Deforming Euclidean cone 3-manifolds into hyperbolic and spherical ones

Joan Porti (UAB) and Hartmut Weiss (LMU)

Trois Journées de Topologie à Orsay 7 décembre 2005

• A Euclidean cone 3-manifold is loc. isometric to ${\bf R}^3$ except for the singular locus Σ . Σ is a graph locally isometric to

• A Euclidean cone 3-manifold is loc. isometric to \mathbb{R}^3 except for the singular locus Σ . Σ is a graph locally isometric to

• A Euclidean cone 3-manifold is loc. isometric to \mathbb{R}^3 except for the singular locus Σ . Σ is a graph locally isometric to

Euclidean can be replaced by spherical or hyperbolic.

hyperbolic:
$$ds^2 = dr^2 + \left(\frac{\alpha}{2\pi}\right)^2 \sinh^2(r) d\theta^2 + \cosh^2(r) dh^2$$

• A Euclidean cone 3-manifold is loc. isometric to \mathbb{R}^3 except for the singular locus Σ . Σ is a graph locally isometric to

Euclidean can be replaced by spherical or hyperbolic.

spherical:
$$ds^2 = dr^2 + (\frac{\alpha}{2\pi})^2 \sin^2(r) d\theta^2 + \cos^2(r) dh^2$$

• A Euclidean cone 3-manifold is loc. isometric to \mathbb{R}^3 except for the singular locus Σ . Σ is a graph locally isometric to

- Euclidean can be replaced by spherical or hyperbolic.
- Locally defined as the metric cone of (n-1)-spherical cone manifolds.

Definition: C^3 is almost product if $C^3 = E^2 \times S^1/G$ with $G < \mathrm{Isom}(E^2) \times \mathrm{Isom}(S^1)$ finite.

Definition: C^3 is almost product if $C^3 = E^2 \times S^1/G$ with $G < \mathrm{Isom}(E^2) \times \mathrm{Isom}(S^1)$ finite.

• almost product \Leftrightarrow fibered by S^1 and S^1/C_2 . The Borromean rings example is almost product

• If Σ_C has N circles and edges,

 $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ multiangle of cone angles.

• If Σ_C has N circles and edges,

 $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ multiangle of cone angles.

Is there any structure when deforming $\bar{\alpha}$?

• If Σ_C has N circles and edges, $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ multiangle of cone angles.

Is there any structure when deforming $\bar{\alpha}$?

• If Σ_C has N circles and edges, $\bar{\alpha} = (\alpha_1, \dots, \alpha_N)$ multiangle of cone angles.

Is there any structure when deforming $\bar{\alpha}$?

C closed, or., Euclidean cone 3-mfld. with cone angles $\leq \pi$

Theorem (P. & Weiss)

If C is not almost product, then for every $\overline{\alpha} \in (0, \pi)^N$ there is a unique cone metric on C of curvature 0, -1 o 1.

• In addition $E=\{\overline{\alpha} \text{ es multiangule of Euclidean metric}\}$ is a hypersurface that separates the hyperbolic and spherical compts.

C closed, or., Euclidean cone 3-mfld. with cone angles $\leq \pi$

Theorem (P. & Weiss)

If C is not almost product, then for every $\overline{\alpha} \in (0, \pi)^N$ there is a unique cone metric on C of curvature 0, -1 o 1.

• In addition $E=\{\overline{\alpha} \text{ es multiangule of Euclidean metric}\}$ is a hypersurface that separates the hyperbolic and spherical compts.

In a vertex $\alpha + \beta + \gamma > 2\pi$

- If $\alpha + \beta + \gamma = 2\pi$, the metric is hyperbolic and has a cusp.
- If $\alpha + \beta + \gamma < 2\pi$, hyp. metric and tot. geodesic boundary.

C closed, or., Euclidean cone 3-mfld. with cone angles $\leq \pi$

Theorem (P. & Weiss)

If C is not almost product, then for every $\overline{\alpha} \in (0, \pi)^N$ there is a unique cone metric on C of curvature 0, -1 o 1.

• In addition $E=\{\overline{\alpha} \text{ es multiangule of Euclidean metric}\}$ is a hypersurface that separates the hyperbolic and spherical compts.

• If l_1, \ldots, l_N are longitudes of circles and edges of Σ , then $l_1 d \alpha_1 + \cdots + l_N d \alpha_N = 0$ is the tangent space to E

C closed, or., Euclidean cone 3-mfld. with cone angles $\leq \pi$

Theorem (P. & Weiss)

If C is not almost product, then for every $\overline{\alpha} \in (0,\pi)^N$ there is a unique cone metric on C of curvature 0, -1 o 1.

- In addition $E=\{\overline{\alpha} \text{ es multiangule of Euclidean metric}\}$ is a hypersurface that separates the hyperbolic and spherical compts.
- If l_1, \ldots, l_N are longitudes of circles and edges of Σ , then $l_1 d \alpha_1 + \cdots + l_N d \alpha_N = 0$ is the tangent space to E
- (Schläfli: For curvature K, $K d Vol(C_t) = \sum_{i=1}^{1} l_i d \alpha_i$)

C closed, or., Euclidean cone 3-mfld. with cone angles $\leq \pi$

Theorem (P. & Weiss)

If C is not almost product, then for every $\overline{\alpha} \in (0, \pi)^N$ there is a unique cone metric on C of curvature 0, -1 o 1.

