COARSE GEOMETRY OF ISOMETRY GROUPS OF SYMMETRIC SPACES

JOAN PORTI (Universitat Autònoma de Barcelona)

August 12, 2014

- joint with Misha Kapovich and Bernhard Leeb, arXiv:1403.7671
- Geometry on Groups and Spaces, August 7–12, 2014, KAIST.

Motivation

- Which properties of convex cocompact groups in rank one can be generalized to higher rank symmetric spaces?
- For X = G/K symmetric space of noncompact type, rank $(X) \ge 2$, look for discrete $\Gamma < G$ with "rank-1 behavior"
- Plan of the talk:
- I. Convex cocompact groups in rank one (through one example: Schottky groups)
- II. Higher rank symmetric spaces of non compact type X = G/K (through one example: $SL(3, \mathbb{R})/SO(3)$)
- III. Morse group actions on higher rank symmetric spaces.
 - Get the image of Anosov representations.
 - Take the point of view of discrete subgroups $\Gamma < G$ acting on X = G/K.

Review on Schottky groups in \mathbf{H}^n

Schottky: For $\underline{n_1}, \underline{n_2} \gg 1$, $\Gamma = \langle \gamma_1^{\underline{n_1}}, \gamma_2^{\underline{n_2}} \rangle$ discrete & free (ping-pong) Limit set $\Lambda = \overline{\Gamma x} \cap \partial_{\infty} \mathbf{H}^n$. Discontinuity domain: $\Omega = \partial_{\infty} \mathbf{H}^n \setminus \Lambda$

- (A) There is a compact fundamental domain in $\mathbf{H}^n \cup \Omega$
- (B) $(\mathbf{H}^n \cup \Omega)/\Gamma$ is compact
- (C) (convex hull of Λ)/ Γ is compact (Convex cocompact)
- (D) Γ is undistorted (Γ quasi-isometric to Γx)
- (E) Γ is word hyperbolic and $\partial_{\infty}\Gamma \cong_{\Gamma} \Lambda$
- (F) Every $\xi \in \Lambda$ is conical $(\gamma_n x \to \xi, d(\gamma_n x, l) < c$ for some line l)

Thm: For $\Gamma < \text{Isom}(\mathbf{H}^n)$ discrete, all properties are equivalent

Convex cocompact groups in rank 1

Thm: For $\Gamma < \text{Isom}(\mathbf{H}^n)$ discrete, the following are equivalent

- (A) There is a compact fundamental domain in $\mathbf{H}^n \cup \Omega$
- (B) $(\mathbf{H}^n \cup \Omega)/\Gamma$ is compact
- (C) (convex hull of Λ)/ Γ is compact (Convex cocompact)
- (D) Γ is undistorted (Γ quasi-isometric to Γx)
- (E) Γ is word hyperbolic and ∂_∞ Γ \cong_Γ Λ
- (F) Every $\xi \in \Lambda$ is conical $(\gamma_n x \to \xi, d(\gamma_n x, l) < c$ for some line l)

(G) Γ expanding at every $\xi \in \Lambda$: there exist $\gamma \in \Gamma$, $U_{\xi} \subset \partial_{\infty} \mathbf{H}^n$, and c > 1 so that:

$$d(\gamma^{-1}\xi_1, \gamma^{-1}\xi_2) > c \cdot d(\xi_1, \xi_2), \quad \forall \xi_1, \xi_2 \in U_{\xi}.$$

Question Which properties generalize to higher rank? (D), (E), (F), (G)

Symmetric spaces of noncompact type: X = G/K

- X = G/K symmetric space of noncompact type, without Euclidean factors e.g. $\mathbf{H}^n = SO(n, 1)/SO(n)$, SL(n)/SO(n)
- X is a Cartan-Hadamard manifold ($\sec \le 0$ and 1-connected)
- $\operatorname{rank}(X) = \operatorname{dim} \operatorname{maximal} \operatorname{flat} \operatorname{in} X.$ $\operatorname{rank}(X) = 1 \operatorname{iff} \operatorname{sec}(X) < 0.$ Higher $\operatorname{rank} \operatorname{means} \operatorname{rank}(X) \ge 2$
- Ideal (visual) boundary:

$$\underline{\partial_{\infty} X} = \{r : [0, +\infty) \to X \text{ geodesic } \} / \sim$$
where $r_1 \sim r_2$ if $d(r_1(t), r_2(t)) \leq C$

$$\partial_{\infty}X \cong (T_{\times}X)^{1} \cong S^{\dim X-1}$$
 but $G \curvearrowright \partial_{\infty}X$ is not transitive.

