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Abstract

A characterization of Mergelyan sets for the space of harmonic functions whose

boundary values are in BMO (VMO) is obtained. The main step of the proof is

the use of certain VMO functions which are related to the sharpness of the John-

Nirenberg inequality.

This note is a continuation of the work [N-O]. Our main purpose is to describe

Mergelyan sets for BMO (VMO), as asked in [S], using notation, techniques and argu-

ments from [N-O].

5 Mergelyan sets

A relatively compact subset F ⊂ Rd+1
+ is called a Mergelyan set for BMO (VMO) if

for any f ∈ BMO (VMO) and uniformly continuous on F there exists a sequence of

continuous functions {pn} tending to f in the weak-∗ topology (norm topology) and

pn −→ f uniformly on F .

Theorem 6. Let F be a relatively compact set in the upper half space Rd+1
+ . Then, the

following conditions are equivalent:
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(a) F is a Mergelyan set for BMO(Rd+1
+ ) equipped with the weak-∗ topology.

(b) F is a Mergelyan set for VMO(Rd+1
+ ) equipped with the norm topology.

(c) Almost every point of F ∩ Rd is the non-tangential limit of points of F , that is,

|F ∩ Rd\Fnt| = 0.

Proof of Theorem 6. We first show that condition (c) is necessary. We will proceed as in

the first proof of Theorem 3 of [N-O]. Assume |F ∩Rd\Fnt| > 0, that is, |F ∩Rd\Fη| > 0

for some η > 0. Let x be a density point of F ∩Rd\Fη. Observe that x ∈ F η and apply

Theorem 5 of [N-O] with the set A = Fη. So, one obtains a non-negative function

g ∈ VMO(Rd), g(y) = 0 for all y ∈ Fη, and

(5.1) lim
δ→0

gQ(x,δ) = ∞.

Then, we claim that the harmonic extension of g in Rd+1
+ is uniformly continuous on F .

That is, given ε > 0 there is some δ > 0 such that if z, w ∈ F and |z − w| < δ then

|g(z) − g(w)| < ε. First of all, we will see that |g(z)| < ε/2 if z = (x, zd+1) ∈ F and

zd+1 ≤ δ1 using g ∈ VMO and g(y) = 0 for all y ∈ Fη. Let R be the cube in Rd of center

x and side length zd+1, observe

|g(z)| = |g(z)− gR| =
∣∣∣∣
∫

(g(y)− gR)P (x− y, zd+1) dy

∣∣∣∣

≤ C
∑

k≥1

2−k|g − gR|2kR ≤ C
∑

k≥1

k2−kM(g, 2kzd+1)

≤ CM(g, 2k0zd+1)

k0∑

k=1

k2−k + C‖g‖∗
∑

k>k0

k2−k

<
ε

4
+

ε

4
=

ε

2
,

if k0 is large enough and 2k0zd+1 is sufficiently small. Consequently, if z, w ∈ F and

zd+1, wd+1 ≤ δ1 then |g(z)− g(w)| < ε. On the other hand, g is uniformly continuous on

compact sets of Rd+1
+ . Thus, there exists δ2 > 0 such that if z, w ∈ F , zd+1, wd+1 ≥ δ1/2

and |z −w| < δ2 then |g(z)− g(w)| < ε. Finally, take δ = min(δ2, δ1/2) and this proves

the claim.

Now, if F is a Mergelyan set for BMO (or VMO) there is a sequence of continuous

functions {Pn} tending to g in the weak-∗ topology and Pn(z) → g(z) uniformly on F .
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Thus, for some absolute constant C and for all n, |Pn(z)| ≤ C, for any z ∈ F , ‖Pn‖∗ ≤ C

and, by Lemma 2.1 of [N-O], we have

(5.2) Pn(z) → g(z) for any z ∈ Rd+1
+ .

By continuity, |Pn(y)| ≤ C at every point y ∈ F ∩ Rd. Next, using that x is a density

point of F ∩ Rd and sup
n
‖Pn‖∗ ≤ C we get

|(Pn)Q(x,δ)| ≤ 2C

if δ is small. Then, from the estimate |Pn(z) − (Pn)T (z)| ≤ C‖Pn‖∗ we deduce that

|Pn(z)| ≤ 4C for all n where z = (x, t) and 0 < t < δ. This contradicts (5.2) because

from (5.1) the values g(z) are unbounded when z = (x, t), and t tends to 0.