- In addition $E=\{\overline{\alpha} \text{ es multiangule of Euclidean metric}\}$ is a hypersurface that separates the hyperbolic and spherical compts.
- If l_1, \ldots, l_N are longitudes of circles and edges of Σ , then $l_1 d \alpha_1 + \cdots + l_N d \alpha_N = 0$ is the tangent space to E
- More natural transition Euclidean-spherical in the proof of the orbifold theorem (in particular without Ricci flow...).

Steps of the proof:

- Local deformations of Euclidean structures and "regeneration" into hyperbolic or spherical.
- 2. Global results in $(0,\pi)^N$.

Steps of the proof:

- Local deformations of Euclidean structures and "regeneration" into hyperbolic or spherical.
- 2. Global results in $(0,\pi)^N$.

- Step 2 uses ideas from Boileau-Leeb-P. and Cooper-Hodgson-Kerckhoff in the orbifold thm. and a local rigidity thm. of Weiss. I only discuss step 1.
- Particular case in [P., Topology 1998], assuming N=1 and a hypothesis in cohomology.

Steps of the proof:

- Local deformations of Euclidean structures and "regeneration" into hyperbolic or spherical.
- 2. Global results in $(0,\pi)^N$.

- Step 2 uses ideas from Boileau-Leeb-P. and Cooper-Hodgson-Kerckhoff in the orbifold thm. and a local rigidity thm. of Weiss. I only discuss step 1.
- Particular case in [P., Topology 1998], assuming N=1 and a hypothesis in cohomology. ...when Larry was editor

A tool: the variety of representations

Want to deform incomplete metrics on $M = C - \Sigma$ that completes in a cone manifold.

$$\mathbf{X}^3 = \mathbf{H}^3, \; \mathbf{R}^3 \; \text{or} \; \mathbf{S}^3$$

$$\underline{\textit{Dev}} \colon \ \widetilde{M} \to \mathbf{X}^3$$
 (loc. isometry)

$$hol: \pi_1(M) \to \operatorname{Isom}^+(\mathbf{X}^3)$$
 (representation)

$$Dev(\gamma \cdot x) = hol(\gamma)(Dev(x))$$

A tool: the variety of representations

Want to deform incomplete metrics on $M = C - \Sigma$ that completes in a cone manifold.

$$\mathbf{X}^3 = \mathbf{H}^3, \; \mathbf{R}^3 \; \text{or} \; \mathbf{S}^3$$

$$\underline{\textit{Dev}} \colon \ \widetilde{M} \to \mathbf{X}^3$$
 (loc. isometry)

$$hol: \pi_1(M) \to \operatorname{Isom}^+(\mathbf{X}^3)$$
 (representation)

$$Dev(\gamma \cdot x) = hol(\gamma)(Dev(x))$$

- 1 Study $X(M,G) = hom(\pi_1(M),G)/G$ for $G = Isom^+(\mathbf{X}^3)$
- <u>2</u> From representations, deform the structures in *M* that complete in cone manifolds.

•
$$S^3 \cong SU(2)$$

$$(a,b) \in S^3 \subset \mathbf{C}^2 \mapsto \left(\begin{smallmatrix} a & b \\ -\bar{b} & \bar{a} \end{smallmatrix} \right) \in SU(2)$$

•
$$\underline{S^3 \cong SU(2)}$$
 $(a,b) \in S^3 \subset \mathbf{C}^2 \mapsto \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \in SU(2)$
• $\underline{SU(2) \times SU(2) \cong Spin(4)}$ $SU(2) \rightarrow SU(2)$ $\times p, q \in SU(2)$ $\times p \times q^{-1}$

•
$$\underline{S^3 \cong SU(2)}$$
 $(a,b) \in S^3 \subset \mathbf{C}^2 \mapsto \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2)$
• $\underline{SU(2) \times SU(2) \cong Spin(4)}$ $SU(2) \rightarrow SU(2)$
 $x \mapsto p x q^{-1}$ $\forall p, q \in SU(2)$

• $Spin(3) \cong SU(2) \subset SU(2) \times SU(2)$ diagonal (preserves Re(a) = 0).

•
$$\underline{S^3 \cong SU(2)}$$
 $(a,b) \in S^3 \subset \mathbf{C}^2 \mapsto \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2)$
• $\underline{SU(2) \times SU(2) \cong Spin(4)}$ $SU(2) \rightarrow SU(2)$ $x \mapsto p x q^{-1}$ $\forall p, q \in SU(2)$

- $Spin(3) \cong SU(2) \subset SU(2) \times SU(2)$ diagonal (preserves Re(a) = 0).
- (p,q) is a rotation of angle $\theta \Longleftrightarrow tr(p) = tr(q) = \pm 2\cos(\theta/2)$.

$$\begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \cdot \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \cdot \begin{pmatrix} e^{i\beta} & 0 \\ 0 & e^{-i\beta} \end{pmatrix}^{-1} = \begin{pmatrix} e^{i(\alpha-\beta)}a & e^{i(\alpha+\beta)}b \\ -e^{i(-\alpha-\beta)}\bar{b} & e^{i(-\alpha+\beta)}\bar{a} \end{pmatrix}$$

