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Abstract

We study spherical cone structures on 2-bridge knots and links. It is known that
such structures exist for cone angle α ∈ (α0, π], and that they become Euclidean when α
approaches α0. Here we prove that these structures exist for cone angle α ∈ [π, 2π−α0).
When L is a hyperbolic link and α → 2π − α0, the singular locus crosses transversally
with itself along the tunnels. When L is a torus link, the crossing is not transverse and
it is described by means of the Seifert fibration.

1 Introduction

A 2-bridge link L ⊂ S3 is a link of one or two components such that the pair (S3, L) is a
union of two trivial tangles T1 and T2 along the boundary, where each Ti is a pair consisting
of a ball and two unknotted arcs. Each tangle Ti has a tunnel τi, which is a path from one
arc to the other, so that the union of τi with the arcs has a letter H shape.

A spherical cone structure on (S3, L) is a metric on S3 singular on L, which is a smooth
Riemannian metric on S3 − L of constant curvature +1, and on a neighborhood of each
point of L has the expression in cylindrical coordinates:

d r2 + (
α

2π
sin r)2 d θ2 + cos2 r d h2

where α > 0 is the cone angle, r > 0 denotes the distance to the singular locus, θ is
the angle parameter and h is the height or length parameter of L. A similar definition
applies to hyperbolic and Euclidean cone structures, by replacing trigonometric functions
by hyperbolic trigonometric and affine ones respectively.

A two bridge link is either hyperbolic or a torus link. By [1], [8], [6] and [10], in the
hyperbolic case, there exists an angle α0 ∈ [2π

3 , π) depending on L such that (S3, L) has a
unique cone structure with cone angle α of the following kind:

• Euclidean for α = α0,

• hyperbolic for α ∈ (0, α0), and

• spherical for α ∈ (α0, π].

When α = π, this structure corresponds to an orbifold doubly covered by a lens space.
By a deformation argument, the cone angle α can be increased slightly beyond π by

keeping the spherical structure, and we may ask till which angle it can be increased. The
main theorem of this paper shows that it can be increased up to 2π−α0, and at this angle
the singular locus intersects with itself along the tunnels, whose length converges to zero.
This is one of the few explicit examples of accident for cone angles larger that π.
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Theorem 1.1 Let L ⊂ S3 be a hyperbolic two-bridge link and let α0 ∈ [2π
3 , π) be the

Euclidean angle as above. For every α ∈ [π, 2π − α0) there exist a spherical cone structure
on (S3, L) with cone angle α, denoted by C(α).

As α → 2π − α0, C(α) converges to the suspension of a sphere with four cone points,
and the length of the tunnels converge to zero.

For the figure eight knot, this family of spherical cone structures has been constructed
by Mednykh and Rasskazov [7]. Their construction uses fundamental polyhedra, and they
obtain an explicit formula for the volumes.

In Section 2 we illustrate the phenomenon of collapse after π for toric two-bridge links,
complementary to Theorem 1.1. In this case the singular locus intersects with itself in a
different way from the hyperbolic case, not in transverse directions but in parallel ones, so
that for a link the two components become one, and for a knot the singular locus is mapped
onto a circle by a map of degree 2.

The proof of Theorem 1.1 has two main steps. Firstly, in Section 3 we explicitly con-
struct a family of representations. Secondly, the argument to show that these are in fact
holonomy representations is a standard connectedness argument, the only difficult think is
to prove that the singular locus does not cross with itself when we deform (i.e. that there
is a tube of the singularity with radius bounded below away from zero). This is proved in
Section 4 by means of a volume estimate. Finally in Section 5 we analyze the crossing of
the singular locus.

2 Two bridge torus links

We first discuss the toric case, as complementary to the hyperbolic one, to illustrate a
different kind of collapse of spherical structures.

A two bridge knot is toric if it is the regular fiber of a Seifert fibration of S3 with
singular fibers of order 2 and n, with n > 1 odd. As torus knot, it is denoted by t(2, n). A
2-component link is toric and has two bridges when it is the union of two regular fibres of
a Seifert fibration of S3 with a single singular fibre of order m > 1, and as torus link it is
denoted by t(2, 2m).

