| “ r, llavors clarament F és cont́ınua en Drpaq ˆ γr0, 2πs, i també,
per z P γr0, 2πs fixat, la funció Fzpwq “ F pw, zq és holomorfa en w. Aix́ı doncs, aplicant
el teorema de derivació sota el signe integral, se segueix que

f 1pwq “
1

2πi

ˆ
|z´a|“r

fpzq

pz ´ wq2
dz, w P Drpaq.

Iterant aquesta fórmula, obtenim que

f pnqpwq “
n!

2πi

ˆ
|z´a|“r

fpzq

pz ´ wqn`1
dz, |w ´ a| ă r.

Per provar el teorema 4.37, és suficient demostrar el següent cas particular.

Proposició 4.39. Sigui Ω Ă C un obert i F : Ω ˆ ra, bs Ñ C cont́ınua. Si F pw, sq és
holomorfa en w per a tot s P ra, bs, llavors la funció

fpwq “

ˆ b

a
F pw, sq ds

és holomorfa en Ω amb

f 1pwq “

ˆ b

a

BF

Bw
pw, sq ds, w P Ω.

Demostrem ara el teorema de derivació sota el signe integral a partir de la proposició
anterior.

Demostració del teorema 4.37. Podem suposar que γ és de classe C1. Llavors

ˆ
γ
F pw, zq dz “

ˆ b

a
F pw, γpsqq γ1psqds “

ˆ b

a
Gpw, sq ds,

on Gpw, sq “ F pw, γpsqq γ1psq que és clarament cont́ınua en Ω1 ˆ ra, bs degut a la hipòtesi
sobre F . També G és holomorfa en w per a tot s P ra, bs. Per tant, aplicant la proposició,
se segueix que f és holomorfa en Ω1 amb

f 1pwq “

ˆ b

a

BF

Bw
pw, γpsqq γ1psq ds “

ˆ
γ

BF

Bw
pw, zq dz.

Demostració de la proposició. Podem suposar a “ 0 i b “ 1. Per n ě 1, considerem la
suma finita de funcions

fnpwq “
1

n

n
ÿ

k“1

F
`

w,
k

n

˘

, w P Ω.
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Com que, per hipòtesi, les funcions F pw, knq són holomorfes en w i en tenim una suma
finita, se segueix que les funcions fn són holomorfes en Ω.
Per veure que f és holomorfa en Ω, provarem que fn Ñ f uniformement sobre els com-

pactes d’Ω, aix́ı que aplicant el teorema de Weierstrass (vegeu el teorema 4.36), obtindrem
que f P HpΩq.

Sigui K Ă Ω compacte. Recordem que una funció cont́ınua en un compacte és unifor-
mement cont́ınua. Per tant, al ser F cont́ınua en el compacte K ˆ r0, 1s, donat ε ą 0, hi
ha δ ą 0 de manera que

sup
wPK

ˇ

ˇ

ˇ
F pw, s1q ´ F pw, s2q

ˇ

ˇ

ˇ
ă ε, si |s1 ´ s2| ă δ. (4.4)

Observem que, com que 1
n “ k

n ´ k´1
n , tenim que

fnpwq “

n
ÿ

k“1

ˆ k
n

k´1
n

F

ˆ

w,
k

n

˙

ds.

També

fpwq “

ˆ 1

0
F pw, sq ds “

n
ÿ

k“1

ˆ k
n

k´1
n

F pw, sq ds.

Aleshores, si n ą 1{δ i w P K,

ˇ

ˇfnpwq ´ fpwq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

ˆ k
n

k´1
n

ˆ

F

ˆ

w,
k

n

˙

´ F pw, sq

˙

ds

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“1

ˆ k
n

k´1
n

ˇ

ˇ

ˇ

ˇ

F

ˆ

w,
k

n

˙

´ F pw, sq

ˇ

ˇ

ˇ

ˇ

ds

ď ε
n
ÿ

k“1

´k

n
´

pk ´ 1q

n

¯

“ ε,

on hem aplicat (4.4), ja que per s P rk´1
n , kn s. Obtenim

ˇ

ˇs´ k
n

ˇ

ˇ ă 1
n ă δ, ja que hem triat

n ą 1{δ. Per tant,
sup
wPK

ˇ

ˇfnpwq ´ fpwq
ˇ

ˇ ă ε, n ą 1{δ,

provant que fn Ñ f uniformement en compactes d’ Ω, i per tant f és holomorfa en Ω pel
teorema de Weierstrass.
Fixem ara w P Ω i prenem r ą 0 de manera que Drpwq Ă Ω. Per la fórmula integral

de Cauchy per derivades (la versió on prenem el centre del disc, que ja tenim provada),
tenim que

f 1pwq “
1

2πi

ˆ
|z´w|“r

fpzq

pz ´ wq2
dz “

1

2πi

ˆ
|z´w|“r

1

pz ´ wq2

ˆˆ 1

0
F pz, sq ds

˙

dz.

Finalment, aplicant el teorema de Fubini obtenim

f 1pwq “

ˆ 1

0

˜

1

2πi

ˆ
|z´w|“r

F pz, sq

pz ´ wq2
dz

¸

ds “

ˆ 1

0

BF

Bw
pw, sq ds,
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ja que com que fixat s P r0, 1s, la funció Fspwq “ F pw, sq és holomorfa, per la fórmula
integral de Cauchy per la derivada, tenim que

BF

Bw
pw, sq “ F 1

spwq “
1

2πi

ˆ
|z´w|“r

Fspzq

pz ´ wq2
dz “

1

2πi

ˆ
|z´w|“r

F pz, sq

pz ´ wq2
dz.

Per tal de justificar l’aplicació del teorema de Fubini, cal provar que

J :“

ˆ 1

0

˜

1

2π

ˆ
|z´w|“r

|F pz, sq|

|z ´ w|2
|dz|

¸

ds ă 8.

Com que F és cont́ınua en Ωˆr0, 1s, en particular és cont́ınua en el compacte BDrpwqˆr0, 1s

i, per tant, fitada en aquest compacte. Llavors hi ha una constant M ą 0 de manera que
|F pz, sq| ď M per a tot z amb |z ´ w| “ r i tot s P r0, 1s. Llavors

J “
1

2πr2

ˆ 1

0

ˆ
|z´w|“r

|F pz, sq| |dz| ds ď
M

2πr2

ˆ 1

0
2πr ds ă 8.

Exercicis

4.9.1. Avalueu, usant la fórmula de Cauchy per a les derivades

a)

ˆ
|z|“1

ez

pz ´ 1{2q2
dz. b)

ˆ
|z|“1

sinpzq

p3z ´ 2q4
dz. c)

ˆ 2π

0
e´iθee

iθ
dθ. Ž

4.10. Zeros de funcions holomorfes i principi de prolongació
anaĺıtica

Tot seguit estudiem el conjunt de punts on una funció holomorfa donada val zero, l’ano-
menat conjunt de zeros de la funció. Sigui Ω Ă C un obert i f P HpΩq, i escrivim

Zpfq “ tz P Ω : fpzq “ 0u.

Proposició 4.40. Sigui Ω Ă C un obert connex i f P HpΩq. Si existeix a P Ω de manera
que f pnqpaq “ 0 per a tot n P N Y t0u, llavors f ” 0.

Demostració. Sigui

A “
␣

z P Ω : f pnqpzq “ 0 per a tot n P N Y t0u
(

.

Tenim que A és no buit ja que a P A. Vegem que A és relativament tancat en Ω. Donada
una successió tbku Ă A amb bk Ñ b P Ω, volem provar que b P A. Com que cada f pnq és
cont́ınua i bk P A, tenim que

f pnqpbq “ f pnqplim
k
bkq “ lim

k
f pnqpbkq “ 0 ñ b P A.
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Per tant A és tancat en Ω. Vegem que A és obert. Sigui b P A. Com que tota funció
holomorfa és localment una sèrie de potències, podem trobar r ą 0 amb Drpbq Ă Ω i

fpzq “

8
ÿ

n“0

f pnqpbq

n!
pz ´ bqn “ 0, z P Drpbq.

Com que fpzq “ 0 per a tot z P Drpbq, se segueix que Drpbq Ă A aix́ı que A també és
obert.
Com que Ω és connex, i A és no buit, i obert i tancat en Ω a la vegada, se segueix que

A “ Ω i f ” 0 en Ω.

Teorema 4.41. Sigui Ω Ă C un obert connex i f P HpΩq amb f ı 0. Per a tot z0 P Zpfq

hi ha un únic m P N (anomenat l’ordre o multiplicitat del zero z0) de manera que

fpzq “ pz ´ z0qm gpzq, z P Ω,

on g P HpΩq amb gpz0q ‰ 0.

Demostració. Com que tota funció holomorfa és localment una sèrie de potències, podem
trobar r ą 0 amb Drpz0q Ă Ω i tal que

fpzq “

8
ÿ

n“0

an pz ´ z0qn, z P Drpz0q.

Sabem que a0 “ fpz0q “ 0. Sigui m el mı́nim nombre natural amb am ‰ 0 (aquest mı́nim

existeix per la proposició anterior, ja que an “
f pnqpz0q

n! ). Tenim que

fpzq “
ÿ

něm

anpz ´ z0qn “ pz ´ z0qm hpzq, z P Drpz0q,

amb

hpzq “ am ` am`1pz ´ z0q ` am`2pz ´ z0q2 ` ¨ ¨ ¨ “
ÿ

kě0

am`kpz ´ z0qk, z P Drpz0q

que és holomorfa en Drpz0q amb hpz0q ‰ 0. Finalment, definint

gpzq “

$

’

’

&

’

’

%

fpzq

pz ´ z0qm
si z P Ωztz0u

hpz0q si z “ z0,

tenim que limzÑz0 gpzq “ am “ hpz0q ‰ 0, g és holomorfa en Ωztz0u i g és cont́ınua en z0
i, per tant, holomorfa en tot Ω, vegeu el corol.lari 4.34.

Exemple 4.42. Trobem la multiplicitat de z “ 0 com a zero de la funció

fpzq “ 6 sinpz3q ` z9 ´ 6z3.
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Tenim que

sin z “ z ´
z3

3!
`
z5

5!
` Opz7q,

vegeu l’Observacio 3.3. Per tant,

sinpz3q “ z3 ´
z9

6
`
z15

5!
` Opz21q,

aix́ı que

fpzq “ 6 sinpz3q ` z9 ´ 6z3 “
6z15

5!
` opz20q,

i per tant z “ 0 té ordre o multiplicitat 15.
♢

Corol.lari 4.43. Sigui Ω Ă C un obert connex i f P HpΩq amb f ı 0. Llavors els zeros
de f són äıllats.

Demostració. Sigui z0 P Zpfq. Pel teorema anterior existeix m P N tal que fpzq “

pz ´ z0qm gpzq amb g P HpΩq i gpz0q ‰ 0. Per continüıtat, hi ha ε ą 0 de manera que
gpzq ‰ 0 per z P Dεpz0q, aix́ı que fpzq ‰ 0 si z P Dεpz0q amb z ‰ z0.

Recordem que z0 és un punt d’acumulació d’un conjunt A si hi ha una successió
pznqn Ă Aztz0u amb zn Ñ z0.

Teorema 4.44 (Principi de prolongació anaĺıtica). Sigui Ω Ă C un obert connex i f P

HpΩq. Si Zpfq té un punt d’acumulació en Ω, aleshores f ” 0 en Ω.

Demostració. Sigui z0 P Ω punt d’acumulació de Zpfq, és a dir, hi ha zn P Zpfq amb
zn Ñ z0. Com que f és cont́ınua, llavors fpz0q “ limn fpznq “ 0, i z0 P Zpfq, pel que z0
és un zero de f que no és äıllat. Com que sabem que els zeros d’una funció holomorfa no
idènticament nul.la són äıllats, això implica que f ” 0.

Corol.lari 4.45. Sigui Ω Ă C un obert connex i f : Ω Ñ C una funció holomorfa, no
idènticament zero. Llavors el conjunt de zeros de f és un conjunt finit o numerable.

Demostració. Podem escriure Ω “
Ť

nKn, on Kn :“ tz P C; dpz,CzΩq ě 1
nu X Dnp0q.

Llavors, per a cada n, Kn és compacte (tancat i fitat a C). Donat que f no és idènticament
zero, els zeros són äıllats, i es compleix en particular que ZpfqXKn és finit (si no hi hauria
un punt d’acumulació), aix́ı que

Zpfq “
ď

n

pZpfq XKnq

és finit o numerable en ser unió numerable de conjunts finits.

Observació 4.46. En cas que f tingui un número infinit de zeros, aquests s’han d’acu-
mular a la frontera d’Ω. Si f és entera, llavors els zeros s’acumulen a t8u. Per exemple,
els zeros de fpzq “ sin z són kπ per k P Z. ‚
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4. Integrals de ĺınia i teoria local de Cauchy

El principi de prolongació anaĺıtica s’aplica moltes vegades en la forma següent:

Corol.lari 4.47 (Principi de prolongació anaĺıtica, versió 2). Sigui Ω Ă C un obert connex
i f, g P HpΩq. Si tz P Ω : fpzq “ gpzqu té un punt d’acumulació en Ω, aleshores f ” g en
Ω.

Demostració. Apliquem el principi de prolongació anaĺıtica a la funció holomorfa h “ f´g,
i obtenim el resultat, ja que Zphq “ tz P Ω : fpzq “ gpzqu.

En particular, si Ω és connex i f, g P HpΩq coincideixen en, per exemple, un obert, o bé
un arc, o una recta, o un cercle, o un segment; llavors f ” g en Ω.

Exemple 4.48. Cerquem totes les funcions f P HpDq amb fp 1
nq “ 1

n2`1
, per a tot n P N

amb n ą 1. Observem que

f
´ 1

n

¯

“
1

n2 ` 1
“

1

n2p1 ` 1
n2 q

“

´ 1

n

¯2 1

1 ` p 1
nq2

.

Llavors la funció gpzq “ z2

1`z2
és holomorfa en D i compleix que gp 1

nq “ 1
n2`1

, i dedüım

que f, g P HpDq amb fp 1
nq “ gp 1

nq. Com que 1
n Ñ 0 P D i D és connex, llavors aplicant el

principi de prolongació anaĺıtica, obtenim que

fpzq “ gpzq “
z2

1 ` z2
, z P D.

♢

Exercicis

4.10.1. Trobeu els zeros, amb l’ordre corresponent, de les següents funcions:

a)
z2 ` 1

z2 ´ 1
b) z2 sin z c) fpzq “

1

z
`

1

z5
. Ž

4.10.2. Trobeu la multiplicitat de z “ 0 com a zero de la funció entera fpzq “ 2 cos z3 `

z6 ´ 2. Ž

4.10.3. Trobeu tots els zeros de les següents funcions holomorfes i calculeu-ne les seves
multiplicitats:

a) fpzq “ z2pez
2

´ 1q.

b) fpzq “ pz2 ´ π2q sin z{z.

c) fpzq “ p
?
z ´ 2q3.

Aqúı
?
. és la determinació de l’arrel quadrada en Czp´8, 0s que val ´1 en z “ 1. Ž
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4.10.4. Sigui Ω Ă C un domini. Demostreu que l’anell de funcions holomorfes HpΩq a
una regió Ω és un domini d’integritat, és a dir, si f, g P HpΩq amb fg ” 0 aleshores f ” 0
o g ” 0. Ž

4.10.5. Sigui tanun una successió estrictament decreixent de nombres reals an P p0, 1q i
tal que lim

nÑ8
an “ 0. Sigui f una funció holomorfa en D. Demostreu que:

(a) Si fpanq P R per a tot n, aleshores fpz̄q “ fpzq per a tot z P D.

(b) Si a més fpa2nq “ fpa2n`1q per a tot n, aleshores f és constant. Ž

4.10.6. Trobeu totes les funcions holomorfes a D tals que:

(a) |fp1{nq| ď 1{2n, per a tot nombre natural n ě 2.

(b) fp1{nq “ lnp1 ` n3q ´ 3 lnn per a n ą 1. Ž

4.10.7. Trobeu totes les funcions f holomorfes en el disc D2p0q tals que fpeiθq “ ei2θ per
a tot θ P r0, 2πq, i a més fp0q “ 0. Ž

4.10.8. Sigui f P HpΩq en un domini Ω Ă C tal que f ˝ f “ f . Demostreu que o bé f és
constant, o bé és la identitat. Ž

4.10.9. (a) Sigui f una funció entera tal que existeixen constants n P N, C ą 0 i R ą 0
tals que |fpzq| ď C|z|n, per a |z| ě R. Demostreu que f és un polinomi de grau més petit
o igual que n.

(b) Dedüıu que si f és una funció entera amb lim
|z|Ñ8

|fpzq| “ 8, llavors f és un polinomi.

Indicació: Demostreu que f només té un nombre finit de zeros a1, . . . , an (comptant mul-
tiplicitats) i apliqueu l’apartat (a) a la funció F “ P {f , on P pzq “ pz ´ a1q ¨ ¨ ¨ pz ´ anq.

Ž

4.10.10. Sigui Ω Ă C un domini (obert connex) tal que Ω X R ‰ H. Suposem que tenim
f, g, h P HpΩq i u, v : Ω Ñ R tals que per x` iy P Ω tenim

fpx` iyq “ upx, yq ` ivpx, yq,

i per x P Ω X R tenim
upx, 0q “ gpxq vpx, 0q “ hpxq.

Demostreu que
fpzq “ gpzq ` ihpzq per a tot z P Ω. Ž
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4.11. El principi del mòdul màxim

Una caracteŕıstica de les funcions holomorfes és que no poden tenir màxims absoluts en el
seu domini de definició. Podem observar el contrast amb l’anàleg real: existeixen moltes
funcions derivables amb màxims absoluts en l’interior del domini de definició com, per
exemple, la funció f : p´1, 1q Ñ R definida per fpxq “ 1 ´ x2 que té un màxim absolut
en x “ 0.

Teorema 4.49 (Principi del mòdul màxim). Sigui Ω Ă C un obert connex i f P HpΩq.
Si |f | té un màxim absolut en Ω, llavors f és constant.

Demostració. Sigui z0 P Ω amb |fpzq| ď |fpz0q| per a tot z P Ω. Posem

A “
␣

z P Ω : |fpzq| “ |fpz0q|
(

.

Es compleix que A és no buit ja que z0 P A. Com que Ω és connex, si veiem que A és
obert i tancat en Ω, tindrem que A “ Ω, que implica que |f | és constant i, per l’exercici
3.2.6, també f és constant. Ja sabem que A és tancat en Ω, ja que |f | és cont́ınua i
A “ p|f |q´1px0q amb x0 “ |fpz0q|.
Vegem que A és obert. Donat a P A, volem trobar r ą 0 de manera que Drpaq Ă A.

Sigui r ą 0 tal que Drpaq Ă Ω. Per la propietat de la mitjana, es compleix llavors que

fpaq “
1

2π

ˆ 2π

0
fpa` seitq dt, 0 ă s ď r.

Per tant, com que a P A, obtenim

|fpaq| ď
1

2π

ˆ 2π

0
|fpa` seitq| dt ď |fpz0q| “ |fpaq|, 0 ă s ď r.

Com que |f | és cont́ınua i |fpa` seitq| ď |fpaq| per a tot t P r0, 2πs, es verifica que

|fpaq| “ |fpa` seitq|, @t P r0, 2πs, 0 ă s ď r.

És a dir, Drpaq Ă A.

Passem ara a veure algunes conseqüències, que quan les apliquem, seguirem dient que
apliquem el principi del mòdul màxim.

Corol.lari 4.50. Sigui Ω Ă C regió fitada, i f P HpΩq X CpΩq. Llavors el màxim de |f |

s’assoleix a la frontera BΩ.

Demostració. Com que Ω és fitat, llavors Ω és un tancat i fitat de C i per tant compacte.
Com que |f | és cont́ınua en el compacte Ω, llavors |f | té un màxim absolut en un punt a de
Ω. Si a P Ω, pel principi del mòdul màxim, llavors |f | és constant, aix́ı que, en particular,
|f | assoleix el màxim en tot punt w P BΩ.
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Corol.lari 4.51. Sigui Ω Ă C un obert connex i f P HpΩq. Si |f | té un màxim local en
Ω, llavors f és constant.

Demostració. Per hipòtesi, hi ha a P Ω i r ą 0 de manera que |fpzq| ď |fpaq| per a tot
z P Drpaq. Com que f P HpDrpaqq i |f | té un màxim absolut en Drpaq, pel principi del
mòdul màxim, se segueix que f és constant en Drpaq i, al ser Ω connex, aplicant el principi
de prolongació anaĺıtica obtenim que f és constant en Ω.

Lema 4.52 (Lema de Schwarz). Sigui f : D Ñ D una funció holomorfa tal que fp0q “ 0.
Aleshores

|fpzq| ď |z| per tot z P D,

i |f 1p0q| ď 1. Si es compleix la igualtat |fpz0q| “ |z0| en algun punt z0 P Dzt0u o bé la
igualtat |f 1p0q| “ 1, aleshores fpzq “ λz per algun λ P BD.

Demostració. Suposem f ı 0. Sabem que gpzq “
fpzq

z és anaĺıtica, i |gpzq| ď 1
|z|
. Pel

principi del mòdul màxim,

|gpzq| ď
1

r
en Drp0q.

Fent r Ñ 1 dedüım la primera desigualtat. A més, |f 1p0q| “ |gp0q| ď 1.
Si es produeix alguna igualtat |fpz0q| “ |z0| amb z0 P Dzt0u (respectivament |f 1p0q| “ 1),

aleshores g assoleix un extrem del mòdul en z0 (respectivament en 0) i, per tant, g és
constant.

Exemple 4.53. Vegem que, per a tot polinomi holomorf P , tenim que

sup
|z|“1

ˇ

ˇ

ˇ

ˇ

P pzq ´
1

z

ˇ

ˇ

ˇ

ˇ

ě 1.

Aquest resultat ens diu que la funció 1
z no es pot aproximar uniformement per polinomis

holomorfs en el compacte S1 “ t|z| “ 1u.
Observem primer que

sup
|z|“1

ˇ

ˇ

ˇ

ˇ

P pzq ´
1

z

ˇ

ˇ

ˇ

ˇ

“ sup
|z|“1

|zP pzq ´ 1|

|z|
“ sup

|z|“1
|zP pzq ´ 1|.

Aleshores, si aquest suprem és estrictament menor que 1, tenim que, en ser la funció
hpzq “ zP pzq ´ 1 entera, pel principi del mòdul màxim

|hp0q| ď sup
|z|“1

|hpzq| ă 1,

però això no és possible ja que hp0q “ ´1. Per tant

sup
|z|“1

ˇ

ˇ

ˇ

ˇ

P pzq ´
1

z

ˇ

ˇ

ˇ

ˇ

ě 1. ♢
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Una altra propietat rellevant de les funcions holomorfes (no constants) és que envien
oberts a oberts. Aquesta propietat no val per a funcions de variable real (tan regulars
com vulguem). Per exemple, la imatge de la funció fpxq “ x2 de l’interval obert p´1, 1q

és r0, 1q que no és obert.

Teorema 4.54 (Teorema de l’aplicació oberta). Sigui Ω Ă C un obert connex i f P HpΩq

no constant. Aleshores f és oberta. És a dir, si U és un obert d’Ω, llavors fpUq és obert.

Demostració. Sigui U Ă Ω obert, i z0 P U . Per veure que fpUq és obert, volem trobar un
entorn de w0 :“ fpz0q dins de fpUq. Considerem la funció

gpzq “ fpzq ´ w0, z P Ω.

Com que gpz0q “ 0 i els zeros de les funcions holomorfes són äıllats, al ser f no constant,
podem trobar r ą 0 de manera que Drpz0q Ă U amb gpzq ‰ 0 per a tot z P Drpz0qztz0u.

Sigui γptq “ z0`reit amb 0 ď t ď 2π, de manera que γ˚ “ BDrpz0q. Llavors 0 R pg˝γq˚,
on g ˝ γ denota la imatge per g de la corba γ. Per tant

δ “ inf
zPγ˚

|gpzq| ą 0.

És a dir,
|gpzq| ě δ, |z ´ z0| “ r.

Passarem a provar que Dδ{2pw0q Ă fpUq.

Suposem que w R fpUq. Això implica que la funció

hpzq “
1

fpzq ´ w
(4.5)

és holomorfa en U . Pel principi del mòdul màxim, tenim que

|hpz0q| ď sup
zPγ˚

|hpzq|. (4.6)

(Aquesta desigualtat també es pot obtenir fent servir la propietat de la mitjana, per
exemple). Com que |gpzq| ě δ per z P γ˚, tenim que

|hpzq| “
1

|fpzq ´ w|
“

1

|fpzq ´ w0 ` pw0 ´ wq|
ď

1

|gpzq| ´ |w ´ w0|

ď
1

δ ´ |w ´ w0|
, z P γ˚.

Per tant,
1

|w ´ w0|

(4.5)
“ |hpz0q|

(4.6)
ď

1

δ ´ |w ´ w0|
ñ |w ´ w0| ě

δ

2
,

és a dir que w R Dδ{2pw0q. Concloem doncs que f és oberta.
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Exercicis

4.11.1. Cerqueu l’enunciat del teorema de Stone10-Weierstrass i compareu-lo amb l’exem-
ple 4.53.

4.11.2. Trobeu el màxim de:

a) | cos z| i | sin z| a r0, 2πs ˆ r0, 2πs.

b) |ez| i |ez
2
| a |z| ď 1. Ž

4.11.3. Trobeu totes les funcions holomorfes en D tals que fp1{2q “ 3 i |fpzq| ď 3 si
|z| ă 1. Ž

4.11.4. Es considera fpzq “ ecospzqz2 i el disc D de radi 2 centrat a 5. Provar que fpzq

assoleix el valor màxim i mı́nim del mòdul a |z ´ 5| “ 2. Indicació: considerar 1{fpzq. Ž

4.11.5. Sigui f una funció holomorfa en el disc DRp0q, R ą 0. Definim

Mprq “ max
|z|“r

|fpzq|, 0 ď r ă R.

