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Departament de Matemàtiques
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0. Introduction

Homological algebra is in part the art of replacing a module, or more generally a
chain complex, by an equivalent chain complex whose entries are either injective or
projective modules. What happens if one changes the meaning of the word injective?
It is well known since the seminal work [5] of Eilenberg and Moore that each notion
of injective (or projective) determines, and is determined by, a corresponding notion
of exactness. This has been a very fruitful generization, leading for instance to
the development of “pure homological algebra”, a subject which started maybe
with the work of Warfield [15], or the possibility to work with flat covers and
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cotorsion envelopes, as proved by Bican, El Bashir, and Enochs in [1] for modules,
and generalized by Enochs and Estrada to quasi-coherent sheaves in [6].

In this paper we investigate which classes of modules are fit to do homological
algebra. We call them injective classes and concentrate on those which consist of
injective modules. Our main result is a characterization and a description of such
classes in terms of ideals.

Theorem 3.7. Let R be a commutative ring.

(1) A collection of injective modules is an injective class if and only if it is closed
under retracts and products.

(2) Injective classes of modules are in one-to-one correspondence with saturated
sets of ideals of R.

When the ring is Noetherian saturated sets of ideals consist precisely of subsets
of Spec(R) closed under generization, see Corollary 3.1. In Sec. 1 we set up the
notation and recall classical examples of injective classes. In Sec. 2 we study “sat-
urated sets” of ideals. We prove then our main result Theorem 3.1 in Sec. 3. This
classification provides examples of injective classes with which one would like to do
relative homological algebra. In particular, it is a straightforward consequence that
the category Ch(R)≥0 of cochain complexes concentrated in degrees ≥ 0 is endowed
with a model category structure where weak equivalences are detected by injective
envelopes of modules of the form R/I where I belongs to a given saturated set of
ideals, see Theorem 3.2.

It turns out that such subsets of ideals appear already in one form or another in
areas related to module theory. They are closely related to hereditary torsion the-
ories as defined by Golan [8], and thus to linear topologies on a ring as considered
by Gabriel in [7]. A common feature of the classification of such objects is that it
relies on understanding the cyclic modules they detect. As a consequence our clas-
sification by subsets of ideals is not unexpected and it could certainly be obtained
by translating our point of view to that of torsion theories or Gabriel topologies.
More generally one might use classification results of certain subcategories of the
module categories of a ring as exposed in Krause [10] or Prest [14]. Nevertheless,
on the one hand we believe that our methods give a nice and simple description of
injective classes, even in the non-Noetherian case, to which a reader can handily
refer to; and on the other hand, they are well adapted to our homotopically minded
applications in [3], where we illustrate how classifying injective classes as a whole
is not enough to be able to effectively replace an unbounded chain complex by an
injective resolution for a particular choice of injective class.

1. Injective Classes of Modules

In this section we will recall the notion of injective classes and provide classical
examples.
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Definition 1.1. Let I be a collection of R-modules. A homomorphism f : M → N

is an I-monomorphism if, for any W ∈ I, f∗ : HomR(N, W ) → HomR(M, W ) is a
surjection of sets. We say that R-Mod has enough I-injectives if, for any object M ,
there is an I-monomorphism M → W with W ∈ I.

Denote by I the class of retracts of arbitrary products of elements of I. A
morphism is an I-monomorphism if and only if it is an I-monomorphism. We will
thus require that I be closed under retracts and products so that I = I and we
define the following.

Definition 1.2. A collection I of R-modules is an injective class if it is closed
under retracts and products and R-Mod has enough I-injectives.

It should be pointed out that general products have considerably more
retracts than direct sums, see Proposition 3.1. It is clear that a composite of I-
monomorphisms is again an I-monomorphism. We say that a morphism f has
a retraction, if there is a morphism r such that rf = id. Any morphism that
has a retraction is an I-monomorphism, for any class I, and in fact these are
the only morphisms that are I-monomorphisms for every class I. Observe also
that I-monomorphisms are preserved under base change: if f : M → N is an I-
monomorphism, then, by the universal property of a push-out, so is its push-out
along any morphism M → M ′. By the same argument an arbitrary coproduct
of I-monomorphisms is also an I-monomorphism. In general however, limits and
products of I-monomorphisms fail to be I-monomorphisms (see Example 1.2).