•
$$\underline{S^3 \cong SU(2)}$$
 $(a,b) \in S^3 \subset \mathbf{C}^2 \mapsto \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} \in SU(2)$
• $\underline{SU(2) \times SU(2) \cong Spin(4)}$ $SU(2) \rightarrow SU(2)$
 $x \mapsto p x q^{-1}$ $\forall p, q \in SU(2)$

- $Spin(3) \cong SU(2) \subset SU(2) \times SU(2)$ diagonal (preserves Re(a) = 0).
- (p,q) is a rotation of angle $\theta \iff tr(p) = tr(q) = \pm 2\cos(\theta/2)$.
- $X(M,SU(2))= \hom(\pi_1(M),SU(2))/SU(2)$, $M=C-\Sigma$ Hol. reps. of M in:

$$\{(\rho^+, \rho^-) \in X(M, SU(2)) \times X(M, SU(2)) \mid tr(\rho^+(\mu_i)) = tr(\rho^-(\mu_i))\}$$

 $\{\mu_1,\ldots,\mu_N\}$ = meridians of circles and axis of Σ

• $\operatorname{Isom}^+(\mathbf{H}^3) \cong PSL_2(\mathbf{C})$ ($\partial \mathbf{H}^3 \cong \mathbf{P}^1(\mathbf{C})$). $\operatorname{Isom}^+(\mathbf{H}^3) \cong SL_2(\mathbf{C})$

- $\operatorname{Isom}^+(\mathbf{H}^3) \cong PSL_2(\mathbf{C})$ ($\partial \mathbf{H}^3 \cong \mathbf{P}^1(\mathbf{C})$). $\operatorname{Isom}^+(\mathbf{H}^3) \cong SL_2(\mathbf{C})$
- $SU(2)\subset SL_2({\bf C})$ stabilizer of a point.

•
$$\operatorname{\underline{Isom}^+(\mathbf{H}^3)} \cong PSL_2(\mathbf{C})$$
 ($\partial \mathbf{H}^3 \cong \mathbf{P}^1(\mathbf{C})$). $\operatorname{\underline{Isom}^+(\mathbf{H}^3)} \cong SL_2(\mathbf{C})$

- $SU(2)\subset SL_2({\bf C})$ stabilizer of a point.
- $A \in SL_2(\mathbf{C})$ is a rotation of angle $\theta \iff tr(A) = \pm 2\cos(\theta/2)$.

$$\left(egin{array}{cc} e^{i heta/2} & 0 \ 0 & e^{-i heta/2} \end{array}
ight)$$
 has trace $\,\pm\,2\cos(heta/2)$

•
$$\underline{\operatorname{Isom}^+(\mathbf{H}^3) \cong PSL_2(\mathbf{C})}$$
 ($\partial \mathbf{H}^3 \cong \mathbf{P}^1(\mathbf{C})$). $\underline{\operatorname{Isom}^+(\mathbf{H}^3) \cong SL_2(\mathbf{C})}$

- $SU(2) \subset SL_2(\mathbf{C})$ stabilizer of a point.
- $A \in SL_2(\mathbf{C})$ is a rotation of angle $\theta \iff tr(A) = \pm 2\cos(\theta/2)$.
- $X(M, SL_2(\mathbf{C})) = \hom(\pi_1(M), SL_2(\mathbf{C}))/\!/SL_2(\mathbf{C})$, Hol. reps. of M in:

$$\{\rho \in X(M, SL_2(\mathbf{C})) \mid tr(\rho(\mu_i)) \in (-2, 2) \subset \mathbf{R}\}$$

 $\{\mu_1,\ldots,\mu_N\}$ = meridians of edges and circles of Σ

•
$$\operatorname{Isom}^+(\mathbf{H}^3) \cong PSL_2(\mathbf{C})$$
 ($\partial \mathbf{H}^3 \cong \mathbf{P}^1(\mathbf{C})$). $\operatorname{Isom}^+(\mathbf{H}^3) \cong SL_2(\mathbf{C})$

- $SU(2) \subset SL_2(\mathbf{C})$ stabilizer of a point.
- $A \in SL_2(\mathbf{C})$ is a rotation of angle $\theta \iff tr(A) = \pm 2\cos(\theta/2)$.
- $X(M, SL_2(\mathbf{C})) = \hom(\pi_1(M), SL_2(\mathbf{C}))/\!/SL_2(\mathbf{C})$, Hol. reps. of M in:

$$\{\rho \in X(M, SL_2(\mathbf{C})) \mid tr(\rho(\mu_i)) \in (-2, 2) \subset \mathbf{R}\}$$

 $\{\mu_1,\ldots,\mu_N\}=$ meridians of edges and circles of Σ

• $X(M, SL_2(\mathbf{C})) \subset \mathbf{C}^q$ algeb. and $X(M, SU(2)) \subset X(M, SL_2(\mathbf{C})) \cap \mathbf{R}^q$

Summary

	$\widetilde{\mathrm{Isom}^+(\mathbf{X}^3)}$	point	image of μ_i
		stabilizer	is a rotation
\mathbf{H}^3	$SL_2({f C})$	SU(2)	$tr(ho)(\mu_i) \in (-2,2)$
\mathbf{S}^3	SU(2) imes SU(2)	diagonal subg.	$tr(\rho^+)(\mu_i) = tr(\rho^-)(\mu_i)$

Summary

	$\widetilde{\mathrm{Isom}^+(\mathbf{X}^3)}$	point	image of μ_i
		stabilizer	is a rotation
\mathbf{H}^3	$SL_2({f C})$	SU(2)	$tr(ho)(\mu_i) \in (-2,2)$
\mathbf{S}^3	SU(2) imes SU(2)	diagonal subg.	$tr(\rho^+)(\mu_i) = tr(\rho^-)(\mu_i)$

What about $\mathrm{Isom}^+(\mathbf{R}^3)$?