Demostreu que si f no és constant, aleshores Mprq és estrictament creixent a r0, Rq. Ž

4.11.6. Sigui f una funció holomorfa en un obert connex Ω i D un disc obert tal que
D Ă Ω. Suposeu que |fpzq| “ c per tot z P BD, on c és una constant. Proveu que f té
almenys un zero en D o bé f és constant en Ω. Indicació: Distingiu segons si c “ 0 o
c ą 0. En el segon cas, proveu que si f no té zeros en D, aleshores f és constant en D.

Ž

4.11.7. Sigui f una funció holomorfa i no constant en Ω Ă C, un obert connex. Suposeu
que existeix a P Ω tal que |fpaq| ď |fpzq| per a tot z P Ω. Proveu que aleshores fpaq “ 0.

Ž

4.11.8. Sigui f P HpCq no constant. Demostreu que, per a tot c ą 0,

tz; |fpzq| ă cu “ tz; |fpzq| ď cu. Ž

10Marshall Harvey Stone, New York City, 1903–1989, https://en.wikipedia.org/wiki/Marshall_H.

_Stone
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5. Topologia en el pla complex: teoria
global de Cauchy

Un cop hem estudiat la teoria local de Cauchy, el proper objectiu és estudiar propietats
globals de les funcions holomorfes. Mitjançant la versió global del teorema de Cauchy,
estudiarem la relació entre l’holomorfia d’una funció i la topologia del domini on està
definida. Per a donar aquesta versió global, cal estudiar un concepte topològic, el de camı́
homòleg a zero. Veurem aplicacions importants de la teoria global, entre les que es troben
el teorema dels residus, que ens permetrà calcular molts dipus d’integrals, o el principi de
l’argument i teorema de Rouché que controlen els zeros de les funcions holomorfes.

5.1. Índex d’una corba tancada respecte d’un punt

Comencem amb la noció d’́ındex d’una corba tancada γ respecte d’un punt z0, Ind pγ, z0q.
Intüıtivament, Ind pγ, z0q compta el número de voltes que ha de donar sobre śı mateix un
observador col.locat en el punt z0 per a resseguir la corba, vegeu la figura 5.2.
Abans de donar la definició, necessitem el següent resultat:

Proposició 5.1. 1. Siguin a,w0 P C i r ą 0 complint que Drpaq Ă Czt0u. Sigui
z0 P Drpaq tal que ew0 “ z0. Llavors existeix una única determinació del logaritme
en Drpaq, L, tal que Lpz0q “ w0.

2. Sigui γ : ra, bs Ñ Czt0u cont́ınua i w0 P C tal que ew0 “ γpaq. Llavors existeix una
única determinació del logaritme de γ, γ̂, complint que γ̂paq “ w0. A més, si γ és

diferenciable, aleshores γ̂ també ho és i γ̂1ptq “
γ1ptq
γptq .

Demostració. Provem 1. La unicitat és immediata, ja que dues determinacions del logarit-
me només poden diferir en un múltiple de 2π per la proposició 2.30. Per veure l’existència,
sigui a “ |a|eiα. Llavors Drpaq Ă Czeiαp´8, 0s i si ℓ és una determinació del logaritme
a Czeiαp´8, 0s, llavors ℓ|Drpaq és una determinació del logaritme a Drpaq. Es compleix,

doncs, que si denotem k “
w0´ℓpz0q

2πi P Z, la funció Lpzq :“ ℓpzq ` 2πik és una determinació
del logaritme en Drpaq tal que Lpz0q “ w0.

Provem ara 2. Com abans, la unicitat és evident. Per demostrar l’existència, sense
pèrdua de generalitat, podem suposar que a “ 0 i b “ 1. Sigui ε “ 1

2 inftPr0,1s |γptq| ą 0.
Donat que γ és uniformement cont́ınua en r0, 1s, existeix δ ą 0 tal que |γptq ´ γpsq| ă ε
per a tot s, t P r0, 1s tal que |t´ s| ď δ.
Sigui n ě 1 tal que 1

n ă δ i sigui zk “ γp k
nq, per a k “ 0, 1, ¨ ¨ ¨n´1. Llavors |zk´zk`1| ă ε

i γpr kn ,
k`1
n sq Ă Dεpzkq Ă Czt0u, per a k “ 0, 1, ¨ ¨ ¨ , n´ 1.
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Aplicant l’apartat 1, sigui L0 l’única determinació del logaritme en Dεpz0q tal que
L0pz0q “ w0. I, recurrentment, per a k “ 1, ¨ ¨ ¨n ´ 1, sigui Lk l’única determinació
del logaritme en Dεpzkq tal que Lkpzkq “ Lk´1pzkq.

Llavors si k “ 1, ¨ ¨ ¨n ´ 1, Lk´1 “ Lk en Dεpzkq X Dεpzkq. Per tant, la funció γ̂ptq “

Lkpγptqq, si k
n ď t ď k`1

n , k “ 0, ¨ ¨ ¨n ´ 1, és la determinació del logaritme de γ complint
γ̂p0q “ w0.
Finalment, si γ és diferenciable, com a conseqüència de la construcció de γ̂ i del fet

que les determinacions del logaritme són holomorfes, es verifica que γ̂ és diferenciable i si
k
n ď t ď k`1

n , llavors γ̂1ptq “ L1
kpγptqqγ1ptq “

γ1ptq
γptq .

Definició 5.2 (́Index d’una corba tancada respecte a un punt). Sigui γ : ra, bs Ñ C una
corba tancada en C i z P Czγ˚. Llavors, l’́ındex de γ respecte a z es defineix per:

Ind pγ, zq :“
γ̂zpbq ´ γ̂zpaq

2πi
,

on γ̂z és qualsevol determinació del logaritme de γz : ra, bs Ñ Czt0u, definida per γzptq “

γptq ´ z, vegeu la figura 5.1. ‚

γ(b)

γ

z

γz(b)

γz

γ̂z(b)

γ̂z(a)

3π
2 i

−π
2 i

γ̂z

Figura 5.1.: Construcció de γ̂z com a logaritme de γz “ γ ´ z. Notem que en aquest cas
tenim Ind pγ, zq “ 1, ja que γ̂z augmenta en 2πi al recórrer el camı́, és a dir
que l’argument de γptq ´ z augmenta en 2π al recórrer el camı́ γ.

Observació 5.3. 1. Donat que dues determinacions del logaritme de γz difereixen en
un múltiple de 2πi, l’́ındex està ben definit.
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2. L’́ındex Ind pγ, zq és un nombre enter. En efecte, donat que γ és una corba tancada,
γz també ho és i, per tant, eγ̂zpbq “ γzpbq “ γzpaq “ eγ̂zpaq. Llavors,

Ind pγ, zq :“
γ̂zpbq ´ γ̂zpaq

2πi
P Z.

Aquest valor doncs, pot ser positiu, negatiu o zero: una volta és positiva si es realitza
en el sentit contrari a les agulles del rellotge i és negativa si es fa en el sentit de gir
de les agulles del rellotge, vegeu la figura 5.3. ‚

z3

z2
z1

γ

Figura 5.2.: Tenim Ind pγ, z1q “ 0, ja que des de z1 podem observar tot el camı́ sense haver
de “girar” sobre nosaltres mateixos. En canvi, Ind pγ, z2q “ 1 perquè ens cal
fer una volta si som a z2, i Ind pγ, z3q “ 2 perquè ens cal fer dues voltes per
resseguir el camı́ amb la mirada si ens situem a z3. Vegeu l’observació 5.3.

Observació 5.4 (Càlcul geomètric de l’́ındex). Fixem una semirecta L amb origen z0 que
no travessi punts on el camı́ té interseccions. Per cada vegada que el camı́ γ passa per
L en sentit positiu, li sumem 1, i si passa en sentit negatiu, li restem 1. Veure figures
5.3–5.5. ‚

z0

z1

Figura 5.3.: Podem observar els camins verds que intersequen en sentit positiu o antihorari
i els vermells en negatiu o horari, vegeu l’observació 5.4.
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Proposició 5.5 (Expressió integral de l’́ındex). Sigui Ω Ă C un obert, γ un camı́ tancat
en Ω i z0 R γ˚. L’́ındex de γ respecte a z0 ve definit com

Ind pγ, z0q :“
1

2πi

ˆ
γ

dz

z ´ z0
.

En particular, si γ´ denota el camı́ invers de γ (és a dir, recorregut en sentit invers),
tenim que

Ind pγ´, zq “ ´Ind pγ, zq, z R γ˚.

Demostració. Sense pèrdua de generalitat, podem suposar que γ és de classe C1 ja que,
altrament, descompondŕıem el camı́ i la integral en un nombre finit de trossos. Llavors si
γ : ra, bs Ñ C i γ̂z és una determinació del logaritme de γz “ z ` γ : ra, bs Ñ Czt0u, es
verifica que

Ind pγ, zq “
γ̂zpbq ´ γ̂zpaq

2πi
“

1

2πi

ˆ b

a
pγ̂zq1ptqdt “

1

2πi

ˆ b

a

γ1ptq

γptq ´ z
dt “

1

2πi

ˆ
γ

dζ

ζ ´ z
.

A continuació ens mirem l’́ındex Ind pγ, zq com una funció de z.

Proposició 5.6 (Propietats de la funció ı́ndex). Sigui γ un camı́ tancat. Llavors:

a) La funció Ind pγ, zq : Czγ˚ Ñ Z és cont́ınua;

b) Ind pγ, zq és constant en cada component connexa de Czγ˚;

c) Ind pγ, zq “ 0 si z pertany a la component no fitada de Czγ˚.

Demostració. (a) Per z, z0 P Czγ˚, tenim que

ˇ

ˇInd pγ, zq ´ Ind pγ, z0q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

1

2πi

ˆ
γ

´ 1

w ´ z
´

1

w ´ z0

¯

dw

ˇ

ˇ

ˇ

ˇ

“
|z ´ z0|

2π

ˇ

ˇ

ˇ

ˇ

ˆ
γ

dw

pw ´ zqpw ´ z0q

ˇ

ˇ

ˇ

ˇ

.

Volem veure que aquesta quantitat tendeix a zero quan z Ñ z0. Sigui

δ :“
1

2
distpz0, γ

˚q.

Clarament tenim que |w ´ z0| ě 2δ si w P γ˚. Llavors, per |z ´ z0| ă δ, tenim també

|w ´ z| ě |w ´ z0| ´ |z ´ z0| ě 2δ ´ δ “ δ, w P γ˚.

Per tant, si |z ´ z0| ă δ, tenim que

ˇ

ˇInd pγ, zq ´ Ind pγ, z0q
ˇ

ˇ ď
|z ´ z0|

2π

ˆ
γ

|dw|

|w ´ z| |w ´ z0|
ď

|z ´ z0|

4πδ2
Lpγq.

122



5. Topologia en el pla complex: teoria global de Cauchy

z1

z2

z3
z4

z5

Figura 5.4.: Per a calcular l’́ındex de γ respecte a zj , tracem una semirecta partint del
punt i sumem interseccions amb la corba en sentit positiu i restem les de
sentit negatiu, tal com il.lustra la figura 5.3.

+1

−1

−1

−1

+1

+1

+1

+1

+1

−1
−1

+1

+1

+1

+1

z1

z2

z3

z4
z5

Figura 5.5.: Trobem Ind pγ, z1q “ 1`1 “ 1`1´1`1 “ 2 per dues semirectes diferents. Aix́ı
mateix calculem Ind pγ, z2q “ 1, Ind pγ, z3q “ 0, Ind pγ, z4q “ 2 i Ind pγ, z5q “

´1.
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Com que aquesta quantitat tendeix a zero quan z Ñ z0, ja hem provat la continüıtat de
la nostra funció.
(b) Com que la funció Ind pγ, zq és cont́ınua i pren valors en Z, és constant en cada

component connexa.
(c) Sabem que és constant en aquesta component. Prenem R ą 0 prou gran de manera

que γ˚ Ă DRp0q i també R ą Lpγq on Lpγq és la longitud de γ. Si |z| ą 2R, llavors
|w ´ z| ě |z| ´ |w| ě 2R ´R “ R per w P γ˚, i per tant

ˇ

ˇInd pγ, zq
ˇ

ˇ ď
1

2π

ˆ
γ

|dw|

|w ´ z|
ď

1

2πR
Lpγq ă

1

2π
.

Com que Ind pγ, zq ha de ser un enter, l’única possibilitat és que valgui 0, i com que l’́ındex
és constant en aquesta component, val zero en tot punt d’aquesta.

Exercicis

5.1.1. Considerem el camı́ γptq “ 4eit cos 2
3 t, p0 ď t ď 6πq. Calculeu Ind pγ, 3q i Ind pγ, 1q.

Ž

5.1.2. Considerem el camı́ γptq “ p1 ` eit ` e´itqeit, p0 ď t ď 2πq. Esbosseu el dibuix
de la corba i calculeu-ne l’́ındex en cada component connexa del complementari de la seva
imatge. Calculeu ˆ

γ

3z ´ 3

z2 ´ 5
2z ` 1

dz. Ž

5.2. El teorema global de Cauchy

Recordem la fórmula integral de Cauchy per oberts convexos: Sigui Ω Ă C un obert convex
i sigui f P HpΩq. Llavors

fpz0q Ind pγ, z0q “
1

2πi

ˆ
γ

fpzq

z ´ z0
dz, z0 R γ˚

per a tot camı́ tancat γ en Ω, vegeu el teorema 4.17 i l’observació 4.20.

Exemple 5.7. Sigui γ la corba en forma de infinit o “ulleres”, anomenada lemniscata de
Bernoulli1 (vegeu la figura 5.6), amb ´1{2 i 1{2 un a dins de cada part. Com que la funció
fpzq “ cospπ2 zq és entera (holomorfa a tot C), tenim que

ˆ
γ

fpwq

w
dw “ 2πi cos 0 Ind pγ, 0q “ 2πi cos 0 “ 2πi,

i també
ˆ
γ

fpwq

w ´ 1{2
dw “ 2πi cosp

π

4
q Ind pγ, 1{2q “ 2πi cosp

π

4
q p´1q “ ´

?
2πi. ♢
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1
2− 1

2

Figura 5.6.: Lemniscata de Bernouilli.

γ1

γ2

Γ = γ1 + γ2

Figura 5.7.: Una cadena formada per dos camins.

Volem obtenir versions més generals tant del teorema de Cauchy com de la fórmula
integral de Cauchy, que siguin vàlides per oberts no necessàriament convexos, com també
per unions de camins.

Definició 5.8 (Cadenes i cicles). Una cadena és una combinació lineal de camins

Γ “

k
ÿ

i“1

ni γi, ni P Z,

on γi és un camı́ per a tot 1 ď i ď k. Vegeu la figura 5.7 per exemples de cadenes.
La imatge o recorregut de Γ és Γ˚ “ γ˚

1 Y ¨ ¨ ¨ Y γ˚
k .

Si f P CpΓ˚q, definim la integral per linealitat

ˆ
Γ
f “ n1

ˆ
γ1

f ` ¨ ¨ ¨ ` nk

ˆ
γk

f.

Diem que Γ és un cicle si γi és un camı́ tancat per a tot 1 ď i ď k.

1Jacob Bernoulli, Basilea, 1654–1705, https://en.wikipedia.org/wiki/Jacob_Bernoulli
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Ω

γ1

γ2

Figura 5.8.: Vegeu l’observació 5.11.

L’́ındex d’un cicle Γ respecte d’un punt z0 R Γ˚ és

Ind pΓ, z0q “
1

2πi

ˆ
Γ

dz

z ´ z0
“

k
ÿ

i“1

ni Ind pγi, z0q. ‚

Degut a la definició, aquest ı́ndex té les mateixes propietats que l’́ındex d’una corba: és
un enter, és constant en cada component connexa de CzΓ˚, i val zero en la component no
fitada.

Exemple 5.9. Considerem les corbes γ1ptq “ 4eit i γ2ptq “ eit per t P r0, 2πs. Formem el
cicle

Γ “ γ1 ` p´γ2q “ γ1 ´ γ2.

Tenim Ind pΓ, 6iq “ 0, ja que estem a la component no fitada. També

Ind pΓ, 2q “ Ind pγ1, 2q ´ Ind pγ2, 2q “ 1 ´ 0 “ 1.

Ind pΓ, 0q “ Ind pγ1, 0q ´ Ind pγ2, 0q “ 1 ´ 1 “ 0. ♢

Definició 5.10 (Homologia). Sigui Ω Ă C un obert i Γ un cicle en Ω. Diem que Γ és
homòleg a 0 en Ω si

Ind pΓ, aq “ 0 @a R Ω.

Posem Γ « 0 en Ω per indicar que Γ és homòleg a 0 en Ω. ‚

Exemple 5.11. En la figura 5.8, els camins γ1 i γ2 no són homòlegs a 0 en Ω. En canvi,
el cicle Γ “ γ1 ` γ2 śı que ho és. ♢
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Definició 5.12. Sigui Ω Ă C un obert, i siguin Γ1 i Γ2 cicles en Ω. Diem que Γ1 és
homòleg a Γ2 en Ω si Γ1 ´ Γ2 és homòleg a 0 en Ω. En aquest cas, fem servir la notació
Γ1 « Γ2 en Ω. ‚

Teorema 5.13 (Teorema de Cauchy global). Sigui Ω Ă C un obert, f P HpΩq, i sigui Γ
un cicle en Ω homòleg a 0 en Ω. Llavors

(a) Fórmula integral de Cauchy global:

fpzq Ind pΓ, zq “
1

2πi

ˆ
Γ

fpwq

w ´ z
dw, @z P ΩzΓ˚.

(b) teorema de Cauchy global: ˆ
Γ
fpzqdz “ 0.

Observació 5.14. Si tenim un cicle Γ en Ω de manera que
´
Γ f “ 0 per a tota f P HpΩq,

llavors si prenem un punt a R Ω, la funció fapzq “ 1
z´a és holomorfa en Ω, i

Ind pΓ, aq “
1

2πi

ˆ
Γ

dz

z ´ a
“

1

2πi

ˆ
Γ
fapzq “ 0, @a R Ω.

Per tant, el fet que Γ sigui homòleg a 0 en Ω és una condició necessària per tal que valgui
el teorema de Cauchy. ‚

Prova de (b) a partir de (a). Fixem a P ΩzΓ˚, i definim la funció F pzq “ pz´ aqfpzq, que
és holomorfa en Ω. Aplicant la fórmula integral de Cauchy, com que F paq “ 0, tenim que

1

2πi

ˆ
Γ
fpzq dz “

1

2πi

ˆ
Γ

F pzq

z ´ a
dz

a)
“ F paq Ind pΓ, aq “ 0.

Prova de (a). Considerem la funció F : Ω ˆ Ω Ñ C definida per

F pz, wq “

$

&

%

fpwq´fpzq

w´z si z ‰ w

f 1pzq si z “ w.

Llavors F és cont́ınua en Ω ˆ Ω (vegeu la demostració al final de la prova), i per a tot
w P Ω, la funció Fwpzq :“ F pz, wq és holomorfa en Ω (clarament és holomorfa en Ωztwu

i cont́ınua en Ω, i sabem que aquestes dues condicions, aplicant el teorema de Cauchy-
Goursat i el Teorema de Morera (concretament usant el corol.lari 4.34), impliquen que és
holomorfa a tot Ω). Pel teorema de derivació sota el signe integral, la funció

gpzq “

ˆ
Γ
F pz, wq dw, z P Ω

és holomorfa en Ω.
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Ara volem estendre aquesta funció a tot C, per tal d’obtenir una funció entera. Consi-
derem l’obert no buit

U “
␣

w P CzΓ˚ : Ind pΓ, wq “ 0
(

.

Observeu que donat que hem vist que IndpΓ, ¨q és constant en cada component connexa
de CzΓ˚, U és la unió d’algunes d’aquestes components connexes que són obertes, i entre
elles està la component connexa no fitada de CzΓ˚. A més, com que Γ és homòleg a 0 en
Ω, tenim que Ind pΓ, aq “ 0 per a tot a P CzΩ, de manera que CzΩ Ă U , i per tant

Ω Y U “ C.

Definim

rgpzq “

ˆ
Γ

fpwq

w ´ z
dw, z P U.

Per z P U X Ω, fent servir la definició d’́ındex obtenim que

gpzq “

ˆ
Γ

fpwq ´ fpzq

w ´ z
dw “

ˆ
Γ

fpwq

w ´ z
dw ´ fpzq

ˆ
Γ

dw

w ´ z

“

ˆ
Γ

fpwq

w ´ z
dw ´ 2πifpzqInd pΓ, zq “ rgpzq,

ja que Ind pΓ, zq “ 0 per z P U . Per tant, la funció G : C Ñ C definida per

Gpzq “

$

&

%

gpzq si z P Ω

rgpzq si z P U

està ben definida a tot C i és entera.
Vegem que és fitada. Prenem R ą 0 prou gran de manera que Γ˚ Ă t|ζ| ď Ru.

Observem que, si |z| ą 2R, llavors z pertany a la component no fitada de CzΓ˚, aix́ı que
Ind pΓ, zq “ 0, que implica que z P U . Per tant, si |z| ą 2R, tenim que

|Gpzq| “ |rgpzq| ď

ˆ
Γ

|fpwq|

|w ´ z|
|dw| ď M

LpΓq

R
, (5.1)

onM “ supwPΓ˚ |fpwq| i LpΓq és la suma de les longituds dels camins del cicle. Per tant, G
és fitada en t|z| ą 2Ru. Com que G és cont́ınua, G també és fitada en el compacte DRp0q,
de manera que G és una funció entera i fitada. Pel teorema de Liouville, G és constant.
Ara bé, (5.1) també ens diu que lim|z|Ñ8 Gpzq “ 0 que, al ser G constant, implica que
G ” 0.

Aix́ı doncs, per z P ΩzΓ˚, tenim que

0 “
Gpzq

2πi
“
gpzq

2πi
“

1

2πi

ˆ
Γ

fpwq ´ fpzq

w ´ z
dw “

1

2πi

ˆ
Γ

fpwq

w ´ z
dw ´ fpzq Ind pΓ, zq.
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Demostració de la continüıtat de F . Comprovem que la funció F : Ω ˆ Ω Ñ C definida
per

F pz, wq “

$

&

%

fpwq´fpzq

w´z si z ‰ w

f 1pzq si z “ w,

és cont́ınua en Ω ˆ Ω.
En efecte, sigui ∆ “ tpz, wq P Ω ˆ Ω; z “ wu la diagonal, que és un tancat relatiu en

ΩˆΩ. Llavors, F és cont́ınua en ΩˆΩz∆ i ens queda comprovar que F és també cont́ınua
en els punts de la diagonal.
Fixem un punt a P Ω i considerem un disc Drpaq Ă Ω. Siguin z ‰ w P Drpaq. Llavors

es verifica

|F pz, wq ´ F pa, aq| “

ˇ

ˇ

ˇ

ˇ

fpzq ´ fpwq

z ´ w
´ f 1paq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

fpzq ´ f 1paqz ´ pfpwq ´ f 1paqwq

z ´ w

ˇ

ˇ

ˇ

ˇ

“
1

|z ´ w|

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ
rw,zs

pf 1pζq ´ f 1paqqdζ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
|z ´ w|

|z ´ w|
sup

ζPrw,zs

|f 1pζq ´ f 1paq|.

Observeu que donat que F pz, zq “ f 1pzq, aquesta desigualtat val també si z “ w. Tenint
en compte que f 1 és cont́ınua en a, i per tant,

lim
pz,wqÑpa,aq

sup
ζPrw,zs

|f 1pζq ´ f 1paq| “ 0,

obtenim que
lim

pz,wqÑpa,aq
F pz, wq “ F pa, aq “ f 1paq.

Vegem ara una aplicació immediata del teorema anterior.

Corol.lari 5.15. Sigui Ω Ă C un obert, i f P HpΩq. Siguin Γ1 i Γ2 cicles en Ω. Si
Γ1 « Γ2 en Ω, llavors ˆ

Γ1

fpzqdz “

ˆ
Γ2

fpzqdz.

Demostració. Com que el cicle Γ1´Γ2 és homòleg a 0 en Ω, aplicant el teorema de Cauchy
global, tenim que

0 “

ˆ
Γ1´Γ2

fpzqdz “

ˆ
Γ1

fpzqdz ´

ˆ
Γ2

fpzqdz.

Exemple 5.16. Considerem l’anell

Ω “ tz P C : r ă |z| ă Ru.

Per r1, r2 amb r ă r1 ă r2 ă R, considerem els cercles γ1ptq “ r1e
it i γ2ptq “ r2e

it per
t P r0, 2πs. Com que Γ “ γ1 ´ γ2 « 0, tenim que γ1 i γ2 són corbes homòlogues en Ω, i per
tant ˆ

γ1

fpzqdz “

ˆ
γ2

fpzqdz

per a tota funció f holomorfa en Ω. ♢
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Corol.lari 5.17 (Fórmula integral de Cauchy per derivades-versió global). Sigui Ω Ă C
un obert, f P HpΩq, i sigui Γ cicle en Ω homòleg a 0. Llavors

f pnqpzq Ind pΓ, zq “
n!

2πi

ˆ
Γ

fpwq

pw ´ zqn`1
dw, @z P ΩzΓ˚.

Demostració. Com que l’́ındex és constant en cada component connexa d’ΩzΓ˚, només cal
aplicar la versió global de la fórmula integral de Cauchy, i derivar sota el signe integral.