Conversely, assume |F ∩ Rd\Fnt| = 0 and let us show that F is a Mergelyan set for

BMO (VMO). So, given f ∈ BMO (f ∈ VMO), ‖f‖∗ = 1 and f uniformly continuous on

F , one has to find continuous functions Pk tending to f in the weak-∗ (norm) topology

and uniformly on F .

Observe that, by Lemma 2.4 and Theorem 2.5 of [N-O], one can assume that f is

bounded. Since f is uniformly continuous on F we can extend f on F , call it f̃ . We

assume, without loss of generality, that

(5.3) f̃ ≡ 0 on F ∩ Rd.

We now claim that it is sufficient to prove that given ε > 0 there are continuous

functions Φk tending to f in the weak-∗ (norm) topology and also pointwise on F ,

‖Φk‖∞ ≤ C‖f‖∞, where C is a universal constant, and satisfying

(5.4) |Φk(x)| < ε, for x ∈ F ∩ Rd.

To establish this claim, observe that Lemma 2.1 of [N-O] gives that Φk tend to f

uniformly on compact sets of Rd+1
+ . Hence, there exists ηk > 0, ηk → 0 as k →∞, such

that

|Φk(z)− f(z)| < ε for any z ∈ F such that zd+1 ≥ ηk.

On the other hand, since Φk are continuous, f is uniform continuous on F , vanishing

on F ∩ Rd, and F ∩ Rd is a compact set, condition (5.4) gives that there is δk > 0 such

that

|Φk(z)− f(z)| < ε for any z ∈ F with zd+1 ≤ δk.
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Consequently, |Φk(z) − f(z)| < ε for the points z ∈ F satisfying either zd+1 ≤ δk or

zd+1 ≥ ηk. Considering a subsequence of Φk one may assume that ηk > δk > ηk+1 for

any k = 1, 2, . . . . Now, one can take

PN =
1

N

2N∑

k=N+1

Φk.

It is clear that PN tend to f in the weak-∗ (norm) topology. Also, if z ∈ F there is at

most one k such that δk < zd+1 < ηk or ηk+1 < zd+1 < δk. Hence for points z ∈ F , one

has

|PN(z)− f(z)| ≤ N − 1

N
ε +

‖Φk‖∞ + ‖f‖∞
N

< ε +
2C‖f‖∞

N
and this would finish the proof. Therefore, one only has to find the functions Φk men-

tioned in the previous claim.

Since |F ∩ Rd\Fnt| = 0 and condition (5.3), Fatou’s Theorem gives that f(x) = 0

at almost every point x ∈ F ∩ Rd. Given k = 1, 2, . . . let D(k) denote the collection of

dyadic cubes in Rd of length side 2−k. Proposition 2.3 of [N-O] asserts that the functions

ϕk =
∑

Q∈D(k)

aQΨQ

tend to f in the weak-∗ topology and if f ∈ VMO tend to f in norm. Now, we require

the continuity of the functions ΨQ and therefore the functions ϕk will be continuous.

However, the natural choice Φk = ϕk does not work because ϕk may not satisfy |ϕk| < ε

on F ∩Rd. The same trouble would appear if we took Φk(x) = f(x, k−1), the restriction

of f at level k−1.

Denote by B = B(k) the subcollection of those cubes Q in D(k) satisfying that

F ∩ 5
4
Q 6= ∅ and A = A(k, ε) those cubes in B such that |aQ| ≥ ε. If x ∈ F\⋃

A
5
4
Q then

|ϕk(x)| ≤ ∑
Q

|aQ|ΨQ(x) < ε. Thus, we should modify ϕk on the points x ∈ F ∩
(⋃
A

5
4
Q

)
.

We next claim that

(5.5)
∑
Q∈A

|Q| → 0 as k →∞.