•
$$\mathbf{R}^3 \to \operatorname{Isom}^+(\mathbf{R}^3) \to SO(3)$$

 $\phi(x) = Ax + b \mapsto A$

•
$$\mathbf{R}^3 \to \mathrm{Isom}^+(\mathbf{R}^3) \to SO(3)$$

 $\phi(x) = Ax + b \mapsto A$

•
$$\mathbf{R}^3 \to \mathrm{Isom}^+(\mathbf{R}^3) \xrightarrow{ROT} SU(2)$$

•
$$\mathbf{R}^3 \to \widetilde{\mathrm{Isom}^+(\mathbf{R}^3)} \overset{ROT}{\longrightarrow} SU(2)$$

• We view $\rho_0 = ROT \circ hol : \pi_1(M) \to SU(2)$ as representation in the stabilizer of a point in \mathbf{S}^3 or \mathbf{H}^3 .

•
$$\mathbf{R}^3 \to \widetilde{\mathrm{Isom}^+(\mathbf{R}^3)} \stackrel{ROT}{\longrightarrow} SU(2)$$

- We view $\rho_0 = ROT \circ hol : \pi_1(M) \to SU(2)$ as representation in the stabilizer of a point in \mathbf{S}^3 or \mathbf{H}^3 .
- TRANS: Isom⁺(\mathbf{R}^3) $\to \mathbf{R}^3$ is a cocycle:

$$\phi_1(x) = A_1x + b_1, \phi_2(x) = A_2x + b_2, \phi_1(\phi_2(x)) = A_1A_2x + (b_1 + A_2b_2)$$

•
$$\mathbf{R}^3 \to \widetilde{\mathrm{Isom}^+(\mathbf{R}^3)} \stackrel{ROT}{\longrightarrow} SU(2)$$

- We view $\rho_0 = ROT \circ hol : \pi_1(M) \to SU(2)$ as representation in the stabilizer of a point in \mathbf{S}^3 or \mathbf{H}^3 .
- TRANS: Isom⁺(\mathbf{R}^3) $\to \mathbf{R}^3$ is a cocycle:

$$\phi_1(x) = A_1x + b_1, \ \phi_2(x) = A_2x + b_2, \ \underline{\phi_1(\phi_2(x))} = A_1A_2x + (b_1 + A_2b_2)$$

• A. Weil: $T_{[\rho_0]}^{Zar}X(M,SU(2))\cong H^1(\pi_1M,su(2)_{Ad_{\rho_0}})$ $su(2)\cong {\bf R}^3$ $\rho_t(\gamma)=\rho_0(\gamma)(Id+t\,d(\gamma)+O(t^2)) \qquad d\colon \pi_1M\to su(2)_{Ad_{\rho_0}} \text{ cocycle}$

Euclidean holonomy: (ρ_0, v) , with $v \in T_{[\rho_0]}X(M, SU(2))$

	$\widetilde{\mathrm{Isom}^+(\mathbf{X}^3)}$	point	image of μ_i
		stabilizer	is a rotation
\mathbf{H}^3	$SL_2({f C})$	SU(2)	$tr(\rho)(\mu_i) \in (-2,2)$
\mathbf{S}^3	SU(2) imes SU(2)	diagonal subg.	$tr(\rho^+)(\mu_i) = tr(\rho^-)(\mu_i)$
${f R}^3$	([ho],v) in		
	TX(M,SU(2))		

	$\widetilde{\mathrm{Isom}^+(\mathbf{X}^3)}$	point	image of μ_i
	150III (A °)	stabilizer	is a rotation
\mathbf{H}^3	$SL_2({f C})$	SU(2)	$tr(\rho)(\mu_i) \in (-2,2)$
\mathbf{S}^3	SU(2) imes SU(2)	diagonal subg.	$tr(\rho^+)(\mu_i) = tr(\rho^-)(\mu_i)$
${f R}^3$	([ho],v) in $TX(M,SU(2))$	(ho,0)	$dtr_{\mu_i}(v)=0$

	$\widetilde{\mathrm{Isom}^+(\mathbf{X}^3)}$	point	image of μ_i
	$\mathbf{ISOIII} \ (\mathbf{A}^{\circ})$	stabilizer	is a rotation
\mathbf{H}^3	$SL_2({f C})$	SU(2)	$tr(ho)(\mu_i) \in (-2,2)$
\mathbf{S}^3	SU(2) imes SU(2)	diagonal subg.	$tr(\rho^+)(\mu_i) = tr(\rho^-)(\mu_i)$
${f R}^3$	([ho],v) in	(ho,0)	$d tr_{\mu_i}(v) = 0$
	TX(M,SU(2))		

