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Introduction

In this book, we present important recent results on the geometry and topology
of 3-dimensional manifolds and orbifolds. Orbifolds are natural generalizations
of manifolds, and can be roughly described as spaces which locally look like quo-
tients of manifolds by finite group actions. They were introduced by I. Satake,
under the name V-manifold, and their importance in dimension 3 emerged from
the work of W. Thurston, who used them as tools for geometrizing 3-manifolds.
Orbifolds occur in many contexts, for instance as orbit spaces of group actions
on manifolds, or as leaf spaces of certain foliations.

A basic idea behind geometrization is the concept of uniformization, which
for us means studying a manifold M by putting a structure on its universal
cover M̃ that is preserved by the action of the fundamental group π1M . If the
structure is rigid enough, this gives information about M . More specifically, we
shall call geometry a homogeneous, simply-connected, unimodular Riemannian
manifold, and say that a manifold is geometric if it is diffeomorphic to the
quotient of a geometry by a discrete subgroup of its isometry group.

It has been known since the beginning of the twentieth century that every
compact surface is geometric: more precisely, it is either elliptic, Euclidean or
hyperbolic, i.e. can be obtained as the quotient of the round 2-sphere S2, the
Euclidean plane E2, or the hyperbolic plane H2 by a discrete group of isometries.

Some important properties of surfaces, e.g. linearity of the fundamental
group, can be deduced from this fact. Geometric structures on surfaces can
also be used to attack more difficult and subtle problems such as studying map-
ping class groups. Moreover, the Gauss-Bonnet formula provides a strong link
between geometry and topology in dimension 2.

In dimension 3, it is fairly easy to see that not every manifold is geometric.
However, it was W. Thurston’s groundbreaking idea that the situation should be
almost as nice: any compact 3-manifold should be uniquely decomposable along
a finite collection of disjoint embedded surfaces into geometric pieces. This is
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the content of his Geometrization Conjecture, formulated in the mid seventies,
and which we shall state more precisely in Chapter 1. Positive solutions of
many important problems in 3-manifold topology, including the famous Poincaré
Conjecture, as well the Universal Cover Conjecture, or residual finiteness of 3-
manifold groups, would follow from the Geometrization Conjecture.

Thurston observed that there are only eight 3-dimensional geometries: those
of constant curvature S3, E3, and H3; the product geometries S2 × R and
H2 × R; the twisted product geometries Nil and S̃L2(R), and finally Sol.
Among geometric manifolds, those modelled on H3 remain the more myste-
rious. Thus the Geometrization Conjecture reduces in principle any problem on
3-manifolds to combination theorems and understanding hyperbolic manifolds.
Hence Thurston’s work entailed a shift of emphasis from the purely topolog-
ical (combinatorial) methods of the 50’s and 60’s toward geometric methods.
It not only offers an approach to old topological problems, but also motivates
the study of geometric ones. In particular, it renewed Kleinian group theory,
which before Thurston was mainly considered from the point of view of complex
analysis, by bringing hyperbolic geometry and topology into it. This is still an
active field of research.

The Geometrization Conjecture is known to hold in various cases. The
first breakthrough was Thurston’s Hyperbolization Theorem, which covers an
important and fairly general class of 3-manifolds called Haken manifolds. Since
knot exteriors are included in this class, this result had spectacular applications
to knot theory, leading for instance to the solution of the Smith Conjecture.

The Geometrization Conjecture is also true for prime 3-manifolds whose
fundamental group contains a subgroup isomorphic to Z×Z, by combining the
result mentioned above with the full version of the Torus Theorem, including the
solution of the Seifert Fiber Space Conjecture. Lastly, it is known for a class of
‘manifolds with symmetries’, i.e. manifolds with finite group actions satisfying
certain properties. The geometrization of these manifolds is reduced to the
geometrization of the quotient orbifolds, which is the content of the Orbifold
Theorem.

The main purpose of this book is to present those results and some of the
ideas and techniques involved in their proofs. Some parts are covered in detail,
while others are only sketched. We have tried to give a hint of the various
methods and of the various parts of mathematics they draw ideas from: this
includes geometric topology, algebraic and differential geometry, and geometric
group theory. At several points we indicate connections with other fields in the
form of short surveys, references to the literature or open questions. We also
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supply some background material that is scattered in the literature or missing
from it.

The classification of the eight homogeneous 3-dimensional geometries is given
in Chapter 1. Chapter 2 provides background material for orbifold theory. The
existence of the canonical decomposition is established in Chapter 3, while in
Chapter 4 we present the fundamental properties of the class of Haken orbifolds.
Chapter 5 is concerned with a homotopic characterization of Seifert fibered
orbifolds, which is an important case of the Geometrization Conjecture. Chapter
6 is devoted to hyperbolic orbifolds and Thurston’s Hyperbolization Theorem for
Haken Orbifolds. In Chapter 7 we discuss the basic properties of representation
varieties and the Culler-Shalen theory of ideal points of curves. Chapter 8 deals
with Thurston’s construction of hyperbolic manifolds by Dehn filling and the
structure of the set of volumes of hyperbolic 3-orbifolds. Finally, a proof of the
Orbifold Theorem in a special case is outlined in Chapter 9.

We do not present here G. Perelman’s recent breakthrough in R. Hamilton’s
program for proving the Geometrization Conjecture using the so-called Ricci
flow equation. This approach relies on techniques from differential geometry
and global analysis which are outside the scope of this book.

Acknowledgements The first named author wishes to thank the Forschungs-
institut für Mathematik ETH Zürich for inviting him to give lectures on some
related material during a semester in 1998/99 and Diego Rattagi for taking notes
of these lectures. The second author wishes to thank his parents for constant
support and affection, and the geometry and topology group at Université du
Québec À Montréal for providing a stimulating atmosphere during part of the
time this book was written. He acknowledges support from a CRM-CIRGET fel-
lowship. The third author was partially founded by the Spanish MCYT through
grant BFM2003-03458 and by the Catalan DURSI through grant ACI1000-17.
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Chapter 1

Thurston’s eight geometries

In this chapter we present Thurston’s Geometrization Conjecture and explain
its interaction with some important problems in the topology and geometry
of 3-manifolds. We also give the classification of the eight homogeneous 3-
dimensional geometries involved in the Geometrization Conjecture.

By Moise’s Theorem [163] each topological 3-manifold admits a unique PL
or smooth structure. Hence throughout this monograph we will work in the
category of differentiable manifolds.

1.1 The Geometrization Conjecture

Recall that a Riemannian manifold X is called homogeneous if its isometry
group Isom(X) acts transitively. We call X unimodular if it has a quotient of
finite volume.

A geometry is a simply connected, complete, homogeneous, unimodular Rie-
mannian manifold satisfying the following maximality condition: there is no
Isom(X)-invariant Riemannian metric on X whose isometry group is strictly
larger than Isom(X). Two geometries X, X ′ are equivalent if there is a diffeo-
morphism φ : X → X ′ conjugating Isom(X) and Isom(X ′). Notice that φ is
not required to be an isometry, nor even a homothety.

Let X be a geometry. If Γ is a discrete subgroup of Isom(X) acting freely,
then the quotient space X/Γ is a smooth manifold with a natural Riemannian
metric which is locally isometric to X. If the action is not free, then the quotient
has a natural orbifold structure, as we will see in Chapter 2.

Let M be a smooth manifold (possibly with boundary). We say that M

admits an X-structure if IntM is diffeomorphic to some quotient X/Γ as above.
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A manifold is geometric if it admits an X-structure for some geometry X.

A geometry X is isotropic if Isom(X) acts transitively on the unit tangent
bundle T1X. Intuitively, this means that X looks the same in every direction.
This condition is equivalent to requiring that X has constant sectional curvature.
A classical result in Riemannian geometry (see e.g. [247]) asserts that in every
dimension n ≥ 2, there are exactly three isotropic geometries up to equivalence.
These are the n-sphere Sn, Euclidean n-space En and hyperbolic n-space Hn,
with constant sectional curvature equal to respectively +1, 0, and -1. The
fact that these spaces are unimodular is obvious for Sn (which is compact)
and En (which for each dimension n admits as compact quotient the n-torus
Tn = En/Zn). This is nontrivial for Hn (see e.g. [24, 236]).

A n-manifold is called spherical (resp. Euclidean, resp. hyperbolic) if it has
a Sn-structure (resp. a En-structure, resp. a Hn-structure). For closed mani-
folds, these three situations are mutually exclusive. Indeed, if M is spherical,
then π1M is finite, so M cannot be Euclidean or hyperbolic. If M is Euclidean,
then a theorem of Bieberbach (again see [247]) asserts that π1M has an abelian
subgroup of finite index, which implies that M cannot be hyperbolic.

The situation in dimension 2 is very special. Indeed, the three isotropic
geometries are the only ones; furthermore, every closed surface is geometric,
i.e. either spherical, Euclidean, or hyperbolic. This last fact can be proved by
direct construction once one knows the classification of surfaces, or deduced
from the Poincaré-Koebe Uniformization Theorem (see the discussion in [20].)

The fact that a closed surface F cannot have two structures modelled on
inequivalent geometries admits a more elementary proof than the one quoted
above for isotropic geometries in general dimension n. Indeed, it is a direct
consequence of the Gauss-Bonnet formula χ(F ) =

∫
F

K ds, where χ(F ) is the
Euler characteristic. The situation is therefore particularly nice: F is elliptic if
and only if χ(F ) > 0 (this gives S2 and RP2), Euclidean if and only if χ(F ) = 0
(this gives the 2-torus T2 and the Klein Bottle K2), and hyperbolic otherwise.
We shall see in Chapter 2 a more general statement for 2-dimensional orbifolds
(cf. Theorem 2.10).

In dimension 3 the situation is more complicated. Beside the three isotropic
geometries (S3,E3,H3), there are five anisotropic 3-dimensional geometries:
four geometries are straight line bundles over S2,E2 or H2 (S2 ×R,Nil,H2 ×
R, S̃L2(R)), and one geometry is modelled on the only simply connected uni-
modular Lie group Sol which is solvable, but not nilpotent. This classification
is explained in Section 1.2.

Thurston’s fundamental idea is that geometry should take a central part
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in the study of compact, orientable 3-dimensional manifolds, through decom-
positions of these manifolds into canonical geometric pieces. He proposed the
following conjecture:

Conjecture 1.1 (Geometrization Conjecture). The interior of any com-
pact orientable 3-manifold can be split along a finite collection of essential dis-
joint embedded spheres and tori into a canonical collection of 3-submanifolds
X1, . . . , Xn such that for each i, the manifold obtained from Xi by capping off
all sphere components by balls is geometric.

In the previous statement, an embedding of a closed connected surface in
a compact orientable 3-manifold M is called essential if it induces an injective
homomorphism of fundamental groups and if it does not bound a 3-ball nor
cobounds a product with a connected component of ∂M .

A special case of the Geometrization Conjecture is the well-known Poincaré
Conjecture. It claims the positive answer to a question raised by Poincaré in
1904 [184], and is one of the leading open problems in low dimensional topology.

Conjecture 1.2 (Poincaré Conjecture). Any closed, simply-connected 3-
manifold is homeomorphic to S3.

More generally, the Geometrization Conjecture would imply that every closed,
orientable, aspherical 3-manifold is determined, up to homeomorphism, by its
fundamental group. This is a special case of the so-called Borel conjecture and
will be discussed further in Section 4.4.

The groups which are fundamental groups of compact surfaces are known.
The Poincaré-Koebe Uniformization Theorem shows that the fundamental group
of a surface acts isometrically on the round sphere S2, the Euclidean plane E2 or
the hyperbolic plane H2. This geometric action is reflected in algebraic prop-
erties of the group. For instance, it provides solutions of the word problem
and the conjugacy problem. By contrast, any finitely presented group is the
fundamental group of some compact 4-manifold.

Characterizing algebraically the class of fundamental groups of compact 3-
manifolds is still an open problem. If M is a compact orientable 3-manifold
satisfying the conclusion of the Geometrization Conjecture, then π1M is the
fundamental group of a graph of groups whose vertices are discrete subgroups
of isometries of the 3-dimensional geometries above, and edges are trivial or
isomorphic to Z2. One can deduce from this the solvability of the word and
the conjugacy problems for these groups, see [64, 189]. In general these two
questions are still unsolved for the fundamental group of a compact 3-manifold.
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The topological background for Thurston’s Geometrization Conjecture is
given by a splitting of the compact, orientable 3-manifold along a finite collection
of disjoint essential spheres and tori into canonical pieces. The existence of this
decomposition is a central result in the study of 3-manifolds, which is presented
in a more general context in Chapter 3.

An orientable 3-manifold M is irreducible if any embedding of the 2-sphere
into M extends to an embedding of the 3-ball into M . This notion is crucial
for the study of topological properties of 3-manifolds. The connected sum of
two orientable 3-manifolds is the orientable 3-manifold obtained by pulling out
the interior of a 3-ball in each manifold and gluing the remaining parts together
along the boundary spheres.

The first stage of the decomposition, due to H. Kneser [128] and J. Milnor
[159], expresses any compact, orientable 3-manifold M as the connected sum of
3-manifolds that are either homeomorphic to S1 × S2 or irreducible. Moreover,
the connected summands are unique up to order and orientation-preserving
homeomorphism.

The second stage is more subtle. Let M be a compact, orientable, irreducible
3-manifold. An embedded torus in M is called canonical if it can be isotoped
off any embedded torus. Then a maximal, finite (maybe empty) collection of
disjoint, non-parallel, essential, canonical tori exists and is unique up to isotopy.
It cuts M into 3-submanifolds that are homotopically atoroidal or Seifert fibered,
where the definitions are as follows.

A compact orientable 3-manifold M is homotopically atoroidal if π1M is
not virtually abelian and if every subgroup of π1M isomorphic to Z ⊕ Z is
conjugated to a subgroup of the fundamental group of a component of ∂M . It
is Seifert fibered if it admits a foliation by circles such that each circle has a
saturated tubular neighborhood. We will see in Section 1.3 that every Seifert
fibered manifold has a geometric structure modelled on one of the six geometries:
S3,E3,S2 ×R,Nil,H2 ×R, S̃L2(R).

This decomposition along canonical essential tori, also called JSJ-decompo-
sition, was first proved by W. Jaco and P. Shalen [115] and K. Johannson
[118] for Haken manifolds, i.e. compact, orientable, irreducible 3-manifolds that
contain closed essential surfaces or have a non-empty boundary.

The general case is implied by the following result, which is an important
step towards the Geometrization Conjecture:

Theorem 1.3 (Torus Theorem). Let M be a compact, orientable 3-manifold.
If M is not homotopically atoroidal, then either M has a non-trivial JSJ-
decomposition or M is Seifert fibered.
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This theorem answers a long-standing conjecture and is the conjunction of
the works of several authors, using a wide range of techniques (A. Casson and
D. Jungreis [41], D. Gabai [77], G. Mess [158], P. Scott [199, 200] and P. Tukia
[234]); see Chapter 5.

From the Kneser-Milnor prime decomposition, the JSJ-decomposition and
the torus theorem, one sees that Thurston’s Geometrization Conjecture reduces
to the case of homotopically atoroidal 3-manifolds. It splits into two uniformiza-
tion conjectures dealing with the spherical or hyperbolic geometries, according
to whether the fundamental group is finite or not.

Conjecture 1.4 (Elliptization). A closed, orientable 3-manifold is spherical
if and only if its fundamental group if finite.

Conjecture 1.5 (Hyperbolization). A compact, orientable 3-manifold is hy-
perbolic if and only if it is homotopically atoroidal and has infinite fundamental
group.

Conjecture 1.4 covers two difficult conjectures, the Poincaré Conjecture 1.2
and the Spherical Space Form Conjecture. The latter asserts that a closed
3-manifold covered by the sphere S3 is spherical.

Thurston’s fundamental contribution to his Geometrization Conjecture is
the proof of the Hyperbolization Conjecture for the important class of Haken
manifolds, see Chapter 6, Section 6.3:

Theorem 1.6 (Hyperbolization of Haken manifolds). A Haken 3-manifold
is hyperbolic iff it is homotopically atoroidal.

The discussion above implies the following:

Corollary 1.7. The Geometrization Conjecture holds for Haken manifolds.

The proof of Thurston’s Hyperbolization Theorem is long and difficult. A
detailed proof can be found in the monographs [120], [176, 177] and the articles
[230, 231, 232], [151, 152], [165]; see [14] and [153] for an overview.

More recently an equivariant version of the Geometrization Conjecture has
been established for compact, orientable, irreducible 3-manifolds admitting non-
free actions of finite groups of orientation preserving diffeomorphisms, see [16,
17], [43], [229] and Chapter 9.

Theorem 1.8. Let M be a compact, orientable and irreducible 3-manifold.
Let G ⊂ Diff+(M) be a finite, non-trivial subgroup acting on M with non-
trivial stabilizers. Then there exists a (possibly empty) G-invariant collection of
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disjoint and non-parallel canonical tori which splits M into geometric pieces on
which G acts isometrically.

By Moise’s theorem [163] each 3-manifold can be triangulated. It follows
that each closed orientable 3-manifold M is obtained by gluing two handlebod-
ies along their boundaries; for one of the handlebodies one can take a regular
neighborhood of the 1-skeleton of a triangulation of M . The Heegaard genus of
M is the smallest possible genus for the handlebodies in such a decomposition
of M . For example M has Heegaard genus 0 iff M is the 3-sphere S3. It has
Heegaard genus 1 iff it is S1×S2 or a lens space (i.e. a quotient of S3 by a free,
cyclic, orthogonal action). In particular, manifolds with Heegaard genus zero
or one are geometric.

Since the hyperelliptic involution on a genus 2 surface is central in the map-
ping class group, it extends on both sides to an involution on M with non-empty
fixed point set. Hence a straightforward corollary of Theorem 1.8 is:

Corollary 1.9. The Geometrization Conjecture holds true for a compact ori-
entable 3-manifold of Heegaard genus at most two.

The natural object to consider for the proof of Theorem 1.8 is the quotient of
the manifold M by the group G, equipped with its so-called orbifold structure:
this structure records the nonfree group action.

Roughly speaking an orientable n-dimensional orbifold is a metrizable space
where each point has a neighborhood diffeomorphic to the quotient of Rn by a
finite subgroup of SO(n). This local finite subgroup varies from point to point,
and the set of points where it is not trivial is called the singular locus. A precise
definition of orbifold is given in Chapter 2.

The notion of orbifold has been introduced by I. Satake [205]. It extends
naturally the classical notion of manifold. An orbifold is a manifold iff its
singular locus is empty. An orbifold is not necessarily globally the orbit space
of a finite group action or even of a properly discontinuous group action on some
manifold. If it is the case, the orbifold is called good ; it is called bad otherwise.

All basic notions for manifolds, like map, homotopy, isotopy, covering and
fundamental group, extend to the category of orbifolds, see Chapter 2. In the
case of good orbifolds, these notions correspond to the equivariant notions in
the universal covering, which is a manifold.

If a compact, orientable 3-orbifold does not contain any bad 2-suborbifold,
then it admits a splitting along a finite collection of disjoint essential spherical
and toric 2-suborbifolds into canonical 3-suborbifolds, where spherical and toric
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2-suborbifolds are defined as finite quotients of a 2-sphere or a 2-torus. This
splitting is explained in Chapter 3, see also [22].

These canonical building blocks out of which the 3-orbifold may be con-
structed are conjectured to be geometric, i.e. to be the orbit spaces of one of
the eight geometries by a discrete (but not necessarily torsion free) group of
isometries. This is the natural extension of Thurston’s Geometrization Conjec-
ture to the setting of orbifolds without bad 2-suborbifold. This version of the
Geometrization Conjecture is presented in Chapter 3, Section 3.7.

In the orbifold context, Theorem 1.8 is a special case of a geometrization
theorem for orbifolds, called the Orbifold Theorem. This theorem is presented
in Chapter 9, where a proof is outlined under some simplifying hypotheses.

1.2 3-dimensional geometries

In this section we present the eight 3-dimensional geometries, in decreasing order
of the size of the isotropy group. For each geometry, we give a few examples
of closed 3-manifolds modelled on it, showing that it is unimodular. General
references for this section are [198, 224].

Isotropic geometries

• Spherical geometry S3.

The isometry group is the orthogonal group O(4). Manifolds with spher-
ical geometry have finite fundamental group and are classified by their
fundamental group and Reidemeister torsion. Classical examples are S3

itself, lens spaces (see [106]), and the Poincaré homology sphere.

• Euclidean geometry E3.

The group of isometries (also called rigid motions of Euclidean space) is
the semidirect product

Isom(E3) ∼= R3 oO(3)

where R3 acts by translations and O(3) by rotations. There are only six
closed orientable manifolds with this geometry, and four non-orientable
ones. As a consequence of Bieberbach’s Theorem (1911), all of those
manifolds are finitely covered by the 3-torus T3.

• Hyperbolic geometry H3.

17



This is the richest, and currently least understood of the 8 geometries. In
fact, one can give an explicit list of 3-manifolds having a fixed geometry,
except for hyperbolic geometry. A geometric manifold admits a collapsing
sequence of metrics with pinched curvature (cf. Chapter 9) if and only if
it is not hyperbolic. Hyperbolic geometry will be discussed in some detail
in Chapter 6.

A well-known example of a closed hyperbolic 3-manifold is the Seifert-
Weber dodecahedral space, found in 1933 [244]. Another (not so well-
known) example was published by Löbell in 1931 [135]. Examples of hy-
perbolic 3-manifolds appear also in the context of arithmetic geometry
[25].

Trivial products

• S2 ×E1.

The isometry group of this geometry is the cartesian product Isom(S2)×
Isom(E1). There are only two closed, orientable 3-manifolds modelled on
this geometry: S2 × S1 and RP3 ]RP3.

• H2 ×E1.

Again the isometry group is a product Isom(H2) × Isom(E1). Products
of closed hyperbolic surfaces with S1 are examples of manifolds with this
geometry. In fact, each closed H2 × E1-manifold is a finite quotient of
such an example. Alternatively, H2 × E1-manifolds can be described as
Seifert fiber spaces (cf. below).

Twisted products

• Nil.

The geometry Nil is a line bundle over the Euclidean plane E2:

R → Nil → E2

equipped with a connection of constant curvature 1 and a homogeneous
Riemannian metric such that:

– the connection is Riemannian (horizontal directions are perpendicu-
lar to vertical ones);

– the metric on horizontal planes is the pullback of the Euclidean metric
on E2;
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– the metric is invariant by the action of R by vertical translations.

The isometry group is 4-dimensional, generated by lifts of the isometries
of E2 and vertical translations. Since the isometry group preserves the
connection, it also preserves the orientation of Nil (although it can reverse
the orientation of the base E2). Thus manifolds with geometry Nil are all
orientable. As examples we have S1-bundles over T2 with non-zero Euler
class.

An alternative way to describe this geometry is to consider the Heisenberg
group:

Nil = {




1 x z

0 1 y

0 0 1


 : x, y, z ∈ R}

so that the projection Nil → R2 maps each matrix to (x, y) ∈ R2. The
isometry group is an extension of the Heisenberg group itself acting on
the left.

• S̃L2(R).

This is a line bundle over the hyperbolic plane

R → S̃L2(R) → H2.

Again we equip the bundle with a connection of non-zero constant curva-
ture and consider the natural homogeneous metric associated to it: it is
the lift of the homogeneous metric on H2 on horizontal planes, the homo-
geneous metric on vertical fibers, and fibers are orthogonal to horizontal
planes.

We now explain how this bundle can be identified with the universal cov-
ering S̃L2(R) of PSL2(R) with the natural metric. The action of PSL2(R)
on H2 induces a faithful action on the unit tangent bundle T1H2, hence
PSL2(R) ∼= T1H2. Thus we have a natural identification between univer-
sal coverings, that identifies ˜PSL2(R) = S̃L2(R) with a line bundle. To
see why this bundle is the one we described in the previous paragraph,
note that H2 has constant curvature −1, hence the natural connection on
T1H2 has non-zero constant curvature.

The isometry group of this geometry is also 4-dimensional, generated by
lifts of isometries of H2 and “vertical” isometries of the fibers R. More
explicitly:

Isom(S̃L2(R)) ∼= (S̃L2(R)× Õ(2))/Z
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where O(2) ⊂ PSL2(R) is the stabilizer of a point and π1(PSL2(R)) ∼=
π1(SO(2)) ∼= Z. Again the isometry group preserves the orientation, be-
cause it preserves the connection, and therefore manifolds with this geom-
etry are orientable.

Typical examples are unit tangent bundles of hyperbolic surfaces.

• Sol.

Sol is a solvable Lie group given by the split extension R2 → Sol → R,
where t ∈ R acts on R2 by

(
et 0
0 e−t

)
.

We equip Sol with a left invariant metric, so that the eigenspaces of R2

are orthogonal, and the fibers are also orthogonal to the section 0 × R.
The isometry group has eight components, corresponding to the group
generated by the reflections in the R direction and in the directions of the
eigenspaces in R2, i.e. the group (Z/2Z)3. The connected component of
the identity Isom(Sol)0 is Sol itself, thus:

Isom(Sol) ∼= Solo (Z/2Z)3.

As examples there are torus bundles over S1 with Anosov monodromies,
i.e. given by matrices conjugate to

(
λ 0
0 1/λ

)
, λ > 1.

Proposition 1.10 (Classification of 3-dimensional geometries). Every
3-dimensional geometry is equivalent to one of the eight geometries described
above, and no two geometries on this list are equivalent.

Sketch of proof. Consider the pair (X,G) where X is a geometry and G ∼=
Isom(X)0 is the component of the identity of Isom(X). Let Gx ⊂ G be the
stabilizer of x ∈ X. Since Gx is connected, there are only three possibilities:
Gx

∼= SO(3), Gx
∼= SO(2) or Gx

∼= SO(1) ∼= {id}.

Case 1 Gx
∼= SO(3)

Then X is isotropic, so X is equivalent to either S3, E3 or H3.
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Case 2 Gx
∼= SO(2)

Then for each x ∈ X, TxX splits as Λx ⊥ Px, where Λx is a line invariant
by Gx and Px is an invariant plane orthogonal to Λx.

Because X is simply connected, we can choose a coherent orientation on Λx.
We obtain a unit vector field ~v on X which is G-invariant, i.e. ~vg(x) = Dgx(~vx)
for all g ∈ G. Moreover, {Px}x∈X is a G-invariant plane field.

Claim. The vector field ~v is isometric (i.e. the induced flow Φt is isometric).

Proof. Let Lx denote the trajectory of the induced flow Φt through x. Then for
each y ∈ Lx we have Gy

∼= Gx
∼= GL, because Φt commutes with the action of

G.
Given x ∈ X and Φt(x) ∈ Lx, let g ∈ G be such that g(Φt(x)) = x. We

want to show that D(gΦt)x : TxX → TxX is an isometry. Now D(gΦt)x is
the identity on Λx and commutes with the action of Gx by rotations, so it is
a composition of a rotation around Λx and a homothety on Px. We only need
to show that the homothety on Px is the identity. This is a consequence of the
existence of a finite volume quotient M . Indeed, the flow Φt induces a flow Φt

on M which preserves the volume and so Φt must transversally preserve the
area (on the induced plane field Px). Therefore, the flow Φt cannot expand or
contract a direction on the plane field Px.

We remark that the leaves Lx of this vector field do not accumulate, as
they are the fixed point set of Gx. Using that the flow Φt is isometric, we see
that the leaf space Y := X/{x ∼ Φt(x)} is Hausdorff; in fact one can find a
saturated tubular neighborhood of each trajectory. Then Y is a 2-dimensional
Riemannian manifold for the induced metric, which is homogeneous. Moreover,
Y is simply connected and complete. Hence Y is equivalent to either S2, E2 or
H2. The projection X → Y is a Riemannian line or circle bundle. The plane
field {Px}x∈X gives a G-invariant connection for this bundle. Its curvature is
constant since X is homogeneous, so after rescaling we may assume it is 0 or
+1.

{Px} integrable, curv. = 0 {Px} non-int., curvature = +1

K ≡ 1, Y = S2 S2 ×E1 T̃1S2 = S̃O(3) = S3

K ≡ 0, Y = E2 E2 ×E1 = E3 Nil (6= T̃1E2)

K ≡ −1, Y = H2 H2 ×E1 S̃L2(R) = T̃1H2

The “geometries” E2×E1 and T̃1S2 are clearly not maximal (i.e. the isom-
etry groups, which a priori have dimension 4, can be included in larger ones of
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dimension 6). Thus they are not geometries in our sense, and we are left with
S2 ×E1, Nil, H2 ×E1 and S̃L2(R).

Case 3 Gx is trivial.
Since G acts transitively, X ∼= G/Gx = G and X is a unimodular Lie group

(i.e. X has a bi-invariant measure).

Proof. Since X is unimodular, there exists a discrete subgroup Γ of G of finite
covolume. Let D be a fundamental domain for the action of Γ and µ be the
(left-invariant) Haar measure on X. Then µ(γD ∩D) = 0, for every γ 6= id. It
follows that µ(D) does not depend on the fundamental domain D. Since Dg

is a fundamental domain for all g ∈ G, µ(Dg) = µ(D). Now the divergence of
right-multiplication by g is constant, so µ is G-right invariant.

We are looking for the 3-dimensional unimodular Lie groups. Let y be the
3-dimensional associated Lie algebra, [x, y] the Lie bracket and x× y the cross
product. There is a unique linear map L : y → y such that L(x × y) = [x, y].
The Lie group is unimodular if and only if L is selfadjoint with respect to the
left invariant metric (cf. [161]).

Choose an orthonormal positively oriented base {e1, e2, e3} consisting of
eigenvectors for L, i.e. Lei = λiei. We get [e1, e2] = L(e1 × e2) = L(e3) = λ3e3

and analogously [e2, e3] = λ1e1, [e3, e1] = λ2e2. After rescaling and normaliza-
tion: λi ∈ {−1, 0, 1}, λ1 ≤ λ2 ≤ λ3.

The list of possible groups is the following:
(λ1, λ2, λ3) X = G

(+1, +1, +1) SU(2)

(−1, +1, +1) S̃L2(R)

(0, +1,+1) ˜Isom(E2) ∼= E3

(−1, 0,+1) Sol = Isom(E(1, 1))
(0, 0, +1) Nil
(0, 0, 0) R3

Here E(1, 1) denotes the Minkowski plane: R2 with the pseudometric of
signature (1,1).

Except for G = Sol, all these Lie groups G have a metric with an isometry
group of dimension ≥ 4. For instance SU(2) ∼= S3 has an isometry group of
dimension 6. We also mention that the isomorphism ˜Isom(E2) ∼= E3 gives a Lie
group structure on E3 which is not the usual one. It consists of isometries that
preserve a fixed foliation by parallel lines. Hence Sol is the only geometry we
get in this last case.
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1.3 Seifert fibered manifolds

Definition. A Seifert fibration on a compact, orientable 3-manifold M is a
partition of M into circles, called fibers, such that each fiber has a saturated
tubular neighborhood. A Seifert fibered manifold is a manifold that admits a
Seifert fibration.

This notion generalizes that of circle fibration, allowing the existence of
exceptional fibers around which the nearby fibers wind.

A key observation for the classification of spherical 3-manifolds is that if
Γ is a finite subgroup of O(4) acting freely on S3, then Γ must preserve the
orientation and commute with the action of some one-parameter orthogonal
group of transformations ([222]; see also [221] or [224, section 4.4]). It follows
that these manifolds admit a Seifert fibration.

In fact, it was this observation that led Seifert [203] to investigate in full
generality the manifolds that bear his name. Beside S3, five other geometries
yield Seifert fibered 3-manifolds.

Proposition 1.11. Every closed manifold with geometry S3, E3, Nil, S2×E1,
H2 ×E1 or S̃L2(R) is Seifert fibered.

Sketch of proof. This is not so hard for geometries Nil, S2 × E1, H2 × E1 and
S̃L2(R), because these geometries are fibered. For an elementary proof, see [198].
Here we sketch a more conceptual proof: any closed, connected manifold M

with one of these geometries has a natural isometric flow. Since Isom(M) is
compact, the closure G of this flow is a compact abelian group of isometries,
and therefore isomorphic to a torus. If dim G = 1, then one easily sees that M

is Seifert fibered. If dimG = 2, then M is a lens space or a torus bundle over
S1, according to whether the orbit space of the flow is an interval or a circle. If
dim G = 3, then the orbit space of the flow is a point and M ∼= T3.

For spherical and Euclidean 3-manifolds, the existence of a Seifert fibration
can be deduced from the classification of spherical and Euclidean 3-manifolds
[174, 198].

Remark. There are orbifolds with geometry E3 and S3 which are not orbifold-
Seifert fibered [54, 57].

To prove the converse of the previous proposition, we need some material
from Chapter 2. A Seifert fibration may be viewed as an orbifold fibration by cir-
cles over a two dimensional orbifold, called the base. The following proposition
will be proved in Chapter 2 for the general case of orbifolds, see Proposition 2.13
in Section 2.4.
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Proposition 1.12. If M is a Seifert fibered manifold, then it has geometry E3,
S3, Nil, S2 ×E1, H2 ×E1 or S̃L2(R).

1.4 Large scale geometry

Definition. Let (X1, d1) and (X2, d2) be two metric spaces. We say that a map
f : X1 → X2 is a quasi-isometry if there exist λ ≥ 1 and C ≥ 0 such that:

i. The inequality

λ−1 d1(x, x′)− C ≤ d2(f(x), f(x′)) ≤ λ d1(x, x′) + C

holds for any x, x′ ∈ X1.

ii. Every point of X2 is C-close to the image of f .

We say that (X1, d1) is quasi-isometric to (X2, d2) if there exists a quasi-iso-
metry f : X1 → X2.

This defines an equivalence relation between metric spaces. (To prove that
the relation is symmetric one needs the axiom of choice.)

Two equivalent geometries are quasi-isometric.
Let Γ be a finitely generated group and S a generating set. We define a

metric on Γ, called the word metric, by setting dS(γ1, γ2) equal to the least
integer n ≥ 0 such that γ−1

1 γ2 can be written as a product of n elements of
S ∪ S−1. It is easy to check that if S, S′ are two generating sets for Γ, then
(Γ, dS) and (Γ, dS′) are quasi-isometric.

Thus it makes sense to say that a finitely generated group is quasi-isome-
tric to a geometry. In fact more is true. Recall that two groups Γ and Λ are
weakly commensurable if there is a finite sequence of groups Γ = Γ1, . . . , Γn =
Λ such that Γi+1 is isomorphic to a finite index subgroup of Γi, or to the
quotient of Γi by a finite normal subgroup. Then one can show that two weakly
commensurable, finitely generated groups are quasi-isometric.

The link between groups and geometries is provided by the following fun-
damental proposition due independently to Efremovic̆, S̆varc and Milnor. (See
[160] and also [86, 120, 32].)

Proposition 1.13. Let X be a complete Riemannian manifold. Let Γ be a
group acting properly and cocompactly on X by isometries. Then Γ is finitely
generated and quasi-isometric to X.
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Hence if X is a geometry and M is a closed manifold with an X-structure,
then π1M is quasi-isometric to X. Thus we are led to two basic questions:
classify geometries up to quasi-isometry, and determine which groups are qua-
si-isometric to a given geometry.

In dimension 2, the situation is as rigid as can be expected:

Proposition 1.14. The three 2-dimensional geometries S2, E2, H2 are pair-
wise not quasi-isometric.

Theorem 1.15. Let X be a 2-dimensional geometry and Γ be a finitely gene-
rated group. Then Γ is quasi-isometric to X if and only if Γ is weakly commen-
surable to some cocompact discrete subgroup of Isom(X).

Proposition 1.14 is not difficult. It is obvious that S2, being bounded as a
metric space, is quasi-isometric to neither E2 nor H2. It is slightly less obvious
that E2 and H2 are not quasi-isometric. To see this one may use Gromov hy-
perbolicity (cf. Chapter 6) or the notion of growth function of a group, defined
below. By contrast, Theorem 1.15 is a deep result following from work of Gro-
mov [93] for E2 and Tukia [234], Gabai [77], Casson-Jungreis [41] for H2. We
shall have to say more about this in Chapters 5 and 6.

The growth function of a finitely generated group Γ with generating set S

is the function n 7→ #BS(n) where BS(n) is the ball of radius n around the
identity in the word metric associated to S. By finding an equivalent of the
growth functions of Z2 and π1Fg, one can deduce that E2 and H2 are not
quasi-isometric.

In dimension 3, things are not quite so nice.

Theorem 1.16 ([84]). The eight 3-dimensional geometries fall into seven qua-
si-isometry classes. The only inequivalent geometries that are quasi-isometric
are H2 ×R and S̃L2(R).

Theorem 1.17 ([38, 178]). Let X be a 3-dimensional geometry different from
H2×R, S̃L2(R), Sol, and Γ a finitely generated group. Then Γ is quasi-isome-
tric to X if and only if Γ is weakly commensurable to some cocompact discrete
subgroup of Isom(X).

This theorem provides an approach to the hyperbolization conjecture: let
M be an irreducible 3-manifold whose fundamental group is infinite and has no
Z2 subgroup. Then M is aspherical, so π1M is torsion free. Suppose that we
manage to prove that π1M is quasi-isometric to H3. Then Theorem 1.17 tells
us that π1M is weakly commensurable to a Kleinian group. In fact, since it is
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torsion free, it must be a Kleinian group. Then a theorem of Gabai-Meyerhoff-
Thurston [80] implies that M is hyperbolic.

For groups quasi-isometric to H2×R, there is a rigidity result due to E. Ri-
effel [191]. For other results on the theme of quasi-isometries and 3-manifolds,
see the series of papers by M. Kapovich and B. Leeb [121, 122, 123, 124]. The
quasi-isometry rigidity of Sol is a major open question (cf. [67].)
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Chapter 2

Orbifolds

In this chapter, we give an exposition of the theory of orbifolds, with a bias
towards low dimensions. We have tried to give a rather complete treatment of
the general theory, which seemed to be missing from the literature. However,
to keep the size of the book down, we leave many details as exercises.

2.1 Definitions

2.1.1 Orbifolds

We restrict our attention to smooth orbifolds. Throughout the book, actions of
discrete groups are smooth, unless stated otherwise.

Definition. A (smooth) n-orbifold is a metrizable topological space O endowed
with a collection {(Ui, Ũi, φi,Γi)}i, called an atlas, where for each i, Ui is an
open subset of O, Ũi is an open subset of Rn−1 × [0,∞), φi : Ũi → Ui is a
continuous map (called a chart) and Γi is a finite group of diffeomorphisms of
Ũi satisfying the following conditions:

i. The Ui’s cover O.

ii. Each φi factors through a homeomorphism between Ũi/Γi and Ui.

iii. The charts are compatible in the following sense: for every x ∈ Ũi and
y ∈ Ũj with φi(x) = φj(y), there is a diffeomorphism ψ between a neigh-
borhood V of x and a neighborhood W of y such that φj(ψ(z)) = φi(z)
for all z ∈ V .

For convenience, we will always assume that the atlas is maximal.
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Note that this definition extends the classical definition of a manifold. Thus
we say that the orbifold O is a manifold if all the Γi’s are trivial. Sometimes it
will be necessary to distinguish between the orbifold O and its underlying space,
i.e. the topological space obtained by forgetting the orbifold structure. When
we want to make the distinction clear, we will denote this underlying space by
|O|. In many cases, |O| will be a manifold, even when O is not a manifold (in
the sense above). We say that O is connected (resp. compact) if |O| is connected
(resp. compact).

The local group of O at a point x ∈ O is the group Γx defined as follows:
let φ : Ũ → U 3 x be a chart. Then Γx is the stabilizer of any point of φ−1(x)
under the action of Γ. It is well-defined up to isomorphism. If Γx is trivial, we
say that x is regular , otherwise it is singular . The singular locus is the set ΣO
of singular points of O. Notice that ΣO = ∅ if and only if O is a manifold. Since
every smooth action of a finite group on a manifold is locally conjugate to an
orthogonal action, local groups are isomorphic to subgroups of O(n). This fact
can be used to study the structure of the singular locus.

Example. We start with an example O with underlying space a triangle |O| ∼=
T . Points inside the edges of T are locally modelled on the quotient of R2 by a
reflection. The vertices of T are modelled on the quotient of R2 by a dihedral
group (generated by two reflections along two lines). In particular ΣO = ∂T .

Example. Here is a generic example that will appear repeatedly in this chapter.
Fix a knot K in S3 and a natural number n ≥ 2. Then there is a unique orbifold
with underlying space S3, singular locus K and such that non-trivial local groups
are cyclic of order n. The local model for all singular points is R3 with a cyclic
group of rotations of order n.

More generally, if K is a link and each component Ki is marked with a
number ni ≥ 2, then we can talk about the orbifold with underlying space S3,
singular locus K, and such that points of Ki have local group a cyclic group of
rotations of order ni.

Several notions can be defined for orbifolds by extending the definition for
manifolds in a rather straightforward way. The boundary of O, denoted by ∂O,
is the set of points x ∈ O such that there is a chart φi : Ũi → Ui 3 x with
φ−1

i (x) ⊂ Rn−1 × {0}.1 The orbifold O − ∂O is called the interior of O and
denoted by IntO.

1Note that the boundary of the underlying space |O| (when this makes sense, e.g. if |O| is

a manifold) is in general different from the underlying space of ∂O. For instance, the quotient

of R2 by a reflection has empty boundary in the orbifold sense, but its underlying space is a

half-plane.
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When ∂O = ∅, we say that O is closed if it is compact and open otherwise.
We call O orientable if it has an atlas {(Ui, Ũi, φi,Γi)}i such that each φi and
all elements of each Γi are orientation preserving.

2.1.2 Orbifold coverings

Let M be a manifold and Γ be a discrete group acting properly on M by dif-
feomorphisms. Then, as announced in the previous chapter, the quotient space
M/Γ has a natural orbifold structure. Here, natural means that the projection
map M → M/Γ is a covering map in the orbifold sense (defined below). An
orbifold is called good if it is obtained in this way, and bad otherwise. It is very
good if it is the quotient of a manifold by a finite group.

Example. We consider the involution τ with 4 fixed points in the 2-torus T2

as in Figure 2.1. The quotient O = T2/τ has underlying space the 2-sphere
and ΣO consists of 4 points. The local group of each singular point is a group
of rotations with two elements.

Figure 2.1: The action of the involution on the torus and its quotient.

An orbifold is called spherical (resp. discal , resp. annular , resp. toric) if it
is a quotient of a sphere (resp. a disk, resp. an annulus, resp. a torus) by an
isometric action. One defines similarly Euclidean (e.g. the previous example)
and hyperbolic orbifolds, extending the definitions of the previous chapter.