Example 1.1. If I consists of all R-modules, then I-monomorphisms are mor-
phisms f : M → N that have retractions (there is r : N → M such that rf = idM ).
It is clear that there are enough I-injectives. This is the biggest injective class.

The collection I of all injective modules is an injective class and I-
monomorphisms are the ordinary monomorphisms.

The use of adjoint functors to provide new injective classes has proved to be
fruitful and goes back at least to Eilenberg–Moore [5]. The following proposition is
just a reformulation of their Theorem 2.1.

Proposition 1.1. Let l : S-Mod � R-Mod : r be a pair of functors such that l is
left adjoint to r. Let I be a collection of R-modules.

(1) A morphism f in S-Mod is an r(I)-monomorphism if and only if lf is an
I-monomorphism in R-Mod.

(2) If lM � W is an I-monomorphism in R-Mod, then its adjoint M → rW is
an r(I)-monomorphism in S-Mod.

(3) If there are enough I-injectives in R-Mod, then there are enough r(I)-injectives
in S-Mod.

(4) If I is an injective class in R-Mod, then the collection of retracts of objects of
the form r(W ), for W ∈ I, is an injective class in S-Mod.
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At the end of the section we now turn to some classical examples. Other injective
classes will be described and studied more thoroughly in the next two sections.

Example 1.2. Let S → R be a ring homomorphism. The forgetful functor
R-Mod → S-Mod is left adjoint to HomS(R,−) : S-Mod → R-Mod. We can then
apply Proposition 1.1 to the injective classes in R-Mod given in Example 1.1 to
get new injective classes in S-Mod. Hence, the collection of R-modules which are
retracts of modules of the form HomS(R, N), for all S-modules N , is an injec-
tive class of R-modules. This class was originally considered by Hochschild in his
foundational paper [9]. Similarly, the collection of R-modules which are retracts of
modules of the same form HomS(R, N), but for all injective S-modules N , is also
an injective class of R-modules.

Assume now that S is a commutative ring and S → R is an S-algebra (i.e. the
image of this ring homomorphism lies in the center of R). The forgetful functor
R-Mod → S-Mod is right adjoint to R ⊗S − : S-Mod → R-Mod. Thus, again by
Proposition 1.1, both the collection of S-linear summands of R-modules and the
collection of S-linear summands of all injective R-modules form injective classes
of S-modules. A monomorphism relative to the first collection is a homomorphism
f for which f ⊗S R is a split monomorphism. A monomorphism relative to the
second collection is a homomorphism f for which f ⊗S R is a monomorphism. In
general, monomorphisms with respect to these classes are not preserved by infinite
products. Consider the rational numbers as an algebra over the integers Z → Q. Let
I be the class of abelian groups consisting of Q-vector spaces. Then, for any prime
number p, Z/p → 0 is an I-monomorphism. However the product

∏
p Z/p → 0 is

not an I-monomorphism since, for instance, the diagonal map gives an inclusion
Z ↪→ ∏

p Z/p.

2. Saturated Sets of Ideals in a Commutative Ring

Let R be a commutative ring. Our aim is to describe injective classes in R-Mod
which consist in injective modules. In Sec. 3 we are going to enumerate them by
certain sets of ideals in R called saturated. In this section we discuss such sets of
ideals.

Definition 2.1. We say that a set of ideals L in R is saturated if it consists of
proper ideals and is closed under the following operations:

(1) an intersection of ideals in L belongs to L;
(2) if I ∈ L, then, for any r ∈ R\I, (I : r) = {s ∈ R | sr ∈ I} also belongs to L;
(3) if a proper ideal J has the property that, for any r ∈ R\J , there is I ∈ L such

that (J : r) ⊂ I, then J ∈ L.