• In all cases: $tr(
ho(\mu_i)) = \pm 2\cos\frac{\alpha_i}{2}$

	$\widetilde{\mathrm{Isom}^+(\mathbf{X}^3)}$	point	image of μ_i
	$\mathbf{ISOIII} \ (\mathbf{A}^{\circ})$	stabilizer	is a rotation
\mathbf{H}^3	$SL_2({f C})$	SU(2)	$tr(ho)(\mu_i) \in (-2,2)$
\mathbf{S}^3	SU(2) imes SU(2)	diagonal subg.	$tr(\rho^+)(\mu_i) = tr(\rho^-)(\mu_i)$
${f R}^3$	([ho],v) in	(ho,0)	$d tr_{\mu_i}(v) = 0$
	TX(M,SU(2))		

• In all cases: $tr(
ho(\mu_i)) = \pm 2\cos\frac{\alpha_i}{2}$

$$\bullet$$
 Objects to be studied:
$$\left\{ \begin{array}{l} X(M,SU(2))\subset X(M,SL_2({\bf C})) \\ tr_{\mu_i} \end{array} \right.$$

• (Hilden-Lozano-Montesinos) there is a cone metric on S^3 with singular locus the figure eight knot and cone angle α

hyperbolic if
$$\alpha<\frac{2\pi}{3}$$
 Euclidean if $\alpha=\frac{2\pi}{3}$ spherical if $\frac{2\pi}{3}<\alpha\leq\pi$

• (Hilden-Lozano-Montesinos) there is a cone metric on S^3 with singular locus the figure eight knot and cone angle α

hyperbolic if
$$\alpha<\frac{2\pi}{3}$$
 Euclidean if $\alpha=\frac{2\pi}{3}$ spherical if $\frac{2\pi}{3}<\alpha\leq\pi$

$$M=S^3-K$$

$$X(M,SL_2({f C}))=\{(x,y)\in {f C}^2\mid x^2=(y^2-1)(x-1)\} \quad {\sf with} \ y=tr_\mu$$

• Remark: dy vanishes on $(x,y)=(0,\pm 2\cos(\pi/3))=(0,\pm 1)$

$$M = S^3 - K$$

$$X(M,SL_2({f C})) = \{(x,y){f C}^2 \mid x^2 = (y^2-1)(x-1)\}$$
 with $y = tr_{\mu}$

- Remark: dy vanishes on $(x,y)=(0,\pm 2\cos(\pi/3))=(0,\pm 1)$
- Set $y = \pm 2\cos(\alpha/2)$ and look at:

$$y^{-1}(\mathbf{R}) = \{(x, y) \in X(M, SL_2(\mathbf{C})) \mid y \in \mathbf{R}\}\$$

Locally,
$$y = 1 - \frac{x^2}{2} + \cdots$$
 $\Rightarrow y^{-1}(\mathbf{R}) \approx \mathbf{R} \cup \sqrt{-1}\mathbf{R}$

Locally,
$$y=1-\frac{x^2}{2}+\cdots$$
, $\Rightarrow y^{-1}(\mathbf{R})\approx \mathbf{R}\cup\sqrt{-1}\mathbf{R}$

- $(\rho_{\alpha}^+, \rho_{\alpha}^-)$ spherical hol..
- ρ_{α} hyperbolic hol. ($\overline{\rho_{\alpha}}$ with opposite orientation).
- $\rho_{2\pi/3}$ rotational part of Euclidean hol.
- $v \in T_{\rho_{2\pi/3}}X(M,SU(2))$ translations of Euclidean hol.

Locally,
$$y=1-\frac{x^2}{2}+\cdots$$
, $\Rightarrow y^{-1}(\mathbf{R})\approx \mathbf{R}\cup \sqrt{-1}\mathbf{R}$

- $(\rho_{\alpha}^+, \rho_{\alpha}^-)$ spherical hol..
- ρ_{α} hyperbolic hol. ($\overline{\rho_{\alpha}}$ with opposite orientation).
- $\rho_{2\pi/3}$ rotational part of Euclidean hol.
- $v \in T_{\rho_{2\pi/3}}X(M,SU(2))$ translations of Euclidean hol.

$$\begin{cases} Im(\frac{d}{d\alpha}\rho_{\alpha_0}) = v \\ \frac{d}{d\alpha}\rho_{\alpha_0^+} - \frac{d}{d\alpha}\rho_{\alpha_0^-} = v \end{cases} \begin{cases} sl_2(\mathbf{C}) = su(2) \oplus su(2)\sqrt{-1} \\ su(2) \times su(2) = \text{diagonal} \oplus \text{antidiagonal.} \\ \text{Deforming Euclidean cone 3-manifolds into hyperbolic and spherical ones - p.13/20} \end{cases}$$

- 1. $\rho_0 = ROT \circ hol$ smooth point of X(M,SU(2)) and $X(M,SL_2(\mathbf{C}))$. Moreover $X(M,SL_2(\mathbf{C})) \cap \mathbf{R}^q = X(M,SU(2))$ locally.
- 2. $(tr_{\mu_1}, \ldots, tr_{\mu_N})$ loc. equiv. to $(z_1, \ldots, z_N) \mapsto (z_1^2, z_2, \ldots, z_N)$.