Here is the list of all discal 2-orbifolds (see Figure 2.2):

i. A 2-disk without singular points.

ii. A 2-disk with a single singular point modelled on a group of rotations.

iii. A triangle whose singular locus is the union of two edges. The local group
of each point interior to a singular edge is a two-element reflection group.
The vertex where the two singular edges meet has local group a dihedral
group.
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Figure 2.2: The discal 2-orbifolds

Example. Let O be the orbifold with underlying space |O| ∼= S3, singular
locus ΣO the trefoil knot and nontrivial local groups of order five. Then O is
the quotient of the Poincaré dodecahedral space by a cyclic orthogonal action
of order five. Hence O is spherical.

Definition. A covering of an orbifold O is an orbifold Ô with a continuous
map p : |Ô| → |O|, called a covering map, such that every point x ∈ O has a
neighborhood U with the following property: for each component V of p−1(U)
there is a chart φ : Ṽ → V such that p ◦ φ is a chart.

Using the language of orbifold coverings, an orbifold is good when it is cov-
ered by a manifold, and very good if it is finitely covered by a manifold.

Example. Let O be the orbifold with underlying space S3, singular locus a
link with k components, so that the local groups of the components have order
m1, . . . ,mk. A branched covering of S3 branched along the link ΣO with the
corresponding branching indices induces an orbifold covering of O.

When the underlying spaces are manifolds, an orbifold covering induces a
branched covering of the underlying manifolds.

Example. Let O(m, n) denote the orbifold with underlying space S3, singular
locus the Hopf link and local groups of orders m and n (depending of the compo-
nent). If n divides n′ and m divides m′, then obviouslyO(m,n) coversO(m′, n′).
We leave as an exercise to determine for which coefficients m,n, m′, n′ ∈ N the
orbifold O(m,n) covers O(m′, n′).

2.1.3 Maps and suborbifolds

A map between two orbifolds O and O′ is a continuous map f : |O| → |O′|
such that for every x ∈ O there are charts φi : Ũi → Ui 3 x and φ′j : Ũ ′

j → U ′
j

such that f(Ui) ⊂ U ′
j and the restriction f |Ui can be lifted to a smooth map
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f̃ : Ũi → Ũ ′
j which is equivariant with respect to some homomorphism Γi → Γ′j .

2

A map f : O → O′ is proper if f−1(∂O′) = ∂O. It is an immersion (resp. a
submersion) if in the definition the lifts f̃ are immersions (resp. submersions).
An embedding is an immersion whose underlying map is a homeomorphism with
the image. A diffeomorphism is a surjective embedding. A (proper) suborbifold
is the image of a (proper) embedding.

Let O, O′ be two orbifolds. The product orbifold O × O′ is defined in the
natural way. For y ∈ O′, the map f : O 3 x 7→ (x, y) ∈ O×O′ is an embedding.

Let O be an orbifold. Let Γ be a discrete group acting properly by diffeo-
morphisms on O. Then the orbit space has an orbifold structure such that the
canonical map from O is a covering map. This orbifold will be denoted by O/Γ.

2.1.4 Local models for low-dimensional orbifolds

We give a list of local models for orbifolds of dimension up to 3. For simplicity,
we will only consider orbifolds without boundary, and in dimension 3, we restrict
attention to orientable orbifolds. For a more thorough discussion, see [198, 51]
or [225, chap. XIII].

As noted before, what we have to do is essentially interpret the classification
of finite subgroups of O(1), O(2) and SO(3) in terms of orbifolds by describing
the quotient spaces and the isotropy information.

In dimension 1, the local models for orbifolds are given by finite subgroups of
O(1). There are two models: regular points (with local group the trivial group)
and singular points with local group Z2 acting by the reflection R 3 x 7→ −x ∈
R. Therefore there are only, up to homeomorphism, two closed 1-dimensional
orbifolds. They are both spherical: the circle S1, which is orientable, and the
nonorientable orbifold S1/Z2, where Z2 acts by a reflection through the x-
axis (thinking of S1 as the unit circle in R2). We call this last one mirrored
interval ; its underlying space is the closed interval I and its singular points are
the endpoints.

Let us proceed to dimension 2. It is well-known that any (nontrivial!) finite
subgroup of O(2) has one of the following types:

• A cyclic group Cn of order n generated by a rotation of angle 2π/n.

• A reflection group R of order 2 generated by a reflection through a line.

2We do not assume this homomorphism to be injective or surjective. Thus our definition

is less restrictive than Kapovich’s [120].
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• A dihedral group D2n of order 2n, generated by two reflections through
lines making an angle π/n.

From this, we get four classes of local models for singular points of 2-orbi-
folds: the three classes of groups acting on the whole plane R2 and the group
R ∼= Z/2Z acting on a half plane R × [0,+∞). It follows that the underlying
space of a 2-orbifold is always a 2-manifold (possibly with boundary not coming
from the boundary of the orbifold.) If we restrict our attention to orientable
orbifolds, all local groups must be of type Cn, so the singular locus is discrete.
Singular points of this type will be called cone points. In general, the singular
locus consists of a discrete set with local groups of type Cn together with a
polygon in the boundary of the underlying space, with local groups of type R

inside the edges, Dn in the vertices and R at the endpoint (if any).

In dimension 3, we only consider the orientable case. Any finite subgroup of
SO(3) is cyclic, dihedral, or isomorphic to one of the so-called platonic groups
T12, O24, I60, which are the isometry groups of the regular tetrahedron, octa-
hedron and icosahedron respectively.

It follows from this that the underlying space is a manifold. The singular
locus is a graph, whose vertices, if any, are trivalent: the local groups of edges
are cyclic, local groups of the vertices are of type D2n, T12, O24 or I60. The
order of the local groups of the edges concurrent to a singular vertex determines
the local group of the vertex, as in Figure 2.3.

Figure 2.3: The possible configurations of the singular locus in the 3-dimensional
orientable case.

The boundary has to be transverse to the singular locus.

We let the reader check that quotients of R3 by finite subgroups of SO(3)
are indeed as in Figure 2.3.
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2.2 Coverings and the Seifert-van Kampen The-

orem

In this section, all orbifolds are connected unless stated explicitly otherwise. We
discuss a generalization of the classical theory of coverings of topological spaces,
so that in particular we can define the fundamental group and the universal
covering of an orbifold. Since it would be too long to develop the theory from
scratch, we assume some familiarity with the classical theory (see e. g. [87].)

2.2.1 General theory

We first give definitions completely analogous to the classical definitions for
topological spaces. In the following, O is a fixed (connected) orbifold.

Definition. The deck transformation group of a covering p : O′ → O is the
group of all self-diffeomorphisms f : O′ → O′ such that p ◦ f = p. It is denoted
by Aut(O′, p), or simply Aut(O′) if the map p is understood.

A universal covering of O is a covering p : Õ → O such that for every
covering q : Ô → O, there is a covering r : Õ → Ô such that q ◦ r = p.

Two coverings p1 : O1 → O, p2 : O2 → O are equivalent if there is a
diffeomorphism f : O1 → O2 such that p2 ◦ f = p1.

Theorem 2.1 (Thurston [225]). Every (connected) orbifold O has a unique
(up to equivalence) universal covering, which will be denoted by Õ.

The proof of existence given in [225] goes roughly like this: there is a “fiber
product” construction which to a pair of coverings p1 : O1 → O, p2 : O2 → O
associates a covering p : O1 ×O O2 → O which factors through both p1 and p2.
The universal covering is then defined as an inverse limit. We will give a different
proof closer to the usual construction by homotopy classes of paths starting at a
fixed basepoint. Notice however that orbifolds are not locally simply-connected
in any reasonable sense at singular points, so we will need a refinement to take
care of that.

Definition. The fundamental group of O, denoted by π1O, is the deck trans-
formation group of its universal covering.

In general, π1O is different from π1(|O|). In fact there is a natural epimor-
phism π1O → π1(|O|) obtained by forgetting the orbifold structure, see [6]. If
ΣO is empty, then this homomorphism is an isomorphism, which means that
the definition above extends the classical definition for manifolds.
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Since the group of deck transformations of a covering acts properly and
hence the quotient has a natural orbifold structure, the following definition
makes sense.

Definition. A covering p : O′ → O is regular (or Galois) if O′/ Aut(O′, p) = O.

Theorem 2.2. Let O be an orbifold.

i. There is a one-to-one correspondence between conjugacy classes of sub-
groups of π1O and equivalence classes of (connected) coverings of O. A
covering corresponds to a normal subgroup if and only if it is regular. (In
particular, the universal covering is regular, i.e. Õ/π1O = O.)

ii. There is a one-to-one correspondence between equivalence classes of possi-
bly disconnected coverings of O and actions of π1O on discrete topological
spaces.

From part (ii) of Theorem 2.2 and its proof, one can derive the Seifert-van
Kampen theorem as in the classical case (see e.g. [87].)

Corollary 2.3 (Seifert-van Kampen Theorem). Let O be an orbifold and
O1,O2 ⊂ O two open suborbifolds such that O1, O2 and O1 ∩O2 are connected.
If O = O1 ∪ O2 then π1O is the amalgamated product:

π1O ∼= π1O1 ∗Γ π1O2

where Γ = π1(O1 ∩ O2).

Here is a version of the Seifert-van Kampen Theorem in the non-separating
case:

Corollary 2.4. Let O be an orbifold and O1 × [0, 1] ⊂ O be a suborbifold such
that O1 and O′ = O\O1× [0, 1] are connected. Then π1O is a HNN -extension:
π1O ∼= π1O′ ∗π1O1 .

The remainder of this subsection is devoted to a sketch of the proof of Theo-
rem 2.2. We need an interpretation of π1O in terms of homotopy classes of loops
in O. Obviously, defining a path in O as just a continuous map α : I → |O| will
not do, because lifts are not unique when α crosses the singular locus. If we
restrict attention to orbifolds whose singular locus has codimension at least 2,
then it is possible to use only paths that do not meet ΣO. But even there, defin-
ing the correct notion of homotopy would be an issue. For instance, a 2-disk
D(n) with one cone point of order n has universal covering a nonsingular 2-disk,
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with deck transformation group Z/nZ acting by rotations. Thus intuitively, a
loop in D(n) winding n times around the cone point should be null-homotopic,
but a null-homotopy must pass through the singular locus.

There are several equivalent ways to overcome this difficulty. For a slightly
different approach, see [86, Chap. 11], and for a generalization, see [32, p. 604].

Definition. A path in an orbifold O is given by the following data:

i. A continuous map α : I → |O| such that there are at most finitely many
t such that α(t) is singular, and

ii. For each t such that α(t) is singular, a triple (φ, V, l), where φ : Ũ → U 3
α(t) is a chart, V is a neighborhood of t in I such that for all u ∈ V (t)−{t},
α(u) is regular and lies in U , and l is a lift of α|V (t) to Ũ . We shall call l

a local lift of α around t.

By abuse of notation, we write α for both the path and the underlying map
I → |O|.

Let p : Ô → O be a covering. Let α be a path in Ô. Define the projection of
α, denoted by p(α), as follows: p(α) is a path in O whose underlying map is the
composition of p and the underlying map of α; for each t such that p◦α(t) ∈ ΣO,
look at α(t): if it is regular, then there is a neighborhood V of α(t) such that
p|V is a chart at p ◦ α(t), and this can be used to define the local lift of p ◦ α

around t; if it is singular, then there is a chart φ : Ṽ → V at αt and a local lift
to Ṽ of α around t; if Ṽ is chosen small enough, then φ ◦ p is a chart at p ◦α(t)
which provides the local lift of p ◦ α around t.

If α is a path in Ô and β is a path in O, then α is a lift of β if p(α) = β. It
is not difficult to show that if ∗̂ ∈ Ô is a regular point such that p(∗̂) is regular,
then any path α such that α(0) = p(∗̂) has a unique lift α̂ such that α̂(0) = ∗̂.

Definition. Let α be a path in an orbifold O. Let U be an open subset of O and
φ : Ũ → U be a chart. Let [a, b] be a subinterval of I such that α([a, b]) ⊂ U . Let
β be a lift of α|[a,b] to Ũ , which always exists. Replace α|[a,b] by the projection of
a path in Ũ which is homotopic (in the classical sense) to β with fixed endpoints.
The result is a path in O, which is said to be obtained from α by an elementary
homotopy . We define homotopy of paths as the equivalence relation generated
by elementary homotopies.

The following basic facts about homotopies of paths can be easily proved:

i. If ΣO = ∅, this is the same as homotopy of the underlying maps.
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ii. If two paths are homotopic, then projections of those paths (resp. lifts of
those paths with same initial point) are homotopic.

Definition. Let ∗ be a regular point ofO. A loop based at ∗ is a path α : I → |O|
such that α(0) = α(1) = ∗. We define π1(O, ∗) as the set of homotopy classes
of loops based at ∗ with the usual composition law.

We collect the fundamental properties of π1(O, ∗) in a proposition, whose
proof is left as an exercise.

Proposition 2.5. Let p : (Ô, ∗̂) → (O, ∗) be a covering of based orbifolds.

i. π1(O, ∗) is a group, and change of basepoint results in an isomorphic
group.

ii. There is an natural epimorphism π1(O, ∗) → π1(|O|, ∗) defined by forget-
ting the extra structure.

iii. There is a natural monomorphism p∗ : π1(Ô, ∗̂) → π1(O, ∗) defined by
projecting loops.

iv. Let N be the normalizer of p∗(π1(Ô, ∗̂)) in π1(O, ∗). There is a natural
homomorphism h : N → Aut(Ô) such that for every [α] ∈ N , the lift α̂ of
α starting at ∗̂ ends at h([α])(∗̂).

We now come to a key result.

Theorem 2.6. Let (O, ∗) be a based orbifold. There exists a covering (Õ, ∗̃)
such that π1(Õ, ∗̃) is trivial. This covering is regular and universal. It is unique
up to equivalence. Its deck transformation group (which we previously called
π1O) is isomorphic to π1(O, ∗).

Sketch of proof. First we prove existence. Let Õ be the set of homotopy classes
of paths in O with initial point ∗. Let ∗̃ ∈ Õ be the homotopy class of the
constant path at ∗. Let p : Õ → O be the set-theoretic map which sends [α] to
α(1). This map is onto. Our goal is to find a natural orbifold structure on Õ
such that p is a covering map. The triviality of π1(Õ, ∗̃) will then follow easily
as in the classical case.

Let {(Ui, Ũi, φi, Γi)}i be an atlas for the orbifold structure on O. Without
loss of generality we assume that each Ũi is simply-connected. For each i, choose
a basepoint ∗i ∈ Ui, set Fi := p−1(∗i), and choose a point ∗̃i ∈ Fi. Our goal is
to define a map ψi : Ũi×Fi → p−1(Ui) and use the collection {ψi}i to construct
the topology and the orbifold structure on Õ.
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Let x ∈ Ũi, y ∈ Fi. Choose a path λ̃ in Ũi from ∗̃i to x. Project it to a path
λ ∈ Ui. By construction, y is a homotopy class of paths from ∗ to ∗i. Let γ be
a representative of y. Let α be the path obtained by composing γ with λ. Since
Ũi is simply-connected, the homotopy class of α does not depend on the choices
of γ and λ. Hence we can define the map ψi : Ũi × Fi → p−1(Ui) by setting
ψi(x, y) := [α]. It is not hard to see that this map is onto.

Give Fi the discrete topology and Ũi × Fi the product topology. Then ψ

induces a topology on p−1(Ui). Its connected components are the images of
sets of the form Ũi × {y}. As charts for the orbifold structure on Õ, we use
the restrictions ψi|(Ui × {y}). Then one can check that these charts induce
a well-defined topology and orbifold structure on Õ, which make p a covering
map, and that π1(Õ, ∗̃) is trivial.

It follows easily from Proposition 2.5 (iv) that (Õ, p) is regular and π1(O, ∗) is
isomorphic to Aut(p). The proofs that a simply-connected covering is universal
and unique are similar to the classical case and left to the reader.

At this point it is an exercise to prove Theorem 2.2 by adapting standard
proofs for semi-locally simply-connected topological spaces. We have already
seen how to associate a subgroup of π1O to a covering. In the opposite direction,
associate to a subgroup Γ of π1O the orbifold Õ/Γ. The lifting property ensures
that this correspondence is bijective. Then use Proposition 2.5 (iv) to prove that
normal subgroups correspond to regular coverings. For part (ii) of Theorem 2.2,
associate to a covering the action of the deck transformation group on the fiber
of the basepoint; for the opposite direction, associate to an action of π1O on
a discrete space F the quotient of Õ × F by the diagonal action, where the
(left) action on Õ is obtained from the right action (defined by lifts of loops) by
g · x := x · g−1.

Remark. The reader might wonder how one can compute fundamental groups
of orbifolds. One first remark is that the homomorphism π1O → π1(|O|) is
not very useful for this in general, since much information is lost (consider
the example of knots in S3 with cyclic local groups.) It is more interesting
to use the complement of ΣO. Indeed, if ΣO has codimension at least two
(which is always the case if O is orientable), then O − ΣO is connected, and
we have a surjective homomorphism π1(O − ΣO) → π1O induced by inclusion.
(The surjectivity comes from the fact that any loop can be perturbed to avoid
the singular locus.) To compute π1O, we need only know which elements of
π1(O−ΣO) get killed. This can be seen in a cellular decomposition adapted to
the orbifold structure. In the next paragraph, we make this more precise in the
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case where O has dimension 2 or 3, but this is valid in all dimensions.

2.2.2 The orientable low-dimensional case

Let F be a connected 2-orbifold. In particular ΣF is a discrete subset of |F |.
Using the Seifert-van Kampen theorem, π1F can be computed from π1(F −ΣF )
and discal neighborhoods of the cone points. More precisely, for each x ∈ ΣF ,
let µx ∈ π1(|F | − ΣF ) denote the element represented by the boundary of a
discal neighborhood of x. By Seifert-van Kampen we have:

Proposition 2.7. The group π1F is the quotient of π1(|F | −ΣF ) by the group
normally generated by the elements µmx

x , for x ∈ ΣF , where mx is the order of
the local group of x and µx is a meridian around x.

Let F be the orbifold with underlying space S2 and singular locus a single
point. Then π1F is trivial. Hence F is bad, since it is its own universal covering.

In the 3-dimensional orientable case we make a similar construction. Given
a 3-orbifold O, for every edge or circle e of ΣO we consider a meridian µe ∈
π1(|O| − ΣO) around e. Let me be the order of the local group of the interior
points in the edge e.

Proposition 2.8. The group π1O is the quotient of π1(O − ΣO) by the group
normally generated by the set of elements µme

e , where e runs over all edges of
ΣO.

This proposition is proved again using Seifert-Van Kampen theorem. Notice
that if v is a vertex of ΣO and N (v) is a tubular neighborhood of v, then
π1N (v) ∼= π1∂N (v), and therefore π1O ∼= π1(O −N (v)).

It follows that for n ≥ 3, if O = Bn/Γ is a discal n-orbifold, then π1On =
π1∂On = Γ.

For an orientable 3-orbifold O let ˜|O| − ΣO be the regular covering of |O| −
ΣO associated to the surjective homomorphism π1(O − ΣO) ³ π1O given by
Proposition 2.8. The deck transformation group of this covering is π1O. Then
one can show that the metric completion of the metric space ˜|O| − ΣO is the
universal covering of the orbifold O.

2.3 The geometric classification of 2-orbifolds

Apart from a few exceptions, all closed 2-dimensional orbifolds are geometric,
hence good (in fact very good). For simplicity, we only consider orientable
orbifolds.
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A teardrop is a 2-sphere with one cone point. A spindle is a 2-sphere with
two cone points of different orders. A football is a 2-sphere with two cone points
of the same order. A turnover is a 2-sphere with three cone points. A pillow is
a 2-sphere with four cone points of order two (see Figure 2.4).

Figure 2.4: From left to right: a teardrop, a spindle, a football, a turnover and
a pillow.

We now turn to a discussion of the Gauss-Bonnet formula. We first need to
define Euler characteristic and Riemannian metric for orbifolds.

Definition. Given an orbifold O, let K be a CW-complex decomposition of O
such that ΣO is a subcomplex and the local group is constant along each cell.
The Euler characteristic of O is defined as:

χ(O) =
∑

∆

(−1)dim(∆) 1
|Γe|

where the sum is taken over the cells of K and |Γ∆| denotes the order of the
local group of the cell ∆.

Notice that the Euler characteristic is multiplicative on coverings and that
it extends the usual definition for manifolds.

A Riemannian metric on an orbifold O is a set of Riemannian metrics on a
covering of O by uniformizing charts, such that the local group actions on the
charts are by isometries as well as the transition maps.

In the 2-dimensional case, we have:

Proposition 2.9 (Gauss-Bonnet). Let F be a closed 2-orbifold endowed with
a Riemannian metric of Gauss curvature3 K. Then:

∫

F

K = 2πχ(F )

3Note that the definition of Gauss curvature is clear at nonsingular points. Since ΣF has

measure zero, this is enough for our purposes. One can also define curvature at singular

points, using orbifold tangent bundles.
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Proposition 2.9 can be proved using the Gauss-Bonnet formula for triangles.
The following proposition is proved in [225, Chap. 13] (see also [164, Ap-

pendix A], [198]).

Proposition 2.10. The only bad closed orientable 2-orbifolds are teardrops and
spindles. All other closed orientable 2-orbifolds are geometric. More precisely,
a good, closed, orientable 2-orbifold O is spherical (resp. Euclidean, resp. hy-
perbolic) if and only if χ(O) is positive (resp. zero, resp. negative.)

Compact orientable 2-orbifolds will play an important role in the sequel as
suborbifolds of 3-orbifolds, so it is convenient to get more familiar with them.
We collect basic facts in the following proposition, whose proof is left as an
exercise.

Proposition 2.11. Let O be a compact, orientable 2-orbifold.

i. O is discal if and only if O is either a nonsingular disk or a disk with one
cone point.

ii. O is annular if and only if O is either a nonsingular annulus or a disk
with two cone points of order 2.

iii. O is spherical if and only if O is either a nonsingular sphere, a football,
or a turnover with orders (2, 2, n), (2, 3, 3) ,(2, 3, 4), or (2, 3, 5).

iv. If O is bad, then χ(O) > 0.

v. O is toric if and only if O is either a nonsingular torus, a pillow with
orders (2, 2, 2, 2), or a turnover with orders (2, 3, 6), (2, 4, 4) or (3, 3, 3).

Hence O is Euclidean if and only if it is toric or annular.

2.4 Fibered 3-orbifolds

Definition. A fiber bundle is a 4-tuple (O, B, F, p), where O, B, F are orbifolds
and p : O → B is a submersion, such that for every point x ∈ B there is a
chart φ : Ũ → U 3 x, an action of the local group Γx on F , and a submersion
ψ : Ũ×F → O inducing a diffeomorphism between (Ũ×F )/Γx (for the diagonal
action) and p−1(U) such that p◦ψ = φ◦π1 (where π1 is the canonical projection
Ũ × F → Ũ).

We say that O fibers over B with generic fiber F , or that O is an F -bundle
with base B.
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A fiber bundle is twisted if it is not fiber-preserving diffeomorphic to the
trivial bundle F ×B.

One can show that, up to fiber preserving diffeomorphism, there is only one
twisted I-bundles over a given 2-orbifold B. It is orientable if and only if B is
nonorientable.

As mentionned before, one can define the tangent bundle of an orbifold, but
we will not do this here (see [164]).

A 3-orbifold O is Seifert fibered if it fibers over a 2-orbifold B with generic
fiber a circle or a mirrored interval. For orientable manifolds, this definition
coincides with the original definition of Seifert [203]. For nonorientable mani-
folds, it is slightly more general (see [198]).

Proposition 2.12. Let O be a Seifert fibered 3-orbifold with base B. The
projection p : O → B induces an exact sequence

1 → C → π1O → π1B → 1,

where C is cyclic or dihedral (either finite or infinite.) In addition, C is finite
if and only if π1O is finite.

Sketch of proof. Since we interpret the fundamental group by means of homo-
topy classes of loops, the proof for the exact sequence of a topological fibration
applies here. For instance π1O ³ π1B is a surjection because loops in B can be
lifted to O. The kernel C of π1O → π1B is the image of the fundamental group
of the generic fiber. Now this fiber is either a circle or a mirrored interval, so its
fundamental group is either the infinite cyclic group Z or the infinite dihedral
group Z/2Z ∗ Z/2Z. Hence C is cyclic or dihedral.

We discuss now the order of C. When the base B is aspherical (Euclidean,
hyperbolic or nonclosed), C is infinite, because the term corresponding to π2B

is trivial. (In other words, one can prove that C is infinite using the fact that
every map from S2 to B can be extended to a 3-ball bounded by S2.) Thus
both π1O and C are infinite in this case. Otherwise B is bad or spherical, and
therefore π1B is finite. In this last case, it is clear that π1O is infinite if and
only if π1C is infinite.

Proposition 2.13. Every compact Seifert fibered 3-orbifold without bad 2-
suborbifold admits a geometric structure modelled on S3, S2 × R, E3, Nil,
H2 ×R, or S̃L2(R).

Proof. [226] Let B be the base of the Seifert fibration. Assume first that B

is very good: B = F/Γ for some compact surface F . Since the natural map
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O → B induces a surjection π1O ³ π1B and B is finitely covered by a surface
F , O is the quotient of a S1-bundle M over F by a finite fiber-preserving group
isomorphic to Γ.

By Proposition 2.10, B has a metric of constant curvature. Hence F has a Γ-
invariant metric of constant curvature. We want to show that the S1-bundle M

has a Γ-invariant connection of constant curvature, so that the universal covering
has a fibration by lines or circles over B̃ with a π1O-invariant connection of
constant curvature. Then the geometry of O depends on B̃ (which can be S2,
E2 or H2) and the fact that the connection has curvature zero or not.

To construct a Γ-invariant connection of constant curvature, we first pick an
arbitrary connection ω on M , i.e. a 1-form on M that is invariant by the action
of S1, and such that on each x ∈ M , ker ωx is a horizontal plane in TxM . The
curvature of this connection is a closed 2-form Ω on F such that d ω = π∗Ω.
Let volF be a Γ-invariant volume form on F obtained by lifting a volume form
on B. Then ω is homologous to a multiple of the volume form volF :

Ω = λ volF + d β

for some λ ∈ R and some 1-form β on F . We make the connection ω′ = (ω−π∗β)
Γ-invariant by averaging. By construction, the connection ω′ = (ω − π∗β) has
curvature λ volF 2 , i.e. constant curvature λ.

If B is not good, then one can prove that O admits another Seifert fibration
with a good base. More precisely, B is a teardrop, a spindle or a quotient of one
by an involution. When B is a teardrop or a spindle, then O is a generalized
lens space: the underlying space |O| is a lens space and the singular locus ΣO
may be one or two circles, corresponding to the cores of the two solid tori glued
together to give |O|. In this case, it is easy to find a new Seifert fibration of O
with a good base, except in the case where O is a product of a bad orbifold with
S1. When B is the quotient of a spindle or a teardrop by an involution, then
we use the fact that involutions on lens spaces and solid tori are standard.

Equally important is the class of 3-orbifolds that fiber over a 1-orbifold. It
includes the well-known class of 3-manifolds that fiber over the circle.

Proposition 2.14. Every compact 3-orbifold that fibers over a 1-orbifold with
toric generic fiber admits a geometric structure modelled on E3, Nil, or Sol.

We leave the proof of Proposition 2.14 as an exercise. For a classification
of fibered 3-orbifolds see [21] and [56]. As a warm-up, the reader may give the
list of all compact, orientable 2-orbifolds fibering over a 1-orbifold and classify
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those fibrations up to isotopy. In particular, a S1-fibration on the torus or the
pillow is determined up to isotopy by the choice of an essential curve as the
generic fiber.

2.4.1 Basic facts about Seifert fibered orbifolds

We collect below some general results on Seifert fibered 3-orbifolds that will be
needed in the sequel.

We start with a description of a saturated tubular neighborhood of a fiber
in the interior of a Seifert fibered 3-orbifold (cf. [21] for more details). We call
a 3-orbifold solid-toric if it is finitely covered by S1 ×D2.

Let D2×I be the solid cylinder, where the disk D2 is identified with the unit
disk in C. Given integers α, β ∈ Z with 0 ≤ β < α and α ≥ 1, we define a solid-
toric 3-orbifold V (α, β) as follows: its underlying space |V (α, β)| is the foliated
solid torus obtained from the product I-fibration on D2 × I, by identifying the
disk D2 × {0} to the disk D2 × {1} via the gluing map z 7→ e2πiβ/αz. If α and
β are coprime, then V (α, β) is a manifold; otherwise its singular set consists of
the core of the solid torus with cyclic local group of order k = gcd(α, β). The
fraction β/α ∈ Q/Z is an invariant of this core fiber. The integer α/k can be
interpreted as card(∂D2 t fiber). The leaf space of this foliation has a natural
orbifold structure. In fact, it is discal with a single cone point of order α (or no
cone point if α = 1). This gives a model for saturated tubular neighborhoods
of fibers homeomorphic to circles.

Let us consider a fiber f that is a mirrored interval S1/Z2. A saturated
tubular neighborhood of f can be obtained as the quotient W (α, β) of a fibered
solid-toric 3-orbifold V (α, β) above by the involution τ which is fiber-preserving
and reverses both the orientation of the fibers and of the base. This is a solid pil-
low with possibly a singular core with cyclic local group of order k = gcd(α, β).
A solid pillow is a 3-ball with two unknotted singular arcs with local group of
order 2 (see Figure 2.5). Its boundary is a pillow.

A solid pillow contains a unique, properly embedded meridian disk , up to
isotopy, whose boundary separates ∂W (α, β) into two discs with two singular
points each: it is the projection of a meridian disk of the solid torus |V (α, β)|
which does not meet the fixed point set of the involution τ .

The fibers of the fibration of the solid toric 3-orbifold W (α, β) are projections
of the fibers of V (α, β). Hence a fiber of W (α, β) is either a circle (a S1-fiber)
or a mirrored interval (a I-fiber) according to whether its preimage in V (α, β)
meets the fixed point set of τ . In particular, the fiber f is the projection of the
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Figure 2.5: The solid pillow a), and the solid pillow with singular soul b). The
boundary of both is the pillow. Figures c) and d) represent a meridian disk.

central fiber of V (α, β), which meets the fixed point set of the involution τ in
two points: it is a core of the solid pillow, and is singular when α and β are not
coprime; in this case the singular set is a trivalent graph with two vertices with
local group a dihedral group of order 2α. The fraction β/α ∈ Q/Z is an invariant
of f , and the integer α/k can be interpreted as card(∂meridian disk t I-fiber).
Moreover the leaf space of W (α, β) is a non-orientable discal 2-orbifold obtained
as the quotient of a discal 2-orbifold by an orientation reversing involution: it
is a triangle with two mirrored edges that meet at a vertex whose local group
is dihedral of order 2α.

Figure 2.6: Two fibered solid pillows: W (2, 1) and W (3, 1).

Definition. The fiber f is exceptional if its saturated tubular neighborhood is
isomorphic to V (α, β) or W (α, β) with α > 1 (isomorphic means that there is a
fiber-preserving diffeomorphism). The fraction β/α ∈ (Q/Z)? is called the type
of the exceptional fiber.

The fibered solid torus V (α, β) is the quotient of the solid torus V (1, 0) =
D2×S1 with the product fibration by the following finite fiber-preserving action:

D2 × S1 → D2 × S1

(z, x) 7→ (e2πiβ/αz, e2πiαx).
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The quotient of the solid torus V (1, 0) = D2 × S1 with the product fibra-
tion by the finite group generated by the previous action together with the
Weierstrass involution:

D2 × S1 → D2 × S1

(z, x) 7→ (z̄, x̄)

gives the fibered solid pillow W (α, β) (here the bar denotes complex conjugation,
as we assume S1 and D2 are the unit circle and disk in the complex line C
respectively.)

Let O be a compact, Seifert fibered 3-orbifold. Since exceptional fibers are
isolated, there are only finitely many of them. The boundary of O consists of
fibered tori and pillows, and has therefore zero Euler characteristic.

H. Seifert [203] associated to a Seifert fibration on a 3-manifold a finite set of
invariants which determines the fibration up to fiber-preserving homeomorphism
(see also [174] and [198]). An analogous set of invariants can be defined for a
Seifert fibration on a 3-orbifold, see [21]. These are not always topological
invariants: there are 3-manifolds with nonisomorphic Seifert fibrations, such as
S3 or lens spaces. The complete topological classification of compact Seifert
manifolds follows from the work of several authors: H. Seifert and W. Threlfall
[222] for spherical 3-manifolds different from lens spaces (1934), E. J. Brody
[35] for lens spaces (1960), F. Waldhausen [238] for Haken Seifert 3-manifolds
(1967), and P. Orlik, E. Vogt and H. Zieschang [175] for Seifert 3-manifolds with
infinite fundamental group (1968).

Given any pair of coprime integers (p, q), one can construct infinitely many
nonisomorphic Seifert fibrations on S3, whose generic fiber is a (p, q)-torus knot.

Another non-uniqueness phenomenon for Seifert fibrations occurs in mani-
folds that have several Seifert fibrations which are isomorphic, but not isotopic
(e.g. T3). However, this situation is in some sense nongeneric, as shown by the
following theorem.

Theorem 2.15. Let O be a compact, orientable, Seifert fibered 3-orbifold with
infinite fundamental group. If O is not covered by S2 ×R, T3 or T2 × I, then
the Seifert fibration on O is unique up to isotopy.

When the base 2-orbifold is sufficiently large (i.e. is not a turnover or a
quotient of a turnover) the proof is analogous to the one for 3-manifolds given by
F. Waldhausen in [238] (see F. Bonahon and L. Siebenmann [22, Thm.2]). The
proof in this case runs as follows. One splits O along a succession of essential
(see Chapter 3 for a definition) saturated 2-suborbifolds for the first Seifert
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fibration, in order to get finitely many saturated tubular neighborhoods of the
fibers. SinceO is not covered by S2×R, T3 or T2×I, the second Seifert fibration
can be isotoped so that these 2-suborbifolds are saturated for this fibration too,
and that the two fibrations coincide near them, by Proposition 2.16 below (cf.
[238], [22, Thm. 4], see also [103]). Thus the proof reduces to show that a Seifert
fibration on a 3-orbifold with base a discal 2-orbifold is determined, up to an
isotopy fixing the boundary, by the restriction of the fibration to the boundary;
this follows easily from the description of the saturated tubular neighborhood
of a fiber given above.

Proposition 2.16. Let O be a compact, orientable, Seifert fibered 3-orbifold
which is not covered by S2 × R. Up to isotopy, any orientable, essential 2-
suborbifold F in O is vertical (i.e. saturated) or horizontal (i.e. everywhere
transverse to the fibers).

When the base of the fibration is not sufficiently large, the proof of Theorem
2.15 for 3-manifolds follows from [202] for most of the cases and from [15] for
the remaining ones. For Seifert 3-orbifolds with non-empty singular locus the
result can be deduced from the case of manifolds. Let M be a compact orientable
Seifert 3-manifold satisfying the hypothesis of Theorem 2.15, and let G be a finite
group of orientation preserving diffeomorphisms of M . If two G-equivariant
Seifert fibrations on M are isotopic, then they are G-equivariantly isotopic [253].

2.5 Dehn filling on 3-orbifolds

In this section, we consider a compact 3-orbifold O whose boundary components
are Euclidean 2-orbifolds. This is the case of a compact, orientable Seifert
fibered 3-orbifold; this will apply also to finite volume hyperbolic 3-orbifolds, as
we will see in Chapter 6. Here we work in a purely topological setting. Thus
each component of ∂O is either a nonsingular torus, a pillow, or a turnover of
type S(n1, n2, n3) with 1

n1
+ 1

n2
+ 1

n3
= 1.

If O is a manifold, then its boundary is a union of tori T1, . . . , Tn. A Dehn
filling consists in gluing a solid torus Vi to each Ti. It is uniquely determined
by choosing for each i the isotopy class of a simple closed curve µi ⊂ Ti, called
the meridian curve, and requiring that µi bounds a disk in Vi. Then any simple
closed curve that bounds a disk in Vi but not in Ti must be isotopic to µi (see
for example [192]). Hence, Dehn fillings on T2 are determined by primitive
elements in H1(T2) ∼= Z⊕ Z up to sign.

This construction was first used in 1910 by M. Dehn [52] to produce an
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infinite family of homology 3-spheres by removing a knotted solid torus in S3

and gluing it back with a different meridian curve. If one allows to do this
surgery along finitely many solid tori in S3 instead of only one, this construction
turns out to be quite general: R. Lickorish [133] and A. D. Wallace [243] proved
in the early 1960’s that every closed, orientable, connected 3-manifold may be
obtained in this way; see [192, Chap.9] for more details on this topic.

Let us turn to orbifolds. A turnover S2(n1, n2, n3) cannot bound the quotient
of a solid torus, hence we cannot do any Dehn filling on it.

For a torus T ⊂ ∂O, Dehn filling consists in gluing along T a solid torus V

whose core may be singular (i.e. the quotient of a solid torus by a finite rotation
around its core). As in the previous case, it is uniquely determined by the
isotopy class of the simple closed curve on T which bounds a discal 2-orbifold
in V . The underlying space of the new orbifold is obtained by Dehn filling on
the underlying space of O, but a new circle component may be added to the
singular locus.

For a pillow P ⊂ ∂O, Dehn filling consists in gluing a solid pillow (see
Figure 2.5) whose core may also be singular. As for a (possibly singular) solid
torus, a singular solid pillow V contains a unique meridian disk, up to isotopy,
defined as “the” properly embedded discal 2-orbifold whose boundary (called
the meridian curve) is not a torsion element in π1(∂V ). This meridian curve
separates ∂V into two disks with two singular points each. Conversely, let P

be a pillow and µ ⊂ P be a simple closed curve that separates P into two disks
with two singular points each; then there is a diffeomorphism between P and
the boundary of a solid pillow that sends µ to the meridian curve.

Summarizing, a Dehn filling consists in gluing a solid-toric orbifold to a toric
component of the boundary, which is either a pillow or a smooth 2-torus. More-
over, like in the smooth 2-torus case, the Dehn filling on a pillow is determined
by the isotopy class of the meridian curve.

To parametrize such isotopy classes, we use the exact sequence:

1 → Z⊕ Z → π1S
2(2, 2, 2, 2) → Z/2Z → 1,

coming from the fact that S2(2, 2, 2, 2) = T2/(Z/2Z).
The kernel Z⊕Z is the unique maximal torsion-free subgroup of π1S

2(2, 2, 2, 2)
and the isotopy classes of meridians are determined by primitive elements in this
torsion-free subgroup Z⊕ Z up to sign.

It is an observation due to Seifert [203] that a Dehn filling on a compact
orientable Seifert 3-orbifold, along a boundary torus or pillow T , always yields a
Seifert fibered 3-orbifold if the meridian curve is not isotopic to a fiber. Moreover
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the core of the glued solid torus or pillow is an exceptional fiber iff the algebraic
intersection number between the isotopy classes of the meridian curve and the
fiber in the maximal torsion-free subgroup of π1T is strictly larger than 1.

M. Dehn [52] showed that the Poincaré homology sphere [184] (i.e. the spher-
ical dodecahedral space) can be obtained by Dehn filling on the exterior of the
trefoil knot, which is Seifert fibered. This gives a purely topological way to see
that this space is Seifert fibered.

A Seifert fibration, with an orientable base, on a compact, orientable 3-
orbifold O can be obtained by Dehn fillings on a product orbifold, also compact
and oriented, equipped with a product fibration. This is the original construc-
tion by H. Seifert [203]. Let f1, . . . , fr be the singular fibers of the Seifert
fibration of O. Pull out saturated open tubular neighborhoods Vi around these
fibers plus one saturated open regular neighborhood V0 around a regular fiber
f0. The Seifert fibration on O \ Int(V0 ∪ . . . ∪ Vr) is a product fibration. One
chooses sections s0, s1, . . . , sr to the Seifert fibration on each torus or pillow ∂Vi,
i = 0, . . . r. Then O is obtained by Dehn filling on O \ Int(V0 ∪ . . . ∪ Vr) in the
following way:

• For i = 1, . . . r the meridian curve on the component Vi is sαi
i fβi , if the

exceptional fiber fi is of type βi/αi ∈ (Q/Z)?. Beware that it is a simple
closed curve iff αi and βi are coprimes, otherwise you glue a singular solid
torus or pillow and the core of the Dehn filling belongs to the singular
locus.

• The meridian curve on the component V0 is s0f
e, where e ∈ Z is the

obstruction to find a horizontal 2-suborbifold in O\ Int(V0∪ . . .∪Vr) with
boundary components isotopic to the given sections s0, s1, . . . , sr.

The integer Euler class e depends on the choice of sections, but the rational
Euler number

e0 := e−
r∑

i=1

βi/αi

is a well-defined invariant of the Seifert fibration. It is the obstruction to find
a multifold section of the projection p : O → B onto the base B of the Seifert
fibration (see [21], [198], [225, Chap.13]).
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Chapter 3

Decompositions of

orientable 3-orbifolds

In this chapter, all 2-orbifolds and 3-orbifolds are assumed to be connected and
orientable unless mentioned otherwise. In general, 2-suborbifolds of 3-orbifolds
are assumed to be either properly embedded or suborbifolds of the boundary.

The main goal of this chapter is to establish existence and properties of the
topological decomposition of a 3-orbifold along spherical 2-suborbifolds, toric
2-suborbifolds, and hyperbolic turnovers involved in Thurston’s Geometrization
Conjecture. This conjecture is precisely stated in the last Section 3.7.

In Section 3.1 we state the results which will be proved in Sections 3.3, 3.4
and 3.5, using the theory of normal 2-suborbifolds presented in Section 3.2.
In Section 3.6 we discuss some equivariant theorems, and in Section 3.7 we
present the orbifold version of Thurston’s Geometrization Conjecture and state
the Orbifold Theorem which will be discussed in Chapter 9.

3.1 General discussion

For convenience, we introduce some terminology. A system (of 2-suborbifolds)
in a 3-orbifold O is a finite collection F = {F1, . . . , Fn} of pairwise disjoint,
properly embedded (orientable) 2-suborbifolds. The 2-orbifolds F1, . . . , Fn are
called the components of F. If each component of F is spherical (resp. toric), we
call F a spherical system (resp. a toric system).