Example 2.1. In the ring of integers Z the class of ideals (pn) for a fixed prime p

and all n ≥ 1 forms a saturated class. In the ring of dual numbers k[x]/(x2) over a
field k the maximal ideal (x) forms a saturated class by itself.
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Conditions (2) and (3) of Definition 2.1 can be phrased in terms of submodules
and homomorphisms if we identify an ideal I with the cyclic module R/I (a module
generated by one element whose annihilator is given by I). A set of ideals L sat-
isfies (2) if the annihilator of any non-trivial and cyclic submodule of R/I belongs
to L. Condition (3) is equivalent to the following: if, for any non-trivial and cyclic
submodule of R/J , there is a non-zero homomorphism to R/I for some I ∈ L, then
J ∈ L.

Definition 2.2. Let L be a given set of ideals in R. The saturated set of ideals
generated by L is the smallest saturated set of ideals containing L. We write simply
Sat(I) to denote the saturated set of ideals generated by the collection consisting
of one ideal I.

Note that the intersection of saturated sets of ideals is again saturated. In par-
ticular Sat(L) is the intersection of all saturated sets of ideals containing L.

Proposition 2.1. Let I be an ideal in R. The set Sat(I) consists of intersections
of ideals J with the following property: for any r ∈ R\J, there is s ∈ R\I such that
(J : r) ⊂ (I : s).

Proof. Let S be the set of such intersections. The inclusion S ⊂ Sat(I) is a con-
sequence of the fact that Sat(I) satisfies condition (3) of Definition 2.1. To prove
the statement we need to show that S is saturated. By definition S is closed under
intersections.

Let J ∈ S and t ∈ R\J . By definition of S and since for any r ∈ R\(J : t), the
element rt is not in J , there is s ∈ R\I, so that ((J : t) : r) = (J : rt) ⊂ (I : s).
This proves that condition (2) of Definition 2.1 holds for S.

Finally to prove that S satisfies condition (3) of Definition 2.1, let J be a proper
ideal such that, for any r ∈ R\J , (J : r) is included in some ideal J1 ∈ S. By
definition of S, there is s ∈ R\I so that (J : r) ⊂ J1 = (J1 : 1) ⊂ (I : s). This
means that J ∈ S.

Proposition 2.2. With the inclusion relation the saturated sets of ideals in R form
a complete lattice.

Proof. Let {Ls}s∈S be a collection of saturated sets of ideals in R. The supremum
among the saturated sets which are contained in Ls for any s ∈ S is given by
the intersection

⋂
s∈S Ls. The infimum among saturated sets containing Ls for any

s ∈ S is given by Sat(
⋃

s∈S Ls).

Ultimately we would like to be able to describe the lattice of saturated sets of
ideals in terms of properties of the ring R. For example, for a Noetherian R, this
lattice can be identified, as we show next, with the inclusion lattice of subsets of the
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prime spectrum Spec(R) of R closed under generization. Recall that a set of primes
S in R is closed under generization if, for p ∈ S, and q is a prime ideal contained
in p, then q ∈ S. Arbitrary intersections and unions of such subsets are also closed
under generization. It follows that, with the inclusion relation, the collection of
subsets of Spec(R) closed under generization is a complete lattice. The Noetherian
assumption is used here to ensure that any ideal has at least one associated prime
ideal.

Lemma 2.1. Let R be a Noetherian ring.

(1) For a set of prime ideals ℘ in R, Sat(℘) consists of ideals whose associated
primes are sub-ideals of ideals in ℘.

(2) If L is a saturated set of ideals in R, then L = Sat(Spec(R) ∩ L).