Exercicis

5.2.1. Considerem el camı́ γptq “ p2 sinp2t ´ π
3 q, 2 sinp3tqq, amb t P r0, 2πs. Esbosseu el

camı́, calculeu l’́ındex de la corba en cada component connexa de Czγ˚, i trobeu el valor
de ˆ

γ

e
1

z2´1

z2 ` 1
dz. Ž

5.3. Homotopia i teorema de Cauchy

Definició 5.18 (Homotopia). Siguin γ0, γ1 : ra, bs Ñ Ω corbes tancades. Diem que
γ0 i γ1 són homòtopes en Ω (posem γ0 „ γ1 en Ω) si existeix una aplicació cont́ınua
H : ra, bs ˆ r0, 1s Ñ Ω de manera que

(i) Hpt, 0q “ γ0ptq per a tot t P ra, bs;

(ii) Hpt, 1q “ γ1ptq per a tot t P ra, bs;

(iii) Hpa, sq “ Hpb, sq per a tot s P r0, 1s. ‚

Observem que la condició (iii) ens diu que les corbes γsptq :“ Hpt, sq són tancades per
a tot s P r0, 1s.
Essencialment, si γ0 „ γ1 en Ω, llavors la corba γ0 s’ha de poder deformar cont́ınuament

cap a la corba γ1 sense passar per cap punt que no sigui d’Ω (veure l’exemple de la Figura
5.9).

Definició 5.19 (Corba homòtopa a 0 o contractible). Diem que una corba γ és homòtopa
a 0 en Ω o contractible en Ω (posem γ „ 0 en Ω) si γ és homòtopa a una corba constant
(és a dir, a un punt). ‚

Observació 5.20. Evidentment, el concepte de corbes homòtopes també té sentit per cor-
bes que no siguin tancades però tinguin els mateixos extrems. Quan es parla d’homotopia
de corbes no tancades d’extrems fixats, se sol imposar que l’homotopia sigui cont́ınua,
compleixi (i) i (ii) de la definició 5.18, però que en lloc de la condició (iii) compleixi que
les corbes γsptq :“ Hpt, sq tinguin el mateix punt inicial i final que γ0 i γ1, és a dir,
γspaq “ γ0paq i γspbq “ γ0pbq per a tot s P r0, 1sq.

Es pot veure fàcilment que dues corbes d’extrems fixats γ0 i γ1 són homòtopes en Ω si
i només si γ0 _ γ´

1 és homòtopa a 0 en Ω, vegeu la definició 4.3. ‚
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Ω

γ1

γ2

γ3

Figura 5.9.: Tenim γ1 „ γ2, γ3 „ 0. Tenim en canvi que γ1 ȷ γ3, γ1 ȷ 0 i γ2 ȷ 0.

Proposició 5.21. Sigui Ω Ă C un obert, i siguin γ0, γ1 : ra, bs Ñ Ω dues corbes tancades
en Ω de manera que γ0 „ γ1 en Ω. Llavors

Ind pγ0, zq “ Ind pγ1, zq @z R Ω.

És a dir, si γ0 „ γ1 en Ω, aleshores γ0 és homòloga a γ1 en Ω. En particular, γ „ 0 en
Ω implica que γ és homòloga a 0 en Ω. Ara bé, el rećıproc no és cert (veure la figura 5.10
per un exemple d’una corba en un obert Ω homòloga a 0, però no homòtopa a 0 en Ω).

Demostrem primer un resultat d’invariància de l’́ındex sota pertorbacions, conegut in-
formalment com el teorema de l’arbre, la persona i el gos.

Lema 5.22. Siguin γ, η : ra, bs Ñ C dues corbes tancades i sigui z P C. Si

ˇ

ˇγptq ´ ηptq
ˇ

ˇ ă |z ´ γptq| @t P ra, bs,

llavors Ind pγ, zq “ Ind pη, zq.

Demostració. Observem que la hipòtesi implica que z R γ˚ “ γra, bs. També tenim que
z R η˚ ja que per t P ra, bs tenim

|z ´ ηptq| “ |z ´ γptq ` pγptq ´ ηptqq| ě |z ´ γptq| ´ |γptq ´ ηptq| ą 0.

A més a més, per a t P ra, bs, escrivint γzptq “ γptq ´ z i ηzptq “ ηptq ´ z tenim que

|γzptq ´ ηzptq| ă |γzptq|.

Tot plegat ens dona que 0 R γ˚
z i la corba tancada αz “

ηz
γz

verifica

ˇ

ˇ1 ´ αzptq
ˇ

ˇ ă 1 @t P ra, bs.
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a

b

γ

Ω = C \ {a, b}

Figura 5.10.: El camı́ γ és homòleg a 0 en Ω ja que Ind pγ, aq “ 0 “ Ind pγ, bq, però γ ȷ 0
en Ω, ja que no és contractible.

Sigui γ̂z una determinació del logaritme de γz i L una determinació del logaritme en D1p1q.
Llavors, α̂z :“ L ˝ αz és una determinació del logaritme d’αz i, per tant, η̂z :“ γ̂z ` α̂z és
una determinació del logaritme de ηz. En conseqüència,

2πiInd pη, zq “ η̂zpbq ´ η̂zpaq “ pγ̂zpbq ´ γ̂zpaqq ` pα̂zpbq ´ α̂zpaqq

“ γ̂zpbq ´ γ̂zpaq “ 2πiInd pγ, zq.

Aqúı hem usat que, com que η i γ són corbes tancades, també ho és αz i, en particular,

α̂zpbq “ Lpαzpbqq “ Lpαzpaqq “ α̂zpaq.

Demostració de la proposició 5.21. Sigui H una homotopia entre γ0 i γ1. Volem veure que
Ind pγ0, zq “ Ind pγ1, zq per a tot z P CzΩ. Sigui z P CztΩu. Com que ra, bs ˆ r0, 1s és
compacte, Hpra, bs ˆ r0, 1sq també i H és uniformement cont́ınua. Per tant,

(1) ε “ dpz,Hpra, bs ˆ r0, 1sqq “ infpt,sqPra,bsˆr0,1s |z ´Hpt, sq| ą 0

(2) Existeix n ě 1 tal que per a tot t P ra, bs i tots s1, s2 P r0, 1s tals que |s1 ´ s2| ď 1
n ,

|Hpt, s1q ´Hpt, s2q| ă ε.

Per a cada s P r0, 1s, considerem la corba tancada γs en Ω definida per γsptq “ Hpt, sq,
si t P ra, bs. Llavors, (1) i (2). ens donen que per a tot t P ra, bs, i tot s1, s2 P r0, 1s amb
|s1 ´ s2| ď 1

n ,
|γs1ptq ´ γs2ptq| ă |z ´ γs1ptq|.
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Aplicant el lema anterior, dedüım que Ind pγs1 , zq “ Ind pγs2 , zq, per a tot s1, s2 P r0, 1s

amb |s1 ´ s2| ď 1
n . En particular,

Ind pγ k´1
n
, zq “ Ind pγ k

n
, zq,

per a k “ 1, ¨ ¨ ¨ , n. Per tant,

Ind pγ0, zq “ Ind pγ1, zq.

Com que tota corba homòtopa a zero en Ω, és homòloga a zero en Ω, a partir del teorema
de Cauchy global, obtenim la següent versió homotòpica.

Teorema 5.23 (Versió homotòpica del teorema de Cauchy). Sigui Ω Ă C un obert i γ un
camı́ tancat en Ω homòtop a 0 en Ω. Si f P HpΩq, aleshores

(a)
´
γ fpzqdz “ 0;

(b)

fpzq Ind pγ, zq “
1

2πi

ˆ
γ

fpwq

w ´ z
dw, @z P Ωzγ˚.

Com a culminació de la teoria, tenim els següents corol.laris, amb gran quantitat d’apli-
cacions, com veurem en els caṕıtols següents.

Teorema 5.24 (Teorema de deformació). Sigui Ω Ă C un obert, f P HpΩq, i siguin γ0, γ1
camins tancats homòtops en Ω. Llavors

ˆ
γ0

fpzqdz “

ˆ
γ1

fpzqdz.

Demostració. Tenim que Γ “ γ0 ´ γ1 és un cicle en Ω. Si z R Ω, per la proposició 5.21
tenim que Ind pγ0, zq “ Ind pγ1, zq, aix́ı que Ind pΓ, zq “ 0 per a tot z R Ω, i per tant el
cicle Γ és homòleg a 0 en Ω. Pel teorema de Cauchy global obtenim que

ˆ
Γ
fpzqdz “ 0 ñ

ˆ
γ0

fpzqdz “

ˆ
γ1

fpzqdz.

Corol.lari 5.25 (Teorema de la independència del camı́). Sigui Ω Ă C un obert, i siguin
γ0, γ1 camins amb extrems fixos i homòtops en Ω (vegeu l’observació 5.20). Si f P HpΩq,
aleshores ˆ

γ0

fpzqdz “

ˆ
γ1

fpzqdz.

Demostració. El camı́ γ :“ γ0 _ γ´
1 és tancat (ull: en aquest cas, estem considerant el

camı́ que primer recorre γ0 i després la corba γ1 en sentit contrari) i homòtop a 0 en Ω,
vegeu l’observació 5.20. Aleshores el resultat és conseqüècia del teorema anterior.
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5.4. Dominis simplement connexos

Com ja hem mencionat en seccions anteriors, un domini simplement connex és intüıti-
vament un obert connex del pla “sense forats”. En aquests tipus de dominis, tota la
teoria anterior pren una forma especial ja que, per exemple, totes les corbes tancades són
contractibles, una propietat que, de fet, es pot prendre com a definició.

Definició 5.26. Un obert Ω Ă C és simplement connex si és connex i tota corba tancada
en Ω és homòtopa a 0 en Ω. ‚

De fet, si C8 :“ C Y t8u, aleshores són equivalents:

• Ω és simplement connex,

• tot cicle en Ω és homòleg a 0 en Ω, i

• C8zΩ és connex

Vegeu [BC13, proposició 6.4], per exemple, on la definició de partida és la tercera, per veure
l’equivalència de la segona i la tercera. Que la primera implica la segona és la proposició
5.21. Que la tercera implica la primera es pot veure usant arguments elementals, vegeu
l’exercici 5.4.2. Per exemple, sabem que Ω “ Czt0u és connex, però no simplement connex.
Aqúı tenim CzΩ “ t0u que és connex. En canvi C8zΩ “ t0u Y t8u que no és connex.
Notem que la definició de simplement connex en dimensions superiors o en espais arc-
connexos sol ser anàloga a la segona de les anteriors.

Teorema 5.27 (Teorema de Cauchy per dominis simplement connexos). Sigui Ω Ă C un
obert simplement connex, f P HpΩq i γ un camı́ tancat en Ω. Llavors

´
γ fpzqdz “ 0 i

també val la fórmula integral de Cauchy.

Demostració. Com que Ω és simplement connex, podem usar directament la versió ho-
motòpica del teorema de Cauchy.

Proposició 5.28 (Existència de primitives en dominis simplement connexos). Sigui Ω Ă C
un obert simplement connex, i f P HpΩq. Llavors f té primitiva holomorfa en Ω.

Demostració. Fixem un punt a P Ω. Com que Ω és un obert connex, llavors és arc-connex,
de manera que donat z P Ω, hi ha una corba que uneix a amb z en Ω3. Com que volem que
sigui derivable a trossos, podem suposar que es tracta d’una poligonal La,z Ă Ω. Definim

F pzq “

ˆ
La,z

fpwq dw, z P Ω.

Donat h amb |h| prou petit, considerem el camı́ tancat γ format per la poligonal La,z, el
segment rz, z ` hs i la poligonal La,z`h (recorreguda en sentit contrari). Com que Ω és
simplement connex, pel teorema de Cauchy tenim que

0 “

ˆ
γ
fpwqdw “ F pzq `

ˆ
rz,z`hs

fpwqdw ´ F pz ` hq.

3Recordem que no és cert en general que un conjunt connex sigui arc-connex.
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A partir d’aqúı acabem la prova, veient que F és holomorfa amb F 1pzq “ fpzq, igual com
vam fer en el teorema de Cauchy per un disc, vegeu el teorema 4.14.

Proposició 5.29 (Determinació del logaritme en dominis simplement connexos). Sigui
Ω Ă C un obert simplement connex, i f P HpΩq amb fpzq ‰ 0 per a tot z P Ω. Llavors
existeix g P HpΩq amb

egpzq “ fpzq per a tot z P Ω.

A més, si z0 P Ω i tenim que ew0 “ fpz0q, podem escollir g de manera que gpz0q “ w0.

Demostració. Com que fpzq ‰ 0 per a tot z P Ω, llavors la funció f 1{f és holomorfa en
Ω. Per la proposició anterior, té primitiva holomorfa G. Considerem la funció Hpzq “

eGpzq P HpΩq amb Hpzq ‰ 0 per a tot z P Ω. Llavors la funció f{H és holomorfa en Ω
amb derivada donada per

pf{Hq
1

“
f 1H ´ fH 1

H2
.

Però H 1 “ HG1 “ Hf 1{f aix́ı que f 1H ´ fH 1 “ 0. Per tant f{H és igual a una constant
c ‰ 0 en Ω. És a dir,

fpzq “ c eGpzq “ eGpzq`c1

per alguna constant c1. Agafant gpzq “ Gpzq ` c1 ` 2kπi per un k P Z apropiat, tenim que
gpz0q “ w0 i la proposició queda provada.

Com a exemple, veiem que en la regió Ω “ CzE, on E és una espiral que surt del 0
fins a l’infinit, hi ha determinació holomorfa del logaritme de z (ja que Ω és simplement
connex, la funció fpzq “ z P HpΩq, i fpzq ‰ 0 en Ω).

Comentari 5.30. El fet que tota funció holomorfa tingui primitiva en Ω, o que tota
funció holomorfa sense zeros en Ω tingui determinació del seu logaritme en Ω, caracteritza
els dominis simplement connexos (vegeu [BC13, teorema 6.22]), encara que quan tenim un
obert connex Ω, la millor manera de comprovar si és simplement connex és mirar si C8zΩ
és connex o no. ‚

Exercicis

5.4.1. Siguin f, g P HpCq tals que f2 ` g2 ” 1. Demostra que existeix h P HpCq tal que
f “ cosphq i g “ sinphq. Ž

5.4.2. Demostra que si C8zΩ és connex i Ω és un obert connex, aleshores tota corba
tancada γ és homòtopa a 0. Ž

5.4.3. [Determinació de l’arrel en dominis simplement connexos] Sigui Ω Ă C un obert
simplement connex, i f P HpΩq amb fpzq ‰ 0 per a tot z P Ω. Llavors existeix g P HpΩq

amb
gpzq2 “ fpzq per a tot z P Ω.

A més, si z0 P Ω i tenim que w2
0 “ fpz0q, podem escollir g de manera que gpz0q “ w0.
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5.5. Funcions harmòniques

En aquesta secció farem servir la notació introdüıda a la secció 3.2.

Definició 5.31 (Funció harmònica). Diem que f : Ω Ñ C és una funció harmònica si
f P C2pΩq i el seu laplacià

∆f “ pBxq2f ` pByq2f “ 0.

Diem que f : Ω Ñ C és una funció antiholomorfa si f P C1pΩq i

Bf “ 0. ‚

Exemple 5.32. Les funcions lineals fpx ` iyq “ x ` y són evidentment harmòniques.
Però hi ha altres polinomis harmònics. Per exemple, fpzq “ fpx` iyq “ x2 ´ y2 “ Re pz2q

i fpzq “ 2xy “ Im pz2q. ♢

Observació 5.33 (Càlcul del laplacià amb les derivades de Wirtinger). Notem que si
f P C2pΩq, aleshores

4B̄Bf “ 2B̄pBxf ´ iByfq “ BxBxf ` iByBxf ´ iBxByf ´ i2ByByf “ ∆f,

on hem usat el teorema d’igualtat de les derivades creuades per cancel.lar els termes amb
Bx i By. Anàlogament trobem que

4BB̄f “ ∆f. ‚

En particular, hem demostrat el següent resultat.

Lema 5.34. [Holomorfia implica harmonicitat] Una funció f : Ω Ñ C és harmònica si i
només si f P C2pΩq i

B̄Bf ” 0,

si i només si f P C2pΩq i
BB̄f ” 0.

En particular, f és harmònica si i només si f P C2pΩq i Bf P HpΩq.

Lema 5.35. Sigui f P HpΩq. Aleshores les seves parts reals i imaginàries són harmòniques.

Demostració. Notem que BB̄f “ 0. Per tant, pel lema 5.34, la funció f és harmònica. Però
∆f “ 0 si i només si ∆u “ 0 i ∆v “ 0, on u “ Re f i v “ Im f .

Anem a veure com podem obtenir el resultat en direcció contrària. Evidentment no és
suficient que u : Ω Ñ R i v : Ω Ñ R siguin harmòniques per tal que u` iv sigui holomorfa,
ja que si no serien condicions equivalents. Però per tota u harmònica i de valors reals śı
que podem trobar v tal que u ` iv sigui holomorfa. Comencem per veure en primer lloc
que podem descompondre tota funció harmònica com a suma de la seva part holomorfa i
la seva part antiholomorfa en dominis simplement connexos.
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Lema 5.36. [Descomposició en parts holomorfa i antiholomorfa] Sigui Ω un domini sim-
plement connex, i sigui f : Ω Ñ C una funció harmònica. Aleshores existeixen dues
funcions F,G P HpΩq tals que

f “ F `G.

A més, la descomposició és única mòdul constants additives.

Demostració. Pel lema 5.34 tenim que Bf P HpΩq. Per la proposició 5.28 podem trobar
una primitiva holomorfa F : Ω Ñ C, és a dir tal que

B̄F “ 0 i BF “ Bf.

Anomenem G “ f ´ F . Aleshores

B̄G
O.3.25

“ BḠ “ Bpf ´ F q “ 0.

Per veure la unicitat, notem que si f “ rF` rG “ F`G amb F,G, rF , rG P HpΩq, aleshores
tenim que

BḠ “ B̄G “ 0 “ B̄ rG “ B r̄G

i per tant

pF ´ rF q1 “ BpF ´ rF q “ BpF `G´ rF ´ rGq “ Bpf ´ fq “ 0.

La proposició 3.14 ens permet concloure que F ´ rF “ c P C. A més,

G´ rG “ pf ´ F q ´ pf ´ rF q “ ´c̄.

Si f : Ω Ñ C és harmònica, aleshores és anaĺıtica real , és a dir que per tot z0 “ a`ib P Ω
existeixen coeficients an,m i un radi r tals que

fpx` iyq “
ÿ

n,mě0

an,mpx´ aqnpy ´ bqm per px´ aq2 ` py ´ bq2 ă r2.

De fet, tenim una forma més concreta, i és que els polinomis aproximadors són harmònics
i per tant, en expressar el polinomi en termes de z i z̄ no poden aparèixer termes creuats
tipus pz ´ z0qnpz ´ z0qm amb n,m ą 0:

Lema 5.37 (Expressió en sèries de potències). Si f : Ω Ñ C és harmònica, llavors per
cada z0 P Ω existeixen coeficients an, bm P C tals que, si R :“ distpz0,Ω

cq, aleshores

fpzq “
ÿ

ně0

anpz ´ z0qn `
ÿ

mě1

bmpz ´ z0qm per |z ´ z0| ă R.

La convergència és uniforme i absoluta en compactes de DRpz0q.

Demostració. Sigui r “ distpz0,Ω
cq. Aleshores f és harmònica en HpDrpz0qq. Pel lema

5.36, existeixen F,G P HpDrpz0qq tals que f “ F ` Ḡ. Pel teorema 4.22, F i G es poden
expressar en forma de sèries de potències amb radi de convergència major o igual a r.
Absorbint els termes independents en a0 “ F pz0q `Gpz0q, obtenim el resultat.
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Teorema 5.38 (Existència de la conjugada harmònica). Sigui Ω un domini simplement
connex, i sigui u : Ω Ñ R una funció harmònica. Aleshores existeix una funció harmònica
v : Ω Ñ R que anomenem harmònica conjugada de u tal que

u` iv P HpΩq.

A més, v és única mòdul una constant real additiva.

Demostració. Pel lema 5.36, existeixen F,G P HpΩq tals que u “ F `G. En particular,

V :“ ImF “ ImG,

i escrivim U “ ReF i rU “ ReG.
En primer lloc veiem que U “ rU ` c. Efectivament, com que U i rU prenen valors reals,

tenim que U “ Ū i el mateix passa amb rU , aix́ı que

F ´G “ U ` iV ´ rU ´ iV “ U ´ rU P R,

de manera que
F ´G “ F ´G,

aix́ı que

pF ´Gq1 “ BpF ´Gq “ BF ´G “
O.3.25

“ B̄pF ´Gq “ 0.

La proposició 3.14 ens permet concloure que U ´ rU “ F ´G “ c P R.
Definim ara v “ 2V . Com que U “ rU ` c, trobem u “ F ` Ḡ “ 2U ´ c i u ` iv “

2F ´ c P HpΩq.

Per acabar aquesta pinzellada de funcions harmòniques, ens interessem per com queda la
fórmula integral de Cauchy en aquest context. Per simplificar les expressions, estudiarem
el cas a “ 0, és a dir que treballem amb discs centrats a l’origen.

Definició 5.39. El nucli de Poisson4 és la funció

P pz, z0q “
|z|2 ´ |z0|2

|z ´ z0|2
.

El nucli de Herglotz 5 és la funció

Hpz, z0q “

ˆ

z ` z0
z ´ z0

˙

. ‚

Notem que els dos nuclis estan relacionats per la fórmula

ReHpz, z0q “ Re

˜

pz ` z0qpz ´ z0q

|z ´ z0|2

¸

“ P pz, z0q. (5.2)

4Siméon Denis Poisson, Pithiviers, 1781–1840, https://ca.wikipedia.org/wiki/Sim%C3%A9on_Denis_
Poisson

5Gustav Herglotz, Wallern, 1881–1953, https://ca.wikipedia.org/wiki/Gustav_Herglotz
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Teorema 5.40 (Fórmula integral de Poisson). Sigui f : DRpaq Ñ C una funció harmònica,
i sigui r ă R. Aleshores per tot z0 P Drpaq tenim que

fpz0q “
1

2πr

ˆ
BDrpaq

fpzqP pz ´ a, z0 ´ aq|dz|.

Demostració. Comencem per comprovar que aquesta fórmula val per funcions holomorfes
en DRp0q. Efectivament, la fórmula integral de Cauchy diu que

fpz0q “
1

2πi

ˆ
BDrp0q

fpzq

z ´ z0
dz.

Per altra banda, com que fpzq

r2´zz0
és holomorfa en z P Drp0q ja que el denominador no

s’anul.la, i pel teorema de Cauchy per un disc, tenim que
ˆ

BDrp0q

fpzq

zpz ´ z0q
dz “

ˆ
BDrp0q

fpzq

r2 ´ z0z
dz “ 0.

Per tant,

fpz0q “
1

2πi

ˆ
BDrp0q

ˆ

fpzq

z ´ z0
´

fpzqz0
zpz ´ z0q

˙

dz “
1

2πi

ˆ
BDrp0q

fpzq

ˆ

z

z ´ z0
´

z0
pz ´ z0q

˙

dz

z
.

Notem que

z

z ´ z0
´

z0
pz ´ z0q

“
zpz ´ z0q ´ z0pz ´ z0q

|z ´ z0|2
“

|z|2 ´ |z0|2

|z ´ z0|2
“ P pz, z0q.

Dedüım que

fpz0q “
1

2πi

ˆ 2π

0
fpreitqP preit, z0q

ireitdt

reit
“

1

2πr

ˆ
BDrp0q

fpzqP pz, z0q |dz|,

tal com voĺıem veure.
Si f és harmònica, aleshores considerem la descomposició fpz`aq “ F pzq`Gpzq donada

en DRp0q pel lema 5.36. Trobem que

fpz0q “ F pz0 ´ aq `Gpz0 ´ aq

“
1

2πr

ˆ
BDrp0q

F pzqP pz, z0 ´ aq |dz| `
1

2πr

ˆ
BDrp0q

GpzqP pz, z0 ´ aq |dz|

“
1

2πr

ˆ
BDrp0q

pF pzq `GpzqqP pz, z0 ´ aq |dz|,

i concloem la demostració amb el canvi de variable z “ w ´ a.

Com a conseqüència veiem com podem recuperar el valor d’una funció holomorfa en
termes de la seva part imaginària a la frontera (es pot obtenir una expressió anàloga
també amb la part real).
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Corol.lari 5.41 (Fórmula de representació de Herglotz). Donada una funció f P HpΩq,
si v “ Im f , aleshores per tot r ă distpa,Ωcq tenim que

fpz0q “ Re fpaq `
i

2πr

ˆ
BDrpaq

vpzqHpz ´ a, z0 ´ aq |dz|.

Demostració. Pel teorema 4.37 de derivació sota el signe d’integració, trobem que tota
funció cont́ınua f P CpBDrpaqq dona lloc a una funció holomorfa en el disc Drpaq en
integrar contra el nucli de Herglotz. En particular, si definim per z0 P Drpaq la funció

gpz0q :“
i

2πr

ˆ
BDrpaq

vpzqHpz ´ a, z0 ´ aq |dz|,

aquesta és holomorfa en Drpaq. Per z0 P Drpaq trobem doncs que

Im gpz0q :“
1

2πr

ˆ
BDrpaq

Re pvpzqHpz´a, z0´aqq |dz|
(5.2)
“

1

2πr

ˆ
BDrpaq

vpzqP pz´a, z0´aq |dz|,

i per la fórmula integral de Poisson (vegeu el teorema 5.40) tenim que

Im g “ v en Drpaq.

Com que l’harmònica conjugada de v és única llevat d’una constant additiva, trobem que
f “ g ` c amb c P R. En particular, avaluant en a tenim que

c “ fpaq ´ gpaq “
1

2πr

ˆ
BDrpaq

fpzqP pz ´ a, 0q |dz| ´
i

2πr

ˆ
BDrpaq

vpzqHpz ´ a, 0q |dz|

“
1

2πr

ˆ
BDrpaq

upzq |dz| “ Re fpaq.