We shall denote by O\F the orbifold obtained from O by removing a disjoint
union of open product neighborhoods of the components of F. The operation
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of removing such neighborhoods is called splitting O along F.
Let F0, F1 ⊂ O be 2-suborbifolds (either properly embedded or contained

in ∂O). We say that F0, F1 are parallel if they cobound in O a suborbifold
F × [0, 1] ⊂ O, called a product region such that F × {0} = F0, F × {1} = F1

and ∂F × [0, 1] ⊂ ∂M . A properly embedded 2-suborbifold F ⊂ M is ∂-parallel
(boundary-parallel) if F is parallel to a suborbifold of ∂M .

A 2-suborbifold F ⊂ O is compressible if either F is spherical and bounds
a discal 3-suborbifold, or there exists a discal 2-suborbifold D ⊂ O, called a
compression disk, such that ∂D = D ∩ F ⊂ IntO and ∂D does not bound a
discal 2-suborbifold in F . Otherwise it is incompressible. Note that the term
“compression disk” is a slight abuse of language since it might be a disk with a
singular point.

It is obvious that discal 2-orbifolds, bad 2-orbifolds and turnovers of non-
positive Euler characteristic are always incompressible, since they do not have
essential curves. A spherical turnover is compressible if and only if it surrounds
a vertex in the singular locus.

A 2-suborbifold F ⊂ O is ∂-compressible if either F is a discal 2-suborbifold
which is ∂-parallel, or if there exists a discal 2-suborbifold D ⊂ O, called a
∂-compression disk, such that ∂D is the union of two arcs α, β with ∂α = ∂β =
α ∩ β, α ⊂ F , β ⊂ ∂O, and α does not cobound a discal suborbifold of F with
an arc in ∂F . Otherwise it is ∂-incompressible.

A 2-suborbifold F ⊂ O is essential if it is incompressible, ∂-incompressible
and not ∂-parallel.

Let F ⊂ O be a compressible 2-orbifold and D ⊂ O be a compression disk. A
compression surgery on F along D consists in replacing a tubular neighborhood
of ∂D in F by two parallel copies of D. Notice that this process increases the
Euler characteristic of the 2-orbifold by 2

n , where n is the order of the cone point
in D. Similarly one can define ∂-compression surgery.

Definition. A 3-orbifold O is irreducible if O contains no bad 2-suborbifold,
and every (orientable) spherical 2-suborbifold of O is compressible.1

A 3-orbifold is atoroidal if it is irreducible and contains no essential toric
2-suborbifold.

Here is a fundamental result, due to Alexander [2] in the case of manifolds.

Theorem 3.1. Any 2-suborbifold of a discal 3-orbifold (or a spherical 3-orbi-
fold) is compressible. In particular, discal and spherical 3-orbifolds are irredu-
cible.

1Note however that O may contain 1-sided, nonorientable 2-suborbifolds.
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Theorem 3.1 implies that any discal 2-suborbifold of a discal 3-orbifold is
∂-parallel.

An important step in the study of compact 3-orbifolds without bad 2-
suborbifold is given by the following splitting result, which is proved in Sec-
tion 3.3:

Theorem 3.2. Let O be a compact 3-orbifold without bad 2-suborbifold. There
exists a spherical system S in O such that for every component X of O\S,
the 3-orbifold obtained from X by gluing a discal 3-orbifold along each spherical
component of ∂X is irreducible.

Figure 3.1: When O is S3 with singular locus a knot, Theorem 3.2 corresponds
to the decomposition of the knot as a connected sum of prime knots. The picture
is the sum of two factors.

For 3-manifolds Theorem 3.2 goes back to H. Kneser [128], whose article con-
tains most of the essential ideas for the general case.2 Our statement focuses
on the existence of the decomposition. There is no uniqueness of the spherical
system S up to isotopy, even if it has the minimal number of elements. However
the 3-orbifold summands, obtained from the non-discal components X of O\S
by gluing a discal 3-orbifold along each spherical component of ∂X, are unique
up to diffeomorphism. For the uniqueness of these nonspherical summands, we
refer to [159] for 3-manifolds and to [194, 102] for 3-orbifolds with underlying
space S3 and singular set a link (see also [36, Chap. 7] and [126, Chap. 3]). The
general case can be worked out in a similar way. In fact it follows from the Orb-
ifold Theorem (see Section 3.7 and Chapter 9) that a compact 3-orbifold without
bad 2-suborbifold is finitely covered by a manifold and hence the uniqueness of

2Kneser’s formulation is slightly different from ours: he considers only connected sum

decompositions, i.e. separating spheres, and allows the summands to be homeomorphic to

S2 × S1, whereas we allow splitting along nonseparating spheres. The link between both

statements is provided by the fact that a self-connected sum of an orientable 3-manifold M is

homeomorphic to a connected sum of M with S2 × S1.
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the nonspherical summands can be deduced from the manifold case by using
the Equivariant Sphere Theorem (see Section 3.6, Theorem 3.21).

Thus the study of compact 3-orbifolds without bad 2-suborbifolds is (at
least theoretically) reduced to the study of irreducible 3-orbifolds, with which
Theorem 3.3 below is concerned.

Theorem 3.3. Let O be a compact, irreducible 3-orbifold. There exists a system
C of essential, pairwise nonparallel toric 2-suborbifolds of O such that every
component of O\C is Seifert fibered or atoroidal. A minimal such system is
unique up to isotopy.

Figure 3.2: When O is S3 with singular set a knot and branching index 2,
Theorem 3.3 corresponds to the tangle decomposition along Conway spheres, as
in the picture. The toric suborbifold is indicated with dotted lines.

The toric splitting, also called the JSJ-splitting, has been first proved by
W. Jaco and P. Shalen [115] and K. Johannson [118] for 3-manifolds in the
mid 1970’s (see also [173] for a simpler proof). It has been generalized to 3-
orbifolds by F. Bonahon and L. Siebenmann [22]. This natural splitting gives
the topological basis for Thurston’s geometrization program; it is a fundamental
result for the study of compact irreducible 3-orbifolds.

Compact, irreducible, atoroidal 3-orbifolds may be further decomposed along
hyperbolic turnovers. Recall that a turnover is a 2-orbifold with underlying
space a sphere and three cone points. Turnovers are characterized among closed
Euclidean and hyperbolic 2-orbifolds by the fact that they contain no essential
curves, and therefore they have a special behavior in many respects. That is
why it is sometimes useful to get rid of essential turnovers in the 3-orbifold under
consideration. This will become clearer in the next chapter when we introduce
Haken and small orbifolds.

Theorem 3.4. Any compact, irreducible atoroidal 3-orbifold can be split along
a system of essential, pairwise nonparallel hyperbolic turnovers such that the
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resulting pieces contain no essential turnovers. This system is unique up to
isotopy.

Figure 3.3: Assume that n ≥ 4. Then this orbifold is atoroidal, and the hy-
perbolic turnover shown in dotted lines splits it into two orbifolds that do not
contain essential turnovers (in fact no essential suborbifolds at all.)

3.2 Normal 2-suborbifolds

One important tool to prove Theorem 3.2 and the existence part of Theorems 3.3
and 3.4 is the notion of normal 2-suborbifold, which extends the notion of normal
surface in a 3-manifold introduced by H. Kneser [128] and W. Haken [99]. This
notion is very useful for studying decision problems, cf. [114, 193].

Definition. Let O be a 3-orbifold. A triangulation T of O is a triangulation
of the underlying manifold |O| for which ΣO is a subcomplex of the 1-skeleton
and each 3-simplex meets ΣO in either one vertex, one edge, or the empty set.
We call (O, T ) a triangulated orbifold .

A 2-suborbifold F is in general position with respect to T if the underlying
surface |F | misses the 0-skeleton and intersects transversely the 1-skeleton and
the 2-skeleton.

A 2-suborbifold F is normal if |F | (considered as an embedded surface in
|O|) is in general position with respect to T and for each 3-simplex σ, σ∩ |F | is
a union of disks intersecting each edge of σ in at most one point and intersecting
at least one edge of σ.

A system of 2-suborbifolds is normal if each component is normal.

We will also need a notion of general position for pairs of 2-suborbifolds. If
F1, F2 are orientable 2-suborbifolds of O, we say that they are in general posi-
tion if their singular loci ΣF1 ,ΣF2 are disjoint and F1−ΣF1 intersects F2−ΣF2

transversally. The intersection is then a disjoint union of curves and arcs avoid-
ing the singular loci. Given two suborbifolds F1, F2, it follows from standard
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theorems that one can always perform small isotopies to make F1, F2 in general
position. This allows us to prove facts inductively on the number of intersection
components.

General position can also be defined for nonorientable suborbifolds. For
example, to deal with suborbifolds with silvered boundary, one would require
the silvered curves and arcs to intersect transversally. This will not be needed
in this book.

Our main interest for normal 2-suborbifolds comes from the following finite-
ness result for normal systems.

Theorem 3.5. Let (O, T ) be a compact triangulated 3-orbifold. There is an
integer h(O, T ) > 0 such that if F is any normal system of 2-suborbifolds of O
with more than h(O) components, then some component of O\F is a product
region between two components of F.

This fact was discovered by H. Kneser and is the prototype for all finiteness
theorems. The rest of this section is devoted to the proof of Theorem 3.5.

A product region in a 3-simplex σ is a 3-ball (B2 × I, ∂B2 × I) ⊂ (σ, ∂σ)
avoiding the vertices, and such that B2 × {0} and B2 × {1} are properly em-
bedded.

Remark. Let (O, T ) be a compact triangulated 3-orbifold and F be a normal
system of 2-suborbifolds. Let σ be a 3-simplex. Then σ\F has at most 6
components that are not product regions.

Lemma 3.6. Let (O, T ) be a compact triangulated 3-orbifold. Let t be the
number of 3-simplices of T . Let F be a normal system of 2-suborbifolds and set
u := #π0(O\F). Assume that u > 6t. Then except for at most 6t of them, each
component of O\F is a product region between two components of F or a twisted
I-bundle.

Proof. By the previous remark, except for at most 6t of them, each component
X of O\F meets each 3-simplex in product regions. The I-bundle structures
of these product regions are compatible, so X is an I-bundle. If it is trivial,
then it must be a product region between two distinct components of F, for
otherwise F would consist of a single nonseparating 2-suborbifold, contradicting
the hypothesis that u > 6t.

Lemma 3.7. Let X be a compact 3-orbifold. Let F = {F1, . . . , Fn} be a system
of 2-suborbifolds of X. Then X\F has at least n + 1 − dim H2(|X|, ∂|X|,Z2)
components that are not twisted I-bundles.
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Proof. The proof is by induction on dimH2(|X|, ∂|X|,Z2). If this number van-
ishes, then every 2-suborbifold of X separates and X contains no twisted I-
bundle, so the conclusion holds. Otherwise, the conclusion might fail only if
some Fi does not separate or bounds a twisted I-bundle. If this happens, apply
the induction hypothesis to X\{Fi}.

Lemmas 3.6 and 3.7 show that the conclusion of Theorem 3.5 holds with
the integer h(O, T ) = 6t + dim H2(|X|, ∂|X|,Z2), where t is the number of
3-simplices of the triangulation T of O.

3.3 The spherical decomposition

For convenience, we call an orbifold O punctured spherical (resp. punctured
irreducible) if it is diffeomorphic to O′ − ⋃

i IntBi, where O′ is a spherical
(resp. irreducible) 3-orbifold and {B1, . . . , Bn} is a collection of disjoint discal
3-suborbifolds.

Definition. A spherical system S is essential if no component of O\S is a
punctured spherical 3-orbifold. (In particular, no component of O\S is a prod-
uct region.)

Theorem 3.8 (Finiteness Theorem for spherical suborbifolds). Let O
be a compact 3-orbifold without bad 2-suborbifolds. There is an integer s(O) > 0
such that any essential spherical system in O has at most s(O) components.

Theorem 3.8 is immediate from Theorem 3.5 and the following lemma.

Lemma 3.9. For any triangulation T of O and for every integer n > 0, if O
admits an essential spherical system of cardinal n, then O admits a normal,
essential spherical system of cardinal n.

Proof. Let F ⊂ O be a general position 2-suborbifold. The complexity of F is
the triple c(F ) = (sing(F ), c1(F ), c2(F )), where sing(F ) is the number of cone
points of F , c1(F ) is the cardinal of |F | ∩ T (1) and c2(F ) is the sum over all
2-simplices σ of #π0(|F | ∩ σ). The complexity of a system of 2-suborbifolds is
the sum of the complexities of its components.

Let S = {S1, . . . , Sn} be a general position, essential spherical system. Sup-
pose that S has minimal complexity among all such systems of cardinality n.
If S is not normal, then some 3-simplex σ intersects S in a wrong way. By
a case-by-case analysis somewhat similar to the proof of Lemma 3.10, we shall
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produce an essential spherical system of the same cardinality and smaller com-
plexity, thereby obtaining a contradiction. There are three cases to consider
(details are left as exercises.)

Case 1 Some component U of σ ∩ ⋃
i Si is not a disk. Then U cannot be a

sphere. (Hint: use Alexander’s Theorem.) Thus U admits a compression disk,
and after compression surgery, we get a new system with smaller complexity.

Case 2 Some component U of σ ∩ ⋃
i Si is a disk that does not meet T (1).

Then there is an isotopy that decreases c2, by pushing this disk outside σ.

Case 3 Some component U of σ ∩ ⋃
i Si is a disk that meets the same edge

twice. Then a ∂-compression along some innermost arc with both endpoints in
the same edge produces an essential system with sing no greater and c1 smaller.

Figure 3.4: Examples of the different cases of “bad” components U of σ ∩⋃
i Si

in the proof of Lemma 3.9.

This completes the proof of Lemma 3.9, hence of Theorem 3.8.

Lemma 3.10. Let X be a compact 3-orbifold. If X is not a punctured irredu-
cible 3-orbifold, then either X contains a nonseparating spherical 2-suborbifold,
or X contains a separating spherical 2-suborbifold S such that no component of
X\{S} is a punctured spherical 3-orbifold.

Proof. Let {S1, . . . , Sn} be the spherical components of ∂X. Let X̂ be a 3-
orbifold obtained from X by gluing a discal 3-orbifold Bi along each Si. By
hypothesis, X̂ is not irreducible. Let S ⊂ X̂ be an incompressible spherical
2-suborbifold. Assume that S is in general position with respect to the Si’s and
intersects them in a minimal number of components. We are going to show that
S is in fact disjoint from the Si’s.

Suppose by contradiction that S ∩ Si0 6= ∅ for some i0. If some component
F of S ∩ Bi0 is nondiscal, then by Theorem 3.1, F is compressible. Choose
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a compression disk D for F whose interior does not meet S. The result of
compression surgery along D is a pair of disjoint separating spherical 2-sub-
orbifolds, at least one of which is incompressible. Thus we can replace S by
another incompressible, separating, spherical 2-suborbifold, still denoted by S,
such that #π0(S∩

⋃
Si) has not increased, and the Euler characteristic of S∩Si0

has increased.
Thus after a finite number of such modifications, we can assume that S

intersects Bi0 only in discal 2-suborbifolds. Let F be a component of S ∩ Bi0 .
By Theorem 3.1, F is ∂-parallel in Bi0 . Choose F such that some product
region between F and a discal 2-suborbifold of Si0 contains no other component
of S ∩Bi0 . Then observe that #π0(S ∩

⋃
Si) can be decreased by an isotopy of

S, giving a contradiction.
We have shown that S is disjoint from the Si’s. Theorem 3.1 implies that

S ⊂ X. Either S is nonseparating or it separates X in two components. These
components are not punctured spherical because otherwise S would compress
in X̂. This completes the proof of Lemma 3.10.

Proof of Theorem 3.2. Let O be a compact 3-orbifold without bad 2-suborbi-
fold. By Theorem 3.8, O contains a (possibly empty) finite maximal essential
spherical system S′. Let X be a component of O\S′. By Lemma 3.10 and
maximality of S′, we see that either X is punctured irreducible or it contains
a nonseparating spherical 2-suborbifold S. Again by maximality, X split along
S is punctured spherical. Since there are only finitely many components X,
we may enlarge S′ if necessary by adding a finite system of nonseparating
spherical 2-suborbifolds to get a (possibly inessential) spherical system S such
that each component of O\S is punctured irreducible. This completes the proof
of Theorem 3.2.

3.4 The toric splitting of an irreducible 3-orbi-

fold

Definition. Let O be a compact, irreducible 3-orbifold. A (nonspherical) sys-
tem F = {F1, . . . , Fn} of 2-suborbifolds of O is essential if each component is
essential and no two components are parallel.

We shall need a finiteness theorem for essential systems of (nonspherical)
2-suborbifolds in compact, irreducible 3-orbifolds. Its proof from Theorem 3.5
is very similar to that of Theorem 3.8 and left as an exercise in manipulating
normal suborbifolds.
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Theorem 3.11 (Finiteness theorem for irreducible 3-orbifolds). Let O
be a compact, irreducible 3-orbifold. There is an integer h(O) > 0 such that any
essential system in O has at most h(O) components.

The following useful notion has been used by W. Neumann and G. Swa-
rup [173] in the case of tori in 3-manifolds.

Definition. Let O be a compact, irreducible 3-orbifold. An essential toric
2-suborbifold F ⊂ O is canonical if it can be isotoped off any essential toric
2-suborbifold.

Remark. Let O be a compact, irreducible 3-orbifold. Let T ⊂ O be an incomp-
ressible turnover and F ⊂ O be an incompressible 2-suborbifold. Since every
simple closed curve on T bounds a discal 2-suborbifold in T , every intersection
curve in T ∩F bounds a discal 2-suborbifold in F . Hence T can be isotoped off
F . It follows that Euclidean turnovers are always canonical.

In general, tori and pillows are not canonical. For example, by using the
intersection pairing between the first and the second homology groups, one
easily shows that a torus T2 × {∗} ⊂ T2 × S1 is not canonical. More generally,
let F be a closed surface and γ be a simple closed curve in F which does not
bound a disk. Then the torus S1 × {γ} ⊂ S1 × F is not canonical.

Proposition 3.12. Let F be a closed hyperbolic or Euclidean 2-orbifold. Any
incompressible compact 2-suborbifold (S, ∂S) ⊂ (F × I, F × {0}) is ∂-parallel.
In particular if ∂S = ∅, then S is isomorphic to F .

Proof. Assume that S is not ∂-parallel. After finitely many ∂-compressions, at
least one component S′ of the surgered 2-suborbifold must be essential in F × I
and satisfy ∂S′ ⊂ F × {0}.

The orbifold F × I is the quotient of the Seifert fibered orbifold F × S1 by
the orientation reversing and fiber preserving involution τ acting by a reflection
in the S1-factor. Then the closed 2-suborbifold S′ ∪ τ(S′) is essential in F ×S1.
Otherwise the existence of a compression disk for S′ ∪ τ(S′) would imply the
existence of a τ -equivariant compression disk (cf. Theorem 3.19 in Section 3.6),
contradicting the fact that S′ is essential in F × I. However, by construction
S′∪τ(S′) cannot be isotopic in F ×S1 to a vertical or a horizontal surface. This
is incompatible with Theorem 2.16. For a different proof based on Stallings’ 3-
dimensional h-cobordism theorem, we refer to [55].

Corollary 3.13. Let O be a compact, irreducible 3-orbifold. A system F of
closed 2-suborbifolds is essential if and only if each component is essential and
no component of O\F is a product region between two components of F.
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Proof. Necessity is clear. For sufficiency, assume that two components of F are
parallel. Let X = F × I be a product region between them. If some component
F ′ of F lies in F × (0, 1), then by Theorem 3.12, F ′ is parallel to F × {0}. By
induction, one sees that some component of O\F is a product region.

We recall that a 3-orbifold is called solid-toric if it is finitely covered by
S1 ×D2.

Proposition 3.14. Let O be a compact, irreducible 3-orbifold. Let T be a
compressible toric 2-suborbifold of O. Then either T lies in a discal 3-orbifold
or T bounds a solid-toric 3-orbifold.

Proof. An easy consequence of the irreducibility of O is that T must separate
O (Exercise: prove it.)

Let O′ be the closure of a component of O\T which contains a compression
disk D for T . A surgery of T along D yields a spherical 2-suborbifold S in O′. If
S bounds a discal 3-suborbifold in O′, then O′ is a solid-toric 3-suborbifold of O
bounded by T . Otherwise S must bound in O a discal 3-suborbifold containing
T , since O is irreducible.

We now state and prove a more precise version of Theorem 3.3.

Theorem 3.15 (Toric splitting). Let O be a compact, irreducible 3-orbifold.

i. O admits a (possibly empty) maximal essential system C of canonical toric
2-suborbifolds, which is unique up to isotopy.

ii. Every component of O\C is atoroidal or Seifert fibered.

iii. Seifert fibrations on adjacent pieces never match up.

Lemma 3.16. Let W be a compact, irreducible 3-orbifold. If W is atoroidal and
contains an essential annular 2-suborbifold A that meets only toric components
of ∂W , then W admits a Seifert fibration for which A is vertical.

Proof. Let N be a regular neighborhood of the union of A and of the compo-
nent(s) of ∂W that it meets. It is easy to construct a Seifert fibration on N

such that A is vertical.
Let T be a component of ∂N . Then by an easy Euler characteristic argument,

T is toric. Since W is atoroidal, T is either compressible or boundary-parallel.
Now T cannot be compressible or boundary-parallel in N , so it is compressible
or boundary-parallel on the other side. Hence T separates.
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Let X be the closure of the component of W − T that does not meet IntN .
If T is boundary-parallel, then X is a product region between T and some
component of ∂W . If T is compressible, then by Proposition 3.14 X is solid
toric, because T , containing an essential annular 2-suborbifold, cannot lie in a
discal 3-orbifold. It is now easy to extend the Seifert fibration on N to all of
W .

Lemma 3.17. Let X be a compact, irreducible 3-orbifold. If X is not atoroidal,
but does not contain any canonical toric 2-suborbifold, then X is Seifert fibered.

Proof. Let T ⊂ X be a maximal essential toric system. By Theorem 3.11, such
a system exists, and by hypothesis it is not empty. Moreover, no component of
T is canonical.

Let T, T ′ be essential toric 2-suborbifolds that are not isotopically disjoint.
Then one can always isotope T ′ so that T ∩T ′ is a disjoint union of finitely many
transverse curves, and the number of such curves is minimal. We shall refer to
this operation as “putting T ′ in minimal position with respect to T”. Note that
all intersection curves must then be essential, because T, T ′ are incompressible
and X is irreducible. (Exercise: prove it.)

Special Case T consists of a single nonseparating 2-suborbifold T .

Since T is not canonical, there exists an essential toric 2-suborbifold T ′ such
that T, T ′ are not isotopically disjoint. Put T ′ in minimal position with respect
to T and set W := X\T. Then the trace of T ′ in W in a union of essential annuli.
Let A be one of these annuli such that ∂A meets two distinct components of
∂W . Lemma 3.16 gives a Seifert fibration on W such that A is vertical. When
we glue back two components of ∂W to obtain X, the two components of ∂A

become isotopic curves on T . Hence X is Seifert fibered.

Generic Case For each component T ∈ T, choose an essential toric 2-subor-
bifold T ′ in minimal position such that T, T ′ are not isotopically disjoint. For
each component F of ∂(X\T) coming from T , choose a component of (X\T)∩T ′

that is an essential annular 2-suborbifold meeting F . Let A be the collection of
these annular 2-suborbifolds.

Let W be a component of X\T. If only one component of ∂W comes from
T, then W contains one element A of A. Lemma 3.16 gives a Seifert fibration
on W such that A is vertical. If at least two components of ∂W come from
T, then W may contain several elements A1, . . . , Ak ∈ A. Lemma 3.16 gives (a
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priori nonisotopic) Seifert fibrations p1, . . . , pk on W such that Ai is vertical
with respect to pi.

Since T is essential and we are not in the Special Case, W cannot be finitely
covered by T2× I. Otherwise, since ∂W is orientable, the classification of finite
group actions on T2 × I would imply that W is a product region between two
components of T, see [154].

Hence by Theorem 2.15, the fibrations p1, . . . , pk are pairwise isotopic and
we can find a Seifert fibration such that A1, . . . , Ak are all vertical. Doing this
for every component of X\T and gluing back, we find a Seifert fibration on
X.

Proof of Theorem 3.15. (i) By Theorem 3.11, there exists a maximal essential
system C of canonical toric 2-suborbifolds. Uniqueness follows from Corol-
lary 3.13; we leave it as an exercise.

(ii) follows from Lemma 3.17.
(iii) Let T be a component of C and W1,W2 two components of O\C which

are adjacent to T . Assume that W1 and W2 are both Seifert fibered and that
the Seifert fibrations match up. Since T is not a turnover and is incompressi-
ble in both W1 and W2, there are two vertical essential annular 2-suborbifolds
Ai ⊂ Wi. After an isotopy, one can glue A1 and A2 along their boundaries to get
an essential toric 2-suborbifold T ′ ⊂ O such that T and T ′ are not isotopically
disjoint. This finishes the proof of Theorem 3.15.

3.5 The turnover splitting of an irreducible, atoroidal

3-orbifold

The following is a restatement of Theorem 3.4.

Theorem 3.18 (Turnover splitting). Let O be a compact, irreducible and
atoroidal 3-orbifold.

i. A (possibly empty) maximal essential system H of hyperbolic turnovers in
O is unique up to isotopy.

ii. Components of O\H do not contain any essential turnover.

Note that since O is irreducible and atoroidal, it does not contain any es-
sential spherical or Euclidean turnover. Hence (ii) follows from (i). The proof
of (i) follows the same outline as the proof of the toric splitting Theorem and
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is simpler, because as we already remarked, hyperbolic turnovers are always
canonical in the sense of the previous section.

As in the proof of Theorem 3.15, the existence of a maximal family of hyper-
bolic turnovers follows from Theorem 3.11 and the uniqueness from Corollary
3.13. We leave the details to the reader as an exercise.

3.6 Equivariant Theorems

Two classical results in 3-manifold topology are the Loop Theorem and the
Sphere Theorem (see [106, 113] and the references therein). These theorems
provide a connection between the homotopy groups of a 3-manifold and existence
and properties of incompressible surfaces in M . One may wonder whether they
can be generalized to orbifolds.

Let O be a good, compact 3-orbifold. Any statement about O can be trans-
lated into an “equivariant” statement for the universal cover of O, which is a
manifold. For instance, the existence of a compression disk for a given 2-subor-
bifold F ⊂ O is equivalent to the existence of an equivariant compression disk
D for the preimage of F in Õ, where equivariant means that for every covering
transformation g, either gD = D or gD ∩D = ∅. Thus one can hope to prove
a theorem on orbifolds by proving an equivariant theorem for manifolds. Of
course, this approach fails for orbifolds that are not a priori supposed to be
good.

It turns out that equivariant versions of the Loop Theorem and the Sphere
Theorem were obtained by Meeks and Yau [156], motivated by the Smith Con-
jecture and other questions about group actions on 3-manifolds. Their proofs
were based on minimal surfaces, i.e. surfaces that locally minimize area. They
originally dealt with finite group actions on compact manifolds. We shall give
more general statements (cf. [116]) together with useful corollaries that will be
used in later chapters.

A 2-suborbifold F of an orbifold O is π1-injective if the morphism π1F →
π1O induced by inclusion is injective. Given a proper action of a discrete group
Γ on O, we say that F is Γ-equivariant if for all g ∈ Γ, either gF = F or
gF ∩ F = ∅.

Theorem 3.19 (Equivariant Loop Theorem). Let M be a 3-manifold with a
proper (smooth) action of a discrete group Γ. Let F be an equivariant subsurface
of ∂M . If F is not π1-injective, then it admits an equivariant compression disk.

Here is a straightforward corollary:
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Corollary 3.20. Let O be a good 3-orbifold. Let F ⊂ O be a 2-suborbifold which
is either properly embedded or a suborbifold of ∂O. If F is not π1-injective, then
F is compressible.

Theorem 3.21 (Equivariant Sphere Theorem). Let M be a 3-manifold.
Let Γ be a discrete group acting properly on M . If π2M is nontrivial, then M

contains a Γ-equivariant 2-sphere representing a nontrivial element of π2M .

By using Hurewicz’s Theorem one can deduce the following corollary (see [106]):

Corollary 3.22. Let O be a good, irreducible 3-orbifold. Then one of the
following holds:

i. O is closed and has finite fundamental group, or

ii. The universal cover of O is a contractible manifold.

Meeks, Simon and Yau [157] used minimal surfaces to prove the long stand-
ing conjecture that universal covers of irreducible manifolds are irreducible. A
combinatorial approach to equivariant theorems was then given by Dunwoody,
and later by Jaco and Rubinstein [116, 117]. The latter authors first used
least weight normal surfaces (i.e. normal surfaces that minimize the number of
intersection points with the 1-skeleton, which can be thought of as a combi-
natorial version of area) and then introduced PL minimal surfaces, which are
normal surfaces locally minimizing a half-combinatorial, half-differential geo-
metric functional called PL area. PL minimal surfaces share enough properties
with (analytic) minimal surfaces to serve as tools to prove equivariant theorems,
but their existence is easier to establish. (See however [104] for a simplified ap-
proach to the existence of minimal surfaces in 3-manifolds.)

To illustrate this, we shall sketch a proof of the following generalization of
the main result of Meeks-Simon-Yau.

Theorem 3.23. Let O be a 3-orbifold. If O is irreducible, then its universal
cover Õ is irreducible.

Remark. The converse is true: if Õ is irreducible, then O is irreducible. This is
an easy exercise when O is a manifold. For the general case the proof is similar,
but it uses the nontrivial fact that smooth finite group actions on the 3-ball are
conjugated to orthogonal actions. In the cyclic case, it follows from the solution
of the Smith Conjecture (cf. [166]) and in the general case from the works of
Meeks and Yau [155] and of Kwasik and Schultz [132]. That follows also from
the Orbifold Theorem, see Section 3.7 and Chapter 9.
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Note that unlike Theorems 3.20 and 3.22, we do not assume in Theorem 3.23
that O is good. Thus we do not know a priori that Õ is a manifold, and we will
have to adapt the techniques of [117] to orbifolds. We follow [141]. The same
result was established in [220] by similar methods, but note that these authors
use a different terminology.

Let (O, T ) be a triangulated 3-orbifold. Let f : F → O be a general po-
sition immersed 2-suborbifold. The PL area of f is the ordered triple ‖f‖ :=
(sing(f),wt(f), lg(f)) ∈ N2 ×R+ (with the lexicographical order) whose coor-
dinates are defined below.

The singular weight sing(f) is the number of singular points of F . The total
weight wt(t) is the number of points of |f(F )|∩T (1) counted with multiplicities.
To define the length lg(f), we fix an ideal triangle ∆ ⊂ H2. We map each
2-simplex σ (minus its vertices) homeomorphically onto ∆ using barycentric
coordinates and put on σ the induced metric, so that the gluing maps are
well-defined (they belong to the isometry group of ∆). We call this (singular
Riemannian) metric the regular Jaco-Rubinstein metric on (O, T ). We define
lg(f) as the sum of the lengths of the components of f(F )∩T (2) for this metric.

We now discuss an important operation called smoothing out intersection
curves. (This has also been called “exchange/roundoff”.) Let F1, F2 be two
2-suborbifolds in general position with respect to T and to each other. Let γ

be a curve in F1 ∩ F2. Choose collars U1, U2 of γ in F1, F2 respectively and
write ∂Ui = γ+

i ∪ γ−i . Then to smooth out γ means to remove U1, U2, glue
disjoint smooth annuli U+, U− connecting γ+

1 with γ+
2 (resp. γ−1 with γ−2 ),

and perform small isotopies in neighborhoods of U+, U− away from γ. This
construction yields two immersed (possibly nonembedded) 2-suborbifolds F̃1, F̃2.
It can always be done so that the sum of the PL areas of F̃1, F̃2 is strictly less
than the sum of the PL areas of F1, F2.

This important fact provides restrictions on the way least PL area suborbi-
folds may intersect. To illustrate this, assume that F1 and F2 minimize PL area
in their respective isotopy class and the curve γ bounds on each Fi a disk Di.
Assume further that IntD1∩F2 = Int D2∩F1 = ∅, and that the 2-sphere D1∪D2

bounds a ball whose interior is disjoint from F1 and F2. Then there is a way of
smoothing out γ so that the disks D1, D2 get swapped. For i = 1, 2 we have F̃i

isotopic to Fi, hence |F̃i| ≥ |Fi|. But we just saw that |F̃1|+ |F̃2| < |F1|+ |F2|.
This is a contradiction. Thus F1 and F2 cannot in fact have such an “inessential”
intersection curve. This principle, first exploited by Meeks and Yau [156] in the
context of analytic minimal surfaces, is fundamental for all applications to 3-
dimensional topology, see also Freedman-Hass-Scott [74].
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Sketch of proof of Theorem 3.23. We fix a π1O-invariant triangulation T of Õ.
Seeking a contradiction, we assume that Õ contains an incompressible suborbi-
fold that is bad or spherical.

Step 1 There is a normal 2-suborbifold F0 ⊂ Õ that has least PL area among
bad or spherical incompressible 2-suborbifolds.

Start with any bad or spherical incompressible 2-suborbifold F ⊂ Õ. Note
that the moves to attain normality reduce PL area (cf. the proof of Lemma 3.9).
Thus if a minimizing element exists, it has to be normal. To prove existence
of a minimizing element, first observe that it is certainly possible to minimize
weight. Now once you have a bound on the weight of a normal 2-suborbifold,
you get a bound on the number of simplices they meet.

Hence finding a length minimizing element among weight minimizing ele-
ments reduces to a purely local variational argument similar to the one proving
existence of geodesics in Riemannian manifolds.3

Step 2 This minimal 2-suborbifold F0 is π1O-equivariant.
Since T is π1O-invariant, each translate of F0 by the covering group is also of

least PL area among bad or spherical incompressible 2-suborbifolds. The proof
that F0 is equivariant is by contradiction. Since the action of the covering group
is properly discontinuous, there are at most finitely many elements g1, . . . , gp ∈
π1O such that giF0 ∩ F0 6= ∅. Using a perturbation trick (due to Meeks-Yau
in the analytic case), we may further assume that for each i, F0 intersects giF0

transversely in finitely many simple closed curves that avoid the singular locus.
Each intersection curve separates F0 (resp. giF0) in two disks with at most three
singular points. There are finitely many such disks. Let D be of least PL area
among them.

If D ⊂ F0, set F1 := F0 and F2 := giF0, and otherwise set F1 := giF0 and
F2 := F0, so that D ⊂ F1 anyway. We now perform a smoothing out operation.
Let D1, D2 be the 2-suborbifolds such that D1∪D2 = F2 and ∂D1 = ∂D2 = ∂D.
Let F ′i be a 2-suborbifold obtained by rounding the corner of D∪Di for i = 1, 2.
By choice of D, the interior of D avoids F2, so F ′1 and F ′2 are embedded 2-sub-
orbifolds. Moreover, F ′1 and F ′2 have strictly smaller PL area than F0.

There are several cases to consider, according to how many singular points
the various suborbifolds contain. For instance, if there are no singular points at

3In general, a minimizing sequence may converge to a double cover of a nonorientable

1-sided 2-suborbifold. Here this cannot happen because Õ, and therefore |Õ|, are simply-

connected.
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all (e. g. if Õ is a manifold), then F ′1 and F ′2 are both nonsingular spheres, and
by an argument we have already seen, at least one of them is incompressible.
This contradicts the minimality of F0 and completes the sketch of Step 2.

We leave the other cases as an exercise to the reader. The idea is to prove
that D has either 0 or 1 singular point. In each case, there are several subcases,
according to the repartition of singular points between D1 and D2.

Step 3 The end.
Projecting down F0 to O, we get a 2-suborbifold F ⊂ O, which is bad or

spherical, but possibly nonorientable.
If F is orientable, then it is a compressible spherical 2-suborbifold because

O is irreducible. Any discal 3-suborbifold of O bounded by F lifts to a discal
3-suborbifold of Õ bounded by F0, contradicting the incompressibility of F0.

If F is nonorientable, then it is 1-sided. Let Fε be the boundary of a small
regular neighborhood of F . Some lift of Fε is a small perturbation of F0, hence
incompressible, and we get a contradiction as in the previous paragraph.

A similar argument (with a little more work) gives:

Theorem 3.24 ([141]). Let p : Ô → O be a regular covering of 3-orbifolds.
If O is irreducible, then Ô is irreducible. If O is irreducible and contains no
incompressible turnovers, then Ô contains no incompressible turnovers.

Basically, what makes the proof work is the fact that incompressible turno-
vers are canonical, i.e. can always be isotoped off one another.4

We end this chapter by stating an important theorem of W. Meeks and P.
Scott [154] whose proof uses the same techniques and relies on work of Freedman-
Hass-Scott [74].

Theorem 3.25 ([154]). Let M be a compact, irreducible Seifert fibered 3-ma-
nifold with infinite fundamental group. Let Γ be a finite group acting on M

respecting the normal subgroup generated by the generic fiber. Then M admits
a Γ-invariant Seifert fibration. Hence the orbifold M/Γ is Seifert fibered.

3.7 The Orbifold Geometrization Conjecture

Thurston’s Geometrization Conjecture states that the canonical pieces given
by the spherical and toric decomposition of a compact 3-orbifold without bad
2-suborbifold are geometric:

4A similar statement for e. g. tori or pillows does not hold since there are small Seifert

manifolds finitely covered by Haken ones. See next chapter.
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Conjecture 3.26 (Orbifold Geometrization Conjecture). The interior of
any compact 3-orbifold that does not contain any bad 2-suborbifold can be split
along a finite collection of disjoint, non-parallel, essential, embedded spherical
and toric 2-suborbifolds into canonical 3-suborbifolds X1, . . . Xn, such that for
each i, the 3-orbifold obtained from Xi by capping off all spherical boundary
components by discal 3-orbifolds is geometric.

The following case of Thurston’s Geometrization Conjecture has been set-
tled, see [16, 17, 18, 43, 228, 229] and Chapter 9:

Theorem 3.27 (Orbifold Theorem). The Geometrization Conjecture holds
for a compact, irreducible 3-orbifold with non-empty singular locus.

The spherical decomposition (Theorem 3.2), the Orbifold Theorem (Theo-
rem 3.27) and the fact that compact 3-orbifolds with a geometric decomposition
are finitely covered by a manifold [149] imply the following characterization of
orbits spaces of finite group actions on compact 3-manifolds:

Corollary 3.28. A compact 3-orbifold is the quotient of a compact 3-manifold
by an orientation preserving finite group action if and only if it does not contain
a bad 2-suborbifold.
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Chapter 4

Haken orbifolds

In this chapter we introduce an important class of 3-orbifolds, called Haken
orbifolds, and we present some of their fundamental properties.

Again in this chapter all 2-orbifolds and 3-orbifolds are assumed to be con-
nected and orientable unless mentioned otherwise. In general 2-suborbifolds of
3-orbifolds are assumed to be either properly embedded or suborbifolds of the
boundary.

We start by recalling this notion in the case of manifolds.

4.1 Haken manifolds

Homotopy theory plays an important role in the study of 3-dimensional man-
ifolds. A long standing conjecture concerning universal coverings of compact,
irreducible 3-manifolds is:

Conjecture 4.1 (Universal Covering Conjecture). The universal covering
of the interior of a compact, irreducible 3-manifold is homeomorphic to R3 or
S3.

This conjecture implies the Poincaré Conjecture. Indeed, assume by way
of contradiction that there exists a fake 3-sphere M (i.e. a closed, simply-
connected 3-manifold which is not homeomorphic to S3). Applying the Spher-
ical Decomposition Theorem 3.2 to M , we get a connected sum decomposition
M = M1# · · ·#Mm where the Mi’s are irreducible. By the Seifert-Van Kampen
theorem and elementary group theory, each Mi is a fake 3-sphere. In particular,
there exists an irreducible fake 3-sphere, contradicting the Universal Covering
Conjecture.
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Remark. A Whitehead manifold is an open, irreducible, contractible 3-manifold
not homeomorphic to R3. (We recall that open means non-compact and without
boundary.) The first such example was constructed by J. H. C. Whitehead [246]
in 1935. It is known that there are uncountably many Whitehead manifolds, but
it is still an unsolved problem if a Whitehead manifold can cover a compact 3-
manifold. In dimension n > 3, M. Davis [50] has given examples of contractible
open n-manifolds not homeomorphic to Rn which cover compact manifolds.

Beside the case of geometric manifolds, the Universal Covering Conjecture is
known to be true mainly for Haken manifolds, by work of F. Waldhausen [237].
We discuss this result in Section 4.3 in the more general setting of Haken orb-
ifolds.

Definition. A Haken manifold is a compact, irreducible 3-manifold which con-
tains an essential surface, or is a 3-ball.

Haken manifolds were studied by W. Haken in the early 60’s [99, 100]. In
the late 60’s, F. Waldhausen [237] established their fundamental properties and
showed their central role in the study of 3-dimensional manifolds.

The following proposition gives many important examples of Haken mani-
folds. A typical example is the exterior of a knot in S3.

Proposition 4.2. If M is compact, irreducible and H1(M ;Q) 6= {0}, then M

is Haken.

Proof. Since H1(M ;Q) 6= {0}, π1M has infinite abelianization. Hence there
is a surjective homomorphism φ : π1M → Z. This homomorphism φ can be
realized by a continuous map h : M → S1. Approximating h by a C∞ map
and taking the preimage of a regular value, we get an embedded surface. After
surgery on compressing disks we obtain an essential non-separating surface in
M .

Any non-separating properly embedded surface F in a compact manifold M

defines a morphism φ : π1M → Z → 0, by considering the algebraic intersection
number of any homology class of loops in H1(M ;Z) with F .

Let M be compact irreducible and ∂M 6= ∅. Then either M is a 3-ball, or the
inclusion i : ∂M → M induces a non-trivial homomorphism i∗ : H1(∂M ;Z) →
H1(M ;Z). Therefore in any case M is Haken.

Example. One can construct Haken 3-manifolds M with trivial homology start-
ing with the exterior E = S3 \ Int(N (k)) of any non-trivial knot k ⊂ S3. One
defines M := E ∪∂E E by gluing two copies of E along their boundaries by
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means of a homeomorphism f : ∂E → ∂E such that the induced homomor-

phism f∗ : H1(∂E;Z) → H1(E;Z) has matrix

(
0 1
1 0

)
in the basis given by a

meridian and a longitude.

The following lemma will be useful in the next chapter:

Lemma 4.3. Let M be an irreducible compact Seifert fibered space with non-
empty boundary. Then any nonzero element of H2(M ;Q) can be represented by
a family of pairwise disjoint, embedded, incompressible tori.

Proof. M is a Haken manifold, so any nonzero element of H2(M ;Q) can be
represented by a family of incompressible closed surfaces, which must be vertical
tori by Proposition 2.16 (see [238]). They can be made pairwise disjoint by
simple cut and paste operations.