Proof. (1) Set L to be the collection of ideals whose associated primes are sub-
ideals of ideals in ℘. We first show that L is saturated. This is basically a conse-
quence of two facts: all associated primes to an ideal I are of the form (I : r) for
some r ∈ R\I, and maximal ideals of the form (I : r), for r ∈ R\I, are primes
associated to I. The first fact implies that L satisfies condition (3) of Definition 2.1.
Condition (2) is a consequence of the fact that, for r ∈ R\I, the associated primes
of (I : r) are among the associated primes of I. It remains to show that L is closed
under intersections (condition (1)). Let {Is} be a family of ideals in L. An asso-
ciated prime p to

⋂
s Is is of the form (

⋂
s Is : r), for some r ∈ R\⋂

s Is. Now
p = (

⋂
s Is : r) is contained in (Is : r), for any s such that r �∈ Is and (Is : r) is a

subideal of an associated prime to Is, which by definition is a subideal of an ideal
in ℘. The ideal

⋂
s Is is thus a member of L. Since ℘ ⊂ L and L is saturated, we

have Sat(℘) ⊂ L.
To show the opposite inclusion L ⊂ Sat(℘), let I ∈ L. We are going to use

condition (3) of Definition 2.1 to show that I ∈ Sat(℘). For any r ∈ R\I, the ideal
(I : r) is a subideal of an associated prime p which, by definition of L, is a subideal
of an ideal in ℘ ⊂ Sat(℘). Condition (3) implies then that I ∈ Sat(℘).

(2) The inclusion Sat(Spec(R) ∩ L) ⊂ L follows from the fact that L is saturated.
Let I ∈ L. For any r ∈ R\I, (I : r) is a sub-ideal of an associated prime p = (I : s)
to I. As p ∈ L (condition (2) of Definition 2.1), p ∈ Sat(Spec(R)∩L). We can then
use condition (3) of Definition 2.1 to conclude that I ∈ Sat(Spec(R) ∩ L).

Definition 2.3. For any collection L of ideals in R, the spectral part Sp(L) of L is
the intersection Spec(R) ∩ L of this collection with the prime spectrum of R.

Proposition 2.3. Assume that R is Noetherian. Then the association L �→ Sp(L)
is an order preserving isomorphism between the inclusion lattice of saturated sets
of ideals in R and the inclusion lattice of subsets of Spec(R) which are closed under
generization.
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Proof. We first prove that, if L is saturated, then Sp(L) is closed under gener-
ization so the association Sp is well defined. To see this, it is enough to observe
that if q ∈ L then, for any prime p ⊂ q, p ∈ L. This follows from condition (3) of
Definition 2.1 and the fact that, for a prime ideal p, (p : r) = p, for any r ∈ R\p.

Let S be a set of prime ideals in R closed under generization. According to
Lemma 2.1, Sat(S) consists of those ideals whose associated primes are sub-ideals
of primes that belong to S. As S is closed under generization, Sat(S) consists simply
of those ideals whose associated primes do belong to S.

As both Sp and Sat are order preserving, to show that Sp is an isomorphism of
lattices, it is enough to prove that, for a saturated set of ideals L and a subset S

of Spec(R) closed under generization, Sat(Sp(L))=L and Sp(Sat(S))=S. First, by
definition Sat(sp(L))=Sat(Spec(R)∩L). We can now use Lemma 2.1(2) to conclude
that Sat(sp(L))=L.

Second, the definition of Sp says that p ∈ Sp(Sat(S)) if and only p ∈ Sat(S).
This is equivalent to p having an associated prime that belongs to S. However p

has only p as an associated prime and thus p ∈ Sp(Sat(S)) if and only if p ∈ S.

When the ring R is not Noetherian, there can be considerably more saturated
sets of ideals in R than subsets of Spec(R) closed under generization.

Example 2.2. Let k be a field and R = k[X1, X2, . . .]/(X2
1 , X2

2 , . . .). This ring and
its Bousfield classes have been studied recently by Dwyer and Palmieri in [4]. It is
also very similar to Neeman’s original example of a ring with a single prime ideal
but uncountably many Bousfield classes, [13]. We are going to show that this ring
has uncountably many saturated sets of ideals.

Any element in R can be written uniquely as a k-linear combination of monomi-
als of the form Xi1Xi2 · · ·Xik

. For any subset S ⊂ N, we denote the ideal (Xi)i∈S

by IS . Recall that the symmetric difference of two subsets S, T ⊂ N is given by
S∆T := (S ∪ T )\(S ∩ T ). We claim that if the symmetric difference of S and T is
infinite then Sat(IS) and Sat(IT ) are different saturated sets of ideals in R.