Observació 5.42. En la demostració anterior, veiem que

gpz0q “
1

2π

ˆ
BDrpaq

vpzqHpz ´ a, z0 ´ aq
dz

z
,

i per tant, utilitzant el teorema de derivació sota el signe integral, obtenim

g1pz0q “
1

2π

ˆ
BDrpaq

vpzqBz0Hpz ´ a, z0 ´ aq
dz

z
“

i

2πr

ˆ
BDrpaq

vpzqBz0Hpz ´ a, z0 ´ aq |dz|.

Per tant,

g1pz0q “
i

πr

ˆ
BDrpaq

vpzq
z ´ a

pz ´ z0q2
|dz|. ‚
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Exercicis

5.5.1. Sigui u : D Ñ R una funció harmònica en un domini simplement connex Ω.
Demostra que existeix una funció v : D Ñ R harmònica conjugada d’u (vegeu l’exercici
4.3.3). Ž

5.5.2. Demostra el lema 5.35 usant les equacions de Cauchy-Riemann directament. Ž

5.5.3. Sigui Ω un domini simplement connex, i sigui φ : D Ñ Ω una aplicació de Rie-
mann, és a dir un homeomorfisme holomorf entre D i Ω amb inversa holomorfa, vegeu el
teorema 7.6, les derivades de les quals estenen cont́ınuament a BD i a BΩ respectivament.
Demostreu que existeixen determinacions del logaritme i l’argument de manera que

Lpφ1pz0qq “ ReLpφ1qp0q `
i

2πr

ˆ
BD

Apφ1pzqqHpz, z0q|dz|. Ž

5.5.4. El problema de Dirichlet consisteix en trobar una funció harmònica en un domini
obert Ω que sigui cont́ınua fins la seva frontera BΩ i amb un valor prefixat a BΩ. Suposem
que ϕ1 i ϕ2 són harmòniques a Ω i cont́ınues fins a BΩ i que ϕ1 “ ϕ2 a la vora BΩ. Provar
que si Ω és simplement connex, aleshores ϕ1 “ ϕ2 en tot punt d’Ω. Indicació: trobar
la funció v harmònica conjugada de ϕ1 ´ ϕ2 i aplicar el principi del màxim (mı́nim) a
ϕ1 ´ ϕ2 ` iv. Ž

5.5.5. Una distribució estacionària T de la temperatura en una regió Ω és una funció
harmònica i cont́ınua fins la frontera. Trobeu la temperatura T a l’interior d’un disc de
radi 1 si sabem que la temperatura val Im z als dos primers quadrants de la circumferència
de frontera i 0 a la resta de punts de la vora. En particular veieu que la temperatura al
centre del disc és 1{π. Ž
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6. Sèries de Laurent

En aquest caṕıtol veurem com són les singularitats äıllades de les funcions holomorfes i
estudiarem els desenvolupaments en sèrie entorn d’una singularitat. Obtindrem el teorema
dels residus, que ens permetrà calcular integrals definides i indefinides que altrament serien
complicades.

6.1. Sèries de Laurent i singularitats

Veurem tot seguit que tota funció holomorfa en un anell té un desenvolupament en sèrie de
Laurent1, que té una expressió formal similar a les sèries de potències, considerant també
exponents negatius.
Sigui a P C, i siguin 0 ď r ă R ď 8. Considerem l’anell

Ω “
␣

z P C : r ă |z ´ a| ă R
(

.

Observem que a Ω, són holomorfes les funcions 1, pz´aq, pz´aq2, . . . , pz´aqn, però també
ho són les funcions pz ´ aq´1, pz ´ aq´2, . . . , pz ´ aq´n.

Definició 6.1 (sèrie de Laurent). Anomenem sèrie de Laurent al voltant d’a P C a una
sèrie de la forma

8
ÿ

n“´8

cn pz ´ aqn “

8
ÿ

n“1

c´n

pz ´ aqn
`

8
ÿ

n“0

cn pz ´ aqn.

La part amb exponents negatius s’anomena la part singular de la sèrie de Laurent. ‚

Observem que f2pzq :“
ř8

n“0 cn pz´ aqn és una sèrie de potències que tindrà un radi de
convergència R2, de manera que f2 P H

`

DR2paq
˘

.
Considerem ara la sèrie que correspondria a les potències negatives, amb w “ 1

z´a , és a
dir, estudiem la sèrie gpwq “

ř8
n“1 c´nw

n. Aquesta és també una sèrie de potències, que
tindrà el seu radi de convergència R1 i, en particular, convergirà uniformement en |w| ď r,
per a tot r ă R1. Aleshores

f1pzq :“
8
ÿ

n“1

c´n

pz ´ aqn

convergirà si 1
|z´a|

ă R1, és a dir, si |z´a| ą 1
R1

. I a més a més, la sèrie que defineix f1pzq

convergeix uniformement en t|z ´ a| ě 1{ru, on r ă R1.

1Pierre Alphonse Laurent, Paŕıs, 1813–1854, https://ca.wikipedia.org/wiki/Pierre_Alphonse_

Laurent
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6. Sèries de Laurent

Ajuntant les dues parts de la sèrie de Laurent fpzq “
ř

nPZ cnpz ´ aqn, veiem que f és
holomorfa en l’anell t 1

R1
ă |z ´ a| ă R2u (sempre que 1{R1 ă R2). El rećıproc d’aquesta

afirmació també és certa: tota funció holomorfa en un anell s’expressa com una sèrie de
Laurent.

Teorema 6.2. [Existència i unicitat] Sigui Ω “ tz P C : r ă |z ´ a| ă Ru amb 0 ď r ă

R ď 8, i sigui f P HpΩq. Aleshores hi ha una única sèrie de Laurent amb

fpzq “
ÿ

nPZ
cn pz ´ aqn, z P Ω.

A més, la sèrie convergeix absolutament i uniforme en els compactes d’Ω. En particular,

cn “
1

2πi

ˆ
|w´a|“ρ

fpwq

pw ´ aqn`1
dw per qualsevol ρ P pr,Rq. (6.1)

Demostració. Considerem les sèries f2pzq “
ř

ně0 cn pz ´ aqn i f3pwq “
ř

ně1 c´nw
n amb

cn donat per (6.1) (observem que el valor de ρ escollit no afecta, ja que si r ă ρ1 ă ρ2 ă R,
els cercles γρj ptq “ a` ρje

it per t P r0, 2πs són homòlegs en Ω, vegeu l’exemple 5.16), amb

radis de convergència R2 “

´

lim supnÑ`8
n
a

|cn|

¯´1
i R3 “

´

lim supnÑ`8
n
a

|c´n|

¯´1
.

Notem en primer lloc que si n P Z i r ă ρ ă R, aleshores

|cn|
P.4.8
ď

1

2π

ˆ
|w´a|“ρ

|fpwq|

|w ´ a|n`1
|dw| ď

supBDρpaq |f |

ρn
.

Per tant,

1

R2
ď lim sup

nÑ`8

n

b

supBDρpaq |f |

ρ
“

1

ρ
,

i
1

R3
ď lim sup

nÑ`8
n

c

sup
BDρpaq

|f |ρ “ ρ.

Com que ρ P pr,Rq és arbitrari, dedüım que

R1 :“
1

R3
ď r i R ď R2.

Les sèries f2 i f3 convergeixen absolutament i uniforme en compactes dels seus discs de
convergència DR2paq i DR3p0q respectivament. Fent el canvi w “ pz ´ aq´1 en la segona
sèrie dedüım que

f1pzq :“ f3pwq “
ÿ

nď1

cn pz ´ aqn

és convergent absolutament i uniforme en compactes de DR1paq
c
. Per tant, f1 ` f2 és

convergent absolutament i uniforme en compactes d’Ω tal com voĺıem veure.
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Resta demostrar que f “ f1 ` f2 i que la sèrie és única. Comencem per veure la
coincidència. Fixem z P Ω. Prenem r1, r2 amb r ă r1 ă |z ´ a| ă r2 ă R, i considerem els
cercles

γ1ptq “ a` r1e
it, γ2ptq “ a` r2e

it, t P r0, 2πs.

Definim el cicle Γ “ γ2 ´ γ1. Com que Γ és homòloga a 0 en l’anell Ω, i Ind pΓ, zq “ 1,
aplicant la fórmula integral de Cauchy global, obtenim

fpzq “
1

2πi

ˆ
Γ

fpwq

w ´ z
dw “

1

2πi

ˆ
γ2

fpwq

w ´ z
dw ´

1

2πi

ˆ
γ1

fpwq

w ´ z
dw.

Ara desenvoluparem en sèrie cadascuna de les dos integrals, de la mateixa manera que
vam fer quan vam provar que tota funció holomorfa és localment una sèrie de potències,
i ja haurem acabat. En primer lloc, per w P γ˚

2 , i com que |z ´ a| ă r2 “ |w ´ a|, tenim

que
ˇ

ˇ

z´a
w´a

ˇ

ˇ “
|z´a|

r2
ă 1. Per tant

1

w ´ z
“

ÿ

kě0

pz ´ aqk

pw ´ aqk`1
,

i la convegència de la sèrie és uniforme en γ˚
2 pel criteri M de Weierstrass. Per tant,

podem treure el sumatori fora de la integral per obtenir

1

2πi

ˆ
γ2

fpwq

w ´ z
dw “

ÿ

kě0

pz ´ aqk
1

2πi

ˆ
|w´a|“r2

fpwq

pw ´ aqk`1
dw “ f2pzq.

Per a la segona integral, procedim anàlogament: observem que, per w P γ˚
1 tenim que

ˇ

ˇ

w´a
z´a

ˇ

ˇ “ r1
|z´a|

ă 1. Per tant

1

z ´ w
“

ÿ

kě1

pw ´ aqk´1

pz ´ aqk
.

Aplicant el criteri M-de Weierstrass, aquest cop en γ˚
1 , dedüım que la sèrie anterior con-

vergeix uniformement en γ˚
1 i per tant podem treure el sumatori fora de la integral per

obtenir

´
1

2πi

ˆ
γ1

fpwq

w ´ z
dw “

8
ÿ

k“1

1

pz ´ aqk

˜

1

2πi

ˆ
|w´a|“r1

fpwq pw ´ aqk´1 dw

¸

“ f1pzq.

Vegem ara la unicitat. Prenem ρ amb r ă ρ ă R. Recordem que, per k P Z, tenim que

1

2πi

ˆ
|z´a|“ρ

pz ´ aqkdz “

"

0 si k ‰ ´1
1 si k “ ´1

Si fpzq “
ř

kPZ bkpz ´ aqk convergeix uniformement en els compactes d’ Ω (això serà aix́ı
per Cauchy-Hadamard), llavors podem treure el sumatori fora de la integral en el càlcul
que segueix, per obtenir

1

2πi

ˆ
|w´a|“ρ

fpwq

pw ´ aqn`1
dw “

ÿ

kPZ
bk

1

2πi

ˆ
|w´a|“ρ

pw ´ aqk´pn`1qdw “ bn,

que determina el coeficient bn “ cn de manera única.
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Exercicis

6.1.1. Calcular la sèrie de Laurent de

a)
z ´ 1

zpz ´ 4q3
a 0 ă |z ´ 4| ă 4.

b) 1{ep1´zq per |z| ą 1. Ž

6.1.2. Per a la funció fpzq “
sin z cos 3z

z4

1. Trobar els primers termes no nuls de la part central de la seva sèrie de Laurent a
z “ 0.

2. Calcular
¸
fpzqdz si es recorre |z| “ 1 un cop i en sentit antihorari. Ž

6.1.3. Trobeu el desenvolupament en sèrie de Laurent de fpzq “
1

zpz ´ 1q
a les corones:

(a) tz P C : 0 ă |z| ă 1u, (b) tz P C : 0 ă |z ´ 1| ă 1u, (c) tz P C : |z| ą 1u i
(d) tz P C : |z ´ 1| ą 1u. Ž

6.1.4. Sigui fpzq “
1

pz ´ 1qpz ´ 3q
, donar les sèries de Laurent per les tres corones cen-

trades a 0 allà on f és anaĺıtica (|z| ă 1, 1 ă |z| ă 3 i |z| ą 3). Ž

6.1.5. Donar els primers termes de la sèrie de Laurent de

a) fpzq “ z2 cos

ˆ

1

3z

˙

per |z| ą 0.

b) fpzq “
1

ez ´ 1
per 0 ă |z| ă R. Ž

6.1.6. Quina és la corona (o anell) de convergència de
8
ÿ

n“´8

zn

2|n|
? Ž

6.2. Singularitats äıllades de funcions holomorfes

Definició 6.3. Les singularitats d’una funció holomorfa són els punts on f no és holo-
morfa. És a dir, si f P HpΩzEq, llavors els punts de E s’anomenen les singularitats de
f .
Una singularitat z0 d’una funció holomorfa f es diu äıllada si hi ha r ą 0 de manera

que f P H
`

Drpz0qztz0u
˘

. ‚

Per exemple, les funcions
sin z

z
;

1

z2
; e1{z

són holomorfes a Czt0u, i tenen una singularitat äıllada en z “ 0.
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Definició 6.4 (Singularitat evitable). Sigui z0 una singularitat äıllada d’una funció ho-
lomorfa f . Diem que z0 és una singularitat evitable de f si hi ha ε ą 0 i g P H

`

Dεpz0q
˘

amb
fpzq “ gpzq @z P Dεpz0qztz0u. ‚

És a dir, una singularitat evitable seria una singularitat “fict́ıcia”, ja que podriem rede-
finir la funció de manera que sigui holomorfa al voltant del punt. És clar que si z0 és una
singularitat äıllada de f , i existeix limzÑz0 fpzq, llavors z0 és una singularitat evitable de
f (simplement definint fpz0q “ limzÑz0 fpzq ). Ara bé, existeix un criteri encara més feble
per determinar quan una singularitat äıllada és evitable.

Proposició 6.5. Sigui z0 singularitat äıllada d’una funció holomorfa f . Llavors z0 és
evitable si i només si

lim
zÑz0

pz ´ z0qfpzq “ 0.

Demostració. Tenim que f P H
`

Drpz0qztz0u
˘

. Si z0 és una singularitat evitable, llavors
hi ha ε ą 0 i g P HpDεpz0qq amb fpzq “ gpzq per z P Dεpz0qztz0u. Per tant

lim
zÑz0

pz ´ z0qfpzq “ lim
zÑz0

pz ´ z0qgpzq “ 0 ¨ gpz0q “ 0.

Suposem ara que limzÑz0pz´z0qfpzq “ 0, i provarem que z0 és una singularitat evitable
de f . Definim

hpzq “

"

pz ´ z0qfpzq si z ‰ z0
0 si z “ z0 .

Llavors h és holomorfa en Drpz0qztz0u. Com que limzÑz0pz ´ z0qfpzq “ 0, la funció h
és cont́ınua en z0, de manera que se segueix que h és holomorfa en Drpz0q (veure una de
les conseqüències del teorema de Morera). Com que hpz0q “ 0, pel teorema 4.41 hi ha
g P H

`

Drpz0q
˘

amb hpzq “ pz´z0qgpzq. En particular, fpzq “ gpzq per z ‰ z0, de manera
que z0 és una singularitat evitable de f .

A partir d’aquesta proposició ja podem veure que la funció fpzq “ sin z
z té una singula-

ritat evitable en z “ 0. En canvi, les singularitats en z “ 0 de les funcions 1
z2

i e1{z no són
evitables.

Definició 6.6 (Pol). Sigui z0 una singularitat äıllada d’una funció holomorfa f . Diem
que z0 és un pol de f si

lim
zÑz0

|fpzq| “ `8. ‚

Exemple 6.7. La funció 1
z2

té un pol en z “ 0. En canvi, la singularitat en z “ 0 de la

funció fpzq “ e1{z no és evitable ni és un pol, ja que si z “ ´x, tenim que e´1{x Ñ 0 quan
x Ñ 0, i en canvi, per z “ ix, tenim que |e1{ix| “ 1. ♢

Definició 6.8 (Singularitat essencial). Una singularitat äıllada d’una funció holomorfa
que no és evitable ni és un pol, es diu que és una singularitat essencial . ‚
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Figura 6.1.: A l’esquerra la funció 1
z2
, amb un pol d’ordre 2 a l’origen; a la dreta fpzq “

e1{z, amb una singularitat essencial a l’origen.

Tornem al cas en què una funció f holomorfa en DRpz0qztz0u tingui un pol en el punt
z0. Donat que limzÑz0 |fpzq| “ 8, existeix 0 ă r ă R i per a tot 0 ă |z´z0| ă r, fpzq ‰ 0.
Si definim en Ω “ Drpz0q la funció

gpzq “

$

’

’

&

’

’

%

1

fpzq
si z ‰ z0

0 si z “ z0 ,

es compleix que limzÑz0
1

fpzq
“ 0, que prova que g és cont́ınua en z0. Per tant, g P

CpΩq XHpΩztz0uq, que implica que g P HpΩq. Com que gpz0q “ 0, pel teorema 4.41 hi ha
m P N de manera que gpzq “ pz´ z0qmg1pzq, on g1 P HpΩq amb g1pz0q ‰ 0. En particular,
g1pzq ‰ 0 en un entorn de z0, de manera que podem desenvolupar en sèrie de potències al
voltant de z0 la funció 1{g1,

1

g1pzq
“

8
ÿ

k“0

Akpz ´ z0qk.

Llavors, per z en un entorn de z0 amb z ‰ z0, tenim que

fpzq “
1

pz ´ z0qm

1

g1pzq
“

1

pz ´ z0qm

8
ÿ

k“0

Akpz ´ z0qk

“
A0

pz ´ z0qm
`

A1

pz ´ z0qm´1
` . . .

Am´1

pz ´ z0q
`Gpzq,

on G és una sèrie de potències al voltant de z0, i A0 ‰ 0.
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Definició 6.9. Donada una funció f amb un pol en z0, anomenem ordre del pol z0 al
nombre natural m tal que podem escriure

fpzq “

`8
ÿ

k“´m

ckpz ´ z0qk,

amb c´m ‰ 0. ‚

Per exemple, la funció fpzq “ 1
z2

té un pol d’ordre 2 en z “ 0.
També veiem que z0 és un pol de f d’ordre m, si

lim
zÑz0

ˇ

ˇpz ´ z0qkfpzq
ˇ

ˇ “ `8, per a tot k ă m,

i existeix el ĺımit
cm “ lim

zÑz0
pz ´ z0qmfpzq ‰ 0.

Si tenim una singularitat äıllada d’una funció holomorfa f , podem veure quin tipus de
singularitat és mitjançant la sèrie de Laurent de f en 0 ă |z ´ z0| ă r.

Lema 6.10 (Classificació de singularitats äıllades en termes de la sèrie de Laurent). Sigui
f holomorfa en t0 ă |z ´ z0| ă ru amb sèrie de Laurent donada per

fpzq “

8
ÿ

n“´8

cn pz ´ z0qn, 0 ă |z ´ z0| ă r.

(i) z0 és evitable si c´n “ 0 per a tot n ě 1;

(ii) z0 és un pol d’ordre m si c´n “ 0 per a tot n ą m i c´m ‰ 0;

(iii) z0 és una singularitat essencial si hi ha infinits c´n ‰ 0 per n ą 0.

El següent resultat ens dona una idea del que passa al voltant d’una singularitat essencial
d’una funció holomorfa.

Teorema 6.11 (Casorati2-Weierstrass). Sigui f holomorfa en Drpz0qztz0u. Si z0 és una
singularitat essencial de f , llavors

f
´

Dεpz0qztz0u

¯

és dens en C per a tot 0 ă ε ď r.

Demostració. Sigui ε amb 0 ă ε ď r. Suposem que f
`

Dεpz0qztz0u
˘

no és dens en C.
Aleshores hi ha w0 P C i t ą 0 de manera que

|fpzq ´ w0| ě t si 0 ă |z ´ z0| ă ε. (6.2)

2Felice Casorati, Pavia, 1835–1890, https://ca.wikipedia.org/wiki/Felice_Casorati
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En particular, fpzq ‰ w0 i per tant la funció

gpzq “
1

fpzq ´ w0

és holomorfa en Dεpz0qztz0u. La condició (6.2) ens diu també que g és fitada, de manera
que limzÑz0pz ´ z0qgpzq “ 0, que implica que tz0u és una singularitat evitable de g per la
proposició 6.5. Llavors existeix

α “ lim
zÑz0

gpzq “ lim
zÑz0

1

fpzq ´ w0
.

Si α “ 0, llavors limzÑz0 |fpzq| “ `8, de manera que z0 seria un pol de f , en contradicció
amb la nostra hipòtesi. Finalment, si α ‰ 0, llavors

lim
zÑz0

fpzq “ w0 `
1

α

de manera que z0 seria una singularitat evitable de f , en contradicció amb el fet que z0
és una singularitat essencial de f .

Un resultat més avançat (teorema gran de Picard3), ens diu que al voltant d’una sin-
gularitat essencial, una funció holomorfa pren tots els valors complexos excepte potser
un.

Exercicis

6.2.1. Construcció de funcions

1. Trobar una funció f que tingui un pol d’ordre 2 a z “ 1` i i singularitats essencials
a z “ 0, 1.

2. Trobar una funció f que tingui una singularitat evitable a z “ 0, un pol d’ordre 6 a
z “ 1 i una singularitat essencial a z “ i. Ž

6.2.2. Sigui f anaĺıtica amb zero d’ordre n a z0 i g anaĺıtica amb zero d’ordre m a z0. Si
hpzq “ fpzq{gpzq proveu que

a) Si n ą m hpzq té un zero d’ordre n´m a z0,

b) si n ă m hpzq té un pol d’ordre m´ n a z0,

c) si n “ m hpzq és holomorfa i no nul.la a z0. Ž

6.2.3. Determineu les singularitats de les funcions següents. Si a és una singularitat
evitable de f , calculeu el valor que cal donar a fpaq per a què f sigui holomorfa en un
entorn d’a, i si a és un pol de f , determineu la part singular de f en a (la part de la sèrie
amb ı́ndexs negatius).

3Charles Émile Picard, Paŕıs, 1856–1941, https://ca.wikipedia.org/wiki/Charles_%C3%89mile_

Picard
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a) fpzq “ z cosp1{zq.

b) fpzq “
z2 ` 1

z3pz ´ 1q2
.

c) fpzq “
1

p1 ´ ezq2
. Ž

6.2.4. Sigui f P HpDrpaqz tauq. Suposem que existeix una successió pznqn tal que zn Ñ a
i

lim
nÑ8

|efpznq| “ 0,

ˇ

ˇ

ˇ

ˇ

f

ˆ

zn `
1

n

˙ˇ

ˇ

ˇ

ˇ

ď 1 ´
1

n
, n P N.

Determineu el tipus de singularitat que té la funció f en el punt a. Ž

6.2.5. a) La funció tanp1{zq té una singularitat äıllada al 0? De quin tipus?

b) Sigui 0 singularitat äıllada de fpzq. Suposem que |fpzq| ď |z|´α on 0 ă α ă 1.
Demostreu que 0 és una singularitat evitable. Ž

6.3. Teorema dels Residus

L’objectiu és calcular el valor de
´
γ f quan γ és un camı́ tancat en Ω, però la funció f no

és holomorfa en tot Ω, sinó que té singularitats äıllades.

Definició 6.12. Sigui f holomorfa amb una singularitat äıllada en un punt a. Sigui

fpzq “
ÿ

nPZ
cnpz ´ aqn

el desenvolupament en sèrie de Laurent de f al voltant del punt a. El residu de f en a és

Res pf, aq “ c´1. ‚

Proposició 6.13. Sigui r ą 0 i a P C i sigui f P H
`

Drpaqztau
˘

. Llavors

ˆ
|z´a|“ε

fpzq dz “ 2πiRes pf, aq @ 0 ă ε ă r.

Demostració. Això és una conseqüència immediata del teorema 6.2 i de la definició de
residu.

Observació 6.14 (Càlcul de residus). És clar que si z “ a és una singularitat evitable de
f , llavors Res pf, aq “ 0.
Si z “ a és un pol simple de f , llavors

Res pf, aq “ lim
zÑa

pz ´ aqfpzq.
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Suposem que z “ a és un pol de f d’ordrem. En aquest cas, obtenim el desenvolupament
de Laurent

fpzq “

8
ÿ

n“´m

cnpz ´ aqn, 0 ă |z ´ a| ă r.

Llavors, per 0 ă |z ´ a| ă r, tenim que

gpzq :“ pz ´ aqmfpzq “ c´m ` c´pm´1qpz ´ aq ` ¨ ¨ ¨ ` c´1pz ´ aqm´1 ` c0pz ´ aqm ` . . .

de manera que el residu de f en el punt a és el coeficient pm´1q-èssim del desenvolupament
en sèrie de potències de la funció g, que sabem que és

gpm´1qpaq

pm´ 1q!
.

Per tant, si z “ a és un pol de f d’ordre m, llavors

Res pf, aq “
1

pm´ 1q!
Bpm´1q

“

pz ´ aqmfpzq
‰

z“a
. ‚

Exemple 6.15. Considerem la funció

fpzq “
ez

pz2 ´ 1q2
,

que té singularitats en els punts z0 “ 1 i z1 “ ´1, que són pols d’ordre 2. Llavors, si
gpzq “ pz ´ 1q2fpzq “ ez

pz`1q2
, tenim que

Res pf, 1q “ g1p1q “ 0.

Si hpzq “ pz ` 1q2fpzq “ ez

pz´1q2
, llavors h1pzq “

ezpz´1q´2ez

pz´1q3
i

Res pf,´1q “ h1p´1q “
1

2e
. ♢

Teorema 6.16 (Teorema dels residus). Sigui Ω Ă C un obert, i sigui f P HpΩzAq, on
A Ă Ω no té punts d’acumulació en Ω. Si Γ és un cicle en ΩzA que és homòleg a 0 en Ω,
llavors ˆ

Γ
fpzqdz “ 2πi

ÿ

aPA

Ind pΓ, aqRes pf, aq.