Till the 70’s, few examples of non-Haken 3-manifolds were known. Those
were mostly Seifert fibered manifolds, and hence finitely covered by Haken man-
ifolds. Then the work of W. Thurston in the mid 70’s allowed one to construct
infinitely many non-Haken hyperbolic 3-manifolds ([225, Chap. 4], cf. Section 8.3
of this book). However, the following important conjectures are still wide open:

Conjecture 4.4 (Finite Covering Conjectures).

1 The fundamental group of any closed, irreducible 3-manifold is finite or
contains the fundamental group of a closed orientable surface.

2 Any closed, irreducible, 3-manifold with infinite fundamental group is finitely
covered by a Haken 3-manifold.

3 Any closed, irreducible, 3-manifold with infinite fundamental group is finitely
covered by a 3-manifold with strictly positive first Betti number.

4 Any compact, irreducible, 3-manifold with an infinite fundamental group
that does not contain a solvable subgroup of finite index is finitely covered
by a 3-manifold with arbitrary large first Betti number.

5 Any complete hyperbolic 3-manifold of finite volume is finitely covered by
a bundle over S1.

Remark. Conjectures 1 to 4 are due to F. Waldhausen [242]. The last one is
due to W. Thurston [228]. Clearly, Conjecture 4 implies Conjecture 3, which in
turn implies Conjecture 2.
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Conjecture 2 implies Thurston’s Geometrization Conjecture for irreducible
3-manifolds with infinite fundamental group, because a virtually Haken, closed,
3-manifold either is Haken or has the homotopy type of a hyperbolic or Seifert
fibered 3-manifold. Thurston’s Geometrization Conjecture is true for Haken
3-manifolds. Moreover, the works of D. Gabai, R. Meyerhoff, N. Thurston [80],
and of P. Scott [200], show that a closed, 3-manifold with the same homotopy
type as a hyperbolic or a Seifert fibered 3-manifold with infinite fundamental
group is hyperbolic or Seifert fibered.

Conjecture 3 holds for arithmetic hyperbolic manifolds in many cases, but
remains still unknown in general, see [138].

Conjecture 4 holds if ∂M 6= ∅ [44] or if M contains an essential torus [130,
137].

The existence of an essential surface (F, ∂F ) ⊂ (M, ∂M) allows to split the
manifold M along the surface F to obtain a new manifold M\F which is still
irreducible. If M\F is not a finite collection of 3-balls, it is Haken, and we
can iterate this process. The Haken Finiteness Theorem (Theorem 3.11) shows
that, after a finite number of steps, this process yields a finite collection of
3-balls (see [106, 113] and the references therein). Such a finite sequence of 3-
manifolds, obtained at each step by splitting along an essential surface, is called
a hierarchy for M .

The existence of a hierarchy is a fundamental tool in the proof of most im-
portant results about Haken manifolds. In the next section, we study hierarchies
in the more general context of Haken orbifolds.

4.2 Hierarchies of Haken orbifolds

First we define what it means for an orbifold to be Haken. This notion is
more delicate to handle for orbifolds than manifolds because of the existence of
turnovers.

Recall that discal means a quotient of a disc (a ball in the 3-dimensional
case). A thick turnover is the product of a turnover with an interval.

Definition. A 3-orbifold O is called Haken if it is compact, irreducible, and
either

i. O is discal, or a thick turnover, or

ii. O contains an essential 2-suborbifold, but contains no essential turnover.
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Remark. The word Haken may lead to confusion: it is not true that a com-
pact, irreducible 3-orbifold containing an incompressible properly embedded 2-
suborbifold is Haken in our sense. Figure 4.1 illustrates examples of 3-orbifolds
with non-empty boundary, but containing no essential 2-suborbifold— a phe-
nomenon that does not occur for manifolds and has of course something to do
with the presence of boundary turnovers, which are not spherical, but carry no
essential closed curves. By doubling any of those examples along its boundary,
one gets a closed, irreducible, non-Haken 3-orbifold that contains an essential
embedded 2-sided 2-suborbifold.

Definition. A compact 3-orbifold O is small if:

• O is irreducible,

• ∂O is empty or a union of turnovers,

• O does not contain any essential 2-suborbifold.

Note that discal 3-orbifolds and thick turnovers are small. In fact, they are
the only 3-orbifolds that are both Haken and small.

Figure 4.1: Two examples of small orbifolds with boundary, provided that the
orders of the local groups are large enough.

Definition. An orbifoldbody is a Haken 3-orbifold that can be split along a finite
(possibly empty) collection of disjoint properly embedded discal 2-suborbifolds
into a disjoint union of discal 3-orbifolds and/or thick turnovers.

A fundamental property of Haken 3-orbifolds is the existence of a hierarchy,
due to W. Dunbar [55]:

Theorem 4.5. Let O be a compact, Haken 3-orbifold. There is a finite sequence
of pairs

(O1, F1) ; (O2, F2) ; . . . ; (On, ∅)
such that:
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i. O1 = O;

ii. Fi is an essential 2-suborbifold of Oi which is not discal, nor a turnover.

iii. Oi+1 is obtained by splitting Oi along Fi;

iv. On is a finite collection of orbifoldbodies.

Such a sequence is called a hierarchy, and the integer n its length. There is an
upper bound on the length depending only on the 3-orbifold O, because of the
orbifold version of the Haken Finiteness Theorem (Theorem 3.11; see also [55,
Thm. 12]). The greatest possible length for a hierarchy given by Theorem 4.5
is called the length of O and denoted by `(O).

Remark. The key point for the construction of a hierarchy is to find at each
step an essential 2-suborbifold, which is not discal nor a turnover. In the case
of 3-manifolds, this follows from Proposition 4.2. In the orbifold case the proof
is much more involved: it uses Thurston’s Hyperbolization Theorem for Haken
3-manifolds, which is based on the existence of a hierarchy for such 3-manifolds,
and then M. Culler and P. Shalen’s technique [49] involving curves of repre-
sentations. Therefore one has to prove first the existence of a hierarchy for
Haken 3-manifolds and the Hyperbolization Theorem for Haken 3-manifolds in
order to prove the existence of a hierarchy for Haken 3-orbifolds and then the
Hyperbolization Theorem for Haken 3-orbifolds (cf. Chapter 6, Theorem 6.5)

The inductive step of Theorem 4.5 is given by the following proposition:

Proposition 4.6. Let O be a compact, irreducible 3-orbifold that does not con-
tain any essential turnover. Assume that there is at least one boundary com-
ponent of O that is not a turnover. Then either O is a discal 3-orbifold or it
contains an essential, 2-suborbifold. In particular, O is Haken.

Proof. Let us assume that O is not a discal 3-orbifold and does not contain
a closed essential 2-suborbifold. The singular locus ΣO is a trivalent graph
properly embedded in |O|. Set M := O − N (ΣO), where N (ΣO) is an open
tubular neighborhood of ΣO, and let P ⊂ ∂N (ΣO) be the collection of tori and
annuli corresponding to boundaries of neighborhoods of edges and circles in ΣO.

The following claim reduces the proof of Proposition 4.6 to the case where
M admits a geometrically finite hyperbolic structure, by using Thurston’s Hy-
perbolization Theorem for Haken 3-manifolds [230, 152, 153, 120, 165, 176, 177]
(cf. Chapter 6, Theorem 6.5).

Claim. Either M is Seifert fibered or (M,P ) is a pared manifold.
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A pared manifold is a pair (M, P ) such that:

• M is a compact, irreducible, atoroidal 3-manifold that is not Seifert fibered.

• P ⊂ ∂M is a disjoint union of incompressible tori and annuli such that
no two components of P are isotopic in M , and P contains all torus
components of ∂M .

• There is no essential annulus (A, ∂A) ⊂ (M, P ).

Proof of the claim. Since O contains no essential 2-suborbifold, it is irreducible
and atoroidal. It follows that M is irreducible and atoroidal. Let us assume
that M is not Seifert fibered and prove that (M,P ) is a pared manifold.

First we show that P is incompressible in M . A compressible annulus in P

would give a teardrop in O, contradicting the irreducibility of O. Because of the
irreducibility of M , the compressibility of a torus component of P would imply
that M is a solid torus, hence Seifert fibered. We check now that the pair (M,P )
is acylindrical. Let (A, ∂A) ⊂ (M,P ) be an essential annulus; we distinguish
three cases according to whether ∂A is contained in a) torus components of P ,
b) annulus components of P , or c) a torus and an annulus of P . In the first
case, a classical argument using the atoroidality of M implies that M is Seifert
fibered (cf. 3, Lemma3.16). In case b), gluing two meridian discal orbifolds to A

along ∂A would give a bad or an essential spherical 2-suborbifold, contradicting
the irreducibility of O. Case c) reduces to case b), by considering the essential
annulus obtained by gluing two parallel copies of A with the annulus P0\N (∂A),
where P0 is the torus component of P that meets ∂A.

End of the proof of Proposition 4.6. By the claim, either M is Seifert fibered,
or (M,P ) is pared. We deal with both cases separately.

When M is Seifert fibered, then the fibration of M extends to a fibration of
the orbifoldO such that the components of Σ are fibers, becauseO is irreducible.
In particular the components of ∂O are tori and O contains an essential discal
2-orbifold or an essential annulus.

When (M, P ) is a pared manifold, since M is Haken, by Thurston’s Hyper-
bolization Theorem for pared 3-manifolds [230, 152, 153, 120, 165, 176, 177], the
interior of M admits a geometrically finite hyperbolic structure whose cusp ends
correspond to the circles and edges of ΣO and to the tori of ∂O (cf. Chapter
6). Then it follows from Culler and Shalen’s theory for ideal points of curves of
representations in PSL2(C) (see Chapter 7, Theorem 7.13 and Corollary 7.14)
that O contains an essential suborbifold with non-empty boundary.
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Let O be a compact irreducible 3-orbifold with ∂O 6= ∅. Then O can be split
along a finite (possibly empty) collection of disjoint properly embedded discal
2-suborbifolds into a disjoint union of compact, irreducible, ∂-incompressible
3-orbifolds and of discal 3-orbifolds: one can argue by induction on the Euler
characteristic of ∂O, see [55, Lemma 13].)

Similar arguments show that a Haken 3-orbifold, in which the only essential
2-suborbifolds are discal, is an orbifoldbody.

The proof of Theorem 4.5 follows now by induction, using the orbifold version
of Haken’s Finiteness Theorem (cf. Theorem 3.11, see also [55, Thm 12]). Let
O = O1 be a compact, Haken 3-orbifold. The hypothesis allows to split O along
an essential 2-suborbifold which is not a turnover, to get a compact, irreducible,
possibly disconnected 3-orbifold O2. Then by Proposition 4.6 each connected
component of the orbifold O2 is either an orbifoldbody or still contains an
essential 2-suborbifold which is not discal, nor a turnover. This process must
stop because of the following proposition which can be proved exactly as in [113,
Prop. IV.7.].

Proposition 4.7. The length n of a hierarchy given in Theorem 4.5 is always
bounded above by 3h(O), where h0(O) is the maximal number of connected com-
ponents for an essential system of closed 2-suborbifolds in O.

Before closing this section, we remark that Proposition 4.6 implies that an ir-
reducible 3-orbifold without essential turnovers is small or Haken. Hence we can
reformulate once more the turnover splitting theorem of the previous chapter:

Theorem 4.8 (Turnover splitting). Let O be a compact, irreducible, atoroidal
3-orbifold.

i. A (possibly empty) maximal essential system H of hyperbolic turnovers in
O is unique up to isotopy.

ii. Each component of O\H is Haken or small.

4.3 Universal coverings

The following theorem is a straightforward extension to the case of orbifolds of
a theorem due to Waldhausen [237]:

Theorem 4.9. The universal covering of the interior of a Haken 3-orbifold is
homeomorphic to R3.
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It is sufficient to prove that the universal covering of a Haken 3-orbifold is a
manifold (i.e. that the orbifold is good). Then the proof of Theorem 4.9 reduces
to Waldhausen’s proof (cf. [237]).

Proposition 4.10. Haken 3-orbifolds are good.

Proposition 4.10 can be proved by induction on the length `(O) of O. The
inductive step is given by the following lemma [216, Thm. A]:

Lemma 4.11. Let O be a compact, irreducible 3-orbifold and let F ⊂ O be an
essential 2-suborbifold. If each connected component of O′ = O\F is good, then
O is good.

Proof. For good 3-orbifolds, there is a natural version of the Loop Theorem, de-
rived from the equivariant version for 3-manifolds (see Chapter 3, Corollary 3.20;
see also [216], [219]). It follows that each copy of the essential 2-suborbifold F

is π1-injective in each component of O′. Therefore F is π1-injective in O and
each component of O′ is π1-injective in O.

Let p : Õ → O be the universal covering. Since F is π1-injective in O,
p−1(F ) =: F̃ =

⋃
i∈N F̃i where each F̃i is homeomorphic to the universal covering

of F . Moreover:

Õ \ p−1(Int(O′)) = p−1(F × [0, 1]) =
⋃

i∈N
F̃i × [0, 1]

and
p−1(O′) =: Õ′ =

⋃

i∈N
Õ′i.

Each Õ′i is homeomorphic to the universal covering of O′ or of one component
of O′ if F is separating.

Since by hypothesis F and O′ are good orbifolds, the universal covering of
O is a union of manifolds, hence a manifold.

By induction on χ(∂O), one shows easily that orbifoldbodies are good.

4.4 Topological Rigidity

The following conjecture, often referred to as Borel’s Conjecture, is still wide
open:

Conjecture 4.12. Let M, N be two compact, irreducible 3-manifolds with in-
finite fundamental groups. Any proper homotopy equivalence f : M → N such
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that the restriction f |∂M : ∂M → ∂N is a homeomorphism, is homotopic rel
∂M to a homeomorphism.

F. Waldhausen [237] has proved this conjecture for Haken 3-manifolds in the
late 1960’s. The Geometrization Conjecture implies the Borel Conjecture: when
M, N are both hyperbolic, this is a consequence of G. Mostow’s Rigidity Theo-
rem [170] (see Chapter 6, Theorem 6.9); when M, N are both Seifert fibered, it
is due to P. Orlik, E. Vogt and H. Zieschang [175].

More recently, D. Gabai, R. Meyerhoff, N. Thurston [78, 79, 80] in the hy-
perbolic case and P. Scott [200] in the Seifert fibered case proved the Borel
conjecture assuming only that one of the 3-manifolds M,N is geometric. A con-
sequence is that a compact, irreducible 3-manifold M with infinite fundamental
group verifies the Geometrization Conjecture if and only if a finite covering of
M does.

Next we discuss an extension of Waldhausen’s result (cf. [219, 217]). Since
Haken 3-orbifolds are good, a homotopy equivalence between such orbifolds can
be defined simply as the projection of an equivariant homotopy equivalence
between the universal coverings, which are manifolds.

Theorem 4.13. Let O1 and O2 be two compact, Haken 3-orbifolds. Any ho-
motopy equivalence f : (O1, ∂O1) → (O2, ∂O2), whose restriction to ∂O1 is a
homeomorphism, is homotopic to a homeomorphism.

Remark. The Orbifold Theorem implies Theorem 4.13 for compact, irreducible
3-orbifolds with infinite fundamental group and nonempty singular locus.

A key lemma for the proof of Theorem 4.13 is:

Lemma 4.14. Let f : O1 → O2 be a homotopy equivalence between two com-
pact, Haken 3-orbifolds. Let F ⊂ O2 be an essential, embedded 2-suborbifold.
Then after a homotopy of f , f−1(F ) = G is a collection of essential suborbifolds
of O1.

Sketch of proof. The proof can be done in three steps (cf. [213, Chapter 2B]).

Step 1 Let pi : Õi → Oi be the universal covering of Oi, i = 1, 2. Define a
continuous map h from O2 to [0, 1] (resp. S1) if F2 is separating (resp. nonsep-
arating) such that:

• For any value y ∈ (0, 1) (resp. y ∈ S1 − ?,) the preimage h−1(y) = Fy is
an embedded 2-suborbifold isotopic to F .

• the map h ◦ p2 is smooth over (0, 1) (resp. S1 − {?}.)
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Step 2 Let f̃ : Õ1 → Õ2 denote a lift of f . By homotoping f we may assume
that g := h ◦ p2 ◦ f̃ is smooth over (0, 1) (resp. S1 − {?}.)

Pick a regular value y ∈ (0, 1) (resp. y ∈ S1−{?}) for g. Then g−1(y) =: G̃ is
an embedded 2-submanifold of Õ1, equivariant under the action of π1O1. There-
fore, after an isotopy of F , f−1(F ) = p1(G̃) = G is a collection of embedded,
compact, orientable 2-suborbifolds.

Step 3 Since O1 is irreducible, by surgering G along discal 2-orbifolds, one
can homotope f further such that each connected component of G = f−1(F ) is
essential.

The proof of Theorem 4.13 is again by induction on the length `(O1) of O1,
using Lemma 4.14 to reduce `(O1).

We can now sketch the proof of Theorem 4.13.

Proof of Theorem 4.13. First we consider the case where ∂O2 6= ∅ and there
is an essential 2-suborbifold with non-empty boundary (F, ∂F ) ↪→ (O2, ∂O2).
By a homotopy of f , we can make G := f−1(F ) ⊂ O1 a collection of properly
embedded, essential 2-suborbifolds. Choose a connected component Gi ⊂ G.
Then f |Gi∗ : π1Gi → π1F is injective. The generalized Baer theorem (cf.
[252]) implies that f |Gi is homotopic to a covering map Gi → F . Therefore
f |Gi : Gi → F is homotopic to a homeomorphism, since f |Gi : ∂Gi → ∂F is a
homeomorphism.

It follows that G = Gi = f−1(F ) is connected, because f−1(∂F ) = ∂Gi

and f |∂M : ∂M → ∂N is a homeomorphism. Hence after a homotopy of f in a
neighborhood of F , f |Gi : f−1(F ) = G → F is a homeomorphism. By splitting
O1 along G and O2 along F , we get a map f | : O1\G → O2\F . Since F and
G are essential, this map is a homotopy equivalence and a homeomorphism on
the boundary.

If O1 is an orbifoldbody, then the argument above reduces χ(∂O1) by split-
ting along an essential discal 2-suborbifold. Otherwise, it reduces the length
`(O1). In both cases a finite induction completes the proof.

The proof of the case where O2 contains only closed essential 2-suborbifolds
can be reduced to the previous case as in S. Gadgil and G. Swarup’s proof [83].
Since O1 and O2 are orientable, f induces a proper degree-one map from the
underlying spaces of the orbifolds. Then using Kneser’s theorem (cf. [210]) one
can homotope f to be a homeomorphism over a non-singular 3-ball B3 ⊂ O2.
By an isotopy of F we can assume that F ∩ B3 = D is a properly embedded
disk in B3. Then the argument above can be easily adapted to the restriction
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f | : O1 \ Int(f−1(B3)) → O2 \ Int(B3) (see [83]). We leave the details as an
exercise to the reader.

4.5 The Torus Theorem

The Torus Theorem gives a homotopic characterization of atoroidal Haken 3-
manifolds. It was announced by F. Waldhausen [241] in the late sixties. Sub-
sequently several authors including Feustel [70, 71], Jaco and Shalen [115], Jo-
hannson [118], and Scott [199] gave proofs of various forms of this theorem. All
these approaches involve quite intricate topological arguments. Among these,
Scott’s account is the most easily digestible and uses mainly properties of the
fundamental group of the manifold. In fact Scott’s work ([199, 200]) is the start-
ing point of the proof of the Torus Theorem in the general case. This proof,
which is beyond the scope of classical methods in dimension 3, is a consequence
of the works of several people: A. Casson and D. Jungreis [41], D. Gabai [77],
G. Mess [158], and P. Tukia [234].

In this section, we explain a proof of the Torus Theorem for compact,
Haken 3-orbifolds, adapting unpublished arguments of Cassons’s. The more
general case of compact, irreducible 3-orbifolds which contain no incompressible
turnover is presented in the next Chapter 5 (cf. [141]).

Theorem 4.15 (Torus Theorem). Let O be a compact, Haken 3-orbifold. If
π1O contains a subgroup Z⊕ Z, which is not peripheral (i.e. not conjugated to
a subgroup of the fundamental group of a boundary component), then either O
contains an essential toric 2-suborbifold or O is Euclidean or Seifert fibered.

One can triangulate O and take a normal immersion f : T2 → O which is
PL-minimal in the sense of Jaco and Rubinstein [117] and which induces the
inclusion Z⊕Z ⊂ π1O. Lifting the immersed torus to the universal covering R3

of Int(O), one gets a family of planes {P} which is equivariant under the action
of π1O and with the property that two planes intersect in at most one line (see
[74, Lemma 6.4 and 6.5]. Then one of the following three cases happens:

(1) gP = P or gP ∩ P = ∅, ∀g ∈ π1O, then f covers an embedded toric
2-suborbifold (or a one-sided Klein suborbifold). In any case O contains
an essential embedded toric 2-suborbifold.

(2) There are two double lines `1, `2 ⊂ P with incommensurable stabilizers
generated by γ1 and γ2 in π1O. Let P1 and P2 be the planes in the fam-
ily {P}, such that P ∩ P1 = `1 and P ∩ P2 = `2. Then the double line
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P1 ∩ P2 = `3 has a stabilizer generated by γ3 ∈ π1O which is not com-
mensurable with the stabilizers of `1 and `2. Thus the elements γ1, γ2, γ3

generate in π1O a free abelian group of rank 3. In this case, O is finitely
covered by a closed irreducible 3-manifold, that is homeomorphic to T3

by Waldhausen’s Theorem [237]. Since O is Haken, by Theorem 4.13, O
is Euclidean.

(3) All double lines in P have commensurable stabilizers. Then there is an
infinite primitive element γ ∈ π1O which stabilizes all double lines in P .
In this case γ generates an infinite cyclic normal subgroup in the funda-
mental group of a regular neighborhood O0 of f(T 2) ⊂ O. Then ∂O0

is a collection of toric or spherical 2-suborbifolds which are incompress-
ible in O0 by [139, Corollary 4.5]. Moreover each connected component
of O \ O0 is irreducible, since O is irreducible and f(T 2) ⊂ O0 cannot
be contained in a discal 3-suborbifold of O. Therefore, either one toric
boundary component of O0 is essential in O or the inclusion O0 ⊂ O in-
duces a surjective homomorphism at the level of fundamental groups and
γ generates an infinite cyclic normal subgroup of π1O.

In the third case , when π1O contains an infinite cyclic normal subgroup,
up to taking a 2-fold covering, one may assume that π1O contains an infinite
cyclic central subgroup Z. Then an argument analogous to [115, Thm II.6.3] or
the equivariant Theorem 3.25 of [154] allows to conclude in the general case.

Therefore the proof of Theorem 4.15 reduces to the proof of the following
result which is the orbifold version of a theorem of Waldhausen [239] (see Chap-
ter 5 for a proof in a more general case).

Theorem 4.16. Let O be a compact, Haken 3-orbifold. If π1O has an infi-
nite cyclic central subgroup Z, then O admits a Seifert fibration such that Z is
generated by a power of the regular fiber.

Proof. If ∂O 6= ∅, then either ∂O is incompressible or O is a solid torus with
possibly a singular core, since the center of a non-trivial free product with
amalgamation is contained in the amalgamated subgroup (cf. [139, Corollary
4.5]).

Let F ⊂ O be an essential 2-suborbifold. We distinguish two cases:

a) Z∩π1F 6= {1}. Then F is a Euclidean 2-suborbifold. Each component of the
orbifold obtained by splitting O along F is a Haken 3-orbifold having a strictly
smaller length than the length of O and an infinite cyclic central subgroup in
its fundamental group.
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b) Z ∩ π1F = {1}. Then the argument above shows that F is nonseparating by
[139, Corollary 4.5].

Let O0 denote O split open along F . Its boundary contains two copies
F+

0 , F−0 of F . Let p : O → O be the infinite cyclic covering, built by taking
for each n ∈ Z a copy On of O0 and by identifying to a single 2-suborbifold
Fn+1 the two copies F+

n ⊂ ∂On and F−n+1 ⊂ On+1 of F . The group of deck
transformations of this covering is infinite cyclic generated by a homeomorphism
t : O → O such that t(On) = On+1 and t(Fn) = Fn+1. Thus π1O is an
extension of p∗π1(O) by Z, where the generator of Z, corresponding to t, can be
represented by a loop τ ∈ π1O which crosses F transversally in a single point.

By the Equivariant Loop Theorem (see Corollary 3.20), p−1(F ) is incom-
pressible in O. So p∗π1(O) is either equal to π1F or a non-trivial free product
amalgamated along π1F . Since Z ∩π1F = {1}, it follows that Z ∩ p∗π1O = {1}
by [139, Corollary 4.5]. Then a generator of Z can be written ατ r where r 6= 0
and α ∈ p∗π1O can be represented by a loop contained in the union of finitely
many Oi, say ∪m

−mOi for some integer m > 0. It follows that for any ele-
ment γ ∈ π1O0 one has: τ rγτ−r = α−1γα. Iterating this relation shows that
any loop in Onr for nr > m is homotopic to a loop in ∪m

−mOi, and thus to a
loop in Fnr ⊂ ∂Onr, since Fnr is incompressible in O and separates Onr from
∪m
−mOi. This shows that the inclusion homomorphism π1Fnr → π1Onr is an

isomorphism.
By applying Stallings’ 3-dimensional h-cobordism theorem [212] (see also [106,

Thm.10.2]) to a finite, regular, manifold covering of Onr and by using the fact
that a finite group action on an irreducible, trivial bundle preserves the product
structure [63, Thm.4.1], [154, Thm.8.1], one concludes that Onr, and hence O0,
is homeomorphic to F × [0, 1]. In particular O is a surface bundle over S1 with
fiber F and p∗π1(O) = π1F . Then the relation τ rγτ−r = α−1γα for all γ ∈ π1F

shows that the monodromy φ : F → F of the surface bundle O has finite order
in the mapping class group of F . By Nielsen’s Realization Theorem [251], φ is
isotopic to a periodic homeomorphism φ′ : F → F . Then the mapping torus
of an orbit of a point x ∈ F under φ′ is a circle, and O is a disjoint union of
circles, with saturated tubular neighborhoods. Therefore O is Seifert fibered.
Moreover the infinite central subgroup Z is generated by a power of the regular
fiber.

For a Haken 3-manifold M with incompressible boundary, Jaco-Shalen [115]
and Johannson [118] obtained more precise conclusions with respect to homo-
topic properties of the toric splitting than just the existence and the uniqueness
of this splitting (see also [113, 199]): they proved that any essential map of a
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torus into M is properly homotopic into a Seifert piece of the toric splitting.
Here is the analogous statement for orbifolds:

Theorem 4.17 (Enclosing property).
Let O be a compact, Haken 3-orbifold. If f : T → O is a π1-injective essential
map from a toric 2-orbifold T , then there exists a Euclidean or Seifert component
S ⊂ O of the toric splitting of O and a π1-injective map g : T → O homotopic
to f such that the image g(T ) lies in S.

This result can be proved by using inductive arguments on hierarchies like
in [115] and [118], or like in [201] by making first the immersion of the toric
2-orbifold transverse to the JSJ family of toric suborbifolds and then by using
a strengthened version of the torus theorem.

In the case of an irreducible 3-manifold with incompressible boundary, Jaco-
Shalen [115] and Johannson [118] were considering a richer characteristic split-
ting along essential tori and annuli. Such a splitting exists also in the case of
3-orbifolds O with incompressible boundary. Let DO denote the double of O,
obtained by gluing two copies of O along their boundary. Then the existence of
the JSJ-splitting of O along toric and annular 2-suborbifolds can be established
by using [154] to make the toric splitting of DO equivariant with respect to the
orientation reversing involution exchanging the two halves of DO.

4.6 Compact core

The following theorem is important for the study of noncompact 3-orbifolds O
without bad 2-suborbifold and with a finitely generated fundamental group. It
enables one to find a compact suborbifold of O (a compact core) which carries
the fundamental group π1O. This has been first proved for 3-manifolds by
P. Scott [196, 197] and independently by P. Shalen (unpublished). The case of
very good, irreducible orbifolds has been handled by M. Feighn and G. Mess
[69].

Theorem 4.18. Let O be a very good, irreducible 3-orbifold. If π1O is finitely
generated, then there is a compact irreducible 3-suborbifold O0 ⊂ O such that
the inclusion map induces an isomorphism π1(O0) → π1(O).

Proof. Since O is very good, there is a 3-manifold M and a finite subgroup
G ⊂ Diff+(M) such that O = M/G. Since O is irreducible, Theorem 3.23
shows that M is irreducible. Moreover, π1M is a finite index subgroup of π1(O).
Hence it is finitely generated. By Scott’s Compact Core Theorem [196, 197] it
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is finitely presented. Then the proof of [69, Thm.2(b)] shows that M has a
G-invariant compact core.

Theorem 4.18 shows that the fundamental group of a very good, irreducible
3-orbifold is coherent, i.e. its finitely generated subgroups are finitely presented.
By the Orbifold Theorem, this applies also to good, compact, irreducible 3-
orbifolds, since these are in fact very good.

Remark. One difficulty to extend the proof of Scott’s Compact Core Theorem
to the case of a good, irreducible 3-orbifold O with finitely generated fundamen-
tal group is the accessibility property for π1O. This property means that the
process of splitting π1O over finite subgroups must stop after a finite number
of steps. When one splits over trivial subgroups, this property always holds by
Gruško’s Theorem. This fact is used in a crucial way in the proof of Scott’s
Compact Core Theorem for 3-manifold groups.

M. Dunwoody [59] proved that every finitely presented group is accessible.
However, not all finitely generated groups are accessible [60]. For splitting over
subgroups of bounded order, there is Linnell’s theorem [134]. See [53, Chap.
IV] for a general discussion of accessibility.
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Chapter 5

Seifert orbifolds

5.1 Introduction

Let O be a small 3-orbifold. According to the Geometrization Conjecture, it
should be spherical, Euclidean, hyperbolic or Seifert fibered. The geometry is ex-
pected to reflect the properties of the fundamental group. If O is Seifert fibered,
then by Proposition 2.12, the generic fiber of any Seifert fibration generates a
virtually cyclic normal subgroup Z; moreover, when the base of the fibration
is Euclidean or hyperbolic, Z is infinite and has infinite index. By contrast,
nonelementary Kleinian groups never have normal infinite cyclic subgroups.

The following theorem is a generalization of what has been called “Seifert
Fiber Space Conjecture” (and also, which is somewhat misleading, “Seifert Con-
jecture”). It is an important step towards the Geometrization Conjecture.

Again in this chapter all orbifolds are orientable unless mentioned otherwise.

Theorem 5.1. Let O be a closed, irreducible 3-orbifold. Suppose that O is good
or contains no incompressible turnovers. If π1O has an infinite cyclic normal
subgroup, then O is Seifert fibered.

A complete proof of this is outside the scope of this book. It uses techniques
developed by A. Casson and D. Jungreis [41], D. Gabai [77], G. Mess [158], P.
Scott [199, 200] and P. Tukia [234]. An overview will be given in the last section,
and the details can be found in [141]. The main goal of this chapter is to prove
Theorem 5.1 under some extra hypotheses (which in fact hold a posteriori).

Recall that a group G is residually finite if for all x ∈ G − {1}, there is
a finite index subgroup H < G such that x 6∈ H. All compact geometrizable
orbifolds are very good and have residually finite fundamental groups [149]. We
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shall give a proof of Theorem 5.1 assuming that O is very good and π1O is
half-way residually finite in the sense of P. Shalen [207], which is a weak version
of residual finiteness.

The main tool for this is a geometrization theorem for uniform TMC’s, which
are open 3-manifolds endowed with a triangulation and a central element of the
fundamental group satisfying some large-scale properties.

5.2 Preliminaries

5.2.1 TMC’s

Let W be a 3-manifold and T be a triangulation of W . We say that T has
bounded geometry if there is a uniform bound on the number of simplices in the
star of a vertex.

We call TMC (for “Triangulated Manifold with a Central element) a triple
(W, T , a) where W is a 3-manifold, T a triangulation of W of bounded geometry
and a a nontorsion central element of π1W . A TMC is called open, irreducible,
etc. when the 3-manifold W has this property. It is Seifert fibered if W admits
a compatible Seifert fibration, i.e. a Seifert fibration with orientable base such
that a is a power of the element of π1W represented by the generic fiber.

Let i ∈ {1, 2, 3} and P be an i-dimensional simplicial complex. Recall that
a map f : P → W is called combinatorial if it maps each i-simplex homeomor-
phically onto some i-simplex of T . Thus the number of i-simplices of P can be
thought of as the number of i-simplices of f(P ) “counted with multiplicities”,
and is called the i-dimensional volume of the map f and denoted by voli(f). We
use the words length and area as synonyms for 1-dimensional and 2-dimensional
volume, respectively.

Definition. A TMC (W, T , a) is uniform if it satisfies the following properties:
(UR) There exists a constant C0 ≥ 0 such that for each vertex x of T ,

there is a combinatorial loop based at x, of length at most C0 and representing
a ∈ π1W .

(UIP) There exists a function C1 : N → N such that every null-homotopic
combinatorial map f : S1 → W can be extended to a combinatorial map f̄ :
D2 → W such that vol2(f̄) ≤ C1(vol1(f)).

In the next section, we prove:

Theorem 5.2. Let (W, T , a) be an open, irreducible TMC. If (W, T , a) is uni-
form, then W is Seifert fibered.
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Corollary 5.3. Let O be a good, closed, irreducible 3-orbifold whose fundamen-
tal group has an infinite cyclic central subgroup Z. Let N ⊂ π1O be an infinite
index normal subgroup containing Z. Then the regular covering Ô with funda-
mental group N has a Seifert fibration such that Z is contained in the subgroup
generated by the generic fiber.

Remark. The subgroup N may be infinitely generated. This is crucial for our
applications.

In the remainder of this chapter we use the following conventions:

i. All homology groups have coefficients in Q.

ii. In a 3-manifold context, submanifold means codimension 0 submanifold.

iii. All unlabelled maps are induced by inclusion.

5.2.2 Quasimetrics defined by triangulations

A quasimetric on a set X is a function d : X2 → [0,+∞[ such that there is a
constant C ≥ 0 such that:

i. d(x, x) = 0 for all x ∈ X.

ii. d(x, y) = d(y, x) for all x, y ∈ X.

iii. d(x, z) ≤ d(x, y) + d(y, z) + C for all x, y, z ∈ X.

Given x ∈ X and R ≥ 0, the ball around x of radius R, written B(x,R),
is the set of y ∈ X such that d(x, y) ≤ R. Given A ⊂ X, the R-neighborhood
of A is the set N(A,R) =

⋃
x∈A B(x,R). The diameter of A is diam A :=

supx,y∈A d(x, y) ∈ [0, +∞].
Let (W, T ) be a triangulated 3-manifold. Define the size of a subset A ⊂ W ,

denoted by size(A), as the minimal cardinal of a set S of 3-simplices of T such
that A ⊂ ⋃S. It may be infinite in general, but a compact subset has always
finite size.

Let x, y be points of W . A minimizing path between x and y is a (continuous)
path α : [0, 1] → W such that α(0) = x, α(1) = y and α has minimal size. Such
a path always exists because W is path connected.

We define a quasimetric on W by setting dT (x, y) = size(α)− 1 where α is a
minimizing path between x and y. Note that a subset A has finite diameter iff
it has finite size. Moreover, if A is path-connected, then diam A + 1 ≤ size(A).
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5.2.3 Cyclic homotopies

A basepoint in S1, denoted by 0, will be fixed throughout.

Definition. A cyclic homotopy on a TMC (W, T , a) is a map H : W ×S1 → W

such that:

i. H(·, 0) is the identity of W .

ii. For all x ∈ W , the loop H(x, ·) represents a (this makes sense without
reference to a basepoint because a is central).

Given a point x ∈ W , the loop H(x, ·) is called the track of x by H.
The diameter of H, denoted by diam H, is the supremum of the diameters

of its tracks. We say that H is bounded if diam H is finite.

Proposition 5.4. Let (W, T , a) be an open, irreducible TMC. If (W, T , a) is
uniform, then (W, T , a) admits a bounded cyclic homotopy.

Before proving this proposition, we need a few lemmas.

Lemma 5.5. Let (W, T , a) be an open, irreducible, uniform TMC. Then there
exists a function C2 : N → N such that for any compact K ⊂ W , there is a
compact, irreducible submanifold L of W such that K ⊂ IntL and diam L ≤
C2(diamK).

Proof. Let K be a compact subset of W . By (UR), we can assume without loss
of generality that K does not lie in a ball. Let Y be a regular neighborhood of
N(K, 0) obtained by taking the star in the second derived triangulation. If Y is
irreducible, then we can set L = Y . Otherwise, let S ⊂ Y be an incompressible
embedded 2-sphere. Since W is irreducible, there is a ball B ⊂ W such that
∂B = S. At least one component U of W − IntY is contained in B. Now U

is contained in the C0-neighborhood of its boundary, because otherwise some
point x of U would have the property that any loop based at x of length at most
C0 is contained in U , hence in B, contradicting (UR).

From this, we deduce a bound in terms of diam K on the diameter of the
union of Y and all components of W − IntY that lie in balls. Call L this union.
It is easy to check that L is irreducible, so Lemma 5.5 follows.

We call uniformly irreducible an open triangulated 3-manifold satisfying the
conclusion of Lemma 5.5.

In the following lemma, the diameter of a map is defined to be the diameter
of its image.
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Lemma 5.6. Let (W, T ) be a uniformly irreducible triangulated 3-manifold.
Then for any i > 1, every continuous map f : Si → W can be extended to a
continuous map f̄ : Di → W such that diam(f̄) ≤ C2(diam(f)).

Proof. Let K be the image of f . Uniform irreducibility gives a compact, irre-
ducible submanifold L containing K of diameter at most C2(diam(f)). Since
W is noncompact, L has non-empty boundary. Hence by Corollary 3.22, L is
aspherical and the lemma follows.

Lemma 5.7. Let (W, T ) be a triangulated 3-manifold. Let P be an i-dimen-
sional connected simplicial complex (where 1 ≤ i ≤ 3) and f : P → W be a
combinatorial map. Then diam(f(P )) ≤ voli(f).

Proof. The i-dimensional volume of f is at least the number of i-simplices of
f(P ). Since each i-simplex is contained in a 3-simplex, this number is at least the
size of f(P ). Now diam(f(P )) ≤ size(f(P )) since f(P ) is path-connected.

Proof of Proposition 5.4. The construction of the cyclic homotopy H is by suc-
cessive extensions over the i-skeleta. At each step, the problem of extending H

from the i-skeleton to the (i + 1)-skeleton can be viewed as a filling problem
whose solution is provided by one of our hypotheses.

First use (UR) to construct H on the 0-skeleton. By Lemma 5.7, we have
diam H ≤ C0. Then for each edge e between vertices v, v′, consider the com-
binatorial loop αe based at v defined by first following the track H(v, ·), then
running through e, following H(v′, ·) in the opposite direction and coming back
through e. By construction, αe is null-homotopic and has length at most 2C0+2.
By (UIP), αe can be filled by a combinatorial disc of area at most C1(2C0 + 2).
This allows us to extend H to a cyclic homotopy of diameter at most C1(2C0+2)
on the 1-skeleton.

By Lemma 5.5, (W, T ) is uniformly irreducible. For each 2-simplex c, the
restriction of H to ∂c can be viewed as a combinatorial map of an annulus to
W . This map can be extended to a combinatorial map f : S2 → W by adding
two copies of c. Now by Lemma 5.7, diam(f) ≤ vol2(f) ≤ 3C1(2C0 + 2) + 2, so
by Lemma 5.6, the map f can be filled by a map of the 3-ball of diameter at
most C2(3C1(2C0 + 2) + 2).

The extension of H to the 3-skeleton is analogous to the last paragraph,
again using uniform irreducibility via Lemma 5.6.
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5.3 Geometrization of uniform TMC’s

In this section, we prove Theorem 5.2. Let (W, T , a) be an open, irreducible,
uniform TMC. By Proposition 5.4, (W, T , a) admits a bounded cyclic homotopy
H. This cyclic homotopy can be viewed as a singular Seifert fibration, which
we have to turn into a true Seifert fibration.

The following technical notion is inspired by [34].

Definition. Let L be a compact, connected submanifold of W . We say that
L is regular if W − IntL has no compact components and L contains a loop
representing the central element a ∈ π1W . If in addition L admits a compatible
Seifert fibration, then it is called S-regular.

We collect in the next lemma some immediate consequences of the defini-
tions.

Lemma 5.8. Let L be a regular submanifold of W . Then

i. L and W − IntL are irreducible.

ii. Every embedded torus T ⊂ W − L is incompressible in W − L or null-
homologous in W − L.

iii. If L is S-regular, then it is a solid torus or incompressible.

Lemma 5.9. Each compact K ⊂ W is contained in the interior of some regular
submanifold L.

Proof. Let Y be the 0-neighborhood of K. Pick a combinatorial loop α of
diameter ≤ C0 based at some vertex of Y . Let U be a regular neighborhood of
Y ∪ α in N(Y ∪ α, 0) whose boundary is a disjoint union of surfaces F1, . . . , Fn

combinatorially embedded into T ′′. Let L be the union of U and all compact
components of W − IntU .

Then L is a compact, connected submanifold of W , W−IntL has no compact
components and α ⊂ L, so L is regular.

Lemma 5.10. Each compact K ⊂ W is contained in the interior of some
S-regular submanifold V ⊂ W .

Proof. First by Lemma 5.9, K is contained in the interior of some regular subma-
nifold L. By applying Lemma 5.9 to N(L,diam H +1), we obtain a regular sub-
manifold K ′ such that K ⊂ IntK ′ and dT (K, ∂K ′) > diam H. Applying again
Lemma 5.9, we find regular submanifolds K ′′,K ′′′ of W such that K ′ ⊂ IntK ′′,
K ′′ ⊂ K ′′′, dT (∂K ′, ∂K ′′) > diam H, and dT (∂K ′′, ∂K ′′′) > diam H.
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Define X := K ′′′ − IntK ′ and let X1, . . . , Xp be the components of X. By
the usual argument, we see that each Xi is irreducible. For each 1 ≤ i ≤ p,
let Fi,1, . . . , Fi,ni

be the components of ∂K ′′ that lie in Xi. Define a class
ωi ∈ H2(Xi) by ωi :=

∑
j [Fi,j ].

Claim. For each i, there is a finite collection of pairwise disjoint embedded tori
Ti,1, . . . , Ti,mi

, none of which is null-homologous in Xi, such that the following
formula holds in H2(Xi):

ωi =
∑

k

[Ti,k].