Using the Seifert fibration one can easily construct geometric cone structures on S3 with
singular locus the torus knot t(2, n). For α < π − 2π

n there is a ˜SL2(R) structure, and for
α = π − 2π

n there exists a Nil one. The same assertion holds for the torus link t(2, 2m) for
angle π − π

2m .

Proposition 2.1 Let L = t(2, n) be a torus knot (n > 1 odd). For every α ∈ (π− 2π
n , π+ 2π

n )
there exist a spherical cone structure on (S3, L) with cone angle α, denoted by C(α).

In addition, as α → π + 2π
n , the singular locus collapses by a map of degree 2, in the

same way as in a Seifert fibration a regular fiber approaches a singular fiber of order 2. The
result is a suspension of a sphere with two cone points of angle 2π

n .

Proposition 2.2 Let L = t(2, 2m) be a toric link with two components, with m > 1. For
every α ∈ (π − π

m , π + π
m) there exist a spherical cone structure on (S3, L) with cone angle

α, denoted by C(α).
In addition, as α → π + π

m , the components of the singular locus collapse to a single
one, and the limit is a suspension of a sphere with two cone points of angle 2π

m .
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Propositions 2.1 and 2.2 can be easily proved using the Seifert fibration and analyzing
the behavior of the basis. We do not give details of the proof, just mention few remarks
about the geometry of spheres with three cone points.

Firstly, a spherical surface with three cone points is rigid. Here the angles of the three
cone points are 2π

n , π and α for knots and 2π
m , α and α for 2-components links.

Secondly, in the knot case, when α → π + 2π
n , the cone point of angle α approaches the

one of cone angle π, and the result is a single cone point of cone angle
(
π + 2π

n

)
+π−2π = 2π

n .
Thus the limit is a sphere with two cone points of angle 2π

n . Similarly, in the link case, when
α → π + π

m both cone points of angle α approach, and the limit is a single cone point of
angle 2(π + π

m)− 2π = 2π
m .

3 The variety of representations

In order to deform the cone structures, we work with incomplete spherical structures on
M = S3−L. In addition, instead of SO(4), we work in Spin(4), which is isomorphic to the
product SU(2)× SU(2), as every holonomy representation lifts to Spin [3]. Thus we work
with pairs of conjugacy classes of representations in SU(2), i.e. points in

X(M,SU(2))×X(M,SU(2)),

where X(M, SU(2)) denotes the variety of characters of π1M . Elements in X(M,SU(2))
are conjugacy classes of representations.

For every γ ∈ π1M we consider the map

Iγ : X(M,SU(2)) → C
[ρ] 7→ trace(ρ(γ))

that can be used to describe the action of (ρ1(γ), ρ2(γ)) ∈ SU(2) × SU(2) as isometry in
SO(4). For instance (ρ1(γ), ρ2(γ)) ∈ SU(2) × SU(2) is a rotation of angle α iff Iγ(ρ1) =
Iγ(ρ2) = ±2 cos α

2 . Thus, if µ1 ∈ π1M is a representative of a meridian (µ1 and µ2 for a
2-components link), we are interested in pairs of representations

([ρ1], [ρ2]) ∈ X(M, SU(2))×X(M, SU(2)) such that Iµi([ρ1]) = Iµi([ρ2]).

The existence of an Euclidean structure with angle α0 ∈ [2π
3 , π) is proved in [8] an

appendix of [1]. Then the existence of the spherical cone structures in (α0, π] is proved in
[6]. In particular it follows from [10] and [6] that there is an explicit description of a subset
C ⊂ X(M,SU(2)) corresponding to those structures.

The curve C. Let ρα0 : π1M → SU(2) be a lift of the rotational part of the Euclidean
holonomy at cone angle α0 (by [3] such a lift exists). We know that Iµi(ρα0) = ±2 cos α0

2 ,
and we may assume that Iµi(ρα0) = 2 cos α0

2 , up to changing some signs.

Proposition 3.1 The connected component C ⊂ X(M, SU(2)) of I−1
µ [0, 2 cos α0

2 ] (for a link
we add the restriction that Iµ1 = Iµ2) is diffeomorphic to an interval.

In addition the restriction Iµ|C : C → [0, 2 cos α0
2 ] is onto. The fiber of each point in

[0, 2 cos α0
2 ) has two elements and the fiber of 2 cos α0

2 has a single one.