 Moreover $v = [TRANS \circ hol]$ spans $\ker \langle d \, tr_{\mu_1}, \ldots, d \, tr_{\mu_N} \rangle \cong \mathbf{R}$.

- 1. $\rho_0 = ROT \circ hol$ smooth point of X(M,SU(2)) and $X(M,SL_2(\mathbf{C}))$. Moreover $X(M,SL_2(\mathbf{C})) \cap \mathbf{R}^q = X(M,SU(2))$ locally.
- 2. $(tr_{\mu_1},\ldots,tr_{\mu_N})$ loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$.

 Moreover $v=[TRANS\circ hol]$ spans $\ker\langle d\,tr_{\mu_1},\ldots,d\,tr_{\mu_N}\rangle\cong\mathbf{R}$.

1+2 \Rightarrow the rep. spaces and tr_{μ_i} are the right ones.

- 1. $\rho_0 = ROT \circ hol$ smooth point of X(M,SU(2)) and $X(M,SL_2(\mathbf{C}))$. Moreover $X(M,SL_2(\mathbf{C})) \cap \mathbf{R}^q = X(M,SU(2))$ locally.
- 2. $(tr_{\mu_1},\ldots,tr_{\mu_N})$ loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$.

 Moreover $v=[TRANS\circ hol]$ spans $\ker\langle d\,tr_{\mu_1},\ldots,d\,tr_{\mu_N}\rangle\cong\mathbf{R}$.
 - 1+2 \Rightarrow the rep. spaces and tr_{μ_i} are the right ones.

- 1. $\rho_0 = ROT \circ hol$ smooth point of X(M,SU(2)) and $X(M,SL_2(\mathbf{C}))$. Moreover $X(M,SL_2(\mathbf{C})) \cap \mathbf{R}^q = X(M,SU(2))$ locally.
- 2. $(tr_{\mu_1},\ldots,tr_{\mu_N})$ loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$. Moreover $v=[TRANS\circ hol]$ spans $\ker\langle d\,tr_{\mu_1},\ldots,d\,tr_{\mu_N}\rangle\cong\mathbf{R}$.
 - 1+2 \Rightarrow the rep. spaces and tr_{μ_i} are the right ones.

3. Deformations of representations induce deformations of structures. (Conditions on infinitessimal isometries)

L^2 cohomology

$$T_{[\rho_0]}X(M,SU(2)) \cong H^1(\pi_1 M; su(2)_{Ad_{\rho_0}}) \cong H^1(M;TM)$$

$$v \longleftrightarrow [TRANS \circ hol] \longleftrightarrow [id]$$

(Weil and $su(2)_{Ad_{\rho}} = \mathbf{R}_{\rho}^{3}$)

L^2 cohomology

$$T_{[\rho_0]}X(M,SU(2)) \cong H^1(\pi_1 M; su(2)_{Ad_{\rho_0}}) \cong H^1(M;TM)$$

$$v \longleftrightarrow [TRANS \circ hol] \longleftrightarrow [id]$$

Theorem (Weiss):
$$H^1_{L_2}(M;TM)=\{w\in\Omega^1(M;TM)\mid \nabla w=0\}$$

L^2 cohomology

$$T_{[\rho_0]}X(M,SU(2)) \cong H^1(\pi_1 M; su(2)_{Ad_{\rho_0}}) \cong H^1(M;TM)$$

$$v \longleftrightarrow [TRANS \circ hol] \longleftrightarrow [id]$$

Theorem (Weiss):
$$H^1_{L_2}(M;TM)=\{w\in\Omega^1(M;TM)\mid \nabla w=0\}$$

Consequences:

- $H^1_{L^2}(M;TM) = \langle id \rangle \cong \mathbf{R}$ (C not almost-product)
- $0 \to H^1(M; TM) \to H^1(\partial M; TM)$ $(\partial M := \partial \overline{\mathcal{N}(\Sigma)})$

$$H^1(M,\partial M;TM) \longrightarrow H^1(M;TM) \longrightarrow H^1(\partial M;TM)$$

$$\searrow \qquad \nearrow \qquad \qquad H^1_{L^2}(M;TM)$$

id non-trivial in $H^1(\partial M;TM)$.

$[ho_0]=ROT\circ hol$ is a smooth point of dim N

•
$$\underline{\dim_{\mathbf{R}} T_{[\rho_0]}^{Zar} X(M, SU(2))} = \underline{\dim_{\mathbf{R}} \mathbf{H}^1(M; TM)} = \underline{\frac{1}{2} \dim_{\mathbf{R}} \mathbf{H}^1(\partial M; TM)} = \underline{N}$$

$$0 \to H^1(M;TM) \to H^1(\partial M;TM) \to H^2(M,\partial M;TM) \to 0$$

$[ho_0] = ROT \circ hol$ is a smooth point of dim N

• $\dim_{\mathbf{R}} T_{[\rho_0]}^{Zar} X(M, SU(2)) = \underline{N}$

$$0 \to H^1(M;TM) \to H^1(\partial M;TM) \to H^2(M,\partial M;TM) \to 0$$

• Elements in $T_{[\rho]}^{Zar}X(M,SU(2))$ could be non-integrable. There is an infinite sequence of obstructions in $H^2(\pi_1M,su(2))$.

$$0 \to H^2(M; TM) \to H^2(\partial M; TM) \to 0$$

Obstructions are natural and vanish for surfaces

 \Rightarrow they vanish for $\pi_1 M$.