Let us assume this claim for the moment. Then the union of all tori Ti,k

for all i and all k bounds a compact submanifold V ⊂ K ′′′ containg K ′. Hence
K ⊂ IntV and diam V is bounded by a function of diamK. By Lemma 5.8(ii),
each boundary torus of V is incompressible in W − L since it cannot be null-
homologous in W − L.

If every component of ∂V is incompressible in W , then the map π1V → π1W

is injective. Now V contains a loop representing the central element a, so π1V

has nontrivial center, and by Theorem 4.16 it has a compatible Seifert fibration.
The proof of Lemma 5.10 is complete in this case.

Suppose now that some component T of ∂V is compressible in W . Then since
L does not lie in a 3-ball, V is a solid torus, hence S-regular. This completes
the proof of Lemma 5.10 modulo the claim.

Our next task is to prove the claim. Let i be fixed throughout.

Lemma 5.11. For all j, there is a finite collection of (possibly singular) tori
T ′j,1, . . . , T

′
j,pj

such that the following formula holds in H2(Xi):

Fi,j =
∑

l

[T ′j,l].

Proof. To simplify notation, set F := Fi,j . Recall that F is a boundary com-
ponent of K ′′, so the condition dT (∂K ′′, ∂X) > diam H implies that the im-
age of F × S1 by H is contained in Xi. Thus we may consider the restriction
H : F×S1 → Xi. Let x0 ∈ F be a basepoint and G := H∗(π1(F×S1, (x0, 0))) ⊂
π1(Xi, x0). Let α be the track of x0. Then the homotopy class of α in π1(W,x0)
is a, so the homotopy class of α in π1(Xi, x0) is a nonzero element, say a′, which
belongs to G by definition. In fact, a′ is central in G because π1S1 is central in
π1(F × S1). We have just shown that G has nontrivial center.

Let X ′ be the covering of Xi with π1X
′ = G. By Corollary 3.22, since Xi is

irreducible, both Xi and X ′ are aspherical, so H2(X ′) = H2(G). Furthermore,
X ′ is irreducible by Theorem 3.24. Consider the inclusion j : F → X. Since

90



G contains j∗(π1F ), j can be factored through a map j′ : F → X ′. Now the
homology class [F ] is nonzero in H2(X). Taking the image of the homology
class [F ] ∈ H2(X) under j′∗, we get a nontrivial element ω of H2(G).

Scott’s compact core theorem [196] (cf. Theorem 4.18) provides a submani-
fold X ′

0 ⊂ X ′ such that π1X
′
0 = G. Since G has nontrivial center, Theorem 4.16

tells us that X ′
0 is Seifert fibered. Hence G is the fundamental group of a

compact Seifert fibered manifold with nonempty boundary. Therefore, the class
ω ∈ H2(G) can be represented by Z2 subgroups by Lemma 4.3, so we get the
desired singular tori in Xi.

Theorem 4.17 gives a Seifert fibered (possibly disconnected) submanifold
S ⊂ X which contains singular tori homotopic to the T ′j,l’s. Take the collection
for all j and all l, and call it T ′′1 , . . . , T ′′q . Let ω′ be their sum in H2(S). Apply
Lemma 4.3 again to obtain disjoint incompressible embedded tori Ti,1, . . . , Ti,mi

in S such that ω′ =
∑

k[Ti,k] ∈ H2(S).
Now the sum of the homology classes of T ′′1 , . . . , T ′′q in H2(X) is ωi and so

ωi =
∑

k[Ti,k]. This finishes the proof of the claim, hence that of Lemma 5.10.

Proof of Theorem 5.2. By Lemma 5.10, W admits an exhaustion V0 ⊂ V1 ⊂
· · · ⊂ Vn ⊂ · · · by S-regular submanifolds satisfying the properties of that
lemma. Let S be the class of Haken Seifert fibered manifolds with nonempty
boundary whose Seifert fibration is unique up to isotopy. Then each Vn is either
homeomorphic to S1 ×D2, T2 × I, K2×̃I (the twisted I-bundle over the Klein
bottle) or belongs to S. Note that if VN ∈ S for some N , then Vn ∈ S for all
n ≥ N . If no Vn belongs to S and VN

∼= K2×̃I for some N , then Vn
∼= K2×̃I for

all n ≥ N , because neither S1 ×D2 nor T2 × I can contain an incompressible
K2×̃I. Likewise, if all Vn’s are solid tori or T2 × I’s, then either all Vn’s are
T2 × I’s for large n, or all Vn’s are solid tori. This gives four cases.

Case 1 Vn belongs eventually to S.
Then for large n, both Vn and Vn+1 have a unique Seifert fibration up to

isotopy, and Vn has incompressible boundary as a submanifold of Vn+1. This
means that Vn+1 admits a Seifert fibration such that every boundary component
of Vn is a vertical torus. Thus any Seifert fibration on Vn extends to a Seifert
fibration on Vn+1. Hence W has a Seifert fibration with orientable base.

Case 2 Vn is eventually K2×̃I.
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Since K2×̃I has only one Seifert fibration with orientable base up to isotopy,
the argument for Case 1 applies. In fact, one can show that Vn+1 − IntVn

∼=
T2 × I for large n, so W is homeomorphic to the interior of K2×̃I.

Case 3 Vn is eventually T2 × I.
This time, the Seifert fibration with orientable base on Vn is not unique up

to isotopy, but it is still true that any Seifert fibration on Vn extends to a Seifert
fibration on Vn+1, so W is Seifert fibered with orientable base. Again, it can be
shown that in fact W ∼= T2 ×R in this case.

Case 4 Each Vn is a solid torus.
This is the hardest case, because Vn is no longer incompressible. Without

loss of generality, we assume that the tori ∂Vn are chosen sufficiently far from
each other so that dT (∂V1, V0) is greater than diam H, and there exists a point
x0 ∈ V1−IntV0 such that dT (x0, ∂V1) and dT (x0, ∂V2) are greater than diam H.

For n ≥ 2, define Xn := Vn − IntV1. Thus ∂Xn is the disjoint union of the
two tori ∂V1 and ∂Vn. The proof is based on the following lemma:

Lemma 5.12. For all n ≥ 2, Xn admits a Seifert fibration with orientable base,
which extends to Vn.

Proof. Let i : Xn → W and j : Xn → W − V0 be the inclusion maps. We
see that ∂V1 and ∂Vn are incompressible in W − V0 (otherwise a compression
would yield a sphere, which would have to bound a ball containing V0). Thus
the induced map j∗ : π1Xn → π1(W − V0) is injective.

In order to apply Theorem 4.16, we are looking for a central element A ∈
π1Xn such that i∗A = a. Let α be the track of x0 and A ∈ π1Xn be the
homotopy class of α. Since dT (x0, ∂Xn) > diam H, it follows that α lies in Xn,
and since dT (∂V1, V0) > diam H, we know that H(Xn × S1) lies in W − V0.
Thus

H∗(π1(Xn × S1)) = H∗(π1(Xn × {0})) ·H∗(π1({x0} × S1))

= H∗(π1(Xn × {0}))
= j∗π1(Xn, x0) ⊂ π1(W − V0).

Now j∗A is central in H∗(π1(Xn × S1)) ⊂ π1(W − V0). Since j∗ is injective,
we conclude that A is central in π1Xn. Moreover, i∗A = a since A is the
homotopy class of a track of H. By Theorem 4.16, Xn has a Seifert fibration
with orientable base, such that A is a power of the generic fiber. This condition
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ensures that a generic fiber cannot be contractible in W , so the Seifert fibration
extends to all of Vn.

From this lemma, we can conclude that W admits a Seifert fibration with
orientable base by applying Cases 1–3 above to the exhaustion of W − IntV1

by the Xn’s, remarking that all boundary tori are incompressible in W − IntV1.
But we can say more: for all n ≥ 2, the fibration on Xn has base orbifold an
annulus with at most one cone point, because it extends to Vn, which is a solid
torus. So either all Xn’s are T2× I or Xn eventually belongs to S. In the latter
case, exactly one exceptional fiber appears. In both cases, W is homeomorphic
to S1 ×R2.

5.4 The half-way residually finite case

Definition. An infinite group is called half-way residually finite if it is finite or
has subgroups of arbitrary large finite index.

Here is a list of easily verified facts:

i. If G is half-way residually finite, then any finite index subgroup of G is
half-way residually finite.

ii. If G has a proper finite index subgroup K, then there is a normal finite
index subgroup H such that H ⊂ K. (Hence the subgroups in the above
definition may be chosen to be normal.)

iii. If G is residually finite, then G is half-way residually finite.

In this section, we prove the following weak version of Theorem 5.1.

Theorem 5.13. Let O be a closed, irreducible, very good 3-orbifold with half-
way residually finite fundamental group. If π1O has an infinite cyclic normal
subgroup, then O is Seifert fibered.

We shall make extensive use of the following lemma.

Lemma 5.14. i. If an orbifold O satisfies the hypotheses of Theorem 5.13,
then any finite covering of O also satisfies these hypotheses.

ii. Any compact, very good, irreducible orbifold O that is finitely covered by a
Seifert fibered orbifold and whose fundamental group has an infinite cyclic
normal subgroup is Seifert fibered.
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Hence to prove Theorem 5.13, it suffices to prove it for a finite covering.

Proof. (i) follows from Theorem 3.23 and fact (i) above.
(ii) Suppose now that some finite covering O1 of O is Seifert fibered. Since

O is very good, it is finitely covered by a manifold M1. There is a common
finite covering M2 of O1 and M1 that is a Seifert fibered manifold. By fact (ii)
above, some finite covering M3 of M2 is a regular finite covering of O. By
Theorem 3.23, M3 is irreducible. The infinite cyclic normal subgroup of π1O
induces an infinite cyclic normal subgroup of π1M3, which can be represented
by some Seifert fibration. Thus by the Meeks-Scott Theorem 3.25, O is Seifert
fibered.

We need two more elementary group-theoretic lemmas.

Lemma 5.15. Let G be a group. Let Z ⊂ G be an infinite cyclic normal
subgroup. Then G admits a subgroup of index at most two that centralizes Z.

Proof. The automorphism group of Z has order 2.

Lemma 5.16. Let G be an infinite, half-way residually finite group and Z ⊂ G

be a normal abelian subgroup. Then either G has a normal finite index subgroup
G1 that contains Z and has infinite abelianization, or Z is contained in infinitely
many normal finite index subgroups.

Proof. Assume that only finitely many normal finite index subgroups contain Z

and let G1 be their intersection. Then G1 is normal, has finite index, contains
Z and is minimal among such subgroups. We are going to show that G1 has
infinite abelianization.

By fact (i) above, G1 is half-way residually finite. For each i > 0 choose
a normal subgroup Ni ⊂ G1 such that i ≤ [G1 : Ni] < ∞. Without loss of
generality we can also assume that each Ni is normal in G. Let φi : G → G/Ni be
the natural projection. Then φ−1

i (φi(Z)) is a normal subgroup G of finite index
that contains Z, so it contains G1. It follows that G1/Ni = φi(G1) ⊂ φi(Z)
is abelian. Therefore G1 has finite abelian quotients of arbitrarily high order,
hence infinite abelianization.

Proposition 5.17. Let M be a closed, irreducible 3-manifold whose funda-
mental group has an infinite cyclic central subgroup Z. One fixes an arbitrary
triangulation on M . Then there is a cyclic homotopy H representing a gener-
ator of Z. Furthermore, if M contains embedded solid tori V ⊂ V ′ ⊂ V ′′ such
that d(∂V, ∂V ′) > diamH, d(∂V ′, ∂V ′′) > diam H then M is Seifert fibered.
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To prove this proposition, one adapts the proof of Lemma 5.12 to show that
π1(M − V ′) has nontrivial center, and then one applies Theorem 4.16. Details
are left to the reader.

Proof of Theorem 5.13. Using Lemma 5.14(i) and the hypothesis that O is very
good, we may assume without loss of generality that O is a manifold. Let Z be
an infinite cyclic normal subgroup of π1O. By Lemma 5.14(i) and Lemma 5.15,
we may assume that Z is central.

By Lemma 5.16, either π1O admits a normal finite index subgroup G1 ⊂
π1M containing Z and whose abelianization is infinite, or Z lies in infinitely
many normal finite index subgroups. In the former case, consider the covering
M1 corresponding to G1: it is a regular finite covering of M ; furthermore, M1

is Haken by Proposition 4.2, and π1M1 has nontrivial center. We conclude by
Theorem 4.16 and Lemma 5.14(ii).

Suppose now that Z lies in infinitely many normal finite index subgroups.
Since π1O is finitely generated, it has only finitely many subgroups of a given
finite index. Hence there is a decreasing sequence N1 ⊃ · · · ⊃ Ni ⊃ · · · ⊃ Z of
finite index normal subgroups such that [π1M : Ni] tends to infinity.

Set N :=
⋂

Ni and Γ := π1M/N . It is easy to check that Γ is residually
finite. By construction, N is an infinite index normal subgroup of π1O with
nontrivial center. By Corollary 5.3, the corresponding cover M̂ is Seifert fibered.

By inspection of the possible bases, we see that either M̂ contains an em-
bedded incompressible torus or M̂ is homeomorphic to S1 ×R2. We deal with
either case separately.

Case 1 M̂ contains an embedded incompressible torus T .
Since T is compact, the set of elements g ∈ Γ such that gT ∩ T 6= ∅ is finite.

Now Γ is residually finite, so there is a finite index normal subgroup Γ1 ⊂ Γ
such that all translates of T by elements of Γ1 avoid T . Then M1 := M̂/Γ1 is
a finite cover of O. Projecting T to M1, we get an embedded incompressible
torus. Thus we can conclude by applying Theorem 4.16 and Lemma 5.14(ii) as
before.

Case 2 M̂ is homeomorphic to S1 ×R2.
We are going to show that some finite cover of O satisfies the hypothe-

ses of Proposition 5.17. With this goal in mind, choose large solid tori V̂ ⊂
V̂ ′ ⊂ V̂ ′′ ⊂ M̂ whose cores generate π1M̂ and such that d(∂V̂ , ∂V̂ ′) > diam H,
d(∂V̂ ′, ∂V̂ ′′) > diam H. Since V̂ ′′ is compact, the set of elements g ∈ Γ such
that gV̂ ′′ ∩ V̂ ′′ 6= ∅ is finite. As in Case 1, the residual finiteness of Γ implies
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that there is a finite index normal subgroup Γ1 of Γ such that for all g ∈ Γ1,
gV̂ ′′ ∩ V̂ ′′ = ∅. The manifold M1 := M̂/Γ1 is a finite cover of O and the pro-
jections V, V ′, V ′′ of V̂ , V̂ ′, V̂ ′′ to M1 are embedded solid tori and satisfy the
hypotheses of Proposition 5.17. Again we conclude by Lemma 5.14.

5.5 Small Seifert orbifolds

Let us recall the statement of Theorem 5.1 from the introduction of this chapter.
Theorem 5.1 Let O be a closed, irreducible 3-orbifold. Suppose that O

is good or contains no incompressible turnover. If π1O has an infinite cyclic
normal subgroup Z, then O is Seifert fibered.

An incompressible turnover is π1-injective in a good orbifold by the Equiv-
ariant Loop Theorem (cf. Corollary 3.20). Moreover, its fundamental group has
trivial center. Thus the proof of Theorem 4.16 shows that if O is a closed, irre-
ducible, good orbifold which contains an incompressible turnover and such that
π1O has an infinite cyclic normal subgroup, then O is a bundle over S1 with
fiber a turnover, hence Seifert fibered. The proof of Theorem 5.1 thus reduces
to the small case, namely:

Theorem 5.18. Let O be a closed, small 3-orbifold. If π1O has an infinite
cyclic normal subgroup Z, then O is Seifert fibered.

First we sketch the proof of this theorem under the additional hypothesis
that O is good. Set Γ := π1O/Z. Let Ô be the regular covering of O such that
π1Ô = Z. The group Γ acts properly and cocompactly on Ô. By Theorem 3.24,
Ô is irreducible. Since π1Ô is torsion free and O is good, Ô is a manifold.

Applying Corollary 5.3 (with N = Z), we see that Ô is Seifert fibered, and
in fact homeomorphic to S1 ×R2.

At this point we want to use geometric group theory, more specifically quasi-
isometries of groups, so the reader is referred back to Section 1.4 of Chapter 1
for an introduction to this material.

Recall that Ô comes with a Γ-invariant quasimetric d (associated to an arbi-
trarily chosen Γ-invariant triangulation). By a straightforward generalization of
Proposition 1.13, the quasimetric space (Ô, d) is quasi-isometric to Γ (endowed
as usual with the word metric).

The insight behind the proof is that if d was a product metric, then we could
forget about the (finite diameter) S1 factor and get a quasi-isometry between Γ
and a plane. Since d is only coarsely defined, there is no hope to prove that it
is actually a product metric. However, we have the following theorem.
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Theorem 5.19 ([141]). Let (W, T , a) be an open, orientable, irreducible, ma-
ximal TMC. If (W, T , a) is uniform, then there is a compatible Seifert fibration
on W with base B and projection map p : W → B and a complete Riemannian
metric on B such that p is a quasi-isometry.

This theorem is proved using PL minimal surfaces. In our case, we set
W := Ô and let T be any Γ-invariant triangulation and a be a generator of
Z. The conclusion we get is that our group Γ is quasi-isometric to a complete
Riemannian metric on R2.

The next step is the following result:

Theorem 5.20. Let Γ be a finitely generated group quasi-isometric to some
complete Riemannian metric on R2. Then Γ is virtually a surface group.

This was first proved by G. Mess [158] in the case of a quasihomogeneous
Riemannian plane, modulo a conjecture on convergence groups which was
later proved by A. Casson and D. Jungreis [41], and D. Gabai [77] using earlier
work of P. Tukia [234]. This result on convergence groups is stated in this book
as Theorem 6.18. A different proof of Theorem 5.20 in full generality, also based
on Theorem 6.18, was given later in [140].

From Theorem 5.20 it is not hard to prove that π1O is isomorphic to the fun-
damental group of a Seifert fibered orbifold. To conclude we need the following
result, see [141] for a proof:

Theorem 5.21. Let O be a closed small 3-orbifold. If π1O is infinite and
isomorphic to the fundamental group of a Seifert orbifold, then O is Seifert
fibered.

Theorem 5.21 is an extension to small orbifolds of a theorem proved by P.
Scott [200] for small manifolds. This result is in fact true for all closed irreducible
orbifolds, but as of this writing, there is no known proof that does not use the
Orbifold Theorem.

This completes the sketch of the proof of Theorem 5.18 when O is good.
Without the assumption that O is good, one can refine the arguments out-

lined above to show that π1O is isomorphic to the fundamental group of a Seifert
fibered orbifold. With this goal in mind, we look at the covering Ô. This does
not a priori have to be a manifold. We let W be the underlying space of Ô. It
is an orientable 3-manifold with infinite cyclic fundamental group and the group
Γ acts properly and cocompactly on it.

Let us consider the interesting case when W is open. The difficulty is that
we do not know beforehand that W is irreducible, so we need a refined version
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of Theorem 5.19 without the hypothesis that W is irreducible. Of course, we
cannot expect to prove that W is Seifert fibered without proving the Poincaré
conjecture, but we do not need as much. Here is the statement.

Theorem 5.22 ([141]). Let (W, T , a) be an open, orientable, uniform, maximal
TMC. Then there is an open, orientable TMC (W ′, T ′, a′), a proper homotopy
equivalence φ : W → W ′ sending a to a′ and which is a quasi-isometry, and a
compatible Seifert fibration on W ′ with base B and projection map p : W ′ → B

and a complete Riemannian metric on B such that p is a quasi-isometry.

Hence in our setting we still get a quasi-isometry from Γ to a complete
Riemannian plane, and by Theorem 5.20 Γ is virtually a surface group.

At that point, we use as above Theorem 5.21 to complete the proof of The-
orem 5.18.
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Chapter 6

Hyperbolic orbifolds

A Kleinian group is by definition a discrete subgroup of Isom+(H3). Recall
that we defined a hyperbolic orbifold to be the quotient of H3 by such a group.
Hence the geometrization program motivates the study of these groups.

In this chapter, we first recall some basic facts of hyperbolic geometry, the
ideal boundary of H3 and the classification of isometries in Section 6.1. In
Sections 6.2 and 6.3, we review the part of Kleinian group theory relevant to
this book, focusing on finite covolume and geometrically finite groups. Finally
in Section 6.4 we discuss Gromov’s theory of hyperbolic groups and its relevance
to geometrization, in particular the so-called Weak Hyperbolization Conjecture.

6.1 Hyperbolic 3-space and its isometries

6.1.1 The ideal boundary

To understand isometries of H3, it is instructive to look at their action on the
ideal boundary ∂∞H3, which can be defined in several ways. For practical
purposes, it is useful to have an explicit description of this boundary in terms
of one of the classical models for H3: the ball model, the upper half-space
model, the Klein projective model, etc. [7, 225]; but it is also good to have
an intrinsic definition, in particular when one is interested in generalizations
(cf. Section 6.4).

We start with the intrinsic definition. Let G be the set of geodesic rays
r : [0, +∞) → H3 parametrized by arclength. Two rays r1, r2 ∈ G are said to
be equivalent if the function t 7→ d(r1(t), r2(t)) is bounded. The ideal boundary
∂∞H3 is the quotient of G by this equivalence relation. Its elements are called
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ideal points. Thus for any geodesic ray, there is an associated ideal point, called
its endpoint ; to any complete geodesic are associated two ideal points, again
called its endpoints.

For every x0 ∈ H3, rays emanating from x0 are in bijection with their
endpoints in ∂∞H3. This identification provides a topology on ∂∞H3, which
is independent of the choice of x0 and makes it homeomorphic to the 2-sphere.
One can extend this topology to a topology on Ĥ3 := H3 ∪ ∂∞H3 such that
the pair (Ĥ3, ∂∞H3) is homeomorphic to (D3,S2). In the ball model, H3 is
represented as the open unit ball in 3-space equipped with the Poincaré metric,
the ideal boundary is the unit sphere, geodesics are arcs of circles orthogonal to
the boundary, and the topology on Ĥ3 is the obvious one. We will sometimes
work in the upper half-space model {(z, et)|z ∈ C, t ∈ R} with the Poincaré
metric; here the ideal boundary is to be thought of as C ∪ {∞}, where C is
identified with C× {0} and ∞ lies above the picture; geodesics are either arcs
of circles orthogonal to C or vertical half-lines; in the latter case one of the
endpoints is ∞.

There is a natural conformal structure on ∂∞H3 which makes it conformally
equivalent to the Riemann sphere CP1. This is easily seen in the upper half-
space model, where CP1 is decomposed as C∪{∞}. Any orientation-preserving
isometry of H3 acts conformally on ∂∞H3 in a natural way, so that there is a
canonical group homomorphism between Isom+(H3) and PSL2(C). In fact, this
is an isomorphism of Lie groups, and in the sequel we shall identify them. The
classification of orientation-preserving isometries of H3 can thus be given either
geometrically or algebraically. The interaction between the two viewpoints will
be crucial in the next chapter, so we explain it in some detail.

6.1.2 Classification of hyperbolic isometries

Let A be an element of Isom+(H3) = PSL2(C) different from the identity. Then
exactly one of the following occurs:

Parabolic: A is conjugate to ±
(

1 1
0 1

)
. Its trace is ±2. Geometrically, A has

no fixed point in H3 and exactly one fixed point in ∂∞H3. It leaves invariant
the foliation by horospheres centered at the fixed point. The best way to view a
parabolic element is in the upper-half space model, assuming the fixed point is
∞: invariant horospheres are horizontal planes, and the action on C ⊂ ∂∞H3

is a translation z 7→ z + τ .
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Semi-simple: A is conjugate to ±
(

λ 0
0 λ−1

)
with λ ∈ C∗. One can write

λ = e(l+iθ)/2 with l, θ ∈ R. Geometrically, A is a screw-motion, with translation
length l and rotation angle θ; there is a unique globally invariant geodesic γA,
called the axis of A. The two endpoints of the axis are the only two ideal fixed
points. In the upper-half space model, if ∞ is fixed, the axis is a vertical line
and the action on C is a similarity with one fixed point. If |λ| = 1, A is called
elliptic, and the axis of A is fixed pointwise. (In fact the axis coincides with
the set of fixed points in H3.) Otherwise A is called loxodromic and fixes no
point in H3.

Note that a semi-simple element preserves the foliation by surfaces {x ∈ H3 |
d(x, γA) = C}.

There is a convenient way of encoding geometric information about A into a
complex number u(A) called its complex length: if A is semi-simple, set u(A) :=
l + iθ; if A is parabolic or the identity, set u(A) := 0. This number is defined
up to 2πiZ (corresponding to lifting the rotation angle to R) and up to sign
(corresponding to the choice of orientation of the axis). It is related to the trace
by the formula trace(A) = ±2 cosh(u(A)/2).

6.2 Basic theory of Kleinian groups

6.2.1 Domain of discontinuity and limit set

Let Γ be a Kleinian group. By the previous section, we can view it as a discrete
subgroup of PSL2(C) acting on the Riemann sphere. By analogy with Fatou
and Julia sets of rational fractions, we define the domain of discontinuity of Γ
as the largest open subset Ω(Γ) ⊂ CP1 on which Γ acts properly.1 The limit
set Λ(Γ) is defined as CP1 − Ω(Γ). It has a number of characterizations, for
instance it is the closure of the set of fixed points of non-elliptic elements of
Γ− {Id}.

We say that Γ is elementary if Λ(Γ) is finite. Using the dynamics of the
action of an isometry on ∂∞H3, one can prove that when Λ(Γ) is finite it has
at most two points. In addition, one can classify elementary groups according
to |Λ(Γ)|:

• Elliptic type: a finite subgroup of elliptic elements with a common fixed
point. In this case Λ(Γ) = ∅.

1Recall that in this book, we call “properly” what is sometimes called “properly discon-

tinuously”.
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• Parabolic type: virtually an abelian group (of rank 1 or 2) of parabolic
isometries with a common fixed point at infinity. The limit set Λ(Γ)
consists of one single point.

• Hyperbolic type: virtually an infinite cyclic group of loxodromic isometries
with a common axis, when Λ(Γ) has precisely two points.

We remark that a Kleinian group is virtually abelian if and only if it is
elementary. Looking at the classification of finite subgroups of O(3) we deduce:

Lemma 6.1. Let Γ be an elementary Kleinian group. If Γ has an element
of order > 5 (including ∞), then Γ has either a fixed point at ∂∞H3 or an
invariant geodesic.

If Γ is nonelementary (i.e. not elementary), Λ(Γ) can also be characterized
as the smallest nonempty closed Γ-invariant subset of CP1.

6.2.2 The Margulis Lemma and its consequences

Let Γ be a Kleinian group. Given a point x ∈ H3 and an ε > 0, we let Γx,ε

denote the subgroup of Γ generated by the set {γ ∈ Γ|d(x, γx) ≤ ε}.

Theorem 6.2 (Margulis Lemma). There is a universal constant µ0 > 0
such that for every Kleinian group Γ, every positive number ε ≤ µ0 and every
x ∈ H3, the group Γx,ε is elementary.

Definition. A Margulis constant is a constant µ0 > 0 satisfying the conclusion
of the theorem above.

From now on we fix a Margulis constant.

Definition. Fix a hyperbolic 3-orbifold O = H3/Γ and a real number ε > 0.
The ε-thin part of O is the set O(0,ε] of all points x ∈ O such that d(x̃, γx̃) ≤ ε

for some lift x̃ of x to H3 and some element γ ∈ Γ of order > 1/ε (including
∞).

The ε-thick part ofO is the setO[ε,∞) of all points x ∈ O such that d(x̃, γx̃) ≥
ε for all lifts x̃ of x to H3 and all elements γ ∈ Γ of order > 1/ε.

Remark. With this definition, metric balls of unit radius with center in the
ε-thick part have volume bounded below uniformly in ε. This is why we have
made sure to include singular points with large local groups in the thin part.
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Definition. A Margulis tube is a compact quotient of the r-neighborhood of a
geodesic in H3 by an elementary hyperbolic group. Topologically, it can be a
solid torus or a solid pillow, possibly with singular core.

A cusp neighborhood of rank 1 (resp. 2) is the quotient of a horoball in H3 by
an elementary parabolic group of virtual rank 1 (resp. 2). Topologically, it is a
product [0, +∞)×F , where F is a Euclidean 2-orbifold, called its cross-section.
If the cusp has rank 2, then F is closed.

Here is an immediate consequence of the Margulis Lemma:

Corollary 6.3 (Structure of thin part). Fix a hyperbolic 3-orbifold O =
H3/Γ and a real number ε ∈ (0, µ0]. Then each component X of O(0,ε] is either
a Margulis tube or a cusp neighborhood.

Furthermore, if O has finite volume, then O[ε,∞) is compact, there are no
rank 1 cusps, and there are at most finitely many Margulis tubes and rank 2
cusps. As a consequence, one can choose ε small enough so that there are no
Margulis tubes. Then O is homeomorphic to the interior of the compact orbifold
O[ε,∞), whose boundary consists of closed Euclidean 2-orbifolds corresponding
to cusps of O.

A rank 2 cusp is called nonrigid if its cross-section is not a turnover. Then
it is a torus or a pillow, and one can perform Dehn filling on it (cf. Chapter 2,
Section 2.5). We will say more about this in Chapter 7.

Let O be a compact orbifold with hyperbolic interior. Let F ⊂ ∂O be
a boundary component. Write UF for the intersection of IntO with a collar
neighborhood of F in O. Thus UF is homeomorphic to F × [0, +∞). When F is
Euclidean, π1F is parabolic and UF is a rank 2 cusp neighborhood; in particular
it has finite volume. By contrast, when F is hyperbolic, UF has infinite volume.
Thus we have:

Remark. The volume of the interior of O is finite iff each boundary component
of O is Euclidean.

6.2.3 Selberg’s Lemma

Selberg’s lemma (Lemma 8 of [206], see also [24]) states that any finitely gen-
erated subgroup of GLn(C) has a torsion free finite index subgroup. Since the
isometry group of H3 is linear, we deduce:

Proposition 6.4. Every hyperbolic orbifold with finitely generated fundamental
group is very good.
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The proof of Selberg’s lemma is algebraic and in general it is not easy to
find an explicit manifold cover.

6.3 Existence and uniqueness of structures

The main existence result discussed here is Thurston’s Hyperbolization Theorem
for Haken orbifolds. Another such result is of course the Orbifold Theorem,
which will be tackled in Chapter 9. Uniqueness in the finite volume case is a
consequence of Mostow rigidity.

Again in this section all 2-orbifolds and 3-orbifolds are assumed to be con-
nected and orientable unless mentioned otherwise.

6.3.1 Thurston’s hyperbolization theorem

First we need a few definitions. Let Γ be a nonelementary Kleinian group and
O := H3/Γ be the quotient orbifold. Consider the convex hull of Λ(Γ), i.e. the
union of geodesics in H3 whose endpoints are both in Λ(Γ). Its image in O
under the projection map is called the convex core of Γ. We say that Γ (or O)
is geometrically finite if the δ-neighborhood of the convex core has finite volume
for some (hence in fact any) δ > 0.

There are several other equivalent definitions of geometrically finite Kleinian
groups, some of which can be extended to broader contexts (see e.g. [26, 27]).

A 3-orbifoldO is called homotopically atoroidal if π1O is not virtually abelian
and if every subgroup of π1O isomorphic to Z⊕Z is peripheral (i.e. conjugated
to a subgroup of the fundamental group of a component of ∂O).

Theorem 6.5 (Hyperbolization of Haken orbifolds). Let O be a compact
3-orbifold. If O is Haken and homotopically atoroidal then the interior of O has
a geometrically finite hyperbolic structure.

Complete detailed proofs of this theorem in the manifold case can be found
in [120] and [176, 177]; see [14] for an overview. The orbifold case is analogous
to the manifold case, as explained in [18, Chap. 8]. Below we outline the main
steps.

Recall that a Haken orbifold O has a hierarchy, i.e. can be built induc-
tively, starting from a finite collection of discal 3-orbifolds and thick turnovers,
and gluing at each step the pieces along incompressible 2-suborbifolds in their
boundaries. Thus Theorem 6.5 is proved by induction.

The starting point is a theorem of Andreev [4, 5] which gives a combinatorial
characterization of the convex polyhedra that can be embedded in H3 with
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finite volume and prescribed acute dihedral angles. (Only the right-angled case
is relevant here.) The initial step of the induction is an equivariant version of
this result, together with a version for products of surfaces with the interval. All
this is explained in Thurston’s notes [225, Chap. 13], [226, Chap. 5] using circle
patterns; see also [120, Chap. 13]. Equivariance comes from the uniqueness of
the hyperbolic structure.

The inductive step is reduced to a gluing theorem for hyperbolic structures,
which is the heart of the proof. The reduction involves a mirror trick which
enables one to consider only gluing along entire boundary components. Here is
a statement of the gluing theorem. For simplicity, we give only the case without
parabolic locus.

Theorem 6.6 (Final gluing). Let O be a compact, possibly disconnected 3-
orbifold with incompressible boundary whose interior has a geometrically finite
hyperbolic structure. Let τ be an orientation-reversing involution of ∂O that
exchanges the boundary components in pairs. Then the quotient orbifold O/τ is
hyperbolic if and only if it is homotopically atoroidal.

The proof of Theorem 6.6 is different according to whether the 3-orbifold O
is an I-bundle over a compact 2-orbifold or not.

In the first case, the quotient 3-orbifold O/τ is fibered over a closed 1-
orbifold, and thus finitely covered by a surface bundle over S1. The proof that
O/τ is hyperbolic can be found in [176] and [231] for the manifold case and in
[18, Thm. 1] for the orbifold case.

When O is not an I-bundle, Thurston translates the gluing theorem into a
fixed point theorem by using a result of Ahlfors and Bers [3, 8] and a combination
theorem of Maskit [143, 144]; see also [120, Chap. 8 and 16], [177, Chap. 1 and
2]).

For a geometrically finite hyperbolic orbifold O, the Ahlfors-Bers Theorem
gives an identification between the space GF(O) of equivalence classes of geo-
metrically finite hyperbolic structures on the interior of O and the Teichmüller
space T (∂O) of the boundary.

Thurston introduces the skinning map σ : T (∂O) → T (∂O), where ∂O is
∂O with reversed orientation. Given a geometrically finite hyperbolic structure
on the interior of O, the covering space associated to each component F ⊂ ∂O
provides a geometrically finite hyperbolic (i.e. a quasifuchsian) structure on the
product F×I. The skinning map is defined by recording for each component F ⊂
∂O the conformal structure on the new end which appears in this quasifuchsian
covering.
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The gluing involution τ induces an involution τ? : T (∂O) → T (∂O). Then a
fixed point for the map τ? ◦σ : T (∂O) → T (∂O) corresponds to a geometrically
finite hyperbolic structure on the interior of O where the ends have compatible
shape in the sense of Maskit’s combination theorem, and thus it provides the
required hyperbolic structure on the quotient O/τ .

Therefore Theorem 6.6 is a consequence of the following:

Theorem 6.7 (Fixed point). Let O be a compact, possibly disconnected 3-
orbifold with incompressible boundary, whose interior has a geometrically finite
hyperbolic structure. Let τ be an orientation-reversing involution of ∂O that
exchanges the boundary components in pairs. If O is not an I-bundle, then the
map τ?◦σ : T (∂O) → T (∂O) has a fixed point if and only if O/τ is homotopically
atoroidal.

It is not difficult to check that the map τ? ◦ σ decreases the Teichmüller
distance strictly, and thus the fixed point, if it exists, is unique.

There are two different proofs of Theorem 6.7 in the manifold case: Thurston’s
and McMullen’s. They both extend to the orbifold setting.

Thurston’s approach uses a lot of geometric tools (e.g. measured geodesic
laminations, pleated surfaces) which were introduced in Chapters 8 and 9 of his
notes [225] to study ends of hyperbolic manifolds and convergence of sequences
of representations of Kleinian groups in PSL2(C) (see also [19, 37].) These
results are used to find the fixed point of the map τ? ◦ σ by iteration in the
closure of an orbit {(τ? ◦ σ)n(ρ); n ∈ Z} ⊂ GF(O) ∼= T (∂O) of a geometrically
finite hyperbolic structure ρ ∈ GF(O). In fact, it is sufficient to show that such
an orbit is bounded in GF(O). Then Thurston’s proof breaks into two steps:

• The orbit is bounded in the character variety X(O) (see the definition in
Chapter 7);

• Its closure in X(O) is actually contained in GF(O).

In 1980, Thurston gave a precise overview of this proof in his lectures at the
Bowdoin conference [227] (see also [165]). Then he wrote the proof of most of the
first step in [230, 232]; using the theory of group actions on trees, J. Morgan and
P. Shalen [167, 168, 169] gave an alternative and more algebraic proof of most
of this step. A complete proof can be found in M. Kapovich’s book [120], using
Rips theory. The ingredients and most of the results needed for the second step
were presented in Thurston’s notes [225, Chap.8 and 9], and again a complete
proof is given in [120].
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In 1989, C. McMullen [151, 152, 153] gave a new and shorter proof of The-
orem 6.7, based on a detailed analysis of the derivative and coderivative of the
skinning map to obtain estimates on their norms. For example, if the 3-orbifold
O is acylindrical, the quotient 3-orbifold O/τ is always homotopically atoroidal;
in this case, McMullen shows that the skinning map σ is strictly uniformly con-
tracting. Since τ? is an isometry, the map τ? ◦ σ is also strictly uniformly
contracting and has a fixed point.

When the 3-orbifoldO contains an essential annular suborbifold, some gluing
involutions τ will produce homotopically non-atoroidal 3-orbifolds O/τ . There-
fore one must take τ into account for the proof of Theorem 6.7, which is more
involved in this case. For a detailed proof of Theorem 6.7 following McMullen’s
approach, we refer to J.-P. Otal [177] in the case of manifolds; the orbifold
version is presented in [18, Chap. 8].

Unlike irreducibility and atoroidality, the Haken hypothesis in Theorem 6.5
is not necessary. For example, the Seifert-Weber dodecahedral space [244] is a
small hyperbolic 3-manifold. In fact, Thurston’s Hyperbolic Dehn Filling The-
orem (cf. Theorem 8.4, and also [58]) provides infinitely many small hyperbolic
3-orbifolds obtained by Dehn filling on a finite volume hyperbolic 3-orbifold
without essential 2-suborbifolds. This gives strong evidence for the following
conjecture, which is a more precise version of a special case of th Geometriza-
tion Conjecture 3.26:

Conjecture 6.8 (Hyperbolization Conjecture). Let O be a compact, ir-
reducible 3-orbifold with infinite fundamental group. Then the interior of O
has a geometrically finite hyperbolic structure if and only if O is homotopically
atoroidal.

It follows from Theorem 6.5 and the Orbifold Theorem (cf. Chap. 9) that
this conjecture remains open only when O is a small 3-manifold.

6.3.2 Mostow rigidity

The following theorem is fundamental in the study of Kleinian groups with finite
covolume:

Theorem 6.9 (Mostow rigidity). Let Γ1,Γ2 be Kleinian groups such that
H3/Γ1 and H3/Γ2 have finite volume. Every isomorphism between Γ1 and Γ2

is realized by conjugation in Isom+(H3).

The homotopic version of the theorem says that any homotopy equivalence
between finite volume hyperbolic orbifolds is realized by an isometry. Notice
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that this isometry is unique in its homotopy class. In particular, it solves the
so-called Borel conjecture for hyperbolic manifolds (cf. Section 4.4).

Theorem 6.9 was obtained by G. Mostow [170] for cocompact groups and
extended by G. Prasad [188] to the finite covolume case. The proof relies on
properties of quasi-conformal mappings of the ideal boundary of H3 (and can
be extended to other symmetric spaces.)

For the case where the quotients are manifolds, there are now different and
simpler proofs than the original one. The most geometric one is due to Gro-
mov [94] (see also [13, Chap.C], [225, Chap.6]) and uses the notion of simplicial
volume (cf. Section 9.5). The simplest one, which gives the isometry explicitly,
is due to G. Besson, G. Courtois and S. Gallot [12]: it makes a more extensive
use of differential geometry (e.g. Busemann functions).

Corollary 6.10. If two finite volume hyperbolic 3-manifolds are homeomorphic,
then they are isometric.

The group of automorphisms of π1O is denoted by Aut(π1O), the group of
inner automorphisms is denoted by Inn(π1O). The quotient

Out(π1O) = Aut(π1O)/ Inn(π1O)

is the outer automorphism group.
Mostow rigidity gives a surjective homomorphism from Isom(O) to Out(π1O).

It is not hard to show that Isom(O) is finite (see [13]). Hence we get:

Corollary 6.11. If O is a hyperbolic 3-orbifold of finite volume, then Out(π1O)
is finite.

In fact, Out(π1O) is isomorphic to Isom(O), since an isometry of O homo-
topic to the identity is the identity.

6.4 Hyperbolic groups, convergence groups and

the Weak Hyperbolization Conjecture

Some essential results about cocompact Kleinian groups can be proved using
only the large-scale properties of their actions. Hence it is reasonable to try to
extend the theory to a broader class of groups having a similar behavior “at
infinity”. In this section we present two approaches. Following Gromov [95], we
define the class of hyperbolic spaces, which are metric spaces satisfying a basic
large-scale property of Hn, namely the thin triangle property. Groups that act
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geometrically on these spaces are called hyperbolic groups. The second approach
consists in looking at groups which act on a compact topological space so that a
crucial property of the action of Kleinian groups on the ideal boundary of H3 is
satisfied. These groups, called convergence groups, were introduced by Gehring
and Martin [82].

The two notions turn out to be strongly related (cf. Theorem 6.16 below).
Both points of view give useful insights and lead to a rich theory, whose exposi-
tion is well beyond the scope of this book. We will give a very brief introduction
and focus on some rigidity aspects closely related to the hyperbolization con-
jecture.

6.4.1 Hyperbolic spaces and groups

First we define hyperbolic spaces in the sense of Gromov. Our definition is a
bit more restrictive than the usual one, but sufficient for our purposes.

Let X be a metric space. A geodesic segment (resp. geodesic ray) in X is
an isometric embedding of a segment (resp. half-line) into X. Thus geodesic
segments are what is called minimizing geodesics in Riemannian geometry. The
space X is geodesic if any two points can be connected by a geodesic. It is
proper if closed metric balls in X are compact.

A geodesic triangle in X is a triple (α1, α2, α3) of geodesic segments such
that there exist points x1, x2, x3 with αi connecting xi+1 to xi+2 (with indices
in Z/3.) It is δ-thin if αi lies in the δ-neighborhood of αi+1 ∪ αi+2.