Note first that
∑

Q∈B
ΨQ → χF in L1(Rd) as k → ∞, because F is a compact set, and so

∑
Q∈B

aQΨQ tend to fχF ≡ 0 in L1(Rd). Fix a cube Q ∈ A. For all x ∈ 3
4
Q, one has

∣∣∣∣∣
∑
Q∈B

aQΨQ(x)

∣∣∣∣∣ = |aQ| ≥ ε.
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Consequently,
∣∣∣∣∣
⋃
A

3

4
Q

∣∣∣∣∣ ≤
∣∣∣∣∣

{
x ∈ Rd :

∣∣∣∣∣
∑
B

aQΨQ(x)− f(x)χF (x)

∣∣∣∣∣ ≥ ε

}∣∣∣∣∣ −→k→∞
0

and then we get (5.5).

Since f(x) = 0 at almost every x ∈ F ∩ Rd and aQ is close to f 5
4
Q (that is,

|aQ − f5/4Q| ≤ C‖f‖∗) from the John-Nirenberg Theorem we point out that there exist

constants C1, C2 > 0 such that for any Q ∈ B one has

(5.6)

∣∣∣∣
5

4
Q ∩ F

∣∣∣∣ ≤ C1 exp(−C2|aQ|)
∣∣∣∣
5

4
Q

∣∣∣∣ .

Moreover, if f ∈ VMO one may take C2 = C2(k) →∞ as k →∞.

Fix a cube Q ∈ A. Now, we apply the proof of the Main Lemma (finite case, because
5
4
Q∩F is compact) and we obtain a non-negative continuous function g = gQ satisfying

g ≡ 0 on (2Q)c

g ≡ |aQ| on
5

4
Q ∩ F,

∫

Q

g ≤ C,

‖g‖∞ ≤ C‖f‖∞,

‖g‖∗ ≤ m(C2)

where C is a constant independent of k and m(C2) → 0 as C2 → ∞. In particular, if

f ∈ VMO, m(C2) → 0 as k → ∞. Denote by A+ those cubes in A such that aQ > 0

and A− those cubes in A such that aQ < 0. Define

gk =
∑

Q∈A+

gQ and hk = −
∑

Q∈A−
gQ.

Again, ‖gk‖∗ ≤ C max
Q∈A+

‖gQ‖∗ ≤ Cm(C2) and ‖hk‖∗ ≤ C max
Q∈A−

‖gQ‖∗ ≤ Cm(C2). From

(5.5) and the estimates ‖gk‖∞ ≤ C‖f‖∞, ‖hk‖∞ ≤ C‖f‖∞ we have gk → 0 in L1

and hk → 0 in L1. Thus, gk → 0 and hk → 0 in the weak-∗ topology (or in norm if

f ∈ VMO). Then, by the Lemma 5.1 (ϕk − gk)
+ = max(ϕk − gk, 0) tends to f+ in the

weak-∗ topology (or in norm if f ∈ VMO) and (ϕk − hk)
− = max(−ϕk + hk, 0) tends to

f− in the weak-∗ topology (or in norm if f ∈ VMO). Finally, take

Φk = (ϕk − gk)
+ − (ϕk − hk)

−
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and the proof is completed. Note that if x ∈ F ∩ Rd then (ϕk − gk)
+(x) < ε and

(ϕk − hk)
−(x) < ε

Lemma 5.1. (a) Let {fj} be a sequence of functions in BMO(Rd) and f ∈ BMO(Rd).

Assume that fj → f in the weak-∗ topology and fj → f in L1. Then |fj| → |f | in

the weak-∗ topology.

(b) Let {fj} be a sequence of functions in VMO(Rd). Assume that fj → f in norm

in BMO and fj → f in L1. Then |fj| → |f | in norm in BMO.

Remark: Since f = f+ − f− and |f | = f+ + f−, one also gets (fj)
+ → f+.

Proof. (a) There exists a subsequence {|fk|} tending to some g ∈ BMO in the weak-∗
topology, because ‖ |fj| ‖∗ ≤ C‖fj‖∗ < ∞. Moreover, |fk| → |f | in L1. Clearly, |f | = g.