This proposition is proved in [6]. For each α ∈ [α0, π] the elements of the fibre
I−1
µ (2 cos α

2 ) are denoted by [ρ±α ], so that each branch [ρ+
α ] and [ρ−α ] is continuous on α

and [ρ+
α ] = [ρ−α ] iff α = α0. In [6] it is proved that for α 6= α0, the pair (ρ+

α , ρ−α ) is the
holonomy representation of the spherical cone structure with cone angle α. Cf. Figure 1
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Figure 1: The curve C from Proposition 3.1.

The involution. To construct more representations, we use an involution on X(M, SU(2)).
Let θ : π1M → Z/2Z be the unique surjection such that θ(µi) is not trivial for each meridian
µi. Given ρ : π1M → SU(2), we consider the representation ι(ρ) defined as:

(ι(ρ))(γ) = (−1)θ(γ)ρ(γ), ∀γ ∈ π1M.

Thus ι induces an involution on X(M, SU(2)), also denoted by ι.
We shall show that the conjugacy classes of ρ±π are invariant by ι, and we shall construct

our representations in ι(C).

Lemma 3.2 The conjugacy classes [ρ±π ] are invariant by ι.

Proof: It suffices to check that Iγ([ρ±π ]) = Iγ(ι[ρ±π ]) for every γ ∈ π1M , as the conjugacy
class of a representation in SU(2) is determined by the value of its traces. For γ ∈ ker θ
the equality is obvious. The representations ρ±π are binary dihedral, which means that
under the natural projection SU(2) → SO(3) they project to a dihedral one. In particular,
if θ(γ) 6= 0, then ρ±π (γ) projects to a rotation of angle π in SO(3) (as every element in
O(2) − SO(2)). Thus if θ(γ) = 0 then trace(ρ±π (γ)) = ±2 cos π

2 = 0, and the equality is
proved. ¤

Thus ι(C) can be connected to C along [ρ±π ]. In addition we define

[ρ±α ] = ι[ρ±2π−α] ∀α ∈ [π, 2π − α0].

Let λ denote the translation length of the holonomy of a peripheral element (it is zero
for meridians and the length of the singular locus for longitudes).

Lemma 3.3 For every α ∈ [π, 2π − α0], (ρ+
α (µi), ρ−α (µi)) is a rotation of angle α.

In addition:

(a) If L is a knot and l represents a longitude, then

λ(ρ+
α (l), ρ−α (l)) = 4π − λ(ρ+

2π−α(l), ρ−2π−α(l)).

(b) If L has 2 components, and l1 and l2 represent the respective longitudes, then

λ(ρ+
α (li), ρ−α (li)) = 2π − λ(ρ+

2π−α(li), ρ−2π−α(li)).
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Proof: The proof consists in choosing explicit representatives ρ±α of conjugacy classes and
lift the involution ι to an involution ι̃ in the variety of representations, so that ι̃(ρ±π ) = ρ±π .

We choose representatives ρ±α so that for α ∈ [α0, π],

ρ±α (µ1) =
(

eiα/2 0
0 e−iα/2

)

In particular ρ±π (µ1) =
(

i 0
0 −i

)
. We also choose ρ±π so that its image is contained in the

group generated by
(

i 0
0 −i

)
and

(
cosβ sinβ
− sinβ cosβ

)
, with β ∈ R, so that ρ±π (γ) has real

coefficients iff γ ∈ ker θ.
The lift ι̃ on the variety of representations of ι is:

ι̃(ρ)(γ) = (−1)θ(γ)

(
0 1
−1 0

)
ρ(γ)

(
0 −1
1 0

)
∀γ ∈ π1M.