Demostració. Vegem primer que la suma té un nombre finit de termes diferents de zero.
Posem

K “ Γ˚ Y tz P CzΓ˚; Ind pΓ, zq ‰ 0u.

Comprovem que K és compacte. Observem primer que K Ă Ω, doncs per hipòtesi
Ind pΓ, zq “ 0 per a tot z P CzΩ. Si Γ˚ Ă DRp0q, llavors CzDRp0q està contingut en
la component connexa no fitada de CzΓ˚, on es verifica que Ind pΓ, ¨q “ 0. Per tant,
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K Ă DRp0q i, en particular, K és fitat. Per altra banda, cada component connexa de
CzΓ˚ és un obert i K és el complementari de les components connexes de CzΓ˚ on l’́ındex
val zero, es a dir, K és tancat i, en conseqüència, K és compacte.

Com que A no té punts d’acumulació en Ω, és finit o numerable i, en particular,

B “ ta P A : Ind pΓ, aq ‰ 0u “ K XA,

és finit ja que el compacte K Ă Ω no pot contenir punts d’acumulació. Per tant

B “ ta1, . . . , anu.

Considerem els discs oberts Di :“ Dεipaiq, i “ 1, . . . , n amb Di X pAztaiuq “ H de manera
que

(i) Dεipaiq Ă Ω, i “ 1, . . . , n;

(ii) Dεipaiq X Γ˚ “ H, i “ 1, . . . , n;

(iii) Dεipaiq XDεipaiq “ H per i ‰ j.

Per i “ 1, . . . , n, siguin γiptq “ ai ` εie
it, t P r0, 2πs, cercles de centre ai i radi εi, i

considerem el cicle

Λ “ Γ ´

n
ÿ

i“1

ni γi, ni “ Ind pΓ, aiq.

Llavors Λ és un cicle en ΩzA. Vegem que és homòleg a 0 en ΩzA. Hem de veure que

Ind pΛ, zq “ 0 per a tot z R pΩzAq.

Si z R Ω, llavors Ind pΓ, zq “ 0, ja que Γ és homòleg a 0 en Ω. També, per i “ 1, . . . , n,
tenim que Ind pγi, zq “ 0, ja que z pertany a la component no fitada de Czγ˚

i , de manera
que Ind pΛ, zq “ 0.
Si z P AzB, llavors Ind pΓ, zq “ 0 per la definició del conjunt B. A més, també

Ind pγi, zq “ 0 per a tot i “ 1, . . . , n ja que z es troba a l’exterior del cercle γi. Per
tant, Ind pΛ, zq “ 0.

Si z P B, llavors z “ ak per algun 1 ď k ď n. Com que Ind pγi, akq “ 0 si i ‰ k, i
Ind pγk, akq “ 1, tenim que

Ind pΛ, zq “ Ind pΛ, akq “ Ind pΓ, akq ´

n
ÿ

i“1

ni Ind pγi, akq

“ Ind pΓ, akq ´ nk “ Ind pΓ, akq ´ Ind pΓ, akq “ 0.

Aix́ı doncs, tenim una funció f P HpΩzAq, i Λ és un cicle en ΩzA que és homòleg a 0 en
ΩzA. Pel teorema de Cauchy global, tenim que

ˆ
Λ
fpzqdz “ 0.
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És a dir,

0 “

ˆ
Λ
fpzqdz “

ˆ
Γ
fpzqdz ´

n
ÿ

i“1

ni

ˆ
γi

fpzqdz.

Per la proposició 6.13, tenim que
ˆ
γi

fpzqdz “ 2πiRes pf, aiq,

de manera que, com que ni “ Ind pΓ, aiq, tenim que

ˆ
Γ
fpzqdz “ 2πi

n
ÿ

i“1

Ind pΓ, aiqRes pf, aiq.

Moltes vegades aplicarem el teorema dels residus quan tinguem una funció holomorfa
amb un nombre finit de singularitats ta1, . . . , anu dins d’una corba γ tancada simple, aix́ı
que els ı́ndexos d’aquests punts valen 1. En aquest cas el teorema dels residus ens diu que

ˆ
γ
fpzqdz “ 2πi

n
ÿ

i“1

Res pf, aiq.

Exercicis

6.3.1. Existeix alguna funció f amb pol simple a z0 tal que Respf, z0q “ 0? Què passa si
el pol és d’ordre 2, pot passar que Respf, z0q “ 0? Ž

6.3.2. Calculeu els residus de les funcions següents en els punts indicats:

a) fpzq “
1

ez ´ 1
, z0 “ 0.

b) fpzq “
1 ` ez

z4
, z0 “ 0. Ž

6.3.3. Calculeu

ˆ
|z|“1

e1{z

z ´ a
dz pels diferents valors d’a P C tals que |a| ‰ 1. Ž

6.3.4. Decidiu si són certes o falses les següents afirmacions. Doneu els arguments que
provin les afirmacions.

1. Si f, g tenen un pol a z0 llavors f ` g té un pol a z0.

2. Si f, g tenen un pol a z0 i en els dos casos el residu és no nul llavors f ¨ g té un pol
a z0 amb residu no nul.

3. Si f té una singularitat essencial a z “ 0 i g un pol d’ordre finit a z “ 0 llavors
f ` g té singularitat essencial a z “ 0.
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4. Si f té un pol d’ordre m a z “ 0 llavors fpz2q té un pol d’ordre 2m. Ž

6.3.5. Suposem que f és holomorfa amb un zero d’ordre m a z0. Proveu que gpzq “

f 1pzq{fpzq té un pol simple a z0 amb Respg, z0q “ m. Ž

6.3.6. a) Proveu que si gpzq té un zero simple a z0, llavors 1{gpzq té un pol simple a z0.

b) Proveu que Resp1{g, z0q “ 1{g1pz0q.

c) Sigui fpzq “ 1{ sinpzq, trobeu els seus pols i proveu que són simples. Trobeu els residus.Ž

6.3.7. Trobeu i classifiqueu les singularitats äıllades de cadascuna de les funcions següents.
Calculeu el residu a cada singularitat.

a) fpzq “
z3 ` 1

z2pz ` 1q
.

b) gpzq “
1

ez ´ 1
.

c) hpzq “ cosp1 ´ 1{zq. Ž

6.3.8. Avalueu

˛
1

pz ` 1qpz ´ 1qpz ´ 2qpz ´ 3qpz ´ 4qpz ´ 5q
dz al llarg de la corba |z´3| “

3 recorreguda en sentit antihorari. Ž

6.3.9. Avalueu les següents integrals

a)

˛
|z|“5

sin z

z2 ´ 4
dz

b)

˛
|z|“8

1

z2 ` z ` 1
dz

c)

˛
|z|“3

eiz

z2pz ´ 2qpz ` 5iq
dz. Ž

6.3.10. Calculeu la integral de la funció fpzq “
1 ` z

1 ` sin z
sobre la vora del disc D7p0q. Ž

6.3.11. Per a t ą 0, sigui Ct la circumferència de centre it, que passa pels punts ´2 i 2.
Calculeu

fptq “

ˆ
Ct

eiπz ` 1

zpz ´ tq
dz, per a t ‰ 2. Ž
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6.4. Residu a l’infinit

Una funció holomorfa en un domini que contingui un entorn de l’infinit i tal que fp8q :“
limzÑ8 fpzq “ 8 es pot entendre que hi té un pol. Si fp8q P C, parlarem d’una singula-
ritat evitable, i si Efp8q, d’una singularitat essencial. El teorema dels residus ens permet
també relacionar el residu en aquesta singularitat amb els residus en C.

Definició 6.17. Sigui f holomorfa en CzE amb un conjunt finit de singularitats äıllades
E, i sigui Γ una corba simple orientada positivament i tal que conté E. Aleshores el residu
de f a l’infinit és

Respf,8q :“ ´
1

2πi

ˆ
Γ
fpzq dz. ‚

Pel teorema dels residus, si A és el conjunt de pols de f , tenim que

Respf,8q “ ´
ÿ

aPA

Ind pΓ, aq Respf, aq.

Lema 6.18. Sigui f holomorfa en CzE amb un conjunt finit de singularitats äıllades E.
Aleshores el residu de f a l’infinit és

Respf,8q “ ´Res

ˆ

1

w2
f

ˆ

1

w

˙

, 0

˙

.

Demostració. Fem el canvi de variable w “ 1{z. Sigui Ct la circumferència de radi t,
recorreguda en sentit antihorari. Si R és tal que CR conté totes les singularitats, aleshores
trobem

´2πiRespf,8q “

ˆ
CR

fpzq dz “

ˆ
C´

1{R

f

ˆ

1

w

˙

´dw

w2
,

on C´

1{R és la corba inversa de C1{R, vegeu la definició 4.2. Canviant-ne l’orientació trobem

Respf,8q “
´1

2πi

ˆ
C1{R

f

ˆ

1

w

˙

dw

w2

T.6.16
“ ´Res

ˆ

1

w2
f

ˆ

1

w

˙

, 0

˙

,

tal com voĺıem veure.

Exercicis

6.4.1. Trobar el valor la integral

˛
|z|“2

5z ´ 1

zpz ´ 1q
dz calculant el residu de l’integrand a

l’infinit. Ž

6.4.2. Sigui a P R, calculeu, estudiant el residu a l’infinit, I “

˛
C

a2 ´ z2

zpz2 ` a2q
dz on C és

una corba simple que envolta les singularitats de l’integrand. Ž

6.4.3. Avaluar

˛
|z|“1

e1{z sinp1{zqdz. Ž
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6.5. Aplicació al càlcul d’integrals

El teorema dels residus es pot fer servir per calcular diverses integrals reals. Farem diversos
exemples t́ıpics.

Exemple 6.19. Tenim una funció racional R sense singularitats en |z| “ 1, i volem
calcular

I “

ˆ 2π

0
Rpsin t, cos tq dt.

Fent el canvi z “ eit, podem posar

sin t “
eit ´ e´it

2i
“
z ´ 1

z

2i
; cos t “

eit ` e´it

2
“
z ` 1

z

2

Com que dz “ ieit dt, llavors dt “ dz
iz , de manera que

I “
1

i

ˆ
γ
R

˜

z ´ 1
z

2i
,
z ` 1

z

2

¸

dz

z
,

on γ és el cercle |z| “ 1. Ara apliquem el teorema dels residus i ja està.
Per exemple, ˆ 2π

0

dt

2 ` sin t
.

Fent el canvi z “ eit, tenim que

ˆ 2π

0

dt

2 ` sin t
“

ˆ
|z|“1

1

2 `

´

z´ 1
z

2i

¯

dz

iz
“

ˆ
|z|“1

2

z2 ` 4iz ´ 1
dz.

La funció

fpzq “
2

z2 ` 4iz ´ 1

té singularitats en els punts α “ p´2`
?
3qi i β “ p´2´

?
3qi. Tenim que |α| ă 1 i |β| ą 1,

aix́ı que aplicant el teorema dels residus, tenim que
ˆ

|z|“1

2

z2 ` 4iz ´ 1
dz “ 2πiRes pf, αq.

Com que α és un pol simple de f , tenim que

Res pf, αq “ lim
zÑα

pz ´ αqfpzq “ lim
zÑα

2

z ´ β
“

2

α ´ β
“

1
?
3 i
.

Per tant, ˆ 2π

0

dt

2 ` sin t
“

ˆ
|z|“1

2

z2 ` 4iz ´ 1
dz “ 2πiRes pf, αq “

2π
?
3
.

♢
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Exemple 6.20. Càlcul d’integrals del tipus

ˆ 8

´8

fpxq eiax dx

on f no té cap pol en l’eix real.
Per exemple, donat k ą 0, calculem

ˆ 8

0

cosx

x2 ` k2
dx.

Tenim ˆ 8

0

cosx

x2 ` k2
dx “

1

2

ˆ 8

´8

cosx

x2 ` k2
dx “

1

2
Re

ˆˆ 8

´8

eix

x2 ` k2
dx

˙

.

Aix́ı doncs, calcularem ˆ 8

´8

eix

x2 ` k2
dx.

Considerem la funció

fpzq “
eiz

z2 ` k2
.

Aquesta funció és holomorfa a tot C, excepte en els punts ki, ´ki que són pols de f d’ordre
1. Prenem R ą 0 molt gran, de manera que R ą k. Integrem la funció f en el semicercle
γ format pel segment γ1pxq “ x, amb x P r´R,Rs i γ2ptq “ Reit, t P r0, πs. Com que

R−R 0

γ1(x) = x

γ2(t) = Reit

Figura 6.2.: Camins per l’exemple 6.20.

només el punt ki es troba en l’interior del semicercle, pel teorema dels residus, tenim que

ˆ
γ
fpzq dz “ 2πiRes pf, kiq.

Calculem ara el residu de f en el punt ki. Com que és un pol d’ordre 1, tenim que

Res pf, kiq “ lim
zÑki

pz ´ kiqfpzq “ lim
zÑki

eiz

z ` ki
“
eiki

2ki
,
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aix́ı que ˆ
γ
fpzq dz “

π

k
e´k.

Per altra banda, tenim queˆ
γ
fpzqdz “

ˆ
γ1

fpzqdz `

ˆ
γ2

fpzqdz.

Tenim ˆ
γ1

fpzqdz “

ˆ R

´R

eix

x2 ` k2
dx.

Fent R Ñ 8, obtenim
ˆ 8

´8

eix

x2 ` k2
dx` lim

RÑ8
IR “ lim

RÑ8

ˆ
γ
fpzqdz “

π

k
e´k,

on

IR “

ˆ
γ2

fpzqdz.

Si veiem que limRÑ8 IR “ 0, obtenim
ˆ 8

´8

eix

x2 ` k2
dx “

π

k
e´k ñ

ˆ 8

0

cosx

x2 ` k2
dx “

π

2k
e´k.

Provem doncs que limRÑ8 IR “ 0. Tenim que

IR “

ˆ π

0

eiReit

R2e2it ` k2
Ri eit dt.

Llavors

|IR| ď

ˆ π

0

|eiReit |

|R2e2it ` k2|
Rdt.

Com que |eiReit | “ e´R sin t, fent servir que |R2e2it ` k2| ě R2 ´ k2, i que sin t ě 0 per
t P r0, πs, veiem que

|IR| ď
R

R2 ´ k2

ˆ π

0
e´R sin tdt ď

πR

R2 ´ k2
ÝÑ 0

quan R Ñ 8, provant el resultat desitjat. ♢

Exemple 6.21. Si f té algun pol en l’eix real, evitem el pol. Per exemple, calculem
ˆ 8

0

sinx

x
dx.

Integrant per parts, es pot veure que aquesta integral impròpia és convergent (encara que
no és absolutament convergent). Considerem la funció

fpzq “
eiz

z
,
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R−R 0
γ1(x) = xγ2(x) = x

γR(t) = Reit

γε(t) = εeit

Figura 6.3.: Camins per l’exemple 6.21.

que és holomorfa en Czt0u. Integrem f en el camı́ γ de la següent figura. Pel teorema de
Cauchy, tenim que ˆ

γ
fpzqdz “ 0.

Per altra banda, com que γ “ γ1 ` γR ` γ2 ´ γε, amb γ1pxq “ x per x P rε,Rs; γ2pyq “ y
per y P r´R,´εs; γRptq “ Reit per t P r0, πs i γεptq “ εeit per t P r0, πs, tenim que

0 “

ˆ
γ
fpzqdz “

ˆ
γ1

fpzqdz `

ˆ
γR

fpzqdz `

ˆ
γ2

fpzqdz ´

ˆ
γε

fpzqdz.

Tenim ˆ
γ1

fpzqdz “

ˆ R

ε

eix

x
dx.

També, després de fer el canvi x “ ´y, tenim que

ˆ
γ2

fpzqdz “

ˆ ´ε

´R

eiy

y
dy “ ´

ˆ R

ε

e´ix

x
dx.

Fent R Ñ 8 i ε Ñ 0, obtenim

0 “

ˆ `8

0

eix

x
dx´

ˆ `8

0

e´ix

x
dx` lim

RÑ`8
IR ´ lim

εÑ0
Iε,

amb

IR “

ˆ
γR

eiz

z
dz; Iε “

ˆ
γε

eiz

z
dz.

Es compleix que

ˆ `8

0

eix

x
dx´

ˆ `8

0

e´ix

x
dx “

ˆ `8

0

peix ´ e´ixq

x
dx “ 2i

ˆ `8

0

sinx

x
dx.

A més, limRÑ8 IR “ 0, vegeu l’exercici 6.5.1.
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Tot plegat ens dona que ˆ `8

0

sinx

x
dx “

1

2i
lim
εÑ0

Iε.

Vegem ara que

lim
εÑ0

ˆ
γε

peiz ´ 1q

z
dz “ 0.

Efectivament, com que, per |z| “ ε, per 0 ă ε ă 1, tenim que

ˇ

ˇ

ˇ

ˇ

eiz ´ 1

z

ˇ

ˇ

ˇ

ˇ

ď
e|z| ´ 1

|z|
ď e|z| “ eε ď e.

(aquestes desigualtats es poden veure a partir del desenvolupament en sèrie de l’exponen-
cial). Llavors

ˇ

ˇ

ˇ

ˇ

ˆ
γε

peiz ´ 1q

z
dz

ˇ

ˇ

ˇ

ˇ

ď eLongpγεq “ e πε,

que tendeix a zero quan ε tendeix a zero.
Això implica que

lim
εÑ0

Iε “ lim
εÑ0

ˆ
γε

eiz

z
dz “ lim

εÑ0

ˆ
γε

dz

z
“ lim

εÑ0

ˆ π

0

i εeitdt

εeit
“ π i.

Per tant ˆ `8

0

sinx

x
dx “

π

2
. ♢

Exemple 6.22. Si R és una funció racional sense pols a l’eix real amb limzÑ8 zRpzq “ 0
(és a dir, R “ P {Q amb grau Q ě grau P ` 2), podem calcular

ˆ `8

´8

Rpxq dx,

♢

vegeu l’exercici 6.5.3.

Exemple 6.23. Càlcul de ˆ 8

0

dx

1 ` xn
, n ě 2.

Aquesta integral és convergent ja que n ą 1. Considerem la funció

fpzq “
1

1 ` zn
,

que és holomorfa a tot C excepte en les solucions de zn ` 1 “ 0, és a dir, en

ak “ eip
π
n

` 2kπ
n

q, k “ 0, 1, . . . , n´ 1.
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R0
γ1(x) = x

γR(t) = Reit

γ2(r) = (R− r)e
2πi
n

Figura 6.4.: Camins per l’exemple 6.23.

Integrem la funció f en el “formatget”γ del dibuix, amb R ą 1 gran. Només el pol a0 es
troba en l’interior del camı́ γ, de manera que, pel teorema dels residus,

ˆ
γ
fpzqdz “ 2πiRes pf, a0q.

♢

Exemple 6.24. Per 0 ă α ă 1, podem calcular

ˆ 8

0

Qpxq

xα
dx

on Q no té cap pol en R` amb limzÑ8 zQpzq “ 0.
En aquest cas, considerem la funció

fpzq “ Qpzq z´α, z´α “ e´αLz,

amb Lz “ ln |z| ` iAz, amb Az P p0, 2πq. Llavors z´α és holomorfa a Czr0,`8q. En
aquest cas, integrem f en el recinte “comecocos”γ de la figura
Tenim γ “ γ1 ` γR ´ γ2 ´ γε, amb

γ1pxq “ x` iε; x P r0, R˚s;

γRptq “ Reit; t P rε˚, 2π ´ ε˚s

γ2pxq “ x´ iε; x P r0, R˚s;

γεptq “ εeit; t P

„

π

2
,
3π

2

ȷ

,

vegeu l’exercici 6.5.5. ♢

Exemple 6.25. Calcular integrals del tipus

ˆ 8

0
Rpxq lnx dx,

on R no té cap pol en R` i si R “ P {Q, grauQ ě grauP ` 2.
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RR∗0

γ2(x) = x− iε

γ1(x) = x+ iε

γR(t) = Reit

γε(t) = εeit

Figura 6.5.: Camins per l’exemple 6.24.

Observem, primer, que si raonem com en els casos anteriors i agafem la funció gpzq “

RpzqLz on Lz “ ln |z| ` iAz amb Az P p0, 2πq, i integrem la funció g en la regió “come-
cocos”del cas anterior, es compleix que z P γ˚

1 , z “ x` iε, aix́ı que Lz Ñ lnx si ε Ñ 0 i si
z P γ˚

3 , z “ x ´ iε, de manera que Lz Ñ lnx ` 2πi si ε Ñ 0. Tot plegat ens dona que si
z “ x` iε, amb x ą 0, gpx` iεq Ñ Rpxq lnx, i gpx´ iεq Ñ ´Rpxqplnx` 2πiq quan ε Ñ 0
i no podem calcular la integral desitjada.
Per aquest motiu, agafem la funció

fpzq “ Rpzq pLzq2,

on Lz “ ln |z| ` iAz amb Az P p0, 2πq, i integrem la funció f en la regió “comecocos”del
cas anterior. ♢

Exercicis

6.5.1. Per r ą 0, considerem la corba γr : r0, πs Ñ C definida per γrptq “ reit, i sigui

Iprq “

ˆ
γr

eiz

z
dz.

Demostreu que limrÑ8 Iprq “ 0. Ž

6.5.2. Considereu la funció fpzq “
z2

pz2 ` 9qpz2 ` 4q2
.

(a) Determineu les singularitats de f .
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(b) Calculeu la part principal del desenvolupament de Laurent al voltant de z “ 2i.

(c) Justifiqueu la convergència de ˆ 8

0
fpxqdx

i calculeu-ne el seu valor. Ž

6.5.3. Demostreu que ˆ `8

´8

x2

1 ` x4
dx “

π
?
2
. Ž

6.5.4. Calculeu

I :“

ˆ 8

0

dx

1 ` x5
.

Ž

6.5.5. Donat a P p0, 1q calculeu el valor de la integral
ˆ 8

0

xa

1 ` x2
dx. Ž

6.5.6. Calcular ˆ 8

0

dx
?
x p1 ` x2q

. Ž

6.5.7. Calcular ˆ 8

0

lnx

1 ` x2
dx. Ž

6.5.8. Justifiqueu la integrabilitat (Lebesgue o impròpia Riemann) i calculeu les següents
integrals (en tots els apartats k P Z, α P R i n “ 0, 1, 2, ¨ ¨ ¨ ):

a)

ˆ 2π

0

sin2 t

5 ` 4 cos t
dt.

b)

ˆ 8

0

sin2 x

x2
dx.

c)

ˆ 2π

0

cospntq

2 ` cos t
dt.

d)

ˆ `8

´8

x2 ´ x` 2

x4 ` 10x2 ` 9
dx.

e)

ˆ 8

´8

sinx

x2 ´ x` 1
dx. Ž

6.5.9. Justifiqueu la convergència de
ˆ `8

0

?
x

x2 ` 3
dx

i calculeu-ne el seu valor (cal justificar tots els passos). Ž
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6.5.10. Siguin fpzq “ ez{z2 i la recta γ “ t1 ` it; t P p´8,`8qu.

a) Calculeu (justificant tots els passos)
ˆ
γ
fpzqdz.

Indicació: integreu f sobre la vora del semidisc de centre z0 “ 1 i radi R amb Re z ď 1.

b) Dedüıu que

ˆ `8

´8

p1 ´ t2q cosptq ` 2t sinptq

p1 ` t2q2
dt “

2π

e
. Ž

6.5.11. Considereu

fpzq “
z2 ´ 2

pz2 ` 1q2pz2 ` 4q2
.

(a) Trobeu la part principal de la sèrie de Laurent al voltant de z “ 2i.

(b) Justifiqueu la convergència de ˆ `8

´8

fpxqdx

i calculeu-ne el seu valor (justifiqueu tots els passos). Ž

6.5.12. Sigui fpzq “ eiz
2
, i considereu el camı́ γR format per el segment que va de 0 a R;

l’arc del cercle |z| “ R que va de R a Reiπ{4, i el segment que va de Reiπ{4 a 0. Demostreu
que ˆ

γR

fpzqdz “ 0,

i utilitzeu-ho per a calcular les integrals de Fresnel

ˆ 8

0
cospx2qdx,

ˆ 8

0
sinpx2qdx.

Observació: Podeu utilitzar que
´8

0 e´t2 dt “
?
π
2 . Ž

6.5.13. (a) Sigui f una funció holomorfa en D˚ “ t0 ă |z| ă 1u. Suposem que fpanq “ 0
per una successió an P D˚ tal que an Ñ 0. Demostreu que f ” 0 o bé z “ 0 és una
singularitat essencial de f .

(b) Sigui f una funció holomorfa en D˚ tal que per a tot n ě 2, f no té zeros sobre les
corbes |z| “ 1{n i a més

ˆ
|z|“ 1

n

1

fpzq
dz ‰

ˆ
|z|“ 1

n`1

1

fpzq
dz.

Demostreu que z “ 0 és una singularitat essencial de f . Indicació: Utilitzeu el Teore-
ma de deformació i l’apartat anterior. Ž

165
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6.5.14. Calculeu, justificant tots els passos, la integral

ˆ `8

0

xα

x2 ` x` 1
dx, ´1 ă α ă 1.

Indicació: Considereu la funció fpzq “
zα

z2 ` z ` 1
. Definiu una determinació del logarit-

me logpzq a Czr0,`8q de manera que zα “ eαlogpzq. Finalment integreu la funció fpzq a
la mateixa regió que les integrals del tipus

ˆ `8

0
Rpxq lnpxqdx. Ž

6.6. Principi de l’argument

El principi de l’argument i el teorema de Rouché es fan servir per calcular el nombre de
zeros i pols d’una funció holomorfa (excepte per pols) dins d’una corba tancada.