(b) Given ε > 0 we will show that ‖ |fj| − |f | ‖∗ ≤ ε if j ≥ j0. Notice that {fj} and

f are uniformly in VMO, therefore if |Q| < δ we have

1

|Q|
∫

Q

| |fj| − |f | − (|(fj)Q| − |fQ|) | ≤ 1

|Q|
∫

Q

|fj − (fj)Q| +
1

|Q|
∫

Q

|f − fQ| < ε

When |Q| ≥ δ we use the L1-convergence to get

1

|Q|
∫

Q

| |fj| − |f | | ≤ ‖fj − f‖1

δ
< ε

if j is bigger than some j0.

Counterexample: One could guess that some hypothesis in the above Lemma are

superfluous, that is, that fj tending f in BMO always would imply |fj| → |f | in BMO.

But the following examples (provided to us by John Garnett) show that this is wrong.

On R take f(x) = 3 sin(2πx). Given j ∈ N there is gj ∈ BMO with ‖gj‖∗ < 1/j

and I1
j , I2

j two disjoint intervals of unit length (whose spacing depends on j) such that

gj = −1 on I1
j and gj = 1 on I2

j . Thus f + gj −→ f in norm in BMO.

However, on the interval I2
j |f + gj| − |f | = max[min(1, 2f + 1),−1] (something

similar happens for I1
j also), so that ‖|f + gj| − |f |‖∗ is big.

A modification of this example will give functions f, {gj} ∈ L1 ∩ BMO such that

f + gj → f in norm in BMO and f + gj → f in L1, but |f + gj| does not converge to
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|f | in BMO. For each j ∈ N consider the intervals Ij = [aj, bj] where aj = j− je−j2
and

bj = j + je−j2
. Define

gj(x) = min

(
1,

1

j2
log+ | j

j − x
|
)

and f(x) = 0 if x /∈ ∪Ij and f(x) = 3 sin(2π
x−aj

bj−aj
) if x ∈ Ij. Clearly, ‖gj‖1 ≤ 2/j and

‖gj‖∗ ≤ C/j2 and we obtain the example.

We finish this section remarking that any compact set of positive Lebesgue measure

supports a VMO function.

Lemma 5.2. For any compact set K of Rd of positive Lebesgue measure, |K| > 0, there

is a function f ∈ VMO satisfying

(a) 0 ≤ f ≤ 1.

(b) f is supported in K.

(c)

∫

K

f ≥ 2−d−2|K|.

Proof. Given ε > 0 (a small number to fix later), using that almost every point in K

is a density point, we consider a finite family of cubes {Qj}j=1,...,N pairwise disjoint (N

depends on K and ε) such that

(a) |Qj \K| < ε|Qj|.

(b)
N∑

j=1

|Qj ∩K| ≥ 2−1|K|.

Now, to each Qj we apply the Main Lemma of [N-O] getting a function hj ∈ VMO

with the properties: 0 ≤ hj ≤ 1, hj ≡ log(1/ε) on Qj \K, hj is supported into 3
2
Qj and

|Qj|−1
∫

Qj
hj ≤ C1 = C1(d). Define

fj = 1− hj

log 1/ε
,

so we have 0 ≤ fj ≤ 1, fj(x) = 0 if x ∈ Qj \K and
∫

1
2
Qj

fj =

∫
1
2
Qj

1− hj

log 1/ε
= |1/2Qj| − (log 1/ε)−1

∫
1
2
Qj

hj

≥ |Qj| (2−d − (log 1/ε)−1C1)

= |Qj| 2−d−1,
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if one takes log 1/ε = C12
d+1. Let aj be a continuous function supported in Qj, 0 ≤

aj ≤ 1 and aj ≥ 1/2 on 1
2
Qj. Clearly, ajfj belongs to VMO because both are bounded

and belong to VMO. Finally, the function

f =
N∑

j=1

ajfj

satisfies the claim:

0 ≤ f ≤ 1,

it is supported in K,

it is a finite sum of VMO functions and

∫

K

f =
N∑

j=1

∫

Qj

ajfj ≥ 1

2

N∑
j=1

∫
1
2
Qj

fj

≥ 2−d−1

N∑
j=1

|Qj| ≥ 2−d−2|K|.

From this Lemma, J.J. Donaire [D] observed that compact sets in C of positive area

are nonremovable for analytic functions in λ∗(C), the little Zygmund space.
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