With this construction ι̃(ρ±π ) = ρ±π . In addition

ρ±2π−α(µ1) = ι̃ρ±α (µ1) =
( −e−iα/2 0

0 −eiα/2

)
=

(
ei(2π−α)/2 0

0 e−i(2π−α)/2

)

Which proves the first assertion.
By commutativity, the image of a peripheral element γ is

ρ±α (γ) =
(

z±α (γ) 0
0 1/z±α (γ)

)

If λα(γ) denotes the translation length of (ρ+
α (γ), ρ−α (γ)), then ei λα(γ) = z+

α (γ)/z−α (γ). From
the explicit description of ι̃, we have z±2π−α(γ) = (−1)θ(γ)/z±α (γ). Hence

eiλ2π−α(γ) = e−iλα(γ)

which means that λ2π−α(γ) = 2πk−λα(γ), with k ∈ Z. Statements (a) and (b) follow from
continuity and the fact that, at angle α = π, the length of the singular locus is 2π for a
knot, and π for each component of the link. ¤

4 Volume estimations

In previous section we have constructed a family of representations in Spin(4) ∼= SU(2)×
SU(2). We can show that they are holonomy representations of spherical cone structures
by a connectedness argument. For that we need to guarantee that the singular locus does
not cross with itself.

By continuity, we know that there exists a family of cone manifolds C(α) with holonomy
(ρ+

α , ρ−α ) for α ∈ [π, π + ε]. In the connectedness argument, we may assume that ε is any
value in (0, π − α0). Let r(α) denote the normal radius of the singular locus of C(α) (i.e.
r(α) is the supremum of all r such that the metric tube of radius r of the singular locus of
C(α) is embedded).

Lemma 4.1 For α ∈ [π, π + ε], vol(C(α)) ≤ 2πr(α) + 2π(α− π).
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Proof: Let σ be the shortest segment with end-points in the singular locus of C(α), which
it is not itself contained in the singular locus. By construction, it is perpendicular to the
singular locus and its length equals 2r(α). We consider the Dirichlet domain centered at σ,
i.e. the set of points with a unique minimizing segment to σ. By construction, this domain
is star-shaped and has the same volume as C(α). In addition, it embeds isometrically in
the union of the following pieces:

(i) A lens of with 2r(α) (i.e. bounded by two planes with dihedral angles 2r(α)).

(ii) Four sectors (which are again lenses) of angle (α− π)/2. The edge of these sectors is
viewed as the singular locus, and those sectors share a face with the lens.

The volume of the first piece is 2πr(α), and the volume of the second one is 4π(α − π)/2,
hence the lemma is proved. ¤

Lemma 4.2 For α ∈ [π, π + ε], vol(C(α)) = vol(C(2π − α)) + 2π(α− π).

Proof: By Schläfli’s formula, if l(α) is the length of the singular locus of C(α), we have:

vol(C(α)) =
1
2

∫ α

α0

l(θ)dθ =
1
2

∫ π

α0

l(θ)dθ +
1
2

∫ α

π
l(θ)dθ.

On the second integral, we make the change of variable w = 2π − θ. Notice that by
Lemma 3.3, l(w) = 4π − l(θ). Thus vol(C(α)) equals

1
2

∫ π

α0

l(θ)dθ − 1
2

∫ 2π−α

π
(4π − l(ω))dω =

1
2

∫ π

α0

l(θ)dθ − 1
2
(π − α)4π +

1
2

∫ 2π−α

π
l(θ)dθ

=
1
2

∫ 2π−α

α0

l(θ)dθ + 2π(π − α).

Since vol(C(2π − α)) = 1
2

∫ 2π−α
α0

l(θ)dθ, the lemma is proved. ¤

From Lemmas 4.1 and 4.2, we get:

Corollary 4.3 For α ∈ [π, 2π − α0),

r(α) ≥ 1
2π

vol(C(2π − α)).

Thus r(α) is uniformly bounded for α is a compact subset of [π, 2π − α0).

Proof of the existence of structures in Theorem 1.1. Let A = [π, π+ε) ⊂ [π, 2π−α0)
be the subinterval such that for every α ∈ A there exists a spherical cone manifold structure
C(α) on (S3, L) with holonomy (ρ+

α , ρ−α ). The set A is open, by the fact that deformation
of the holonomy implies deformation of the structure. To prove that A is closed, we take
a sequence αn ∈ A converging to α∞ ∈ [π, 2π − α0). We know that the diameter of C(αn)
is bounded above by π, and that r(αn) is bounded below away from zero, by Corollary 4.3.
From these bounds and using the arguments of [2], it follows that C(αn) converges to C(α∞),
a spherical cone structure on (S3, L) with cone angle α∞ and holonomy (ρ+

α∞ , ρ−α∞). ¤
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5 Crossing of the singular locus

Let Lτi(α) denote the length of the tunnel τi at C(α). We first prove:

Lemma 5.1 lim
α→2π−α0

Lτi(α) = 0.