Notice first that for k �∈ S the ideal (IS : xk) is IS∪{k}. This implies that if S

and T differ by only finitely many natural numbers, then Sat(IS) = Sat(IT ).
Let f ∈ R\IS . This element f is a sum of monomials that involves only finitely

many variables Xi. Let F be the finite set of indexes of these variables. We first show
that (IS : f) ⊂ IS∪F . Let g ∈ (IS : f). We can write g = g1+g2, where g1 is a sum of
monomials for which the index of at least one of the variables belongs to S ∪F and
g2 is a sum of monomials that are products of variables whose indexes do not belong
to S∪F . Thus, since g1 ∈ IS∪F , the element g belongs to IS∪F if and only if g2 does.
As the variables occurring in g2 are different from the variables occurring in f , the
products of monomials of f and monomials of g2 are linearly independent over k.
However fg2 can be written as fg − fg1, where fg ∈ IS . Thus fg2 can be written
as a k-linear combination of monomials that are products of variables for which at
least one index belongs to S ∪ F . Since monomials are linearly independent over
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k, if g2 �= 0, the monomials of f are products of variables where at least one index
is in S. That would however imply that f ∈ IS , which contradicts our assumption
that f ∈ R\IS . It follows that g2 = 0 and hence g = g1 ∈ IS∪F .

Assume now that the symmetric difference of S and T is infinite. This happens
if either S\T or T \S is infinite. Assume that S\T is infinite. In this case we claim
that IS �∈ Sat(IT ). Otherwise, according to Proposition 2.1, there would be some
f ∈ R\IT , for which IS ⊂ (IT : f). This is however impossible, since we have just
proved that (IT : f) ⊂ IT∪F for some finite F .

To show that the ring R has uncountably many saturated sets of ideals, it is
enough to exhibit an uncountable family of subsets of N for which the symmetric
difference of any two is infinite. Let us choose a partition of N by countably many
infinite subsets A1, A2, . . . For example A1 could be the subset of odd numbers, A2

the subset of those even numbers which are not divisible by 4, and An the subset
of numbers divisible by 2n−1 but not by 2n. For any subset X of N define SX to
be the subset of those numbers which belong to Ax for some x ∈ X . In other words
SX =

⋃
x∈X Ax. Since any An is infinite, the symmetric difference between any

two subsets of the form SX must be infinite. Finally, as the set of subsets of N is
uncountable, we have exhibited uncountably many saturated sets of ideals.

3. Injective Subclasses of Injective Modules

Let R be a commutative ring. In this section we are going to classify injective classes
of R-modules that consists of injectives. We show that there is a bijection between
such classes and the collection of saturated sets of ideals in R. In particular we will
show that there is a set of such injective classes.

For an R-module M , let E(M) be the injective envelope of M . Here are some
basic properties of the injective envelope of a cyclic module.

Lemma 3.1. Let I be an ideal in R, E(R/I) the injective envelope of R/I, M an
R-module, and f : M → N an R-module homomorphism.

(1) HomR(M, E(R/I)) = 0 if and only if, for any m ∈ M and any r ∈ R\ I,

ann(m) �⊂ (I : r).
(2) HomR(f, E(R/I)) is an epimorphism if and only if HomR(kerf, E(R/I)) = 0.
(3) HomR(f, E(R/I)) is an monomorphism if and only if the set of homomor-

phisms HomR(coker f, E(R/I )) = 0.

Proof. (1) If ann(m) ⊂ (I : r), for some m ∈ M and r ∈ R \ I, then the
composition of the surjection R/ann(m) → R/(I : r), the multiplication by
r : R/(I : r) → R/I, and the inclusion R/I ⊂ E(R/I) can be extended to a
non-trivial homomorphism M → E(R/I). Consequently ann(m) �⊂ (I : r) for any
m ∈ M and any r ∈ R\I.