Definition. A metric space is hyperbolic if it is geodesic, proper, and there is
a constant δ ≥ 0 such that all geodesic triangles are δ-thin.

Recall from Chapter 1 that a group action is called geometric if it is isometric,
proper, and cocompact.

Definition. A hyperbolic group is a group that acts geometrically on some
hyperbolic space.

Example. It is well-known that any complete Riemannian manifold is geodesic
and proper. This applies in particular to the eight geometries. Three of them
are hyperbolic: S3, S2 ×R and H3. The first two are to be regarded as trivial
examples: any bounded space is hyperbolic, and so is any space quasi-isometric
to R. Thus the only interesting examples of hyperbolic groups that we get this
way are the groups that act geometrically on H3, i.e. extensions of finite groups
by cocompact Kleinian groups. More generally, this is true when H3 is replaced
by Hn.
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Other important examples of hyperbolic groups are finitely generated free
groups, which act geometrically on regular trees. (It is easy to check that trees
are hyperbolic with δ = 0.)

A key property of hyperbolicity is its quasi-isometry invariance. Refer to
Section 1.4 for the definition if necessary.

Theorem 6.12. Let A be a hyperbolic group or a hyperbolic space. Let B be a
finitely generated group or a proper geodesic metric space. If B is quasi-isome-
tric to A, then B is hyperbolic.

The proof of Theorem 6.12 relies on the following fundamental property of
hyperbolic spaces. A map f : X1 → X2 between metric spaces is a (λ,C)-quasi-
isometric embedding if it satisfies property (i) in the definition of a quasi-isome-
try (i.e. λ−1 d1(x, x′)−C ≤ d2(f(x), f(x′)) ≤ λ d1(x, x′)+C) but not necessarily
property (ii). A (λ, C)-quasigeodesic segment in a space X is a quasi-isometric
embedding of a segment in X.

Theorem 6.13 (Quasi-geodesic stability). Let X be a hyperbolic space.
Then for all λ, C there exists D = D(λ,C) ≥ 0 such that any (λ,C)-quasigeo-
desic segment lies in the D-neighborhood of a geodesic segment with the same
endpoints.

6.4.2 Boundaries of hyperbolic groups and convergence

groups

The intrinsic construction of the ideal boundary of H3 given earlier in this
chapter carries over without changes to arbitrary hyperbolic spaces.

Definition. Let X be a hyperbolic space. Its boundary ∂X is the set of equiva-
lence classes of geodesic rays in X, where r1, r2 ∈ G are equivalent if the function
t 7→ d(r1(t), r2(t)) is bounded.

The asymptotic behavior of two inequivalent rays in a hyperbolic space is
qualitatively similar to that in Hn: roughly speaking, they stay at a bounded
distance for some time and then diverge exponentially. This allows to define
a natural set of metrics on ∂X which induce the same topology. For precise
definitions and motivation from trees, see [86]. Here we give an alternative
description of the topology due to E. Swenson (cf. [73].)

Let r be a geodesic ray in X. For C ≥ 0 define the “half-space” H(r, C)
to be the set of points x such that d(x, r([C, +∞))) > d(x, r([0, C])). Then a
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fundamental set of neighborhoods of [r] ∈ ∂X consists of subsets D(r, C) :=
{[s], lim inft→∞ d(s(t), X −H(r, C)) = +∞}.

It is a pleasant exercise to check that this gives the correct topology for
X = Hn.

With this topology, ∂X is always compact. In fact, one can extend it to a
topology on X ∪ ∂X, which is also compact. Here it is essential to require that
X is proper. Otherwise X might be bounded but noncompact; its boundary
as defined above would then be empty, and there would be no hope to get a
compactification in this way.

Using a version of Theorem 6.13 for rays, one sees that the boundary of
a hyperbolic space is a quasi-isometry invariant. This permits to define the
boundary of a hyperbolic group:

Definition. Let Γ be a hyperbolic group. Let X be a hyperbolic space on which
Γ acts geometrically. Then Γ acts naturally on the set of geodesic rays in X,
and therefore also on ∂X. The boundary ∂Γ of Γ is by definition the boundary
of X with its topology and Γ-action.

To see that ∂Γ is well-defined, one uses the fact that any two proper geodesic
spaces X,Y on which Γ acts geometrically are quasi-isometric, together with the
quasi-isometry invariance of the boundary. As a consequence, we get:

Proposition 6.14. Let A,B be hyperbolic spaces or groups. If A and B are
quasi-isometric, then ∂A and ∂B are homeomorphic.

A hyperbolic group whose boundary is finite is called elementary. In fact,
one can show that the only elementary groups are finite groups and virtually
infinite cyclic groups. Thus among cocompact groups of isometries of the eight
geometries, the nonelementary hyperbolic ones are exactly those that act on
H3. The boundary of such a group is S2. More generally, the boundary of
a cocompact group of isometries of Hn is Sn−1. The boundary of a finitely
generated free group is a Cantor set.

In general, the boundary of a nonelementary hyperbolic group can be quite
complicated, but it is always perfect, i.e. it has no isolated points.

6.4.3 Convergence groups

In [82], Gehring and Martin showed that some properties of Kleinian groups do
not depend on the analytic structure of the sphere or the geometry of hyper-
bolic space, but rather on a topological condition on the dynamics of the action
at infinity, which they called the convergence property. They studied groups of

111



homeomorphisms of spheres satisfying this condition. Later the investigations
were extended to arbitrary compact metrizable spaces by Tukia, Bowditch, Fre-
den and others, motivated by the connections with hyperbolic groups.

Definition. Let M be an infinite compact metrizable topological space and Γ
a group acting by homeomorphisms on M . Denote by ρ the associated repre-
sentation of Γ in Homeo(M).

Then Γ is a called a convergence group if for each sequence {gn} of elements
of Γ such that the ρ(gn)’s are pairwise distinct, there exist points a, b ∈ M and
a subsequence {gnk

} such that lim ρ(gnk
)(x) = a uniformly on compact subsets

that do not contain b.

Next we discuss an important characterization of convergence groups. De-
note by Θ(M) the set of triples (x, y, z) ∈ M × M × M such that x, y, z are
pairwise distinct, topologized as a subset of M ×M ×M .

Proposition 6.15 ([30]). Let M be an infinite compact metrizable topological
space and Γ a group acting by homeomorphisms on M . Then Γ is a convergence
group if and only if the induced action of Γ on Θ(M) is proper.

The idea behind Proposition 6.15 is that if we think of M as some kind of
boundary of a space and try to recover this space from M alone, then the space
Θ(M) is a good device. For instance, take M = S2. Then we can construct
a map φ : Θ(S2) → H3 as follows: given (x, y, z) ∈ Θ(M), there is a unique
geodesic ξ in H3 connecting x to y and a unique point a ∈ ξ such that the ray
starting at a and pointing towards z is orthogonal to ξ. Set φ(x, y, z) := a. By
‘naturality’, φ is continuous. Conversely, if a is a point in H3, then the choice
of an orthonormal frame at a gives a triple (x, y, z) ∈ Θ(S2) which belongs to
φ−1(a). Hence φ is surjective. It is not quite bijective, but the lack of injectivity
lies in the set of orthonormal frames at a point, which is compact. In fact φ

is proper, so Θ(S2) is as good as H3 as far as properness of group actions is
concerned.

This suggests the following definition.

Definition. A convergence group Γ acting on M is uniform if the induced
action on Θ(M) is cocompact.

Proposition 6.16 ([30, 73, 235]). Let Γ be a nonelementary hyperbolic group.
Then Γ acts as a uniform convergence group on ∂Γ.

The converse is much more difficult.
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Theorem 6.17 ([28]). Let M be a perfect metrizable compact topological space.
Let Γ be a uniform convergence group acting on M . Then Γ is hyperbolic, and
the action is conjugate to the canonical action of Γ on its boundary.

Remark. Another central concept is the JSJ decomposition for groups. There
are various approaches, including one using convergence groups. The reader is
referred to the original papers [29, 61, 62, 75, 98].

We can now state the important theorem of Tukia, Casson-Jungreis and
Gabai mentioned in the previous chapter.

Theorem 6.18 ([234, 41, 77]). A group acts as a uniform convergence group
on S1 if and only if it is a cocompact Fuchsian group.

Putting together Theorem 6.12, Proposition 6.14, and Proposition 6.16 we
see that any group quasi-isometric to H2 acts as a uniform convergence group
on S1. Hence we get:

Corollary 6.19. A group is quasi-isometric to H2 if and only if it is a cocom-
pact Fuchsian group.

This corollary is used to complete the hyperbolic case in the proof of Theo-
rem 5.20.

6.4.4 The Weak Hyperbolization Conjecture

The following is a weak version of the Hyperbolization Conjecture, whose con-
clusion is concerned with the fundamental group only.

Conjecture 6.20 (Weak Hyperbolization Conjecture). Let M be a closed
irreducible 3-manifold. If π1M does not contain any Z×Z, then π1M is hyper-
bolic.

Remark. In fact it would be equivalent to only assume that M is aspheri-
cal. Indeed, by Kneser’s Theorem, any aspherical manifold M is a connected
sum N#S1# · · ·#Sn where N is irreducible, π1N ∼= π1M , and S1, . . . , Sn are
homotopy spheres.

We have the following implications : M is a closed hyperbolic 3-manifold
=⇒ π1M is a cocompact Kleinian group =⇒ π1M is hyperbolic with bound-
ary a 2-sphere =⇒ π1M is nonelementary hyperbolic. To deduce the full
Hyperbolization Conjecture from Conjecture 6.20, it would be enough to prove
the converse implications. Two of them are known to be true, and the third one
is a major open problem.
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Theorem 6.21 (Bestvina-Mess [10]). Let M be a closed 3-manifold. If π1M

is a nonelementary hyperbolic group, then ∂π1M is homeomorphic to S2.

Theorem 6.22 (Gabai-Meyerhoff-N. Thurston [80]). If M is a closed ir-
reducible 3-manifold whose fundamental group is isomorphic to the fundamental
group of a hyperbolic manifold, then M is hyperbolic.

Conjecture 6.23 (Cannon). Let Γ be a hyperbolic group with boundary homeo-
morphic to S2. Then Γ is a cocompact Kleinian group.

Below are short discussions of these conjectures.

About the Weak Hyperbolization Conjecture When M is Haken, this
follows of course from Thurston’s Hyperbolization Theorem. However let us
mention that Bestvina and Feighn [11] have given a direct proof in the case
of fiber bundles over S1, as a corollary of a general combination theorem for
hyperbolic groups. This has been extended to cover the non-fibered case by
Swarup [215]. More generally, Gabai and Kazez [81] have proven the WHC for
manifolds that contain a genuine essential lamination

About Cannon’s Conjecture It has been proved under additional hypothe-
ses. We already mentioned Cannon and Cooper’s result [38] that if Γ is quasi-iso-
metric to H3, then Γ is a cocompact Kleinian group. There is also some progress
by Cannon and Swenson [39], and more recently by Bonk and Kleiner [23].
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Chapter 7

Varieties of representations

In this chapter we introduce varieties of representations of 3-orbifolds. We
present the Culler-Shalen theory of essential surfaces associated to ideal points
via actions of the fundamental group on trees, in order to complete the proof
of the existence theorem for hierarchies in Haken 3-orbifolds. In the next chap-
ter, we use varieties of representations to sketch the proof of (an extension to
orbifolds of) Thurston’s hyperbolic Dehn filling theorem, due to Dunbar and
Meyerhoff [58]. This is an important result in 3-dimensional topology; among
other things it is an ingredient in the proof of the Orbifold Theorem.

The variety of representations of an orbifold is the set of all representations
of the fundamental group in PSL2(C), and has a natural structure of algebraic
variety. Two representations are considered equivalent if they are conjugate.
However, the space of conjugacy classes of representations is not Hausdorff.
Instead of this space, one studies the variety of characters, which is an algebraic
variety whose points are generically conjugacy classes of representations.

The variety of characters has many applications in low-dimensional geometry
and topology. It can be used to analyze deformations of geometric structures,
as in the proofs of the Hyperbolic Dehn Filling Theorem [224, 58] and of the
Orbifold Theorem. It plays a crucial role in the proof of the Smith conjecture
[166] and the study of exceptional surgeries on knots [49, 31], including the
Cyclic Surgery Theorem [48].

Finally, we also mention that the variety of representations has been used to
find obstructions for a group to be the fundamental group of a Kähler manifold
[209, 88] or a smooth complex algebraic manifold [125].

As usual, all orbifolds are orientable.
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7.1 Preliminaries

7.1.1 Varieties of representations and characters

Our aim is to associate to a compact 3-orbifold O two algebraic sets R(O)
and X(O) containing information about representations of π1O in PSL2(C).
Our basic reference is [31]. For the relevant background on algebraic geometry
and invariant theory, the reader may consult [171] and [211] respectively. We
will also work with representations of finitely generated groups that are not
fundamental groups of orbifolds, so we develop the theory in this more general
setting.

Definition. Let Γ be a finitely generated group. The set Hom(Γ, PSL2(C)) of
all representations of Γ in PSL2(C) is called the variety of representations of Γ
and denoted by R(Γ). When Γ is the fundamental group of a compact orbifold
O, we shall abbreviate R(π1O) to R(O).

Next we show how to put an affine algebraic structure on R(Γ). Let γ1, . . . , γn

be a generating system of Γ. Recall the isomorphism PSL2(C) ∼= SO3(C) given
by the adjoint action of PSL2(C) on the Lie algebra sl2(C) ∼= C3. In what
follows, we use this isomorphism to identify PSL2(C) with a closed algebraic
subset of C9 (identified with the space of 3× 3-matrices of complex numbers.)
We get the following embedding:

R(Γ) ↪→ PSL2(C)× · · · × PSL2(C) ⊂ C9n

ρ 7→ (ρ(γ1), . . . , ρ(γn)).

The image of R(Γ) is a closed algebraic subset whose polynomial equations are
induced by the relations of the presentation of Γ. This gives R(Γ) the structure
of a possibly reducible affine algebraic set.

Remark. This structure does not depend on the choice of the generating set.

This remark can be shown by adding or deleting a redundant generator and
showing that this yields an isomorphic algebraic set. Alternatively, it follows
form the results in [136].

The group PSL2(C) acts on R(Γ) by conjugation according to the formula
(A · ρ)(γ) := Aρ(γ)A−1. Two representations are conjugate (or equivalent) if
they are in the same orbit. We are interested in representations modulo this
equivalence relation, so it would be natural to study the orbit space, i.e. the set-
theoretic quotient R(Γ)/PSL2(C). However, this space does not have a natural
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algebro-geometric structure. One way to see this is to notice that it does not
need to be Hausdorff for the quotient topology because PSL2(C) is not compact.

Here is a simple example. Let Γ be an infinite cyclic group. Then R(Γ) can

be identified with PSL2(C). The terms of the sequence An := ±
(

1 1/n2

0 1

)
all

lie in the same orbit (An is conjugate to A1 by ±
(

1/n 0
0 n

)
), but the limit is

±I, which is not in the same orbit. Hence the orbit of A1 is not closed and the
quotient is not Hausdorff.

So instead, we shall work with the quotient of R(Γ) by PSL2(C) in the
category of affine algebraic sets. For this we consider the algebra of invariant
functions C[R(Γ)]PSL2(C), i.e. algebraic functions on R(Γ) which are invariant
by conjugation. By invariant theory (see e.g. [211]), this algebra is finitely
generated. Therefore there exists an affine algebraic set X(Γ) whose function
algebra is isomorphic to C[R(Γ)]PSL2(C). In addition, the inclusion C[X(Γ)] ⊂
C[R(Γ)] induces a surjective morphism t : R(Γ) → X(Γ).

Definition. The algebraic set X(Γ) is called the variety of characters of Γ.

X(Γ) has the properties that a “quotient in the category of affine algebraic
sets” should have. For instance, if A is any affine algebraic set, then any mor-
phism f : R(Γ) → A invariant by conjugation descends to a unique morphism
X(Γ) → A. It follows that the construction is functorial in the sense that if Γ′

is another finitely generated group, then any group homomorphism φ : Γ → Γ′

induces a morphism of algebraic sets φ∗ : X(Γ′) → X(Γ). Moreover, if φ is
surjective, then φ∗ is injective. We will apply this for instance to the epimor-
phism π1(O − ΣO) → π1O for a 3-orbifold O and identify X(O) with a subset
of X(O − ΣO).

Notice that the word “component” used in connection with R(Γ) or X(Γ)
refers to irreducible components of an algebraic set, which may not coincide
with the topological (i.e. connected) components.

Given a representation ρ ∈ R(Γ), its character is the map:

χρ : Γ → C
γ 7→ trace(ρ(γ))2

Notice that trace(ρ(γ)) is defined up to sign, so trace(ρ(γ))2 is well-defined.
In Corollary 7.2 below, we construct a natural bijection between X(Γ) and

the set of characters of Γ, which justifies the name of X(Γ). This bijection maps
t(ρ) to χρ, for every ρ ∈ R(Γ).
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Given γ ∈ Γ, the map ρ 7→ trace(ρ(γ))2 is an algebraic function invariant by
conjugation. This leads us to the following definition.

Definition. Given γ ∈ Γ, we define the regular function:

Jγ : X(Γ) → C
t(ρ) 7→ χρ(γ) = trace(ρ(γ))2.

Proposition 7.1. The algebra C[R(Γ)]PSL2(C) is finitely generated by the func-
tions {Jγ}γ∈Γ.

See [107] for a proof of this proposition. The main consequences are:

Corollary 7.2. There is a natural bijection between X(Γ) and the set of char-
acters of Γ.

Proof. Consider the mapping that sends t(ρ) ∈ X(Γ) to the character χρ. This
is a well-defined surjection from X(Γ) to the set of characters of Γ, because
the projection t : R(Γ) → X(Γ) is surjective. Proposition 7.1 implies that it is
injective.

Choosing a finite set of generators Jγ1 , . . . , JγN , we have:

Corollary 7.3. There exist γ1, . . . , γN ∈ Γ such that (Jγ1 , . . . , JγN ) : X(Γ) →
CN is an embedding.

Remark. There are other natural functions to be considered. For instance, if
[γ1, γ2] = γ1γ2γ

−1
1 γ−1

2 denotes the commutator of γ1, γ2 ∈ Γ, then the trace

trace(ρ([γ1, γ2])) = trace([ρ(γ1), ρ(γ2)])

is well-defined for ρ ∈ R(Γ), without sign ambiguity, and therefore it induces
a function on X(Γ). By Proposition 7.1, this function is a polynomial in the
functions Jγ .

In the sequel, a special role will be played by a particular kind of represen-
tations which are called irreducible.

Definition. One can see elements of PSL2(C) as acting on the set of lines in C2.
A representation ρ : π1O → PSL2(C) is reducible if all elements of the image of
ρ have a common invariant line. This is equivalent to saying that ρ is equivalent
to a representation by upper triangular matrices. A representation that is not
reducible is called irreducible. The set of all irreducible representations in R(O)
is denoted by R(O)irr.
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Remark. Let O be a hyperbolic 3-orbifold. There is an isomorphism of π1O
onto a discrete subgroup of PSL2(C) called the holonomy representation (cf. Sec-
tion 8.2). This representation is irreducible unless π1O is elementary. To show
this, notice that the action of PSL2(C) on P1C is equivalent to the action on
the sphere at infinity ∂∞H3. Hence the image of a reducible representation fixes
a point in ∂∞H3 and it is an elementary group.

Remark. More precisely, one can show that a representation in PSL2(C) has
elementary image if and only if either it is reducible or it fixes a point of H3

(i.e. it is elliptic).

Here is a useful irreducibility criterion.

Lemma 7.4. A representation ρ ∈ R(Γ) is reducible iff trace(ρ(γ)) = 2 for ev-
ery γ in the commutator subgroup of Γ. (Remember that traces of commutators
are well-defined.)

The same proof as in [49, Lemma 1.2.1] applies here. As a direct consequence,
we get:

Corollary 7.5. The image t(R(Γ)irr) is a Zariski open subset of X(Γ).

The image t(R(Γ)irr) is denoted by X(Γ)irr. Its elements are called irre-
ducible characters. Note that the word “irreducible” in this chapter can have
four (!) different meanings, according to whether it refers to a representation,
a character, an algebraic set, or a 3-orbifold. No confusion should result from
this.

Lemma 7.6. Two irreducible representations in R(Γ) are conjugate iff they
have the same character. Moreover, the PSL2(C)-action on R(Γ)irr has finite
stabilizers.

Proposition 7.7. The projection t : R(Γ) → X(Γ) induces a bijection between
the components R0 of R(Γ) that have irreducible representations and components
X0 = t(R0) of X(Γ) that have irreducible characters.

Lemma 7.6 and Proposition 7.7 are proved in [107].

Corollary 7.8. Let R0 be a component of R(Γ) that contains an irreducible
representation and X0 = t(R0) the corresponding component. Then

dim R0 = dim X0 + 3.

Proof. By [171, Cor. 3.5], dim R0 − dim X0 equals the dimension of the generic
fibers of the projection t : R0 → X0. By Lemma 7.6, these fibers have dimension
dimPSL2(C) = 3, because the stabilizer of the action by conjugation is finite.
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7.1.2 Examples

We start with the turnover S2(n1, n2, n3). It is proved in [91] that the number
of conjugacy classes of R(S2(n1, n2, n3)) is finite. Thus:

Proposition 7.9. X(S2(n1, n2, n3)) is a finite set.

Before the next example, we need the basic identity:

traceAB + trace A−1B = traceA trace B (7.1)

∀A,B ∈ SL2(C). This identity can be deduced from A2 − (trace A)A + Id = 0
(i.e. the Cayley-Hamilton identity) by multiplying by A−1B and taking traces.

Example. We compute X(Z). For any n ∈ Z, Jn is a polynomial in J1 (using
(7.1)). Hence C[X(Z)] is a polynomial algebra freely generated by J1, and
X(Z) ∼= C is the complex line parametrized by J1.

Notice that R(Z) ∼= PSL2(C) has dimension three. This does not contradict
Corollary 7.8, because Rirr(Z) = ∅.

Example. Our next example is the free group Fn of rank n ≥ 2. We have an
obvious isomorphism:

R(Fn) ∼= PSL2(C)× (n)· · · × PSL2(C)

Thus, X(Fn) has only one irreducible component. By Corollary 7.8,

dim X(Fn) = 3n− 3.

However an explicit computation of X(Fn) would be more involved.

Example. Let F be a compact 2-orbifold with c cone points and with under-
lying space a surface of genus g and b boundary components. We shall estimate
the dimension of some components of X(F ).

First consider the case b = c = 0 and g > 1. The group π1F admits a
presentation with 2g generators and one relation. Hence R(F ) is an algebraic
subset of PSL2(C)2g (with the obvious embedding by generators) and the rela-
tion induces 3 equations, because dimPSL2(C) = 3. Hence dim R(F ) ≥ 6g − 3
and dim Xj(F ) ≥ 6g − 6, for each component Xj(F ) that contains irreducible
characters.

Assume now that b > 0 or c > 0. We use the surface S obtained by removing
discs centered at the cone points of F . To compute R(F ) from R(S), we consider
the curves µi ∈ π1F around cone points that are boundary curves of S. A
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representation ρ ∈ R(S) induces a representation in R(F ) if and only if for each
curve µi, ρ(µi)ni = ±id, where ni is the order of the corresponding cone point.

We deal first with the case where ρ(µi) is non-trivial, i.e. a rotation of angle
2πm/ni for some integer 0 < m < ni. This condition is given by the equation:

Jµi
(χρ) = 4 cos2(πm/ni).

Thus, some components Xj(F ) of X(F ) are obtained from X(S) by c algebraic
equations (one for each cone point). Now π1S is a free group of rank 2g−1+b+c

and therefore dim X(S) = 3(2g − 2 + b + c). Hence

dim Xj(F ) ≥ 6g − 6 + 3b + 2c.

There are other components that correspond to representations that map
some µi to ±id, i.e. that factor through another orbifold with fewer cone points.
Those components can have lower dimension.

Example. Let O be the exterior of the figure eight knot in S3. We take the
presentation π1O = 〈α, β, µ | µαµ−1 = αβ, µβµ−1 = βαβ〉, coming from the
fibration of O over S1 with fiber a punctured torus. Here α and β generate
the group of the fiber and µ is a meridian that commutes with the longitude
αβα−1β−1.

It is easy to write α as a word in α, β, µ such that each generator appears
with even total exponent. This means that there is no sign indeterminacy on
trace(ρ(α)), and it induces a function in C[X(O)]. Write x for this function
and let y = Jµ. In [107], it is proved that C[X(O)] ∼= C[x, y]/p(x, y), where

p(x, y) = (2− x)((1− x)y + x2 + x− 1).

Thus X(O) is a plane curve with two components. One of them, the straight
line x = 2, corresponds to abelian representations. The other component is the
most interesting one. We will see how it is related to deformations of hyperbolic
structures on O and Dehn fillings.

Let O(n) denote the orbifold with underlying space S3, singular locus the
figure eight knot, and cyclic local group of order n. We can compute X(O(n))
from X(O) by writing

y = 4 cos2(πm/n)

for some integer 0 < m < n. In particular X(O(n)) is finite.
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7.1.3 Dimension and smoothness of X(O)

We will need the following proposition, which is due to Thurston [225, Thm
5.6].

Proposition 7.10. Let M be a compact 3-manifold. Let ρ0 ∈ R(M)irr be
an irreducible representation such that for each torus component T of ∂M ,
ρ0(π1(T )) 6= {±id}. Then every irreducible component of X(M) that contains
the character of ρ0 has dimension ≥ s − 3

2χ(∂M), where s is the number of
torus components of ∂M .

The proof for representations in SL2(C) can be found in [49, Prop. 3.2.1]
and is easily adapted to our case.

When O is a compact 3-orbifold, χ(|∂O|) denotes the Euler characteristic
of the underlying surface of ∂O. The singular set of the boundary ∂O is finite
and its cardinality is denoted by |Σ∂O|. Recall that a meridian is a finite order
element µ ∈ π1O represented by a loop that bounds a small disc meeting an
edge or a circle of ΣO in exactly one point.

Corollary 7.11. Let O be a compact 3-orbifold. Let ρ0 ∈ R(O)irr be an irre-
ducible representation such that:

i. for each nonsingular torus component T of ∂O, ρ0(π1(T )) 6= ±id,

ii. for each meridian µ, ρ0(µ) 6= ±id.

Let X0 be an irreducible component of X(O) that contains t(ρ0). Then

dim X0 ≥ s− 3
2
χ(|∂O|) + |Σ∂O|,

where s is the number of nonsingular torus components of ∂O.

Proof. We set M = O−N (ΣO), where N (ΣO) is an open tubular neighborhood
of ΣO. Since π1M surjects onto π1O, we have an inclusion X(O) ⊂ X(M).
Let Y0 be the component of X(M) that contains X0. By Proposition 7.10,
dim Y0 ≥ s + c− 3

2χ(∂(O −N (ΣO))), where c is the number of circles of ΣO.
Let e be the number of edges of ΣO, so that X(O) ∩ Y0 is the zero set of

c + e equations in Y0. Since X0 is an irreducible component of X(O) ∩ Y0, we
have

dimX0 ≥ dim Y0 − c− e ≥ s + c− 3
2
χ(∂(O −N (ΣO)))− c− e.

We get the corollary from this inequality and the formulae

χ(∂(O −N (ΣO))) = χ(|∂O|)− v − |Σ∂O| and 2e = 3v + |Σ∂O|,
where v denotes the number of vertices of ΣO.
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Remark. The contribution of a component of ∂O in the formula of Corol-
lary 7.11 is positive if and only if it is different from a sphere with at most three
branching points, i.e. different from a nonsingular sphere, a spindle, a football,
a teardrop or a turnover (for the turnover the contribution is zero, and for the
other ones it is negative). It follows that the right hand side is positive if (i)
each boundary component of O has nonpositive Euler characteristic, and (ii) at
least one of them is not a turnover.

Note that each pillow and each nonsingular torus in ∂O counts for one in the
lower bound of dimX0. In fact, we will see that when IntO carries a hyperbolic
metric of finite volume and ρ0 is the holonomy representation of this structure
(cf. Section 8.2), then the bound is sharp, i.e. dimX0 equals the number of
boundary components that are not turnovers.

Now assume that Int(O−ΣO) has a geometrically finite hyperbolic structure
whose cusp ends correspond to the circles and edges of ΣO and to the tori of
∂O. We have seen that the holonomy representation ρ0 is irreducible. Define
χ0 := t(ρ0). Let X1 be an irreducible component of the set

{χ ∈ X(O − ΣO) | χ(µ) = χ0(µ) for each meridian µ}

that contains χ0. Let Γ be the product of the fundamental groups of the com-
ponents of ∂O − Σ∂O. The natural group homomorphism Γ → π1(O − ΣO)
induces a morphism r : X1 → X(Γ).

Corollary 7.12. Assume that O has at least one boundary component that is
not a turnover. Then the image of r has positive dimension.

Proof. According to [120, Lemma 9.37], χ0 is a smooth point of X1 and the
tangent map at χ0

r∗ : Tχ0X1 → Tr(χ0)X(∂O − Σ∂O)

is injective. In addition, Corollary 7.11 applies to X1 (with the same proof),
thus we get:

dim(Im(r)) = dim X1 ≥ s− 3
2
χ(|∂O|) + |Σ∂O|

and we have just remarked that this is positive if O has at least one boundary
component different from a turnover.
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7.2 Ideal points and essential surfaces

7.2.1 Ideal Points

Let C ⊂ Cn be an affine curve, i.e. a closed algebraic subset of dimension 1. We
can associate to C a projective completion Ĉ and its smooth projective model C
(see for instance [171]). There is a canonical embedding C ↪→ Ĉ and a canonical
birational map C → Ĉ, which is generically one-to-one. Points of C mapped to
C are called ordinary, and the other points of C are called ideal. Every regular
function C → C induces a rational function C → CP1.

Let Γ be a finitely generated group. Recall that we defined for each γ ∈ Γ
a regular function Jγ on X(Γ). Whenever C is a curve in X(Γ), we shall still
denote by Jγ the induced function C → CP1.

Let us now fix some notation for this whole section: let O be a compact,
irreducible 3-orbifold; set M := O −N (ΣO), where N (ΣO) is an open tubular
neighborhood of ΣO.

We will be interested in ideals points of curves C in X(M) such that for each
meridian µ, Jµ evaluated at this ideal point is bounded. It will be of special
relevance to know whether some function Jγ takes a finite value or the value ∞
at ideal points of C. Note that for a given ideal point x, there is at least one
element γ ∈ π1M such that Jγ(x) = ∞, by Corollary 7.3.

Theorem 7.13. Let O,M be as above. Let C be a curve in X(M) and x an ideal
point of C such that for each meridian µ, |Jµ(x)| < ∞. Then there exists an
essential 2-suborbifold F ⊂ O with the following property: for every component
Q of O − F and every element γ ∈ Im(π1(Q − ΣQ) → π1M), the function Jγ

takes a finite value at x.

Corollary 7.14. Let O be a compact irreducible 3-orbifold such that the interior
of the manifold O − ΣO has a geometrically finite hyperbolic structure and at
least one component of ∂O is not a turnover. Then O contains an essential
2-suborbifold with non-empty boundary.

Proof of the corollary. As in the previous section, we consider the character χ0

of the holonomy of the hyperbolic structure on O − ΣO and an irreducible
component X1 of the set

{χ ∈ X(O − ΣO) | χ(µ) = χ0(µ) for each meridian µ}

that contains χ0. Let Γ be the product of the fundamental groups of the com-
ponents of ∂O − Σ∂O and r : X1 → X(Γ) the natural morphism. Images of
elements of Γ in π1(O − ΣO) are called peripheral.
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By Corollary 7.12, we can choose a curve C in the image of r and a curve
C′ ⊂ r−1C ⊂ X1. Pick an ideal point x of C′ induced by an ideal point of
C ⊂ X(Γ), and consider a suborbifold F ⊂ O given by Theorem 7.13. Since x is
induced by an ideal point of C, there exists a peripheral element γ ∈ π1(O−ΣO)
such that Jγ is infinite at x. Hence ∂F = F ∩ ∂O 6= ∅.

Theorem 7.13 follows from the next two propositions.
Recall that a group acts on a tree without edge inversions if whenever an

edge e is fixed by some element γ, then γ also fixes the endpoints of e.

Proposition 7.15. Let O, M, C, x be as in Theorem 7.13. Then π1M acts on a
simplicial tree T without edge inversions so that an element γ ∈ π1M stabilizes
a vertex if and only if Jγ(x) ∈ C. In particular, each meridian stabilizes a
vertex.

We have remarked earlier that there is at least one element γ ∈ π1M such
that Jγ(x) = ∞. Hence the above action is nontrivial, i.e. admits no global fixed
point. This is crucial to ensure that the next construction gives a nonempty
essential suborbifold.

Proposition 7.16. Assume that π1M acts nontrivially on a simplicial tree T

without edge inversions. If each meridian stabilizes a vertex, then there exists
an essential 2-suborbifold F ⊂ O such that for every component Q of O − F ,
π1(Q− ΣQ) stabilizes a vertex.

The proofs of both propositions are sketched in the next two paragraphs. For
details (except for the part concerning orbifolds), we recommend the original
paper of Culler and Shalen [49], as well as the survey [208].

7.2.2 From ideal points to actions on trees

Sketch of proof of Proposition 7.15. First of all, we lift C ⊂ X(M) to a curve
C̃ ⊂ R(M). We choose an ideal point x̃ of C̃ that projects to x. We notice that
Jγ(x) ∈ C if and only if (Jγ ◦ t)(x̃) ∈ C.

We consider the function field C(C). To the ideal point x there corresponds
a discrete valuation

νx : C(C) → Z

that measures the order of the zeros of the function at x (counted negatively
for poles). In particular,

Jγ(x) ∈ C if and only if νx(Jγ) ≥ 0.
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The field C(C̃) is an extension of C(C) and the valuation νx̃ is an extension of
a positive multiple of νx [49, 208]. We shall not work with the field C(C̃), but
with a finite extension F of it, to be described later. A positive multiple of νx̃

extends to a valuation ν : F → Z [49, 208] .
The idea is to take the tree T as the Bruhat-Tits building for GL2 of the

field F with the discrete valuation ν. The construction of the tree is explained
in the book of Serre [204] as well as in [53], where it is proved that PSL2(F )
acts on T with the following properties:

(1) the action is without edge inversions,

(2) the stabilizers of vertices are conjugate to PSL2(R), where R is the ring
of integers associated to ν (i.e. R = {a ∈ F | ν(a) ≥ 0}).

The action of π1M on T is induced by the action of PSL2(F ) and a rep-
resentation P : π1M → PSL2(F ), defined as follows. For every γ ∈ π1M and
every representation ρ ∈ C̃,

ρ(γ) = ±
(

aγ(ρ) bγ(ρ)
cγ(ρ) dγ(ρ)

)
.

The coefficients aγ , bγ , cγ , dγ are not well-defined functions on ρ. However,
monomials of degree two (a2

γ , aγbγ and so on) are well-defined. So we take
F to be the finite extension of C(C̃) that contains the coefficient functions
aγ , bγ , cγ , dγ for γ in a generating system of π1M and define the tautological
representation

P(γ) = ±
(

aγ bγ

cγ dγ

)
.

Lemma 7.17. For an element γ ∈ π1M = π1(O−ΣO), γ stabilizes a vertex if
and only if ν(Jγ) ≥ 0.

Proof. Since the stabilizers of vertices are conjugate to PSL2(R), one has to
prove that ν(Jγ) ≥ 0 if and only if P(γ) is conjugate to a matrix in PSL2(R).
One implication is easy, because trace(P(γ))2 = Jγ . To show the converse,
just write P(γ) in the so-called normal form: if P(γ) is not ±id, then choose a
basis {v1, v2} of C(C)2 such that P(γ)(v1) = v2. Changing to the basis {v1, v2}
corresponds to conjugating P(γ) to

±
(

0 b

1 d

)
.

By looking at the determinant and the trace, we get b = ±1 and d2 = Jγ .
Therefore, if vx̃(Jγ) ≥ 0, then P(γ) is conjugate to a matrix in PSL2(R).
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This finishes the sketch of the proof of Proposition 7.15.

Remark. This construction can be generalized: instead of considering a curve
in a representation space, one can work with an algebraic subset of any dimen-
sion, for instance the representation space itself. In this case, the valuations
involved may have rank > 1 and/or be nondiscrete, and the associated objects
are affine buildings [181].

7.2.3 From actions on trees to essential suborbifolds

The following proposition can be found in [49]. Recall that in the situation of
Proposition 7.16, the fundamental group of M = O−N (ΣO) acts non-trivially
on T without edge inversions, so that each meridian fixes a vertex.

Proposition 7.18. Let O and M be as in Proposition 7.16. In particular
assume π1M acts nontrivially on a simplicial tree T without edge inversions.
Then M contains an essential surface S ⊂ M such that for each meridian
µ ⊂ ∂M , µ∩ S = ∅, and for every component Q of M − S, im(π1Q → π1M) is
contained in a vertex stabilizer.

Remark. Notice that the conclusion of Proposition 7.18 holds for the manifold
M = O − N (ΣO), but not for the orbifold O. This is a step in the proof of
Proposition 7.16, which gives a suborbifold in O.

Sketch of proof. The first step consists in building a π1M -equivariant map f :
M̃ → T . We may assume that f is simplicial with respect to some fixed π1M -
invariant triangulation, and that for every lift µ̃ of a meridian, f(µ̃) is contained
in a vertex.

The set of midpoints of edges is denoted by E. Since f is simplicial and
equivariant, f−1(E) is a π1M -invariant bicollared surface in M̃ . Since the action
on T is without inversions, the projection F of this surface to M is orientable.
Moreover, F does not intersect any meridian µ ⊂ ∂M .

To complete the proof, one makes F incompressible by repeated surgeries
on f using the Loop Theorem. This surgery process is classical in 3-manifold
topology and goes back to Stallings [212]. The fact that the resulting surface
is nonempty (and not boundary-parallel) comes from the nontriviality of the
action of π1M on T and from the fact that at each step, the surface is dual to
this action. For details, see [208].

Proof of Proposition 7.16. Let S be the surface of Proposition 7.18. Since µ ∩
S = ∅, every component of ∂S either belongs to ∂O or is parallel to some
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meridian. This follows from the fact that the meridians cut ∂M − ∂O into
a family of pairs of pants and annuli. Hence we glue to S the corresponding
meridian disks (with a cone point) to obtain a properly embedded 2-suborbifold
F0 ⊂ O, with F0 ∩M = S.

The suborbifold F0 can be compressible, and we must apply a new surgery
process. Let D be a compressing disk for F0. Since S is essential in M , D has a
singular cone point. The compression surgery on F0 along D induces a surgery
on S ⊂ M along the annulus D ∩ M . The map f can be easily modified so
that the new surface resulting from surgery on S is again the inverse image of
a middle point of an edge.

To show that this process stops, we use a notion of complexity of the 2-
suborbifold F0 as described in [106], based on the Euler characteristic of the
components of F0 (the Euler characteristic of S does not change under this
surgery). Before defining the complexity, we remark that the Euler characteristic
of every 2-suborbifold of O, while not necessarily an integer, lies in 1

mZ, where
m is the smallest common multiple of the orders of the local groups of O. We
define the complexity as:

(. . . , n−1
m

, n0, n 1
m

, n 2
m

, . . . , n2)

where nr is the number of components of F0 with Euler characteristic r ∈ 1
mZ,

and we order complexities lexicographically. Notice that 2 is an upper bound
for the Euler characteristic r. It is clear that this surgery process decreases the
complexity of F0 .

A similar surgery process allows to make F0 ∂-incompressible. We can also
eliminate spherical and boundary-parallel components of F0. Since the action
on the tree is not trivial, we end up with a non-empty suborbifold F ⊂ O with
the required properties.

Remark. This construction has several useful generalizations. If π1M is re-
placed by a finitely presented group Γ, then M can be replaced by a presentation
complex K. Inverse images of midpoints of edges by a general position equiv-
ariant map K̃ → T are then embedded 1-complexes called tracks (cf. [53]).
This can be further generalized to settings where the tree T is not simplicial.
Then tracks are replaced by laminations and the process to put them in normal
forms is called Rips’ machine. For those results and some of their applications,
including compactness results for representation varieties, see [9, 182] or [120,
Chap.12].
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Chapter 8

Volumes and hyperbolic

Dehn filling

Section 8.1 deals with topics connected to volumes of hyperbolic 3-orbifolds,
including the extension to orbifolds of the Thurston-Jørgensen theory. In 8.2
we extend our definition of hyperbolic orbifolds to include incomplete structures;
we introduce the notions of developing map and holonomy, which will be used
in 8.3, where we prove the hyperbolic Dehn filling for orbifolds.

All orbifolds considered in this chapter are orientable.

8.1 The set of volumes of hyperbolic 3-orbifolds

All orbifolds considered in this section have finite volume.
Let V ⊂ [0,+∞) be the set of all volumes of hyperbolic 3-orbifolds. We would

like to know how V looks like a subset of the real line with its canonical order
and topology. For manifolds, there is a beautiful theorem due to Jørgensen and
Thurston [225, 92]. We will present its generalization to orbifolds by Dunbar and
Meyerhoff [58]. While this result is important in itself and leads to fascinating
and difficult open questions, we mainly use it as an opportunity to discuss
geometric convergence, compactness theorems and hyperbolic Dehn surgery,
which will be used in the next chapter.

By Corollary 6.3, every (finite volume) hyperbolic 3-orbifold is homeomor-
phic to the interior of a compact 3-orbifold. By triangulating, one sees that
there are countably many compact 3-orbifolds up to homeomorphism. Hence
the set H of hyperbolic 3-orbifolds modulo homeomorphism is countable. By
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Mostow rigidity, H is also the set of hyperbolic 3-orbifolds modulo isometry.
Thus we can consider the volume map vol : H → R. Our set V is the image of
this map, so it is countable. However, it is not clear whether it is closed or not,
or whether there are isolated points or accumulation points.

To study V, we introduce a topology on H.

Definition. We say that On converges to O∞ in the geometric topology if
∀ε > 0, the ε-thick part of O∞ is (1 + δn)-bi-Lipschitz homeomorphic to the
ε-thick part of On, with δn → 0, provided that n is large enough.

To start off, we state two facts which enable us to recover the topology of V
from that of H.