- $\partial_{\infty}X$ has a structure of spherical Tits building induced by the ideal boundary of flats.
- To simplify, here assume X = SL(3)/SO(3), but everything works for general X = G/K symmetric space noncompact type

Higher rank example: X = SL(3)/SO(3)

- dim X = 5 and $\partial_{\infty} X \cong S^4$
- rank X = 2. Maximal flats ($\cong \mathbb{R}^2$ tot. geod.) through x_0 :

$$F = \left\{ g \exp \left(\frac{\lambda_0}{\lambda_1} \right) g^{-1} x_0 \mid \lambda_0 + \lambda_1 + \lambda_2 = 0 \right\}$$

A geodesic is <u>regular</u> if contained in a *unique* maximal flat.

Singular geodesics through x_0 : $\lambda_i = \lambda_j$

$$F \cong \mathbb{R}^{2}$$

$$\partial_{\infty}(SL(3)/SO(3))$$

$$\partial_{\infty}F \cong S^{1}$$

$$\lambda_{0} = \lambda_{1}$$

$$\lambda_{1} = \lambda_{2}$$

$$As t \to +\infty, \exp t \begin{pmatrix} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \end{pmatrix} \to \begin{cases} p \in \mathbb{P}^{2} & \text{if } \lambda_{0} > \lambda_{1} = \lambda_{2} \\ l \in (\mathbb{P}^{2})^{*} & \text{if } \lambda_{0} = \lambda_{1} > \lambda_{2} \\ (p, l), p \in l & \text{if } \lambda_{0} > \lambda_{1} > \lambda_{2} \end{cases}$$

$$Flag(\mathbb{P}^{2}) = \{(p, l) \in \mathbb{P}^{2} \times (\mathbb{P}^{2})^{*} \mid p \in l\}$$

$$\partial_{\infty}X = Flag(\mathbb{P}^{2}) \times (0, \frac{\pi}{3}) \sqcup \mathbb{P}^{2} \sqcup (\mathbb{P}^{2})^{*} \cong S^{4} (SL(3)-\text{inv})$$

$$\mathbb{P}^{2}$$

$$(\mathbb{P}^{2})^{*}$$

$$(\mathbb{P}^{2})^{*}$$

$$Chamber:= (p, l) \times (0, \frac{\pi}{3})$$

$\Gamma \subset SL(3)$ discrete regular subgroup

• Assume Γ regular, i.e. $\Lambda(\Gamma) \subset (\partial_{\infty}X)^{reg} \stackrel{\pi}{\longrightarrow} \mathsf{Flag}(\mathbf{P}^2)$ Chamber limit set: $\Lambda_{Ch}(\Gamma) = \pi(\Lambda(\Gamma)) \subset \mathsf{Flag}(\mathbf{P}^2)$

Thm (KLP 2014) $\Gamma \subset SL(3)$ discrete regular subgroup. TFAE

- (1) Γ word hyperbolic and "Morse" g.isom. embedded.
- (2) Γ word hyperbolic, antipodal, and $\partial_{\infty}\Gamma \cong_{\Gamma} \Lambda_{Ch}(\Gamma)$
- (3) Γ antipodal and $\Lambda_{Ch}(\Gamma)$ is chamber conical
- (4) Γ antipodal and expanding at $\Lambda_{Ch}(\Gamma) \subset \mathsf{Flag}(\mathbf{P}^2)$
 - Antipodal: $(p_1, l_1) \neq (p_2, l_2) \in \Lambda_{Ch}(\Gamma) \Rightarrow p_2 \notin l_1 \& p_1 \notin l_2$.