Definició 6.26. Sigui Ω Ă C un obert. Diem que f : Ω Ñ C és meromorfa en Ω si
f P HpΩzEq, on E Ă Ω està format per punts äıllats, i aquestes singularitats de f són
pols. En aquest cas, posem f P MpΩq. ‚

Teorema 6.27 (Principi de l’argument). Sigui Ω Ă C un obert i f P MpΩq. Denotem per
Z el conjunts dels zeros de f en Ω, i per E el conjunt de pols de f en Ω. Sigui γ un camı́
tancat en ΩzpZ Y Eq, homòleg a 0 en Ω. Llavors

1

2πi

ˆ
γ

f 1pzq

fpzq
dz “

ÿ

zPZ

Ind pγ, zqmpf, zq ´
ÿ

pPE

Ind pγ, pqmpf, pq,

on mpf, zq és la multiplicitat del zero z, i mpf, pq denota l’ordre del pol p.

Observació 6.28. S’anomena el principi de l’argument, ja que si Γptq “ fpγptqq és la
corba imatge, llavors

1

2πi

ˆ
γ

f 1pzq

fpzq
dz “ Ind pΓ, 0q,

aix́ı que, si γ és una corba tancada simple, llavors el nombre de zeros menys el nombre
de pols de f en l’interior de γ (comptant multiplicitats) és igual al nombre de voltes que
dona la corba imatge fpγq al voltant del zero, que seria la variació de l’argument al llarg
de fpγq dividit per 2π.
En efecte, tenim que

Ind pΓ, 0q “
1

2πi

ˆ
Γ

dw

w ´ 0
“

1

2πi

ˆ b

a

f 1pγptqq γ1ptq dt

fpγptqq
“

1

2πi

ˆ
γ

f 1pzq

fpzq
dz. ‚
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Demostració del teorema 6.27. Observem que si f és holomorfa en ΩzE, llavors la funció
h “ f 1{f és holomorfa en ΩzpE Y Zq. Aplicant el teorema dels residus, tenim que

1

2πi

ˆ
γ

f 1pzq

fpzq
dz “

ÿ

wPEYZ

Res

ˆ

f 1

f
, w

˙

Ind pγ,wq.

‚ Si z0 és un zero de f de multiplicitat m, llavors fpzq “ pz´ z0qm gpzq, on g és holomorfa
en un entorn de z0 amb gpz0q ‰ 0. Llavors, en un entorn de z0 tenim que

f 1pzq

fpzq
“

m

z ´ z0
`
g1pzq

gpzq
.

Com que gpzq ‰ 0 en un entorn de z0, llavors g
1{g és holomorfa en aquest entorn, de

manera que
Respf 1{f, z0q “ m.

‚ Si p0 és un pol de f d’ordre m, llavors rgpzq “ pz ´ p0qm fpzq és holomorfa en un entorn
de p0 amb rgpp0q ‰ 0. Llavors, procedint com abans obtenim

Respf 1{f, p0q “ ´m.

Per tant

1

2πi

ˆ
γ

f 1pzq

fpzq
dz “

ÿ

wPZ

Res

ˆ

f 1

f
, w

˙

Ind pγ,wq `
ÿ

pPE

Res

ˆ

f 1

f
, p

˙

Ind pγ, pq

“
ÿ

wPZ

Ind pγ,wqmpf, wq ´
ÿ

pPE

Ind pγ, pqmpf, pq.

Exemple 6.29. Aplicant el principi de l’argument calculem el nombre de zeros (comptant
multiplicitats) del polinomi Qpzq “ z4 ` 2z3 ´ 2z ` 10 al primer quadrant.

R0

iR

γ1

γ2

γ3

Figura 6.6.: Camins per l’exemple 6.29.

Volem aplicar el principi de l’argument a la corba γ “ γ1 ` γ2 ` γ3 formada per:

γ1pxq “ x, x P r0, Rs

γ2ptq “ Reit, t P r0, π{2s

´γ3pyq “ iy, y P r0, Rs.
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on R ą 0 és prou gran per englobar les arrels de Q al primer quadrant Q1, que són un
nombre finit. Pel principi de l’argument,

#ZpQq X Q1 “
ÿ

wPZ

Ind pγ,wqmpQ,wq “ Ind
`

Q ˝ γ, 0
˘

.

En el que raonarem a continuació, provarem també que el polinomi Q no té cap zero a γ˚.
Mirem doncs quantes voltes fa la corbaQ˝γ al voltant de 0, vegeu la figura 6.7. Estudiem

cada tros de γ.

Q(R)Q(0)

Q(iR)

Q(γ2)

Q(γ1)

Q(γ3)

0

Figura 6.7.: Imatge per Q dels camins de l’exemple 6.29.

La corba Qpγ1pxqq “ Qpxq és continguda a R`, ja que

Qpxq “ x4 ` 2xpx2 ´ 1q ` 10 ą 10 ´ 2 “ 8 ą 0.

Tenim doncs que Q no s’anul¨la a γ˚
1 i Qpγ1q és un segment al semieix real positiu, que va

de Qp0q a QpRq.
Seguidament

Qpγ2ptqq “ QpReitq “ pReitq4
ˆ

1 `
2

Reit
´

2

pReitq3
`

10

pReitq4

˙

.

Per tant, quan R és molt gran, Qpγ2ptqq no s’anul¨la i és una petita pertorbació de R4ei4t.
Com que t P r0, π{2s tenim que 4t P r0, 2πs.
Pel tercer tros tenim que

Qpγ3pyqq “ Qpiyq “ py4 ` 10q ´ 2ipy3 ` yq,

i en particular QpiRq és un punt amb part imaginària negativa. Observem que per a y ą 0,

ReQpiyq ą 0, ImQpiyq ă 0.
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Per tant Qpγ3pyqq va del punt QpiRq cap a Qp0q restant sempre dins del quart quadrant.
Amb tot això tenim que el nombre de voltes que fa Q˝γ al voltant de 0 és 1; pel principi

de l’argument
#ZpQq X Q1 “ Ind

`

Q ˝ γ, 0
˘

“ 1. ♢

Exercicis

6.6.1. Quines de les següents funcions són meromorfes a C?

a) z5 b) z5{2 c) e1{z d) 1{ sinpzq. Ž

6.6.2. Calculeu el nombre de zeros (comptats amb multiplicitat) amb part real positiva del
polinomi P pzq “ z6 ´ z4 ´ 2z ´ 6.
I si alternativament el polinomi fos Qpzq “ z6 ´ z4 ´ 2z ` 6? Ž

6.6.3. Sigui f una funció entera tal que

fpzq P R ðñ z P R.

Demostreu que f té, com a molt, un zero a tot C. Ž

6.7. Teorema de Rouché

Teorema 6.30. [Teorema de Rouché4] Sigui Ω Ă C un obert i f, g P MpΩq. Sigui γ camı́
tancat simple homòleg a 0 en Ω. Suposem que f i g no tenen pols en γ˚. Si

|fpzq ´ gpzq| ă |gpzq|, z P γ˚

aleshores
Zf ´ Pf “ Zg ´ Pg,

on Zf , Zg denoten el nombre de zeros (comptant multiplicitats) de f i g en l’interior de
γ, i Pf , Pg el nombre de pols (comptant l’ordre) de f i g en l’interior de γ.

Observació 6.31. Cal que la desigualtat sigui estricta. També, al ser γ simple, tenim
que Ind pγ, zq val 0 o 1 per z R γ˚. ‚

Demostració del teorema 6.30. Notem que f i g tampoc no poden tenir zeros en γ˚ per
la hipòtesi imposada (en cas contrari, tindriem |gpzq| ă |gpzq| !!).

Tenim F “ f{g P MpΩq. Si suposem, per simplificar, que els pols d’una funció no
coincideixen amb els zeros de l’altra, aleshores

tzeros de F u “ tzeros de fu Y tpols de gu; tpols de F u “ tzeros de gu Y tpols de fu.

4Eugène Rouché, Someire, 1832–1910, https://ca.wikipedia.org/wiki/Eug%C3%A8ne_Rouch%C3%A9
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Per la hipòtesi, tenim que
ˇ

ˇ

ˇ

fpzq

gpzq
´ 1

ˇ

ˇ

ˇ
ă 1 per z P γ˚, de manera que la corba imatge

Γ “ F pγq Ă D1p1q, aix́ı que Γ no dona cap volta al voltant del 0, i per tant Ind pΓ, 0q “ 0.
Pel principi de l’argument

0 “ Ind pΓ, 0q “ ZF ´ PF “ Zf ` Pg ´ pZg ` Pf q,

d’on obtenim el resultat. Quan hi ha coincidències, aleshores comptant els ordres de zeros
i pols arribem a la mateixa conclusió.

La majoria de les vegades apliquem el teorema de Rouché en un cercle t|z´ a| “ Ru i a
funcions f, g holomorfes en un entorn de DRpaq. En aquest cas, si |fpzq´gpzq| ă |gpzq| per
|z ´ a| “ R, se segueix que f i g tenen el mateix nombre de zeros comptant multiplicitats
en el disc obert DRpaq. Això ens pot servir per determinar els zeros de f en el disc, si
podem triar una funció g de la qual es pugui determinar fàcilment el nombre de zeros.

Exemple 6.32. Trobem el nombre de zeros del polinomi P pzq “ z7 ´ 2z5 ` 6z3 ´ z ` 1
en el disc unitat D.
Prenem la funció gpzq “ 6z3 que té 3 zeros comptant multiplicitats en D. Tenim que

|gpzq| “ 6 si |z| “ 1. Llavors

|P pzq ´ gpzq| “ |z7 ´ 2z5 ´ z ` 1| ď |z|7 ` 2|z|5 ` |z| ` 1 “ 5 ă 6 “ |gpzq|, si |z| “ 1.

Pel teorema de Rouché, P i g tenen el mateix nombre de zeros (comptant multiplicitats)
en D, aix́ı que P té 3 zeros en D. ♢

Exemple 6.33. Trobem quants zeros té P pzq “ z4 ´ 6z ` 3 en l’anell t1 ă |z| ă 2u.
Primer, trobem els zeros de P dins del disc t|z| ă 2u. Prenem gpzq “ z4 que té 4 zeros

comptant multiplicitats en t|z| ă 2u. Tenim que

|P pzq ´ gpzq| “ | ´ 6z ` 3| ď 6|z| ` 3 “ 15 ă 16 “ |gpzq| si |z| “ 2.

Com abans, aquesta desigualtat també implica que P no té zeros en |z| “ 2. Pel Teorema
de Rouché, P i g tenen el mateix nombre de zeros en t|z| ă 2u, de manera que P té 4
zeros en t|z| ă 2u.
Ara, busquem els zeros de P en el disc unitat t|z| ă 1u. Prenem hpzq “ ´6z que té un

zero en el disc unitat. Tenim que

|P pzq ´ hpzq| “ |z4 ` 3| ď |z|4 ` 3 “ 4 ă 6 “ |hpzq| si |z| “ 1.

Pel Teorema de Rouché, P té un zero en el disc unitat t|z| ă 1u.
En conclusió, el polinomi P té 3 zeros en l’anell t1 ă |z| ă 2u. ♢

Teorema 6.34 (Teorema de Hurwitz5). Sigui fn una successió de funcions holomorfes
en un domini Ω tals que fn Ñ f uniformement en compactes d’Ω, per una certa funció
f . Si per a tota n ě 0, fn no s’anul.la en cap punt d’Ω, aleshores o bé f ” 0 o be f no
s’anul.la en Ω.
5Adolf Hurwitz, Hildesheim, 1859–1919, https://ca.wikipedia.org/wiki/Adolf_Hurwitz
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Demostració. Comencem observant que f és holomorfa en Ω pel Teorema de Weierstrass.
Suposem que f no és idènticament 0, però fpaq “ 0 per un cert a P Ω. Aleshores, com que
els zeros de f han de ser äıllats (al ser f no idènticament nul.la), tenim que fpzq ‰ 0 en
un cert disc puntejat Drpaqztau Ă Ω. Sigui 0 ă m “ min|z´a|“r |fpzq| que existeix perquè
f és cont́ınua i el cercle és un compacte i sigui n prou gran per garantir que

|fnpzq ´ fpzq| ă m

per a tot z en t|z´a| “ ru, fet que es dona per la convergència uniforme. Aleshores, sobre
la corba t|z ´ a| “ ru,

|fnpzq ´ fpzq| ă m ď |fpzq|,

i pel Teorema de Rouché, fn i f tenen el mateix nombre de zeros dins t|z ´ a| “ ru. Però
això és una contradicció ja que f en té un, i fn no en té cap per hipòtesi.

Exercicis

6.7.1. Demostreu que l’equació ez “ 2z ` 1 té exactament una solució en el disc unitat
obert. Indicació: Proveu que |ez ´ 1| ď e´ 1 si |z| “ 1. Ž

6.7.2. Sigui f una funció holomorfa en el disc unitat tancat tal que |fpzq| ă 1, per a
|z| “ 1. Quants punts fixos té f? Ž

6.7.3. Calculeu el nombre de solucions (comptant multiplicitats) de les següents equacions
en el disc unitat:

(a) z9 ´ 2z6 ` z2 ´ 8z ´ 2 “ 0.

(b) 2z5 ´ z3 ` 3z2 ´ z ` 8 “ 0.

(c) z7 ´ 5z4 ` z2 “ 2. Ž

6.7.4. Quants zeros té P pzq “ z4 ` 6z3 ´ 4z2 ` 1{8 en la regió
␣

z P C; 1
2 ă |z| ă 1

(

? Ž

6.7.5. Considerem P pzq “ z6 ` 3z4 ` z2 ` z ` 9.

(a) Proveu que tots els zeros de P pzq són a l’anell 1 ă |z| ă 2.

(b) Calculeu el nombre de zeros (comptats amb multiplicitat) de P pzq al primer quadrant.Ž

6.7.6. (a) Calculeu el nombre de solucions a D de l’equació ez “ 4z ` 1.

(b) Demostreu que l’equació ez “ 3zn té n solucions en el disc unitat (n “ 0, 1, 2, . . . ). Ž

6.7.7. Sigui a P C, 0 ă |a| ă 1, i n P N.

(a) Demostreu que l’equació
pz ´ 1qnez “ a

té exactament n arrels diferents al semiplà tz P C | Re z ą 0u. Indicació: Considereu
un disc centrat a z “ 1 i de radi R “ 1 primer, deprés mireu d’augmentar el radi
sense sortir del semiplà tancat de la dreta.
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(b) Proveu que si, a més, |a| ď 1{2n, llavors totes aquestes arrels són al disc D1{2p1q. Ž

6.7.8. Demostreu que per a tot R ą 0 existeix npRq ě 0 tal que si n ą npRq

Pnpzq “ 1 ` z `
z2

2!
` ¨ ¨ ¨ `

zn

n!

no té zeros al disc t|z| ď Ru. Ž

6.7.9. Sigui fn una successió de funcions holomorfes en un domini Ω tals que fn Ñ f
uniformement en compactes d’Ω, per una certa funció f .

1. (Corol.lari de Hurwitz) Dedüıu que si fnpzq ‰ a per a tot z P Ω i tot n P N, aleshores,
f ” a o bé fpzq ‰ a en Ω.

2. Proveu que si fn és injectiva en Ω per a tot n ě 0, aleshores f és constant o bé f és
injectiva en Ω. Indicació: Argumenteu per reducció a l’absurd, i utilitzeu l’apartat
anterior.

3. Proveu que si f té un zero d’ordre m en a P Ω, aleshores existeix ρ0 ą 0 tal que
per tot ρ ă ρ0 i per tot n ą nρ, fn té exactament m zeros en Dρpaq comptant
multiplicitats. Ž
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7.1. El teorema de l’aplicació de Riemann

Les funcions holomorfes també es poden veure com a transformacions entre regions del
pla complex. Les que ens ocupen en aquest caṕıtol són les que són bijectives, a més
d’holomorfes.

Definició 7.1. Siguin U, V Ă C dos oberts connexos. Diem que f : U Ñ V és una repre-
sentació conforme (o transformació conforme) entre U i V si f és holomorfa i bijectiva.
Aleshores diem que U i V són conformement equivalents. ‚

El nom de representació conforme fa referència a la preservació dels angles.

Lema 7.2. Si f : U Ñ C és una funció holomorfa i z0 P U , aleshores

f és localment injectiva en z0 ðñ f 1pz0q ‰ 0 ðñ f preserva els angles en z0.

Demostració. La primera equivalència és resultat del teorema de la funció inversa i de
l’analiticitat de les funcions holomorfes, es pot usar Rouché per exemple. La segona es
deriva de l’observació 3.16 i de l’existència d’un ordre, vegeu el teorema 4.41, deixem els
detalls pel lector.

Tot seguit veiem que les representacions conformes són biholomorfes.

Proposició 7.3. Si f : U Ñ V és holomorfa i bijectiva, aleshores f és biholomorfa, és a
dir que f´1 : V Ñ U també és holomorfa.

Demostració. La funció f és oberta pel teorema de l’aplicació oberta, de manera que f´1

és cont́ınua. Aleshores la biholomorfia es dedueix de la proposició 3.8.

Observació 7.4. Les representacions conformes també s’anomenen a vegades funcions bi-
holomorfes per la proposició 7.3. En la literatura també se les anomena funcions conformes
o funcions univalents. ‚

Advertència 7.5. Hem vist que totes les representacions conformes f : U Ñ V satisfan
que

• f 1pzq ‰ 0, per a tot z P U , i

• preserven angles en tots els punts de U .

Però el rećıproc no és cert: la funció exponencial fpzq “ ez satisfà que f 1pzq ‰ 0 per tot
z P C i, de fet, preserva els angles, però f : C Ñ Czt0u no és una representació conforme
ja que no és injectiva. ‚
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El següent resultat és un dels més remarcables de l’anàlisi complexa:

Teorema 7.6 (Teorema de l’aplicació de Riemann). Tot domini U simplement connex
del pla diferent de C és conformement equivalent al disc unitat D, és a dir, existeix una
representació conforme f entre U i D, vegeu la figura 7.1.
A més, si imposem la imatge d’un punt i l’argument de la derivada, per exemple fpz0q “

0 i f 1pz0q P R`, aleshores f és única.

Ω1

Ω2

Ω3

Ω4

f1

f2f3

f4

Figura 7.1.: El teorema de Riemann assegura que tots els dominis simplement connexos
són conformement equivalents.

Observació 7.7. El comportament de φ :“ f´1 : D Ñ U quan ens acostem a la frontera
de D pot ser molt complicat si BU no és una corba. Aquest estudi és fascinant i dona lloc
al camp de la teoria geomètrica de funcions (GFT per les sigles en anglès de ‘geometric
function theory’). ‚

Observació 7.8. Notem que la condició U ‰ C del teorema de l’aplicació de Riemann és
necessària. Efectivament, la no existència de representació conforme en el cas U “ C és
conseqüència immediata del teorema de Liouville. ‚

La demostració de l’existència és un pèl delicada, el lector interessat la pot trobar per
exemple en [BC13, Caṕıtol 9] o a l’apèndix A. Tot seguit demostrem la unicitat.
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Demostració de la unicitat al teorema de l’aplicació de Riemann. Suposem que existeixen
dues representacions conformes f, g : U Ñ D satisfent les condicions de l’enunciat. Consi-
derem h “ g ˝ f´1 : D Ñ D. Notem que l’origen n’és un punt fix:

hp0q “ gpf´1p0qq “ gpz0q “ 0.

A més, h és holomorfa i envia el disc unitat a ell mateix. Per tant, pel lema de Schwarz
(vegeu el lema 4.52), tenim que

|hpzq| ď |z| per a tot z P D.

Però h´1 satisfà les mateixes hipòtesis i, per tant,

|h´1pwq| ď |w| per a tot w P D.

Aix́ı, escrivint w “ hpzq trobem que

|hpzq| ď |z| “ |h´1pwq| ď |w| “ |hpzq|,

i les desigualtats han de ser igualtats. Hem demostrat doncs que

|hpzq| “ |z| per a tot z P D.

Altra vegada pel lema de Schwarz, existeix λ P BD tal que

hpzq “ λz.

Com que

λ “ h1p0q “
g1pz0q

f 1pz0q
P R`,

deduim que λ “ 1 i, per tant, h és la identitat, és a dir que f “ g tal i com voĺıem
veure.

Com és natural, la majoria de les representacions conformes no poden calcular-se expĺı-
citament. Però algunes śı, i poden combinar-se per a construir-ne moltes d’altres. Algunes
són particularment importants en aquesta i en moltes altres àrees de les matemàtiques i
la f́ısica (geometria, electromagnetisme, àlgebra,. . . ) i les estudiarem aqúı.

7.2. Projecció estereogràfica i circumferències generalitzades

Com veurem a la propera secció, el treball de certes transformacions conformes anome-
nades homografies se simplifica en considerar el pla complex compactificat C8. Aquest
s’anomena sovint esfera de Riemann, ja que la projecció estereogràfica (vegeu la figu-
ra 7.2) ens proporciona un homeomorfisme entre el pla complex compactificat i l’esfera
S2 “ tp P R3 : }pp ´ p0, 0, 12q} “ 1

2 . La projecció estereogràfica p : S2 Ñ R2 envia
px, y, zq P S2zp0, 0, 1q ÞÑ pλx, λyq „ λpx` iyq, de manera que pλx, λy, 0q, px, y, zq i p0, 0, 1q

estiguin alineats, i envia el pol nord p0, 0, 1q a l’infinit.
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N = (0, 0, 1)

(x, y, z)

(λx, λy, 0)(x, y, 0)

Figura 7.2.: La projecció estereogràfica.

Observació 7.9. Es pot veure que la projecció estereogràfica envia circumferències de S2

que passen pel pol nord a rectes (per l’infinit) i circumferències de S2 que no passen pel
pol nord a circumferències del pla complex.
La demostració es pot fer com segueix: si la circumferència inicial passa pel pol nord,

aleshores el conjunt de rectes que uneixen el pol nord amb els punts de la circumferència for-
men un pla que passa pel pol nord, diguem-li Π. Aleshores, la imatge de la circumferència
per la projecció esterogràfica és la intersecció de Π amb el pla XY , que efectivament és
una recta (vegeu la figura 7.3).
Si la circumferència inicial C1 no passa pel pol nord, es tracta de la intersecció de S2

amb un pla Π que no passa pel pol nord, i la seva projecció és la intersecció del con que
formen les rectes pel pol nord als punts de la circumferència amb el pla XY . Aquesta
intersecció és una cònica. Si anomenem p1 el punt de C1 amb màxima coordenada vertical
i p2 el punt de mı́nima coordenada vertical, ℓj la recta que passa per N i pj , aleshores la
cònica projectada es tracta d’una circumferència si i només si l’angle α que forma Π amb
ℓ2 és igual a l’angle β que forma el pla XY amb ℓ1, ja que seran el.lipses de la mateixa
excentricitat per simetria. Notem que β és el complementari de l’angle entre l’eix Z i
ℓ1. A la vegada, aquest és complementari de l’angle γ que formen l’eix Z amb la recta
que passa per l’origen i p1, ja que els triangles inscrits en una semicircumferència són
rectangles. Finalment, treballant al pla rΠ que formen ℓ1 i ℓ2, l’angle α veu el mateix arc
de circumferència de S2 X rΠ que γ i, per arc capaç, són iguals (vegeu la figura 7.4). ‚

Definició 7.10. Anomenem circumferències generalitzades de C8 a les circumferències o
rectes de C. En el cas de les rectes, diem que 8 pertany a la circumferència generalitzada.

‚
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Figura 7.3.: La projecció estereogràfica envia circumferències pel pol nord a rectes.

N

C1

Π

p(p1)

p1

p(p2)

p2

ℓ1 ℓ2

N

C1

Π

p1

p2

p(p1)p(p2)

ℓ1 ℓ2

α
β

γ

Figura 7.4.: La projecció estereogràfica envia circumferències que no passen pel pol nord
a circumferències, vegeu l’observació 7.9.

En la literatura també s’anomenen cercles generalitzats ja que corresponen als cercles
de l’esfera S2, però pot crear confusió amb el cercle com a sinònim de disc, aix́ı que aqúı
evitarem aquesta denominació.

Lema 7.11. L’equació d’una circumferència generalitzada ℓ és

Azz̄ `Bz̄ ` B̄z ` C “ 0,

amb A,C P R i B P C de manera que |B|2 ą AC. En particular ℓ és una circumferència

si i només si A ‰ 0, i té centre ´B{A i radi R “

b

|B|2´AC
A2 .

Demostració. Vegeu l’exercici 7.2.2.
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Exercicis

7.2.1. Sigui p la projecció estereogràfica. Demostreu que λ “ 1
1´z , i que la inversa de p

és

p´1px` iyq “
1

x2 ` y2 ` 1

`

x, y, x2 ` y2
˘

. Ž

7.2.2. Demostreu que l’equació d’una circumferència de centre α P C i radi r és

|z|2 ´ αz̄ ´ ᾱz “ r2 ´ |α|2, z P C,

i la d’una recta perpendicular a α passant per z0 P C és

ᾱz ` αz̄ “ m, z P C,

on m és una constant real que només depèn d’α i z0. Ž

7.3. Transformacions de Möbius

Una transformació de Möbius1 o homografia és una funció de la forma

T pzq “
az ` b

cz ` d
, amb pa, b, c, dq P C4 i tal que ad´ bc ‰ 0.

Denotem el conjunt de totes les homografies per M. Entenem que T p´d{cq “ 8

i T p8q “ a{c, en el sentit que si c “ 0 tenim que T p8q “ 8. Aleshores T és un
homeomorfisme en C8 :“ C Y t8u amb la topologia generada pels oberts de C i els
entorns oberts d’infinit t|z| ą ru. De fet, les homografies són representacions conformes
de C8 en ell mateix (aqúı treballem amb funcions meromorfes bijectives a C8, entenent
que una funció és meromorfa a l’infinit si f ˝ φ ho és a l’origen al precompondre amb
la carta φpzq “ 1{z). Es pot veure addicionalment que són les úniques amb aquesta
propietat, vegeu l’exercici 7.5.1.