Fact 1 (Continuity) If limOn = O∞, then lim vol(On) = vol(O∞).
This fact is not hard to prove with our definition of convergence. All we

have to show is that the volume of the ε-thin part of On and O∞ goes to zero
as ε → 0, uniformly on n. This is a consequence of the following lemma, which
is an elementary computation in hyperbolic geometry:

Lemma 8.1. Given a Margulis tube V and a cusp neighborhood N such that
∂V and ∂N are isometric Euclidean 2-orbifolds. Then volN ≥ volV .

Notice that we cannot find a universal upper bound for the volume of an
ε-thin neighborhood independently of the orbifold. For instance the boundary
torus of an ε-thin cusp neighborhood can have arbitrarily large diameter, hence
arbitrarily large volume. Thus we need Lemma 8.1 in order to bound the volume
of the ε-thin part of On in terms of ε-thin part of the fixed orbifold O∞, which
goes to zero as ε → 0.

Fact 2 (Properness) For each v > 0, the sets vol−1({v}) and vol−1([0, v])
are compact.

Sketch of proof. One has to show that every sequence On of hyperbolic 3-orb-
ifolds in vol−1([0, v]) has a convergent subsequence. We use Hausdorff-Gromov
convergence and the Gromov pre-compactness criterion (see the discussion in Sec-
tion 9.2). By Margulis’ Theorem, the µ0-thick part of On is nonempty and we
choose a thick point xn ∈ (On)[µ0,∞). Now we consider the sequence of pointed
metric spaces (On, xn). By Gromov’s pre-compactness criterion, this sequence
subconverges to a length space for the Hausdorff-Gromov topology. To prove
that the limit is an orbifold and that the convergence is geometric, we need to
prove the following assertion: for every R > 0 there exists ε = ε(R) > 0 such
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that BR(xn) ⊂ (On)[ε,∞). This assertion follows from volume estimates: first
vol(Bµ0(xn)) is uniformly bounded below, because xn ∈ (On)[µ0,∞); second,
if y ∈ (On)(0,ε], then vol(BR(y)) is bounded above by Cε for some uniform
constant C > 0.

To analyze vol−1([0, v]), we need to analyze accumulation points of H. We
first give an informal discussion.

Suppose an orbifold O∞ is the limit of a sequence of distinct orbifolds On.
Then for large n, On and O∞ have homeomorphic thick parts. Hence the only
way they can differ topologically is that some Margulis tubes become cusps in
the limit or vice versa, that is On and O∞ are related by Dehn filling. Recall
that this can happen only if the cusps involved are nonrigid, i.e. the cross-section
is not a turnover.

Intuitively, it is conceivable that a sequence of closed orbifolds On could
develop a thinner and thinner Margulis tube that becomes a cusp in the limit.
This is called a cusp opening. Topologically, the On’s should be obtained from
O1 by removing a solid torus or solid pillow and gluing back another one with
different surgery coefficients. The convergence of the sequence to a one-cusped
orbifold should correspond to a “blowing-up” of the surgery coefficients.

Fact 3 (Cusp opening) If limOn = O∞ and the On’s are pairwise distinct,
then for large n, On is obtained by Dehn filling on O∞. In particular, O∞ has
more nonrigid cusps than On.

Furthermore, this is relevant to the order structure on V by

Fact 4 (Limit volume bigger) In the previous situation, volOn < volO∞.
This fact is proved in [225, Chap.6], as an extension of the proof of Mostow

rigidity. For large values of n, this estimate can also be obtained from hyperbolic
Dehn filling and Schläfli’s formula (see [162] and Lemma 9.18 in Section 9.4 of
Chapter 9).

Corollary 8.2. vol−1(v) is finite.

At this point, it is not clear whether H has accumulation points at all. To
prove their existence, we need two more facts.

Fact 5 For any integer p ≥ 0, there exists an orbifold in H with exactly p

nonrigid cusps.
This is a consequence of the Hyperbolization Theorem for Haken orbifolds

(Thm. 6.5).
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Fact 6 If O ∈ H has p nonrigid cusps, then for any 0 ≤ k ≤ p there is a
sequence of orbifolds with k nonrigid cusps converging to O.

This follows from the Hyperbolic Dehn Filling Theorem (Theorem 8.4),
which will be discussed later in this chapter. We now come to the main theorem
of this section:

Theorem 8.3 (Structure of the volume set, [225], [58]). The set V of
volumes of all hyperbolic 3-orbifolds is a closed, well-ordered subset of R of
order type ωω. Furthermore, there are at most finitely many orbifolds with the
same volume.

This theorem easily follows from Facts 1–6.

Theorem 8.3 raises lots of extremely interesting questions, such as: what
is the hyperbolic 3-orbifold (resp. 3-manifold) of least volume with n nonrigid
cusps (where n = 0, 1, . . .). These questions can be asked for orientable man-
ifolds/orbifolds (as in this book) or allow nonorientable objects. (The theory
goes through without major difficulties.)

For n = 0 (i.e. in the closed case) the hyperbolic manifold of minimal vol-
ume is conjectured to be the Fomenko-Matveev-Weeks manifold. This manifold
was found independently by Fomenko and Matveev in [72], by using spines of
manifolds, and by J. Weeks, using the program SnapPea.

For n = 1, the smallest volume cusped hyperbolic 3-orbifold and 3-manifold
were determined respectively by R. Meyerhoff [147] and C. Adams [1]. Those
examples happen to be non-orientable, and C. Cao and R. Meyerhoff [40] proved
that the figure eight knot exterior and its sister are the orientable cusped man-
ifolds of least volume.

For the study of volumes of arithmetic hyperbolic manifolds we refer to
Borel’s article [25].

8.2 Complete vs incomplete hyperbolic struc-

tures

In the proof of the Hyperbolic Dehn Filling Theorem, we will need to consider 3-
orbifolds that carry incomplete hyperbolic metrics. They will be studied through
their holonomy representations and developing maps, which we define in this
section.

Let O be an n-orbifold. A hyperbolic structure on O is a set of Riemannian
metrics of constant sectional curvature −1 on a covering of O by uniformizing

132



charts such that the group actions on these charts are isometric and transition
maps are isometries. This allows to measure lengths of paths inO, hence induces
a distance function. A hyperbolic structure is complete if the induced metric
space is complete (i.e. Cauchy sequences converge.)

Examples of complete hyperbolic structures on orbifolds are obtained by
taking polyhedra in Hn and gluing their faces pairwise, respecting certain geo-
metric conditions (see [190]). For instance, one can obtain a closed hyperbolic
surface F of genus 2 from a right-angled octahedron H in H2. The natural
map H → F lifts to an isometric embedding in the universal covering F̃ (with
the pullback metric). In fact, one can construct a π1F -invariant tiling of F̃ by
copies of H, and it follows that F̃ is isometric to H2.

This leads to the more general notion of developing map (cf. [225, 145, 43]):
let O be an n-orbifold with a possibly incomplete hyperbolic structure. Let
φ0 : Ũ0 → U0 be a chart for the hyperbolic structure and ∗ be a regular point
of U0. We are going to construct a map D from the universal cover Õ to Hn.
Recall from Chapter 2 that Õ can be defined as the set of homotopy classes of
paths in O with initial point ∗. We begin by fixing a lift ∗̃ of ∗ to Ũ0 and an
isometric embedding f0 : Ũ0 → Hn.

Let α be a path in O with initial point ∗. Cover the image of α by a chain
of open subsets U0, . . . , Un which are images of charts φi : Ũi → Ui for the
hyperbolic structure. There is a unique way of choosing isometric embeddings
fi : Ũi → Hn for i = 1, . . . , n such that the path α can be locally lifted to the
charts and then sent continuously to Hn, starting at f0(∗̃). The endpoint of the
image path in Hn depends only on the homotopy class of α; hence this defines
a map D : Õ → Hn.

The map D is well-defined up to postcomposition with an isometry of Hn.
It is called the developing map of the hyperbolic structure on M . There exists a
representation ρ : π1O → Isom(Hn) such that for each x ∈ Õ and each γ ∈ π1O
we have D(γ ·x) = ρ(γ)(D(x)). This representation is unique up to equivalence
and called the holonomy representation.

If the structure is complete, then D is a global isometry and ρ is discrete
and faithful. Hence we can identify Õ with Hn, π1O with ρ(π1O), and O
with Hn/ρ(π1O). This shows that studying complete hyperbolic structures on
3-orbifolds is equivalent to studying Kleinian groups.

In general, D is a local isometry, which shows that O is good, but it doesn’t
need to be one-to-one nor onto, as shown in the following example.

Example. Let O be an open metric ball in H3 minus its center. The develop-
ing map of the natural (incomplete) hyperbolic structure on O is again a ball
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minus its center, isometric to the initial one. In particular we can recover the
completion of O from the image of the developing map.

In our second example, O is a Margulis tube minus its core. Then the
image of the developing map is a tubular neighborhood of a geodesic minus the
geodesic itself, and again we can recover the completion of O from the image of
the developing map. Notice that now D is not one-to-one.

In the next section, we will need to extend these notions to affine structures.
They come up only as a technical tool, so the rest of this section can be skipped
on first reading.

An affine structure on an orbifold is defined similarly as a set of compat-
ible invariant affine structures on domains of charts. The definitions of the
developing map and the holonomy are the same. The key point to ensure well-
definedness of the developing map is that two affine maps f1 : U1 → Rn and
f2 : U2 → Rn that coincide on an open subset of U1 ∩ U2 coincide on all of
U1 ∩ U2. There is no metric associated to an affine structure, hence we use the
developing map to define completeness.

Definition. An affine structure on an orbifold is complete if its developing map
is a covering map.

Example. Consider an affine structure on the 2-torus whose holonomy sends
a basis of Z2 to two similarities with a unique common fixed point. If we view
the universal covering of the torus as the Euclidean plane, and the action of Z2

as an action by translations, then the developing map is viewed as the complex
exponential (the fixed point of the holonomy being 0 ∈ C), cf. [224, Ex. 3.3.4].

8.3 Hyperbolic Dehn filling for orbifolds

8.3.1 The Hyperbolic Dehn Filling Theorem

Let O be a compact 3-orbifold such that Int(O) has a complete hyperbolic struc-
ture with finite volume. We saw in Chapter 6 that ∂O is a union of Euclidean
2-orbifolds. In this section we explore the connections between three sets of
ideas:

Geometric convergence (cf. Section 8.1). The picture to keep in mind
is that of cusp openings: O is approximated in the geometric topology by se-
quences of orbifolds with thinner and thinner Margulis tubes turning into cusps.
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Dehn filling (cf. Section 2.5). Recall that it is a topological operation consist-
ing in gluing one or more solid tori (resp. solid pillows) to some torus (resp. pil-
low) components of ∂O.

Deformation of holonomy. We denote by ρ0 ∈ R(O) the holonomy of a
finite volume hyperbolic structure and set χ0 := t(ρ0) ∈ X(O). Mostow rigidity
implies that once an orientation on O has been chosen, ρ0 is unique up to
equivalence, hence χ0 is unique. The local structure of X(O) carries information
about deformations of the hyperbolic structure.

We have already explained a connection between geometric convergence and
Dehn filling: sequences of orbifolds converging to O are topologically obtained
by Dehn filling on O. This raises an obvious question:

Question. Which Dehn fillings on O are hyperbolic? In particular, is there a
sequence of hyperbolic fillings converging to O?

Thurston’s Hyperbolic Dehn Filling Theorem deals with this question. Let
us briefly explain the connection with the character variety. If one removes
standard neighborhoods of the cusps obtained by quotienting horoballs and tries
to glue in Margulis tubes, one obtains a singular hyperbolic metric. To get a
smooth metric, one needs to deform the metric on the thick part in order to make
it fit the tubes. Hence it is of interest to understand deformations of hyperbolic
structures, and this can be studied through deformations of their holonomies in
the character variety. In other words, Mostow rigidity tells us that ρ0 is the only
discrete faithful representation of π1O into PSL2(C) up to equivalence. Hence
nearby representations will be either nonfaithful or nondiscrete. The hope is
that some suitably chosen discrete nonfaithful ones will factor through faithful
representations of fundamental groups of some Dehn fillings on O which are
holonomies of hyperbolic structures on them.

To state the theorem, we need to fix some notation first. Let s, p, t be the
number of components of ∂O that are respectively tori, pillows, and turnovers.
For each torus Tj in ∂O, we fix two generators mj and lj of π1Tj , that are
represented by two simple loops in Tj . For each pillow Pj in ∂O, we also fix
two generators mj and lj of the torsion free subgroup of π1Pj , that represent
two simple closed curves in Pj (each curve bounds a disc with two cone points).
Then to an (s+p)-tuple ((p1, q1), . . . (ps+p, qs+p)) ∈ (Z2∪{∞})s+p we associate
an orbifold obtained by (pj , qj)-Dehn filling on the j-th boundary component,
defined as follows: if (pj , qj) = ∞, we just remove the j-th boundary component;
otherwise we glue something to the j-th component of ∂O. If it is a torus, then
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we write p = rd and q = sd, with r, s ∈ Z coprime and d = g.c.d.(p, q), and glue
the singular solid torus S1 ×D2(|d|), where D2(|d|) denotes the quotient of the
2-disk by a rotation of order |d|. The surgery meridian is the curve rm+sl. For
pillows we glue a solid pillow, possibly with a singular core, in a similar way (cf.
Section 2.5).

Theorem 8.4 (Thurston’s Hyperbolic Dehn Filling). Let O be a compact
3-orbifold with boundary such that Int(O) has a complete hyperbolic structure
with finite volume. Then there exists a neighborhood U of (∞, . . . ,∞) in (Z2 ∪
{∞})s+p such that for every x ∈ U , the Dehn filling associated to x is hyperbolic.

The topology on Z2 ∪ {∞} is given by Alexandrov compactification. Hence
elements of a neighborhood U need to have sufficiently large coefficients for all
cusps.

In the manifold case, the proof is given in Thurston’s notes [225, Chap.5],
and it has been generalized to orbifolds by Dunbar and Meyerhoff [58]; see also
[18, Appendix B].

Remark. To establish the connection with convergence of orbifolds, there re-
mains to prove that sequences of hyperbolic Dehn fillings on O with coefficients
going to (∞, . . . ,∞) do converge to the finite volume hyperbolic structure on
O. This involves connecting algebraic convergence and geometric convergence
and we will not do this here. See [58].

We turn to a more detailed outline of the proof. The first thing we need is a
local study of X(O) near χ0. We already have a lower bound of the dimension.
Recall that a cusp is called nonrigid when the corresponding component of ∂O
is not a turnover. Since χ0 is irreducible, Corollary 7.11 implies that every
component of X(O) that contains χ0 has dimension at least s + p. As soon as
there is a nonrigid cusp, this dimension is positive. By contrast, we have:

Proposition 8.5. If s = p = 0 then χ0 is an isolated point.

Proof. Let ρ ∈ R(O) be a representation in a neighborhood of ρ0. We may
choose the neighborhood sufficiently small so that ρ is still the holonomy rep-
resentation of a structure on O (see [37]). If O is compact, then this structure
is complete, and by Mostow rigidity the hyperbolic structure on O must be
the same. Therefore ρ is conjugate to ρ0. If O is not compact, by hypothesis
the ends of O are parabolic cusps with horospherical section a turnover T . By
Proposition 7.9, the restriction to the turnover ρ|π1T is conjugate to ρ0|π1T . In
particular, the new structure on O with holonomy ρ is complete and therefore
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Mostow rigidity applies. Thus ρ is again conjugate to ρ0. We have proved that
the orbit by conjugation of ρ0 is isolated; therefore χ0 is also isolated.

In the course of the proof of the Hyperbolic Dehn Filling Theorem, we will
generalize this: χ0 is always a smooth point of X(O) and the dimension of the
unique component of X(O) through χ0 is exactly s + p.

The first step of the proof consists in producing a branched covering from
an open subset W of Cs+p to a neighborhood V of χ0 in X(O), using the maps
Jγ defined earlier. This branched covering maps the origin to χ0.

In the second step, we construct a homeomorphism from W to a neighbor-
hood U of (∞, . . . ,∞) in (R2 ∪ {∞})s+p that maps the origin to (∞, . . . ,∞).
This gives a correspondence between points near (∞, . . . ,∞) in generalized
Dehn filling space and characters near χ0. Two points near (∞, . . . ,∞) cor-
respond to the same character if and only if they differ by changes of sign of
some coordinates.

In the third step, we prove that any point of V corresponding to an element
of U := U ∩ (Z2)s+p is the character of the holonomy of an incomplete structure
on Int(O) whose completion is precisely the orbifold with the corresponding
Dehn filling coefficients. This is achieved by deforming the developing map of
ρ0.

Each step of the proof is discussed in one of the next subsections.

Remark. We thus establish a correspondence between certain points of X(O)
near χ0 and hyperbolic Dehn fillings. This correspondence can be enlarged to
give geometric interpretations of other points of X(O). This uses cone manifolds
and will be discussed in the next chapter.

8.3.2 Algebraic deformation of holonomies

Theorem 8.6. The map

Jm = (Jm1 , . . . , Jms+p) : X(O) → Cs+p

is locally bianalytic at χ0.

Sketch of proof. We follow the proofs of [225] and [249, 250]. Let X0 be an
irreducible component of X(O) that contains χ0. As we saw in subsection 8.3.1,
dim X0 ≥ s + p. By Mostow Rigidity, χ0 is an isolated point of J−1

m (Jm(χ0)).
Using those properties, the openness principle and other standard results in
complex algebraic geometry [171], one shows that Jm is open at χ0, and that
dim X0 ≤ s+p. It follows that Jm is locally either bianalytic or a branched cover.
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The latter possibility is eliminated by using Mostow rigidity on the hyperbolic
orbifolds obtained by Dehn filling (see [249, 250, 18] for details).

8.3.3 Generalized Dehn filling coefficients

Recall that an orientation-preserving isometry of H3 has a complex length, which
is well-defined up to sign and addition of an integer multiple of 2iπ. We use this
to parametrize a deformation of the holonomy of the complete structure.

Proposition 8.7. There exists a neighborhood W of the origin in Cs+p and an
analytic map

W → R(O)
u 7→ ρu

such that for every u = (u1, . . . , us+p) ∈ W and every j = 1, . . . , s + p, the
isometry ρu(mj) has complex length uj.

Proof. Recall from Chapter 6 that the trace of a matrix in PSL2(C) equals ±2
times the hyperbolic cosine of half the complex length. Thus we consider the
map

W → Cs+p

u 7→ (4 cosh2(u1/2), . . . , 4 cosh2(us+p/2)).

By Theorem 8.6, there exists a neighborhood V ⊂ X(O) of χ0 such that
Jm(V ) ⊂ Cs+p is a neighborhood of (4, . . . , 4) and the restriction Jm : V →
Jm(V ) is bianalytic. Set

χu := J−1
m (4 cosh2(u1/2), . . . , 4 cosh2(us+p/2)).

It is proved in [185] that there exists an analytic section s : V → R(O) to the
canonical projection. We define ρu = s(χu). It follows from the construction
that the complex length of ρu(mj) is uj .

Recall that for j = 1, . . . , s, the j-th boundary component of O is a torus Tj

and mj and lj generate π1Tj , whereas for j = s+1, . . . , s+p, the j-th boundary
component of O is a pillow Pj and mj and lj generate the maximal torsion free
subgroup of π1Pj .

Lemma 8.8. For j = 1, . . . , s+p, there is an analytic map Aj : W → PSL2(C)
such that for every u ∈ W :

ρu(mj) = ±Aj(u)

(
euj/2 1

0 e−uj/2

)
Aj(u)−1.
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Proof. Let ρ̃u(mj) be a lift of ρu(mj) to SL2(C). Then ρ̃0(mj) has a unique
eigenvalue, which is equal to 1 or −1. Call it εj = ±1. Pick an element w2 ∈ C2

that is not an eigenvector of ρ̃0(mj). Set w1(u) = (εj ρ̃u(mj)− e−uj/2)w2. Take
Aj(u) to be the transition matrix between the canonical basis and {w1(u), w2}.

The next corollary shows that one can define a function vj(u) as the complex
length of ρu(lj). The sign of vj(u) is well-defined, because the sign of uj fixes
an orientation of the geodesic invariant by ρu(mj) (which is also invariant by
ρu(lj)). The indeterminacy of 2πiZ is eliminated by analyticity.

Corollary 8.9. For j = 1, . . . , s + p, there exists a unique pair of analytic
functions vj , τj : W → C such that vj(0) = 0 and for every u ∈ W :

ρu(lj) = ±Aj(u)

(
evj(u)/2 τj(u)

0 e−vj(u)/2

)
Aj(u)−1.

In addition:

i. τj(0) ∈ C−R;

ii. sinh(vj(u)/2) = τj(u) sinh(uj/2);

iii. vj is odd in uj and even in ur, for r 6= j;

iv. vj(u) = uj(τj(u) + O(|u|2)).
Proof. Use the commutativity relation mj lj = ljmj and Lemma 8.8. Property
(i) comes from the fact that ρ0 is faithful and discrete. Commutativity implies
(ii), which in turn implies (iv). To prove (iii), notice that complex length is
defined up to sign, and use the isomorphism of Theorem 8.6 and property (iv).

Proposition 8.10. For each j = 1, . . . , s+p, there is a unique function (pj , qj) :
W → R2 ∪ {∞} such that:

{
(pj(u), qj(u)) = ∞ if uj = 0;

pj(u)uj + qj(u)vj(u) = 2πi if uj 6= 0.

Furthermore,

W → (R2 ∪ {∞})s+p

u 7→ (p1, q1), . . . , (ps+p, qs+p)

is a homeomorphism between W and a neighborhood U of {∞, . . . ,∞}.
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Proof. The defining equation is equivalent to:
{

pj Re(uj) + qj Re(vj) = 0
pj Im(uj) + qj Im(vj) = 2π.

Thus
(pj , qj) = (−2π Re(vj), 2π Re(uj))

/
Im(ujvj).

By Corollary 8.9, Re(vj) = Re(uj(τj(u) + O(|u|2)) and

Im(ujvj) = |uj |2Im(τj(u) + O(|u|2)).

Since Im(τj(0)) 6= 0, those computations prove the proposition.

8.3.4 Deformation of developing maps

Let D0 : ĨntO → H3 be the developing map for the complete structure on IntO.
The following proposition completes the proof of Theorem 8.4.

Proposition 8.11. For each u ∈ W there is a map Du : ĨntO → H3 that is a
developing map of a hyperbolic structure on Int(O) whose holonomy is ρu, and
such that when (pj(u), qj(u)) ∈ Z2 ∪ {∞}, the completion of IntO is the Dehn
filling on O with coefficients (pj(u), qj(u)).

Proof. We write IntO = N ∪ C1 ∪ · · · ∪ Cs+p+t, where N ∼= O is a compact
retract of IntO and C1, . . . , Cs+p+t are standard neighborhoods of the cusps.
The idea is to deform the developing maps on N and on the Ci’s.

Lemma 8.12. There exists a family of local diffeomorphisms D0
u : Ñ → H3,

which depends on u ∈ W continuously for the compact C1-topology, such that
D0

u is ρu-equivariant and D0
0 = D0|Ñ .

Lemma 8.13. There exists a family of local diffeomorphisms Dj
u : C̃j → H3

which is continuous in u ∈ W for the compact C1-topology, such that Dj
u is

ρu-equivariant, Dj
0 = D0|C̃j

and the structure on Cj can be completed to give
the Dehn filling with the coefficients pj(u), qj(u).

Assuming Lemmas 8.12 and 8.13, the maps Du of Proposition 8.11 are ob-
tained by using bump functions and the fact that we have uniform convergence
for compact subsets in the C1-topology, as in [37] or [18, Appendix B].

Proof of Lemma 8.12. This is an orbifold version of [37, Lemma 1.7.2]. We start
with a finite covering {U1, . . . , Un} of a neighborhood of N . We take each Ui

to be either simply connected or the quotient of a ball by a finite orthogonal
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group. In particular, Ui ∩ Σ is either empty, an unknotted arc or a graph with
three edges meeting at a vertex.

Let p : Õ → O denote the universal covering projection and let V1 be a
connected component of p−1U1 = t

γ∈π1O
γV1. If U1 ∩ ΣO = ∅, then we define

∆1 : V1 → H3 to be the restriction of D0
0 and we extend it ρt-equivariantly to

p−1U1 = t
γ∈π1O

γV1.

If U1 ∩ΣO 6= ∅, then we must be more careful. Here we need to use a family
of isometries {Iu ∈ Isom(H3)}u∈U such that:

(i) Iu conjugates ρ0(π1U1) and ρu(π1U1);

(ii) I0 = id;

(iii) Iu depends analytically on u.

The construction of such a family is elementary, using the fact that the fixed
point set of ρu(π1U1) depends analytically on u and that ρu(π1U1) is a finite
orthogonal group.

In this case we define ∆1 : V1 → H3 to be the restriction of Iu ◦D0
0 and we

extend it ρt-equivariantly to p−1U1 = t
γ∈π1O

γV1.

Now we make the same construction for each open set Ui and we glue the
maps by using refinements of the covering and bump functions, as explained
in [37] or [18, Appendix B]. The result of gluing D0

u is ρu-equivariant, and
converges to D0

0 as u → 0 uniformly on compact subsets for the C1-topology. In
particular, D0

u is a local embedding.

Proof of Lemma 8.13. The proof is different according to whether Cj is a torus,
a pillow or a turnover.

The turnover case is the easiest, because the restrictions of the representa-
tions to π1Cj are rigid by Proposition 7.9: ρ0|π1Cj and ρu|π1Cj are conjugated
by an isometry. Therefore Dj

u is obtained by composing Dj
0 with the conjugating

isometry.
We discuss now the case where Cj is a torus, following Thurston’s notes

[225]. By Lemma 8.8 and Corollary 8.9, we may assume:

ρu(mj) = ±
(

euj/2 1
0 e−uj/2

)
, ρu(lj) = ±

(
evj(u)/2 τj(u)

0 e−vj(u)/2

)
.

Thus the holonomy of Cj preserves ∞ ∈ ∂H3 = C ∪ {∞} and acts on C =
∂H3 − {∞} by affine transformations.
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Let Tj = ∂Cj be the horospherical torus. The complete structure on Cj

induces a Euclidean structure on Tj , that we may view as a complete affine
structure. The developing map D0 of the complete structure restricted to T̃j

gives a diffeomorphism ∆0 = D0|T̃j
: T̃j → C. Since Tj is compact, we may

deform ∆0 to a family of local diffeomorphisms ∆u : T̃j → C which are ρu-
equivariant, as in Lemma 8.12. This gives a family of affine structures on T 2.
One can describe explicitly the maps ∆u by deforming the image of a funda-
mental domain (i.e. by deforming a square in C to a quadrilateral, as in [224,
Sec. 3.3 and 3.4]). When uj = 0, ∆u is still a covering of C. When uj 6= 0, the
holonomy ρu|(π1Tj) fixes a point xuj

∈ C, and ∆u : T̃j → C−{xuj
} lifts through

the universal covering projection π : C → C−{xuj}, where π(z) = exp(z)+xuj .
The lift ∆̃u is a covering of C invariant by the lifted action of the holonomy
(see [224] for details).

We want now to pass from the map ∆u : T̃j → C to a developing map
Dj

u : C̃j → H3. Technically, it is useful to fix a point p ∈ Dj
0(T̃j) ⊂ H3 and to

construct Dj
u so that p ∈ Dj

u(T̃j) for every u ∈ U .

When uj = 0, we define S(uj) to be the horosphere centered at ∞ that
contains the point p ∈ H3. The horosphere S(uj) can be identified to C =
∂H3 − {∞} by means of the geodesics that have ∞ as one of the limit points
(i.e. geodesics orthogonal to S(uj)). Thus we define Dj

0|T̃j
: T̃j → S(u) as the

composition of ∆u with this identification. We use the product structure of
C̃j

∼= T̃j × [0, +∞) to extend Dj
0|T̃j

, by means of the geodesics having ∞ as
limit point.

When uj 6= 0, the holonomy 〈ρu(mj), ρu(lj)〉 preserves a geodesic γuj . The
ends of γuj are ∞ and xuj ∈ C, which are the points of C ∪ {∞} fixed by
〈ρu(mj), ρu(lj)〉. We define S(uj) to be the set of points whose distance to γuj

equals the distance from the fixed point p to γuj . In the half-space model, S(uj)
is a Euclidean cone, having xuj as vertex. In the ball model, it is a banana.

We identify the complement of the fixed point C − {xuj} with S(uj) by
using the geodesics orthogonal to γuj , and define again Dj

u|T̃ : T̃ → S(u) as the
composition of ∆u with this identification. The family of geodesics orthogonal
to γuj and the product structure of C̃j can be used again to define Dj

u : C̃j →
H3 − γuj .

It is easy to check that Dj
u depends continuously on u for the compact

C1-topology. What we want to check now is that the completion is the one
determined by the generalized Dehn filling coefficients (pj , qj).

The metric completion of the image Dj
u(C̃j) consists in adding the invariant

geodesic γuj .
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Figure 8.1: The hypersurface S(uj).

To understand the completion of Cj we use the following lemma, whose proof
is left to the careful reader.

Lemma 8.14. Assume uj 6= 0. Let φ : π1Tj → R be the representation induced
by the action of 〈ρu(mj), ρu(lj)〉 by translations along the invariant geodesic γuj .

(i) If pj/qj ∈ R−Q, then kerφ is trivial and the image of φ is non-discrete.

(ii) If pj/qj = rj/sj for some coprime integers rj , sj ∈ Z then kerφ ∼= Z is
generated by pjmj +qj lj and the image of φ is discrete. In addition rjmj +
sj lj acts as a rotation around the invariant geodesic of angle 2πrj/pj.

As a particular case of (ii), if qj = 0, then ker φ ∼= Z is generated by mj , the
image of φ is discrete and mj acts as a rotation of angle 2π/pj .

When pj/qj ∈ R−Q, since the action on γuj is not discrete, the completion
of Cj is the one-point compactification. When pj/qj ∈ Q, the completion of Cj

consists in adding the quotient of γuj by Z acting by translation, i.e. adding a
closed geodesic. The fact that this geodesic is singular or not depends only on
the angle 2πrj/pj .

Finally, in the case where Cj is a pillow, we just use the fact that π1Cj is
an extension of Z⊕Z by an involution, and that all the previous constructions
can be made invariant by this involution.

Historical Remark The first example of a deformation of the holonomy rep-
resentation of a complete hyperbolic manifold was constructed by Jørgensen in
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[119]. He considered the exterior of the figure eight knot, which is fibered over
the circle with fiber a punctured torus. The longitude λ of the knot is rep-
resented by a peripheral curve in this fiber. Jørgensen constructed a one real
parameter deformation of the holomomy representation such that the image of
λ is a rotation of angle α ∈ [0, 2π) (here α = 0 corresponds to the complete
structure). In particular for α = 2π

n , this is an orbifold fibered over the circle.
In his notes [225] Thurston constructed a one complex parameter deforma-

tion of the holonomy representation of the figure eight knot exterior, that lead
to a constructive proof of the Hyperbolic Dehn Filling Theorem in this case.
He even gave an explicit list of the exceptional slopes (i.e. whose fillings give
non-hyperbolic manifolds). The problem of determining the exceptional slopes
in general is a subject in itself, where many difficult questions are still open
(cf. the survey paper [90]). Recently C. Hodgson and S. Kerckhoff [111] ob-
tained a universal bound on the number of exceptional slopes for Dehn fillings
on an orientable finite volume hyperbolic 3-manifold with one cusp.
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Chapter 9

The Orbifold Theorem

In this chapter we present the Orbifold Theorem.
It follows from Chapter 3 that any compact, connected, orientable 3-orbifold

that does not contain a bad 2-suborbifold, can be split along a finite collection
of disjoint embedded spherical and toric 2-suborbifolds into irreducible, Seifert
fibered or atoroidal 3-orbifolds. The Orbifold Theorem states that the atoroidal
pieces are also geometric provided that they have a non-empty singular locus.
Here is the full statement.

Theorem 9.1 (Orbifold Theorem). Let O be a compact, connected, ori-
entable, irreducible 3-orbifold with non-empty singular locus. If O is atoroidal,
then O is geometric.

There is also an important application of Theorem 9.1 to non-free finite
group actions on the 3-sphere. Some previous partial results were obtained in
[51, 68], as well as in [155, 132] for finite group actions on the 3-ball.

Corollary 9.2. An orientation preserving, smooth, non-free, finite group action
on S3 is conjugate to an orthogonal action.

The Orbifold Theorem was announced by Thurston in 1981 [228, 229]. Un-
fortunately, he never published his proof. Recently in 2000, two different proofs
were worked out, see [16, 17] and [43]. A proof of the case where the singular
locus is not empty, with cyclic local groups already appeared in [18].

By Theorem 3.3 O can be cut along turnovers into Haken and small pieces.
The geometrization of Haken orbifolds can be proved by adapting the proof
for Haken manifolds, as explained in Theorem 6.5. In addition, hyperbolic
structures can be glued along turnovers, because a turnover in a hyperbolic
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orbifold is always totally geodesic. So the proof of Theorem 9.1 can be reduced
to the case of small orbifolds.

We sketch here the proof of the Orbifold Theorem in the small case. To
avoid some technicalities while still conveying the main ideas of the proof, we
make further assumptions of closedness and cyclic local groups.

Theorem 9.3. Let O be a closed, small, orientable 3-orbifold with nonempty
singular locus. Assume that all local groups are cyclic. Then O is geometric.

Corollary 9.4. Let M be a small orientable 3-manifold. Let φ : M → M be a
non-trivial orientation-preserving diffeomorphism of finite order. If φ has fixed
points, then M admits a 〈φ〉-invariant geometric structure.

Proof. By hypothesis, the orbifold O = M/φ is closed with nonempty singular
locus and its singular points have cyclic local groups. To apply Theorem 9.3,
we only have to show that O is small.

Suppose that O is reducible and consider a spherical decomposition (given
by Theorem 3.2.) The decomposing system of spherical 2-orbifolds lifts to a
system of 2-spheres in M . Each one of them bounds a ball in M . Consider an
innermost 2-sphere; it bounds a ball B ⊂ M disjoint from the other spheres.

Let Q be the quotient of B by its stabilizer Γ in 〈φ〉. Then ∂Q is a spherical
2-orbifold. We cap it off by attaching a discal 3-orbifold. The resulting closed
3-orbifold Q̂ is irreducible and has fundamental group Γ. If Γ were trivial, then
Q would be a ball, contradicting the minimality of the spherical decomposition.
It follows that Γ is a nontrivial, finite cyclic group and that Q has nonempty sin-
gular locus. Moreover, the Equivariant Loop Theorem (Theorem 3.19) implies
that Q̂ is small.

Hence we can apply Theorem 9.3 to Q̂. The conclusion is that Q̂ is spherical,
which means that Q is discal, again contradicting the minimality of the spherical
decomposition.

Therefore O is irreducible. As above, the Equivariant Loop Theorem tells
us that O is small.

In the remainder of this chapter we will assume that O is an orbifold satis-
fying the hypothesis of Theorem 9.3. In particular, it is closed and orientable.

Lemma 9.5. Either O − ΣO has a complete hyperbolic structure with finite
volume or O − ΣO is Seifert fibered. In the latter case, O is Seifert fibered and
ΣO is a union of fibers.

Proof. Since O is small, O − ΣO is irreducible and atoroidal:
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• If a 2-sphere S2 ↪→ O− ΣO bounds a discal 3-orbifold in O, then it must
bound a ball in O − ΣO, because S2 ∩ ΣO = ∅.

• If a 2-torus T 2 ↪→ O−ΣO is compressible in O, then either it is compress-
ible in O − ΣO or there is a compression disk ∆ such that ∆ ∩ ΣO is one
point. By cutting T 2 along ∆ and gluing back two copies of ∆, we get a
spherical 2-suborbifold that bounds a discal 3-orbifold in O, hence T 2 is
parallel to the boundary of a tubular neighborhood of ΣO.

By the Hyperbolization Theorem for Haken 3-manifolds, O − ΣO is either
hyperbolic or Seifert fibered. When O − ΣO is Seifert fibered, the fibers of the
fibration are never isotopic to a meridian of ΣO, otherwise O would be reducible
(gluing a vertical annulus with a discal orbifold bounded by the meridian would
give an essential spherical or bad 2-suborbifold). Thus we can extend the Seifert
fibration to O by adding the components of ΣO as fibers.

Remark. If O is closed, small and has only cyclic local groups, then O is very
good. This is proved in two steps. First notice that the underlying space of O
is a rational homology sphere, by smallness. Then prove that the meridians are
linearly independent in H1(O − ΣO,Q), by a Mayer-Vietoris argument with a
neighborhood of ΣO and O−ΣO. Hence some finite covering of O−ΣO extends
to a manifold covering of O. See [18, Chap.7].

From now on we assume that O − ΣO is hyperbolic.
In Section 9.1 we define cone manifolds, which are the basic tool, and set the

stage for the proof. This leads in Sections 9.2 and 9.3 to some considerations
about sequences of cone manifolds and to a proof of the Orbifold Theorem
modulo some results to be proved later. Those are tackled in the remaining
sections.

9.1 Cone manifolds

Before defining cone manifolds we recall briefly the notion of a path metric space.
In a metric space X one defines the length of a path ξ as the supremum of the
lengths of piecewise geodesic paths inscribed in ξ. Then X is a path metric space
if for all x, y ∈ X, the distance between x and y is the infimum of the length of
paths joining x to y. For instance, a Riemannian manifold is (by definition) a
path metric space.1

1Obviously a geodesic space as defined in Section 6.4 is a path metric space, but the

converse is not true. (Consider for instance Euclidean space minus a point.) However, a

147



If a topological space X results from an isometric gluing construction on one
or more path metric spaces, then there is an obvious way to measure lengths of
paths in X, and one can define a metric on X by taking the infimum of lengths
of paths joining two points. We call this the path metric space obtained by the
gluing construction.

Definition. A 3-dimensional cone manifold C of constant curvature K ≤ 0 is a
complete path metric space whose underlying space is a smooth 3-manifold |C|
and such that every x ∈ C has a neighborhood Ux that embeds isometrically in
one of the model spaces H3

K(α) defined below.

To define H3
K(α), we first let H3

K denote the complete, simply-connected
Riemannian manifold of constant sectional curvature K ≤ 0. Thus H3

−1
∼= H3

and H3
0
∼= E3. For α ∈ (0, 2π), consider in H3

K a solid angular sector Sα

obtained by taking the intersection of two half-spaces, such that the dihedral
angle at its infinite edge is α. Then H3

K(α) is the path metric space obtained by
gluing together the faces of Sα by an isometric rotation around the edge. Let
Σ be the image of the edge in H3

K(α). The induced metric on H3
K(α) − Σ is

an incomplete Riemannian metric of constant curvature K, whose completion
is precisely H3

K(α). Points of Σ have no neighborhood isometric to a ball in a
Riemannian manifold.

In cylindrical or Fermi coordinates, the metric on H3
K(α)− Σ is:

ds2
K =





dr2 +
(

α
2π

sinh(
√−Kr)√−K

)2

dθ2 + cosh2(
√−Kr)dh2 for K < 0

dr2 +
(

α
2π r

)2
dθ2 + dh2 for K = 0

where r ∈ (0, +∞) is the distance from Σ, θ ∈ [0, 2π) is the rescaled angle
parameter around Σ and h ∈ R is the distance along Σ.

More generally, if C is a cone manifold and x ∈ C, we say that x is regular
if it has a neighborhood isometric to a subset of H3

K . Otherwise it is singular.
The set of singular points is denoted by ΣC and called the singular locus.2 To
every singular point is associated a cone angle, which is the only α such that
x has a neighborhood isometric to a subset of H3

K(α). The induced metric on
|C| − ΣC is a Riemannian metric of constant curvature whose completion is
precisely the cone manifold C. It is easy to see that the cone angle is constant

complete, locally compact path metric space is geodesic. This applies to cone manifolds. For

more on these notions, see [97].
2These definitions are very similar to those for orbifolds, but there is a fundamental dif-

ference between the two concepts: orbifolds are topological objects which may carry metrics,

whereas cone manifolds are by definition metric spaces.
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on components of ΣC , so we can talk about the cone angle along a component
of ΣC .

We leave to the reader the definitions of 2-dimensional cone manifolds. Note
that with our definition, the singular locus of a 3-dimensional cone manifold is a
1-submanifold. One can give more general definitions where the cone manifold
may have arbitrary dimension, the singular locus may have a more complex
topology, or cone angles may be greater than 2π. (Compare [17, 43].)

Here are some useful definitions:

• The developing map of C is the developing map of the induced metric on
C − ΣC :

D : C̃ − ΣC → H3
K .

It is not a covering map because the metric is incomplete. (C̃ − ΣC is the
universal covering of C − ΣC).

• The associated holonomy representation ρ : π1(C −ΣC) → Isom+(H3
K) is

called the holonomy of C. It is defined by :

D ◦ γ = ρ(γ) ◦D,

where γ acts as a covering translation of the universal covering. The image
ρ(π1(C − ΣC)) need not be discrete.

• When µ ∈ π1(C−ΣC) is a meridian around a component of Σ, then ρ(µ) is
an elliptic element, more precisely a rotation of angle α around a geodesic.
We have the equality:

Tr(ρ(µ)) = ±2 cos
α

2
.

Remark. The orbifold O has a Riemannian metric of constant curvature iff
there exists a cone manifold C with (|C|, ΣC) ∼= (|O|,ΣO) and with cone angles
2π
m1

, . . . , 2π
mk

, where m1, . . . , mk are the orders of the local groups of the edges of
ΣO. This motivates the next definition.

Definition. The angles 2π
m1

, . . . , 2π
mk

are called the orbifold angles.

We now give some examples to be kept in mind while reading the proof of
the Orbifold Theorem.
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Example. We start with a 2-dimensional example. Consider an equilateral
triangle in H2, E2 or S2 with angle α ∈ (0, π]. In the hyperbolic case (resp. Eu-
clidean, resp. spherical), one has α < π/3 (resp. α = π/3, resp. α > π/3). Let
S(α, α, α) be the double of this triangle, i.e the length space obtained by gluing
two copies of the triangle by an isometry. Then S(α, α, α) is a cone 2-mani-
fold with underlying space S2 and three cone points of cone angle 2α. When
n = π/α is an integer, it is a hyperbolic (resp. Euclidean, resp. spherical) struc-
ture on an orbifold. We see on this example how cone manifolds can be seen as
“interpolating continuously between geometric orbifolds”.

It is worth noting that when α goes to π/3 from below, the diameter of the
hyperbolic cone manifold S(α, α, α) goes to 0. Thus there is a limit angle which
corresponds to a degeneration of the hyperbolic structure.