Assume now that there is a non-zero homomorphism f : M → E(R/I). Then for
some m ∈ M , 0 �= f(m) ∈ R/I ⊂ E(R/I). Let r ∈ R \ I be such that [r] = f(m).
It is then clear that ann(m) ⊂ (I : r).
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(2) and (3) Since E(R/I) is injective, we have the following isomorphisms of abelian
groups:

ker(HomR(f, E(R/I))) ∼= HomR(coker(f), E(R/I)),

coker(HomR(f, E(R/I))) ∼= HomR(ker(f), E(R/I)).

Statements (2) and (3) clearly follow.

Definition 3.1. For a set of ideals L in R, we denote by E(L) the collection of
retracts of products of injective envelopes E(R/I) where I ∈ L.

The following proposition tells us that E(L) is the smallest injective class gen-
erated by the set L.

Proposition 3.1. Let L be a set of ideals in R.

(1) An R-module homomorphism f : M → N is an E(L)-monomorphism if and
only if HomR(kerf, E(R/I)) = 0 for any I ∈ L.

(2) The collection E(L) is an injective class.

Proof. (1) This follows from Lemma 3.1(2).

(2) We need to show that R-Mod has enough E(L)-injectives. Let M be an
R-module. Let S be the set of elements m ∈ M such that there is a non-trivial
homomorphism R/ann(m) → E(R/I), for some I ∈ L. For any m ∈ S let us choose
an ideal Im ∈ L and a non-trivial homomorphism φm : M → E(R/Im) such that
φ(m) �= 0. The existence of such a homomorphism is guaranteed by that of a non-
trivial homomorphism R/ann(m) → E(R/Im) and the injectivity of E(R/Im). We
claim that the following homomorphism is an E(L)-monomorphism:

∏

m∈S

φm : M →
∏

m∈S

E(R/Im).

The kernel K of this homomorphism consists of elements m for which there is
no non-trivial homomorphisms from R/ann(m) to E(R/I) for any I ∈ L. This
means that K is in the kernel of any homomorphism f : M → E(R/I), where
I ∈ L. Using now the injectivity of E(R/I), we see that any such homomorphism
f factors through

∏
m∈S φm. By definition, this means that

∏
m∈S φm is an E(L)-

monomorphism.

Definition 3.2. For a collection of R-modules I, define L(I) to be the set of ideals
of the form ann(x) = {r ∈ R | rx = 0} for some non-zero element x ∈ W ∈ I.

Thus L(I) consists of those proper ideals I for which there is an inclusion
R/I ⊂ W for some W ∈I.

Lemma 3.2. If I is a collection of injective modules which is closed under
products, then L(I) is saturated.

1250188-9



2nd Reading

February 5, 2013 10:48 WSPC/S0219-4988 171-JAA 1250188

W. Chachólski, W. Pitsch & J. Scherer

Proof. We need to check the three conditions of Definition 2.1. Let {Is}s∈S be a set
of ideals in L(I). For any s choose Ws ∈I such that R/Is ⊂Ws. Then R/(

⋂
s∈S Is)

is a submodule of
∏

s∈S R/Is and hence a submodule of
∏

s∈S Ws. As I is assumed
to be closed under products,

⋂
s∈S Is ∈ L(I).

If R/I is a submodule of some W ∈I, then so is R/(I : r), as R/(I : r) is a
submodule of R/I generated by r. Condition (2) of Definition 2.1 is then satisfied.

To prove condition (3), assume J has the property that, for any r ∈ R\J , there
is Ir ∈ L(I) such that (J : r) ⊂ Ir. Let Wr ∈ I be a module for which R/Ir ⊂ Wr.
Set φr : R/J → Wr to be a homomorphism which restricted to the submodule
R/(J : r)⊂R/J , generated by r, is given by the composition R/(J : r) → R/Ir ⊂
Wr , where the first homomorphism is given by the quotient induced by the inclusion
(J : r) ⊂ Ir. Such a homomorphism φr exists since Wr is an injective module. The
product

∏
r∈R\J φr : R/J → ∏

r∈R\J Wr is then a monomorphism. As I is closed
under products, it follows that J ∈ L(I).

Proposition 3.2. (1) If L is saturated, then L = L(E(L)).
(2) If I is a collection of injective modules which is closed under retracts and

products, then I = E(L(I)).