$[ho_0] = ROT \circ hol$ is a smooth point of dim N

• $\dim_{\mathbf{R}} T_{[\rho_0]}^{Zar} X(M, SU(2)) = \underline{N}$

$$0 \to H^1(M;TM) \to H^1(\partial M;TM) \to H^2(M,\partial M;TM) \to 0$$

• Elements in $T_{[\rho]}^{Zar}X(M,SU(2))$ could be non-integrable. There is an infinite sequence of obstructions in $H^2(\pi_1M,su(2))$.

$$0 \to H^2(M;TM) \to H^2(\partial M;TM) \to 0$$

Obstructions are natural and vanish for surfaces \Rightarrow they vanish for $\pi_1 M$.

- As $sl_2(\mathbf{C}) = su(2) \times_{\mathbf{R}} \mathbf{C}$, the same argument gives:
 - smooth point of $X(M, SL_2(\mathbf{C}))$
 - locally X(M,SU(2)) is the real part of $X(M,SL_2(\mathbf{C}))$

• Want to see:

$$(tr_{\mu_1},\ldots,tr_{\mu_N})$$
 loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$.

• Want to see:

$$(tr_{\mu_1},\ldots,tr_{\mu_N})$$
 loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$.

 $\underline{\mathsf{Lema}}\ \ker\langle d\,tr_{\mu_1},\ldots,d\,tr_{\mu_N}\rangle = \langle v\rangle = \langle [TRANS\circ hol]\rangle = \langle id\rangle \cong \mathbf{R}.$

- \supseteq because $hol(\mu_i)$ is a rotation.
- \subseteq because $\ker \subset H^1_{L^2}(M;TM)$.

• Want to see:

$$(tr_{\mu_1},\ldots,tr_{\mu_N})$$
 loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$.

<u>Lema</u> $\ker \langle dtr_{\mu_1}, \dots, dtr_{\mu_N} \rangle = \langle v \rangle = \langle [TRANS \circ hol] \rangle = \langle id \rangle \cong \mathbf{R}.$

- \supseteq because $hol(\mu_i)$ is a rotation.
- \subseteq because $\ker \subset H^1_{L^2}(M;TM)$.

 \Rightarrow Up to permutation, $dtr_{\mu_2}, \ldots, dtr_{\mu_N}$ linearly independent.

$$\mathcal{C} = \{ [\rho] \in X(SL_2(\mathbf{C})) \mid tr_{\mu_i}(\rho) = ct_i, \ i = 2, \dots, N \}$$
 complex curve

$$dtr_{\mu_1}|_{\mathcal{C}} = 0 \Rightarrow tr_{\mu_1}|_{\mathcal{C}}$$
 constant or $z \mapsto z^k, k \geq 2$

• Want to see:

$$(tr_{\mu_1},\ldots,tr_{\mu_N})$$
 loc. equiv. to $(z_1,\ldots,z_N)\mapsto (z_1^2,z_2,\ldots,z_N)$.

<u>Lema</u> $\ker \langle dtr_{\mu_1}, \dots, dtr_{\mu_N} \rangle = \langle v \rangle = \langle [TRANS \circ hol] \rangle = \langle id \rangle \cong \mathbf{R}.$

- \supseteq because $hol(\mu_i)$ is a rotation.
- \subseteq because $\ker \subset H^1_{L^2}(M;TM)$.

 \Rightarrow Up to permutation, $dtr_{\mu_2}, \ldots, dtr_{\mu_N}$ linearly independent.

$$\mathcal{C} = \{ [
ho] \in X(SL_2(\mathbf{C})) \mid tr_{\mu_i}(
ho) = ct_i, \ i=2,\ldots,N \}$$
 complex curve
$$dtr_{\mu_1}|_{\mathcal{C}} = 0 \Rightarrow tr_{\mu_1}|_{\mathcal{C}} \text{ constant or } z \mapsto z^k, k \geq 2$$

Lema k=2

$$\ker \langle d\,tr_{\mu_1},\dots,d\,tr_{\mu_N} \rangle = \langle v \rangle = \langle [TRANS \circ hol] \rangle = \langle id \rangle \cong \mathbf{R}.$$

$$d\,tr_{\mu_1}|_{\mathcal{C}} = 0 \Rightarrow tr_{\mu_1}|_{\mathcal{C}} \text{ constant or } z \mapsto z^k, k \geq 2$$

$$k=2$$

$$\ker \langle d\,tr_{\mu_1},\dots,d\,tr_{\mu_N} \rangle = \langle v \rangle = \langle [TRANS \circ hol] \rangle = \langle id \rangle \cong \mathbf{R}.$$

$$d\,tr_{\mu_1}|_{\mathcal{C}} = 0 \Rightarrow tr_{\mu_1}|_{\mathcal{C}} \text{ constant or } z \mapsto z^k, k \geq 2$$

If k=3, then $tr_{\mu_1}|_{\mathcal{C}}^{-1}(\mathbf{R})$ has 4 paths satisfying $Im(\frac{d}{d\alpha}\rho_{\alpha_0})=v$. they give hyperbolic cone mflds. and contradict Schäfli.