Proof: The element ti of the fundamental group representing τi is the product of two
meridians, this means that θ(ti) = 0, where θ : π1M → Z/2Z is the surjection of Section 3.
Thus (ρ+

α (ti), ρ−α (ti)) and (ρ+
2π−α(ti), ρ−2π−α(ti)) are conjugate. In particular, Lτi(2π − α) =

Lτi(α) + 2πk, with k ∈ Z. Since Lτi(π) = π
n , it follows that Lτi(2π − α) = Lτi(α), hence

lim
α→2π−α0

Lτi(α) = lim
α→α0

Lτi(α) = 0. ¤

To understand the crossing of the singular locus, we start with the suspension of 4 cone
points, and construct developing maps according to the deformation of the holonomy, being
careful on the neighborhood of the tunnels.

Since ρ+
2π−α0

= ρ−2π−α0
, (ρ+

2π−α0
, ρ−2π−α0

) preserves a totally geodesic 2-sphere in S3, and
both points at distance π/2 from it.

Lemma 5.2 (ρ+
2π−α0

, ρ−2π−α0
) is the holonomy representation of a suspension of a sphere

with 4 cone points.

Proof: We proceed first to construct the metric on each tangle with totally geodesic bound-
ary, that we shall glue later. Let µ1 and µ2 be representatives of the meridians of a tangle,
so that µ1 and µ2 freely generate the group of the exterior of the tangle. The rotation axis of
(ρ+

α0
(µ1), ρ−α0

(µ1)) and (ρ+
α0

(µ2), ρ−α0
(µ2)) are different (otherwise, since µ1 and µ2 generate

π1M , the rotational part of the Euclidean holonomy would be contained in SO(3), con-
tradicting hyperbolicity by [8]). In particular the rotation axis of (ρ+

2π−α0
(µ1), ρ−2π−α0

(µ1))
and (ρ+

2π−α0
(µ2), ρ−2π−α0

(µ2)) are also different. Thus we construct the geometric struc-
ture in one tangle by taking a half sphere with geodesic boundary (i.e. a ball in S3 of
radius π/2), by removing two sectors of angle α0, each one with edge the rotation edge of
(ρ+

2π−α0
(µ1), ρ−2π−α0

(µ1)) and (ρ+
2π−α0

(µ2), ρ−2π−α0
(µ2)), and by identifying the half disks in

the boundary of the sectors by a rotation around its edge.
We do the same construction for the other tangle, and we have to check that the

totally geodesic boundaries of both tangles match. They do match because the holonomy
determines the structure of a sphere with 4 cone points and fixed cone angles. More precisely,
such a sphere is the union of two discs with totally geodesic boundary and 2 cone points.
The length of the boundary and the cone angles is determined by the holonomy, and such
three numbers determine completely the metric on the disc. ¤

Once we have made the explicit construction of the structures on each tangle, we make
the standard argument of “deformation of the holonomy implies deformation of the struc-
ture”. We perturb those structures to smaller cone angles, being careful with the crossing
and the tunnels (a explicit model can be constructed in a neighborhood of the tunnels, by
removing again sectors from a small ball, but this time the sectors are disjoint). It only
remains to check that those structures correspond in fact to C(α) constructed in previous
section. Thus we keep decreasing the cone angle. By an argument similar to Lemma 4.2,
we can prove that the singular set does not cross with itself anymore when we decrease the
cone angle (notice that the volume of the suspension is 2π(α0 − π) and the computation of
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integrals in the proof of Lemma 4.2 applies). Once we have reached cone angle π we use the
fact that spherical orbifolds are rigid (i.e. the structure is unique, by de Rham’s theorem
[9, 4]). De Rham’s global rigidity and local rigidity of the variety of representations, imply
that the structures are in fact C(α).

As a final remark, we notice that even if these structures are locally rigid, we do not
know how to prove global rigidity, as we do not have an argument to control the normal
radius of the singular locus of a give cone manifold in general.
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