Proof. (1) The inclusion L ⊂ L(E(L)) follows from the fact that, for any ideal I,
R/I is a submodule of its envelope E(R/I).

To show the other inclusion L(E(L)) ⊂ L we need the assumption that L is
saturated. Let J ∈ L(E(L)). This means that J = ann((xs)s∈S) for some element
(xs)s∈S in

∏
s∈S E(R/Is), where Is ∈ L. Thus J =

⋂
s∈S ann(xs). Since L is sat-

urated, to show that J ∈ L, it is enough to prove that if I ∈ L, then ann(x) ∈ L
for any non-trivial x ∈ E(R/I). Consider an envelope R/I ⊂ E(R/I). For any
r �∈ ann(x), the intersection of R/I with the submodule of E(R/I) generated by
rx is non-trivial. Thus there is t �∈ ann(rx), so that trx ∈ R/I. It is then clear that
(ann(x) : r) = ann(rx) ⊂ ann(trx) = (I : trx). As this happens for any r �∈ ann(x),
we can use condition (3) in Definition 2.1 to conclude that ann(x) ∈ L.

(2) If I ∈ L(I), then R/I ⊂ W for some W ∈ I. As I consists of injective modules,
then E(R/I) ⊂ W and consequently E(R/I) is a retract of W . Since I is closed
under retracts, E(R/I) belongs to I. It is then clear that E(L(I)) ⊂ I.

Let W ∈I. For any 0 �= w ∈ W , let φw : W → E(R/ann(w)) be a homomor-
phism which restricted to the submodule generated by w is given by the inclu-
sion in its injective envelope R/ann(w) ⊂ E(R/ann(w)). The existence of such
a homomorphism is guaranteed by the injectivity of E(R/ann(w)). The product∏

φw : W → ∏
E(R/ann(w)) is then a monomorphism. As W is injective, it is

a retract of
∏

E(R/ann(w)). However E(R/ann(w)) ∈ E(L(I)), for any w. This
implies that W ∈ E(L(I)) and shows the inclusion I ⊂ E(L(I)).

We are now ready to show that there is a bijective correspondence between
injective classes consisting of injective modules and saturated classes of ideals.
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Theorem 3.1. (1) A collection of injective modules is an injective class if and only
if it is closed under retracts and products.
(2) The following operations are inverses bijections :

Injective classes of R-modules consisting of injective R-modules

L

��
Saturated sets of ideals in R

E

��

Proof. Any injective class is by definition closed under product and retracts. If I
is closed under products and retracts, and it consists of injective modules, then,
according to Proposition 3.2(2), I = E(L(I)). We can then use Proposition 3.1(2)
to conclude that I is an injective class. This proves statement (1). Statement (2) is
then a direct consequence of Proposition 3.2.

Here is the kind of consequences we are interested in. One could construct by
hand explicit factorizations, but we prefer to simply refer to the general work of
Bousfield [2, Sec. 4.4] to prove that the category Ch(R)≥0 consisting of cochain
complexes concentrated in non-negative degrees is endowed with a model structure
determined by a saturated set of ideals.

Theorem 3.2. Let L be a saturated set of ideals in R. The following choice of weak
equivalences, cofibrations and fibrations in Ch(R)≥0 satisfies the axioms of a model
category:

• f : X → Y is a weak equivalence if f∗ : HomR(Y, E(R/I)) → HomR(X, E(R/I))
is a quasi-isomorphism of complexes of abelian groups for any I ∈ L.

• f : X → Y is a cofibration if f i : X i → Y i is an E(L)-monomorphism for all
i > n.

• f : X → Y is called a W-fibration if f i : X i → Y i has a section and its kernel
belongs to E(L) for all i ≥ n.

We end this section with a discussion of the Noetherian case. If R is Noethe-
rian, then we have seen (see Lemma 2.1) that a saturated set of ideals in R is
determined by the prime ideals it contains. Thus to describe an arbitrary injective
class consisting of injective R-modules, we can start with a set of prime ideals ℘.