$$\ker \langle d\,tr_{\mu_1},\dots,d\,tr_{\mu_N} \rangle = \langle v \rangle = \langle [TRANS \circ hol] \rangle = \langle id \rangle \cong \mathbf{R}.$$

$$d\,tr_{\mu_1}|_{\mathcal{C}} = 0 \Rightarrow tr_{\mu_1}|_{\mathcal{C}} \text{ constant or } z \mapsto z^k, k \geq 2$$

If k=3, then $tr_{\mu_1}|_{\mathcal{C}}^{-1}(\mathbf{R})$ has 4 paths satisfying $Im(\frac{d}{d\alpha}\rho_{\alpha_0})=v$. they give hyperbolic cone mflds. and contradict Schäfli.

$$\ker \langle d\,tr_{\mu_1},\dots,d\,tr_{\mu_N} \rangle = \langle v \rangle = \langle [TRANS \circ hol] \rangle = \langle id \rangle \cong \mathbf{R}.$$

$$d\,tr_{\mu_1}|_{\mathcal{C}} = 0 \Rightarrow tr_{\mu_1}|_{\mathcal{C}} \text{ constant or } z \mapsto z^k, k \geq 2$$

If k=3, then $tr_{\mu_1}|_{\mathcal{C}}^{-1}(\mathbf{R})$ has 4 paths satisfying $Im(\frac{d}{d\alpha}\rho_{\alpha_0})=v$. they give hyperbolic cone mflds. and contradict Schäfli.

•
$$Im(\frac{d}{d\alpha}\rho_{\alpha_0}) = v$$

$$\begin{cases} isom(\mathbf{X}^3) = so(3) \oplus T_p X^3 \\ sl_2(\mathbf{C}) = su(2) \oplus su(2)\sqrt{-1} \end{cases}$$

• Schläfli: $K d Vol(C_t) = \sum_{i=1}^{1} l_i d \alpha_i \Rightarrow \underline{\alpha_1}$ must decrease because we go from K Vol = 0 to K Vol < 0.

Regeneration conditions

Fix
$$p \in \mathbf{X}^3$$
 (= \mathbf{H}^3 or \mathbf{S}^3). $SU(2) = SO(3)$ stabilizer of p . $v = [TRANS \circ hol]$

$$\begin{cases} Im(\frac{d}{d\alpha}\rho_{\alpha_0}) = v \\ \frac{d}{d\alpha}\rho_{\alpha_0^+} - \frac{d}{d\alpha}\rho_{\alpha_0^-} = v \end{cases} \begin{cases} sl_2(\mathbf{C}) = su(2) \oplus su(2)\sqrt{-1} \\ su(2) \times su(2) = \text{diagonal} \oplus \text{antidiagonal}. \end{cases}$$

Regeneration conditions

Fix
$$p \in \mathbf{X}^3$$
 (= \mathbf{H}^3 or \mathbf{S}^3). $SU(2) = \widetilde{SO(3)}$ stabilizer of p . $v = [TRANS \circ hol]$

$$\begin{cases} Im(\frac{d}{d\alpha}\rho_{\alpha_0}) = v \\ \frac{d}{d\alpha}\rho_{\alpha_0^+} - \frac{d}{d\alpha}\rho_{\alpha_0^-} = v \end{cases} \begin{cases} sl_2(\mathbf{C}) = su(2) \oplus su(2)\sqrt{-1} \\ su(2) \times su(2) = \text{diagonal} \oplus \text{antidiagonal}. \end{cases}$$

Regeneration conditions

Fix
$$p \in \mathbf{X}^3$$
 (= \mathbf{H}^3 or \mathbf{S}^3). $SU(2) = \widetilde{SO(3)}$ stabilizer of p . $v = [TRANS \circ hol]$

$$\begin{cases} Im(\frac{d}{d\alpha}\rho_{\alpha_0}) = v \\ \frac{d}{d\alpha}\rho_{\alpha_0^+} - \frac{d}{d\alpha}\rho_{\alpha_0^-} = v \end{cases} \begin{cases} sl_2(\mathbf{C}) = su(2) \oplus su(2)\sqrt{-1} \\ su(2) \times su(2) = \text{diagonal} \oplus \text{antidiagonal}. \end{cases}$$

• Identify $T_p \mathbf{X}^3 \cong \mathbf{R}^3$ and use $exp_p \colon T_p \mathbf{X}^3 \to \mathbf{X}^3$ and homotheties to pass from \mathbf{R}^3 to \mathbf{X}^3 .

What happens to the Borromean rings?

The theorem doesn't apply because it is almost-product: can deform in product geometries $\mathbf{H}^2 \times \mathbf{R}$ and $\mathbf{S}^2 \times \mathbf{R}$ ($\alpha = \beta = \pi$, deform γ).

What happens to the Borromean rings?

The theorem doesn't apply because it is almost-product: can deform in product geometries $\mathbf{H}^2 \times \mathbf{R}$ and $\mathbf{S}^2 \times \mathbf{R}$ ($\alpha = \beta = \pi$, deform γ).

If we impose $\alpha = \beta = \gamma$, then we have deformations in \mathbf{H}^3 and \mathbf{S}^3 , because the theorem applies to the quotient by an action of $\mathbf{Z}/3\mathbf{Z}$