Example. This kind of behavior happens in dimension 3. In [108], it is proved
that for every α ∈ (0, π) there is a cone manifold of constant curvature with
underlying space S3, singular locus the figure eight knot and angle α. The
structure is explicitly constructed; it is hyperbolic for α < 2π/3, Euclidean for
α = 2π/3 and spherical for 2π/3 < α ≤ π. Again by looking at angles of
the form 2π/n, one gets geometric structures on certain orbifolds. Since or-
bifold coverings are branched coverings, one also gets geometric structures on
branched coverings of the figure eight knot. It is also natural to consider the
finite volume hyperbolic structure on the complement of the figure eight knot as
a cone manifold structure with cone angle 0, because hyperbolic cone manifolds
with small angles are obtained by deforming this structure.

9.1.1 Deforming cone manifolds

Before proceeding, we have to define formally hyperbolic cone manifold struc-
tures on orbifolds.

Definition. Let O be a closed, orientable 3-orbifold with cyclic local groups.
Let Σ1, . . . , Σk be the components of ΣO. Let (α1, . . . , αk) be a k-tuple of real
numbers belonging to the interval (0, π).

A hyperbolic cone manifold structure on O with cone angles (α1, . . . , αk) is
a pair (C, φ) where C is a hyperbolic cone manifold and φ is a homeomorphism
of pairs (|O|, ΣO) → (|C|, ΣC) such that for all i, the cone angle along φ(Σi) is
αi.

By convention, we define a hyperbolic cone manifold structure on O with
angles (0, . . . , 0) to be a complete hyperbolic structure of finite volume on the
3-manifold O − ΣO.
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Throughout this chapter, we fix an order on the components of the singular
locus of our orbifold O, let mi denote the order of the local group of the i-th
component, and set:

I :=

{
t ∈ [0, 1]

∣∣∣∣∣
There exists a hyperbolic cone manifold structure
on O with cone angles ( 2πt

m1
, . . . , 2πt

mk
).

}

Our hypothesis that O − ΣO is hyperbolic translates into the fact that 0 ∈
I. The first step is to deform this structure to get hyperbolic cone manifold
structures with small angles.

Theorem 9.6. There exists ε > 0 such that for every k-tuple α1, . . . , αk with
0 < αi < ε, there exists a hyperbolic cone manifold structure on O with cone
angles (α1, . . . , αk).

This is the cone manifold version of Thuston’s Hyperbolic Dehn Filling The-
orem. The proof of Theorem 8.4 that we have sketched can be adapted to prove
this version. Using the notation of Section 8.3.1, i.e. letting µ1, . . . , µk be the
meridians of ΣC , we are interested in the generalized coefficients (p1, q1), . . . , (pk, qk),
where pi = 2π/αi and qi = 0. Notice that in the proof of Theorem 8.4 a con-
tinuous family of deformations is constructed, so the generalized version of the
Hyperbolic Dehn Filling Theorem provides a non-complete structure on O−ΣO
with those coefficients. The completion of this structure is precisely the cone
manifold structure with cone angles 2π/α1, . . . , 2π/αk (cf. Lemmas 8.13 and
8.14).

To further deform cone angles, we will use the following theorem of Hodgson
and Kerckhoff:

Theorem 9.7 ([110]). The space of hyperbolic cone manifold structures on O
with cone angles < 2π is open, and it is locally parametrized by the cone angles
(α1, . . . , αk).

From Theorems 9.6 and 9.7 we deduce:

Corollary 9.8. I is open.

Theorem 9.7 contains a local rigidity statement: there are no deformations
of hyperbolic cone structures with cone angles fixed. The global rigidity has
been obtained by Kojima:

Theorem 9.9 ([129]). Two hyperbolic cone manifold structures on O with the
same cone angles are isometric, provided that their cone angles are < π.

151



For a generalization of these results to hyperbolic or spherical cone structures
with cone angles ≥ π on a 3-orbifold with noncyclic local groups, see [245].

Theorem 9.9 implies that for each t ∈ I, the hyperbolic cone manifold struc-
ture on O with angles ( 2πt

m1
, . . . , 2πt

mk
) is unique. We shall denote it by C(t).

We can now explain the basic idea of the proof of the Orbifold Theorem.
If 1 ∈ I, then O is hyperbolic. Otherwise we must analyze the accidents that
can occur at the limit of hyperbolicity t∞ = sup I. This is done by looking at
sequences C(tn) with tn → t∞, so we need some preliminaries about convergence
of sequences of cone manifolds.

9.2 Limits of cone manifolds

We will consider two notions of convergence: Gromov-Hausdorff and pointed
bi-Lipschitz.

9.2.1 Gromov-Hausdorff convergence

We begin by recalling the classical notion of Hausdorff distance. Given a metric
space Z and two non-empty subsets X, Y ⊂ Z, the Hausdorff distance between
X and Y is the infimum of all ε > 0 such that X lies in the ε-neighborhood
of Y and vice-versa. If one makes no assumption on X,Y , it can happen than
d(X, Y ) = 0 and X 6= Y (e.g. Z = R, X = [0, 1], Y = [0, 1] ∩Q), but if both
X,Y are closed, then d(X, Y ) = 0 if and only if X = Y . In fact, the Hausdorff
distance turns the set of non-empty closed subsets of Z into a metric space.

If we are given two metric spaces X, Y abstractly, then we may look at all
possible isometric embeddings of X,Y into a space Z and consider the infimum
of Hausdorff distances of the images. This leads to a useful notion for compact
metric spaces.

Definition. [97] Given two compact metric spaces X and Y , the Gromov-
Hausdorff distance between X and Y , denoted by dGH(X, Y ), is the infimum
of the Hausdorff distance between i(X) and j(Y ), for any metric space Z and
any pair of isometric embeddings i : X ↪→ Z and j : Y ↪→ Z.

A sequence of compact metric spaces Xn converges for the Gromov-Hausdorff
topology to a compact metric space X∞ if limn→∞ dGH(Xn, X∞) = 0.

Remark. The Gromov-Hausdorff distance is symmetric, satisfies the triangle
inequality, and two compact metric spaces X and Y are isometric if and only
if dGH(X,Y ) = 0 (see [97] for details). Notice that this last point implies
uniqueness up to isometry of the limit of a convergent sequence.
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Example. A sequence of compact metric spaces converges to a point for the
Gromov-Hausdorff distance if and only if the diameter converges to zero.

Example. For α ∈ (0, π), consider the hyperbolic quadrilateral of angle α/2
such that two of its opposite edges have length 1. Let S2(α, α, α, α) be the
hyperbolic cone 2-manifold obtained by doubling this quadrilateral. It is easily
seen that for any sequence αn → π, S2(αn, αn, αn, αn) converges to a segment
of length one for the Gromov-Hausdorff distance.

We notice that in the previous examples the topology of the limits is different
from the topology of the approximating sequences. We will see later that,
for cone manifolds, such degenerations corresponds to special behaviors called
collapses.

Gromov-Hausdorff convergence is too restrictive for our purposes, because
we are interested in sequences Xn with diam Xn →∞. Such a sequence cannot
converge to a compact space in any reasonable sense. For instance, intuitively,
a sequence of round 2-spheres of radius n should converge to E2. But if Xn is
obtained by gluing a round 2-sphere of radius n to a round 3-sphere of radius n

(the union occurring at a single point), then what should limXn be: E2 or E3?
This problem is solved by considering sequences of pointed spaces, i.e. pairs

(X,x) where X is a metric space and x is a point of X. This works well when
the spaces considered are proper (recall that it means that metric balls are
compact.)

Definition. Let (Xn, xn) be a sequence of pointed proper metric spaces and
(X∞, x∞) be a pointed proper metric space. Then (Xn, xn) converges to (X∞, x∞)
for the pointed Gromov-Hausdorff topology if for every R > 0

lim
n→∞

dGH(BR(xn), BR(x∞)) = 0.

If the limit exists, it is unique up to isometry [33]. The next example illus-
trates the importance of the choice of basepoint in a hyperbolic context.

Example. Let M be a noncompact hyperbolic manifold. Set Xn = M and
choose xn ∈ M .

• When the sequence xn stays in a compact subset of M , (Xn, xn) subcon-
verges to some (X∞, x∞) with X∞ isometric to M .

• When xn goes to infinity in a cusp of maximal rank (dim M−1), (Xn, xn)
converges to a line. The cusp is a warped product of a compact Euclidean
manifold with a line, and the diameter of the Euclidean manifold contain-
ing xn converges to zero as xn goes to infinity.
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• When xn goes to infinity in a geometrically finite end of infinite volume,
(Xn, xn) converges to a hyperbolic space of dimension dim M . This holds
true because one can find metric round balls BRn

(xn) with Rn →∞.

Proposition 9.10 ([97]). A pointed Gromov-Hausdorff limit of geodesic spaces
is geodesic.

9.2.2 Gromov’s pre-compactness criterion

For a metric space X and for constants R > ε > 0, let N(R, ε, X) denote the
maximal number of disjoints balls of radius ε in a ball of radius R in X.

Theorem 9.11 (Pre-compactness criterion [97]). A sequence of pointed
metric geodesic spaces (Xn, xn) is pre-compact for the pointed Hausdorff-Gromov
topology (i.e. every subsequence subconverges to a pointed metric space) if and
only if, for every ε > 0 and R > 0, N(R, ε,Xn) is bounded on n.

To apply this criterion to cone manifolds we need:

Proposition 9.12 (Bishop-Gromov inequality). Let C be a cone manifold
of curvature k ≤ 0 and cone angles ≤ 2π and p ∈ C. Let q be a point in the
model space H3

k. Then, for 0 < r < R:

vol(Br(p))
vol(Br(q))

≥ vol(BR(p))
vol(BR(q))

.

Remark. As for non-singular manifolds, the Bishop-Gromov inequality implies
that a sequence of cone manifolds with cone angles ≤ 2π and curvature in [−1, 0]
satisfies Gromov’s pre-compactness criterion.

Proof of the Bishop-Gromov inequality. The proof uses the so-called Dirichlet
Domain. Let p be a point in a hyperbolic cone manifold. Consider all the
segments σ starting at p that are length minimizing. The Dirichlet domain Dp

is the set of points that are interior to such a minimizing segment.
Notice that singular points of C are never contained in Dp, unless p itself is

singular.

Lemma 9.13. Let C be a cone manifold of curvature k ≤ 0 and p ∈ C.

i. If the cone angles are ≤ 2π, then Dp is a star-shaped polyhedron in the
model space H3

k or H3
k(α), according to whether p is smooth or singular.

ii. If the cone angles are ≤ π, then Dp is convex.

154



This lemma is proved for instance in [18, Chap.3]. We deduce now the
Bishop-Gromov inequality from this lemma. The volume of Br(p) is the same as
the volume of the corresponding ball in the Dirichlet domain. Since the Dirichlet
domain is star-shaped, the inequality follows from the classical Bishop-Gromov
inequality for Riemannian manifolds.

9.2.3 Bi-Lipschitz convergence of cone manifolds

We have seen that there is no control on the topology of a Gromov-Hausdorff
limit. For this reason, we need another notion of convergence.

Definition. A sequence of pointed cone manifolds (Cn, xx) converges to a cone-
manifold (C∞, x∞) for the pointed bi-Lipschitz topology if for every R > 0 and
ε > 0, there exists an integer n0 such that, for n > n0, there is a (1 + ε)-bi-
Lipschitz map fn : BR(x∞) → Cn satisfying:

i. d(fn(x∞), xn) < ε,

ii. BR−ε(xn) ⊂ fn(BR(x∞)), and

iii. fn(BR(x∞) ∩ Σ∞) = Σn ∩ fn(BR(x∞)).

Remark. When (Cn, xn) → (C∞, x∞) for the pointed bi-Lipschitz topology,
if the limit C∞ is compact, then for n large enough the pairs (|Cn|, Σn) and
(|C∞|, Σ∞) are homeomorphic.

A standard ball is a metric ball in a model space H3
k(α) which either does

not intersect the singular axis or is centered on it.

Definition. The cone injectivity radius of a point p in a cone manifold is

cone-inj(p) = sup{r > 0 | Br(p) is contained in a standard ball }.

Definition. A cone manifold C is called δ-thin if

sup
x∈C

cone-inj(x) ≤ δ.

A sequence of cone manifolds Cn collapses if Cn is δn-thin for some sequence
δn → 0.

If diam Cn goes to 0, then obviously the sequence collapses. For instance, our
first 2-dimensional example (page 150) S(αn, αn, αn) collapses when αn → π/3.

The converse is false. For instance, one obtains a collapsing sequence of flat
metrics on the 3-torus by starting with a product metric and pinching one factor
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to a point. In this example the diameter is eventually constant. Notice also that
in the example S2(α, α, α, α) in 9.2.1, the limit is an interval of length 1.

If a sequence Cn does not collapse, then by definition there is a sequence
xn ∈ Cn such that for some subsequence, the numbers cone-inj(xn) are uni-
formly bounded away from zero. Thus the following theorem is relevant to
non-collapsing sequences [18, Chap. 3]:

Theorem 9.14 (Compactness Theorem). Let (Cn, xn) be a sequence of
pointed cone manifolds. Suppose that there exist constants a, ω > 0 such that
for all n we have:

i. cone-inj(xn) > a;

ii. Cn has constant curvature Kn ∈ [−1, 0];

iii. all cone angles of Cn lie in [ω, π].

Then a subsequence of (Cn, xn) converges for the pointed bi-Lipschitz topology
to a cone 3-manifold (C∞, x∞) with curvature K∞ = limn→+∞Kn and cone
angles that are limits of the cone angles of Cn.

When the sequence does collapse, it does not have a limit in the pointed
bi-Lipschitz sense, but the examples above suggest that it may converge to a
lower dimensional cone-manifold in the Gromov-Hausdorff topology.

Theorem 9.14 is proved by using Gromov’s compactness criterion to say
that there is a subsequence that converges to a metric space for the Gromov-
Hausdorff topology. To show that the limit is a cone manifold, one proves
a uniform lower bound for the injectivity radius of points in Cn that are at
bounded distance from xn. This is where the upper bound on the cone angles
is used, via convexity of the Dirichlet domain (Lemma 9.13).

9.3 Analyzing limits of cone manifolds

We now come back to our outline of proof of the Orbifold Theorem. Let (tn)
be an increasing sequence in I with limit t∞. Assume that C(tn) does not
collapse. Then Theorem 9.14 implies that C(tn) subconverges to a hyperbolic
cone manifold C∞ for the pointed bi-Lipschitz topology.

Theorems 9.15 and 9.16 below are proved in [18] (see [17] when the singular
locus is any trivalent graph).

Theorem 9.15 (Stability). If C(tn) does not collapse, then C∞ is compact.
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We prove this theorem in Section 9.4. Assuming it, bi-Lipschitz convergence
implies that the limit C∞ is a hyperbolic cone structure on O. Since I is open,
it follows that t∞ = 1 and we are done.

So from now on, we consider the harder case where C(tn) collapses. Our
main tool is the following theorem, whose proof is sketched in Section 9.6. Recall
that δ-thin means that δ > 0 is an upper bound for the cone injectivity radius.

Theorem 9.16 (Fibration). Let C be a cone manifold structure on O of
constant curvature in [−1, 0] and with cone angles less than or equal to the
orbifold angles of O. For ω > 0 there exists δ > 0 such that if C has cone angles
≥ ω, diam(C) ≥ 1 and C is δ-thin, then O is Seifert fibered.

Now the proof of the Orbifold Theorem goes as follows:

Case 1 diam(C(tn)) is bounded away from zero.
In this case Theorem 9.16 proves that O is Seifert fibered, hence geometric.

Case 2 diam(C(tn)) → 0.
Consider the rescaled sequence

C(tn) =
1

diam(C(tn))
C(tn)

of cone 3-manifolds with constant curvature Kn = − diam(C(tn))2 ∈ [−1, 0)
and diameter equal to 1. If C(tn) collapses, then for n sufficiently large Theo-
rem 9.16 applies again. Otherwise by Theorem 9.14, a subsequence converges
to a compact Euclidean cone 3-manifold C∞ with diameter one. Hence C∞
corresponds to a closed Euclidean cone structure on O. If t∞ = 1, this proves
that O is Euclidean. Hence we assume that t∞ < 1. Our goal is to show that
O is spherical.

Recall that O is very good, hence it has a finite regular covering which is a
manifold M . The Euclidean cone metric C∞ lifts to a Euclidean cone metric
on M . The singular locus Σ̃O of this metric is a link in M and every cone
angle equals 2πt∞ < 2π. Moreover, this metric is invariant by the group of
deck transformations of the covering. By a radial deformation in a tubular
neighborhood of the singular locus Σ̃O, this cone metric can be desingularized
to a smooth metric of non-negative curvature which is still invariant by the
group of deck transformations. Then we apply Hamilton’s theorem [101] to this
metric as in [18] to conclude that M has a metric of constant curvature +1
invariant by the group of deck transformations. Hence O is spherical.

This finishes the sketch of the proof of the Orbifold Theorem.
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9.4 Proof of the stability theorem

We have an increasing sequence tn in I that converges to t∞ and the corre-
sponding cone manifolds C(tn) converge to a hyperbolic cone manifold C∞ for
the pointed bi-Lipschitz topology. We have to prove that C∞ is compact.

Set M := O−ΣO, Csmooth
n := C(tn)−ΣC(tn), and Csmooth

∞ = C∞−ΣC∞ . By
definition of a hyperbolic cone manifold structure, there is for each n a homeo-
morphism φn : (|O|, ΣO) → (|C(tn)|, ΣC(tn)) such that for all i, the cone angle
along φn(Σi) is 2πtn

ni
.

Using these homeomorphisms, we can identify π1M with π1C
smooth
n , and

thus consider the holonomy ρn of Csmooth
n as a representation of π1M in PSL2(C).

We write χn ∈ X(M) for the character of this holonomy.

Lemma 9.17. The singular locus of C∞ is compact.

Sketch of proof. Seeking a contradiction, assume that C∞ has non-compact sin-
gular locus. Using bi-Lipschitz convergence, it is easy to see that the number
of singular components of C∞ is not greater than that of C(tn); in particular
it is finite. Thus C∞ has a non-compact singular component, and again by bi-
Lipschitz convergence, there exists a connected component Σi of ΣO such that
the length of φn(Σi) goes to infinity.

According to [18, Section 2.2], there exists an algebraic curve C ⊂ X(M)
containing χn for all n. By passing to a subsequence, we assume that (χn)
converges in C. The limit x must be an ideal point, because if γ ∈ π1M is a
peripheral element represented by a curve parallel to the arbitrarily long singular
component Σi, then the real part of the complex length of ρn(γ) goes to infinity.

Now for each meridian µ of Σ, Jµ(χn) = 4 cos πtn

m with m ∈ {m1, . . . ,mk},
so by continuity, Jµ(x) is finite. Hence Theorem 7.13 gives an incompressible
suborbifold in O. This contradicts our hypothesis that O is small.

Lemma 9.18. For every t ∈ I, vol(C(t)) ≤ vol(C(0)).

Proof. The proof uses Schläfli’s formula [162]. For a smooth deformation of a
polyhedron Pt in hyperbolic space, the variation of volume is:

dvol(Pt) = −1
2

∑
e

length(e)dαe

where the sum is taken over all edges e of Pt and αe denotes the dihedral angle
of e. For our family of cone manifolds C(t), we can take a totally geodesic trian-
gulation that varies smoothly with t (see [186]). By adding up all contributions
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of volume, we realize that only edges corresponding to singularities are relevant,
and we have:

dvol(C(t)) = −1
2

k∑

i=1

length(Σi) d(2π/mit) = −π

k∑

i=1

length(Σi)
1

mi
d t,

where Σ1, . . . , Σk denote the components of ΣC . Hence the volume of C(t)
decreases with t.

Assume that C∞ is not compact. By Lemma 9.18, the volume of C(tn) is
bounded above, thus C∞ has finite volume. Since its singular locus is compact,
the ends of C∞ are smooth and we can apply a local version of the Margulis
Lemma (see [17]). In particular one can prove easily:

Proposition 9.19. The manifold C∞ has a finite number of ends, which are
smooth cusps.

Lemma 9.20. The manifold Csmooth
∞ is hyperbolic.

Sketch of proof. The incomplete metric can be deformed around the singularity
to a metric of strictly negative curvature [129]. The metric is unchanged along
the complete smooth cusps of Csmooth

∞ . This implies that Csmooth
∞ is irreducible

and atoroidal, since strictly negative curvature forbids essential spheres or essen-
tial tori. Then the result follows from Thurston’s Hyperbolization Theorem.

Let Y be a compact core of Csmooth
∞ . By convergence, there exists a (1+εn)-

bi-Lipschitz embedding fn : Y → Csmooth
n with εn → 0.

Lemma 9.21. C(tn)− fn(Y ) is a union of smooth or singular solid tori.

Sketch of proof. The boundary ∂Y is a union of tori T1, . . . , Tr. Since C(tn)smooth

is hyperbolic, each fn(Ti) is either compressible or end-parallel in C(tn)smooth.
Assume first that fn(Ti) is end-parallel, i.e. fn(Ti) bounds an end-neighborhood
U of Csmooth

n homeomorphic to T2 × [0,+∞). If fn(Ti) separates fn(Y ) from
U , then the component of C(tn)− fn(Y ) corresponding to Ti is a singular solid
torus. Now it is impossible that fn(Y ) ⊂ U for infinitely many n, because
by [18, 3.5.4], ρn ◦ fn∗ converges to the holonomy of the incomplete structure
on Csmooth

∞ , which is non-abelian.
When fn(Ti) is compressible, a standard topological argument already ex-

plained in this book shows that one of the following occurs:

(1) fn(Ti) bounds a solid torus disjoint from fn(Y ).

(2) fn(Ti) bounds a solid torus that contains fn(Y ).
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(3) fn(Ti) is contained in a ball.

As before, an argument with convergence of holonomy representations elim-
inates cases (2) and (3), because the holonomy of Csmooth

∞ is non-abelian and
the holonomy of Ti is nontrivial.

For each n, let λn
1 , . . . , λn

s (s ≤ k) be curves on ∂Y such that:

i. there is one curve λn
i for each component of ∂Y corresponding to a cusp

of C∞.

ii. fn(λn
i ) is a meridian of a possibly singular solid torus lying in C(tn) −

fn(Y ).

Lemma 9.22. For each i, the sequence of closed curves λn
i represents infinitely

many distinct homotopy classes on ∂Y . Hence, after passing to a subsequence,
the length of λi

n goes to infinity with n.

Proof. Otherwise, for some i the curve λn
i = λi is independent of n. Thus

ρn(fn∗(λi)) converges to the holonomy of λi in Csmooth
∞ , which is parabolic.

This gives a contradiction with the fact that ρn(fn∗(λi)) is either trivial or a
rotation of angle 2π

mi
tn (that converges to 2π

mi
t∞).

For each n we consider the Dehn filling of Y along λn
1 , . . . , λn

s . This mani-
fold is the underlying space of C(tn) minus open regular neighborhoods of the
components of ΣC(tn) that correspond to the components of ΣC∞ . Thus we
may assume that topologically this Dehn filling is independent of n. Now us-
ing Lemma 9.22, the Hyperbolic Dehn Filling Theorem, and volume estimates
(Schläfli’s formula), one can show that those Dehn fillings are different. This
contradiction finishes the proof of Theorem 9.15.

9.5 Gromov’s simplicial volume

A crucial ingredient in the proof of the fibration theorem is the notion of sim-
plicial volume, introduced by M. Gromov [94].

Let M be a topological space. Our first goal is to define a semi-norm on
Hk(M,R). A real k-chain on M is a linear combination c = Σiaiσi, where
the ai’s are real numbers and the σi’s are continuous maps from the standard
k-simplex to M . We set ‖c‖ := Σi|ai|. The semi-norm ‖z‖ of an element
z ∈ Hk(M,R) is defined as the infimum of the norms of cycles representing z.
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If M is a closed n-manifold, then it has a fundamental class [M ] ∈ Hn(M,R).
We define the simplicial volume of M , sometimes also called Gromov norm, by
‖M‖ := ‖[M ]‖. More generally:

Definition. Let M be a compact orientable n-manifold,

‖M‖ := inf





n∑

i=1

|λi|

∣∣∣∣∣∣∣∣

n∑
i=1

λiσi is a cycle representing a fundamental

class in H3(M, ∂M ;R), where σi : ∆3 → M

is a singular simplex and λi ∈ R, i = 1, . . . , n.





A basic idea we will exploit is that nonvanishing of simplicial volume is
associated to some kind of “hyperbolic” behavior. Let us illustrate this on
examples.

Proposition 9.23. Let M be a closed orientable manifold. If there exists a
self-map f : M → M with | deg(f)| ≥ 2, then ‖M‖ = 0.

This follows from the fact that the degree of a map f : M → N can be
defined by f∗[M ] = deg(f) · [N ].

Corollary 9.24. Spheres and tori of dimension ≥ 1 have zero simplicial vol-
ume.

By contrast, hyperbolic manifolds have nonzero simplicial volume. More pre-
cisely their simplicial volume is equal to the hyperbolic volume up to a constant
factor:

Theorem 9.25. For n ≥ 2, let vn be the supremum of volumes of geodesic
simplices in Hn. Then for any complete hyperbolic n-manifold M with finite
volume, we have:

‖M‖ =
volM

vn
.

Remark. Proving the inequality ‖M‖ ≥ volM/vn is not too hard. It uses the
idea of “straightening” cycles, together with the fact that for any “straight”
cycle c representing [M ], the volume of M is equal to the weighted sum of the
volumes of the simplices of c provided that they are counted “algebraically”,
i.e. taking into account orientations and multiplicities. The other direction is
more involved. See [13, C4] for a detailed proof.

Here are some important properties of the simplicial volume:

Properties

• ||M1]M2|| = ||M1||+ ||M2||.
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• For 3-dimensional manifolds, ||M1

⋃
T 2 M2|| ≤ ||M1||+||M2|| with equality

if the boundary torus T 2 is incompressible in both M1 and M2 (cf. [94],
see also [131]).

Thus we obtain:

Corollary 9.26. Let M be a compact, orientable, Haken 3-manifold. Then
‖M‖ 6= 0 if and only if M has at least one hyperbolic piece in its toric splitting.

Simplicial volume will be used in the next section to analyze collapses. We
shall use Corollary 9.26 and Gromov’s Vanishing Theorem below (see [94] and
[112]). We say that a covering of a manifold has dimension k if its nerve has
dimension k (i.e. each point of the manifold is contained in at most k + 1 sets
of the covering).

We say that a subset S in a manifold M is amenable if the image of π1S →
π1M is amenable. Notice that virtually abelian groups are amenable.

Theorem 9.27 (Vanishing Theorem). If M is a closed, orientable n-manifold
with an (n− 1)-dimensional covering by amenable sets, then ‖M‖ = 0.

9.6 The fibration theorem

Throughout this section, we assume that C is a cone manifold structure on O
of constant curvature in [−1, 0], with cone angles between ω and the orbifold
angles of O. We also assume that C is δ-thin (i.e. each point has cone injectivity
radius < δ). We shall show the existence of a constant δ0(ω) > 0 such that if
δ < δ0(ω) then O is Seifert fibered.

The strategy of the proof is the following. We choose first a Seifert fibered
suborbifold W0 ⊂ O such that O0 := O − Int(W0) is Haken. Since O0 is
Haken, it has a toric splitting into geometric pieces by Thurston’s Hyperboliza-
tion Theorem (Theorem 6.5) and it is very good by [149]. Using Theorem 9.27
and Corollary 9.26, we show that any finite regular manifold covering of O0 has
only Seifert pieces in its toric splitting (i.e. it is a graph manifold in the sense
of [238]). Hence no piece of the toric splitting of O0 is hyperbolic, and there is a
collection of essential toric 2-suborbifolds that decompose O into Seifert fibered
3-suborbifolds (i.e. O itself is a “graph orbifold”). Since O is small, it is in fact
Seifert fibered.
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9.6.1 Local Euclidean structures

A cone manifold of constant curvature 0 is called Euclidean. To understand
the local geometry of thin cone manifolds of nonpositive curvature, we need
some facts about non-compact Euclidean cone 3-manifolds. We first give some
examples.

Example. The following are non-compact Euclidean cone 3-manifolds.

i. The model spaces H3
0 and H3

0(α).

ii. Quotients of H3
0 (resp. H3

0(α)) by an infinite cyclic group generated by
a screw motion (resp. a screw motion respecting the singular axis.) The
underlying space is S1×R2, and the singular locus is empty (resp. a core
circle).

iii. The product of R with a closed Euclidean cone 2-manifold.

iv. A slightly more complicated example is obtained by taking the quotient of
the previous one by a metric involution τ that reverses the orientation of
both factors. For instance T2 admits an involution such that the quotient
is topologically an annulus. This gives S1 × R2 with singular locus two
circles of angle π.

Definition. A soul S of a non-compact Euclidean cone 3-manifold E is a totally
geodesic compact submanifold with boundary either empty or singular with cone
angle π, such that E is isometric to the normal bundle over S (with infinite
radius).

In Example (i) above the soul is a point. In Example (ii) it is a circle. We
leave it as an exercise to determine the soul in Examples (iii) and (iv).

Proposition 9.28. Every non-compact Euclidean 3-cone manifold with cone
angles ≤ π has a soul.

This proposition can be used to classify Euclidean cone 3-manifolds. See
[17, 43] for a complete list.

Next lemma is the cone manifold analogue of [42, part 2, Proposition 3.4] in
the case of manifolds, which gives a local description of collapsing manifolds.

Lemma 9.29. For every ε > 0 and D > 1, there exists δ0 = δ0(ε,D, ω) > 0
such that, if C is a cone 3-manifold satisfying all hypotheses of Theorem 9.16,
in particular is δ-thin with δ < δ0, then for each x ∈ C there is a neighborhood
Ux ⊂ C of x, a number νx ∈ (0, 1) and a (1 + ε)-bi-Lipschitz homeomorphism f
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between Ux and the νx-neighborhood of the soul S of a non-compact Euclidean
cone 3-manifold. In addition dim S = 1 or 2, and

max (d(f(x), S), diam(S)) ≤ νx/D.

Sketch of proof. The proof is by contradiction. If the assertion were false, then
there would exist ε > 0, D > 1 and a sequence of cone manifolds Cn with
diameter ≥ 1, curvature in [−1, 0] such that Cn is 1

n -thin, and there would exist
points xn ∈ Cn for which the conclusion of the lemma does not hold with the
constants ε,D.

Set λn = cone-inj(xn). By the compactness theorem (Thm. 9.14), a subse-
quence of ( 1

λn
Cn, xn) converges to a non-compact Euclidean 3-manifold (E, x∞).

Since cone-inj(x∞) = 1, the soul of E has dimension one or two. Using the prop-
erties of pointed bi-Lipschitz convergence, one can prove that the conclusion of
the lemma holds for xn provided that n is large enough (see [17] and [18, Chap.4]
for details).

The neighborhoods Ux in this lemma are called (ε, D)-Margulis’ neighbor-
hoods, and the Euclidean cone 3-manifolds with soul S are called local models.
The local models E are described according to the dimension of their soul S:

– When S is 2-dimensional and orientable, then E is isometric to the product
S×R. The possible 2-dimensional cone manifolds S are the torus T2, the
pillow S2(π, π, π, π) and the turnovers S2(α, β, γ), with α + β + γ = 2π.

– When S is 2-dimensional but non-orientable (possibly with mirror bound-
ary), then E = S̃ × R/τ , where S̃ is the orientation covering of S and
τ is an involution that preserves the product structure and reverses the
orientation of each factor. It is a twisted line bundle over S.

– When dim(S) = 1, then either S = S1 or S = S1/Z2. In the former case,
E is a solid torus, possibly with a singular core. In the latter case, E is a
solid pillow.

We apply this lemma to each point of C with some constants D > 1, ε > 0
to be specified later. Consider the thickening

Wx := f−1(Nλνx(S))

of the soul of Ux where 0 < λ < 1
D . We will also view Wx as a suborbifold of O.

The topology of Wx is easily described from the classification of non-compact
Euclidean cone 3-manifolds. Moreover, not all the models can occur: Wx con-
tains no turnover, because O is small and the components of ΣO are circles.
One can deduce:
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Lemma 9.30. Each Wx is Seifert fibered. In particular, ∂Wx is a union of tori
and pillows.

Proof. Notice that Nλνx(S) is a Euclidean structure on the interior of Wx, with
cone angles less than or equal to the orbifold angles. Then the lemma is proved
by looking at all the possible cases for S, using the fact that S is never a turnover
nor a quotient of one.

The proof of the following lemma is technical and uses metric properties of
the Wx’s; we refer to [17] for the proof.

Lemma 9.31. If ε = ε(ω) > 0 is small enough, D = D(ω) is large enough and
if Wx ∩ Σ 6= ∅, then O − Int(Wx) is Haken.

9.6.2 Covering by virtually abelian subsets

We assign a special role to one of the subsets Wx along which we will cut O
later on. Namely, we choose x0 ∈ C such that Wx0 ∩ΣC 6= ∅ and its radius νx0

is almost maximal:

νx0 ≥
1

1 + ε
sup{νx|Wx ∩ Σ 6= ∅}.

We set W0 := Wx0 , O0 := O − Int(W0), ν0 := νx0 . In view of Lemma 9.31, O0

is Haken.

Definition. We say that a subset S ⊂ O is virtually abelian in O0 if for each
connected component Z of S ∩O0, the image of π1(Z) → π1(O0) in the funda-
mental group of the corresponding component of O0 is virtually abelian.

Proposition 9.32 ([17, 18]). If D is large enough and ε > 0 is sufficiently
small, then there exists a 2-dimensional complex K(2) and a continuous map
f : C → K(2) such that:

i. f(W0) is a vertex of K(2).

ii. The inverse image of the open star of each vertex is virtually abelian in
O0.

Notice that by taking the inverse images of the open stars of vertices of K(2),
this proposition tells us that O0 has a covering by virtually abelian subsets. This
covering has dimension 2 (i.e. each point belongs to at most 3 open sets).

Sketch of proof. The proof is divided in several steps.
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Step 1: Construction of a covering by virtually abelian subsets.
For x ∈ C we define:

va(x) = sup{r > 0 | Br(x) is virtually abelian in O0}

and

r(x) = inf(
va(x)

8
, 1).

By construction, if Br(x)(x) ∩Br(y)(y) 6= ∅, then

3/4 ≤ r(x)/r(y) ≤ 4/3 (9.1)

and Br(x)(x) ⊂ B4r(y)(y). In addition, for D sufficiently large we have

W0 ⊂ B r(x0)
9

(x0), (9.2)

because va(x0) ≥ 1
1+ενx0(1 − 1/D) and W0 is contained in the ball of radius

2(1 + ε)νx0/D centered at x0.
To construct the covering we consider sequences {x0, x1, . . .} starting with

the distinguished point x0 ∈ W0, such that:

The balls B 1
4 r(x0)(x0), B 1

4 r(x1)(x1), . . . are pairwise disjoint. (9.3)

Such a sequence must be finite. We choose a maximal sequence satisfying
(9.3). By maximality and (9.1), the balls B 2

3 r(x0)(x0), . . . , B 2
3 r(xp)(xp) cover C.

Consider the covering of C by the open sets

• V0 = Br(x0)(x0) and

• Vi = Br(xi)(xi)−W0 for i = 1, . . . , p.

Define ri := r(xi) and Bi := Br(xi)(xi).
Using (9.1) and (9.3) we easily get:

Lemma 9.33. There is a uniform bound N on the number of balls Bi that
intersect a fixed ball Bk.

Step 2: Constructing the Lipschitz map to the nerve of the covering.
Let K denote the nerve of the covering. By Lemma 9.33, dim K ≤ N .

Lemma 9.34. Each x ∈ C belongs to an open set Vk such that d(x, ∂Vk) ≥ rk/3.
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Proof. Since the balls B 2
3 r0

(x0), . . . , B 2
3 rp

(xp) cover C, we may assume that
x 6∈ B 2

3 r0
(x0), x ∈ B 2

3 rk
(xk) for some k > 0, and Bk ∩ B0 6= ∅, otherwise the

lemma is clear. Using inclusion (9.2) we get:

d(x,W0) ≥ d(x, x0)− 1
9
r0 ≥ 2

3
r0 − 1

9
r0 ≥ 3

4
· 5
9
rk >

1
3
rk

Hence d(x, ∂Vk) ≥ 1
3rk.

On Vk we define

ψk = τ(
1
rk

d(∂Vk, ·))
where τ : [0, 1] → [0, 1] is an auxiliary function that vanishes in a neighborhood
of the origin, satisfies τ |[ 13 ,1] ≡ 1 and is 4-Lipschitz. Thus ψk is 4

rk
-Lipschitz and

we extend it trivially to C.
Now set φk = ψk/

∑p
0 ψi. A consequence of Lemma 9.34 is that

p∑

i=0

ψi(x) ≥ 1, ∀x ∈ C,

hence the application φk is well-defined on C. Since at most N open sets Vi

intersect a given Vk, φk is L
rk

-Lipschitz on each Vk for some uniform constant
L > 0.

We define fN : C → K as fN = (φ0, . . . , φp), which is L
rk

-Lipschitz on Vk.

Step 3: Pushing fN to the 2-skeleton.
We first show that fN : C → K(N) can be homotoped to fN−1 : C → K(N−1)

which is still L′
rk

-Lipschitz on Vk. This homotopy is obtained by composing with
radial projection on each N-simplex ∆N of K. Thus it suffices to prove the next
lemma, which guaranties that radial projection from z has bounded diameter:

Lemma 9.35. If N > 3, then there exists z ∈ ∆N at distance > θ0 from both
∂∆N and the image of fN , for θ0 > 0 uniform.

Proof. Let θ > 0 be a constant for which such a z ∈ ∆N does not exists. Then
fN (C) ∩ Int∆N contains a subset of at least c1(N) · 1

θN points with pairwise
distance ≥ θ. Let A be the set of inverse images. Notice that A ⊂ Vk ⊂ Bk,
where vk is any vertex of ∆N . Since fN is L

rk
-Lipschitz, points in A are separated

by distance 1
Lrkθ. Volume comparison (using the Bishop-Gromov inequality,

Prop. 9.12) implies that A contains at most c2 ·
(

L
θ

)3
points. Then inequality

c1(N) · 1
θN

≤ c2 ·
(

L

θ

)3

provides the uniform lower bound for θ.
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Notice that this lemma works as long as N > 3, thus applying it several
times we can homotope fN to a map f3 : C → K(3) which is L

rk
-Lipschitz on

each Vk. To push it further to K(2) by a radial projection in each 3-simplex,
we show that no 3-simplex ∆3 is contained in the image of f3 using a volume
argument.

Notice that vol(f3(C) ∩ ∆3) = vol(f3(f−1
3 Int(∆3))). Since f−1

3 Int(∆3) ⊂
f−1
3 (vk) ⊆ Vk, we get:

vol(f3(C) ∩∆3) ≤ vol f3(Vk) ≤
(

L

rk

)3

volVk

because f3 is L
rk

-Lipschitz on Vk. Using the Bishop-Gromov inequality (Prop. 9.12)
and the description of the local models, we prove that

volVk ≤ volBk ≤ b
1
D

r3
k

for some uniform b > 0 (see [18, Chap.6], [17]). Thus

vol(f3(C) ∩∆3) ≤ b
1
D

and it suffices to choose D > b/ vol∆3, so that vol(f3(C) ∩∆3) < vol(∆3).

9.6.3 Vanishing of simplicial volume

The orbifold O0 is Haken and therefore has a toric splitting into Seifert fibered
and hyperbolic suborbifolds. In particular it is very good [149].

Proposition 9.36. All components in the toric splitting of O0 are Seifert
fibered.

Proof. Since the orbifold O0 is very good, there is a finite covering p : M → O0

by a manifold M whose boundary ∂M is a union of tori. A hyperbolic piece in
the toric splitting of O0 lifts to a hyperbolic piece in that of M . We have to
show that there are no hyperbolic components in the toric splitting of M .

We may assume that the boundary of M is incompressible because otherwise
M is a solid torus and the assertion holds. We construct a closed manifold M

by Dehn filling on M as follows. Let Y ⊂ M be a component of the toric
splitting such that Y ∩ ∂M 6= ∅. When Y is hyperbolic we choose, using the
Hyperbolic Dehn Filling Theorem (Thm. 8.4) , the Dehn fillings at the tori of
Y ∩∂M in such a way that the resulting manifold Y remains hyperbolic. When
Y is Seifert fibered, we fill so that Y is Seifert fibered and the components of
∂Y − ∂M remain incompressible (i.e. the surgery slope meets the fiber in at
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least two points). This can be done because the base of the Seifert fibration of
Y is neither an annulus nor a disk with zero or one cone point. The manifold
M has a toric splitting along the same tori as M and with the same number of
hyperbolic (and also Seifert fibered) components.

It suffices to show that M has zero simplicial volume, because then Corol-
lary 9.26 implies that M contains no hyperbolic component in its toric splitting.
To this purpose we will apply Gromov’s Vanishing Theorem (Thm. 9.27).

We compose the map of Proposition 9.32 f : O → K(2) with the projection
p and extend the resulting map M → K(2) to a map h : M → K(2) by mapping
the filling solid tori to the vertex vV0 . Notice that h is continuous because
f(∂O0) = {vV0}. The inverse images under h of open stars of vertices are
virtually abelian as subsets of M . These subsets yield an open covering of M

with covering dimension ≤ 2. By Gromov’s Vanishing Theorem, the simplicial
volume of M vanishes.

Conclusion of the proof of Theorem 9.16.
Since O results from O0 by gluing in a Seifert orbifold, O itself splits along a

finite collection of toric 2-suborbifolds into Seifert fibered 3-suborbifolds. Since
O is atoroidal, it must be Seifert fibered.

Remark. Consider a closed small orbifold O such that the simplicial volume
of |O| does not vanish. Then the proof shows that there is no collapse and
therefore O is hyperbolic.
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[135] F. Löbell. Beispiele geschlossener dreidimensionaler Clifford-Kleinscher
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hyperbolic, 10
pared, 72
Seifert fibered, 21
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character, 115
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submanifold
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suborbifold, 29
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boundary parallel, 48
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compressible, 48
essential, 43, 48
horizontal, 44
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length, 62
normal, 51
parallel, 48
PL area, 62
proper, 29
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toric

canonical, 56
total weight, 62
vertical, 44

system of 2-suborbifolds, 47
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components of, 47
essential, 55
normal, 51
spherical, 47

essential, 53
toric, 47

teardrop, 37
thick part, 100
thin part, 100
TMC, 83

Seifert fibered, 83
uniform, 83

triangulation, 51
turnover, 37

thick, 69

unimodular, 9

variety of characters, 115

variety of representations, 114
virtually abelian, 163

Whitehead manifold, 67
word metric, 22
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