Observació 7.12. Tota homografia T és globalment bijectiva en C8, i la seva inversa és
T´1 P M definida per

T´1pwq “
dw ´ b

´cw ` a
.

El lector pot comprovar aquest fet fàcilment. Per tant, M amb l’operació composició té
estructura de grup. Notem també que

T 1pzq “
ad´ bc

pcz ` dq2
‰ 0 per a tot z ‰ 8,´

d

c
. ‚

Les homografies bàsiques són les

1August Ferdinand Möbius, Schulpforte, 1790–1868, https://ca.wikipedia.org/wiki/August_

Ferdinand_M%C3%B6bius
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• Translacions: T pzq “ z ` b, b P C.

• Girs: T pzq “ eiθz, θ P R.

• Homotècies: T pzq “ λz, λ P R`.

• Inversions: T pzq “ 1
z “ z̄

|z|2
.

La combinació d’un gir i una homotècia s’anomena a vegades dilatació complexa, T pzq “

λz, λ P C˚. Tota homografia es pot obtenir com a composició d’homografies bàsiques,
vegeu l’exercici 7.3.2.

Figura 7.5.: Homografies bàsiques: translació amb b “ 2´i{2, gir d’angle θ “ arctanp4{3q,
homotècia de raó λ “ 3 i inversió.

Proposició 7.13. Tota homografia envia circumferències generalitzades a circumferències
generalitzades.
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Demostració. Vegeu l’exercici 7.3.4.

A
B

C

Ω1

A′

B′

C ′

Ω2

A′′

B′′

C ′′

Ω3

C ′′′

B′′′

A′′′

Ω4

T1 T2 T3

Figura 7.6.: Les homografies envien circumferències generalitzades a circumferències gene-
ralitzades, i preserven l’orientació.

En conseqüència, les components connexes dels complementaris de les circumferències
generalitzades són conformement equivalents mitjançant les homografies corresponents
segons l’orientació, vegeu la figura 7.6.

1/z

Figura 7.7.: La inversió preserva els eixos i la circumferència unitat, però els únics punts
fixos són ˘1.

Exemple 7.14. La inversió T pzq “ 1{z envia la circumferència unitat a ella mateixa
(amb una simetria axial respecte la recte real), el disc unitat a Dc

i les rectes iR Y t8uu i
R Y t8u són invariants, intercanviant 0 i 8, vegeu la figura 7.7. A més és una involució,
és a dir que T 2pzq “ z. Les circumferències ℓ que passen per l’origen van a rectes que
tallen BD en els punts conjugats dels punts de tall ℓ X BD, i viceversa. Les rectes per
l’origen van a la seva recta conjugada. Finalment, les circumferències que no passen
per l’origen van a circumferències que no passen per l’origen. Si aquesta és interior al
cercle unitat, aleshores la seva imatge estarà al complementari. Si talla la circumferència
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unitat, aleshores la seva imatge també, pels punts de tall conjugats. La tangència interior
a BD esdevè tangència exterior de la imatge en el punt de tangència conjugat. Notem
que el centre de la circumferència imatge no és, en general, la imatge del centre de la
circumferència. ♢

Lema 7.15. Donats tres punts diferents z1, z2, z3 P C8, existeix una única homografia
T tal que T pz1q “ 0, T pz2q “ 1 i T pz3q “ 8. Per tant, si C és l’única circumferència
generalitzada que passa pels tres punts, aleshores T pCq “ R.

Demostració. Si cap d’ells no és infinit, prenem

T pzq “
z ´ z1
z ´ z3

¨
z2 ´ z3
z2 ´ z1

.

Si un d’ells és infinit, s’utilitza la mateixa definició eliminant els factors que el contenen.
Per exemple, si z1 “ 8, prenem

T pzq “
z2 ´ z3
z ´ z3

.

Per la unicitat, notem que si S és una altra homografia, aleshores S ˝ T´1 fixa 0, 1 i 8.
En particular, si S ˝ T´1pzq “ az`b

cz`d , trobem que

T p0q “ 0 ùñ b “ 0

T p8q “ 8 ùñ c “ 0

T p1q “ 1, b “ 0, c “ 0 ùñ a “ d.

Per tant, S ˝ T´1 és la identitat i S ” T .

Corol.lari 7.16. Donades dues ternes de punts diferents pz1, z2, z3q, pw1, w2, w3q P C3
8,

existeix una única homografia T P M tal que T pzjq “ wj. En particular, si T té tres punts
fixos, només pot ser la identitat.

Exemple 7.17 (Exemple fonamental). Volem representar conformement D en H :“ tz :
Re z ą 0u. Per fer-ho, busquem una homografia que envïı p´1, i, 1q ÞÑ p0, i,8q, de manera
que per preservar l’orientació, sabem que enviarà D a H, vegeu la figura 7.8. Raonant com
al lemma 7.15, la condició p´1, 1q ÞÑ p0,8q obliga a que tinguem

T pzq “ c
z ` 1

z ´ 1
.

Per fixar i, cal

i “ T piq “ c
i` 1

i´ 1
“ ci ðñ c “ ´1.

Per tant,

T pzq “
1 ` z

1 ´ z
.

i la seva inversa és T´1pwq “ w´1
w`1 .
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−1

i

1

0

i

T (z) = 1+z
1−z

Figura 7.8.: L’homografia T pzq “ 1`z
1´z envia el disc unitat al semiplà de la dreta.

En particular, BD va a l’eix imaginari pur, i el disc unitat va al semiplà de part real
positiva, vegeu la figura 7.10. També envia el complementari de D al semiplà de part real
negativa. La imatge dels semicercles D X tIm z ą 0u i D X tIm z ă 0u són el primer i el
quart quadrants respectivament. De fet, correspon a una rotació de 90˝ de S2 respecte
l’eix que passa per p´1piq i p´1p´iq. ♢

Figura 7.9.: L’homografia T pzq “ 1`z
1´z i la seva inversa, vegeu l’exemple 7.17. Notem que

T té pol simple en z “ 1 i zero simple en z “ ´1, i que les corbes de nivell
són circumferéncies generalitades que passen pel pol.

Observació 7.18. T no és l’única homografia que envia D en H, de fet n’hi ha infinites.
Però śı que és l’única que ho fa enviant els punts p´1, i, 1q a p0, i,8q. ‚

Exercicis

7.3.1. Donada una homografia T pzq “ az`b
cz`d , definim AT :“

ˆ

a b
c d

˙

, que està definit

mòdul constant multiplicativa. Per exemple, les matrius

ˆ

1 b
0 1

˙

,

ˆ

a 0
0 1

˙

,

ˆ

0 1
1 0

˙

cor-
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T

Figura 7.10.: Acció de l’homografia T pzq “ 1`z
1´z

responen respectivament a la translació z ÞÑ z ` b, a la dilatació z ÞÑ az i a la inversió
z ÞÑ 1{z.

a) Donades T1, T2 P M, demostreu que AT2˝T1 “ AT2AT1 (mòdul constant multiplicativa).

b) Trobeu T´1 i relacioneu-la amb AT1. Ž

7.3.2. Demostreu que tota T P M es pot escriure com a composició de dilatacions, trans-
lacions i inversions. Ž

7.3.3. Trobeu una descomposició en dilatacions, translacions i una inversió de la trans-
formació

T pzq “
2z ` i

p1 ´ iqz ` 3i
. Ž

7.3.4. Demostreu que tota T P M envia circumferències generalitzades a circumferències
generalitzades. Ž

7.3.5. Sigui fpzq “ z´1
z`1 . Quina és la imatge per f de

a) la recta real, b) BD2p0q, c) BD, d) l’eix imaginari.

I per gpzq “ z´i
z`i? Ž

7.3.6. Troba l’homografia que envia pi, 0,´1q a p´i, 0,8q. Ž

7.3.7. Demostra el corol.lari 7.16. Ž

7.3.8. Troba una homografia que envïı D a tIm z ą 0u. Ž
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7.3.9. Sigui a P C, a ‰ 0 i definim

T1pzq “
z ´ 1

2z ´ i
, T2pzq “

z ` 1

iz ´ 1
, T3pzq “

iz

p1 ` iq ´ z
, T pzq “

z

az ` 1
.

Trobeu
T´1
3 ˝ T2 ˝ T1, Tm,m P Z. Ž

7.3.10. Trobeu totes les T P M que tinguin per punts fixos 0 i ´i. Ž

7.3.11. Trobeu T P M tal que T p1 ´ iq “ 1 ` i, T p2q “ i, T p1 ` iq “ ´i. Ž

7.3.12. Siguin C1 i C2 dues circumferències generalitzades i z1 P C8zC1, z2 P C8zC2.
Demostreu que existeix T P M tal que T pC1q “ C2 i T pz1q “ z2. Podeu fer servir
l’Exercici 1.1.10. Trobeu una d’elles en el cas particular

C1 “ tz : |z ´ 1| “ 1u, z1 “ 1;C2 “ tz : z̄i “ zu, z2 “ i.

Ž

7.4. Raó doble i simetria

Definició 7.19 (Raó doble). La raó doble dels punts z0, z1, z2, z3 P C8, que denotem per
pz0, z1, z2, z3q, es defineix com

pz0, z1, z2, z3q :“ T pz0q,

on T P M és tal que T pz1q “ 0, T pz2q “ 1 i T pz3q “ 8. ‚

Com hem vist al lema 7.15, si tots ells són finits, tenim que

pz0, z1, z2, z3q :“
z0 ´ z1
z0 ´ z3

¨
z2 ´ z3
z2 ´ z1

.

Definició 7.20 (Simetria). Diem que dos punts z i z˚ són simètrics respecte una circum-
ferència generalitzada C si existeix una homografia T que envia C en R8 “ R Y t8u tal
que T pz˚q “ T pzq. ‚

Observem que la simetria respecte una recta correspon al concepte clàssic de conjugació.
Aix́ı mateix, és fàcil veure que z i z˚ són conjugats respecte el cercle unitat si i només si
z˚ “ 1

z̄ “ z
|z|2

, vegeu la figura 7.11.

El següent lema ens indica que el concepte de simetria no depèn de l’homografia escollida.

Lema 7.21. Es pot veure que, si z1, z2, z3 són punts diferents d’una circumferència gene-
ralitzada C, aleshores z i z˚ són simètrics respecte C si i només si

pz˚, z1, z2, z3q “ pz, z1, z2, z3q.
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R

z

z∗ = z̄

z

z∗

z

z∗

Figura 7.11.: Simetria respecte la recta real (conjugació), respecte una recta qualsevol
(simetria axial) i respecte una circumferència.

Demostració. Siguin z1, z2, z3 P C, i anomenem Spzq “ pz, z1, z2, z3q, l’homografia que
determina la raó doble. Notem que SpCq “ R8. Si Spz˚q “ Spzq, aleshores efectivament
són simètrics per definició.
Per veure la implicació contrària, suposem que tenim T P M tal que T pCq “ R8 i

T pz˚q “ T pzq. Discutim dos casos:

• Si T pz˚q P R, aleshores T pz˚q “ T pz˚q “ T pzq i per l’injectivitat tenim que z “ z˚ P

C, de manera que
pz, z1, z2, z3q “ pz˚, z1, z2, z3q P R,

i concloem Spz˚q “ Spzq tal i com voĺıem veure.

• Si, en canvi, T pz˚q R R, aleshores tenim un conjunt numerable de circumferències
generalitzades que passen per T pz˚q i T pzq, que, en passar per complexos conjugats,
són simètriques respecte R i, per tant, tallen R en angles rectes. Les seves preimat-
ges per T ˝ S´1 han de tallar també en angles rectes la recta real i, per tant, són
una famı́lia infinita de circumferències generalitzades simètriques respecte R. Com
que són simètriques respecte R, i la famı́lia inclou totes les circumferències genera-
litzades per Spzq i Spz˚q, que són punts diferents, necessàriament aquests dos punts
són conjugats (n’hi ha prou amb considerar la recta que els uneix i qualsevol altra
circumferència).

Exercicis

7.4.1. Sigui T P M tal que T pDRpaqq “ DRpaq. Demostreu que els punts fixos de T estan
a BDRpaq o bé són simètrics respecte BDRpaq. Ž

7.5. Automorfismes

D’especial rellevància són les representacions conformes d’un conjunt en si mateix ja que,
amb l’operació composició, tenen una estructura de grup. A continuació veurem que en
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els casos senzills, com D, C o C8, aquestes poden trobar-se expĺıcitament.

Teorema 7.22. Tota representació conforme de D en D és una homografia de la forma

T pzq “ eiθ
z ´ a

1 ´ āz
(7.1)

per algun a P D i θ P R.

Definició 7.23. Amb l’operació composició, aquestes homografies formen un subgrup de
M anomenat automorfismes de D, abreujat com AutpDq, vegeu la figura 7.12. ‚

T T−1

Figura 7.12.: Al centre, automorfisme identitat del disc unitat representat en polars (inclou
radis d’angle kπ{8), a l’esquerra, automorfisme del disc T pzq “ z´a

1´āz amb

a “ 1
2 ` i

2 i a la dreta el seu automorfisme invers T´1.

Demostració del teorema 7.22. L’exhaustivitat i injectivitat estan fetes a l’exercici 1.1.10.
Per tant, tota homografia T de la forma (7.2) és una representació conforme del disc en ell
mateix. Per veure que és l’única possible, suposem que f és una representació conforme
de D en D, sigui a P D tal que fpaq “ 0 i prenem θ :“ Arg pf 1paqq. Definim Tapzq “ z´a

1´āz .
Notem que, com que

T 1
apzq “

1 ´ āz ` āpz ´ aq

p1 ´ āzq2
“

1 ´ |a|2

p1 ´ āzq2
,

dedüım que

Tapaq “ 0 i T 1
apaq “

1

1 ´ |a|2
ą 0.

Per altra banda, e´iθf també és una representació conforme del disc en ell mateix i

pe´iθfq1paq “ e´iθeiθ|f 1paq| ą 0.

Per la unicitat del teorema de l’aplicació de Riemann, les dues representacions coincideixen,
és a dir que

e´iθf ” Ta,

i per tant f té la forma (7.2).

186



7. Representació Conforme

Teorema 7.24. Tota representació conforme de C en C és una homografia de la forma

T pzq “ az ` b (7.2)

per alguns a, b P C, a ‰ 0. Amb l’operació composició, aquestes homografies formen un
subgrup de M anomenat automorfismes de C, abreujat com AutpCq.

Demostració. El lector pot comprovar fàcilment que az` b és una representació conforme
de C en C.
Anem a veure que, donada una representació conforme f : C Ñ C, podem trobar a i

b de manera que fpzq “ az ` b. En primer lloc, considerem gpzq “ fp1{zq, que té una
singularitat a l’origen.
Vegem que la singularitat no és essencial. Notem primer que fpDq X gpDq “ H per la

bijectivitat de f . Com que fpDq és un obert pel teorema de l’aplicació oberta, la imatge de
D per g no és densa en el pla complex. Pel teorema de Casorati-Weierstrass la singularitat
no és essencial.
Aix́ı doncs la part singular de la série de Laurent de g a C˚ té un nombre finit de termes.

Per la unicitat de les sèries de Laurent, aquesta ha de coincidir amb la sèrie de potències
de f aplicada a 1{z i, per tant, només té la part singular i una constant. Dedüım que
f és un polinomi. Finalment, la injectivitat implica que f és un polinomi de grau 1 pel
teorema fonamental de l’àlgebra.

Exercicis

7.5.1. Demostra que tota representació conforme de C8 en C8 és una homografia. Ž

7.5.2. Troba tots els automorfismes T de D tals que T p1{2q “ 1{3. Ž

7.5.3. Trobeu totes les representacions conformes del disc unitat en ell mateix que envien
1{2 a 0. N’existeix alguna que envïı 0 a ´i{2? I 0 a ´i{4? Utilitzeu T per trobar una
representació conforme S que envïı BD a BD2piq tal que Sp1{2q “ i i Sp0q “ 0. Ž

7.5.4. Demostreu que el lloc geomètric de les imatges de qualsevol punt b P D per les
transformacions que fixen la imatge d’un altre punt, és a dir

tw P D : w “ T pbq amb T P AutpDq, T paq “ rau,

és una circumferència. Ž

7.6. Altres transformacions conformes

A diferència de les homografies, que són biholomorfes a tot el pla ampliat, altres funcions
són conformes quan es restringeixen a certes regions del pla. A continuació en veiem
algunes de les més comuns.
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0

π
2

0

π

0

π
4

z2

z
1
2

z4

z
1
4

Figura 7.13.: Acció de les potències en sectors.

Potències

Comencem per veure com es comporten les potències. Fixem la branca de l’argument
A : Czt0u Ñ r0, 2πq, que dona lloc a

Lpzq “ ln |z| ` iApzq “

#

Log p´zq ` iπ si z P Czr0,8q

lnpzq si z P p0,8q,

que és una branca cont́ınua del logaritme en Czr0,8q i envia els reals positius als reals.
Aleshores, donat un nombre real positiu s ą 0, indiquem per

zs “ esLpzq,

és a dir que ara zs ja no és multivaluada, sinó que en fixem una elecció, i per x P p0,8q

tenim que xs P p0,8q és la funció de variable real usual.
Per tal que sigui bijectiva, cal considerar-la en sectors oberts d’angle α ď mint2π{s, 2πu,

que la funció envia de manera conforme a un sector obert d’angle β “ sα ď 2π. Per
exemple, fpzq “ z1{2 és una representació conforme de tz : 0 ă Arg pzq ă πu en tz : 0 ă

Arg pzq ă π
2 u, on α “ π i β “ π{2, vegeu la figura 7.13.

Ω1

Ω2 = Hf

Figura 7.14.: Volem trobar una representació f : Ω1 Ñ H.

Exemple 7.25. Volem trobar la representació conforme del semicercle Ω1 en el semiplà
superior H, vegeu la figura 7.14. Per fer-ho, sabem de l’exemple 7.17 que l’homografia
T pzq “ 1`z

1´z envia el semicercle al primer quadrant, i el primer quadrant és conformement

equivalent al semiplà superior per l’acció de z2. Per tant, podem prendre

fpzq “

ˆ

1 ` z

1 ´ z

˙2

,

vegeu la figura 7.15. ♢
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Ω1

H

1+z
1−z z2

Figura 7.15.: Representació f : Ω1 Ñ H obtinguda per composició.

L’exponencial

L’exponencial també és localment injectiva, ja que la seva derivada mai s’anul.la. Global-
ment, és injectiva en bandes horitzontals obertes d’amplada menor o igual a 2π, vegeu la
figura 7.16. Per tant, envia bandes horitzontals obertes d’amplada menor o igual a 2π a
sectors d’angle igual a aquesta amplada. Si l’amplada és π seran semiplans. Si l’amplada
és 2π, es tractarà del pla complex menys una semirecta.

−πi

−π
2 i

0

π
2 i

πi

1− πi

1− π
2 i

1

1 + π
2 i

1 + πi

αi

βi

−1

−i

1

i

−e

−ei

e

ei

eαi
eβi

β − αez

Figura 7.16.: Acció de la funció exponencial en bandes horitzontals i en rectangles paral-
lels als eixos. Bandes horitzontals d’amplada γ van a sectors d’obertura γ.

Exemple 7.26. Tot seguit veiem com trobar l’aplicació de Riemann d’una banda horit-
zontal, vegeu la figures 7.17 i 7.18. La banda tx` iy : 0 ă y ă πu s’envia per l’exponencial
f1pzq “ ez al semiplà de part imaginària positiva. Multiplicant per ´i, f2pzq “ ´iz s’envia
a el semiplà de part real positiva. Finalment, f3pzq “ z´1

z`1 , vegeu l’exemple 7.17, l’envia

al disc unitat. Aix́ı doncs, f3 ˝ f2 ˝ f1pzq “ ez´i
ez`i és una aplicació de Riemann de la banda

horitzontal donada. ♢
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0

πi

Ω1

1−1 0

Ω2

−i

i

0

Ω3

0

−i

i

Ω4
ez −iz z−1

z+1

Figura 7.17.: Aplicació de Riemann de la banda horitzontal.

T

Figura 7.18.: Aplicació de Riemann T pzq “ ez´i
ez`i de la banda Ω1, amb la coloració de la

disc unitat a la dreta.

Exemple 7.27. Sigui Ω un domini fitat tancat per dos arcs de circumferència que interse-
quen en dos punts diferents a i b, vegeu la figura 7.19. Per trobar l’aplicació de Riemann,
podem considerar f1pzq “ z´a

z´b
c´b
c´a , on c és qualsevol punt de l’arc que va de a a b deixant la

regió Ω a l’esquerra, és a dir resseguint el domini en sentit antihorari. Aleshores la imatge
del primer arc és la semirecta dels reals positius, i la imatge d’Ω és un sector d’obertura
α on α ă 2π és l’angle que formen els arcs de circumferència en a.
Aleshores f2pzq “ zπ{α l’envia al sector tz : 0 ă Arg pzq ă πu. Prenent f3pzq “ ´iz

obtenim el semiplà de part real positiva, que s’envia al disc unitat mitjançant f4pzq “ z´1
z`1 .

Per tant, f4 ˝ f3 ˝ f2 ˝ f1 és una aplicació de Riemann d’Ω. ♢

α

a

c

b

Ω1

α

0 1

Ω2

0 1

Ω3

z−a
z−b · c−b

c−a z
π
α . . .

Figura 7.19.: Aplicació de Riemann d’una lent (serveix també per segments circulars i
lúnules).
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Exercicis

7.6.1. Quina és la imatge del primer quadrant per z3? Ž

7.6.2. Quina transformació pot enviar una banda horitzontal a a un semiplà? Ž

7.6.3. Trobeu una aplicació de Riemann del sector t0 ă Arg z ă π{8u. Ž

7.6.4. Es pot enviar el semiplà superior a un triangle mitjançant una homografia? Ž

7.6.5. Proveu que no existeix cap representació conforme del semiplà de la dreta en D1p1q

que envïı 1 ÞÑ 1, 0 ÞÑ 0 i 8 ÞÑ 1 ` i. Ž

7.6.6. Demostreu que les transformacions conformes del semiplà superior H` :“ tIm z ą

0u en D són de la forma eiθ z´a
z´ā per alguna a P H` i algun θ P R. Ž

7.6.7. Trobeu una transformació de Möbius que envïı el primer quadrant a D` “ DXH`.
Utilitzeu-la per a trobar una transformació conforme de H` a t|Re z| ă 1, Im z ą 0u. Ž

7.6.8. Trobeu una representació conforme de t0 ă Re z ă π{2u en D. Ž

7.6.9. Trobeu una representació conforme d’Ω1 en Ω2.

a) Ω1 “ D X H`, Ω2 “ H`.

b) Ω1 “ D, Ω2 “ H` X Dc
.

c) Ω1 “ D X tRe z ą 1{2u, Ω2 “ D X p´iH`q.

d) Ω1 “ H`, Ω2 “ t|Re z| ă 1, Im z ą 0u.

e) Ω1 “ D X p´iH`q, Ω2 “ D X t|z ` 1{2| ą 1{2u.

f) Ω1 “ D?
2p1q XD?

2p´1q, Ω2 “ D, que deixi invariant el segment p´i, iq.

g) Ω1 “ Dzr0, 1q, Ω2 “ Czr0,8q.

h) Ω1 “ t|Im z| ă π{2uzpp´8, 0s Y rln 2,`8qq, Ω2 “ D. Ž
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8. Fluids

La solució de molts problemes importants en dinàmica de fluids, també anomenada hi-
drodinàmica o aerodinàmica s’obté sovint fent servir mètodes de variable complexa.

8.1. Qüestions generals. Escenari i notació.

1. El flux del fluid és bidimensional. En el nostre model suposem que les caracteŕıstiques
del flux són idèntiques per tot pla paral.lel. Això ens permet fixar l’atenció només
en un pla, considerem el pla z. Les figures constrüıdes en aquest pla s’interpreten
com seccions transversals de cilindres. En la figura, el disc representa la secció d’un
cilindre de l’espai.

2. El flux és estacionari o uniforme. Considerem que la velocitat del fluid en un punt no
varia amb el temps, només depèn de la posició px, yq. Veieu per exemple un mapa de
vents de la Terra a https://earth.nullschool.net/, cal esperar un bona estona
per veure com canvia la distribució. En petita escala temporal podem pensar que és
un flux estacionari.

3. Les components de la velocitat deriven d’un potencial. Denotem per Vpx, yq “

pV1, V2q les components de la velocitat del fluid en el punt px, yq. Suposarem que
existeix una funció φpx, yq, que anomenem velocitat potencial, de manera que

∇φ “ gradφ “ V.

En aquest cas el flux es diu que és irrotacional o potencial . Es pot demostrar1 que
aquesta condició és equivalent a

rotV “
´BV1

By
`

BV2
Bx

“ 0.

1Ho podeu fer com exercici
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Figura 8.1.: Mapa de vents.

4. El fluid és incompressible. La densitat, o massa per unitat de volum, és constant.
Si Vn és la component normal de la velocitat al llarg d’un circuit tancat C (vegeu la
figura 8.2) aquesta condició equival a

Q :“

ˆ
C
Vnds “

ˆ
C

p´V2dx` V1dyq “ 0.

Això expressa que la quantitat de fluid dins C és constant (entra el mateix que surt).
Aquesta condició és equivalent a

divV “
BV1
Bx

`
BV2
By

“ 0.

A la quantitat Q se l’anomena flux del vector V a través del contorn C. En fluids
més generals la quantitat Q pot ser no nul.la.