Chamber conical:

 σ chamber $\in \Lambda_{Ch}$

Morse orbits and diamonds

 Morse lemma in rank 1: Uniform quasi-geodesics in Hⁿ are uniformly close to a geodesic.

It fails in higher rank (it fails in \mathbb{R}^2)

Def $\Gamma < SL(3)$, $\Gamma \curvearrowright X$ is Morse if it is regular, and orbits of uniform quasi-geodesic segments in Γ are uniform quasi-geodesics, uniformly close to a diamond (intersection of cones on opposite chambers in a flat)

Morse group actions

Def $\Gamma < SL(3)$, $\Gamma \curvearrowright X$ is Morse if it is regular, and orbits of uniform quasi-geodesic segments in Γ are uniform quasi-geodesics, uniformly close to a diamond (intersection of cones on opposite chambers in a flat)

Thm (KLP 2014) $\Gamma \subset SL(3)$ discrete regular subgroup. TFAE:

- (1) Γ word hyperbolic and Morse (hence undistorted)
- (2) Γ antipodal and $\Lambda_{Ch}(\Gamma)$ is chamber conical
- (3) Γ antipodal and expanding at $\Lambda_{Ch}(\Gamma) \subset \operatorname{Flag}(\mathbf{P}^2)$
- (4) Γ word hyperbolic, antipodal, and $\partial_{\infty}\Gamma \cong_{\Gamma} \Lambda_{Ch}(\Gamma)$

Local to global

- Assume Γ nonelementary word hyperbolic, $\rho \in \text{hom}(\Gamma, SL(3))$.
- *Def:* $\rho \in \text{hom}(\Gamma, SL(3))$ is <u>locally Morse</u> if $\forall q : \{0, 1, ..., n\} \to \Gamma$ (C, A)-quasi-geodesic, q(0) = 1, of length $n \leq N$, for fixed N:
 - 1. the orbit $\{\rho(q(0))x, \rho(q(1))x, \dots, \rho(q(n))x\}$ is *D*-close to a diamond.
 - 2. the segment $\overline{\rho(q(0))}x$, $\overline{\rho(q(n))}x\subset X$ is uniformly regular (its direction in a fixed compact set of the open chamber)
- Thm: (Local to global). If $\rho \in \text{hom}(\Gamma, SL(3))$ is locally Morse for suf. large N, then $\rho(\Gamma)$ is Morse (\Rightarrow discrete & ker(ρ) finite)
 - *Cor:* (Openness) $hom_{Morse}(\Gamma, SL(3))$ is *open* in $hom(\Gamma, SL(3))$.
- Thm: (Structural stability) The homeo $\partial_{\infty}\Gamma \cong_{\Gamma} \Lambda_{\rho(\Gamma)}$ changes continuously on $\rho \in \text{hom}_{Morse}(\Gamma, SL(3))$.
 - Cor: (Algorithmic recognition) There is an algorithm that stops iff $\rho \in \text{hom}(\Gamma, SL(3))$ is Morse.

Anosov representations

• Assume Γ nonelementary word hyperbolic, $\rho \in \text{hom}(\Gamma, SL(3))$.

Def: ρ is Anosov if

- (i) there exists $\beta: \partial_{\infty}\Gamma \to \operatorname{Flag}(\mathbf{P}^2)$ antipodal equiv. embedding (for $\xi_1 \neq \xi_2 \in \partial_{\infty}\Gamma$, $\beta(\xi_1)$ opposite (generic) to $\beta(\xi_2)$) and
- (ii) for every $q: \mathbf{N} \to \Gamma$ discrete geodesic ray, with q(0)=1 and $q(+\infty)=\xi\in\partial_\infty\Gamma$, $\rho(q(n))^{-1}$ acts as an expansion on $T_{\beta(\xi)}\mathrm{Flag}(\mathbf{P}^2)$ with <u>unbounded</u> expansion factor.

Thm:

- (i) ρ is Morse iff it is Anosov
- (ii) ρ is Anosov in this sense iff it is Anosov in the sense of Labourie, and Guichard and Wienhard (using geodesic flow and uniform exponential expansion factors).

Question: Is there a coarse Lipschitz retraction $X \to \Gamma x$?

THANKS FOR YOUR ATTENTION