Lemma 3.3. Let R be a Noetherian ring and ℘ be a set of prime ideals.

(1) E(℘) = E(Sat(℘)).
(2) f : M → N is an E(℘)-monomorphism if and only if, for any prime p ∈ ℘,

fp : Mp → Np is a monomorphism.

Proof. (1) The inclusion E(℘) ⊂ E(Sat(℘)) is clear. To show the opposite inclu-
sion, it is enough to show that E(R/I) ∈ E(℘), for any I ∈ Sat(℘). Associated
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primes of such an ideal I are sub-ideals of ideals in ℘ (see Lemma 2.1(1)). For
any r∈R\I, we can then choose a prime pr ∈ ℘ such that (I : r) ⊂ pr. For any
r ∈ R\I, let φr : R/I → E(R/pr) be a homomorphism whose restriction to the
submodule R/(I : r), generated by r, is given by the composition of the quotient
R/(I : r) → R/pr and an inclusion R/pr ⊂ E(R/pr). The existence of such a homo-
morphism is guaranteed by the injectivity of E(R/pr). Next, the homomorphism∏

r∈R\I φr : R/I → ∏
r∈R\I E(R/pr) is a monomorphism. It follows that E(R/I)

is a retract of
∏

r∈R\I E(R/pr) and hence belongs to E(℘).

(2) The homomorphism f is an E(℘)-monomorphism if and only if for any prime
p ∈ ℘ Hom(ker(f), E(R/p)) is zero, for any prime p ∈ ℘ (see Proposition 3.1(1)).
Recall that E(R/p) is an Rp-module. Thus Hom(ker(f), E(R/p)) = 0 if and only if
Hom(ker(f)p, E(R/p)) = 0. It follows that if fp is a monomorphism (ker(f)p = 0),
for any p ∈ ℘, then f is an E(℘)-monomorphism. To show the reverse implication,
let f be an E(℘)-monomorphism and p ∈ ℘. If ker(f)p were non-trivial, there would
be an inclusion R/I ⊂ ker(f), for some I ⊂ p. The composition of the projection
R/I → R/p and the inclusion R/p ⊂ E(R/p) could be then extended over ker(f)
to produce a non-trivial element in Hom(ker(f), E(R/p)), a contradiction.

Corollary 3.1. Let R be a Noetherian ring. The association S �→ E(S) is a bijec-
tion between the collection of subsets of Spec(R) closed under generization and
injective classes of R-modules consisting of injective R-modules.

Proof. This is a consequence of Theorem 3.1(2) and Proposition 2.3.

Remark 3.1. In [12] Neeman classified the smashing subcategories in the derived
category of a Noetherian ring R, compare also with Krause’s classification of
thick subcategories of R-modules via subsets of Spec(R), [11]. Smashing subcat-
egories are in one-to-one correspondence with the subsets of Spec(R) closed under
specialization (the complements of the subsets closed under generization). Arbi-
trary localizing categories correspond to arbitrary subsets of the spectrum. The
reason why we only see smashing ones is the following. The localizing subcate-
gory we consider is that of I-acyclic complexes, i.e. those complexes X such that
HomR(X, W ) is acyclic for any W ∈ I. The main result in [12] tells us that this
class is determined by the prime ideals q for which k(q) is I-acyclic, i.e. for which
HomR(k(q), E(R/p)) = 0 for all prime ideals p with E(R/p) ∈ I. But if there is
a non-zero homomorphism k(q) → E(R/p), then there is also one from k(q′) for
any q′ ⊂ q (coming from the projection R/q′ → R/q). This shows that the subset
{q ∈ Spec(R) | k(q) is I−acyclic} is closed under specialization.

Acknowledgments

The first author was supported by VR grant 2009-6102 and the G. S. Magnuson
Foundation, the second and third authors were supported by FEDER/MEC grant

1250188-12



2nd Reading

February 5, 2013 10:48 WSPC/S0219-4988 171-JAA 1250188

Injective Classes of Modules

MTM2010-20692. This research has been supported by the Göran Gustafssons Stif-
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