En general, per fluxos que no necessàriament provenen d’un potencial, a la quantitat

Γ :“

ˆ
C

pV1dx` V2dyq “

ˆ
C
Vtds

on C és una corba tancada, Vt la component tangencial de V en C (vegeu la figura 8.2) i
ds l’element de longitud, se l’anomena circul.lació del flux al voltant de C.
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Figura 8.2.: Component tangent Vt i normal Vn del flux respecte a un circuit.

Sigui ψpx, yq una funció harmònica conjugada de la velocitat potencial φpx, yq definida
al Ω Ă C (és a dir que φx “ ψy, φy “ ´ψx), a la funció anaĺıtica en Ω donada per

Φpzq “ φpx, yq ` iψpx, yq

se l’anomena potencial complex.

Notació 8.1. Fixem la següent notació pel caṕıtol:

• Φpzq “ φpzq ` iψpzq s’anomena potencial complex

• φ és la funció potencial ( o velocitat potencial) i ψ la funció de corrent.

• Les corbes φ “ c són les ĺınies equipotencials i ψ “ c les ĺınies de corrent o de flux
(són ortogonals).

• El camp del flux, o velocitat de corrent , V satisfà

Vpzq “ V eiα “ V1 ` iV2 “ Φ1pzq,

V “ |V| “ |Φ1|, α “ ´argpΦ1q,

V “ gradφ.

,

/

.

/

-

• Els punts on Φ1pzq “ 0 s’anomenen punts estacionaris o d’estancament (en aquests
punts la velocitat és zero). ‚

Observació 8.2 (Comandes amb Sage.). Per dibuixar les ĺınies de corrent i les ĺınies
equipotencials caldrà la comanda contour_plot i per dibuixar els camps (amb fletxes de
direcció) plot_vector_field o streamline_plot. ‚
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Exercicis

8.1.1. Proveu que Γ “ 0 en un flux potencial (suposeu que la funció potencial és de classe
C2 com a mı́nim). Ž

8.1.2. Proveu que per fluxos definits en un domini Ω Ă C que satisfan les quatre hipòtesis
anteriors, la velocitat potencial φpx, yq és una funció harmònica. Ž

8.1.3. Proveu que Φ1pzq “ Vpzq “ V1 ` iV2. Ž

8.2. Fluxos bàsics.

Exemple 8.3 (Flux uniforme). Ve donat pel potencial Φpzq “ V0e
´δiz, amb V0, δ P R.

Trobem la seva expressió. Recordem que V “ Φ1pzq “ V0e´δi “ V0e
δi, V “ V0, per

tant,
φ “ RepΦpzqq “ RepV0e

´δipx` iyqq “ V0pcos δ ¨ x` sin δ ¨ yq.

ψ “ ImpΦpzqq “ ImpV0e
´δipx` iyqq “ V0p´ sin δ ¨ x` cos δ ¨ yq.

Les ĺınies de flux ψ “ c són rectes amb pendent tan δ i δ és l’angle que formen les ĺınies
de flux amb l’eix real. ♢

Exemple 8.4 (Font al punt z “ a). Aqúı Φpzq “ k logpz ´ aq, k P R. Quan k ą 0
s’anomena font, si k ă 0 una pica (sumidero, sink).

Figura 8.3.: A esquerra font amb k “ 2, a dreta remoĺı amb k “ 2. a “ 1 ´ i.

Trobem l’expressió deV, V , φ i ψ. Tenim que Φ1pzq “
k

z̄ ´ ā
“ k

z ´ a

|z ´ a|2
“

k

|z ´ a|2
px´

a1 ` ipy ´ a2qq. Llavors

Vpx, yq “
k

|z ´ a|2
px´ a1, y ´ a2q, V px, yq “

k

|z ´ a|
.

Les direccions de flux que dona V segueixen la direcció de z ´ a, si k ą 0 surten, una
font, i si k ă 0 entren, una pica. Com que Φ “ k logpz ´ aq “ kpln |z ´ a| ` i argpz ´ aqq
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tenim que ψpx, yq “ k argpz ´ aq i les corbes ψ “ c són ĺınies que surten de a com es veu
a l’esquerra de la figura 8.3. Observem que

Γ ` iQ “

ˆ
C
Φ1pzqdz “

ˆ
C

kdz

z ´ a
“ 2kπi.

Aleshores Γ “ 0 i Q “ 2kπ. No té circul.lació i la potència és 2kπ. ♢

Exemple 8.5 (Flux amb circul.lació). Estudiem el cas Φpzq “ ´ik logpz ´ aq k P R.
Veurem que la velocitat del flux és inversament proporcional a la distància al punt a.
Diem que en el punt a hi ha un remoĺı de força k.

Procedim com en el cas anterior. Tenim que Φ1pzq “
ki

z̄ ´ ā
“ ki

z ´ a

|z ´ a|2
“

ki

|z ´ a|2
px´

a1 ` ipy ´ a2qq “
k

|z ´ a|2
p´py ´ a2q ` ipx´ a1qq. Llavors

Vpx, yq “
k

|z ´ a|2
p´py ´ a2q, x´ a1q, V px, yq “

k

|z ´ a|
.

Les direccions de flux que dona V segueixen direccions de circumferències amb centre a,
si k ą 0 en direcció antihorària i si k ă 0 en direcció horària, en els dos casos és un remoĺı.
Com que Φ “ ´ki logpz´aq “ ´kiplog |z´a|`i argpz´aqq “ kpargpz´aq´i logp|z´a|qq

tenim que ψpx, yq “ ´k log |z ´ a| i les corbes ψ “ c són circumferències centrades a a tal
com es veu a la dreta de la figura 8.3. Observem que si C envolta a, aleshores

Γ ` iQ “

ˆ
C
Φ1pzqdz “

ˆ
C

´ikdz

z ´ a
“ 2kπ.

Aleshores Γ “ 2kπ i Q “ 0. La circul.lació és 2kπ i la potència és 0. ♢

Exercicis

8.2.1. Superposició. Sumant diferents potencials complexos es poden descriure fluxos més
sofisticats. Un exemple important s’obté sumant una font al punt ´a amb una pica al punt
a:

Φpzq “ k logpz ` aq ´ k logpz ´ aq “ k log

ˆ

z ` a

z ´ a

˙

.

Trobeu l’expressió de V, V , φ i ψ. Dibuixeu les ĺınies de corrent (ψ “ c). Ž

8.2.2. En l’exercici anterior, fem a Ñ 0 i k Ñ 8 de manera que 2ka “ µ sigui finit. Veure
que al ĺımit obtenim el potencial complex Φpzq “ µ{z que s’anomena doblet o dipol. Ve
a ser una font i una pica separades per una distància infinitesimal. La quantitat 2πµ
s’anomena moment del doblet. Trobeu l’expressió de V, V , φ i ψ. Dibuixeu les ĺınies de
corrent (ψ “ c). Ž

8.2.3. Font-remoĺı. Estudiar el flux amb funció potencial Φpzq “
Γ ` iQ

2πi
logpz ´ aq.

Discutiu segons els valors de Γ (circul.lació o intensitat) i Q (potència). Feu dibuixos de
les ĺınies de camp segons els signes de Γ i Q. Ž
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Figura 8.4.: Superposició amb a “ 1.

8.3. Obstacles

Un problema important en la teoria de fluids és determinar el model de corrent que es
mou inicialment a velocitat uniforme V0 i que ha d’evitar un obstacle. La idea general
és considerar un potencial complex de la forma Φpzq “ V0z ` Gpzq on Gpzq compleix
que limzÑ8 G1pzq “ 0. Això vol dir que lluny de l’obstacle el corrent ve donat per V0z.
De vegades cal també que aquest nou potencial Φ tingui la frontera de l’obstacle com a
trajectòria.

Exemple 8.6. Estudiem el corrent del fluid amb potencial complex donat per

Φpzq “ V0

ˆ

z `
a2

z

˙

amb V0, a P R.
Ja veiem que és una superposició d’un flux lineal (quan z és gran) i un doblet (quan z
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prop de zero).

Φpzq “ V0

ˆ

x

ˆ

1 `
a2

|z|2

˙

` iy

ˆ

1 ´
a2

|z|2

˙˙

φ “ V0x

ˆ

1 `
a2

|z|2

˙

ψ “ V0y

ˆ

1 ´
a2

|z|2

˙

V “ Φ1pzq “ V0

ˆ

1 ´
a2z2

|z|4

˙

V “ |V0|

ˇ

ˇ

ˇ

ˇ

1 ´
a2z2

|z|4

ˇ

ˇ

ˇ

ˇ

.

Comprovem ara que |z| “ a és una ĺınia de corrent: observem que els punts de C “

tz “ x` iy : |z|2 “ a2u satisfan ψpx, yq “ ct. En efecte, si z P C llavors

ψpzq “ V0yp1 ´ a2{a2q “ 0

i C és la corba de nivell zero, és una ĺınia de flux. Al la figura 8.5 es pot veure el flux per
V0 “ a2 “ 3.

Figura 8.5.: Flux per Φpzq “ 3pz ` 3{zq.

♢

Teorema 8.7. Si fpzq és un potencial complex amb singularitats fora de |z| ą R llavors

Φpzq “ fpzq ` f

ˆ

R2

z̄

˙
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és un potencial complex tal que |z| “ R és una ĺınia de flux (corrent) i que té les mateixes
singularitats que fpzq a la regió |z| ą R.

Recordem que si fpzq és anaĺıtica en una regió Ω tal que Ω̄ “ Ω llavors gpzq “ fpz̄q és
anaĺıtica i g1pzq “ f 1pz̄q.

Demostració. Si |z| “ R llavors Φpzq “ fpzq ` fpR2z{|z|2q “ fpzq ` fpzq P R. Llavors
ψpzq “ 0 per tot z de la circumferència |z| “ R, llavors aquesta circumferència és ĺınia de
flux. Sigui p punt singular de f , per hipòtesi |p| ą R, llavors |R2{z̄| ă R i p no és punt
singular de f pR2{z̄q. Les singularitats de Φ fora de la circumferència són les que provenen
de f i no de la part afegida.

Exercicis

8.3.1. Modifiquem el flux amb potencial donat per fpzq “ logpz ` 2q que és una font
sortint des del punt z “ ´2 (vist en un exemple/exercici anterior). Per això considerem
la modificació donada pel potencial

Φpzq “ fpzq ` f

ˆ

1

z̄

˙

“ logpz ` 2q ` log

ˆ

1

z̄
` 2

˙

.

a) Descomposeu Φ en fluxos coneguts.

b) Calculeu Φ1pzq i confirmeu el que es demostra a l’apartat anterior.

c) Vegeu que per z amb |z| molt gran resulta Φ1pzq «
1

z ` 2
i que llavors lluny de z “ ´2

el flux associat a Φ és com una font sortint de z “ ´2.

d) Mostreu amb un gràfic com eviten el disc unitari les ĺınies de flux (feu servir contour_plot
i streamline_plot). Ž

8.4. Expressió general (recapitulació).

Proposició 8.8. Si Φpzq “ φpzq ` iψpzq aleshores

Γ “

˛
C
Vtds “

˛
C

pV1dx` V2dyq “

˛
C
dφ

Q “

˛
C
Vnds “

˛
C

p´V2dx` V1dyq “

˛
C
dψ

i que llavors

Γ ` iQ “

ˆ
C
Φ1pzqdz.

Si Φ1pzq està definida a l’interior de C i té un nombre finit de punts singulars tpku,
aleshores

Γ ` iQ “ 2πi
ÿ

k

RespΦ1pzq, pkq.

200



8. Fluids

Demostració. Tenim que Φ1pzq “ φx ` iψx “ V1 ´ iV2 “ ψy ´ iφy. Aleshores

Q “

˛
C
Vnds “

˛
C

p´V2dx` V1dyq “

˛
C
ψxdx` ψydy “

˛
C
dψ

i

Γ “

˛
C
Vtds “

˛
C

pV1dx` V2dyq “

˛
C
φxdx` φydy “

˛
C
dφ.

Ara bé

Φ1pzqdz “ pφx ` iψxqpdx` idyq “ φxdx´ ψxdy ` ipψxdx` φxdyq “

“ φxdx` φydy ` ipψxdx` ψydyq “ dφ` idψ.

i podem concloure que

Γ ` iQ “

ˆ
C
Φ1pzqdz.

La darrera afirmació de l’exercici és conseqüència del teorema dels residus.

Proposició 8.9. Si a és un pol d’ordre finit de Φ1pzq, per Φpzq hi ha un entorn al voltant
de a de manera que

Φpzq “
c´n

pz ´ aqn
` ¨ ¨ ¨ `

p

2π

1

z ´ a
`

Γ ` iQ

2πi
logpz ´ aq ` c0 ` c1pz ´ aq ` ¨ ¨ ¨ .

Demostració. Per tenir Φ1pzq un pol d’ordre finit integrant obtenim el resultat.

Llavors, segons el que hem vist al llarg del caṕıtol, diem que

• Φpzq “
Γ ` iQ

2πi
logpz ´ aq determina en a una font-remoĺı de potència Q i intensitat

Γ, la denotem per pa;Q,Γq. Quan Q “ 0 és un remoĺı, i quan Γ “ 0 és una font
(Q ą 0) o una pica (Q ă 0).

• Φpzq “
p

2π

1

z ´ a
determina en a un doblet de moment p, el denotem per pa; pq (p

determina la direcció la direcció del doblet que passa per a).

• Φpzq “
c´k

pz ´ aqk
determina un multiplet d’ordre 2k en el punt a.2

2La notació i comportament a l’8 és similar, si Φpzq “ cnz
n

` ¨ ¨ ¨ `
p

2π
z `

Γ ` iQ

2πi
logpzq ` c0 `

c1
z

¨ ¨ ¨

direm que el terme en logpzq determina una font-remoĺı de potència ´Q i intensitat ´Γ, el terme en z
un doblet de moment p i els de zk multiplets d’ordre 2k.
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Exercicis

8.4.1. Pels z on Vpzq “ Φ1pzq “ 0 diem que hi ha un punt estacionari del corrent (per
exemple és aquell punt d’un riu on una fulla petita s’ha quedat aturada però que al seu
voltant circula l’aigua).

a) Per Φpzq “ zn el 0 és un punt estacionari d’ordre n ´ 1. Feu un dibuix amb les ĺınies
de flux i les ĺınies equipotencials superposades per n “ 2, 3, 4.

b) Podeu deduir experimentalment quin angle formen les ĺınies equipotencials i les ĺınies
de flux?

c) Proveu que si un punt estacionari a és un zero d’ordre n ´ 1 llavors les ĺınies equipo-
tencials i de corrent (φ “ ct., ψ “ ct.) formen un angle π{2n en el punt estacionari
(feu-lo com a mı́nim pel cas Φ1pzq “ Czn´1, C P C). Quin angle formen una ĺınia de
corrent i una ĺınia equipotencial quan es creuen en un punt no estacionari?

8.4.2. Discutir el moviment del fluid amb potencial complex igual a

a) Φpzq “
Γ ` iQ

2πi
log

ˆ

z ´ a

z ´ b

˙

on a, b P C i Q,Γ P R..

b) Φpzq “ az `
Γ

2πi
logpzq on a,Γ ą 0.

c) Φpzq “ az `
Q

2π
logpzq on a,Q ą 0.

d) Φpzq “
p

2πz
`

Γ

2πi
logpzq on p,Γ ą 0. Ž

8.4.3. Discutir el moviment del fluid amb potencial complex

Φpzq “ V0

ˆ

z `
R2

z

˙

`
Γ

2πi
logpzq, amb Γ, V0, R ą 0.

Particularment estudieu els casos Γ ă 4πRV0, Γ ą 4πRV0 i Γ “ 4πRV0. Dibuixeu exemples
de cadascun dels casos. Ž

8.4.4. Donar un potencial complex que té fonts-remolins tpak;Qk,Γkq : k “ 1, . . . , nu i
velocitat V8 “ V eiα a l’infinit. Ž
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A. El Teorema de l’aplicació de Riemann

Recordem l’enunciat del Teorema que ens ocupa.

Teorema A.1 (Teorema de l’aplicació de Riemann). Sigui U Ĺ C un obert simplement
connex. Llavors existeix una representació conforme f : U Ñ D. A més, si escollim z0 P U
i demanem que fpz0q “ 0 i f 1pz0q ą 0 (és a dir que f 1pz0q P R`), aleshores f és única .

La demostració de la unicitat és senzilla, vegeu la Secció 7.1. En aquest apèndix de-
mostrarem l’existència de la representació conforme. Tot i que el teorema va ser enunciat
per Riemann, la demostració complerta s’atribueix a Koebe1. És una demostració elegant
que fa servir diverses de les eines que hem desenvolupat en aquests apunts. Addicional-
ment, però, necessitem també el concepte de famı́lia normal i el teorema de Montel2, que
enunciem a continuació.

Faḿılies normals i el Teorema de Montel

Sigui U Ă C un obert del pla complex, i F una famı́lia de funcions holomorfes en U .
Diem que F és una famı́lia normal si tota successió de funcions de F te una parcial que
convergeix uniformement en compactes de U . Observem que pel teorema de Weierstrass
(vegeu el teorema 4.36), el ĺımit ha de ser una funció holomorfa, tot i que no necessàriament
ha de ser membre de la famı́lia F .
Comprovar si una famı́lia de funcions és normal acostuma a fer-se fent servir el teorema

de Montel. La versió feble d’aquest resultat diu el següent.

Teorema A.2 (Teorema de Montel, versió feble). Sigui U Ă C un obert i F una famı́lia de
funcions holomorfes en U . Suposem que F és uniformement fitada, és a dir, que existeix
M ą 0 tal que

|fpzq| ď M, per a tota f P F i tot z P U .

Aleshores, la famı́lia F és normal.

El lector interessat pot trobar una demostració a [SS10, Sect. 3].

Demostració del Teorema de l’aplicació de Riemann

La demostració consta de tres passos diferents que farem per separat.

Pas 1. Vegem primer que existeix un subconjunt V Ă D que conté l’origen i una repre-
sentació conforme F : U Ñ V amb F pz0q “ 0.

1Paul Koebe, Luckenwalde, 1882–1945, https://ca.wikipedia.org/wiki/Paul_Koebe
2Paul Montel, Niça, 1876–1975, https://ca.wikipedia.org/wiki/Paul_Montel

203

https://ca.wikipedia.org/wiki/Paul_Koebe
https://ca.wikipedia.org/wiki/Paul_Montel


A. El Teorema de l’aplicació de Riemann

Demostració. Per fer-ho, escollim un nombre α P C tal que α R U (existeix perquè U no
és tot el pla). Aleshores z ´ α ‰ 0 a U i per tant, donat que U és simplement connex,
existeix una determinació del logaritme de z ´ a en U (vegeu el teorema 5.29). És a dir,
existeix una funció holomorfa Lpzq tal que eLpzq “ z ´ a. De l’equació veiem que L és
necessàriament injectiva, però a més, veiem que

Lpzq ‰ Lpz0q ` 2πi, per a tot z P U ,

ja que, altrament, exponenciant aquesta expressió obtindriem z “ z0, que implicaria que
Lpzq “ Lpz0q, una contradicció. De fet, LpUq omet tot un disc centrat en Lpz0q ` 2πi
ja que si no fos aix́ı, existiria una successió pznq en U tal que Lpznq Ñ Lpz0q ` 2πi. De
nou, exponenciant aquesta expressió, i donat que l’exponencial és cont́ınua, tindriem que
zn Ñ z0 i per tant Lpznq Ñ Lpz0q, una contradicció.
Aix́ı doncs hem vist que existeix un disc D centrat a Lpz0q ` 2πi tal que LpUq no

interseca D. Considerem ara l’homografia

T pzq “
z ´ Lpz0q

z ´ pLpz0q ` 2πiq
,

que envia el punt Lpz0q ` 2πi a l’infinit i Lpz0q a l’origen, i el disc D que l’envolta al
complementari d’un disc.
Com que L és injectiva, T ˝ L també ho és, i per tant T ˝ L : U Ñ T pLpUqq és una

representació conforme. A més, per construcció, T pLpUqq és un conjunt fitat. Només ens
cal doncs compondre T ˝ L amb una homotècia adequada, per obtenir una representació
conforme de U en un subconjunt de D que conté l’origen i tal que F pz0q “ 0.

Del pas anterior dedüım que podem suposar, sense pèrdua de generalitat, que U és un
subconjunt obert de D. Considerem la famı́lia F de funcions holomorfes i injectives d’U
en D fixant l’origen, és a dir

F “ tf : U Ñ D | f injectiva, holomorfa i fp0q “ 0u.

Observem que la identitat pertany a F , i per tant F no és buida. A més, aquesta famı́lia
és uniformement fitada per construcció, ja que totes les funcions van a parar al disc unitat.
El teorema de Montel (vegeu el teorema A.2) ens diu, doncs, que F és una famı́lia normal.

Pas 2. Vegem que F conté una funció f que maximitza |f 1p0q| “ s :“ suphPF |h1p0q| ě 1.

Demostració. Observem primer que |f 1p0q| està uniformement acotada, per a f P F . Això
es pot veure aplicant la desigualtat de Cauchy (vegeu el lema 4.26) a f 1 en un petit disc
centrat a l’origen. En conseqüència, podem definir

s “ sup
fPF

|f 1p0q| ě 1,

on la desigualtat ve donada pel fet que la identitat pertany a F . Escollim una successió
pfnq Ă F tal que |f 1

np0q| Ñ s, quan n Ñ 8. Donat que F és normal, aquesta successió té
una parcial que convergeix uniformement en compactes de U a una funció f . Pel teorema
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de Weierestras (vegeu el teorema 4.36), f és holomorfa en U i |f 1p0q| “ s ě 1. Això ens
diu que f no és constant i, com que les funcions fn són injectives, el teorema de Hurwitz
(vegeu el teorema 6.34 i l’exercici 6.7.9) ens diu que f també és injectiva. Per continüıtat,
també veiem que |fpzq| ď 1 per a tot z P U i, pel principi del mòdul màxim (vegeu el
teorema 4.49), se segueix que |fpzq| ă 1 (ja que U és obert). Clarament també tenim que
fp0q “ 0, la qual cosa implica que f P F i que |f 1p0q| “ s, tal i com voĺıem demostrar.

Pas 3. Vegem que, de fet, f és una representació conforme de U en D.

Demostració. Ja sabem que f és holomorfa i injectiva, per tant només ens queda demostrar
que és exhaustiva. La idea és veure que, si no fos aix́ı, podŕıem trobar una funció F P F
amb |F 1p0q| ą |f 1p0q| “ s, la qual cosa és una contradicció.
Suposem doncs que existeix a P D tal que fpzq ‰ a per a tot z P U . Considerem

l’automorfisme de D que intercanvia els punts a i 0 (vegeu l’exercici 1.1.10)

φapzq “
a´ z

1 ´ az
.

Com que U és simplement connex, també ho és pφa ˝ fqpUq i, a més, no conté l’origen.
Per tant, existeix una branca holomorfa de l’arrel quadrada (de la identitat) en U , vegeu
l’exercici 5.4.3, i que és injectiva. Considerem ara la composició

F “ φgpaq ˝ g ˝ φa ˝ f,

i procedim a veure que F P F . Clarament F és holomorfa i F p0q “ 0. Totes les funcions
envien el disc unitat a ell mateix i, per tant, F també ho fa. De la mateixa manera, F és
injectiva ja que totes les components ho són, i aix́ı concloem que F P F .

Considerem ara hpuq “ u2, la inversa de g, i escrivim

f “ φ´1
a ˝ h ˝ φ´1

gpaq
˝ F :“ Φ ˝ F.

Observem que Φ envia D a ell mateix (no injectivament), amb Φp0q “ 0. Pel lema de
Schwarz (vegeu el lema 4.52), es compleix que |Φ1p0q| ă 1. Però aleshores, usant la regla
de la cadena,

s “ |f 1p0q| “ |Φ1p0qF 1p0q| ă |F 1p0q|

que contradiu la maximalitat de |f 1p0q| en F . Dedüım doncs que f és exhaustiva i per
tant una representació conforme de U en D fixant l’origen.

Multiplicant f per la constant |f 1p0q|{f 1p0q, de mòdul 1, obtenim f̃ amb les mateixes
propietats i satisfent f̃ 1p0q ą 0.

Per acabar, observem que en el pas 1, hem pogut escollir una traslació que ens portés el
punt z0 P U escollit a l’origen. És aquesta composició final, la que satisfarà les condicions
del teorema.

205



A. El Teorema de l’aplicació de Riemann

Observacions sobre la unicitat

La manera com s’expresen les condicions d’unicitat a l’enunciat del teorema, poden ser
tal vegada obscures. Seria potser més aclaridor entendre-les de la següent manera:

Teorema. Si U Ĺ C és un obert simplement connex, aleshores existeix una representació
conforme f : U Ñ D. A més, f és única mòdul postcomposició per automorfismes de D.

En altres paraules, dues representacions conformes, f i g, de U en D han de complir que
f “ T ˝ g, per un automorfisme T del disc unitat, és a dir

T pzq “ eit
z ´ z0
1 ´ z0z

,

per algun z0 P D i algun t P R. Això ens diu que per escollir f tenim tres graus de llibertat
reals que poden utilitzar-se, per exemple, per decidir la imatge d’algun punt (això són
dos – parts real i imaginària), i l’argument d’alguna altra quantitat com la derivada en
un punt (el tercer grau, que seria el que s’aconseguiria amb la rotació eit). La condició
habitual de f 1p0q ą 0 és equivalent a demanar arg f 1p0q “ 0, i pot aconseguir-se sempre
multiplicant per una constant de mòdul 1, és a dir component amb una rotació.
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äıllament dels zeros, 111

Abel

Niels Henrik, 29

teorema d’, 52

uniforme, criteri d’, 51

absolutament convergent, 11
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Mertens

Franz, 12
teorema de, 12

Montel, Paul, 203
Morera

Giacinto, 81
teorema de, 103

multiplicitat del zero, 110
multivaluada, funció, 35
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teorema de, 169
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funció, 75
hiperbòlic, 76
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